
The Best of Many Worlds: Efficient Machine

Learning Inference on Heterogeneous

Hardware Architectures

Rafael Tsirbas

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisors: Prof. Evangelos Markatos, Dr. Sotiris
Ioannidis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

The Best of Many Worlds: Efficient Machine Learning Inference on
Heterogeneous Hardware Architectures

Thesis submitted by
Rafael Tsirbas

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Rafael Tsirbas

Committee approvals:
Evangelos Markatos
Professor, Thesis Supervisor

Sotiris Ioannidis
Professor, Thesis Supervisor

Polyvios Pratikakis
Assistant Professor, Committee Member

Departmental approval:
Polyvios Pratikakis
Assistant Professor, Director of Graduate Studies

Heraklion, September 2020

The Best of Many Worlds: Efficient Machine Learning
Inference on Heterogeneous Hardware Architectures

Abstract

Heterogeneous and asymmetric computing systems are composed by a set of dif-
ferent processing units, each with its own unique performance and energy char-
acteristics. Still, the majority of current machine learning applications targets
only a single device (the CPU or some accelerator), leaving the rest processing re-
sources unused and idle. In this work, we propose an adaptive scheduling approach
that supports heterogeneous and asymmetric hardware, tailored for a diversified
set of machine learning models. Our scheduler can respond quickly to dynamic
performance fluctuations that occur at real-time, such as data bursts, application
overloads and system changes. The experimental results show that it is able to
match the peak throughput of a diverse set of machine learning models, by predict-
ing correctly the appropriate device with an accuracy of 92.5%, while consuming
up to 10% less energy.

Περίληψη

Τα ετερογενή υπολογιστικά συστήματα απαρτίζονται από ένα σύνολο υπολογιστικών

συσκευών, κάθε μια από τις οποίες έχει τα δικά της χαρακτηριστικά κατανάλω-
σης ενέργειας καθώς και την απόδοση της. Ακόμα και σήμερα όμως η πλειοψηφία
των εφαρμογών μηχανικής μάθησης χρησιμοποιεί μία μόνο υπολογιστική συσκευή

(όπως τον επεξεργαστή ή κάποιον επιταχυντή), για να κάνει προβλέψεις, αφήνοντας
τις υπόλοιπες υπολογιστικές συσκευές αδρανείς και ανεκμετάλλευτες. Σε αυτή τη
δουλειά, προτείνουμε μια διαφορετική προσέγγιση στην οργάνωση και στην ανάθεση
των προβλέψεων μοντέλων μηχανικής μάθησης σε ετερογενείς συσκευές. Ο αλγόρι-
θμος που υλοποιεί την ανάθεση των εργασιών στις κατάλληλες συσκευές είναι ικανός

να ανταποκριθεί γρήγορα στις δυναμικές διακυμάνσεις πραγματικού χρόνου όπως για

παράδειγμα, αυξομειώσεις στην είσοδο του συστήματος, υπερφόρτωση εφαρμογών,
και αλλαγές στο υπολογιστικό σύστημα. Τα αποτελέσματα της έρευνας μας δείχνουν
οτι ο αλγόριθμος μας είναι ικανός να φτάσει τα μέγιστα ποσοστά απόδοσης ανάμεσα

σε διαφορετικά μοντέλα μηχανικής μάθησης, προβλέποντας σωστά την κατάλληλη
συσκευή με ποσοστό 92.5%, καταναλώνοντας εώς και 10% λιγότερη ενέργεια.

Ευχαριστίες

• Ευχαριστώ τον supervisor μου, καθηγητή Ευάγγελο Μαρκάτο για την κα-
θοδήγηση του.

• Ευχαριστώ τον advisor μου, Δρ. Σωτήρη Ιωαννίδη για τις ευκαιρίες που μου
έδωσε να δουλέψω σε ενεργά project στο εργαστήριο Κατανεμημένων Υπολ-
ογιστικών Συστημάτων. Οι συμβουλές του και η υποστήριξη του ήταν κα-
θοριστήκες για την τεχνική και ακαδημαϊκή μου ανάπτυξη.

• Ευχαριστώ τον ερευνητή και μέντορα,Δρ. Γιώργο Βασιλειάδη για τις ατελείωτες
ώρες που σπατάλησε να μου λύνει απορρίες και την πολύτιμη βοήθεια του απο

την αρχή εως και σήμερα.

• Ευχαριστώ ολους τους συνάδελφους και φίλους Ντεγιάννη Δημήτρη, Ευα Πα-
παδογιαννάκή, Γιώργο Χρήστου, Ηλία Παπαδόπουλο, Κώστα Κλεφτογιώργο,
Ειρήνη Δέγκλερη, Γιώργο Τσιραντωνάκη,Μιχάλη Διαμαντάρη, Κώστα Σολομό,
Αλέξανδρο Κορνιλάκη, Χρήστο Παπαχρήστο, Αντώνη Κριθινάκη για τις συμ-
βουλές, τις συζητήσεις και την στήριξη τους.

• Ευχαριστώ ολους τους ανθρώπους μου που στάθηκαν δίπλα μου τα τελευταία
χρόνια, Μιχάλη, Μάνο, Κώστα, Σάββα, Γιώργο και μοιραστήκαμε ολες τις
δύσκολες αλλά και τις χαρούμενες στιγμές.

• Ευχαριστώ τους γονείς μου και τα αδέρφια μου που με πίσεψαν και με στήριξαν
σε αυτό το εγχείρημα.

• Τέλος ένα μεγάλο ευχαριστώ στην Κωνσταντίνα για την ατελείωτη στήριξη και
υπομονή της.

Στους γονείς μου, Αλέξανδρο και Ελένη

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

2 Background 3
2.1 Background . 3

2.1.1 Architectural Comparison 3
2.1.2 Quantitative Comparison 4

2.2 OpenCL Framework . 4
2.3 Machine Learning . 6

2.3.1 Feed Forward Neural Networks 6
2.3.2 Convolutional Neural Networks 7
2.3.3 Metrics and Known Techniques 9

3 System Setup 11
3.1 Hardware Setup . 11
3.2 Models . 13

4 Implementation 15
4.1 Architecture . 15
4.2 Parallelization . 17

4.2.1 Performance Characterization 18

5 Efficiency via Scheduling 23
5.1 Online Scheduler . 24

5.1.1 Data Augmentation & Preparation 24
5.1.2 Train the Scheduler . 25

6 Evaluation 27

7 Related Work 29

i

8 Discussion 31
8.1 Machine Learning Scheduler . 31
8.2 Concurrent Workloads . 31

9 Conclusion 33

Bibliography 35

ii

List of Tables

3.1 The hardware setup of our base system that we used for our exper-
iments. 12

5.1 Different Hyperparameters of our Random Forest Classifier 23
5.2 All Machine Learning Models that we tried 25

6.1 Scheduler efficiency when using Random Forest classifier 27

iii

iv

List of Figures

2.1 Architectural comparison of processing on an (a) integrated and
(b) discrete GPU. 4

2.2 OpenCl’s architecture . 5
2.3 Comparison of (a) Scalar operation vs (b)SIMD operation 5
2.4 Principle element of Neural Network, Perceptron 6
2.5 Feed Forward Neural Network . 7
2.6 Convolutional Neural Network . 8
2.7 Filter & Convolution Operation . 9
2.8 Confusion Matrix of Binary Classifier 10

4.1 Architecture of our system . 16
4.2 Throughput, latency and power consumption for each of the models

presented in Section 3.2 . 19
4.3 Watt-second (Joule) for each of the models presented in Section 3.2 20

6.1 Throughput achieved and energy consumed with the predictions of
our scheduler . 28

v

vi

Chapter 1

Introduction

The number of applications that are utilizing machine learning (ML) and deep
learning (DL) operations is constantly increasing. A plethora of diversified appli-
cations — from autonomous driving to surveillance systems and user profiling —
are using machine learning, while the machine and deep learning models them-
selves are becoming more complex and require significantly more compute power.
All these constraints are becoming even more challenging in cases where the ap-
plications operate at real-time and require latency-critical requirements.

To cope with these hard performance requirements, it is of paramount impor-
tantance to offer methodologies and techniques to process data (either for learning
or for inference) at high throughput and/or low latency. Many approaches have
been proposed for using specialized accelerators, such as GPUs, to successfully
speed up the processing [31]. As a result, there is a shift for many frameworks and
libraries to offload the learning and/or inference tasks to high-end GPUs, rather
than using the CPU, since the former have more powerful compute resources. Pop-
ular libraries and frameworks, such as TensorFlow, Torch, Caffee, MXNet, provide
GPU support, as a means to optimize performance, either when performing ML
tasks on a batch mode or in a streaming fashion. Other works have also focused
on optimizing the key challenges regarding faster inference over streaming data,
either by performing computations more efficiently [24], either by performing ef-
ficient data movements or transfers, especially when using external accelerators,
such as GPUs[19].

The majority of the aforementioned systems focus on the ease of the user as well
as on the fastest training of these models, targeting only a single computational
device, such as the multicore CPU or a powerful GPU, leaving other devices idle.
However, offloading any task to the GPU comes with overheads due to the extra
memory copies and trasfers which may result in increases in end-to-end latency
or decreased throughput. This includes the extra copies to page-locked memory
buffers and the subsequent data transfers to the memory space of the GPU, typ-
ically over the PCIe bus. It could be the case though that the computational
benefits of the GPU do not pay off these extra data movements; in such cases it

1

2 CHAPTER 1. INTRODUCTION

could be more efficient if the computations were performed by the CPU.
Developing an application that can utilize each and every device effectively

and consistently, across a wide range of diverse applications, is highly challenging.
Heterogeneous, multi-device systems typically offer system designers different opti-
mization opportunities that offer inherent trade-offs between energy consumption
and various performance metrics - in our case, forwarding rate and latency. The
challenge to fully tap a heterogeneous system, is to effectively map computations
to processing devices, and do so as automated as possible.

In this work we first characterize the performance of a diversified set of machine
learning models and we show that some processing devices perform better under
different performance metrics (e.g., throughput, latency, and power consumption),
while at the same time, these metrics may also deviate significantly among different
applications. With these observations in mind, we propose an online, adaptive,
scheduler which is able to successfully adjust to different conditions, by taking into
account the characteristics and the state of the computational devices, in order to
maximize the performance or minimize the latency or energy consumption of our
system. Our scheduler can respond quickly to dynamic performance fluctuations
that occur at real-time, such as data bursts, application overloads and system
changes.

The contributions of our work are:

• We develop a system that runs typical machine learning and deep neural
network classification operations on heterogeneous and asymmetric devices,
using the OpenCL framework. We further characterize their performance
and power consumption, showing that the performance ranking of differ-
ent computational devices (such as CPUs, high-end GPUs, and integrated
GPUs) on different applications is highly varied.

• We propose a machine learning scheduler to mitigate the problem of finding
the appropriate device for the classification, given a model architecture and
a policy. Our evaluation results show that it is able to select the appropriate
device correctly with an accuracy of 92.5% for models that has been trained
on, and with an accuracy of 91% for models never seen before.

Chapter 2

Background

2.1 Background

Typical commodity hardware architectures offer heterogeneity at three levels: (i) at
the traditional x86 CPU architecture, (ii) at an integrated GPU, packed on the
same processor die, and (iii) at a discrete high-end GPU. All three devices have
unique performance and energy characteristics. Overall, the CPU cores are good
at handling branch-intensive processing workloads, while discrete GPUs tend to
operate efficiently in data-parallel workloads. Between those two, the integrated
GPU features high energy efficiency without significantly compromising the pro-
cessing rate or latency. Typically, the discrete GPU and the CPU communicate
over the PCIe bus and they do not share the same physical address space (although
this might change in the near future). The integrated GPU on the other hand,
shares the LLC cache and the memory controller of the CPU.

2.1.1 Architectural Comparison

In Figure 2.1(b), we illustrate the processing scheme that has been used by ap-
proaches that utilize a discrete GPU [39, 41, 25, 40].

The majority of these approaches perform a total of seven steps the DMA
transaction between the network interface and the main memory, the transfer of the
samples to the I/O region, which corresponds to the discrete GPU (this operation
traditionally invokes CPU caches, but the cache pollution can be minimized by
using non-temporal data move instructions) the DMA transaction towards the
memory space of the GPU, the actual computational GPU kernel itself and the
transfer of the results back to the host memory. All data transfers must operate
on fairly large chunks of data, due to the PCIe interconnect inability to handle
small data transfers efficiently. The equivalent architecture, using an integrated
GPU that is packed on the CPU die, is illustrated on the left side of Figure 2.1.
The advantage of this approach is that the integrated GPU and CPU share the
same physical memory address space, which allows in-place data processing. This
results to fewer data transfers and hence lower processing latency.

3

4 CHAPTER 2. BACKGROUND

Figure 2.1: Architectural comparison of processing on an (a) integrated and (b) dis-
crete GPU.

2.1.2 Quantitative Comparison

An integrated GPU (such as the HD Graphics 4000 we use in this work) has higher
energy efficiency as a computational device, compared to modern processors and
GPUs. The reason is threefold. First, integrated GPUs are typically implemented
with low-power, 3D transistor manufacturing process. Second, they have a simple
internal architecture and no dedicated main memory. Third, they match the com-
putational requirements of applications, in which the main bottleneck is the I/O
interface and thus, a discrete GPU would be under-utilized. In § 4.2.1 we show, in
more detail, the energy efficiency of these devices when executing typical machine
learning models.

2.2 OpenCL Framework

OpenCL (Open Computing Language) is an open standard for cross-platform, par-
allel programming of diverse accelerators found in any heterogeneous system such
as supercomputers, cloud servers, personal computers, mobile devices and embed-
ded platforms. The term heterogeneous system refers to systems that have numer-
ous devices each with a different underlaying architecture, such as CPUs, GPG-
PUs, FPGAs and other type of processors and hardware accelerators. OpenCL
greatly improves the speed and responsiveness of a wide spectrum of applications
in numerous market categories including professional creative tools, scientific and
medical software, vision processing, and neural network training and inferencing.
[6]. OpenCL’s main advantages include (i)portability, (ii)parallel programming and
(iii)standardized vector processing.

Portability: OpenCL was created from an alliance of the companies: Apple,
AMD, IBM, Intel, NVIDIA and Qualcomm, with many more companies adopting
the framework. The purpose was to develop a system that would give a huge

2.2. OPENCL FRAMEWORK 5

flexibility on the users, where one code would run on all devices of these vendors.
Every vendor that provides OpenCL-compliant hardware also provides the tools
that compile OpenCL code to run on the hardware. This means that you can write
a code once and it will be translated to the corresponding machine code for every
device, eliminating separate compilers or linkers.

Figure 2.2: OpenCl’s architecture

Parallel Programming: OpenCL provides task-parallelism; many devices
can run in parallel the same code, called kernel. The full architecture is shown if
Figure 2.2. The host creates a context where multiple command-queues live; each
command-queue can contain one or more kernels and is associated with one device
of the system. A kernel is created by the host by selecting a function from a pro-
gram, then the kernel is associated with argument data and is being dispatched on
a command-queue. Through the mechanism of command queue the host tells to
the devices what to do, and when a kernel is enqueued, the device will execute the
corresponding function. This level of abstraction enables the execution of kernels
in multiple devices in parallel.

Figure 2.3: Comparison of (a) Scalar operation vs (b)SIMD operation

6 CHAPTER 2. BACKGROUND

Standardized Vector Processing: The last level of parallelism can be
applied inside each kernel. Nearly all modern processors support vector opera-
tions and OpenCL offers SIMD programming (Single Instruction Multiple Data).
Through data structures that contain multiple elements of the same data type we
can execute operations within the same clock cycle. As shown in Figure 2.3 we
can add 2 vectors each containing 4 integers in one clock cycle.

2.3 Machine Learning

There is a massive variety of Machine Learning models that have been developed
throughout the years, each specializing in certain category of problems. Typically
Machine Learning consists of two phases, training and inference. In the training
phase we train a model given, usually, large datasets and we try to build a model
that can generalize and extract knowledge from this dataset. In this phase the
user has to find the appropriate Machine Learning model and has to tune the
hyper-parameters of this model such that the model does not overfit or underfit.
In the inference phase, we load the trained model on a single device and we make
predictions for new unseen data. The training phase is the most time consuming
from the user point of view, but the inference phase is the one that going to run
and make predictions for much longer time and thus is the most time and resource
consuming from the machine point of view. In this work we will focus on the second
phase of this procedure, exploring two different type of Machine Learning Neural
Networks, Feed Forward Neural Networks and Convolutional Neural Networks.

Figure 2.4: Principle element of Neural Network, Perceptron

2.3.1 Feed Forward Neural Networks

It is the simplest form of Artificial Neural Networks. In Figure 2.4 we can see
the Perceptron, it takes inputs x1, x2,...,xn and produces a single output y. The
computation of the output is an aggregated multiplication of the inputs with real
numbers expressing the importance of the input of the respective inputs to the

2.3. MACHINE LEARNING 7

output, called weights w1, w2,...,wn. The neuron’s output, can be directly passed
on the output as y =

∑n
j=0wj ∗ xj or it can pass through a nonlinear function

such as relu, tanh or sigmoid. Combining many perceptrons we create a layer of
perceptrons and employing many perceptron layers in a sequential way we create
multi-layer perceptrons as know as Feed Forward Neural Networks. As we see in
Figure 2.5 the Feed Forward Neural Network consists of:

• An input layer

• One or more hidden layers

• An output layer

Figure 2.5: Feed Forward Neural Network

2.3.2 Convolutional Neural Networks

In deep learning a Convolutional Neural Network is a class of deep neural networks,
applied mostly on analyzing visual imagery, financial time series, image and video
recognition, speech synthesis and many more. The architecture of a CNN can
be seen on Figure 2.6. In reality CNNs consist of two Networks, a Convolution
Network and a Feed Forward Neural Network. The advantages of CNNs is two-fold;

8 CHAPTER 2. BACKGROUND

Figure 2.6: Convolutional Neural Network

firstly, the Convolution Network is able to recognise patterns in neighborhoods of
1D or 2D dimensions, thus better recognising patterns in financial series, images,
or voice spectrums and secondly, they can scale better than Feed Forward Neural
Networks for large images.

For example, images in CIFAR-10 [28], are of size 32×32×3 (32 wide, 32 high,
3 color channels), so a single fully connected neuron in a first hidden layer of a
Feed Forward Neural Network would have 32*32*3 = 3,072 weights. A 200× 200
image, however, would lead to neurons that have 200*200*3 = 120,000 weights,
but as we are going to see CNNs down-sampling layer can decrease drastically the
first hidden layer of the Feed Forward Neural Network, thus scaling better with
the increase of the image size. On top of that Feed Forward Neural Networks do
not take into account the spatial structure of data, treating input pixels which are
far apart in the same way as pixels that are close together. This ignores locality
of reference in image data, both computationally and semantically. Thus, full
connectivity of neurons is wasteful for purposes such as image recognition that
are dominated by spatially local input patterns. The fundamental block of CNNs
is the Convolutional Layer. The layer’s parameters consist of a set of learnable
filters (or kernels) which during the forward pass they convolve across the width
and height of the input volume, computing the dot product of the kernel with
the input, resulting in a 2-D dimensional activation map of the filter (Figure 2.7),
hence the network learns filters that activate when a specific feature is detected.
Stacking these activation maps for different filters we end up with the output of
the Convolution layer.

The second most important block of CNNs is the Pooling Layer, which essen-
tially is is a non-linear down-sampling procedure. The input of this layer is the ac-
tivation maps from the convolutional layer, which it partitions in non-overlapping
sets of rectangles and for each set computes the maximum. As we have previously
mentioned this results in a highly scalable architecture.

2.3. MACHINE LEARNING 9

Figure 2.7: Filter & Convolution Operation

2.3.3 Metrics and Known Techniques

In this section we are going to introduce some fundamental Machine Learning
Metrics and some known techniques vastly applied on the training of ML models,
that we are going to use later. In Figure 2.8 we see a confusion matrix of a binary
classification model. True Positives are the correct predicted samples of class 0,
while True Negatives are the correct predicted samples of class 1. False Positives
are the classes predicted as 0 but belong to class 1. Lastly, False Negatives are the
samples predicted as 1 but belong to class 0.

1. Precision: It is the fraction of TP divided by (TP + FP). Intuitively it can
answer the question of what proportion of the positive identifications was
actually correct.

TP

TP + FP
(2.1)

2. Recall: It is the fraction of the TP divided by (TP + FN). Intuitively it
can answer the question of what proportion of actual positives was identified
correctly.

TP

TP + FN
(2.2)

3. F1-score: It is the harmonic mean of Precision and Recall. Computed as:

2 ∗ Precision ∗Recall

Precision + Recall
(2.3)

4. Nested cross-validation: Nested cross-validation is an approach to model
hyperparameter optimization and model selection that attempts to overcome
the problem of overfitting the training dataset.

10 CHAPTER 2. BACKGROUND

Figure 2.8: Confusion Matrix of Binary Classifier

Chapter 3

System Setup

On this chapter we are going to describe the hardware setup that we used for this
work. We will also describe the machine learning models that we used and show
how we parallelize them using OpenCL, to efficiently execute in each of the three
processing devices.

3.1 Hardware Setup

Our system contains three different, heterogeneous, computational devices: one
CPU, one integrated GPU and one discrete GPU. As we can see from Table 3.1 is
equipped with one Intel Core i7-8700 Coffee Lake processor, packed with an inte-
grated UHD Graphics 630 GPU and one NVIDIA GeForce GTX 1080 Ti graphics
card. The processor contains six CPU cores operating at 3.7GHz, with hyper-
threading support, resulting in twelve hardware threads. Overall, The system is
equipped with 32GB of dual-channel DDR4-2666 DRAM with 41.6 GB/s through-
put. The L3 cache (12MB) and the memory controller are shared across the CPU
cores and the integrated GPU. Each CPU core is equipped with 384KB of L1 cache
and 1.5MB of L2 cache. The GTX 1080 Ti has 3584 cores in 28 multiprocessors
and 11 GB of GDDR5 memory. It is rated at 10609 GFlops, and its Thermal
Design Power (TDP) is 250 Watt. The UHD Graphics 630 has 24 execution units,
a 64-hardware thread dispatcher and a 100 KB texture cache. The maximum
estimated performance of the integrated GPU is rated at 460.8 GFlops on the
maximum operating frequency of 1200 Mhz [8]. While Intel does not provide its
TDP limit, we estimate that it is close to 20 Watt. For the whole processor die
the TDP is 95 Watt.

We notice that our hardware platform exposes an interesting design trade-
off: even though the integrated GPU has fewer resources (i.e. hardware threads,
execution units, register file) than a high-end discrete graphics card, it is directly
connected to the CPU and the main memory via a fast on-chip ring bus, and has
much lower power consumption. As we will see in § 4.2.1, this design is well-suited
for applications in which the overall performance is limited by the I/O subsystem,

11

12 CHAPTER 3. SYSTEM SETUP

and not by the computational capacity.

Another very interesting observation that we made was that the measurements
of the GTX1080Ti were highly affected by the state of the GPU. NVIDIA uses a
monitoring system called Boost 3.0 which can under-clock or over-clock the GPU’s
clocks depending on the workload it has to execute. The GPU’s performance is di-
vided in 8 sections ranging from P0 to P7. When the GPU is idle the corresponding
performance configuration is set automatically to P7 in order to consume as less
energy as possible. As there is no way to control the performance configuration of
our GPU and the outcome of our measurements was highly affected we decided to
take measurements for both configurations.

CPU

Model name Intel Core i7-8700k

Clock frequency (GHz) 3.7

CPUs 12

Threads per core 2

Cores per socket 6

Sockets 1

GPU

Model name NVIDIA GTX 1080Ti

Cores 3584

Multiprocessors 28

Base Clock(MHz) 139

Boost Clock(MHz) 1582

Memory interface GDDR5X

Memory size(MB) 11178

FP perf (GFlops) 10609

TDP (Watts). 250

Integrated GPU

Model name HD Graphics 630

Clock frequency (MHz) 1200

Execution Units 24

TDP(Estimated) 20 Watt

System Memory

Size(GB) 32

Description DDR4 @ 2666MHz

Table 3.1: The hardware setup of our base system that we used for our experiments.

3.2. MODELS 13

3.2 Models

For our experiments we use three different models of feed-forward neural networks
(FFNN) and two convolutional neural networks (CNN) that cover a small but
representative set of machine learning applications.

For the training of these models, we use real datasets (i.e., the Iris dataset [20],
Mnist [30], and Cifar-10 [28]), as we describe in more detail below.

Simple This model consists of two hidden layers only, each of which contains six
nodes in total. It is based on the Iris classification dataset [20] and even though it is
one of the simplest feed-forward neural networks it can achieve a great performance
with accuracy up to 97%.

Mnist-Small The Mnist-Small is a feed-forward neural network that is based on
the Mnist dataset, which is a hand written digit database. Overall, it consists of
two hidden layers. The first layer consists of 784 nodes, while the second consists
of 800 nodes, leading to a 10-node output layer. [37]

Mnist-Deep The Mnist-Deep is a feed-forward neural network with six hidden
layers, of the following formation: 784− 2500− 2000− 1500− 1000− 500. Similar
to Mnist-Small, the output layer consists of 10-nodes. [15]

Mnist-CNN The Mnist-CNN is a model that has been trained based on the
Mnist dataset. It is a fairly simple CNN model that consists of two VGG blocks,
each of which contains one convolution and one pooling layer. The size of the
filters of the convolutional layer is 3 × 3 × 32 and the pooling layer size is 2 × 2.
Finally the FFNN has a Dense layer of 128 nodes, leading to a 10-node output
layer. The achieved accuracy of the model was 99.08%.

Cifar-10 The Cifar-10 is a convolutional neural network that has been trained
on the Cifar-10 dataset, which is an image classification database. This model
consists of three pairs of Convolutional and Pooling layers (namely VGG blocks),
each containing two convolution layers and one pooling layer. The size of the
convolutional layers are 3× 3× 32 and the pooling layer size is 2× 2. Finally the
FFNN has a Dense layer of 128 nodes, leading to a 10-node output layer. The
achieved accuracy of the model was 88%.

14 CHAPTER 3. SYSTEM SETUP

Chapter 4

Implementation

In order to achieve parallel execution and across many devices the classification of
these models we used OpenCl. Our aim was to develop a portable implementation
of the classification procedure that can run efficiently on heterogeneous devices.
We used the OpenCL implementation that comes with NVIDIA CUDA Toolkit
10.0, as well as the Intel OpenCL Runtime for the Core processor family.

4.1 Architecture

In this section we describe the architecture of our system. Our system consists of
two phases, Figure 4.1(a) and (b) respectively.

In phase one we create a model given a detailed description. For FFNN we pass
the depth of the NN, the number of nodes of each layer and the activation functions.
For CNN we give the size and the number of filters of the convolutions, the size
of the pooling, the corresponding activation functions and finally a description of
a FFNN. All these are handled by the Model Building Module, which builds a
model based on these information, this model passed back on the API module.
The next step is to load the weights of the NN to the main memory, based on the
model that we have build, the Weights Building Module, reads the weights from
a file, creates the appropriate buffers and loads the weights in the memory, finally
it gives back the buffers into the API Module. The API Module passes the model
into the Dispatcher Module, which loads the model and the weights in each device
available.

In phase two we ready to run the classification phase in every device available.
Firstly, we read from the input (eg. network, file, memory) the data that we
want to run the classification for, alongside with the architecture of the specific
model and a configuration file specifying if we want achieve a better performance
or energy efficiency. The scheduler at this point performs a pci call to check the
state of the discrete GPU (idle or not). Based on these information the scheduler
determines the correct device and performs the classification.

15

16 CHAPTER 4. IMPLEMENTATION

(a) Phase one: In this phase we prepare the system to handle the classification procedure of a
model. The interaction of different components is as follows: A model is created from the Model
Building Module (1+2). The weights of this model are read from a file and the buffers containing
the weights are returned to the central API (3+4). The model and the weights are sent to dispatcher
(5) who is responsible to load them on all the available devices (6).

(b) Phase two: The system is ready to perform the classification procedure.
Input data arrive from various input data streams(1) to the Scheduler along-
side with the model architecture (2) and a configuration file which describes the
task of the scheduler (Energy efficiency or Best Performance) (3). The sched-
uler requests from the GPU its current state through a PCI call(4). Based
on all these information the scheduler picks the appropriate device to run the
classification task (5).

Figure 4.1: Architecture of our system

4.2. PARALLELIZATION 17

4.2 Parallelization

After the training completes, our system is ready to run the classification phase
in every device available. Firstly, we read from the input (e.g., network, file,
memory) the data that we want to run the classification for, alongside with the
architecture of the specific model and a file containing the policy of our scheduler
with three available options, lowest latency, energy efficiency or best throughput.
The scheduler at this point performs a PCIe call to check the state of the discrete
GPU (idle or not). Based on these information the scheduler determines the correct
device and performs the classification.

To execute the Machine Learning applications uniformly across the different
devices of our base system, we implement them on top of OpenCL 2.1. Our
aim is to develop a portable implementation of each application, that can also run
efficiently on each device. Our system runs Linux 5.4.23 with the in-tree i915 driver
for the integrated graphics, and nvidia 440.64 driver for the discrete graphics. We
use the Intel OpenCL 2.1 SDK for the Core processor family and HD Graphics
as well as the OpenCL implementation that comes with NVIDIA CUDA Toolkit
10.0. Due to space constraints we omit the full details of our implementation, and
we only list the most important design aspects and optimizations that we have
addressed.

We have developed two different compute kernels, one for each type of Neural
Networks. In OpenCL, an instance of a compute kernel is called a work-item;
multiple work-items are grouped together an form work-groups. We follow a thread-
per-node approach, and assign each work-item to handle (at least) one Neural
Network layer; More specifically, for the feed-forward neural networks, the nodes
of a single layer are computed in parallel, by assigning a separate thread per node.
Besides that, we further spawn a second level of parallelization at the sample
level, by classifying each sample in parallel. For Convolutional Neural Networks
we follow a similar approach, in the convolutional layer we compute in parallel all
the convolution operations of a single filter, as well as all the filters of each layer;
on the pooling layer all the pooling operations are done in parallel and finally the
Fully Connected Neural Network part is computed as described above. With our
approach we can classify in parallel up to 256K samples even for computational
intensive architectures like Cifar-10 model.

The number of work-items per work-group affects significantly the performance
of each device. For example for the GPUs we want many and small work-groups
while for CPUs we want less and bigger work-groups. The reason for that is
that GPUs have a very fast thread scheduler that can hide the memory-latency
of a computation by scheduling another work-group whom data needed for the
computation are now ready. On the other hand CPU due to their low latency and
their slower thread scheduler can utilise better their resources when their work-
groups are as big as possible. From our experiments we have found out that the
best configuration for the CPU was 4096 work-items per work-group, whilst the
best configuration for the GPU was 256 work-items per work-group, which at the

18 CHAPTER 4. IMPLEMENTATION

same time was maximising the available registers per work-item.

Our devices enable heterogeneity on their memory model as well. For example
the global memory of the GPU is physically independent of the memory of the host,
requiring a transfer of data from the host memory to the device’s global memory
through a pci transfer, for every computation. In order to avoid page swapping
during the transfers we copy the data that we want to classify on a page-locked
buffer. On the other hand CPU’s and iGPU’s global memory is physically the
same memory as the host memory, and we can directly map the corresponding
memory buffers using clEnqueueMapBuffer() function to avoid extra copies.

After the data are placed on the global memory of each device, there is another
critical aspect that affects the performance of our applications; that is the way the
input data are loaded from the global memory of the device. CPUs require row-
major order to preserve the cache locality within each thread, while GPUs require
column-major order to enable memory loads to be more effective, the so-called
memory coalescing. Initially we tried transposing the data in the GPU memory
to benefit from the column-major order placement but as we found out the costs
of the corresponding data movements, pays off only when accessing the memory
with small vector types (i.e. char4); when using the int4 or float4 type though,
the overhead is not amortized by the resulting memory coalescing gains, in none
of our representative applications. Besides the GPU gains, the CPU enables the
use of SIMD units when using the int4 or float4 types, because the vectorized code
is translated to SIMD instructions. With all these in mind, we re-design the input
process and access the samples using int4 or float4 vector types in a row-major
order, for both the CPU and the GPU.

4.2.1 Performance Characterization

In this section, we present the performance achieved by our applications. Specif-
ically, we measure the sustained throughput, latency and power consumption for
each of the devices available in our base system. To accurately measure the power
spent for each device to process the corresponding batch, we measure the power
consumption of all the components that are required for the execution. For in-
stance, when we use the GPU for samples inference, the CPU has to collect the
necessary data, transfer them to the device (via DMA), spawn a GPU kernel ex-
ecution, and transfer the results back to the main memory. Instead, when we
use the CPU (or the integrated GPU), we exclude the discrete GPU, as it is not
needed. By measuring the power consumption of the right components each time,
we can accurately and fairly compare different devices.

Figures 4.2 and 4.3 summarize the results of our experiments for all the five
models that we describe in Section 3.2. In Figure 4.2, we can see the achieved
throughput, latency and power for different sample sizes. On the left-hand side
we see the achieved throughput and power consumption for the different sample
sizes, while on the right-hand side of each subfigure we see the latency for the same

4.2. PARALLELIZATION 19

 0
 50

 100
 150
 200

2 4 8 16 32 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

Po
w

e
r

(W
a
tt

s)

Samples

0

0.01

0.1

1

10

100

T
h
ro

u
g
h
p
u
t

(G
b
it

s/
s) HD Graphics

i7 CPU
idle GTX 1080 Ti

GTX 1080 Ti

2 8 32 256 1K 4K 16K 64K 256K
0

10-1

100

101

102

103

La
te

n
cy

 (
m

s)

Samples

HD Graphics
i7 CPU

idle GTX 1080 Ti
GTX 1080 Ti

(a) Simple

 0
 50

 100
 150
 200
 250
 300

2 4 8 16 32 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

Po
w

e
r

(W
a
tt

s)

Samples

0

0.01

0.1

1

10

100

T
h
ro

u
g
h
p
u
t

(G
b
it

s/
s) HD Graphics

i7 CPU
idle GTX 1080 Ti

GTX 1080 Ti

2 8 32 256 1K 4K 16K 64K 256K
0

100

101

102

103

104

105

La
te

n
cy

 (
m

s)

Samples

HD Graphics
i7 CPU

idle GTX 1080 Ti
GTX 1080 Ti

(b) Mnist Small

 0
 50

 100
 150
 200
 250
 300

2 4 8 16 32 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

Po
w

e
r

(W
a
tt

s)

Samples

0

0.01

0.1

1

10

100

T
h
ro

u
g
h
p
u
t

(G
b
it

s/
s) HD Graphics

i7 CPU
idle GTX 1080 Ti

GTX 1080 Ti

2 8 32 256 1K 4K 16K 64K 256K
0

101

102

103

104

105

106

La
te

n
cy

 (
m

s)

Samples

HD Graphics
i7 CPU

idle GTX 1080 Ti
GTX 1080 Ti

(c) Mnist Deep

 0
 50

 100
 150
 200

2 4 8 16 32 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

Po
w

e
r

(W
a
tt

s)

Samples

0

0.1

1

10

100

T
h
ro

u
g
h
p
u
t

(G
b
it

s/
s) HD Graphics

i7 CPU
idle GTX 1080 Ti

GTX 1080 Ti

2 8 32 256 1K 4K 16K 64K 256K
0

100

101

102

103

104

La
te

n
cy

 (
m

s)

Samples

HD Graphics
i7 CPU

idle GTX 1080 Ti
GTX 1080 Ti

(d) Mnist CNN

 0
 50

 100
 150
 200

2 4 8 16 32 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

Po
w

e
r

(W
a
tt

s)

Samples

0

0.1

1

10

100

T
h
ro

u
g
h
p
u
t

(G
b
it

s/
s) HD Graphics

i7 CPU
idle GTX 1080 Ti

GTX 1080 Ti

2 8 32 256 1K 4K 16K 64K 256K
0

100

101

102

103

104

La
te

n
cy

 (
m

s)

Samples

HD Graphics
i7 CPU

idle GTX 1080 Ti
GTX 1080 Ti

(e) Cifar-10

Figure 4.2: Throughput, latency and power consumption for each of the models
presented in Section 3.2

20 CHAPTER 4. IMPLEMENTATION

2 8 32 256 1K 4K 16K 64K 256K
Samples

10 3

10 2

10 1

W
at

t-s
ec

on
ds

HD Graphics
i7 CPU
idle GTX 1080 Ti
GTX 1080 Ti

(a) Simple

2 8 32 256 1K 4K 16K 64K 256K
Samples

10 2

10 1

100

101

102

103

W
at

t-s
ec

on
ds

HD Graphics
i7 CPU
idle GTX 1080 Ti
GTX 1080 Ti

(b) Mnist Small

2 8 32 256 1K 4K 16K 64K 256K
Samples

10 1

100

101

102

103

104

W
at

t-s
ec

on
ds

HD Graphics
i7 CPU
idle GTX 1080 Ti
GTX 1080 Ti

(c) Mnist Deep

2 8 32 256 1K 4K 16K 64K 256K
Samples

10 2

10 1

100

101

102

W
at

t-s
ec

on
ds

HD Graphics
i7 CPU
idle GTX 1080 Ti
GTX 1080 Ti

(d) Mnist CNN

2 8 32 256 1K 4K 16K 64K 256K
Samples

10 2

10 1

100

101

102

103

W
at

t-s
ec

on
ds

HD Graphics
i7 CPU
idle GTX 1080 Ti
GTX 1080 Ti

(e) Cifar-10

Figure 4.3: Watt-second (Joule) for each of the models presented in Section 3.2

4.2. PARALLELIZATION 21

sample sizes. 1

We observe that the performance of all applications becomes better when the
samples size increase. However, the maximum achieved throughput is different for
each device, as well as the size of samples that is required to reach it. We can also
observe that there is a big variance in the maximum sustained throughput for the
different models, ranging from 800 Mbits/s up to 20 Gbits/s for the GPU, and from
50 Mbits/s up to 15 Gbits/s for the CPU. The state of the GPU affects dramatically
the sustained throughput in many of the applications, with differences up to 7x.
From all the above observations it is obvious that no device performs best across
all parameters, in terms of througput. Instead, it is highly affected by the samples
size, as well as the computational characteristics of the application, which in our
case is the structure of the underlying architecture of the corresponding machine
learning model. For example, in Figure 4.2(a) we can see that the CPU performs
better only for sample sizes up to 2048 (when the GPU is warmed up);when the
GPU starts from an idle state though, the CPU outperforms the GPU for all
sample sizes tested. In Figure 4.2(e) we observe that the CPU is better that the
GPU for sample sizes up to 8(when the GPU is warmed up); when the GPU starts
from and idle state though the CPU is better for sample sizes up to 128. Although
there are cases where the state of the GPU is not afecting the outcome, for example
in Figure 4.2(c) the CPU is better than GPU for sample sizes up to 8, regardless
of the starting state of the GPU.

The sustained latency shows similar tendencies as the throughput. For in-
stance, latency variance is huge throughout the different models, ranging from 1
millisecond up to 16 minutes. Another similarity is that the GPU is suitable for
big sample sizes, while the CPU is more suitable for small sample sizes. We can
also see that for all the applications from a specific sample size and above there is
a linear growth of the latency, this implies that the maximum throughput of this
specific device has been achieved. An exception can be observed in Figure 4.2(b)
where the idle GPU for sample sizes greater than 512 follows better than lin-
ear growth until it matches the warmed-up GPU. For this specific application for
sample sizes 64K and above the performance state of the GPU at the start of the
classification does not affect the achieved latency. However we can see for smaller
sample sizes the best achieved latency is affected by the state of it, specifically
if the GPU is not warmed-up the CPU achieves the best performance for sample
sizes up to 32, on the contrary CPU is the more suitable device for sample sizes up
to 4. In Figure 4.2(d) we can see that the best device considering the GPU starts

1In our measurements we have two measurements for the GTX 1080 Ti that are labeled as idle
GTX 1080 Ti and GTX 1080. NVIDIA uses Boost 3.0 tool to automatically lower the GPU
clocks when the GPU is idle for better power consumption and it automatically raises the clocks
when a task is given to the GPU. In our measurements we have seen that the state of the GPU
at the begging of the measurement highly affects the achieved performance of the GPU and in a
real case scenario the GPU can reside on either of those states, hence we have two measurements
for the GPU, one when the GPU starts from an idle state and one when the GPU is warmed up.

22 CHAPTER 4. IMPLEMENTATION

from an idle state is the CPU for sample sizes up to 256, while for GPU starting
from P0 performance state the CPU is better for sample sizes up to 32.

In Figure 4.3, we see the Joules that each device needs in order to perform the
classification procedure for all the different applications and different sample sizes.
Due the heterogeneity of our system we can see that different devices perform
better in different applications and configurations; there is no device to rule them
all.

Even though the iGPU is the most power efficient device for all applications
as shown in Figure 4.2, we get a different impression when we account the Joules
consumed per device, depicted in Figure 4.3. The variance of the results is again
very big, ranging from 1 mJoules up to 10 KJoules. A general observation is that
when the GPU starts from an idle state, it always consumes more energy in all
the applications than if it was warmed-up. We can also observe that the CPU is
in many applications the worst performing device. An increase in the sample size
results to an increase in the consumed Joules, as someone would expect, although
we can observe that for each application from a sample size and above there is
a linear increase in the consumption, which indicates that the device has reached
its maximum computational capacity, however each device reaches that point in a
different sample size for each different application. For example, in Figure 4.3(b)
the CPU reaches that point in sample size 1024, while the iGPU reached that
point in sample size 512. As with the other metrics that we have seen the most
appropriate device for a classification is changing based on the sample size in
almost all the applications. For example, in Figure 4.3(c) for sample size up to 8
the most appropriate device would be the integrated GPU, but for sample size of
16 and above the most appropriate device would be the GPU. We can see another
example in Figure 4.3(b) where the state of the GPU affects a lot the appropriate
device for the task, specifically, for sample size 8 up to 4K the iGPU is the most
energy efficient device, if the GPU in not warmed-up, while the GPU is the most
energy efficient device if is warmed-up.

Chapter 5

Efficiency via Scheduling

As we discussed in section § 4.2.1 the performance characterisation indicates that
there is not a clear ranking between the benchmarked computational devices. As
a consequence of their architectural characteristics, some devices perform better
under different metrics, while these metrics may also deviate significantly among
different applications. As an example, the i7 CPU performs achieves the best
performance on the Iris classification problem, but not on Mnist Deep classification
problem.

It is obvious that our system faves heterogeneity in two different levels: (i)the
different processors and (ii)the diverse applications. With these observations in
mind, we propose a Machine Learning Scheduler which is able to successfully
adapt to different neural network architectures taking into account the state of
our computational devices, in order to maximize the performance or minimize the
energy consumption of our system. In the next sections we are going to describe
how we accomplished that.

Table 5.1: Different Hyperparameters of our Random Forest Classifier
Hyperparameters Description Values

n estimators
Number of trees in
the forest

{5,10,15,20,25,30,35
40,45,50,100,200}

max depth
Maximum depth of
the tree

{3,4,5,6,7,8,9,10}

criterion
Function to measure
the quality of a split

{”entropy”, ”gini”}

min samples leaf

Minimum number
of samples required
to be at a leaf node

{1,2,3,4,5,10,15}

23

24 CHAPTER 5. EFFICIENCY VIA SCHEDULING

5.1 Online Scheduler

Our proposed scheduler, shown in Figure 4.1(b), is based on machine learning
algorithms to make decisions. The motivation to use machine learning is the fact
that the neural network models that may need to execute, usually, have a strong
diversity. Additionally, it is also typical to dynamically add models for which we
do not have any measurements; a static approach does not scale easy, in contrast
with our proposed system that is able to learn and extract knowledge from a
dataset. Our aim is to train a model that would be able to learn and predict the
appropriate device on which a classification model will run. We also want to have
control regarding the target that we want to achieve, i.e., best throughput, best
latency or best energy efficiency.

In order to find a suitable machine learning model for our scheduler, we tried
different approaches, including Linear Regression, SVM, k-Nearest Neighbors,
Random Forest and Feed Forward Neural Network. After careful evaluation, we
found that the Random Forest classifier performs better in terms of accuracy and
performance; in Section 6, we present the evaluation results of the different models
and corresponding tradeoffs.

5.1.1 Data Augmentation & Preparation

One important design decision is the representation of the data that will be used
for the training of the scheduler. As we discuss in Section 4.2.1, the most impor-
tant parameters is the samples size and the state of the GPU; both parameters
affect significantly the selection of the appropriate device, as such they are mainly
used for the training. To remedy the limited dataset that we have (i.e., in terms of
quantity we had only 340 samples) as well as the lack of variety in Machine Learn-
ing models (i.e., we had only the 5 models of section 3.2) we measure 16 more
models with different architectures. With each of these models we tried to capture
how the different parameters of FFNN and CNNs affect the sustained metrics. For
example, a FFNN has two parameters that affect the performance of each device:
(i) the depth of the model and (ii) the size of the layers. CNN has four parameters
that affect the performance of the devices: (1) The number of consecutive VGG
blocks, (2) the size of convolutions, (3) the size of pooling, and (4) the number of
convolutions layers per VGG block. With the models that we used to augment our
data, we capture all the different parameters of these architectures. Overall, we
end up with 1480 samples which we use to train our scheduler. The corresponding
classes for CPU, GPU, and iGPU ended in an imbalanced state, with 30% from
first class, 40% from the second class and 30% from the third class.

For the representation of the feed-forward neural networks, we use two pa-
rameters, one representing the network depth and another representing the total
number of neurons. Lastly, for the representation of the convolutional neural net-
works, we have four additional parameters that represent the number of the VGG
blocks, the convolutions per VGG block, the size of the convolution filter and the

5.1. ONLINE SCHEDULER 25

size of the pooling layer.

Model Accuracy Training Time Classification Time

Model Accuracy Training Time Classification Time

Baseline (Random Selection) 41% n/a 0ms

Linear Regression 77.94% 15 sec 0.7ms

SVM 53.38% 49 min 7sec 0.77ms

k-NN 62.64% 5 sec 1.3ms

Feed Forward Neural Network 52.62% 10 sec 0.77ms

Random Forest 93.22% 26 sec 3.35ms

Decision Tree 92.01% 0.5 sec 0.9ms

Table 5.2: All Machine Learning Models that we tried

5.1.2 Train the Scheduler

It is well known that the Random Forests do not perform pretty well on imbalanced
data, our solution for this issue is two-fold. Firstly, we will not report the Accuracy
of the System for a proof that our scheduler works well, rather we are going
to report F1-score, Precision and Recall. Secondly we did a Stratified k-Fold
splitting in our dataset to ensure that the classifier was trained with balanced
data. More specifically, to train our Random Forest classifier we did a Stratified
k-Fold Nested cross validation. Stratified k-Fold was applied because the classes
of our dataset were imbalanced; we did cross-validation to overcome the known
overestimating problem of classifiers, and we did it in a nested way to find the best
hyperparameters of the classifier.

For the training of all the ML models we used the Scikit-learn programming
framework on top of Python 3.6. As we described in § 2 the nested cross validation
is an iterative process, but we can parallelize the execution of each of the outer
folds as well as we can parallelize the inner folds as well. In our base system each
outer fold takes around 20 seconds to train, but due to the fact that all the jobs
are running in parallel the total training time of the Random Forest is 26 seconds.
The hyperparameters that we tried are shown on Table 5.1.

26 CHAPTER 5. EFFICIENCY VIA SCHEDULING

Chapter 6

Evaluation

In this section we evaluate our scheduler in terms of performance and accuracy,
using different machine learning models, presented in Table 5.1.1. As we can see,
these models have different benefits and tradeoffs that need to be carefully consid-
ered according to the application requirements. For instance, Linear Regression
provides the fastest inference execution times, while also requiring very small time
for the training. However, its accuracy score is not high enough to be used as our
main classifier.

Decision Trees, on the other hand, provide the fastest training time and one of
the fastest inference times too, while maintaining an accuracy of 92.01%. However,
further experiments showed that this algorithm performs poorly on totally unseen
machine learning models (i.e. accuracy on unseen data is 70.2%). Random Forest,
on the other hand, achieves the best accuracy compared to the other models, even
though this comes at a cost of extra time needed to perform the classification. To
get more clear insights on its accuracy though, we further evaluate its F1-score.
As we have already mentioned in Section 2, the F1-score correlates both precision
and recall metrics, which gives a better understanding of how a model performs.
As we can see in Table 6.1, Random Forest performs really well for scheduling
decision, both in terms of precision and recall.

Moreover, Random Forest is very efficient when making predictions for ma-
chine learning models that are not in the training dataset. Figure 6.1 plots the
corresponding predictions for matching maximum performance and best energy
efficiency, as well as the affected performance loss as a result of the wrong predic-
tions. The green bars indicate that the scheduler made a correct prediction and
the red ones indicate the wrong predictions. For example, in Figure 6.1(a) we can
see that the scheduler made a wrong prediction for sample size 8 and the achieved

Table 6.1: Scheduler efficiency when using Random Forest classifier
F1-score Precision Recall

93.51% 93.22% 93.21%

27

28 CHAPTER 6. EVALUATION

(a) GPU is idle (b) GPU is warmed up

(c) GPU is idle (d) GPU is warmed up

Figure 6.1: Throughput achieved and energy consumed with the predictions of our
scheduler

throughput is 43% lower than the ideal throughput, while for sample size 128K the
achieved throughput is only 4% lower. Our scheduler achieved a combined score
of 91% for the two different policies, while the performance loss due to wrong
predictions is less than 5%. As such, we can conclude that it can achieve highly
accurate predictions, even for cases that has not seen before.

Chapter 7

Related Work

A scheduler is one of the fundamental elements of computer science, and they
can be found in many different layers of the software stack, from an operating
system [32] up to clusters scheduling [17], [18]

Acceleration of ML Applications: Many works focus on accelerating the
training and inference of ML Applications, one approach is the sparcification of
DNNs [22], [33], [36] where by decreasing the weights of DNNs up to 90% the
inference performance can be improved significantly. Some other approaches fo-
cus on decreasing inference latency by changing the DNN itself. For instance,
binarized neural networks perform compression and pruning on the models reduce
memory consumption and computations for each inference [16]. Eyeriss proposes
a dataflow that exploits local data reuse and minimizes data movements in the
neural network [13]. All these approaches are orthogonal to our work and can be
adapted as device-specific optimizations.

Another popular approach is the development of specialized hardware such
as NVIDIAs Tensor Cores [5], Google’s Tensor Processing Unit [2], Microsoft’s
specialised hardware [4], Tesla’s autonomous system specialized hardware [7] and
many more [29], [1], [3] in order to accelerate the training and inference of the
DNNs. With all these options available the heterogeneity in the hardware level is
increased, thus approaches like ours are even more needed.

ML Frameworks: There is a plethora of ML Frameworks that exist today
that aim to facilitate the complicated data analysis process and to propose inte-
grated environments on top of standard programming languages. Although they
are designed to do the same thing, developing ML applications, their focuses are
slightly different. For example, Scikit-Learn [35], Pytorch [34] and Keras [14] are
designed keeping in mind the user convenience, making the development of an ML
application as easy as possible for the user. Deepleaning4j [38] and SparkML [21]
are designed in order to handle enormous datasets and distributed training. Ten-
sorflow [9] is designed for large-scale distributed training and inference. Caffe [26] is
designed with expression, speed, and modularity in mind. Our work is orthogonal
to all these Frameworks, and can be added as a feature.

29

30 CHAPTER 7. RELATED WORK

Performance prediction: Many works focus on trying to predict the per-
formance of a GPU. In [12], the authors try to predict the performance of the
GPU, based on the corresponding CPU performance; their system then tries to
select the best device on a set of different applications. Other works focus on het-
erogeneous task partitioning by predicting the performance of the devices, using
compiler-based and neural network approaches accordingly [23, 27]. In [10] they
try to predict the performance of GEMM for heterogeneous devices using machine
learning models such as SVMs and neural networks. Lastly, in [11] they try to
predict the performance of heterogeneous systems using machine learning models
and the hardware specifications of each device. A major different of our approach
with the majority of these works is that they do not support different policies
when scheduling the applications for execution. Moreover, their schedulers are not
adaptive to changes or fluctuations.

Chapter 8

Discussion

In this section we are going to discuss about the limitations of our work, the future
work as well as some thoughts we have regarding the Machine Learning Scheduler.

8.1 Machine Learning Scheduler

Another approach that we could use to find the appropriate device would be to
train a Machine Learning model to predict the achieved Throughput and the con-
sumed Joules for all the different configurations. With this approach we believe
that a Neural Network would be able to predict very accurately the correct device
for the given task.

8.2 Concurrent Workloads

One limitation of our architecture is the lack of optimization capabilities for con-
current running applications. The optimal parallel scheduling of an arbitrary ap-
plication mixture is a highly challenging problem, mainly due to the unknown
interference effects. These effects include but are not limited to: contention for
hardware recourses (e.g. shared caches, I/O interconnects, etc.), software resources,
and false sharing of cache blocks. We believe that our machine learning scheduler
will be able to handle this scenarios. In this work we solely focus on optimizing the
performance of a single application that executes on a set of computing devices.
As part of our future work we plan to experiment with application multiplexing
and investigate the feasibility of a more generic energy-aware scheduler.

31

32 CHAPTER 8. DISCUSSION

Chapter 9

Conclusion

In this work we address the problem of improving the efficiency of machine learning
classification on commodity, off-the-self, heterogeneous architectures. Heteroge-
neous systems can provide substantial performance improvements, but only when
scheduling appropriately. A static approach can lead to suboptimal performance
when the input data rates, system or application changes. To remedy this, we
propose an online adaptive scheduling algorithm, that can (i) respond effectively
to relative performance changes, and (ii) significantly improve the energy efficiency
of machine learning classification inference workloads. Our system is able to ef-
ficiently utilize the computational capacity of its resources on demand, resulting
in predicting correctly the appropriate device with an accuracy of 92.5%, while
consuming up to 10% less energy.

As part of our future work we plan to extend our architecture to support more
convolutional neural networks models, such as dilated convolutions, convolution
padding and more. We also plan to extend our architecture to support execution
of different machine learning inference operations concurrently.

33

34 CHAPTER 9. CONCLUSION

Bibliography

[1] Deep learning on mppa. Available: https://indico.cern.ch/

event/395242/attachments/791742/1085286/DEEP_LEARNING_ON_MPPA_

MANYCORE_PROCESSOR_V2.2.pdf. Accessed on Oct. 2, 2020.

[2] Google tpu system architecture. Available: https://cloud.google.com/

tpu/docs/system-architecture. Accessed on Oct. 2, 2020.

[3] Ibm finds killer app for truenorth neuromorphic
chip. Available: https://www.top500.org/news/

ibm-finds-killer-app-for-truenorth-neuromorphic-chip/. Accessed
on Oct. 2, 2020.

[4] Microsoft unveils project brainwave for real-time ai. Avail-
able: https://www.microsoft.com/en-us/research/blog/

microsoft-unveils-project-brainwave/. Accessed on Oct. 2, 2020.

[5] Nvidia tensor cores. Available: https://www.nvidia.com/en-us/

data-center/tensor-cores/. Accessed on Oct. 2, 2020.

[6] OpenCL. Available: http://www.khronos.org/opencl/. Accessed on Dec.
7, 2016.

[7] Tesla vaunts creation of ‘the best chip in the world’ for self-
driving. Available: https://techcrunch.com/2019/04/22/

tesla-vaunts-creation-of-the-best-chip-in-the-world-for-self-driving/.
Accessed on Oct. 2, 2020.

[8] Intel HD Graphics DirectX Developer’s Guide, 2010.

[9] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Is-
ard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan

35

36 BIBLIOGRAPHY

Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available from tensorflow.org.

[10] S. Agrawal, A. Bansal, and S. Rathor. Prediction of sgemm gpu kernel per-
formance using supervised and unsupervised machine learning techniques. In
2018 9th International Conference on Computing, Communication and Net-
working Technologies (ICCCNT), 2018.

[11] M. Amaris, R. Y. de Camargo, M. Dyab, A. Goldman, and D. Trystram.
A comparison of gpu execution time prediction using machine learning and
analytical modeling. In 2016 IEEE 15th International Symposium on Network
Computing and Applications (NCA), 2016.

[12] I. Baldini, S. J. Fink, and E. Altman. Predicting GPU Performance from
CPU Runs Using Machine Learning. In 26th International Symposium on
Computer Architecture and High Performance Computing, 2014.

[13] Y. Chen, J. Emer, and V. Sze. Eyeriss: A Spatial Architecture for Energy-
Efficient Dataflow for Convolutional Neural Networks. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA),
pages 367–379, 2016.

[14] Francois Chollet et al. Keras, 2015.

[15] Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jürgen
Schmidhuber. Deep big simple neural nets excel on handwritten digit recog-
nition. CoRR, abs/1003.0358, 2010.

[16] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks: Training deep neural net-
works with weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[17] Christina Delimitrou and Christos Kozyrakis. Qos-aware scheduling in het-
erogeneous datacenters with paragon. ACM Trans. Comput. Syst., 31(4),
December 2013.

[18] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and
qos-aware cluster management. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’14, page 127–144, New York, NY, USA, 2014. Association
for Computing Machinery.

[19] A. Dhakal and K. K. Ramakrishnan. Netml: An nfv platform with efficient
support for machine learning applications. In 2019 IEEE Conference on Net-
work Softwarization (NetSoft), pages 396–404, 2019.

[20] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

BIBLIOGRAPHY 37

[21] Xiangrui Meng et al. Mllib: machine learning in apache spark. The Journal
of Machine Learning Research, 17(1), 2016.

[22] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635v5, 2019.

[23] A. E. Helal, W. Feng, C. Jung, and Y. Y. Hanafy. AutoMatch: An auto-
mated framework for relative performance estimation and workload distribu-
tion on heterogeneous HPC systems. In 2017 IEEE International Symposium
on Workload Characterization (IISWC), 2017.

[24] N. Ho and W. Wong. Exploiting half precision arithmetic in nvidia gpus.
In 2017 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–7, 2017.

[25] Muhammad Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin Kim,
Sungryoul Lee, Yung Yi, and KyoungSoo Park. Kargus: a Highly-scalable
Software-based Intrusion Detection System. In Proceedings of the 19th ACM
Conference on Computer and Communications Security, 2012.

[26] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[27] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer. An au-
tomatic input-sensitive approach for heterogeneous task partitioning. In Pro-
ceedings of the 27th International ACM Conference on International Confer-
ence on Supercomputing, ICS, 2013.

[28] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[29] Griffin Lacey, Graham W. Taylor, and Shawki Areibi. Deep learning on fpgas:
Past, present, and future. arXiv preprint arXiv:arXiv:1602.04283, 2016.

[30] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[31] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonza-
lez, and Ion Stoica. Tune: A research platform for distributed model selection
and training. arXiv preprint arXiv:1807.05118, 2018.

[32] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. The linux scheduler: A decade of wasted
cores. In Proceedings of the Eleventh European Conference on Computer Sys-
tems, EuroSys ’16, New York, NY, USA, 2016. Association for Computing
Machinery.

38 BIBLIOGRAPHY

[33] Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, and Ohad Shamir. Prov-
ing the lottery ticket hypothesis: Pruning is all you need. arXiv preprint
arXiv:2002.00585v1, 2020.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[36] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi,
and Mohammad Rastegari. What’s hidden in a randomly weighted neural
network? arXiv preprint arXiv:1911.13299v2, 2020.

[37] Patrice Y. Simard, Dave Steinkraus, and John Platt. Best practices for con-
volutional neural networks applied to visual document analysis. Institute of
Electrical and Electronics Engineers, Inc., August 2003.

[38] Eclipse Deeplearning4j Development Team. ND4J: Fast, Scientific and Nu-
merical Computing for the JVM. 2016.

[39] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P.
Markatos, and Sotiris Ioannidis. Gnort: High Performance Network Intrusion
Detection Using Graphics Processors. In Proceedings of the 11th International
Symposium on Recent Advances in Intrusion Detection, 2008.

[40] Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and Sotiris
Ioannidis. GASPP: A GPU-Accelerated Stateful Packet Processing Frame-
work. In Proceedings of the 2014 USENIX Annual Technical Conference,
2014.

[41] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. MIDeA: A
Multi-Parallel Intrusion Detection Architecture. In Proceedings of the 18th
ACM Conference on Computer and Communications Security, 2011.

