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Abstract

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease
facilitated by aberrant immune responses directed against cells and tissues,
resulting in inflammation and organ damage. The majority of cells involved in the
pathogenesis of SLE originate from bone marrow (BM) derived haematopoietic
stem and progenitor cells (HSPCs). Previous research suggests that in SLE,
haematopoiesis is dysregulated, with a skewing toward the myeloid lineage at
the expense of lymphopoiesis. Also, HSPCs acquire a primed phenotype with a
"trained immunity" signature, which may contribute to inflammation and flare
risk. However, whether the epigenetic profile is implicated in this particular
dysregulation, is still unknown. DNA methylation can regulate gene expression
by inhibiting the binding of transcription factors (TFs) to DNA. Such TFs can
be cis-regulatory elements (CREs) that typically regulate gene transcription by
binding to other transcription factors as CCCTC-binding factor (CTCF). Herein,
we show that differentially expressed genes (DEGs) and more specifically genes
that are involved in myeloid-related pathways are possible regulated by distant
methylated regulatory factors. We found that CREs, specifically enhancers that
are up to 2Mb away from DEGs are methylated, while other transcription factors
in those distances such as CTCF binding sites are also altered by methylation.
Here, we show these modifications along with the expressions of DEGs and at
the same time, we indicate the significance of their relationship. The findings
suggest that interactions of distant methylated CREs and TFBS with DEGs
cause HSPCs to reprogramme towards myeloid lineage, which may contribute to
increased immunological responses and flares in SLE.
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1. Introduction

1.1 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is a complicated autoimmune dis-
ease with a chronic relapsing–remitting history with a wide range of symptoms
that can range from moderate to life-threatening illness. SLE develops clinically
as a result of a combination of genetic susceptibility, environmental, immunolog-
ical, and hormonal variables, with a high preference for women of reproductive
age Basta et al. (2020). The exact molecular mechanisms that cause SLE clinical
symptoms are yet unknown. In order to better understand these molecular and
genetic mechanisms, various mouse models of spontaneous lupus have been used,
including the classic mouse model, F1 hybrid of the New Zealand Black (NZB)
and New Zealand White (NZW) strains, called NZB/W F1 Pathak and Mohan
(2011). During the last two decades, research employing multiple mouse strains
of spontaneous and inducible lupus has shed light on the immune system’s role,
including innate immunity and adaptive immunity in the disease’s pathogenesis
Pan et al. (2020). B and T lymphocytes have been shown to play a central role in
adaptive immune response of SLE while the role of innate immune components
has been only recently addressed and also found to play an important part in the
disease Herrada et al. (2019); Pan et al. (2020). Now, we know that a complex
network of innate and adaptive immune cells interactions occurs during SLE
Herrada et al. (2019). On that note, it has been also shown that epigenetic
changes in immune cells play a major role in the disease pathogenesis via gene
expression dysregulation Hedrich et al. (2017).

SLE treatment is complicated and requires a multidisciplinary approach.
The first line of defense is pharmacological treatment in the form of immune
suppression Davis and Reimold (2017). Despite all of these treatment options, a
significant number of patients continue to have high disease activity and relapse
often, causing organ damage. Because of the inherent variety of illness causes, it
has been challenging to develop medicines that work for the vast majority, in
most if not all SLE patients Davis and Reimold (2017). New treatment options
for people with severe or refractory illness are thus required. Over the last two
decades, haemopoietic stem cell transplant (HSCT) has been tried in patients
with SLE de Silva and Seneviratne (2019).
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1.2 Stem Cells

Stem cells are in multicellular that can differentiate into many types of
cells and multiply endlessly to produce additional stem cells. No other cell in
the body has the natural ability to generate new cell types while in a cell lineage,
they are the earliest form of cell.

• Embryonic stem cells: stem cells that come from embryos that are 3 to 5
days old. At this stage, an embryo is called a blastocyst and has about
150 cells. These are pluripotent stem cells, meaning they can divide into
more stem cells or can become any type of cell in the body. This versatility
allows embryonic stem cells to be used to regenerate or repair diseased
tissue and organs.

• Adult stem cells: stem cells that are found in small numbers in most adult
tissues, such as bone marrow, brain and skin. Compared with embryonic
stem cells, adult stem cells have a more limited ability to give rise to various
cells of the body. Transplantation of haemopoietic stem cells (HSCs), can
now be used to treat most inherited blood cell diseases.

Figure 1.1: Different types of stem cell in the body (Credit: Genome Research
Limited.)
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1.2.1 Haematopoietic Stem and Progenitor Cells

Hematopoietic stem and progenitor cells (HSPCs) are a rare population
of precursor cells that possess the capacity for self-renewal and multilineage
differentiation Schulz et al. (2009). HSPCs are dormant cells that live in the BM
niche that also proliferate and differentiate in response to stress or inflammation to
replenish any progeny required Baldridge et al. (2011); Trumpp et al. (2010); Zhao
and Baltimore (2015). It is also known that all peripheral blood cells, both the
myeloid and lymphoid lineage, derive from HSPCs Suda et al. (2011); Gunsilius
et al. (2001). The immunophenotype-based tree-like hierarchy model is the most
well-known model for illustrating the link between an HSC and its progenies,
as well as the stepwise differentiation process Kondo et al. (1997); Morrison
et al. (1997); Akashi et al. (2000); Manz et al. (2002). The pool of HSPCs can
be broken down into two subsets of cell types: the HSCs and the multipotent
progenitor cell (MPP). HSCs can be separated into two subpopulations based
on their CD34 expression: CD34 long term HSCs (LT-HSCs) and CD34+ short
term HSCs (ST-HSCs). LT-HSCs are a rare, quiescent bone marrow population
with full long-term (> 3∼4 months) regeneration capacity, whereas ST-HSCs
have only a short-term (usually 1 month). LT-HSCs differentiate into ST-
HSCs, and subsequently, ST-HSCs differentiate into MPPs, which have no
detectable self-renewal ability Yang et al. (2005). Subsequently, two distinct
progenitor cell populations emerge from the MPP pool: the common lymphoid
progenitors (CLPs) and the common myeloid progenitors (CMPs). The second
branch point at CMPs segregates bipotent granulocyte-macrophage (GMPs)
and megakaryocyte-erythrocyte progenitors (MEPs). CLPs further form T, B,
NK and dendritic cells, while GMPs differentiate into granulocytes/monocytes
and MEPs generate megakaryocytes/erythrocytes. All these populations form a
tree-like and balanced hierarchy model, within which key transcription factors
(TFs) and cytokines precisely conduct the stepwise differentiation of HSCs to
mature blood cells Zhu and Emerson (2002); Robb (2007); Metcalf (2008); Zhang
and Lodish (2008); Seita and Weissman (2010).
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Figure 1.2: The immunophenotype-based tree-like hierarchy model. LT-HSCs differ-
entiate through ST-HSCs and then MPP stages into lineage-restricted progenitors such
as lymphoid, myeloid, or megakaryocyte/erythroid progenitor. Cheng et al. (2020).

1.2.2 Haematopoietic Stem and Progenitor Cells in SLE

The majority of cells involved in the pathogenesis of SLE come from
bone marrow (BM) derived HSPCs which are the most primitive multipotent
population that gives rise to all blood cell types King and Goodell (2011).
As mentioned, lymphopoiesis and granulopoiesis are part of hematopoiesis,
specifically derive from lympoid and myeloid lineage respectively. Lymphopoiesis
is the process in which lymphocytes (B cells, T cells and NK cells) develop from
progenitor cells while granulopoiesis leads to the production of granulocytes
which are neutrophils, eosinophils and basophils. In previous studies, evidence
was presented from gene exppression analyses, the upregulation of genes linked
with cell death and granulopoiesis, providing further evidence of the apoptosis
and granulocytes role in the pathogenesis Grigoriou et al. (2020). Specifically,
there is evidence of haematopoiesis dysregulation in SLE, with a skewing toward
the myeloid lineage which is associated with epigenetic tinkering, at the expense
of lymphopoiesis, and priming of HSPCs. Additionally, this evidence exhibits
a trained immunity signature which is mainly based on the epigenetic and
metabolic reprogramming of cells, that may also contribute to inflammation and
flare risk Itokawa et al. (2022).
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1.3 Next Generation Sequencing Technologies

Sanger sequencing has been replaced by next-generation sequencing
(NGS) as DNA sequencing technology has improved. NGS is a massively parallel
sequencing technique that provides ultra-high throughput, scalability, and speed.
The method is used to determine the nucleotide order of entire genomes or specific
DNA or RNA portions. NGS has changed biology, allowing labs to undertake a
wide range of applications and analyze biological systems at a level never before
feasible. A full human genome can be sequenced in a single day using NGS, while
the prior Sanger sequencing technology took more than a decade to complete
the final draft Behjati and Tarpey (2013). NGS is an exceedingly flexible set
of techniques and approaches and can be adapted to: (a) sequence alterations
in the entire genome, exome, or any subset thereof (DNA), (b) provide DNA
copy number information, (c) sequence the entire transcriptome (transcribed
RNA) or any subset thereof, (d) identify translocations, (e) demonstrate gene
expression levels and many more.

Figure 1.3: Next Generation Techniques including: Genome Sequencing, Exome
Sequencing and Targeted Gene Panel.

1.3.1 RNA sequencing

Gene expression is the process by which the information encoded in a
gene is used to either make RNA molecules that code for proteins or to make
non-coding RNA molecules that serve other functions such as transfer RNA
(tRNA) and small nuclear RNA (snRNA). Gene expression acts as an “on/off
switch” to control when and where RNA molecules and proteins are made and
as a “volume control” to determine how much of those products are made. The
process of gene expression is carefully regulated, changing substantially under
different conditions. In genetics, gene expression is the most fundamental level
at which the genotype gives rise to the phenotype, i.e. observable trait. In past
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years, hybridization-based approaches such as microarrays, were the most used
solutions for gene expression profiling and DE analysis, thanks to their high
throughput and relatively low costs Wang et al. (2009). Despite their widespread
usage in quantitative transcriptomics, these approaches have several limitations
Wang et al. (2009) Wang et al. (2009); Roy et al. (2011). The introduction of NGS
has transformed transcriptomics, quickly establishing RNA-seq as the preferred
approach for studying gene expression Wang et al. (2009) Shendure (2008). The
standard workflow of an RNA-seq experiment goes as follows. The fragmented
RNAs in the sample of interest are reverse-transcribed into complementary DNAs
(cDNAs). The cDNAs are then amplified and subjected to NGS analysis. The
millions of short reads generated can then be mapped onto a reference genome,
and the number of reads aligned to each gene, referred to as "counts", provides a
digital assessment of gene expression levels in the sample under inquiry.

Figure 1.4: RNA sequencing workflow consists of four main steps: 1) extraction of
RNA, 2) Sample preparation and library construction, 3) Next-generation sequencing
of the library and 4) Bioinformatic analysis.

1.3.2 DNA methylation

Modifications to DNA that control whether genes are turned on or off
are known as epigenetic alterations. These changes are made to DNA and
do not alter the sequence of the DNA building blocks. A common type of
epigenetic modification is called DNA methylation. DNA methylation involves
the attachment of small chemical groups called methyl groups to DNA building
blocks. DNA methylation regulates gene expression by recruiting proteins
involved in gene repression or by inhibiting the binding of transcription factor(s)
to DNA Moore et al. (2013). In the burgeoning field of epigenetics, there are
several methods available to determine the methylation status of DNA samples,
including bisulfite conversion, digestion with methylation-sensitive restriction
enzymes, and antibody- or 5-methylcytosine binding protein–based purification
of methylated DNA. The technique of bisulfite sequencing is considered to be the
“gold standard” method in DNA methylation studies. The bisulfite treatment
of DNA mediates the deamination of cytosine into uracil, and these converted
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residues will be read as thymine, as determined by PCR-amplification and
subsequent Sanger sequencing analysis. 5 mC residues, on the other hand, are
unaffected by this change and will continue to be interpreted as cytosine. When a
Sanger sequencing read from an untreated DNA sample is compared to the same
sample after bisulfite treatment, the methylated cytosines can be seen Kurdyukov
and Bullock (2016). Bisulfite-conversion based sequencing techniques can be
divided into three methods: (a) Whole genome bisulfite sequencing (WGBS), (b)
Reduced representation bisulfite sequencing (RRBS) and (c) targeted bisulfite
sequencing. For the purpose of this study, we will focus and elaborate more
on the RRBS method. RRBS is a cost-efficient method for genome-wide DNA
methylation profiling. Genomic DNA is first digested by a methylation-insensitive
restriction enzyme (e.g., BglII, MspI) and size selected to produce a small subset
of the genomic DNA enriched for CpG sites in most of the promoters and
CpG islands. Bisulfite conversion is performed and the sequencing library is
constructed subsequently in order to be used in NGS analysis Baubec and Akalin
(2016).

Figure 1.5: Workflow of DNA methylation analysis, specifically RRBS technique.

1.4 Transcriptional regulatory factors

Transcription factors are proteins involved in the process of converting,
or transcribing, DNA into RNA. One distinct feature of TFs is that they have
DNA-binding domains that give them the ability to bind to specific sequences of
DNA called transcription factor binging sites (TFBS). In the last two decades, it
has been firmly demonstrated that epigenetic events can change the accessibility
of DNA to transcription factors which can regulate gene expression profiles in
immune cells contributing to the pro-inflammatory phenotype in SLE Itokawa
et al. (2022); Hedrich et al. (2017). Cis-regulatory elements (CREs) such as
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promoters and enhancers, are also known to affect gene expression Wang et al.
(2019). Promoters are DNA regions located within 1–2 kilobases (kb) of a
gene’s transcription start site (TSS) and include small regulatory elements (DNA
motifs) required for the RNA polymerase transcriptional machinery to assemble
(Doane and Elemento (2017)). However, without the participation of distant
regulatory elements, such as the enhancers, transcription is negligible, in general.
Enhancers are position-independent DNA regulatory elements that interact with
site-specific transcription factors to determine cell type identity and control gene
expression Doane and Elemento (2017). Additionally, previous studies revealed
that enhancers can be found upstream, downstream, within the introns, or even
relatively far away from the gene they regulate, up to 2 million base pairs away
van Heyningen and Bickmore (2013). Enhancers can loop over extended genomic
ranges to engage distant promoters, whereas promoters guide gene transcription
in a position and orientation-dependent way Kim et al. (2015b). CREs typically
regulate gene transcription by binding to TFs. CCCTC-binding factor (CTCF)
is a highly conserved zinc finger protein, it is best known as a TF and its
binding sites are found in intergenic regions Kim et al. (2007). It can function
as a transcriptional activator, a repressor or an insulator protein, blocking the
communication between enhancers and promoters Kim et al. (2015a).

Figure 1.6: A detailed explanation of how transcription factors of eukaryotic cells
interact and regulate gene expression Wikipedia contributors (2022).

1.5 Purpose of the study

We asked if the HSPCs in the BM were responsible for the basic molecular
abnormalities in SLE (genetic or epigenetic). To this end, we employed the
NZBW/F1 mouse model of SLE to explore the transcription and epigenetic
profile of HSPCs that could cause HSPCs to reprogramme towards myeloid
lineage, which may contribute to increased immunological responses and flares
in SLE.

In this study, we mainly investigate the epigenetic profile of murine lupus
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HSPCs in two perspectives: (a) Inspection of differentially methylated regions
(DMRs) in murine lupus HSPCs (b) Examination of the CREs and TFBS of
differentially expressed genes (DEGs) as those involved in pathways of interest.
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2. Materials & Methods

2.1 RNA sequencing pipeline

HSPCs were isolated from the bone marrow of NZB/W F1 mice using
FACS ARIA III. RNA was extracted and libraries were generated using the
Illumina TruSeq Sample Preparation kit v2. Single-end 75-bp mRNA sequencing
was performed on Illumina NextSeq 500. Quality of sequencing was assessed
using FastQC software Andrews (2010). Raw reads in fastq format were collected
and aligned to the mouse genome (mm39 version) using STAR 2.7 algorithm
Dobin et al. (2013). Gene quantification was performed using HTSeq Dobin et al.
(2013); Putri et al. (2022) and differential expression analysis was performed
using DESeq2 v3.15 Huber (2017) package in R R Core Team (2021). Genes with
a False Discovery Rate (FDR) 0.05 and log two fold change (log2FC) 0.5 or -0.5
were considered statistically significantly up- and downregulated, respectively.
BiomaRt package was used in order to get access into the Ensembl database and
retrieve the coordinates and strand of DEGs. Principal Component Analysis
(PCA) and Multidimensional Scaling (MDS) plots were created using plotPCA
from DESeq2 and ggplot2 tools correspondingly. Using a variance stabilizing
transformation (VST) function the count data were transformed in a way that
can be used for visualization, clustering or other machine learning tasks. Here we
used VST and heatmaps with hierarchical tree clustering were designed. Finally,
volcano and barplots were created in R with an in-house developed script which
is based on the ggplot2 package.

2.2 DNA methylation analysis pipeline

After using FastQC software to evaluate the quality of sequencing,
raw reads were trimmed with Trim Galore! (v0.6.4) using the options –rrbs,
–illumina and the default value for –quality (Phred score: 20) Andrews (2010).
This way, quality trimming will be performed first, and adapter trimming is
carried in a second round. Further analysis of fastq files was performed with
Bismark (v0.23.1) using the Bowtie2 dependency in three individual steps,
genome preparation of mouse genome (mm39), alignment and methylation
information extraction. The bismark.cov.gz files produced from the latter step
were then used in R with the methylKit package for further analysis, specifically
to detect DMRs. Here, the minimum coverage to read was set to 10 while
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an extra function was performed where it tiles the genome with a window
and step size of 1000bp length and summarizes the methylation information
Liu et al. (2020). Finally, for a region to be labeled as DMR, its corrected p
value with SLIM method needed to be less than 0.05 and its absolute value of
differential methylation level greater than 25% Li et al. (2021). Regions with
value of differential methylation level >25% were considered hypermethylated
and regions with value <25% were considered hypomethylated. Hierarchical
clustering using default values of hclust and euclidean distance was performed
followed by CpG methylation PCA analysis with autoplot and barplot with
ggplot2 showing the average methylation percentage in each sample, all done on
methylated regions and DMRs. Additionally, a volcano plot and a heatmap using
ggplot2 and heatmap.2 tools in R, was built showing the hypomethylated and
hypermethylated regions in each sample. Pie plots were designed using in-build
functions of methylkit showing the percentage of differentially methylated regions
overlapping with exon/intron/promoters but also the CpG island annotation.
Finally, the percentage of hypo- and hyper- methylated regions per chromosome
was shown with barplots using the ggplot2 tool in R.

2.3 Pipeline of combined analysis of RNA-sequencing
and DNA-methylation

A custom script was built in R R Core Team (2021)combining the RNA
sequencing and the DNA methylation results. Chipseeker was used to retrieve
the information about the annotation of DMRs and their closest TSS Yu et al.
(2015). To illustrate venn diagrams together with their statistical value, we
used the tool Venn Diagram along with phyper Chen (2022). Subsequently,
using ‘bedtools closest’, we retrieved the closest distances between DEGs and
DMRs while for each distance a statistical test was done with pbinom to get the
significance in their linkage Quinlan and Hall (2010). For each case of the lateral
analysis, circos plots with OmicCircos were designed showing the expression of
DEGs and the methylation of DMRs. Furthermore, to identify the methylated
regulatory features of DEGs within the distances found significant from the
last analysis, we constructed a function that combines regulatory features and
DMRs. Specifically, biomaRt package was used in order to get access into the
Ensembl database and retrieve the regulatory features of DEGs, while ‘bedtools
intersect’ was needed to get the DMRs that overlap with the bound regions
of those regulatory features Quinlan and Hall (2010); Durinck et al. (2009),
Durinck et al. (2005), Quinlan and Hall (2010). All other plots were designed
with ggplot2 and the pipeline is also able to produce some useful csv files in case
of further analysis Wickham (2009).

2.4 Statistics

Statistical analyses were performed using hypergeometric (phyper) and
probability distributions (pbinom). Hypergeometric test was used to model
the association between DEGs and TSS of genes found closest to DMRs, while
also for genes of interest and DEGs. Probability distribution-pbinom calculates
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the cumulative density function of the binomial distribution and it was used to
calculate the probability of a variable X (relation, inverse relation) following a
binomial distribution taking values greater than or equal to x (probability of
success). We interpret inverse relation as the affiliation of DEGs with DMRs that
are upregulated-hypomethylated (UR-DM) and downregulated-hypermethylated
(DR-UM) while relation as the ones that are upregulated-hypermethylated
(UR-UM) and downregulated-hypomethylated (DR-DM). Null hypothesis (H0):
Results do not differ significantly from what is expected. Alternative hypothesis
(H1): Results are significantly greater from what is expected. Setting a threshold
of significance at 0.05 or 5%.
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3. Results

The results are divided as follows: (a) we show the results from the
RNA sequencing analysis where we indicate that most genes lean towards
overexpression. (b) We present the results of methylation analysis and point out
the annotation of DMRs where the majority of them are hypomethylated. (c)
Additionally, we report the results from the combination analysis of DEGs and
DMRs, starting off by inspecting if DEGs overlap with any of the genes where
their TSS was found closest to DMRs, (d) evaluating the distances between
DMRs and DEGs and (e) retrieving the methylated transcriptional regulatory
factors for each DEG. (f) Finally, we show the results of the investigation of
DEGs that are involved in pathways.

3.1 The transcriptional profile of F1-L demon-
strates overexpression

For this project we only need to retrieve information about DEGs
such as their log2FC values and their coordinates in order to examine them
together with DMRs and find any association. In order to study whether the
transcriptional profile of HSPCs in SLE is altered, we used the spontaneous
mouse model NZBW/F1 at two time points: preclinical stage (F1-P, n=6) and
clinical stage (F1-L, n=4), defined as the point with proteinuria of >100 ng/dL.
Gene profiling was performed in murine LSK compartment—representing HSPCs
in mice—sorted by flow cytometry from BM of NZBW/F1. A gene is declared as
differentially expressed when its corrected p value with FDR is <0.05 while the
absolute value of log2FC is >0.5. PCA and MDS was performed and showed that
the transcriptional profile in F1-L HSPCs differs from F1-P (Figure 3.1). A total
of 809 DEGs between F1-P and F1-L were identified, of which 181 were found
downregulated and 628 upregulated (Figure 3.2). Finally, the barplot in Figure
3.3 shows the distribution of log2FC values of DEGs across the chromosomes,
which we can clearly see that overexpression prevails downregulation even at a
chromosome level. Collectively, these data indicate that most DEGs in F1-L
HSPCs are overexpressed.
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(a) PCA

(b) MDS

Figure 3.1: a) Principal component analysis and b) Multidimensional scaling showing
the differentiation of transcription profile in F1-L from F1-P.
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(a) Heatmap

(b) Volcano

Figure 3.2: a) Heatmap of differentially expressed genes between F1-L and F1-P.
Orange/blue gradient represents the row Z-score of overexpression/downexpression in
F1-L compared to F1-P mice. b) Volcano plot of differentially expressed genes between
F1-L and F1-P. The horizontal line indicates the threshold of corrected p value which is
0.05 while the two vertical lines pinpoint threshold of the absolute value of log2FC=0.5
(Left line=-0.5, Right line=0.5. Orange, blue and grey dots represent the upregulated,
downregulated and the unchanged regions respectively.
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Figure 3.3: Distribution of differentially expressed genes accross each chromosome.

3.2 The epigenetic profile of F1-L demonstrates
hypomethylation on CpG islands, introns,
distal intergenic regions and promoters

The alterations that occur in the epigenetic profile of F1-L HSPCs were
studied using the same mouse model at two time points as mentioned above. PCA
and clustering analysis using DMRs revealed that in F1-L HSPCs show different
epigenetic profiles from F1-P (Figure 3.4). After summarizing the methylation
information of the genome with window and step size of 1000bp length, 533
DMRs were identified using thresholds of 0.05 and 25% for the p value and
the absolute value of differential methylation level respectively (Figure 3.5) Liu
et al. (2020). Based on these results, we found that hypomethylated DMRs (377)
prevails in relation to hypermethylated DMRs (156) in F1-L compared to F1-P.
A similar outcome is also observed in the plot Figure 3.6 which represents the
distribution of the methylated regions at each chromosome. Target regions are
enriched for promoters, introns, intergenic regions and CpG Islands. Specifically,
these results showed that 61% of DMRs are CpG islands while 22.89% were
promoters, 30,02% were introns and 33.02% were intergenic regions (Figure 3.7).
Some of those DMRs overlap in those regions which is clearly represented on
the upset plot (Figure 3.8), where x-axis indicates the annotated regions and y
axis indicates the number of DMRs that those regions share. This plot confirms
that most methylated regions are intergenic and in fact are distal, meaning that
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they exist >3kb from the nearest TSS and some of them overlap with promoters.
Also, many of the DMRs exist on introns and at the same time only few of
them are on promoters, exons and 5’UTR regions. The distribution of DMRs
relative to the TSS (Figure 3.9) shows that almost 80% of DMRs exist in regions
>3kb upstream and downstream from TSS confirming the previous results, that
a significant amount of DMRs are distal intergenic. Hence, we expect to find
methylated CTCF binding sites and enhancers since we know that they exist
within intergenic regions and introns respectively Kim et al. (2007), Park et al.
(2014). Collectively, hypomethylation overcomes hypermethylation in HSPCs
of F1-L mice, giving also that the majority of DMRs are on introns and distal
intergenic regions, suggesting that we expect to find methylated enhancers and
CTCF binding sites.

17



(a) PCA

(b) Clustering

Figure 3.4: a) PCA and b) Clustering using euclidean distance of DMRs showing the
differentiation of epigenetic profile in F1-L from F1-P.
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(a) Heatmap

(b) Volcano plot

Figure 3.5: a) Heatmap of differentially methylated regions between F1-L and F1-P.
Orange/blue gradient represents the row Z-score of hypermethylation/hypomethylation
in F1-L compared to F1-P mice. b) Volcano plot of differentially methylated regions
between F1-L and F1-P. The horizontal line indicates the threshold of corrected p
value which is 0.05 while the two vertical lines pinpoint threshold of the absolute value
of methylation difference=25% (Left line=-25%, Right line=25%. Orange, blue and
grey dots represent the hypermethylated, hypomethylated and the unchanged regions
respectively.
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Figure 3.6: Distribution of differentially methylated regions accross each chromosome.

(a) CpG Island Annotation (b) Annotation with
exon/intron/promoters

Figure 3.7: a) CpG Island Annotation of DMRs and b) percentage of differentially
methylated regions overlapping with exon/intron/promoters.
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Figure 3.8: Upset plot. Number of common DMRs accross the annotated regions.

Figure 3.9: Distribution of DMRs relative to TSS. The colors indicate the distance
of DMRs from their closest TSS.
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3.3 Very few DEGs have near-by DMRs

Given that some DMRs are on promoter regions and some were found
up to 3kb near to TSS known as core promoters, it was worth investigating
the fact that DEGs may have close-by DMRs that possibly are also on their
core promoters. In order to evaluate and examine this, a crossover was done
between the DEGs and the genes that their TSS was found to be closest to the
DMRs, extracting the common genes (Figure 3.10). Here, we report that there
is no significance in the number of common genes found, concluding that the
majority of DEGs does not have any near-by DMR. The dot plot shows the
genes found common with their expression values along with their closest DMRs,
specifying their position and methylation level, the distance from TSS and the
annotation (Figure 3.11). Here it is worth mentioning that the Ccnd1 and Cebpe
myeloid marker genes were found upregulated which is consistent with a previous
study in F1-L HSPCs Grigoriou et al. (2020). Moreover Ccnd1 gene has an
upstream hypomethylated distal intergenic region, while Cepbe has an upstream
hypomethylated near-by exon. Together all these data, suggest that very few
DEGs have near-by DMRs while the majority of the reported nearest gene found
for each DMR, might play another role such as regulating other genes.

795 497

14

DEGs

Genes with TSS nearest to DMRs

Venn diagram of common DEGs−nearest TSS to DMRs 

with pvalue = 0.5139

Figure 3.10: Venn diagram showing the common genes between DEGs and TSS
closest to DMRs. The orange circle represents the number of DEGs while the green
circle the number of TSS found closest to DMRs. The significance in the number of
common genes(14) is reported with a p value of 0.5139.
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Figure 3.11: Dotplot where in its y-axis are the common gene names with their
log2FC value in descending order(up to down) and in its x-axis are the methylation
values of the DMRs found closest to each common gene. Each dot represents the closest
DMR found, where the shape, size and colour indicate the annotation of each DMR,
its distance and its position from the common gene respectively.

3.4 The distances between DMRs and DEGs
indicate that DMRs are on CREs and TFBS
of DEGs

Since barely any of the DEGs had close DMRs in a distance <3kb and
also being on promoters, we next asked what are the distances between them
and is there any significant linkage? To this end, we retrieve information in the
distance which each DEG has a closest DMR (DMRs closest to DEGs), each
DMR has a closest DEG (DEGs closest to DMRs) and the distance that it is
shared by both of the cases above (Reciprocal closest). In all three cases, the
downstream and upstream DMRs from DEGs were found.

In Figures 3.12a, b and c, are circos plots that represent all cases
mentioned, showing the expression and methylation values for DEGs and DMRs
respectively, that occur at each distance. Here, in Figure 3.12a and 3.12b the
results show that multiple different DEGs have the same closest DMR and
conversely, multiple DMRs have the same closest DEG, respectively. Figure
3.12c shows the distance that is shared by both of the cases above which is also
the smaller one, meaning that for each DEG there is only one closest DMR and
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vice versa. Additionally, there is a strong contrast between the expression and
epigenetic profile, but in order to confirm that, the cumulative density function
(pbinom) was used to calculate the significance of the relationship between
DEGs and DMRs at each distance (Table 3.1). Table 3.1 shows that there is
a significant inverse relation, more specifically in the DR-UM affiliation in the
downstreams at the distances of DMRs closest to DEGs and the reciprocal.

Given that the reciprocal case shows the smallest distance between
DEGs and DMRs and were also found up to 17Mb, we suspected that DMRs
may overlap with some CREs or TFBS of DEGs, hence we wanted to investigate
their linkage at those distances. It is known that enhancers can be located up
to 2 million base pairs away from the affected genes, thus we examined the
relationship of DMRs found closest to DEGs specifically within the distances
of 50kb, 100kb, 500kb, 1Mb and 2Mb van Heyningen and Bickmore (2013).
In order to evaluate the significance of the relationship between DEGs and
DMRs for each case, a statistical test analysis was done in the same way as
mentioned above. Table 3.2 gives the p values for the relationship of multiple
DMRs found closest at each DEG within the distances of 50kb, 100kb, 500kb,
1Mb and 2Mb with a statistical significance in the inverse relation, specifically
those that are downstream and DR-UM in the last two distances. Figures 3.13a
and b display the circos plots and show the expression values for each DEG
along with their closest DMRs within the distances found significant together
with their methylation status. Concluding, all these data suggest that CREs
-enhancers and distant TFBS of DEGs are possibly methylated contributing in
their expression.
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(a) DMRs closest to DEGs (b) DEGs closest to DMRs

(c) Reciprocal closest

Figure 3.12: Circos plots representing the expression and methylation values of DEGs
and DMRs at each distance (a) DMRs closest to DEGs, (b) DEGs closest to DMRs
and (c) Reciprocal closest. In circos plot (c), ring one(R1) indicates the name of DEGs,
where ring two to six (R2-R6) show the same information respectively in circos plots (a)
and (b) having them as ring one to five (R1-R5). R2-R6 or R1-R5 show the expression
values of DEGs that have upstream DMRs, the methylation values of upstream DMRs,
the expression values of DEGs that have downstream DMRs and the methylation
values of downstream DMRs at each case of distance.
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UR_DM UR_UM DR_UM DR_DM
DMRs closest to DEGs (upstreams) 0.560 0.512 0.569 0.497
DMRs closest to DEGs (downstreams) 0.092 0.982 0.028 0.929
DEGs closest to DMRs (upstreams) 0.456 0.687 0.414 0.614
DEGs closest to DMRs (downstreams) 0.250 0.911 0.140 0.805
Reciprocal (upstreams) 0.188 0.954 0.089 0.873
Reciprocal (downstreams) 0.148 0.982 0.041 0.902

Table 3.1: P-values showing the significance of the relationship between DEGs and
DMRs at each distance.

DMRs closest to DEGs below: UR_DM UR_UM DR_UM DR_DM
50kb(upstream DMRs) 0.534 0.831 0.466 0.822
50kb(downstream DMRs) 0.667 0.805 0.584 0.714
100kb(upstream DMRs) 0.382 0.873 0.313 0.801
100kb(downstream DMRs) 0.735 0.658 0.721 0.552
500kb(upstream DMRs) 0.421 0.768 0.357 0.677
500kb(downstream DMRs) 0.354 0.849 0.258 0.737
1Mb(upstream DMRs) 0.433 0.712 0.384 0.638
1Mb(downstream DMRs) 0.062 0.993 0.013 0.958
2Mb(upstream DMRs) 0.592 0.454 0.623 0.459
2Mb(downstream DMRs) 0.075 0.988 0.019 0.942

Table 3.2: P-values showing the significance of the relationship between DEGs and
DMRs at each distance.
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(a) DMRs closest to DEGs in a distance
of 1Mb

(b) DMRs closest to DEGs in a distance
of 2Mb

Figure 3.13: Circos plots representing the expression and methylation values of DEGs
and DMRs respectively, at the cases of (a) DMRs closest to DEGs in a distance of
1Mb and (b) DEGs closest to DMRs in a distance of 2Mb. Ring one to five (R1-R5)
show the expression values of DEGs that have upstream DMRs, the methylation values
of upstream DMRs, the expression values of DEGs that have downstream DMRs and
the methylation values of downstream DMRs at each case of distance.

3.5 Distant regulatory features of DEGs are methy-
lated

To evaluate our last suggestion, that CREs and TFBS of DEGs could
be methylated, we performed an overlapping analysis of those with the DMRs.
We then retrieved the expression values of DEGs and methylation values of
their closest regulatory features below the distances of 1Mb and 2Mb (Figures
3.14-3.15). Given that we have already shown that the majority of DMRs are not
on core promoters of DEGs and that we expect that most of them would be on
enhancers and CTCF binding sites, it is important to focus on the methylation
status of this type of transcription factors. In order to find the significance of
the relationship between DEGs and their methylated regulatory factors found in
the distances of 1Mb and 2Mb, we performed a statistical analysis with pbinom
where the results showed an importance in their inverse relation, specifically in
the DR-UM (Figure 3.16). Collectively, these data indicate that the expression of
DEGs, specifically downregulated, is probably mediated by the hypermethylation
that occurs in their distant CREs-enhancers and TFBS, especially, CTCF binding
sites.
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(a) Methylated RFs of DEGs in a distance of 1Mb

(b) Methylated RFs of DEGs in a distance of 1Mb

See the next page for complete description
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(c) Methylated RFs of DEGs in a distance of 1Mb

Figure 3.14: Dot plots where in y-axis are the DEGs with their logFC values in
descending order (up to down) that their RFs in a distance of 1Mb are methylated.
X-axis shows the methylation values of those RFs and at the same time the shape and
colour of each dot gives the position of the RFs from DEGs and their annotation status
respectively.
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(a) Methylated RFs of DEGs in a distance of 2Mb

(b) Methylated RFs of DEGs in a distance of 2Mb

See the next page for the next subfigures
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(c) Methylated RFs of DEGs in a distance of 2Mb

(d) Methylated RFs of DEGs in a distance of 2Mb

Figure 3.15: Dot plots where in y-axis are the DEGs with their logFC values in
descending order (up to down) that their RFs in a distance of 2Mb are methylated.
X-axis shows the methylation values of those RFs and at the same time the shape and
colour of each dot gives the position of the RFs from DEGs and their annotation status
respectively.



(a) Pvalues showing the significance in the linkage of methylated
RFs with DEGs in a distance of 1Mb

(b) Pvalues showing the significance in the linkage of methylated
RFs with DEGs in a distance of 2Mb

Figure 3.16: Bar plots where y-axis indicates the -log10(p-value) found for each
relation of methylated RFs and DEGs represented in the x-axis. A value above 1.3 in
y-axis represents p-values<0.05.
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3.6 DEGs involved in pathways of interest in
F1-L HSPCs have distant methylated TFBS

As mentioned, B and T lymphocytes have been proven to play a key
role in SLE’s adaptive immune response, while innate immune components have
only recently been studied and discovered to also have a significant impact in the
disease Herrada et al. (2019); Pan et al. (2020). Grigoriou et al. (2020) presented
evidence for deregulation of hematopoiesis, with a skewing towards myeloid
lineage at the expense of lymphopoiesis and priming of HSPCs, which may
contribute to persistent inflammation in SLE and risk for flare once the disease
is in remission. Given all this, we wanted to investigate the epigenetic profile
of DEGs related to pathways of interest, more specifically to myeloid-related
pathways, in F1-L HSPCs. Since it was previously shown that the majority
of genes found closest to DMRs are not DEGs, we then asked if our genes of
interest are the ones nearest to DMRs (Figure 3.17). Following on, these results
did not report any significance, concluding that our genes of interest do not
have a near-by DMR/methylated core promoter. This result is expected, since
most of the genes of interest are DEGs. In order to investigate the epigenetic
profile of the genes involved in pathways of interest, we used the results found
previously of DEGs having DMRs within the significant distances found from
the previous results, 1Mb and 2Mb. More specifically, we retrieved the DEGs
which are markers for the pathways of interest that also have DMRs within
the distance mentioned above and designed two dot plots (Figure 3.18). Here,
the results show the expression values of DEGs which are in contrast with the
methylated values of their DMRs found in the distances of 1Mb and 2Mb, an
outcome that was awaited since it was previously shown using all DEGs and
we know that most genes of interest are DEGs. To find the significance in the
relationship of DMRs and DEGs of interest, we executed a statistical test which
revealed a significant DR-UM affiliation in the distance of 2Mb (Figure 3.19).
Subsequently, we performed a similar analysis to investigate the methylated
regulatory factors of DEGs involved in pathways of interest. Figure 3.20 shows
the expression values of DEGs and what type of markers are, along with the
epigenetic profile of their regulatory factors in the distances (a) 1Mb and (b)
2Mb. Here, we notice some important genes, such as Blnk1, Cd79a, Cebpe, Vwf,
Csf3r, Ccnd1 and Ciita, that were previously reported significant in F1-L to
have methylated regulatory elements Grigoriou et al. (2020).

Grigoriou et al. (2020) showed the increase of neutrophils in F1-L BM
suggesting deregulation of homeostatic mechanisms in the level of CMPs with
priming of HSPCs towards the granulocytic differentiation at the expense of
lymphopoiesis. More specifically, Blnk1 and Cd79a, which are lymphoid markers
were found downregulated in murine F1-L HSPCs which is consistent with
Grigoriou et al. (2020) results, adding the fact that their regulatory features
are methylated. Specifically a promoter in a distance of 1Mb, downstream from
Blnk1 was found hypermethylated and the same applies for Cd79a (Figure 3.20).

Other genes such as Cebpe, Vwf, Csf3r, Ccnd1 and Ciita, where the
first three are myeloid markers, the fourth is a gene involved in proliferation and
the last one is an IFN stimulated gene, were all found upregulated. This is also
consistent with Grigoriou et al. (2020), with the majority having hypomethylated
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regulatory features (Figure 3.20). Cebpe has two hypomethylated promoters,
one upstream and one downstream, Vwf has a downstream hypomethylated TF
binding site and Csf3r a downstream hypermethylated promoter. Ciita has two
downstream hypomethylated regulatory features, an enhancer and a promoter
together. Finally, we can also detect that in the distance of 2Mb, there are two
downstream hypomethylated regulatory features from Ccnd1, an enhancer and
a CTCF binding site together.
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Genesets

Genes with TSS nearest to DMRs

Venn diagram of common genesets−nearest TSS to DMRs 

with pvalue = 0.4002

Figure 3.17: Venn diagram showing the common genes between DEGs that are
involved in pathways of interest and TSS closest to DMRs. The orange circle represents
the number of DEGs involved in pathways of interest while the green circle the number
of TSS found closest to DMRs. The significance in the number of common genes(15) is
reported with a p value of 0.4002.



(a) epigenetic profile of DEGs involved in pathways of interest in a distance
of 1Mb

(b) epigenetic profile of DEGs involved in pathways of interest in a distance
of 2Mb

Figure 3.18: Dot plots where in y-axis are the DEGs with their logFC values in
descending order (up to down) that have closest DMRs within a distance of (a) 1Mb
and (b) 2Mb showing their methylation values in x-axis. Each dot represents a DMR
found closest to each DEG at each distance, where the size, colour and shape show
their distance from DEGs, their annotation and their methylation status.



(a) Pvalues showing the significance in the linkage of DEGs in-
volved in pathways of interest and their closest DMRs in a distance
of 1Mb

(b) Pvalues showing the significance in the linkage of DEGs in-
volved in pathways of interest and their closest DMRs in a distance
of 2Mb

Figure 3.19: Bar plots where y-axis indicates the -log10(p-value) found for each
relation of DEGs involved in pathways of interest and their closest DMRs in the
distances of (a) 1Mb and (b) 2Mb. X-axis shows the different types of relation and a
value above 1.3 in y-axis represents p-values<0.05.
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(a) Methylated RFs of DEGs involved in pathways of interest in a distance
of 1Mb

(b) Methylated RFs of DEGs involved in pathways of interest in a distance
of 2Mb

Figure 3.20: Dot plots where in y-axis are the DEGs involved in pathways of interest
with their logFC values in descending order (up to down) that their RFs in a distance
of (a) 1Mb and (b) 2Mb are methylated. X-axis shows the methylation values of those
RFs and at the same time the shape and colour of each dot gives the position of the
RFs from DEGs and their annotation status respectively.



4. Discussion

HSPCs reside in the BM in a quiescent state, being ready to respond to
stress, such as severe infection, systemic inflammation or iatrogenic myeloablation
Carrelha et al. (2018). HSPCs are the most primitive multipotent population
that give rise to all blood cell types, while the majority of cells involved in the
pathogenesis of SLE come from BM HSPCs King and Goodell (2011). Grigoriou
et al. (2020) showed evidence of haematopoiesis dysregulation in SLE, with a
skewing toward the myeloid lineage which is associated with epigenetic tinkering,
at the expense of lymphopoiesis and priming of HSPCs. In the same context
with Grigoriou et al. (2020) that the HSPCs in the BM are responsible for
the fundamental molecular abnormalities (genetic or epigenetic) in SLE, we
investigated the epigenetic profile of F1-L HSPCs. We show that methylated
distant CREs and TFBS regulate DEGs as those involved in pathways of interest
in F1-L HSPCs. This could lead HSPCs to reprogramme into the myeloid lineage,
perhaps contributing to enhanced immune responses and flares in SLE.

In order to examine DEGs alongside with the DMRs and see whether
there was any linkage, we only needed a little information regarding DEGs
such as their log2FC values and coordinates. A total of 809 DEGs between
F1-P and F1-L were identified, of which 181 were found downregulated and
628 upregulated. Transcriptional analysis indicates that most DEGs in F1-L
HSPCs are overexpressed. Moving on, methylation analysis results revealed that
hypomethylation prevails in relation to hypermethylation in murine F1-L HSPCs
even at each chromosome. Target regions are enriched for mostly CpG Islands,
introns, intergenic regions and fewer promoters. Some of those DMRs overlap
in those regions but still, most methylated regions are introns and intergenic
and in fact distal, meaning that they are >3kb from the nearest TSS. On that
note, we expect to find methylated CTCF binding sites and enhancers since we
know that they exist within intergenic regions and introns respectively Kim et al.
(2007), Park et al. (2014). These findings are consistent with a previous study
that showed that large methylation shifts in SLE were almost entirely composed
of hypomethylation events Absher et al. (2013). Collectively, in mouse F1-L
HSPCs, hypomethylation dominates, with the majority of DMRs located on
CpG islands, introns, and distal intergenic regions, and less on promoters.

Given that some DMRs are on promoter regions and some were found
up to 3kb near to TSS known as core promoters, it was worth investigating the
fact that a significant number of DEGs may have close-by DMRs that possibly
are also on their core promoters. These results revealed that very few DEGs
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have near-by DMRs while the majority of the reported nearest gene found for
each DMR, might play another role such as regulating other genes. These results
also show that Ccnd1, a gene involved in proliferation was found significantly
upregulated and in consistent with Grigoriou et al. (2020), showing the HSPC
activation, has an upstream hypomethylated DMR. Additionally, Cepbe a myeloid
marker was found to have a hypomethylated near-by exon. Subsequently, we
found that the closest DMRs for each DEG actually belonged in a long range
distance. Hence, we suspected that CREs-enhancers and distant TFBS-CTCF
of DEGs are methylated contributing to their expression. In order to investigate
this hypothesis, we first analyzed the relationship of DMRs closest to DEGs
within the distances of 50kb, 100kb, 500kb, 1Mb and 2Mb where the last two
distances revealed a significance in their inverse relation. Then, we used the
distance found to be significant and showed methylated distant CREs-enhancers
and TFBS that probably regulate DEGs. These results suggest that distant
methylated CREs and TFBS do interact and regulate DEGs.

According to previous studies, haematopoiesis dysregulation occurs in
SLE, with a skewing toward the myeloid lineage at the expense of lymphopoiesis
and priming of HSPCs with a "trained immunity" signature, which may contribute
to inflammation and flare risk Grigoriou et al. (2020). Here, we report the
epigenetic profile involved in this particular dysregulation. Consistent with
Grigoriou et al. (2020) results, lymphoid markers Blnk1 and Cd79a were found
downregulated in F1-L HSPCs, adding the fact that their regulatory features
are methylated. Specifically a promoter in a distance of 1Mb, downstream from
Blnk1 was found hypermethylated and the same applies for Cd79a. Other genes
such as Cebpe, Vwf, Csf3r, Ccnd1 and Ciita, where the first three are myeloid
markers, the fourth is a gene involved in proliferation and the last one is an
IFN stimulated gene, were all found upregulated. This is also consistent with
Grigoriou et al. (2020), with the majority having hypomethylated regulatory
features. Cebpe has two hypomethylated promoters, one upstream and one
downstream, Vwf has a downstream hypomethylated TF binding site and
Csf3r a downstream hypermethylated promoter. Ciita has two downstream
hypomethylated regulatory features, an enhancer and a promoter together.
Finally, we can also detect that in the distance of 2Mb, there are two downstream
hypomethylated regulatory features from Ccnd1, an enhancer and a CTCF
binding site together. These data add that the methylated regions found close
to Ccnd1 and Cebpe genes are not regulatory factors but in the distance of
2Mb there were found hypomethylated regulatory features. Taking these results
together, confirm the initial finding that HSPCs lean towards myelopoiesis in
SLE.

In summary, we have analyzed the association of DNA methylation with
DEGs F1-L HSPCs. We provide evidence that CREs specifically enhancers
and distant TFBS of DEGs and those involved in pathways of interest in F1-L
HSPCs are methylated, contributing to their regulation of expression. Pathways
of interest such myelopoiesis and lymphopoiesis have been presented before
in recent studies indicating that murine and human lupus SLE HSPC’s gene
expression program is biased towards myelopoiesis Kokkinopoulos et al. (2021).
We demonstrate that regulatory factors of Blnk1, Cebpe and Ciita that are
markers of such pathways, are methylated and possibly contribute to their
regulation of expression. Therefore, we suggest that the HSPC reprogramming
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towards myeloid lineage, which may contribute to increased immunological
responses and flares in SLE, is due to the methylation of distant methylated
CREs and TFBS of DEGs.

Topologically associating domains (TADs) are fundamental units of
three-dimensional (3D) nuclear organization. The regions bordering TADs-
TAD boundaries-contribute to the regulation of gene expression by restricting
interactions of cis-regulatory sequences to their target genes McArthur and
Capra (2021). In the last couple of years it has been shown that TAD and
TAD-boundary disruption have been linked to the development of diseases
Farooq et al. (2022); McArthur and Capra (2021), while another recent study
reported change in chromatin accessibilities at aged HSCs Itokawa et al. (2022).
Recent studies have also demonstrated that modulation of gene expression
via 3D chromatin structure is important for many physiologic and pathologic
cellular functions, including cell-type identity, cellular differentiation, and risk
for multiple rare diseases and cancer. Hence, using chromosome-conformation-
capture technologies (3C, 4C, 5C, Hi-C), in F1-L HSPCs might reveal and
answer many fundamental questions such as if TADs and TAD boundaries are
disrupted, hence, linked to the transcription results. Finally, the importance of
TFBSs is reflected by the many techniques that have been developed for their
identification, including chromatin immunoprecipitation followed by sequencing
(ChIP-seq), protein-binding microarray and many others. ChIP-seq, is a method
used to analyze protein interactions with DNA and is widely used to study the in
vivo TFBS, and their regulatory targets. Hence, using ChIP-seq we can further
explore the transcription factors, DNA methylation results and transcription
analysis in F1-L HSPCs.
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