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Abstract

We study some basic aspects of the quantum hydrodynamics of Gaussian wave packets which evolve accord-
ing to the linear Schrodinger equation. In particular we calculate Bohms’ quantum potential and the deviation
between classical and quantum trajectories for the free particle, for a particle moving in linear potential and
a particle trapped by a quadratic potential (harmonic oscillator). In the first two cases all calculations are
performed analytically, but in the third case the deviation is computed numerically. The calculations imply
some qualitative relation between the spectrum of the Schrodinger equation and the behaviour of the de-
viation, which must be further investigated for more complicated potentials like, for example, the quartic
oscillator.
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EuxapioTieg

®a 10l va guyoploTHom Tov emPAETOVTA TG dtoTpiPnig pov, K. I'edpyro N. Makpdk, ylo. Tnv EUTIGTOGHVN
7oV pov £de1&e avabEéTovTog LoV avTh TN SOVAELL, TV Kabodnynon Kot Tig cVUPOLAES TOL Kb’ OAN T
S1apKELD EKTEPAIMONC TNG KOl KLPIME TNV EVKALPIN TOV LoV £6M0E VO 0GY0AN0d e Eva dtaitepa evOlapépov
0épa. Ol emiong Vo ELYOPIGTAC® TNV OIKOYEVELL OV KoL TNV GOVTPOPO OV, TOV UE GTAPENY e KAbE
TPOTO 6€ OAN TN SLAPKELN TV GTOVODV LLOV.
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MepiAnwn

Meletde kamoto facikd ototyeio KPOvTIKNG VOPOUNYOVIKIG KULOTOTAKET®V Gauss mov eEeAlcovVTal COLEOVA
pe v ypoppiky eéicwon Schrodinger. [To ovykekpuéva, vroroyifovpe 1o KPavtikd dvvapkd Bohm kot
™V amoKAon HETAED KAOGGIKMV KOl KBOVTIKMY TPOYL®V Y1 T0 EAe10pO GoUATIO0, COUATION TOL KIVEITOL
O€ YPOUUIKO SUVOUIKO Kol COUOTION0 TOYIOEVUEVO GO TETPUYDVIKO SUVOULKO (OPHOVIKOS THAAVTOTNG). XTIG
TPADTES OVO TEPMTMGELS OAOL 01 VTOAOYIOLOL EYOVV YIVEL AVOAVTIKA, OU®G GTNV TPiTN TEPITTO®ON 1| ATOKAION
gyel voloyiotetl apBunTikd. O1vroroyiopol avToi LITOVOOHV TOLOTIKO CLCYETIGUO OVALESO OTO PAGLLA TG
e&lowong Schrodinger Kot TV GLUTEPIPOPA TNG ATOKAIONG TOV TPOYLOV, TO 0T0l0 TPEMEL va. diepeuvn el
TEPALTEP® Y10 TTLO TOAOTAOKA SVVALIKE, TOPAdEIYIATOC YApLV TETAPTNG TAENG (AVOPHOVIKOG TOAOVTOTNG).

Ageaig Kheword. kPovrikn vdpodvvopkn, eElodoels Bohm, tpoyiég Bohm, yeopetpikn ontikn,
petacynuatiopdg Wigner, kavotikéc, e€icwon Burger’s, kfavtikd duvapuko, eEicwon Schrodinger
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Quantum mechanics & quantum
hydrodynamics



CHAPTER 1

Introduction

We consider the Cauchy problem for the time-dependent one-dimensional Schrodinger equation with fast
temporal and spatial scales, and highly oscillatory initial data

z‘satw:c,t):(—f82+V<x>)w<x,t>, PER, 150, ¢(m0)=df) (LD

where 7 is the imaginary unit, ¢ is the semiclassical parameter (scaled Planck constant), V() is its potential
energy, and ¢° is the wave function (more precisely, in this context, the “position-space wave function”). The
operator (—%&% + V(m)) is the quantization of the standard Hamiltonian function H(x, k) = % +V(z),
that is the total energy, which equals kinetic energy plus potential energy, of the corresponding classical
particle. The parameter € does not necessarily coincide with the Planck’s constant, but it is a small parameter
encoding also the space-time scales of the physical problem and the typical wave length of oscillations of
the initial data. This problem is of fundamental importance in quantum mechanics [Gi], and classical wave
propagation, for example, in long range paraxial wave propagation in inhomogeneous media [Tap].

The initial data of interest usually are oscillatory or oscillatory-localized, namely, either of WKB type
[BLP]

Yg(x) = Ag(x)eé%(x) , Ap,Pg real functions (1.2)

or of Gaussian form
7
5 (r) = Nexp <—a0(x — x0)2 + gpo(a: — :zo)) , a0>0,p €R. (1.3)

We are interested in the high-frequency solution of (), that is the expansion of ¢ in the regime
€ < 1, which is referred to as the the semi-classical limit. The limit case where we consider that ¢ — 0 will
be referred to as the the classical limit (or the geometrical-optics solution). The mode of transition from
the semiclassical regime to the classical limit is a very delicate problem because the Schrodinger equation
propagates oscillations of wave lengths € which inhibit ¢)* from converging strongly in a suitable sense, and
it also depends crucially on the structure of the initial data.
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1.1 WKB method, geometrical optics and caustics

In the case of WKB initial data (I2), an approximation is constructed by the WKB method (or “geometrical
optics” method) which is based on the ansatz

VR (x, 1) ~ Az, t)es 2@ (1.4)
It turns out that the phase satisfies the Hamilton-Jacobi equation (see Appendix [A)

at@+%(ax<1>)2+vzo, (1.5)
and the amplitude satisfies the transport equation

A% + 0, (A%0,®) =0, (1.6)

with initial data A(z,0) = Ag(x) , ®(z,0) = Pp(x), respectively.

This is a very powerful method not only to draw a qualitative picture of how the energy propagates
along the rays, but also to evaluate the wave fields quantitatively. However, WKB approximation fails
either on caustics and focal points where the amplitude A(z,t) becomes infinite, or in shadow regions (i.e.
regions devoid of rays) where it yields zero fields, and the phase function ®(x,t) becomes, in general,
multivalued. Formation of caustics is a typical situation in quantum mechanics [BM], [Haa], optics [BU],
underwater acoustics [TC] and seismology [Ce], as a result of multiple path propagation. Assuming that
the multivalued phase function is known, uniform asymptotic formulas for the wave field near the caustics
have been constructed using boundary layer techniques [BAKI], [BB] as well as phase space techniques, and
notably Lagrangian integrals [Lu], [Kra], [DUI], [GS], [KO], and the method of canonical operator [ME].
A relatively new phase-space technique for studying oscillatory solutions of dispersive wave equations and
the homogenization of energy density 1°(x,t) =| ¥°(x,t) |?, is based on the use of the Wigner transform
(see, e.g., [GM], [GMMP]). A construction of the Wigner function and a detailed study of its behaviour near
simple caustics has been presented in [FM].

1.2 Wavepackets and Gaussian beams

A different asymptotic method, which, in principle, allows to avoid caustic singularities is the Gaussian beam
method which is based on the propagation of certain Gaussian wave packets along the bicharacteristics of
the Hamiltonian system associated with the solution of the Hamilton-Jacobi equation. The Gaussian wave
packets are approximate solutions to the Schrodinger equation with suitably defined harmonic potentials
and initial data (I=3). The most important feature of the method is that the phase of the asymptotic ansatz
is complex, thus providing the flexibility to avoid the caustics living in real physical space-time. Efficient
solutions of the semiclassical Schrédinger equation have been constructed either by summation of Gaussian
beams, a method or by the wavepacket transform. Both methods start from the decomposition of general
initial data into the (discrete or integral) sum of Gaussian wave packets (see, e.g., [BB], [Ral],[KKL]], [NSS])

1.3 Quantum hydrodynamics, de Broglie-Bohm theory and pilot waves

An astonishing analogy between a time-dependent quantum particles and a “quantum” fluid system which is
pseudo-barotropic, irrotational and inviscid, was established by Madelung [Mad] in 1927, a year after Erwin
Schrodinger published his celebrated equation. He found that the velocity potential satisfies the Hamilton-
Jacobi type equation ([[.3) with an additional term, the quantum potential, and he interpreted this potential
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as an “internal” force of the “quantum” fluid. In fact, a pressure-like term can be extracted from the Bohm
potential, and it has been shown that the existence of a pressure gradient force in the fluid description does
not violate Ehrenfest’s theorem since its expectation value is zero. The Madelung equations describe a
compressible fluid, and compressibility yields a linkage between hydrodynamic and thermodynamic effects.
The work done by the pressure gradient force to expand the flow transforms internal thermal microscopic
kinetic energy to the macroscopic hydrodynamic kinetic energy of the flow. Such thermodynamic aspects of
Madelung’s theory in relation to emergent quantum mechanics have been the subject of intensive research
in recent years. See, e.g., [Grosl], [Gros2] [H(].

In 1952, Bohm [Boh] in the framework of his pioneering investigations of de Broglie’s pilot wave theory
[Bro], rediscovered Madelung’s equations. According to pilot wave theory quantum particles are borne
along on some type of wave. The de Broglie-Bohm theory describes particles moving under the guidance of
Schrodinger ’s wave function. In de Broglie’s original formulation, the particle dynamics is given by a first-
order differential equation. In Bohm’s reformulation, it is given by Newton’s law of motion with an extra
potential that depends on the quantum potential—together with a constraint on the possible velocities. Thus
quantum hydrodynamic equations provided the mathematical framework for pilot wave theory. According
to pilot-wave theory, the particles have definite trajectories, but because of the pilot wave’s influence, they
still exhibit wavelike statistics. In the past decade, Bush [Bul], [Bu2], [Bu3|] has considered the pilot-wave
theory in relation to the first hydrodynamic analogs of single-particle quantum systems that have emerged
from exciting experiments by Couder et al [CPFB] that show quantum-like behaviour of liquid droplets
bouncing and walking on the free surface of a fluid.

On the mathematical side, Bohmian mechanics, an alternative term for quantum hydrodynamics, and es-
pecially its relation to classical mechanics- the so called classical limit- has been investigated by Markowich
and his collaborators [MPS1], [MPS2], [FKMS]. These authors invented novel functional-analytic tools,
namely the Bohmian measures, to characterise the weak convergence of quantum particle trajectories to their
classical counterparts. In a related direction, Diirr & Romer [DR]] have shown convergence in probability
when Schrédinger ’s wave function is approximated by a Gaussian wavepacket.

1.4 Scope of the thesis

In this work we aim to get, through explicit computations in simple cases, some insight into the quantum
potential and the Bohmian trajectories, assuming that the evolution of the Schrodinger wavefunction is rea-
sonably approximated by a Gaussian wavepacket. In this respect the title of this work could have been
“Remarks on the quantum hydrodynamics of Gaussian wavepackets”.

In particular, we consider three different cases for the potential V', namely, the zero, the linear and the
quadratic potential, and we compute the deviation between the Bohmian and the classical trajectories. This
deviation is governed by a second order ordinary differential equation with time-dependent coefficients. In
all cases we are able to compute the quantum potential in explicit form. However, the deviation of trajectories
is computed explicitly only for the zero and linear potential, and it is found that it increases with time. In the
case of quadratic potential the coefficient of the governing ODE is periodic, and the deviation is computed
numerically. In this case we are not able to check analytically if the deviation remains bounded for all
times, because we lack necessary conditions for the boundedness of the solution of the corresponding ODE.
Nevertheless, numerical computations imply bounded oscillatory deviation between Bohmian and classical
trajectories. We conjecture that the observed qualitative behaviour stems from the fact that the spectrum of
the Schrodinger equation for the quadratic potential is discrete, while in the other two cases is continuous.

The structure of the work is as follows. In Chapter 2 we present briefly the wave packet approximation of
the evolving wave function. In Chapter 3 we derive the equations of quantum hydrodynamics and Bohmian
trajectories. In Chapter 4 we present with details the computations of the quantum potential and the deviation
between classical and Bohmian trajectories for the aforementioned potentials. In the last Chapter 5 we
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attempt a discussion of the results and a description of open questions that should be addressed for the
understanding the quantum hydrodynamics of Gaussian beams evolving in more general potentials, as well
as the hydrodynamics of other beam-like solutions of the Schrodinger equation.



CHAPTER 2

Quantum Hydrodynamics

2.1 Bohm equations and quantum potential

Following Madelung [Mad] we decompose the Schrodinger equation into two real equations, by writing the

complex-valued time-dependent wave function in the polar form
UF (2, t) = R (a, 1)e=5° ),

where
Re(z,t) = |[¢°(x,t)|,

is the amplitude, and
S¢(x,t) = eargy)®(z,t) = elm(Iny°(x,t)) ,

is the phase of the wavefunction, both depending on ¢.

Substituting (21) into the Schrodinger equation (I-T) we obtain

; 2 1 ,
i€ (OR® + ZROS) = — [ OIR = RY(0,5°)" + £ (RGS" + 20,5°0,R%) | + VR®,
and separating the last equation into its real and imaginary parts we get the following equations

1 2
REDST = JRE(S°)° - %agRE + VR,

and )
ORE = —E(Rﬁagsg +20,5°0,R°) |

respectively. Assuming that R # 0 we obtain the equations
1
US* +5(0:87)" +V +Q =0,
O (R)* + 0, - ((R)*0,57) = 0,

5

2.1)

2.2)

(2.3)

(2.4)

(2.5)
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where we have defined the quantum potential Q¢ as

e2 92R®

g __
@ = 2 Re

(2.6)

The system (24), (23) is usually referred to as the Bohm equations or the equations of quantum hydrody-
namics, and they form the basis of the so called Bohmian mechanics. By the way of their derivation, these
equations are equivalent to the Schrodinger equation. As such, they have been used as the basis for various
alternative approaches in quantum mechanics, as hidden variable theory [Boh] and de Broglie’s pilot wave
theory [Hol], [DT]], but also for computational purposes, e.g. in quantum chemistry [[Wy].

In addition to the comments and the remarks we made in Section I=3 concerning the physical foundations
of the quantum potential, it is interesting to observe, that from its definition (28), it follows that the amplitude
R® satisfies the equation

82 aQRa

2 922
The character of this non-linear equation may change from elliptic to hyperbolic since, in general, the quan-
tum potential changes sign, and, at least qualitatively, the behaviour of this equation can be related to the
properties of the geometrical optics’ rays and the behaviour of the WKB solution. See, e.g., [Carl], [Car2],
[Car3] for certain mathematical aspects of this equation and their relations to the role of quantum potential
in emergent quantum mechanics.

Since the quantum potential is expressed through the amplitude R®, it turns out that it admits different
approximations for various approximations of the wave function. It is instructive to observe that for the
WKB solution ([4) the quantum potential is

+ Q°(x,t)R° =0, (2.7)

£ 924

Qat) = —5 =5

(2.8)

where A, the solution of the transport equation (ICH), is independent of the semiclassical parameter &.
Therefore, whenever A is bounded, ()¢, at least formally, disappears as ¢ — 0. But, in general, this is
not true when there are caustics where A becomes infinite (see Appendix ). In this situation there is a
boundary layer near the caustic, where (2Z8) does not converge to zero, and A, ® are not correct solutions to
Bohm equations [Karn].

Concerning the correct choice of the initial data for the Bohm equations, from the WKB initial data for
(I=2) we obtain the initial data

Ra(x’()) - AO(w) ) Sa(x7 O) - q)O(x> ) (2.9)
while from the Gaussian data (I=3) we obtain the initial data
R¥(z,0) = —ap(x — 20)?, S(x,0) = po(z — x9) , (2.10)

which are independent of €. Although the initial data are independent of ¢, the solutions of Bohm equations
do depend on ¢ because of the quantum potential. Of course, e- dependent initial data may also be devised
either for certain physical applications or technical mathematical reasons.
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2.2 Hydrodynamic variables and the role of quantum potential
We recall now the Euler equations

Op + 0z(pu) =0 (conservation of mass) , (2.11)

p(Oru + udyu) = —0;I1 + pb  (conservation of momentum) , (2.12)

where p is the density, u is the Eulerian velocity, II is the pressure and b is the acceleration due to body
forces.
We consider now a fluid with density
p° = (R%)?, (2.13)

and Eulerian velocity
2f = 0,57 . (2.14)

For brevity, we refer to this fluid as the quantum fluid, but one should be very careful to avoid confusion with
real fluids where quantum effects are important for the flow. Then, the transport equation (273) is written in
the form

O + 0x(p°2°) = 0. (2.15)

By the identification
p=p", u=2z", (2.16)

we see that equation (Z13) coincides with the continuity equation (EZIT).
Furthermore, by differentiating (24) with respect to x, and using the definition (214) of the fluid ve-
locity, we derive the following inhomogeneous Burgers equation for the velocity
dz€ € 3 € 1> 1> €
yTe Oz + 250,25 = =0, (Q°+ V), 25:=0,5°. (2.17)
We again use the identification (218) and we compare (ZT7) with (212). It turns out that the pressure p°
of the quantum fluid must satisfy

O 1I° = p°0,Q° (2.18)
and b° = _{9;7575‘/ . We rewrite the quantum potential (28) in the form
€ e (1 £\2 2 3
@ = - (5@ mpF)? + 3217 ) (2.19)

in terms of the density. We differentiate the last equation with respect to x, and compare the resulting equation
with (ZI8). It follows that the quantum pressure depends only on the density

2
I = —%paag Inp* (2.20)

that is the “quantum” fluid is pseudo-barotropic, because the pressure is not a function of the density only,
but it also depends on the derivatives of the pressure.

The above explained analogy of quantum mechanics hydrodynamics (hence the term quantum hydrody-
namics) was introduced first by Madelung [Mad], and its consequences to quantum theory has been exploited
by de Broglie (pilot wave theory) [Bra] and Bohm (“hidden variables” interpretation)[Boh]. See also [DT]
for a detailed mathematical approach to Bohmian mechanics and quantum potentials, and [Wy]] for an expo-
sition of quantum hydrodynamics from the point of view of quantum chemistry.
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2.3 Bohm trajectories

The Bohmian trajectories are defined as the characteristics of the equation

d €
dit = 92° +2°0,2° = —0,(V + Q°), 25 =0,5". (2.21)

They satisfy the system

dz® (t;q,
drar) — pF(tiq,p)

dtan) — _ g, (V + Q%) (2°(t:q,p), 1) | (2.22)

2%(059) =¢q,  p°(0;q) = 2°(¢,0) = (5°(¢,0))" .

In de Broglie-Bohm theory the quantum particle moves along these trajectories driven by the pilot wave
which is described by the Schrodinger wave function.

When the ray field is smooth and there are no caustics, it has been shown that the Bohm trajectories exist
globally in time ([[T'T]], [BDGPZ], [B¢]), they converge to the rays as € — 0, and the solution of the Burgers
equation (E2ZZI1) converges to the derivative of the solution of the Hamilton-Jacobi equation (I=3) ([FKMS],
[MPS1], [MPS2]; see also [Boh] for the physical content of the convergence). However, such convergence
results cannot be proved after caustic formation, and as it has been shown by specific examples that even the
Bohmian trajectories may be not well defined [Karn].



CHAPTER 3

Wave-packet approximation of the wavefunction

In this chapter we briefly present the Gaussian wave packet approximation of the Schrédinger wavefunction.
We restrict ourselves in the one dimensional case, and we closely follow the exposition by Tannor [[Tan].

3.1 Construction of the wavepacket
We assume that the initial wave packet
Y (x,0) = Yg(z) = Nexp(—ao(:c — x0)* + épo(x - xo)> , (3.1
which is localized at the phase-space point (zg, pg), evolves to the Gaussian wave packet
VE(x,t) = Nexp( — gz —2)* + épt(x —x) + £7t> , (3.2)
which is localized near the phase-space point (x4, p;). The functions oy, ¢, pg, v Will be defined so that

¢ (x, t) satisfies the Schrodinger equation in a certain approximation.
We calculate agwf and 0%, and we substitute them into the Schrodinger equation. We have that

i 1

O2F = (4ol (z — x4)% — 4gatpt($ — 1) — 5—2]9? — 204 0", (3.3)

and .

. . 1. . .
O = Y (—cu(x — 24) + 204 (z — 2) + g(pt(l’ —xt) — pety + ) - (3.4)
Moreover, we approximate V' (x) near x; by Taylor’s formula
1

Vi(z) = V(xy) + V'(z)(x — ) + §V”(:L‘ — :L't)2 + O((:E — a:t)?’) . (3.5)

By substituting (8.3), (B.4) and (8.3) into Schrédinger equation ([L.1), and by equating powers of (x—axy)
we get the following equations:
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e By equating coefficients of (z — )%
1
Vv, — —24 2 7V// ]
o e + 9% (2¢)

For later convenience we put oy = —Q—At, and we get the Riccati equation
€

Ay + A2 +V"(x) =0, (3.6)
which must satisfy the initial data Ay = 2.
e By equating coefficients of (x — z;):
2iecy (iy — py) — pr = V' () . (3.7
The last equation is automatically satisfied by choosing x;, p; such that

j"t =Pt
(3.8)
pt = _vl(xt) )

which is the Hamiltonian system ([A12) defining a classical trajectory x; = x(¢; xo, po), pt = k(t; zo, po).
The initial point of the trajectory must be the base point (xg, po) of the initial wavepacket in order for
(B2) to satisfy at t = 0 the initial data (81). Therefore, the wave packet moves along the trajectory
emanating at the point (z = o, p = po) of phase space.

Remark. Itisimportant to note that this trajectory coincides with the bicharacteristic of the Hamilton-
Jacobi equation ([.9) with initial data ®(x,0) = po(z — x0), see eq (2.10).

e By equating coefficients of (z — x;)°:
. 2 1€
Tt = 'Ccl — &0 = Ecl + EAt s (39)

1
where £, = =42 — V() is the classical Lagrangian of the system.
oL grang y

By integrating (B.9) we get
ot
w=5)+5 [ Ad, (3.10)
0

S(t) = /Ot (;xf _ V(xt)> it |

is the classical action integral along the trajectory z;. Note that the action S is the solution (AT9) of the
Hamilton-Jacobi equation ([A_T7).

. .. . o C .
Finally, it is convenient to rescale ag to 2—0 which implies Ay = icg. Then ¢° and 1§ assume the form
€

where

Y (z,t) = Nexp <2€At(:v —x)? + gpt(:v —xy) + 5%> , (3.11)

and
4 (,0) = ¥f(x) = Nexp (;EAo(x —a0)” + Zpo(e - xo>> , (3.12)

respectively.
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3.2 The solution of Riccati equation
In order to solve the Riccati equation (B.€),

Ay + A? +V"x) =0, Ap=iag,

we use the representation A; = Z where the functions b and ¢ will be chosen in an appropriate way. We
substitute this ansatz in (B.) and we get the equation

be—be+ b2+ V"2 =0.

The last equation is automatically satisfied by choosing b, ¢ so that

b=-V"c,
(3.13)
¢=b.
Thus, we derive the solution of the Riccati equation by solving the system
é+V"e=0,c¢0)=1,
(3.14)

¢=b, b(0) = ¢(0) = iag .

Note that this system is the variational (stability) system corresponding to the Hamiltonian system (IZE'EZ)

'In general the variational equations are coupled. In the simple case we study, they are uncoupled since we consider the standard
separable Hamiltonian.



Part 11

Bohmian mechanics in the wave packet
approximation
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CHAPTER 4

Quantum potential and Bohmian trajectories

In this chapter we compute the quantum potential and the corresponding Bohmian trajectories for simple
external potentials V, assuming that the wave function is approximated by the Gaussian wave packet de-
scribed in previous chapters. More precisely, in order to gain some physical insight into the trajectories we
compute the deviation between the Bohmian trajectories and the classical trajectories, the later being the rays
of geometrical optics.It may be considered that this deviation describes the influence of quantum effects to
the energy propagation, and, in a sense, is not necessarily ignorable for small .

The amplitude of the wave function (B.11]) is

R®(z,t) = [¢°] = Nexp (Re <2€At(x — xt)Q + gpt(l' —xy) + E%))

1 1
= Nexp (—%(ImAt)(a: — )% — Elm%> ;

which, by using (B.10), is written in the form

1 t
R® = Nexp (—1(ImAt)(x —x)% — / ReAtdt> . 4.1)
2e 2 0
The phase of the wavefunction is given by (B.11]) and (2.3),
1 d
§°(x,t) = i(ReAt)(l‘ —20)? + pelw — ) + a(Re%) . (4.2)

and therefore the Eulerian velocity z° is
2°(z,t) = 0,58 (z,t) = (ReAs)(x — x¢) + py - (4.3)

As it is expected the velocity z° is equal to the classical velocity p; along the classical trajectory. It is
important to note that for ¢ = 0, we have ReAq = 0, and therefore by (2.22), for any ¢, we have

po(0;¢) =2z°(q,0) =po . (4.4)
In order to calculate Q¢ given by (R.6), we need to calculate 9?Re. We have that
xr

1

t
81,R5 = Rgax <—(ImAt)(x — l't)z — 1/ ReAtdt>
2e 2 Jo

13
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—RE (—i(ImAt)(a: - xt)> , @.5)
and

O2R® — O,R° < é(ImAt)(x - :m) 1R, (—i(ImAt)(a: _ m)

( ——(ImAy)(z — xt)>2 — iImAt>
-

( (ImA;)?(z — xt)2> — iImAt> . (4.6)

Thus we obtain

e EOR . (11 9 o) 1

1 1
—E(ImAt)Q(x —z)? + i(ImAt)s
By defining
=ImA;, (4.7)
we get
€ 1 2 1
QF = — Wi (x — x4)% + FEWt - (4.8)

It turns out that, in the wave packet approximation of the wave function, the quantum potential is harmonic
with time dependent frequency w;. The frequency is expressed through the solution of the Riccati equation
(B.6), and the bottom of the quantum potential is moving along the classical trajectory.

Substituting (4.§) into (2.22), we get the following system for the Bohmian trajectories

TF = pj
(4.9)
p; = =V (xf) + wi(@f — ) .
Combining the classical Hamiltonian system (B.§) with (4.9) we get
l‘%fﬂ?t :pgipta
(4.10)
p; —pr = — (V'(x§) = V'(2r)) + wi(z —2¢) -
Now by using Taylor’s formula we have
V(@) = V() = V(@) (2] — 20) + O ((af — 20)%)
and we approximate the second equation of (f.10) by

B; — b= (wf — V" (2)) (xf — 24) - (4.11)

We now introduce the new variables

yi = —x, & =pj— Dt (4.12)
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representing the deviation between classical and Bohmian trajectories. Obviously they satisfy the linear
system
v =&
(4.13)
& = (%2 - V”(iﬂt)) Y -
Assuming that x§f = zg fort = 0, by (#.4) and the remark after (B.§), the initial data of the deviation must
be specified as
Yo=25—20, £ =05 —Po=0. (4.14)
Thus, y; is found form the solution of the linear initial value problem

ji = (W = V"(@)) yi v =15 —w0, 95=0. (4.15)
Therefore, for the computation of the deviation between the trajectories, we need to compute only the clas-
sical trajectories and the solution of the Ricatti equation. It also turns out that, in general, the Bohmian
trajectory starting at g, i.e. y; = 0, coincides with the classical trajectory starting at the same point, assum-
ing enough regularity of the coefficient (wf — V" (z)).

In the sequel we compute the quantum potential ¢, the Eulerian velocity z° and, most informative, the
deviation y;, in three basic cases, namely for a free particle, a particle moving in linear external potential
and the harmonic oscillator.

4.1 Example 1: The free particle

In this case, V' = 0, all the computations can be performed analytically, and we recover the results already
derived by Pan[Pan].
The solution of the Hamiltonian system

Ty = pt, l“t(o) = 2o ,

(4.16)
pe=0, p(0) =po,
is elementary, and it is given by
xy = pot + xo ,
(4.17)
bt = Dpo -

The solution of the Riccati equation is also elementary since V" = 0, and the system for b, ¢ simplifies to

¢=0,¢c0)=1,
(4.18)
¢ =05, b(0) = ¢(0) = iayp .
The solution of the previous system is given by
c(t) =iapt +1,
(4.19)
b(t) =iao ,
and the solution of the Riccati equation is
A(ry = 20 oo <0 190 (4.20)

= - = + .
c(t) iagt+1 1+adt? 14 adt?



16 CHAPTER 4. QUANTUM POTENTIAL AND BOHMIAN TRAJECTORIES

Then by (B.1)) we have

e 1, L 9
S(t) = 5%t — Vixy) | dt = §p0dt = ipot .
0 0

Also . .
o(t
/ Adt = / @dt = In(c()) ,
0 o c(t)
and by (.10)
ie [ 1, e
= S(t) + & / Audt = 202t + Einiagt + 1) . @21)
2 /o 2 2
By (#.7) and (4.20), the frequency is
Qg
=Im4d, = —— . 4.22
Wi = 1mAy 11 a%tQ ( )
Then, by (#.8) and (4.17) the quantum potential is given by
1 a? € Qg
15 0 2
=———————(x—pot —x0) + -5 . 4.23
@ 2(1+agt2)2( pot = 2o) 2 (1 + a2t2) (423)
By (#.3) and using (#.20) and (#.17) the Eulerian velocity is
g a g a%t
By the change of variable 7 = «at, the ODE in (§.19) is rewritten as follows
e = ;ya . (4.25)
(147227
The previous equation has the general solution
y: =c1V1+ 724 o/ 1+ 72arctan T .
Returning to initial variable ¢ we get
y; = c1y/ 1+ adt? + c24/1 + adt? arctan (agt) , (4.26)
and
) voost + ot arctan (oot) + ! (4.27)
=——— | = e —_ | . .
T irae P\t ae T Tt ad

By the initial data we obtain ¢; = yg and co = 0. Thus the solution of #@.19) is

y; = yg\/1+ adt?. (4.28)

We observe that the deviation between Bohmian and classical trajectories increase monotonically, and it
is almost linear for large time. The typical variation of the deviation is shown in Figure 4, in the case ag = 2,
for small time (apt < 1) and for large time (agt > 1).
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Bohmian Trajectories Diversion From Classical Trajectories

Bohmian Trajectories Diversion From Classical Trajectories

14x10°
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o 00 200 00 400 500

(a) Small time (b) Large time

Figure. 4.1: Deviation of trajectories for the free particle

4.2 Example 2: Linear Potential

In this case, we consider V' = «ax , a # 0. This problem is of interest, for example,when the quantum
particle moves in a constant electric field.

The solution of the Hamiltonian system

I =pi, 2(0) =0,
(4.29)
P = —a, pe(0) =po,

is

1
Ty = —iatQ + pot + 2o,
(4.30)

pt = —at +po -

Moreover, since again we have u(t) = V”(z;) = 0, as in the case of the free particle, the solution of
the Riccati equation is given again by (#.20). This means that the spreading of the Gaussian wave packet,
and also the frequency wy, are the same in both cases. Therefore it turns out that the deviation between the
Bohmian and classical trajectories is the same as for the free particle, although the tractories themselves are
quite different.

Also, the geometric phase S(t) and thus ¢, as well as the quantum potential and the Eulerian velocity,
are not the same. This is because they are influenced by the dependence of the classical trajectory on time,
which is now quadratic, in contrary to the case of free particle where is linear.
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We have
b1
Sit) = / (2553 — V(xt)> dt
0
‘(1 2 L
= / 5(—at+p0) —a(—iat + pot + x0) | dt
0
t 2
— (a2t2 — 2apot + ?0 — a:v()) dt
0
243 2
= a——apotz—i— @—aaro t, (4.31)
3 2
and 243 2
. .
= O‘T —apot® + (1;) - axg) t4 gln(iaot 1), (4.32)
The quantum potential is
1 a? 1 5 o
€ 0 2 2 0
=" —at® — pot — - 4.33

and the Eulerian velocity is

adt 1 5
(z+ —at® — pot — z9) — at + pg . (4.34)

£ _ 3 J—
z (ZL’,t) —ams (l‘,t) - (1+Oé(2)t2) 92

Remark. The quantum potential (4.33) and the velocity (#.24) can be derived independently from the exact
wave function constructed for the linear potential in [DaZh] by the versatile operational technique developed
in [DaOtToVa]. Therefore the wave packet approximation provides exact solutions in this case.
In the simple case of the free particle, the exact wave function can be constructed in closed form, by using
Fourier transform and analytic integration of the Gaussian integral arising in the inversion of the transform.
The aforementioned operational techniques, are essentially selected to handle efficiently the complica-
tions associated to the continuous spectrum of the Schrédinger equation when V =0or V = az.

4.3 Example 3: Quadratic Potential: Harmonic Oscillator

. . 1 . ) .
In this case, we consider V = §w2x2 , w > 0. This problem is of interest, for example, when the quantum

particle moves in a harmonic trap.
The solution of the Hamiltonian system

@y = pi, (0) =20,
(4.35)
pt = _w2$t7 pt(o) = Do
is
xy = g cos(wt) + Po sin(wt) ,
W (4.36)
pt = po cos(wt) — wxg sin(wt) .
For the harmonic oscillator, in contrary to the cases with zero or linear potential where the trajectories were
open, the trajectories are elliptical and periodic.
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We have u(t) = V" (x;) = w?, and the functions b, c satisfy the system

é+w?le=0,c0)=1,

The solution of the system is elementary and we get

e(t) = cos(wt) + %" sin(wt) |

b(t) = i cos(wt) — wsin(wt) .
Thus, the solution of the Riccati equation is

i cos(wt) — wsin(wt)

A(t) =

cos(wt) + a0 sin(wt)
w

It is also simple to compute the phases
L1 .2 PtZt — Poxo
S(t) = / <:1ct — V(xt)> dt = ————,
o \2 2

0= PO (o) + 2 inr))
w

Moreover, by writing A; in the form

2
a .
w? <0 - w) sin(wt) cos(wt) )
s = w , wayg

! w? cos?(wt) + o sin®(wt) w? cos?(wt) + af sin?(wt) ’

we get the frequency
2
Wt = IIIlAt = w0

w? cos?(wt) + a sin?(wt) |
By (#.§) and (4.36) we obtain the quantum potential

wta?d

w2 cos?(wt) + a2 sin?(wt)

Q=

5 (:c - (xg cos(wt) + % sin(wt)))2

(/.)2040

€
w? cos?(wt) + af sin®(wt)

Finally, by (#.3), (#.42) and (#.36) the velocity is given by

2
w? (aO — w) sin(wt) cos(wt)
zf = 0,5 = w

w? cos?(wt) + af sin?(wt)

+po cos(wt) — wxg sin(wt) .

(;,3 — (wo cos(wt) + % sin(wﬂ))
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(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)
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Now, in order to write the equation for the deviation of the trajectories in an appropriate standard form,

we use the identities
1 + cos(2wt)

2
t) =
cos”(wt) 5 ,
1-— 2wt
sin? (wt) = 1= cos(2wt) ,
2
and we rewrite w; in the form
2w?ay
= . 4.46
YT W2+ o) + (w? — af) cos(2wt) (446)
Thus, the frequency is periodic function with period 7 /w. Then, equation (§.13) is given by
4 2.2
ijf = w? © %0 T (4.47)
((w? 4+ ad) + (w? — ad) cos(2wt))

We rescale the time variable
T =wt,

and we introduce the parameters

w?

o= A=oc+1, pu=c—-1.

"9
@0
Note that the parameter o measures the relative scale between the Gaussian width of the initial wave packet
and the width of the harmonic well defined by the quadratic potential.

Then, the deviation satisfies the equation
4o

yo = F(r)ys, F(r) = o ucos(ZT))2 —-1. (4.48)

This is Hill s ODE since F(7 + m) = F(7) is periodic. In our case we have also F/(—7) = F(7).

Unfortunately, existing sufficient conditions for the boundedness of the solution do not apply for this
particular coefficient F', and we are not aware of any necessary condition to guarantee bounded solutions
[Bel], [MaWi]. Also, certain attempts to approximate (4.48) by Mathieu’s equation, by using either Fourier
series expansions of F', or expansions with respect to the parameter o, have failed and all led to physically
unreasonable results. Nevertheless, numerical experiments of (#.48) by a Python code [Kats], for a wide
range of values for the parameter o show that the deviation between Bohmian and classical trajectories
remains bounded for all time.
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Figure. 4.2: Deviation of trajectories for the harmonic oscillator



CHAPTER D

Discussion of the results

We have studied the quantum hydrodynamics of Gaussian wave packets travelling under the Schrodinger
equation. We have constructed a process to identify the exact form of the wave packet depending on the
potential that influences it and calculate the quantum potential it creates, along with the way its Bohmian
trajectories diverge from its classical. We followed that process for the free particle case, the linear potential
case and the quadratic potential case. In the free particle case, we saw that despite the absence of classical
potential, quantum potential is produced and the particle diverges to infinity. It was also shown that the free
particle and linear potential cases have the same Bohmian trajectory diversions, due to the second derivative
of the potential being zero in both cases, and it may warrant further investigation. In the quadratic potential
case, in order to find the form of the Bohmian trajectory divergence, we encountered Hill’s equation. Exact
solutions for this equation are very hard to find, so we tried to find out if we can get any information about the
solution, such as boundness, without actually finding the solution itself. After a lot of research, we could not
find any conditions that could prove anything useful, so we tried to rewrite the equation using Fourier series,
due to F(7) being periodic, which didn’t produce any results. We then resorted in a numerical construction
of the solution. It was then shown that the solutions were bounded for all time and are periodic for any value
of the parameter ¢ > 0, except for 0 = 1, where the solution remains constant. It could be interesting to
further research for a theoretical way to prove the boundness of the solution. It would also be very interesting
to investigate what happens for higher order potentials, such as cubic or anharmonic oscillation.
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APPENDIX A

WKB method and geometrical optics

A.1 The WKB ansatz

In the geometrical optics technique [BLP] [Rau], one assumes an approximate WKB solution of the form

Ve (2, t) = A(z,t)es 2 @) |

(A.1)

where the amplitude A° and the phase ®° are real valued functions, and they have the regular perturbation

expansions
A(z,t) = Az, t) + Ay (x,t) + 2 Ag(z,t) + ... ...

and
O (z,t) = B(x,t) + Py (x,1) + 2Dy (2, t) +......

Then, the derivatives of the wave function are given by

o = (004" + L0 )eF
0" = (04" + éAEc%C(I)E)eE“I’E,

1 1 i He
0" = 02(001°) = (0247 = SA(0,07)" + < (470207 4 20,0°0,4%) ) e .
By substituting (A=) , (A1) , (A6) into (IT) we rewrite the Schrodinger equation in the form

82

ie (0, A° + gAfé?t(I)E) = (04— €i2Af (0,9°)% + %(Aaa@f 20,070, 4) ) + VA7

2

We further substitute the expansions (A3) , (A=3) into (A1), and we get the asymptotic equation
0 1 2 . 1 2 82 2
e'A( 0,® + 5(a;E(I)) +V | —ie| A+ 5(Aaa,cb + 20,90, A) | — 5 0zA+---=0.
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(A.2)

(A3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)
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If we assume that A , ® are smooth functions, equation (AR) is satisfied to order O(g?), if the phase ®
satisfies the Hamilton-Jacobi equation

1
@@+§@@f+vzo, (A.9)
and the amplitude A satisfies the transport equation
HA? + 0,(A%0,®) =0. (A.10)

Remark. The equations ([A) , (AI0) are the fundamental equations of geometrical optics, and they de-
fine the principal term ¥°(x,t) ~ A(z,t)e=®® in the asymptotic expansion of the wave function. It is
remarkable that the Hamilton-Jacobi equation for the phase ® is the same with the equation governing the
phase in classical mechanics, while the transport equation for the amplitude A expresses the conservation
of particles moving under the action of the potential V. These two facts, express the well-known analogy

between classical mechanics and geometrical optics (see, e.g., [Gold], [Arn]).

A.2 Hamiltonian system, Bicharacteristics and Rays

The Hamilton-Jabobi and the transport equations are partial differential equations of the first order, and their
solution can be constructed by reduction to ordinary differential equations along the rays as follows [Ev].
Let

1
H(z,k) = 5/9 +V(z), (A.11)
be the Hamiltonian function. We consider the Hamiltonian system [BLP]
dx(tq,
=G = k(tq.p)
b — v/ (2(t;q,p)) (A.12)

z(0;¢,p) = q, k(0;q,p) =p.

The trajectories of this system are the bicharacteristics in the phase space Ri - When the initial momentum
is given by p = S{(q), then, the projections of the bicharacteristics on to the R2, space are the rays of
geometrical optics. In order to distinguish between the rays and the bicharacteristics we denote the rays by
Z = &(t; q), and it turns out that they are solutions of the system

dk(tiq) _ —V'(2(t;q)) , (A.13)

z(0;q) = q, k(0;9) = Sp(q) -

Therefore the rays are the projections on to the physical space of the bicharacteristics emanating from the
initial Lagrangian manifold (curve) Ao = {(¢,p)|p = S{(¢)} in phase space.

Note that for the free Schrodinger equation, that is V' (z) = 0, the rays are given by

z(t;q) = Sp(a)t + g,
(A.14)

k(t; q) = k(0; ) = Sp(q) ,
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that is, they are the straight lines in the space-time R2, emanating at (z = ¢ ,¢ = 0) with constant slope
So()-
The Jacobian of the ray transformation ¢ — Z(t; q) is given by

0z(t; q)
dq

I(t;q) = (A.15)

Whenever the Jacobian ([A7TH) vanishes, the ray transformation is multi-valued, and a caustic appears.
Near the caustic the rays may cross and have other complicated singularities. The singularities depend on
the particular form of the initial data. If ¢ = t.(q) are the solutions of the equation J(¢; ¢) = 0, then the
caustic has the parametric equations

(A.16)

A.3 Hamilton-Jacobi and Transport Equations

A.3.1 Integration of Hamilton-Jacobi equation

By the identification k = 0,®(x,t), the initial value problem for the Hamilton-Jacobi equation (A1) is
written in the form

0i®(x,t) + H(x,0,P(x,t)) =0, reRt>0,
(A.17)
O(x,t =0) =Sp(z) . zeR.

This form of the Hamilton-Jacobi equation, suggests that the equation can be reduced to an ordinary differen-
tial equation along the rays (see, [Ev], Sec. 3.2.5, 3.3.1 for arigorous explanation). In fact, by differentiating
along the ray z = Z(¢; ¢), and using the equations ([A13), we have

dz(t; q)
dt

%@(j(t; Q),t) = 0P (z(t;q),t) + 0,®(Z(t; q),t)
_ (; (0.2 (a(t:9), t))2 +V(3(t, q))) + 0,2 (2(t; ), ) k(t: 9)
_ _%;;2(@ q) = V(z(t:0)) + k*(t:q)
= %Ez(t; q) - V(2(t;q)) - (A.18)

We integrate (A_I8) on the internal (0, ¢), we immediately derive the phase

®(z,t) = So(q) + /Ot <;k2(7; q) — V(@(T; q)))dT . (A.19)
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A.4 Integration of the transport equation
We solve now the initial value problem for the transport equation

QA2 (z,1) + 0, (A%(2,1)0,P(x,t)) =0, z€R, t>0,

(A.20)
A(z,t=0) =Ap(z), z e R.
First, we differentiate InA? along the rays, and we get
d 1 d
InA? t) = ——A2 T(t, ), t
dtn ( ( ) ) AQ(_( ) ) («%'(aa)a )
B (0,A? + 0,A%0,9) (2(t, @), t)
R(alta)t)
= 029 (z(t, a), t). (A.21)
Then, by Liouville’s formula for the equation
dz -
— =k =0,2(z(t,q),
7 (z(t, q)
we get
d _
2 (6 q) = 9:k(t,q) = 0. (azcb(f(t,q),t)) = 70 (x(t,q),1) - (A.22)
Thus, we obtain
d d
p InA%(z(t, a),t) = - InJ(t,q) . (A.23)
Finally, by assuming that J(¢, ¢) # 0 on the internal (0, ¢), we integrate the last equation, and we derive
A
A(z(t,q),t) = o(g) (A.24)
I(t,q)

Remark. Note that J(t = 0,¢q) = 1, since for ¢ = 0, the ray map is the identity, and J(¢,q) > 0 as long
as caustics do not appear. However, for the critical caustic time ¢ = ¢.(q), the Jacobian vanishes and the
geometrical amplitude (A=24)) becomes infinite on the caustic. Therefore, when caustics appear the WKB
method fails to predict the amplitude of the wave function, and other techniques must be applied (see, e.g.,
[FM] for a concise review of such methods).
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