

University of Crete
School of Sciences and Engineering

Computer Science Department

QUETE :
QUERY PROCESSING IN DISTRIBUTED

DATABASE SYSTEMS

by

HARIDIMOS G.KONDYLAKIS

Master of Science Thesis

Heraklion, February 2006

University of Crete
School of Sciences and Engineering

Computer Science Department

QUETE:
QUERY PROCESSING IN DISTRIBUTED

DATABASE SYSTEMS

by
HARIDIMOS G.KONDYLAKIS

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Author:

Haris Kondylakis, Computer Science Department

Supervisory
Committee:

Dimitris Plexousakis, Associate Professor, Supervisor

Grigoris Antoniou, Professor, Member

Anastasia Analyti, Researcher, Member

George Potamias, Researcher, Member

Approved by:

Dimitris Plexousakis, Associate Professor
Chairman of the Graduate Studies Committee

Heraklion, February 2006

QUETE:
QUERY PROCCESSING IN DISTRIBUTED

DATABASE SYSTEMS

HARIDIMOS G.KONDYLAKIS

MASTER THESIS

COMPUTER SCIENCE DEPARTMENT,
UNIVERSITY OF CRETE

ABSTRACT

The exponential growth of the web and the extended use of database

management systems has brought to the fore the seamless interconnection of diverse

and large numbers of information sources. The main problem in such an environment

is the heterogeneity between these different sources.

Our essential proposal to resolve the issue of heterogeneity, is finding

mappings across schemata and a global reference ontology, the terms of which are

used for annotation and querying. By accepting ontology as a point of common

reference, naming conflicts are eliminated and semantic conflicts are reduced.

Our contribution is a system that provides an automatic and scalable approach

to integrate and then query transparently multiple data sources. It maps automatically

semantic queries to SQL and presents the results to the user. Database metadata, are

independently captured into XML documents, which also store semantic names for

schema elements to identify identical concepts across systems. The query system is

capable of handling complex join constructs, and choosing the appropriate attributes,

relations and join conditions to preserve user query semantics.

Moreover, since joins across databases are most difficult to handle, two join

algorithms were implemented in order to study the efficiency of such a system. The

query engine extended to support and exploit horizontal and vertical distribution of

database’s tables. Those extensions boost the whole system performance when the

knowledge of such a distribution exists. Experiments showed that the system has an

acceptable performance even in large databases.

 Supervisor: Dimitris Plexousakis

 Associate Professor

QUETE:
ΕΠΕΞΕΡΓΑΣΙΑ ΕΠΕΡΩΤΗΣΕΩΝ ΣΕ

ΚΑΤΑΝΕΜΗΜΕΝΕΣ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

ΧΑΡΙΔΗΜΟΣ Γ.ΚΟΝΔΥΛΑΚΗΣ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΠΕΡΙΛΗΨΗ

Η ραγδαία ανάπτυξη του διαδικτύου και η εκτεταμένη χρήση των

συστημάτων διαχείρισης βάσεων δεδομένων, έφερε στο προσκήνιο την ανάγκη για

την διασύνδεση ποικίλων πηγών πληροφορίας. Κύριο πρόβλημα σε ένα τέτοιο

περιβάλλον είναι η ετερογένεια των διαφορετικών αυτών πηγών.

Για την επίλυση του προβλήματος της ετερογένειας η βασική μας πρόταση

είναι η ανεύρεση συσχετισμών ανάμεσα στα σχήματα και σε μια οντολογία

αναφοράς, οι όροι της οποίας χρησιμοποιούνται για τον σχολιασμό των πηγών και για

το σχηματισμό επερωτήσεων που απευθύνονται σ’ αυτές. Με την αποδοχή της

οντολογίας ως κοινό σημείο αναφοράς οι ονομαστικές συγκρούσεις εξαλείφονται και

οι σημασιολογικές διαφορές μειώνονται αισθητά.

Η συνεισφορά μας στον τομέα είναι ένα σύστημα που παρέχει μια αυτόματη

προσέγγιση στην ενοποίηση πολλαπλών πηγών πληροφορίας. Η ενοποίηση αυτή είναι

διάφανη στον τελικό χρήστη, ο οποίος μπορεί να εκτελεί επερωτήσεις σε πηγές

δεδομένων που εξελίσσονται και εμπλουτίζονται συνεχώς. Οι διάφορες

σημασιολογικές επερωτήσεις συσχετίζονται αυτόματα με SQL επερωτήσεις οι οποίες

απευθύνονται στις ξεχωριστές πηγές. Τα μεταδεδομένα κάθε σχήματος

καταγράφονται σε XML έγγραφα, στα οποία αποθηκεύονται και τα σημασιολογικά

ονόματα για κάθε στοιχείο των υποκείμενων πηγών. Προσδιορίζονται έτσι τα

ταυτόσημα στοιχεία ανάμεσα στις πηγές. Το σύστημα έχει τη δυνατότητα να

χειρίζεται πολύπλοκες συνενώσεις, να επιλέγει τα κατάλληλα γνωρίσματα, τις σωστές

σχέσεις και τις απαραίτητες συνθήκες έτσι ώστε να διατηρείται η σημασιολογία των

επερωτήσεων του χρήστη.

Επιπλέον, μια και οι συνενώσεις ανάμεσα σε διαφορετικές βάσεις δεδομένων

είναι ιδιαίτερα δύσκολες στο χειρισμό τους, υλοποιήθηκαν δυο αλγόριθμοι με σκοπό

να μελετηθεί η αποδοτικότητα ενός τέτοιου συστήματος. Η μηχανή επερωτήσεων

επεκτάθηκε για να υποστηρίζει και να αξιοποιεί οριζόντια και κατακόρυφη κατανομή

σχεσιακών πινάκων. Όταν υπάρχει εκ των προτέρων η γνώση για τέτοιες κατανομές,

η απόδοση του συστήματος αυξάνεται κατακόρυφα. Οι μετρήσεις που

πραγματοποιήθηκαν έδειξαν ότι το σύστημα έχει αποδεκτή συμπεριφορά ακόμα και

σε μεγάλες βάσεις δεδομένων.

 Επόπτης: Δημήτρης Πλεξουσάκης

 Αναπληρωτής Καθηγητής

Ευχαριστίες

Η εργασία αυτή υλοποιήθηκε και χρηματοδοτήθηκε εν’μέρει στα πλαίσια του

έργου “Prognochip” από το Ινστιτούτο Έρευνας και Πληροφορικής του Ιδρύματος

Τεχνολογίας και Έρευνας. Έτσι αρχικά θα ήθελα να ευχαριστήσω ολόκληρη την

ομάδα Πληροφοριακών Συστημάτων καθώς και το Τμήμα Επιστήμης Υπολογιστών

του Πανεπιστημίου Κρήτης για όσα μου προσέφεραν όλα αυτά τα χρόνια και για τις

γνώσεις που απέκτησα κατά τις σπουδές μου.

Επιπλέον, θα ήθελα να ευχαριστήσω όλους τους ανθρώπους που με

βοήθησαν στην υλοποίηση αυτής της δουλειάς. Ιδιαίτερες ευχαριστίες αξίζουν στον

επόπτη μου κ. Δημήτρη Πλεξουσάκη, για όσα μου προσέφερε αυτά τα τρία χρόνια

της συνεργασίας μας και για τις ευκαιρίες που μου έδωσε. Χωρίς την ουσιαστική του

καθοδήγηση και τις επισημάνσεις του η ολοκλήρωση αυτής της εργασίας θα ήταν

αδύνατη.

Θα ήθελα ακόμα να ευχαριστήσω την κ. Αναστασία Αναλυτή γιατί ήταν

πάντα διαθέσιμη για συζήτηση και πρόθυμη να με βοηθήσει σε οτιδήποτε ζήτησα την

βοήθειά της. Την ευχαριστώ ιδιαίτερα για τις υποδείξεις της.

Ακόμα θα ήθελα να ευχαριστήσω τον κ. Γρηγόρη Αντωνίου καθώς και τον κ.

Γεώργιο Ποταμιά για την προθυμία τους να συμμετάσχουν στην επιτροπή για την

αξιολόγηση της εργασίας αυτής καθώς και για τις επισημάνσεις τους πάνω στην

εργασία μου.

Οφείλω επίσης να ευχαριστήσω την Λύδα Χαράμη ,την Μαίρη και την Χαρά

Στεφάνου για τις διορθώσεις τους σε διάφορα τμήματα αυτής εδώ της εργασίας.

Ένα μεγάλο ευχαριστώ ανήκει σε όλους τους συμφοιτητές και συναδέλφους

με τους οποίους συνεργάστηκα καθ’όλη την διάρκεια των σπουδών μου. Αισθάνομαι

τυχερός που μερικές από τις συνεργασίες κατέληξαν σε πραγματικές φιλίες.

Ευχαριστώ λοιπον όλους όσους στάθηκαν πλάι μου όλα αυτά τα χρόνια για τις

εμπειρίες που μοιραστήκαμε και θα θυμόμαστε για όλη μας τη ζωη. Ιδιαίτερα θα

ήθελα να ευχαριστήσω τον συνεργάτη και φίλο μου Δημήτρη Μανακανάτα για την

πολύτιμη συμπαράσταση και την υποστήριξή του, καθώς και για την άψογη

συνεργασία μας όλα αυτά τα χρόνια.

Τελευταίο αλλά μεγαλύτερο ευχαριστώ ανήκει όμως στην οικογένειά μου και

πιο συγεκριμένα στους γονέις μου Γιώργο και Μαρια και στην αδερφή μου Χαρά που

ήταν πάντα δίπλα μου και με στήριξαν σε όλες τις δυσκολίες. Για το λόγο αυτή η

εργασία αυτή είναι αφιερωμένη σ’αυτούς και ελπίζω να αποτελέσει μια μικρή

ανταμοιβή για τις θυσίες και τις προσπάθειές τους όλον αυτό τον καιρό.

PREFACE I

Table of Contents

1 INTRODUCTION ...1
1.1 MOTIVATION...2
1.2 CONTRIBUTIONS..4
1.3 ORGANIZATION ...5

2 QUERY PROCESSING..7
2.1 RESEARCH SCOPE ...9
2.2 DISTRIBUTED QUERY PROCESSING: BASIC APPROACH AND TECHNIQUES10

2.2.1 Architecture of a Query Processor..10
2.2.2 Query Optimization ...12
2.2.3 Query Execution..15

2.3 CLIENT-SERVER DATABASE SYSTEMS ...21
2.3.1 Architectures ...21
2.3.2 Exploiting Client Resources ..22
2.3.3 Query Optimization ...25
2.3.3 Query Execution Techniques...28

2.4 HETEROGENEOUS DATABASE SYSTEMS...29
2.4.1 Wrapper Architecture..30
2.4.2 Query Optimization ...32
2.4.3 Query Execution..36

2.5 DYNAMIC DATA PLACEMENT ...37
2.5.1 Replication vs. Caching...38
2.5.2 View Caching, View Materialization and Data Warehouses ..40

3 BIOLOGICAL DATA INTEGRATION SYSTEMS ...43
3.1 CHARACTERISTICS AND CHALLENGES ...44
3.2 INTEGRATION APPROACHES...45

3.2.1 Warehouse Integration..46
3.2.2 Mediator Based Integration ..46
3.2.3 Navigational Integration ...48

3.3 EXISTING BIOINFORMATIC INTEGRATION SYSTEMS...48
3.3.1 SRS ..49
3.3.2 K2/BioKleisli ...49
3.3.3 TAMBIS...50
3.3.4 DiscoveryLink ...51
3.3.5 BACIIS ..52
3.3.6 Other Systems and the ideal system ..52

4 QUETE: A SYSTEM FOR DATA INTEGRATION ...55
4.1 INTRODUCTION ...55
4.2 THE STARTING IDEA ...56
4.3 THE INTEGRATION ARCHITECTURE...57
4.4 INTEGRATION COMPONENTS..59

4.4.1 The Reference Ontology ..60
4.4.2 X-Spec – Metadata Specification ..62
4.4.3 Integration Algorithm..63
4.4.4 Querying in QueTe..65

5 MULTIDATABASE QUERYING IN QUETE...67
5.1 INTRODUCTION ...67
5.2 PREVIOUS LANGUAGES USED ...68

PREFACE II

5.3 CONTEXT VIEW AS A UNIVERSAL RELATION ..70
5.4 QUERY PARSING AND JOIN TREE CONSTRUCTION..73
5.5. JOIN ALGORITHMS...81

5.5.1 Main Memory Algorithm...82
5.5.2 Central Database Algorithm ...83

5.6 CONSIDERING DISTRIBUTION ...86
5.7 EXAMPLE...87

6 QUETE IMPLEMENTATION AND EVALUATION...91
6.1 QUETE IMPLEMENTATION ...92

6.1.1 X-Spec Specification Documents...93
6.1.2 X-Spec Extractor ...95
6.1.3 Configuration File...95
6.1.4 Vertical and Horizontal Distribution ..96

6.2 EVALUATION ...97
6.2.1 Starting Point - Simple Database Case Study ...97
6.2.2 Prognochip Case Study ...100

7 CONCLUSIONS..105
7.1 CONCLUSIONS ...105
7.2 EXTENSIONS ..107

7.2.1 Implementing more Querying algorithms ...107
7.2.3 Database Cycles..107
7.2.2 Non – Relational Data Sources ...108
7.2.2 Exploiting Systems for Automatically Schema Matching. ...108
7.2.2 The Web Service approach – Grid approach ..108
7.2.3 Caching Data ..109
7.2.4 Updating underlying data sources. ...109

8 BIBLIOGRAPHY..111
9 APPENDIX ..123

LIST OF SYMBOLS AND ABBREVIATIONS. ...123
SAMPLE JDBC APPLICATION...123
EVALUATION MEASUREMENTS ..124

No Fragmentation ..124
Horizontal Fragmentation..125
Vertical Fragmentation..125
Hybrid Fragmentation ...126

PREFACE III

List of Figures

FIGURE 1. SYSTEM OVERVIEW...2
FIGURE 2. PHASES OF QUERY PROCESSING ..10
FIGURE 3. DYNAMIC PROGRAMMING ALGORITHM FOR QUERY OPTIMIZATION13
FIGURE 4. REDUCTION WITH HORIZONTAL FRAGMENTATION..18
FIGURE 5. HYBRID SHIPPING..23
FIGURE 6. WRAPPER ARCHITECTURE...31
FIGURE 7. ACCESS PLAN ENUMERATION RULE ...33
FIGURE 8. INTEGRATION SCHEMA..57
FIGURE 9. INTEGRATION ALGORITHM..64
FIGURE 10. BUILDING INTEGRATION SCHEMA (CONTEXT VIEW) ...65
FIGURE 11. FIELD SELECTION ALGORITHM..76
FIGURE 12. JOIN GRAPH EXAMPLE ..78
FIGURE 13. ALGORITHM TO CALCULATE JOIN PATHS. ...80
FIGURE 14. SIMPLE NESTED LOOPS JOIN ...83
FIGURE 15. JOIN GRAPHS FOR DATABASE 1 AND DATABASE 2 ..88
FIGURE 16. EXAMPLE X-SPEC..93
FIGURE 17. CONFIGURATION FILE FOR BASE ...95
FIGURE 18. EXAMPLE DATABASE SCHEMA..98
FIGURE 19. QUETE VERSUS JDBC IN A SINGLE SELECT QUERY..99
FIGURE 20. MEMORY ALGORITHM VS DATABASE ALGORITHM...102
FIGURE 21. CONSIDERING FRAGMENTATION RULES ...103
FIGURE 22. DATABASE VS MEMORY ALGORITHM WITH HYBRID FRAGMENTATION104

PREFACE IV

PREFACE V

List of Tables

TABLE 1. BOOKS DATABASE SCHEMA ..62
TABLE 2. JOINING ROWS ACROSS DATABASES...100
TABLE 3. RESULTS WITH WHEN NO FRAGMENTATION EXISTS ...124
TABLE 4. RESULTS WHEN HORIZONTAL FRAGMENTATION EXISTS...125
TABLE 5. RESULTS WHEN VERTICAL FRAGMENTATION EXISTS ..125
TABLE 6. RESULTS WHEN HYBRID FRAGMENTATION EXISTS..126

PREFACE VI

CHAPTER 1 INTRODUCTION 1

HARIS KONDYLAKIS

Chapter 1

1Introduction

“Mediation: a practice under which, in a conflict, the services

of a third party are utilized to reduce the differences or to seek

a solution. Mediation differs from "good offices" in that the

mediator usually takes more initiative in proposing terms of

settlement. It differs from arbitration in that the opposing

parties are not bound by prior agreement to accept the

suggestions made.”

-Encyclopedia Britannica

Contents
1.1 MOTIVATION...2
1.2 CONTRIBUTIONS ..4

1.3 ORGANIZATION..5

Data Integration is one of the key problems for the development of modern

information systems. The exponential growth of the web and the extended use of

database management systems has brought to the fore the seamless interconnection of

diverse and large numbers of information sources. An important factor on that

problem is the capability to effectively store and process information and to provide

access uniformly and efficiently.

In order to provide uniform access to heterogeneous autonomous data sources,

complex query mechanisms have to be designed and implemented. The design and

implementation of a query mechanism is not trivial because of the heterogeneity of

the various components. In information systems, heterogeneity appears for instance in

2 CHAPTER 1 INTRODUCTION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

different structured schemas, different scopes and meanings of schema elements, and

different access interfaces. Coping with heterogeneity is always cumbersome. The

necessary effort grows with the degree of autonomy of systems being integrated.

Several systems have been implemented in order to integrate heterogeneous

databases and to query them. This thesis examines the current distributed query

processing proposals, and proposes a framework for answering queries, in

environments that integrate heterogeneous databases.

1.1 Motivation

The motivation for this thesis was the integration of two database systems in

the project PROGNOCHIP [Potamias G. et al 2005]. The aim of the project was to

develop and establish DNA microarray experiments in Greece and the identification

and validation of classification and prognosis molecular markers for breast cancer.

Figure 1. System Overview

External
GGeennoommiicc

External
CClliinniiccaall

(Breast) Cancer
Information Sources

BioInformatics

Functional Genomics
Medical

Informatics

Clinical Practice

Clinical Data
Model

 Genomic Data
Model DDaattaa MMiinniinngg

VViissuuaalliizzaattiioonn

DDaattaa EExxttrraaccttiioonn

GenIS
 Genomic

 Information

DNA-sequences
Gene-Expression profiles

Differential GGeennee -- MMaarrkkeerrss

Patient
GGeennoommiicc Information

Patient
CClliinniiccaall Information

CLIS LIS PAIS
Clinical

Information

Demographics
History

Physiological

Laboratory
Information

Indicators
Hematological
Biochemical

Pathologo-
Anatomical
Information

Tumor
Sample/Tissue

CHAPTER 1 INTRODUCTION 3

HARIS KONDYLAKIS

Our task was to integrate two information systems as shown in figure 1: The

Genomic Information System, that provides storage of microarray experiments, and

the Clinical Information System, that provides storage of clinical information about

patients. The task was to provide a transparent layer that could enhance knowledge

extraction and data exchange between these two systems, which could accept queries

from tools and users, and would transparently break queries based on metadata, send

them to subsystems and integrate the results returned from them.

The current approach to data source integration is using mediator and wrapper

systems, which answer queries across a wide-range of data sources. These systems

construct integrated global views, using designer-based approaches, which are

mapped using a query language or logical rules into views or queries on the individual

data sources. Once an integrated global view and corresponding mappings to source

views are logically encoded, wrapper systems are systematically able to query and

provide interoperability between diverse data sources.

Unfortunately, mediator and wrapper systems require dedicated database

designers and many man-hours of query design and engineering to build a global view

for any given multidatabase environment. As a result, database integration is, in many

cases, prohibitively expensive and the results are not usually transferable to other

multidatabase environments. Further, when data sources are added or removed from

the global view, the integration must be performed again.

In our implementation, we try to resolve those boundaries by extending the

mediator-wrapper architecture. Moreover, our framework tries to meet several

requirements. Some of these are implemented in several systems designed for query

answering in distributed database environments, but none of them meets them all:

• The requirement to provide comfortable access to all available

information in each field.

• The capability to perform queries without the knowledge of the schemas of

each database.

• The data could physically reside on computers distributed all over the

world.

• Data sources would be heterogeneous in terms of the access mechanisms

they offer, the schemas they use to describe their data, the meaning they

4 CHAPTER 1 INTRODUCTION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

give to schema elements, and the format in which data is eventually

provided.

• Data sources could be intentionally and extensionally overlapping.

Intention is represented in schemas, whereas extension is represented in

instances.

• Data in different data sources could be inconsistent.

• Data sources would evolve frequently and independently.

The approach to data integration we develop in this thesis is by no means

restricted to bioinformatics. On the contrary, it is completely domain independent.

However, the motivation for its development was largely taken from problems

occurred in Prognochip.

1.2 Contributions

The primary contributions of this thesis are:

• A solution that provides full location, language and schema transparency

for users.

• Dynamic integration of large numbers of data sources in evolving

environments.

• Standardized Ontology for use across integration domains.

• Capture process performed only once per data source using integration

software.

• Automatic global view updating to reflect local database changes.

• Data integration at query time that does not depend on data replication.

• Horizontal, Vertical, and Hybrid fragmentation is highly considered at

query execution time.

• Optimization based on fragmentation.

• Dynamic Policy for query answering.

• Quick results in large databases with a high number of joins between them.

• Alternative join implementation for relations that span across databases.

CHAPTER 1 INTRODUCTION 5

HARIS KONDYLAKIS

1.3 Organization

This thesis is structured as follows. Chapter 2 is an overview of query

processing approaches and techniques used to query multidatabase systems. Then, in

chapter 3 the most common integration approaches are shown, and the most important

systems used to integrate biological data are presented.

In Chapter 4 we give an overview of the architecture of our system, and we

present its basic components. After describing abstractly system’s components, we

describe the query language used to build queries in QueTe in Chapter 5, and we

define its capabilities.

 The implementation and the design choices we made are placed in Chapter 6,

where also resides the system evaluation. Finally, Chapter 7 concludes the research

contributions of the thesis, discusses ways to extend the capabilities of query

processing and draws directions for further research work.

6 CHAPTER 1 INTRODUCTION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

CHAPTER 2 QUERY PROCESSING 7

HARIS KONDYLAKIS

Chapter 2

2Query Processing

 “There can be no understanding between the brain and the

hands, unless the heart acts as mediator.”

-from the movie “Metropolis”

Contents
2.1 RESEARCH SCOPE..9
2.2 DISTRIBUTED QUERY PROCESSING: BASIC APPROACH AND TECHNIQUES10

2.2.1 ARCHITECTURE OF A QUERY PROCESSOR..10
2.2.2 QUERY OPTIMIZATION ..12

2.2.2.1 Plan Enumeration with Dynamic Programming ..12
2.2.2.2 Cost Estimation for Plans...14
2.2.2.3 Response time of Plans...15

2.2.3 QUERY EXECUTION..15
2.2.3.1 Row Blocking..16
2.2.3.2 Optimization on Multicasts ..16
2.2.3.3 Multithreaded Query Execution ...17
2.2.3.4 Joins with Horizontally Partitioned Data ..17
2.2.3.4 Semijoins ..19
2.2.3.5 Double Pipelined Hash Joins ...19
2.2.3.6 Top N and Bottom N Queries ...20

2.3 CLIENT-SERVER DATABASE SYSTEMS ...21
2.3.1 ARCHITECTURES ..21
2.3.2 EXPLOITING CLIENT RESOURCES ...22
2.3.3 QUERY OPTIMIZATION ..25

2.3.3.1 Site Selection ..25
2.3.3.2 Where and When to Optimize ...26
2.3.3.3 Two Step Optimization ...28

2.3.3 QUERY EXECUTION TECHNIQUES ...28
2.4 HETEROGENEOUS DATABASE SYSTEMS ...29

2.4.1 WRAPPER ARCHITECTURE ..30
2.4.2 QUERY OPTIMIZATION ..32

2.4.2.1 Plan Enumeration with Dynamic Programming ..32
2.4.2.2 Cost Estimation for Plans...34

2.4.3 QUERY EXECUTION..36
2.5 DYNAMIC DATA PLACEMENT..37

8 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

2.5.1 REPLICATION VS. CACHING...38
2.5.2 VIEW CACHING, VIEW MATERIALIZATION AND DATA WAREHOUSES....................................40

Research community has been interested in distributed database systems since

the 1970s. Although many ideas had been appeared, distributed database systems

were never commercially successful. The main reason for that was the instability of

communication technology to ship megabytes of data as required and that large

businesses managed to survive without sophisticated distributed database technology

by using tapes, diskettes or just paper to exchange data.

The situation today has changed dramatically. Distributed data processing is

both feasible and needed. Almost all database vendors offer products to support

distributed data processing (e.g., Oracle, Sybase, IBM, and Microsoft) and large

database application systems have a distributed architecture. Distributed data

processing is feasible because of recent technological advances and is needed

because of changing business requirements, which have made distributed data

processing cost-effective and in certain situations the only viable option.

Specifically, businesses are beginning to rely on distributed rather than

centralized databases because of the cost and the scalability they provide, the

capability to integrate different software models, legacy systems that were used and

still coexist with modern systems. Furthermore an even growing number of

applications have come to rely on distribution technology such as workflow

management; tele-conferencing etc. and many companies are forced to reorganize

their business in order to remain competitive and more effective.

For the rest of this chapter it is assumed that users and application programs

issue queries using a declarative query language such as SQL [Melton and

Simon1993] and without knowing where and in which format the data is stored in the

distributed system. The goal is to execute such queries as efficiently as possible in

order to minimize the time that users must wait for answers or the time application

programs are delayed. To this end, we will discuss a series of techniques that are

particularly effective to execute queries in today’s distributed systems. For example,

we will describe the design of a query optimizer that compiles a query for execution

CHAPTER 2 QUERY PROCESSING 9

HARIS KONDYLAKIS

and determines the best possible way among many alternative ways to execute a

query. We will also show how techniques such as caching and replication can be used

to improve the performance of queries in a distributed environment. Furthermore, we

will cover specific query processing techniques for client-server, middleware

(multitier), and heterogeneous database and information systems, which represent

architectures that are frequently found in practice.

2.1 Research Scope

Over last decades a very large body of work exists in the area of databases. All

this work can be roughly classified into work on architecture and techniques for

transaction processing, work on query processing, and work on data models,

languages, and user interfaces for advanced applications. In this chapter we will focus

primarily on query processing. A discussion of transaction processing and of

alternative data models is beyond the scope of this work.

This thesis does not intend to give a full coverage of all query processing

techniques used today; in fact, a number of query processing techniques for the World

Wide Web are not discussed. For instance we will not present the architecture of

search engines such as AltaVista. Furthermore there have been several proposals to

manage Web sites and query a network of Web Pages [Florescu et al. 1998], to

manage and query XML data [McHugh and Widom 1999],[Abiteboul et al. 1999],

[Florescu et al.1999]. Instead of going into the details of all these techniques the focus

of this chapter is on fundamental mechanisms to process queries that involve data

from several sites. We will, therefore, concentrate on structured data and on query

languages for structured data, so we will assume that the reader is familiar with basic

database system concepts, SQL and the relational data model. Nevertheless, the

techniques described in this paper are also relevant to process other kind of data in a

distributed environment.

10 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

2.2 Distributed Query Processing: Basic Approach and
Techniques

In this section we will describe the “text-book” architecture for query

processing and present a series of specific query processing techniques for distributed

databases and information systems. The purpose of this section is to give an overview

of basic mechanisms that can be used in any kind of distributed database system.

2.2.1 Architecture of a Query Processor

The “text-book” architecture was first used in IBM’s Starburst project [Haas et

al. 1989] .This architecture can be used for any kind of database system including

centralized, distributed or parallel systems. In this architecture, queries issued at the

system are being translated and optimized in several phases into an execution plan.

This plan is being executed in order to obtain the results of the query. Several plans of

repeated queries (so called “canned” queries) can be stored in the database and

executed by the query execution engine each time this query is issued [Chamberlin et

al. 1981].

Figure 2. Phases of Query Processing

The components of the “text-book” architecture are shown in the previous

figure. At first, the query is issued in the parser component where it is parsed and

Result

Exec
Plan

Plan

Query

Internal
repr.

Internal
repr.

Parser

Query
Optimizer

Query
 Rewrite

Plan
Refinement/
Code Gen

Catalog
(Meta Data)

Base Data
Query

Execution
Engine

CHAPTER 2 QUERY PROCESSING 11

HARIS KONDYLAKIS

translated into an internal representation (e.g., a query graph [Jenq et al 1990],

[Pirahesh et al. 1992]), that can be easily processed by the latter phases. Next, the

parser query rewriter transforms a query in order to carry out the optimizations that

are optimal regardless the state of the system. Typical transformations are the

elimination of redundant predicates, simplification of expressions, and unnesting of

subqueries and views. In a distributed system, query rewrite also selects the partitions

of a table that must be considered to answer the query [Ceri and Pelagatti,1984],[Ozsu

and Valduriez, 1999].

The next step is Query Optimizer. This component carries out optimizations

that depend on the physical state of the system. The optimizer decides which indices

to use to execute a query, which methods (e.g., hashing of sorting) to use to execute

the operations of a query and in which order to execute the operations of a query.

Moreover it decides how much main memory to allocate for the execution of each

operation. In a distributed system, the optimizer must also decide at which site each

operation is to be executed. To make these decisions, the optimizer enumerates

several alternative plans and chooses the best plan (usually a plan which is not the

worst) using a cost estimation model.

Usually in databases, plans are represented as trees, where the nodes are

annotated, indicating where the operator is to be carried out. The edges represent

consumer – producer relationships of operations. In the Plan Refinement stage, the

plan produced by the optimizer is being transformed into an executable plan.

Finally, each operator is implemented by the query execution engine. All state-

of-the-art query execution engines are based on an iterator model [Graefe 1993],

where operators are implemented as iterators and all iterators have the same interface.

As a result two iterators can be plugged together and moreover the results of one

operator can be plugged as an input in another operator (pipelining).

The main components cooperate with the Catalog. All the information needed

for parsing rewriting and optimizing a query is stored in the+ Catalog. It maintains the

schema of the database (i.e. definitions of tables, views, user-defined types and

functions, integrity constraints etc.), the partitioning schema (information about what

global tables have been partitioned and how they can be reconstructured) and physical

information such as the location of replicas, information about indices, and statistics

that are used to estimate the cost of a plan. In most relational database systems,

12 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

catalog information is stored like all other data in tables. In a distributed database

however, the question of where to store the catalog arises. The simplest approach is to

store the catalog at one central site, but in wide-area networks, it makes sense to

replicate the catalog at several sites in order to reduce communication costs. It is also

possible to cache catalog information [Williams et al 1981]. Both replication and

caching of catalog information are very effective because catalogs are usually quite

small and their information is rarely updated in most environments. However in

certain environments, catalogs can become very large and be frequently updated. In

such environments it makes sense to partition the catalog and store catalog data where

it is most needed.

Of course the architecture described above is not the only possible way to

process queries. There is no such thing as a perfect query processor. For example, an

alternative architecture has been developed in [Graefe 1995], [Graefe and McKenna

1993], [Graefe et DeWitt 1987] and is used in several commercial database products

such as Microsoft’s SQLServer. In that architecture, query rewrite and optimization

are executed in one phase.

2.2.2 Query Optimization

In this section, we will give a short description of the main techniques used to

implement the query optimizer of a distributed database system. First, we will

describe the most popular algorithm called “enumeration algorithm” for query

optimization.

2.2.2.1 Plan Enumeration with Dynamic Programming

A large number of alternative enumeration algorithms has been proposed in

the literature [Steinbrunn et al 1997],[Kossman and Stocker 2000].One of them,

which is used in almost all commercial databases, called dynamic programming, is

described. The main advantage of this algorithm is that it produces the best possible

plans if the cost model is sufficiently accurate. Unfortunately, its main disadvantage is

that it has exponential space and time complexity and it is not viable in complex

queries. Moreover in distributed environments, the complexity of dynamic

CHAPTER 2 QUERY PROCESSING 13

HARIS KONDYLAKIS

programming is prohibitive for many queries. Several extensions exist with the most

popular one being the “iterative dynamic programming”, which produces optimal

plans, as the ones produced using basic dynamic programming for simple queries, and

“as good as possible plans” for more complex ones [Kossman and Stocker 2000].

The basic dynamic algorithm is shown in the following figure and it works in

a bottom-up way by building more complex sub-plans from simple sub-plans. In the

first step the algorithm builds an access plan for every table involved in the query.

Then it enumerates all two-way join plans using the access plans as building blocks.

Next the algorithm builds three-way join plans using access plans and two-way join

plans as building blocks, e.t.c. The algorithm continues in this way until it has

enumerated all n-way join plans which are complete plans for the query, if the query

involves n tables.

Figure 3. Dynamic programming algorithm for query optimization

The beauty of the dynamic programming is that inferior plans are pruned as

early as possible. A plan is being discarded if an alternative plan exists that does the

Input: SPJ query q on relations R1,. . . , Rn

Output: A query plan for q

1: for i = 1 to n do {

2: optPlan({Ri}) = accessPlans(Ri)

3: prunePlans(optPlan({Ri}))

4: }

5: for i = 2 to n do f {

6: for all S ⊆ {R1, . . . , Rn} such that |S| = i do {

7: optPlan(S) = Ø

8: for all O ⊂ S do {

9: optPlan(S) = optPlan(S) ∪ joinPlans(optPlan(O), optPlan(S - O))

10: prunePlans(optPlan(S))

11: }

12: }

13: }

14: return optPlan({R1, : : : , Rn})

14 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

same or more work at a lower cost. Pruning significantly reduces the complexity of

query optimization since the earlier inferior plans are pruned and more complex plans

are not constructed from such inferior plans.

As things get distributed the decision of which plan must be pruned gets more

and more difficult. Two plans may do the same work, but they might produce their

results at different sites so shipping time must be considered. In general a plan P1 may

be pruned, if there exists a plan P2 that does the same or more work and the following

criterion holds:

∀ i ∈ interesting_sites(P1): Cost (ship (P1, i) ≥ Cost (ship (P2, i))

Here, interesting_site denotes the set of sites that are potentially involved in

processing the query. This means, that the plan with higher shipping cost shall be

eliminated. The concept is formally defined in [Kossman and Stocker 2000] where it

is shown that this expression can be evaluated efficiently during query optimization

under certain conditions.

2.2.2.2 Cost Estimation for Plans

The classic way to estimate the cost of a plan is to estimate the cost of every

individual operator and then sum up these costs [Mackert and Lohman 1986]. In this

model, the cost of a plan is defined as the total resource consumption of the plan. In a

centralized system the cost of an operator is composed of CPU costs plus disk I/O

costs. In a distributed system, communication costs must also be considered. A

general formula for determining the total cost can be specified as follows.

Total_cost = CCPU * #insts + CI/O * #I/Os + CMSG * #msgs + CTR * #bytes

The two first cost components measure the local processing time, where CCPU

is the cost of a CPU instruction and CI/O is the cost of a disk I/O. The communication

cost is depicted by the two last components. CMSG is the fixed cost of initiating and

receiving a message, while CTR is the cost of transmitting a data unit from one site to

another. The data unit is defined here in terms of bytes but could be in different units

CHAPTER 2 QUERY PROCESSING 15

HARIS KONDYLAKIS

(e.g., packets). A typical assumption is that CTR is constant which simplifies query

optimization. Thus the communication cost of transferring #bytes of data from one

site to another is assumed to be a linear function of #bytes.

 CC(#bytes)= CMSG + CTR * #bytes

In general one optimizer will favor plans that carry out operations on fast and

unloaded machines and avoid expensive communication links, whenever possible.

2.2.2.3 Response time of Plans

Except from total cost (time), the cost of a distributed execution strategy can

be expressed with respect to the response time. When the response time is the

objective function of the optimizer, parallel local processing and parallel

communications must be considered. A general formula for response time is:

 Response_time= CCPU * seq_#insts + CI/O * seq_#I/Os

 + CMSG * seq_#msgs + CTR * seq_#bytes

where seq_ denotes the maximum number of operations which must be done

sequentially for the execution of the query. Thus any processing and communication

done in parallel is ignored. Minimizing the response time is achieved by increasing

the degree of parallel execution. This does not, however imply that the total cost is

also minimized. On the contrary, it can increase the total cost, for example, by having

more parallel local processing and transmissions. Minimizing the total cost implies

that the utilization of the resources improves, thus increasing system throughput. In

practice a compromise of those two is desired.

2.2.3 Query Execution

Here we will give a short overview of the alternative ways to execute queries

in distributed database systems, how data can be shipped and how joins between

16 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

tables stored at different sites can be computed. We will not describe “standard”

execution techniques that are commonly used in centralized database systems [Graefe

1993], [Mishra and Eich 1992] and can consequently be used in distributed

environments too. We will discuss some of the many options to implement some

operators in distributed systems and we will examine how a query optimizer must be

extended in order to decide if and how to make use of these techniques for a specific

query.

2.2.3.1 Row Blocking

In a distributed environment, communication is typically implemented by send

and receive operators. The more messages you send the more resources you are

consuming. A good idea is to send fewer messages by sending a lot of tuples in a

blockwise fashion instead of sending every tuple individually. This approach is

obvious much cheaper than the naïve approach of sending one tuple at a time.

Furthermore, the size of the blocks is a parameter that can be regulated according to

the characteristics of the network.

One particular advantage of row blocking is that it compensates for burstiness

in the arrival of data up to a certain point. If tuples are shipped one by one through the

network, any short delay would immediately stop the execution of the query at the

receiving site because of shortage of tuples to consume. Due to row blocking, the

receive operator has a reservoir of tuples and can feed its parent operator even if the

next block of tuples is delayed. As a result, it is often better to choose a block size that

it is larger than the message size used by the network.

2.2.3.2 Optimization on Multicasts

It is obvious that communication costs may vary significantly depending on

the locations of the sending and receiving sites. Moreover sometimes, a site needs to

send the same data to several sites to execute a query. If the network itself does not

provide cheap ways to implement multicasts then it is desired to choose the “shortest”

paths between sites. Furthermore the load of the sites and their processing capability

is a matter that must be considered in order to build the best execution plan.

CHAPTER 2 QUERY PROCESSING 17

HARIS KONDYLAKIS

2.2.3.3 Multithreaded Query Execution

In order to take the best advantage of intraquery parallelism, it is sometimes

advantageous to establish several threads at a site [Graefe 1990]. As an example,

consider the plan A1 ∪ A2 ∪ A3 where A1 is stored in Site 1, A2 is stored in Site 2

and A3 in Site 3 and the result must be presented in Site 0. If the union and receive

operators of Site 0 are executed within a single thread, then Site 0 only requests one

block at a time and the opportunity to read and send the three partitions from the three

sites is wasted. Only if the union and receive operators at Site 0 run in different

threads, they can run and produce tuples in parallel.

However establishing a separate thread for each operator is not the best thing

to do every case. This is because the threads need to be synchronized since they use

the same shared-memory which adds additional cost to the whole process. Moreover,

it is not always advantageous to parallelize all operations and of course not all

operations can be executed in parallel. The query optimizer must decide at run time

which parts of the query should be run in parallel, and which operators should run in

the same thread.

2.2.3.4 Joins with Horizontally Partitioned Data

The horizontal fragmentation function distributes a relation based on selection

predicates. The reduction of queries on horizontally fragmented relations consists

primarily of determining, after restructuring the subtrees, those that will produce

empty relations, and moving them. Horizontally fragmentation can be exploited to

simplify both selections and join operations.

Selections on fragments that have a qualification, contradicting the

qualification of the fragmentation rule, generate empty relations. Given a relation R

that has been horizontally fragmented as R1, R2, . . . , Rw, where Rj= σpj (R) , the rule

can be stated formally as follows:

 σpj (Rj) = σpj (σpj (R))= Ø if ∀ x in R: ¬ (pi(x) ∧ pj(x))

Here, pi and pj are selection predicates, x denotes a tuple, and p(x) denotes

“predicate p holds for x.” The rule states that if our select condition does not interest

18 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

with the distribution predicate, empty result is produced. For example, in the

following figure, the selection predicate ENO=”E5” conflicts with the predicates of

fragments E1 and E3 and the reduced query is produced after examining the

fragmentation.

Figure 4. Reduction with Horizontal Fragmentation

Moreover joins on horizontally fragmented relations can be simplified when

the joined relations are fragmented according to the join attribute. The simplification

consists of distributing joins over unions and eliminating useless joins. The

distribution of join over union can be stated as

 (R1 ∪ R2) >< R3 = (R1 ><R3) ∪ (R2 ><R3)

With these transformations, unions can be moved up in the query tree so that

all possible joins of fragments are exhibited. Useless joins of fragments can be

determined when the qualifications of the joined fragments are contradicting.

Assuming that fragments Ri and Rj are defined, respectively, according to predicates

pi and pj on the same attribute, the simplification rule can be stated as follows:

 Ri ><Rj = Ø if ∀ x in Ri, ∀ y in Rj : ¬ (pi(x) ∧ pj(y))

σENO=”E5”

Ε1
(σENO≤”E3”)

Ε2
(σ”E3”<ENO≤”E6”)

Ε3
(σENO>”E6”)

(a) Generic Query

 ∪

σENO=”E5”

Ε2
(σ”E3”<ENO≤”E6”)

(b) Reduced Query

CHAPTER 2 QUERY PROCESSING 19

HARIS KONDYLAKIS

The determination of useless joins can greatly reduce the cost of query

processing.

2.2.3.4 Semijoins

The theory of Semijoins was defined in [Bernstein, 1981] and was proposed as

another technique to process joins between tables stored at different sites. If a table A

is stored at Site 1 and table B is stored at Site 2, then the conventional way to execute

a join between those tables is to ship A from Site 1 to Site 2 and execute the join at

Site 2 (or the other way around). The basic idea of a Semijoin is to send only the

columns of A that are needed to evaluate the join predicates from Site 1 to Site 2, find

the tuples of B that qualify the join criteria at Site 2, send those tuples to Site 1 and

then match A with those B tuples at Site 1. Formally this procedure can be described

as:

A >< B = A >< (B >< π (A))

where >< is the Semijoin operator

The use of Semijoin is beneficial if the cost to produce and send it to the other

site is less than the cost of sending the whole operand relation and of doing the actual

join. Several extensions such as like bloom filters [Babb 1979] exist, [Valduriez end

Gardarin 1984] but experimental work [Lu and Carey 1985], [Mackert and Lohman

1986] has shown that Semijoin programs are not very attractive for join processing in

standard distributed systems because the additional computational overhead is usually

higher than the savings in communication costs. However in very specific tasks

Semijoin is used with good results.

2.2.3.5 Double Pipelined Hash Joins

Recently, double-pipelined hash-join algorithms were proposed [Ives et al.

1999] ,[Urhan and Franklin 1999]. The basic idea is that in order to execute A >< B,

two main memory hash tables are constructed, one for tuples of A and one for tuples

of B. Initially, the two tables are empty and the tuples from A and B are processed one

tuple at a time. To process a tuple of A, the B hash-table is probed in order to find the

20 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

B tuples that match this A tuple, A and the matching tuples are then immediately

output. After that, the A tuple is inserted into the A hash table for matching B tuples

that have not been processed yet. The algorithm terminates when all the tuples of A

and B have been processed and is guaranteed to find all the results of the join. Special

actions need to be taken if the hash tables grow in such a way that main memory is

exhausted, like hybrid hashing and the use of partitioning schemata.

The use of such join algorithms make it possible to deliver the first results of a

query as early as possible. In addition such join algorithms make it possible to fully

exploit pipelined parallelism and thus reduce the overall response time of the query in

a distributed system. Those methods can be used with great advantages in distributed

systems where the delivery of tuples through the network is bursty because certain

phases of a join processing can be carried out at a site while the site waits for the next,

possibly delayed batch of tuples.

2.2.3.6 Top N and Bottom N Queries

In specific cases, Top N or Bottom N queries are posed in database systems.

Examples of such queries are “find the ten highest paid employees that work in a

research department” or “find the ten researchers that have published the most

papers”. The goal here is to avoid wasted work when executing these queries by

isolating the top N (or bottom N) tuples as quickly as possible and then performing

other operations only on those tuples.

In standard relational databases, stop operators have been proposed to isolate

the top N and the bottom N tuples [Carey and Kossmann 1998]. The techniques

proposed have been developed primarily for centralized databases, but they can be

directly applied to distributed systems as well. To give an example, consider a table A

that is horizontally partitioned in three sites and we want the top ten tuples of table A.

The stop operator in the individual sites makes sure that every site will ship at most

ten tuples to the output site, and the stop operator at the output site makes sure that no

more than ten query results are produced.

Several algorithms have been proposed in multimedia databases [Chaudhuri

and Gravano 1996], [Fagin 1996], or for meta-searching [Gravano and Garcia-Molina

CHAPTER 2 QUERY PROCESSING 21

HARIS KONDYLAKIS

1997], [Gravano et al 1997] but those implementations are beyond the scope of this

thesis.

2.3 Client-Server Database Systems

Here we will turn to a specific class of distributed systems with client-server

architecture. We will characterise different kinds of those systems and then we are

going to give an overview of the crucial questions for query-processing in these

systems and we will discuss query optimization and query execution issues. Some of

these techniques presented here can be applied in other system architectures too, but

they are presented in this section because are mostly used by client-server database

systems.

2.3.1 Architectures

In general client-server protocols refer to a class of protocols that allows one

site, the client, to send a request to another site, the server, which sends an answer as a

response to this request [Tanenbaum 1992]. Using this mechanism, it is possible to

implement a variety of different database architectures.

The most general architecture is the peer-to-peer architecture where each node

can act both as a client initiating queries and as a server answering them and storing

parts of the database.

In a strict client-server environment every node has a fixed role either as a

client or as a server. Typically clients do not interact and often servers neither. The

clients send queries which are being answered by the servers.

Another type of architecture is the multitier architecture where the sites are

organized in a hierarchical way and every site plays the role of a server for the sites of

the upper level and the role of a client for the lower level sites. Thus, a site in one of

the middle tiers can only communicate with its clients at the level above and its

servers at the level below.

Several examples of such systems exist, like SHORE [Carrey et al 1994], SAP

R/3[Buck – Emden and Galimow 1996] . Most of the commercial database systems

22 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

today have strict client-server architecture. Compared to a peer – to – peer

architecture, one advantage of a strict separation between client and server machines

is that only server machines need to be administrated and security issues can be

addressed by controlling the server machines and the client – server communication

links. Another advantage is that client and server machines can be equipped according

to their specific purposes. Client machines are often PCs with good support for

graphical user interfaces whereas server machines are usually more powerful with

multiple processors, large disks (RAID), and very good I/O performance. Except from

strict client – server architecture multitier architecture can be highly advantageous

when we want to integrate functionality provided by different vendors. Scalability can

be another reason to use middleware architecture because at every tier, additional sites

can be added in order to deal with a heavier load.

In the rest of this section we will describe query processing techniques that are

applicable for all three architectures but we will concentrate on the strict client –

server architecture and assume that every site has the fixed role of acting either as a

client or as a server.

2.3.2 Exploiting Client Resources

The essence of client – server computing is that the database is persistently

stored by server machines and that queries are initiated at client machines. The

question is whether to execute a query at the client machine which initiated it, or at

the server machines that store the relevant data. In other words the question is whether

to move the query to the data or to move the data to the query. Another related

question is whether and how to make use of caching and store temporarily copies of

data at client machines.

The first approach is called query shipping. The principle of query shipping is

to execute queries at servers. The SQL is shipped from clients to the server machine

and the server evaluates the query and sends back to the client the results. In systems

with several servers, query shipping works only if there is a middle – tier site that

carries out joins between tables stored at different servers or if there are gateways

between the servers so that joins across sites, can be carried out at one of the servers.

CHAPTER 2 QUERY PROCESSING 23

HARIS KONDYLAKIS

Query shipping is used in many relational and object – relational database systems

today such as IBM DB2, Oracle, and Microsoft SQL Server.

The exact opposite of query shipping is data shipping. Here, queries are

executed at the client machine at which they were initiated and data is rigorously

cached at client machines in main memory or on disk [Franklin et al. 1993]. That is,

copies of the data used in a query are kept at a client so that these copies can be used

to execute subsequent queries at the client. Caching is typically carried out in the

granularity of pages [DeWitt et al. 1990] and it is possible to cache individual pages

of base tables and indices [Zaharioudakis and Carey 1997]. Data shipping is used in

many object – oriented database systems such as ObjectStore and O2.

Neither query shipping nor data shipping is the best policy for query

processing in all situations. The advantages of both approaches can be combined in a

hybrid shipping architecture [Franklin et al. 1996]. Hybrid shipping provides the

flexibility to execute query operators on client and server machines, and it allows the

caching of data by clients. In the following figure this approach is shown.

Figure 5. Hybrid Shipping

Here, scan (A) and join operators are carried out at the client, whereas the scan

(B) operator is carried out at the server. The scan (A) operator uses the client’s cache

as much as possible and ships to the client only those parts of A that are not in the

cache. In contrast, the scan (B) operator neither uses nor changes the state of the

Server

Client

A
Scan

Scan
Join

A

B

24 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

client’s cache. Today hybrid shipping is used in some database products such as

UniSQL [D’Andrea and Janus 1996], application systems such as SAP R/3, research

prototypes such as ORION-2 [Jenq et al. 1990], KRISYS [Dessloch et al. 1998] and

to some extent, in heterogeneous systems such as Garlic [Carey et al. 1995],

TSIMMIS [Papakonstantinou et al. 1995] and DISCO [Tomasic et al 1998].

The performance tradeoffs of query, data and hybrid shipping have been

studied in extent in [Franklin et al. 1996]. Query shipping performs well if the server

machines are powerful and the client machines are really slow. On the negative side,

query shipping does not scale well if there are many clients because the servers are the

potential bottlenecks in the system. Data shipping scales well because it uses the

client machines, but data shipping can be the cause of very high communication costs

if caching is not effective and a great deal of unfiltered base data must be shipped to

the clients. Obviously, hybrid shipping has the potential to, at least, match the best

performance of data shipping and query shipping by exploiting caching and client

resources such as data shipping if that is beneficial, or otherwise by behaving like

query shipping. In some cases, hybrid shipping will show better performance than

both data and query shipping by exploiting client and server machines and intraquery

parallelism to execute a query. The price for this improved flexibility is that query

optimization is significantly more complex in a hybrid shipping system than in a

query or data shipping system because the optimizer must consider more options.

Experiments have shown that in many cases it is better to read data from the

server’s disks in a hybrid shipping system even if the data are cached at the client.

This happens when we have to read and join for example two tables that are already

cached at client. If we read the tables from the cache and we try to join them in the

same time then concurrently I/Os on the same disk will delay the whole work whereas

reading the tables from the server and executing locally the join is the preferable plan.

Moreover, sometimes the best strategy to execute query in a hybrid shipping system is

to ship cached data or intermediate query results from the client to the server. Such a

strategy, for example, is useful in situations in which the data are cached in the

client’s main memory, the network is fast, and join operations can be carried out most

efficiently at the server. Furthermore, transactions that involve small update

operations should be carried out at clients, whereas transactions that update large

amounts of data should be carried out directly at servers. The advantage is that small

CHAPTER 2 QUERY PROCESSING 25

HARIS KONDYLAKIS

transactions can be rolled back at clients without affecting the server and that updates

can be propagated to the server in one batch with fairly little overhead. [Bogle and

Liskov 1994], [O’Toole and Shira 1994].

2.3.3 Query Optimization

Having described the fundamental different approaches for query processing,

we will now show how query optimizers for query, data and hybrid shipping systems

can be built and describe several alternative query optimization strategies.

2.3.3.1 Site Selection

From the perspective of a query optimizer, data shipping, query shipping and

hybrid shipping can be modelled by the options they allow for site selection. So every

operator of a plan has a site annotation, which indicates where the operator is to be

executed. For example, display operators that pass the results of select queries to

application programs need to be carried out at the client which issued the query. For

all other operators such as updates, joins, scans, sorts, group by, etc the approaches

are different according to which model we are using. Data shipping carries out all

operations at the client, whereas query shipping carries out all the operations at

servers. Hybrid shipping allows the optimizer to annotate operations in any way

allowed by data or query shipping.

All site annotations are logical. A client site annotation indicates that the

operator is to be carried out by the client that issued the query. Such an annotation

does not indicate that the operator is carried out by a specific machine. Likewise, a

consumer annotation indicates that the operator is carried out at the same site as the

operator that processes the operator’s results. A server annotation for a scan indicates

that the scan is carried out at one of the servers that store a copy of scanned data. A

server annotation for an update indicates that the update is carried out at all the servers

that store a copy of the affected data (read – one – write – all ROWA is assumed).

These logical site annotations are translated into physical addresses when a plan is

prepared for execution. As a result the same plan can be used to execute a query at

different clients so that a query need not be recompiled for every client individually. If

26 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

there is replication, translating a server annotation for a scan involves selecting one

specific server machine which can be done heuristically or based on a cost model.

2.3.3.2 Where and When to Optimize

The two main questions in query optimization are where and when a query

should be optimized. The where question was extensively studied in [Hagmann and

Ferrari 1986], in an environment with many clients and one server. They proposed

carrying out certain steps of query processing at the client at which a query originates

and other steps at the server. For example, parsing and query rewrite could be carried

out at the client whereas query optimization and plan refinement could be carried out

at the server. This approach makes sense because operations that can easily be

executed at clients do not disturb the server whereas steps that require a good

knowledge of the current state of the system should be carried out by the server. In

systems with many servers, no single server has complete knowledge of the whole

system so a server is chosen to carry out optimization. This server needs to either

guess the state of the network and other servers based on statistics on the past, or try

to discover the load of other servers by asking them for their current load. While

asking is obviously better than guessing, asking involves at least two extra messages

for every server that is potentially involved in a query.

The answer to the second question determines the accuracy of the information

about the state of the system that the optimizer receives. This question arises for

canned queries that are part of application programs and evaluated during their

execution. As already stated, the traditional approach is to compile and optimize these

queries at the time the application program is compiled, store plans for these queries

in the database, and retrieve and execute these plans whenever the application

program is executed. When something drastic happens, it makes the execution of the

plan impossible (for example when an index is dropped) the plan stored in the

database is not valid any more, and a new plan must be generated before the

application program is executed [Chamberlin et al. 1981]. Obviously, this approach

cannot adapt to changes such as shifts in the load of sites, and the precompiled plans

show poor performance in many situations.

CHAPTER 2 QUERY PROCESSING 27

HARIS KONDYLAKIS

More dynamic approaches were proposed in [Graefe and Ward 1989] , [Cole

and Graefe 1994], [Ioannidis et al 1992]. The idea is to generate several alternative

plans and subplans at compile time, store these alternative plans and subplans in the

database, and choose the plan or subplans that best matches the current state of the

system just before executing the query. Even more dynamic approaches optimize

queries on the fly. The idea is to start executing a compiled or dynamically chosen

plan and observe whether intermediate query results are produced and delivered at the

expected rate. If the expectations are not met, the execution of the plan is stopped,

intermediate results are materialized and the optimizer is called to find a new plan for

those parts of the query that still need to be carried out. In [Uhran et al. 1998] is

shown how useful can be a reoptimization like that to improve the response time, in

situations in which the arrival of data from certain servers is delayed or bursty

because those servers are heavily loaded or the communication links are congested.

For this purpose the approach reorders and reschedules operations at the client so that

the client carries out other operations while waiting for the delayed data. In [Kabra

and DeWitt 1998] is shown how such a reoptimization approach helps in situations in

which the initial plan performs poorly because it was based on wrong estimates of the

size of tables and intermediate query results.

In [Ozcan et al. 1997], another dynamic on the fly query optimization

approach is proposed. In that approach queries are optimized and executed in two

phases. First, the query is decomposed and it is divided into a set of subqueries that

can each be executed by a single server. The final query result is composed by joining

the results of the subqueries by the client or a middle-tier machine. Query

decomposition for this purpose is described in [Evrendilek et al 1997]. The subqueries

are processed by the servers in parallel. The order in which the results of the

subqueries are joined at the client depends on the speed in which the servers produce

subquery results and the selectivity and cost of joins which need to be carried out to

combine the subquery results. Heuristic approaches can be used to decide whether to

join the subquery results produced in two fast servers immediately or to delay a join

and wait for the delivery of other subquery results from a slower server, first. The goal

is to parallelize work at the client with work at slow servers as much as possible, and

also to avoid the execution of very expensive joins that may result from poor join

ordering.

28 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

2.3.3.3 Two Step Optimization

Two step query optimization is an approach that has become popular for both

distributed and parallel database systems [Du et al. 1995], [Gangulu et al.1996],

[Hasan and Motwani 1995], [Stonebraker et al. 1996], [Thomas et al. 1995]. Two step

optimization is an alternative to the dynamic approaches presented in the previous

section because it carries out certain decisions just before a query is executed. Two

step optimization also reduces the overall complexity of distributed query

optimization. Several variants of two – step optimization exist.

For distributed systems, the basic variant of two – step optimization works as

follows. At compile time, a plan is being generated that specifies the join order, join

methods and access paths. Every time just before the query is executed, the plan is

transformed and site selections are carried out. All the steps can be carried out by

dynamic programming or any other enumeration algorithm. Two – step optimization

has a reasonable complexity because both steps require reasonable effort. The first

step has essentially the same, mostly acceptable, complexity as query optimization in

a centralized database system. The second step also has acceptable complexity

because it only carries out site selection.

Moreover, two – step optimization is useful to balance the load on a

distributed system because executing operators on heavily loaded sites can be avoided

by carrying out site selection at execution time [Carey end Lu 1986]. Two – step

optimization is also useful to exploit caching in a hybrid shipping system because

query operators can dynamically be placed at a client if the underlying data is cached

by the client [Franklin et al. 1996]. On the negative side, two – step query

optimization can result in plans with unnecessarily high communication cost because

in many cases the first step ignores the location of data and the impact of join

ordering on communication cost in a distributed system.

2.3.3 Query Execution Techniques

Most of the techniques presented in section 2.2.3 are useful in a client – server

environment as well as any other distributed database system. Row blocking for

CHAPTER 2 QUERY PROCESSING 29

HARIS KONDYLAKIS

example, is essential to ship data from servers to clients and vice versa and it has been

implemented in almost all commercial systems.

One particular issue that arises in hybrid shipping systems is how to deal with

transactions that first update data in a client’s cache and then execute a query at a

server that involves the updated data. For example, consider a transaction that first

updates the salary of one employee and then asks for the average salary of all

employees. The update is likely to be executed at the client at which the transaction

was started in order to batch updates as described in a previous section. On the other

hand the optimizer will probably decide to execute the second query at the server that

stores all the data needed in employee’s table in order to avoid the cost of shipping the

whole table to the client. The point is that the computation of the average salary must

consider the new salary of the updated employee, which is known to the client but not

to the server. Two possible solutions have been proposed here.

The fist solution is to propagate all relevant updates such as employee’s new

salary to the server just before starting to execute the query at that server [Kim et al.

1990] and the second one is to carry out the query a the server and then pad the results

returned by the server at the client using the updated values [Srinivansan and Carey

1992]. In either case, carrying out the query at the server involves additional costs that

should be taken into account by a dynamic or two – step optimizer in order to decide

whether it is cheaper to carry out the query at the server or at the client. Such issues

do not arise in query shipping and data shipping systems. Query shipping systems do

not support client-side caching and batched updates, and data shipping systems carry

out all operators at the client using the latest cached versions of data.

2.4 Heterogeneous Database Systems

This section gives an overview of how queries can be processed in

heterogeneous database systems. The purpose of such systems is to enable the

development of applications that need to access different kinds of component

databases (e.g. multimedia databases, relational, object oriented, xml databases). One

characteristic of heterogeneous database systems is that the individual component

databases can have different capabilities to store data, carry out database operations,

30 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

and communicate with other component databases of the system. One of the

challenges therefore, is to find query plans that exploit the specific capabilities of

every component database in the best possible way and to avoid query plans that

attempt to carry out invalid operations at a component database. Another challenge is

to deal with semantic heterogeneity, which arises for example, if several components

use the same term but they mean different things. Furthermore, every component

database has its own specific interface (API), decides autonomously when and how to

execute a query, and might not be designed to interact with other databases.

There has been done a great deal of work on various aspects of heterogeneous

databases. There have been issued excellent tutorials in the past [ACM Computing

Surveys 1990], and a lot of commercial systems. In this section therefore we will

concentrate on basic technology and recent developments in this area.

2.4.1 Wrapper Architecture

In order to construct heterogeneous database systems, several tools have been

developed in recent years. Examples are DISCO [Tomasic et al.1998], Garlic [Carey

et al.1995], Hermes [Adali et al. 1996], TSIMMIS [Papakonstantinou et al.1995],

Pegasus [Shan et al. 1994], Junglee’s VDB [Gupta et al. 1997]. Furthermore a number

of tools have been designed for the specific purpose of integrating data from different

relational and object oriented databases (IBM’s data joiner etc). Essentially all of

these tools have a three – tier software architecture as shown in the figure on the next

page.

Clients connect to a mediator [Wiederhold 1993]. The mediator parses a

query, carries out query rewrite and query optimization, and executes some of the

operations of a query. The mediator also maintains a catalog to store the global

schema of the whole heterogeneous database system (i.e. the schema used in queries

by application programs and users), the external schema of the component databases

(i.e. which parts of the global schema are stored by each component database), and

statistics for query optimization. Thus, the mediator has very much the same structure

as the “textbook” query processor described in the beginning of this chapter. The

difference is that an extended query optimization approach needs to be used and that

certain query execution techniques are particularly attractive in the mediator that

CHAPTER 2 QUERY PROCESSING 31

HARIS KONDYLAKIS

might not be attractive in other distributed database systems. Also, in most cases, a

mediator is designed to integrate any kind of component database. That is, a mediator

does not contain any code that is specific to any one component database and as a

result a mediator cannot directly interact with component databases.

Figure 6. Wrapper Architecture

To encapsulate the details of component databases, a wrapper is associated to

every component database. The wrapper translates every request of the mediator so

that the request is understood by the component database API, and translates the

results returned by the component database so that the results are understood by the

mediator and are compliant with the external schema of the heterogeneous database.

In some cases, wrappers also implement special techniques such as row blocking or

caching to improve performance. In addition, wrappers may participate in the

optimization process.

Obviously wrappers are fairly complex pieces of software, and it is not

unusual for it to take several months to develop one. The TSIMMIS and Garlic

projects have specifically addressed the question of how to make wrapped design as

cheap as possible. Similar wrappers work for many different kinds of component

databases and it is quite easy in most cases to adjust an existing wrapper in order to

obtain a wrapper for a new component database. Moreover, it is possible for several

component databases to be handled by the same wrapper as shown in the previous

Mediator

Wrapper Wrapper

Client

Database Database Database

Catalog

Client

32 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

figure. Furthermore, the architecture is extensible which means that at any time,

wrappers and component databases can be upgraded or new component databases can

be integrated without changing the mediator or adjusting existing wrappers. They can

be installed at any machines in the system and they even can be distributed in several

machines. It is quite likely that in the near future wrappers will be commercially

available for many common classes of databases.

2.4.2 Query Optimization

One of the challenges of query optimization in heterogeneous database

systems is that the capabilities of component databases are different. The optimizer of

a heterogeneous system must therefore be generic and be able to understand what

capabilities, component databases have. Several alternative approaches for query

optimization in heterogeneous database systems have been proposed in the literature.

One approach is to describe the capabilities of the component databases as views,

store the definitions of these views in the catalog, and see during optimization how a

query can be subsumed by these views [Levy 1999]. While this approach is flexible, it

is very difficult to implement successfully. Other work has proposed the use of

capability records [Levy et al. 1996] or context – free grammars to describe the

capabilities of queries and the use of various new cost – based and heuristic

algorithms to generate plans for a query [Papakonstantinou et al. 1996], [Tomasic et

al. 1998]. In this section we will focus on the approach where the capabilities of the

component databases are described by enumerating rules, which are interpreted by the

optimizer, and this approach uses either dynamic programming in order to find a good

plan or iterative dynamic programming in order to find a good plan with reasonable

effort [Haas et al. 1997]. This approach was implemented in IBM’s system Garlic.

2.4.2.1 Plan Enumeration with Dynamic Programming

The idea of plan enumeration is quite simple. Every wrapper provides a set of

planning functions, which are called by the optimizer’s accessPlan and joinPlan

functions in order to construct subplans, which can be handled by the wrapper and its

component databases. In other words, query optimization is carried out using the same

CHAPTER 2 QUERY PROCESSING 33

HARIS KONDYLAKIS

dynamic programming based algorithms as described before with the only difference

being that accessPlan and joinPlan functions call planning functions defined by

wrappers developers in order to enumerate subplans rather than constructing such

subplans themselves.

 plan_access(T, C, P) = R_Scan (T, C, P, ds(T))

 ds(T) returns the ID of the relational component database that stores T

Figure 7. Access plan enumeration rule

Conceptually, planning functions can be seen as enumeration rules. The figure

above shows the plan_access rule of a wrapper for relational component databases.

This rule generates an R_Scan operator to read table T from the component database

that stores T (i.e. ds(T)), apply predicates P to the tuples of T, and project out columns

C of T. This rule is called by the optimizer’s accessPlan function for every table used

in a query that is stored by a component database which is associated to the relational

wrapper. Consider for instance the following query:

SELECT e.name, e.salary, d.budget

FROM Emp e, Dept d

WHERE e.salary > 100.000 and e.works_in = d.dno;

 If both Emp and Dept are stored in the relational database D then the

plan_access rule of the figure is instantiated twice as follows

plan_access(Emp, {salary, works_in, name},{salary > 100,000})=

 R_Scan (Emp, {salary, works_in, name},{salary>100,000}, D)

plan_access (Dept, {dno, budget},{})=

 R_Scan (Dept, {dno, budget},{}, D)

The R_Scan operator generated with every application of the plan_access rule

is specific to and used internally by the relational wrapper; neither other wrappers nor

the mediator need to know about the existence or semantics of such an R_Scan

operator. Likewise, the relational component databases do not need to know about

34 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

R_Scan operators. To execute plans that involve R_Scan operators the wrapper

translates R_Scan(T,C,P,D) into “select C from T where P” and submits this query to

the relational component D.

Just like wrappers, the mediator provides a set of rules that enumerates

portions of plans that are to be executed by the mediator. For example, the mediator

provides a rule that says that any kind of join can be carried out by the mediator,

regardless of where the tables involved in the join are stored. So an Emp >< Dept

operation could be carried out by the mediator or by the relational component

database. The optimizer enumerates both alternatives by calling the mediator and

wrapper join enumeration rules, and the overall cheaper plan is selected.

The full details of the algorithm can be found in [Haas et al. 1997]. Having

presented the basic idea, we will briefly summarize the major advantages of this

approach.

This approach relies on well established distributed database technology which

gives vendors an easy migration path to adapt for their products. The use of dynamic

programming or iterative dynamic programming will generate good plans with

reasonable effort just as in any other distributed database system. Moreover this

approach is very flexible since the capabilities of the component databases can be

modeled very accurately by writing simple enumeration rules that might fit in several

databases. Those enumeration rules and planning functions for wrappers can be very

simple and easily implemented because the enumeration rules describe the kind of

operations that can be carried out rather than exactly how these operations are

implemented. Finally it is possible to define very simple enumeration rules at the

beginning and to add more sophisticated enumeration rules, or even change the rules

once the wrapper is operational.

2.4.2.2 Cost Estimation for Plans

Having described how alternative query evaluation plans can be enumerated in

a heterogeneous database system, we now turn to the question of how to estimate the

cost or response time of these plans.

Both the classic and response time approach presented in previous sections can

be used for this purpose, and the cost or response time of the individual operators that

CHAPTER 2 QUERY PROCESSING 35

HARIS KONDYLAKIS

are to be carried out by the mediator can be estimated just as in any other distributed

database system. This is because the mediator uses standard, well-understood

algorithms to execute joins, group – bys and so on. The challenge is to estimate the

cost or response time of wrapper plans that are to be carried out by the component

databases because the details of how a component database executes such a plan

might not be known. Estimating the cost of wrapper plans in heterogeneous database

systems is still an open research issue. There are three alternative approaches, which

differs in the accuracy of the estimates and in the amount of required effort by

wrapper developers.

The first one is called Calibration approach. The idea is to define a generic

cost model for all wrappers and adjust certain parameters of this cost model for every

individual wrapper and component database by executing a set of test queries. This

way, the specific hardware and software characteristics of a wrapper and a component

database can be taken into account. For example, a very simple generic model would

be to estimate the cost of a wrapper plan as C*N where N is the estimated number of

tuples returned and C is the wrapper specific parameter which would be small for very

fast components and large for slow component databases or component databases that

are only reachable by a slow communication link. Several generic cost models have

been proposed to implement the calibration approach [Du et al. 1992], [Zhu and

Larson 1994], [Gardarin et al. 1996], [Roth et al. 1999] and they are significantly

more complex than the simple example given above. The big advantage of the

calibration approach is that wrapper developers need not worry much about costing

issues when they design a new wrapper. The generic cost model is predefined as part

of the mediator, and the calibration of the generic cost model for a new component

can be carried out automatically or semi – automatically. The big disadvantage of the

calibration approach is that not all components databases can be tweaked into a

generic cost model.

An alternative to the calibration approach is to define a separate cost model for

every wrapper. In this approach, the developer of the wrapper not only provides

enumeration rules as described in previous section, but also a set of cost formulas.

One cost formula is associated with every enumeration rule in order to estimate the

cost of the plan generated by that rule. Obviously the advantage of this approach is

36 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

that the cost of all wrapper plans can be modeled as accurately as possible or desired.

However a heavy burden is put on the developers.

Finally the third approach to estimate the cost of wrapper plan is based on

monitoring the system and keeping statistics about the cost to execute wrapper plans

[Adali et al. 1996]. Like the calibration approach this one releases wrapper developers

from the heavy burden of worrying about costing issues, but it can be very inaccurate.

One particular advantage of this approach is that it automatically and dynamically

adapts to changes in the system that impact the cost of operations.

2.4.3 Query Execution

In this section we are going to describe two techniques that are commonly

used in executing queries in heterogeneous database systems. Of course all the

techniques described in previous sections are applicable here but wrappers and

component databases have usually limited capabilities which restrict the possible

ways to execute a query. For instance, two component databases may not be capable

of participating in a Semijoin program with duplicate elimination, or it may not be

possible to place query operators at component databases (operators must be

translated into queries that are understood by the components databases).

The first technique simulates a nested – loop join in a heterogeneous system.

This technique exploits the fact that many component databases take input parameters

as part of their query interfaces. To illustrate how bindings can be exploited for query

processing consider a heterogeneous system with two relational component databases

D1 and D2, that store tables A and B respectively. One way to execute A >< B with

join predicate A.x=B.y would be firstly to ask the mediator D1 to execute the

following query in order to scan table A.

 Select * from A

 The wrapper of D1 then will return the tuples of table A to the mediator, one

by one or in blocks using row blocking. For every tuple of A the mediator asks the

wrapped of D2 to evaluate the following query in order to find the matching B’s:

CHAPTER 2 QUERY PROCESSING 37

HARIS KONDYLAKIS

 select * from B where B.y=?

Here “?” denotes the binding parameter and is instantiated with the A.x value

of the current tuple of A. This approach shows good performance if A is fairly small

or a predicate restricts the number of tuples of A that need to be probed. This

approach is also useful because it might be the only possible way to execute the join.

Certain component databases accept blocks of tuples as parameters which can be

exploited to process joins by passing a block of tuples to the outer table or even the

whole outer table to the component database. Since this blocking reduces the number

of messages it is usually significantly faster than the tuple at a time approach and

should be used where possible.

Except from bindings, cursor caching is another technique. There are many

workloads for which the mediator submits the same query, with different parameters,

many times to a component database. The idea of cursor caching is to optimize a

query only once in order to reduce the overhead of submitting the same query to the

same component database again and again. For component database systems that

understand JDBC, cursor caching can be implemented by using JDBC’s

prepareStatement command to optimize the query, the set command to pass the

binding parameters every time the query is executed and the executeQuery command

to execute the query. Cursor caching is extensively used in systems such as SAP R/3,

Oracle e.t.c. Of course, cursor caching has the same tradeoffs as static query

optimizations since a cached plan may not be always the best plan to execute.

2.5 Dynamic Data Placement

The previous three sections answered the following question: Given a query

and the location of copies of data and other parameters, how can this query be

executed in the cheapest of fastest possible way. In this section we will look at this

question from a different perspective and show where copies of data should be placed

in a distributed system so that the whole query workload can be executed in the

cheapest or fastest possible way.

38 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Traditionally, data placement has been carried out statically. With static data

placement, a system administrator decides where to place copies of data, speculating

what type of queries might be carried out at what locations in the system. Obviously,

static data placement has several weaknesses since most of the time the query

workload is not predictable. Moreover even if the workload could be predicted it

would be expected to change and in many cases so quickly that the administrator

would be unable to keep up with the changes. Moreover the complexity of a

sufficiently accurate model for static placement is too big (N-P complete [Apers

1988]). This section is therefore, focused on dynamic data placement approaches

which keep statistics about the query workload and automatically move data and

establish copies of data at different sites in order to adjust the data placement to the

current workload. Those approaches do not aim to be perfect, but they try to improve

the data placement with every move. Concurrency control and consistency are not

addressed here nor techniques that place copies of entries of the catalog at different

sites [Eickler et al. 1997].

2.5.1 Replication vs. Caching

In principle there are two different mechanisms to establish copies of data at

different sites of a distributed system: caching and replication. Whereas they share the

same goal in order to reduce communication costs and balance the system load, there

are a number of subtle differences between them.

First, replication takes effect at server machines in a client-server

environment. Replication establish copies of data at servers based on statistics that are

kept with the purpose of better meeting the requirements of a potentially large group

of clients. Caching on the other hand, takes effect at clients or at middle – tier

machines and caching is based on statistics kept on these machines. Only one client or

a small group of clients, therefore, benefit from a cached copy of a data item, but it

establishes copies of data where the data is needed. Also, caching exploits client

machine resources which might remain unused without caching.

Moreover replication is typically coarse – grained. Only a whole table, a

whole index, or a whole partition of a table or index can be replicated. Replicating

data in a coarse granularity is acceptable because a large group of clients benefit from

CHAPTER 2 QUERY PROCESSING 39

HARIS KONDYLAKIS

replication and it is quite likely that most parts of a table or index will be used by this

group of clients. Caching on the other hand, is typically fine – grained: Individual

pages of a table or index can be cached by a client machine, and some systems even

allow the caching of individual rows of a table. Caching in a fine granularity is

important because caching supports the queries of a single client or a small group of

them, and clients are usually interested in a small fraction of the whole data.

Usually replication decisions are more long-term than caching decisions. That

is because replication is intended to support a large group of clients whose overall

access behavior does not change as rapidly as the access behavior of a single client.

Replication typically involves placing data on servers’ disks, whereas a client’s

working set of data typically fits in the client machine’s main memory. Server replicas

are registered in the system’s distributed catalog so they can be used by all clients,

while caching does not affect the catalog. Propagation – based protocols are used to

keep replicas of data consistent and accessible at servers all the time. For caching on

the other hand, it was shown that the best way to maintain consistency is to use a

protocol that is based on invalidation, and removes out of date copies from client’s

cache so that copies of data are only available in a client’s cache as long as they have

not been updated [Franklin et al. 1997]. Furthermore replicas are kept at servers until

they are explicitly deleted whereas copies of data are kept in a client’s cache until they

are replaced by copies of other and more interesting data using a replacement policy

such as LRU.

The last difference between replication and caching concerns the mechanism

used to establish copies of data. Replicas are established by a separate process that

copies a table, index, or partition and moves it to the target server. Caching on the

other hand is a by-product of query execution. When a table scan or index scan is

executed at a client, the client fault in all the pages of the table or index that the client

has not cached and, after the scan is complete, the client keeps all the used pages of

the table or index in its cache, if the cache is large enough. As a consequence, caching

decisions need to be made by the query processor while replication decisions can be

made by a separate component that is established at every server and works

independently.

To conclude, there is no more useful technique between caching and

replication. They are complementary and they should be both implemented.

40 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Replication helps to move data near to a large group of clients so that these clients can

access the data cheaply the first time they need the data. Caching makes it possible to

access data cheaply when data are used repeatedly by the same client even when we

have server failure.

Several dynamic replication algorithms have been proposed in the literature

[Bestavros and Cunha 1996], [Sidell et al. 1996], [Wolfson et al. 1997] and can be

roughly classified in two groups. In algorithms that try to reduce communication costs

in a WAN by moving copies of data to servers that are located near clients, and in

algorithms that try to replicate “hot” data in order to balance the load of servers in a

LAN or in an environment which communication is cheap. Just like replication, a lot

of algorithms have been proposed for dynamic caching too. The most common

algorithm is called “cache investment” and fully analyzed in [Kosssman et al. 2000].

2.5.2 View Caching, View Materialization and Data Warehouses

So far we assumed that only base data can be cached and replicated (i.e. base

tables or indices or parts of them). We will now illustrate systems that cache or

replicate (i.e. materialize) derived data or views. Such systems could for example,

cache the average salary of all Emps that work in a research department instead of or

in addition to the complete salary information of all Emps.

View caching and materialization has been addressed in a number of research

projects [Desphpande et al. 1998], [Dessloch et al. 1998] and view materialization has

also be implemented in Oracle [Bello et al. 1998]. Data warehouses are the most

prominent example of commercial systems that materialize and cache views [Widom

1995]. Data warehouses are typically established for decision support in companies or

as product catalogs and classified ads for electronic commerce on the web. They are

usually installed in a three – tier environment and they are located in the middle tier,

which is connected to one or more data sources , and it keeps materialized views over

the base data stored at those data sources. Its role is to answer queries from clients

without interacting with data sources. From our narrow perspective, in a data

warehouse, the data sources and the clients are part of a distributed system in which

views are materialized or cached in the warehouse.

CHAPTER 2 QUERY PROCESSING 41

HARIS KONDYLAKIS

Compared to the replication and caching of base data, the benefits of

materializing and caching views are significantly larger. Caching the result of a join

for example, might completely eliminate the cost of join or group-by processing for

subsequent queries in addition to savings in communication costs and potential load

balancing effects. View caching and view materialization are significantly more

complex to implement. That is because keeping cached or materialized views

consistent in the presence of updates is complex and often expensive [Quass and

Widom 1997], and it is unclear how invalidation based protocols, which have proven

to be very useful to implement cache consistency, can be applied to view caching.

Cache investment can be used but there is an explosion in the number of “what-if”

analyses that need to be carried out for every query so that a naïve application of

cache investment is impractical. Moreover query optimization is more complicated

and more expensive in the presence of cached and materialized views [Levy 1999]

because the optimizer must determine whether a cached or materialized view is

applicable and which of the applicable views to use. To this end the optimizer must be

extended in order to enumerate read (view) plans for applicable views just like other

access and join plans and carry out cost based optimization using dynamic

programming or iterative dynamic programming.

42 CHAPTER 2 QUERY PROCESSING

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS 43

HARIS KONDYLAKIS

Chapter 3

3Biological Data Integration Systems

“If the informatics is not handled well, the HGI [human

genome initiative] could spend billions of dollars and

researchers might still find it easier to obtain data by

repeating experiments than by querying the database. If this

happens, someone blew it.”

 - Frenkel, K. A.

Contents
3.1 CHARACTERISTICS AND CHALLENGES ..44
3.2 INTEGRATION APPROACHES...45

3.2.1 WAREHOUSE INTEGRATION ..46
3.2.2 MEDIATOR BASED INTEGRATION..46
3.2.3 NAVIGATIONAL INTEGRATION ..48

3.3 EXISTING BIOINFORMATIC INTEGRATION SYSTEMS...48
3.3.1 SRS...49
3.3.2 K2/BIOKLEISLI ..49
3.3.3 TAMBIS...50
3.3.4 DISCOVERYLINK ..51
3.3.5 BACIIS...52
3.3.6 OTHER SYSTEMS AND THE IDEAL SYSTEM ..52

While the previous set of techniques is sufficient for most of today’s

applications the advent of biology has sparked a large number of new applications and

led to systems with an ever growing number of challenges.

44 CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

3.1 Characteristics and challenges

The challenges that must be overcome when integrating heterogeneous

bioinformatics sources are numerous.

The first challenge that must be resolved is the variety of data. The data

exported by the available sources cover several biological and genomic research

fields. Typical data that can be stored includes gene expressions, and sequences,

disease characteristics, molecular structures, microarray data, protein interactions etc.

Depending on how large or domain specific the sources are, they can store different

types of data. Moreover, bioinformatics data can be characterized by many

relationships between objects and concepts, which are difficult to identify formally,

usually because they span across several research topics. Not only the quantity of data

available in a source can be quite large, but also the size of each datum or record can

itself be extremely large (DNA sequences, protein structures etc). This differs from

non-scientific integration scenarios where there is usually no specific need to address

the issue of very large entries.

Moreover, in bioinformatics, that similar data can be contained in several

sources but represented in a variety of ways depending on the source. This

representational heterogeneity encompasses structural, naming, semantic and content

differences [Sujansky 2001]. In other words not only are they very large, but they also

each have their own schema complexity. Furthermore, each source may refer to the

same semantic concept or field with its own term or identifier, which can lead to a

semantic discrepancy between the many sources. The opposite can also occur, as

some sources may use the same term to refer to different semantic objects. Moreover

the content differences involve sources that contain different data for the same

semantic object, or that simply have some missing data, thus creating some possible

inconsistencies between sources. This representational heterogeneity leads to issues

such as entity identification across sources and data quality issues, as well as data

consistency and redundancy.

Most of these sources operate autonomously, which means that they are free to

modify their design and schema, remove some data without prior notification, or

occasionally block access to the source for maintenance purposes. Moreover, they

may not always be aware of or concerned by other sources referencing them or

integration systems accessing them. This instability and unpredictability is further

CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS 45

HARIS KONDYLAKIS

affected by the simple fact that nearly all sources are web – based and are therefore

dependent on network traffic and overall availability. An important consequence of

the sources being autonomous is that the data is dynamic. New discoveries or

experiments will continually modify the source content to reflect new hypotheses or

findings. In fact the only way for an integration system to be certain that it will return

the latest data is to actually access the sources at query time.

 Finally, individual sources provide their own user-access interface, all of

which a user must learn in order to retrieve information that is likely spread across

several sources. Additionally the sources often allow for only certain types of queries

to be asked, thereby protecting and preventing direct access to their data. These

intentional access restrictions force end-users and external systems to adapt and limit

their queries to a certain form. In [Sujansky 2001] it is noted that some potentially

useful information in many cases cannot be retrieved because of query restrictions and

those potentially pertinent queries cannot be asked even though the data necessary to

answer them is available at the sources.

3.2 Integration Approaches

The existing systems for integrating bioinformatics sources vary along several

dimensions. The integration approaches used in the existing systems can be classified

first in terms of the data model they use – text, structured data or linked records. For

systems that view sources as exporting mainly text, integration involves supporting

keyword/text search across the sources. When the sources are viewed as exporting

more structured data, there are two board types of integration approaches based on

whether the data from the sources is “warehoused” or accessed on demand from the

sources. For systems that view sources as exporting a linked set of browsable records,

integration involves supporting effective navigation across sources. Since the majority

of systems use (semi-) structured or linked record models, we will discuss the

integration approaches for these in more detail.

46 CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

3.2.1 Warehouse Integration

As we already discussed warehouse integration consists in materializing the

data from multiple sources into a local warehouse and executing all queries on the

data contained in the warehouse rather than the actual sources. Warehousing

emphasizes data translation, as opposed to query translation in mediator-based

integration. In fact, warehousing requires that all data loaded from the sources be

converted through data mapping to a standard unique format before it is physically

stored locally.

Relying less on network to access the data, obviously eliminates various

problems such as network bottlenecks, low response times and occasional

unavailability of sources. They allow query optimization to be performed locally

[Davidson et al. 1995] and provide, the user the functionality to filter, validate,

modify and annotate the data obtained from the sources [Davidson et al. 2001],

[Hammer and Schneider 2003] and this has been noted as a very attractive property

for bioinformatics.

This approach however has an important and costly drawback in terms of

result reliability and overall system maintenance caused by the possibility of returning

outdated results. As we have said, biological data usually evolve rapidly and

warehouse integration must regularly check throughout the underlying sources for

new or updated data and then reflect those modifications on the local copy of data.

3.2.2 Mediator Based Integration

Mediator based integration concentrates on query translation. A mediator in

the information context is a system that is responsible for reformulating at runtime a

query given by a user on a single mediated schema into a query on the local schema of

the underlying data sources. Unlike in the warehouse approach, none of the data in a

mediator-based integration system is converted to a unique format according to data

translation mapping. Instead, a different mapping is required to capture the

relationship between the source descriptions and the mediator, thus allowing queries

on the mediator to be translated to queries on the data sources. Specifying this

correspondence is a crucial step in creating a mediator, as it will influence both how

CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS 47

HARIS KONDYLAKIS

difficult the query reformulation is and how easily new sources can be added to or

removed from the integration system.

The two main approaches for establishing the mapping between each source

schema and the global schema are global-as-view (GAV) and local-as-view (LAV)

[Florescu et al. 1998]. In the GAV approach the mediator relations are directly written

in terms of the source relations. In other words, each mediator relation is nothing but a

query over the data sources. The GAV approach greatly facilitates query

reformulation as it simply becomes a view unfolding process; however handling the

addition or removal of a source in a GAV mediator is much more difficult as it

requires a modification of the mediator schema to take into account changes. In a

LAV based mediator every source relation is defined over the relations and the

schema of the mediator. It is therefore, up to the individual sources to provide a

description of their schema in terms of the global schema, making very simple to add

or remove sources but also complicating the query reformulation and processing role

of the mediator. Clearly both of these approaches have some positive and negative

consequences, but LAV is considered to be much more appropriate for large scale ad-

hoc integration because of the low impact changes to the information sources that

have on the system maintenance, while GAV is preferred when the set of sources

being integrated is known and stable.

Furthermore, most systems assume that sources they are integrating, export

different parts of the same “complementary” schema. In real world applications,

however, we should consider the possibility that sources may be overlapping in which

case aggregation of information is required as opposed to pure integration of

information. Integrating complementary sources is often called horizontal integration

whereas integrating the overlapping sources is called vertical integration.

Several of the bioinformatics integration systems were developed before the

advent of the mediated systems, and instead follow the federated database model. A

federated database integration system consists of underlying sources which are

autonomous components but which also cooperate to allow controlled access to their

data. In [Sheth et al 1990] it is explained that federated integration can be seen as the

middle ground between no integration, where a user must query each source

individually, and total integration, where a user can only query the sources through

the integration system, in federated integration this schemas of the component sources

48 CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

are put together to form an integrated schema on which queries will be asked. Seen

from this vantage point, mediated systems could be seen as very loosely coupled

versions of federated systems.

3.2.3 Navigational Integration

The idea of navigational or link-based integration emerged from the fact that

an increasing number of sources on the web require the users to manually browse

through several web pages and data sources in order to obtain the desired information

[Davidson et al. 1995]. In fact the major premise and motive justifying this type of

integration is that some sources provide the users with pages that would not or hardly

be accessible without point-and-click navigation. The specific paths essentially

constitute workflows in which the output of a source tool is redirected to the input of

the next source until the requested information is reached [Buttler et al. 2002]. In

effect queries are transformed into path expressions that could reach each answer the

query with different levels of satisfaction [Mork P. et al 2001]

Pure navigational integration eliminates relational modeling of the data, and

instead applies a model where sources are defined as sets of pages with their

interconnections and specific entry-points, as well as additional information such as

content, path constraints, and optional or mandatory input parameters. In [Friedman et

al. 1999] is claimed that this model effectively allows the representation of cases

where the page containing the desired information, is only reachable through a

particular navigation path across other pages.

3.3 Existing Bioinformatic Integration Systems

This section covers a description of some well – known systems that are

currently available in the domain of bioinformatics.

CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS 49

HARIS KONDYLAKIS

3.3.1 SRS

The Sequence Retrieval System is closer to a keyword – based retrieval

system than an integration system. Its approach to Bioinformatic integration is to

parse flat files or databanks that contains structured text with field names. It then

creates and stores an index for each field and uses the local indexes at query time to

retrieve relevant entries [Lopez 2001]. Although extensive indexed entries are kept

locally to be used by the query processor at query time, SRS is not actually a

warehouse system as the actual data is neither modified nor stored locally. The main

feature of SRS is that it keeps track of the cross-references between sources. In order

to parse the flat files, the system has its own parser which is called ICARUS and it is

designed to recognize the presence of links and index all source records using a

keyword-based indexing approach. Therefore, while parsing, the system can identify

links that exist between entries in different sources. These links are then used to

suggest more results to a user after a query has been processed.

The user query interface is straightforward in SRS. A user first selects which

of the many available sources should be queried, depending on the type of data

expected, and then asks a keyword or gene sequence query on those sources. After the

query is processed, the relevant document in terms of the query keywords is

displayed. Additionally, SRS will search in its local index of parsed links for entries

that are related in some way to the query. All such links are then made available to the

user and grouped by source or by the type of data they point to. In other words, the

results of the query in this system are essentially composed of a set of tuples or entries

directly retrieved from the initially selected sources and a set of paths across other

sources which lead to information that is related to the query.

3.3.2 K2/BioKleisli

BioKleisli is primarily a loosely – coupled federated database system. The

mediator on top of the underlying sources relies mainly on a high-level query

language that is more expressive than SQL and that provides the ability to query

across several sources (it is called Collection Programming Language or CPL). CPL

[Davidson et al. 2001] requires source specific wrappers to map sub-queries to

specific heterogeneous sources, which are accessed through predefined atomic query-

50 CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

functions. The data model used is an object-oriented type system that is more

expressive than the relational model since it includes bags, lists, variants, nested

records etc.

BioKleisli does not use any global molecular biology schema or ontology that

the user could use to formulate queries. This approach therefore requires that the users

posses an expertise in CPL and a perfect knowledge of the underlying data schemata.

This project was mainly aimed at performing horizontal integration and in fact a query

attribute is usually bound to an attribute in a single predetermined source. There is

essentially no integration of sources with content overlap and as a consequence no

optimization based on source characteristics or source content is performed. In fact

the procedural nature of CPL makes the query optimization task really difficult. In the

newer version K2 of the system, CPL is abandoned and OQL is used, but the overall

flow of the system is not modified.

3.3.3 TAMBIS

Transparent Access to Multiple Bioinformatics Information Sources or

TAMBIS [Baker et al 1998], [Paton et al 1999] is a mediator-based and ontology

driven information system. Queries are formulated through a graphical interface

where a user needs to browse through concepts defined in a global schema and select

the ones that are of interest for the particular query. Then the system expresses the

graphical query in GRAIL, declarative source independent description logic and after

that the query is translated into a Query Internal Form (QIF), which is in turn

translated into a source dependent query execution plan in CPL. Because TAMBIS

needs external wrappers, it uses wrappers from BioKleisli system to access the

underlying sources.

The planning and optimization subsystem in TAMBIS only performs

reordering of query components. It does not store source statistics or analyze source

capabilities. Reordering is based on the cost of individual query components, where

the cost combines the predicted time necessary to evaluate a component as well as the

expected number of results it will return. This optimization therefore does not include

any evaluation of sources in terms of content overlap or source availability. In fact, a

given concept and its CPL function are always linked to a predetermined source,

CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS 51

HARIS KONDYLAKIS

which means that even if several sources contain information about a concept, one of

them will always be addressed for that particular concept. Moreover, it must be noted

that the ontology defined by TAMBIS is not primarily used for schema mapping

between the underlying bioinformatic sources. Instead it is a dictionary and a

classification of biological concepts that represents subsumption relationships

between concepts. The mapping of ontology concepts to source dependent CPL

functions is done by another subsystem called the Source Model. Hence the TAMBIS

domain ontology mainly serves the purpose of easing the user’s task of formulating

queries.

3.3.4 DiscoveryLink

DiscoveryLink [Hass et al. 2000], [Hass et al. 2001] was IBM’s proposal on

the area of bioinformatics. It is a wrapper-oriented system and it serves as an

intermediary for applications that need to access data from several biological sources.

It is an integration layer built on the Garlic project technology and it serves as a

middleware between the applications and a set of wrappers. The source specific

wrappers must register their data source in order to be integrated.

Users connect to DiscoveryLink and issue queries in SQL based on some

global schema. Garlic technology is mainly a federated database query processor that

communicates with source-specific wrappers to determine optimal plan for a given

query and executes the query over possibly several sources. The data model used is

the object-relational model and the wrappers provide source-specific information

about query capabilities that help the optimizer to determine which parts of a query

can be submitted to each source.

Using the information provided by wrappers, the query is broken into portions

that can be handled by different sources. Then each wrapper produces a plan that the

underlying source is capable of executing, and evaluates the execution cost of that

plan. The overall cost of all plans is calculated by the optimizer where several factors

are taken into account such as the local execution cost, network cost, selectivity, and

the cost of any remaining operations that cannot be performed by the data sources.

After the wrappers have produced their plans and the optimizer have decided on the

best plan to adopt, the execution engine will send out individual plans to be executed

52 CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

by wrappers. Once the wrappers have performed their plan, the processed data flows

from the data sources into DiscoveryLink engine, which in turn performs any

operations that could not be handled by the sources, and returns the data to the client

application.

Unlike TAMBIS, DiscoveryLink is not a user-end product. A user interface is

required to operate on top of DiscoveryLink to elicit queries that are processed and

sent to the underlying sources.

3.3.5 BACIIS

Biological and Chemical Information Integration System [Ben Miled et al.

2003] is an on-demand information integration system for life science web databases.

It was developed using the mediator-based approach combined with extensive use of a

knowledge base. The knowledge base contains a domain ontology which serves as

global schema for the system and which captures object classes, attributes, and

multiple complex relationships between them. The knowledge base also keeps the

data source schema which maps the schema of individual sources to the domain

ontology. One of the goals of this project is also to derive extraction rules

automatically and store them in the source wrappers. The whole architecture consists

of five servers that cooperate to answer multi-database queries over a set of

geographically distributed life science databases. These servers can be executed on

the same machine or in different machines, which maximize resources utilization and

reduces the effort needed to add new services. The user formulates queries

interactively within forms and the sources that need to be queried are automatically

selected by the system while the data model used here is structured, object –

relational.

3.3.6 Other Systems and the ideal system

Except from those systems several others exist. GUS [Davidson et al. 1995], is

a system that follows the approach of data warehousing and allows users to add

annotations that may want to associate to some retrieved data. KIND [Gupta et al.

CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS 53

HARIS KONDYLAKIS

2000], [Ludascher et al. 2001] attempts to combine the use of formal ontologies and

conceptual models with source-specific wrappers and ENTREZ is a web-based link-

driven federation in which sources are interconnected so that any entry returned from

one of the integrated sources will also have related links to the other sources.

There is no such system that we could describe as the best one. The question

here is what the biologists and other researchers want from a system. The primary use

of such systems is to enable scientists to acquire some knowledge from large amounts

of data, to then formulate hypotheses from the knowledge acquired and finally

perhaps to validate these hypotheses. The amount of work necessary without an

integration system is prohibitive, which is why the main goal of these systems should

be to automate a maximum number of tasks. It is clear that it is up to the system to

ensure that users will find what they are looking for in a minimum amount of time and

interactions. In many cases users may do not want a fully transparent query layer

because they might want to choose which sources is to be accessed and by what plan

(i.e. in TAMBIS). This tends to show that the system must be able to provide enough

flexibility to the user as well as display the provenance of the data.

Moreover, it is desirable that source representation and source capabilities be

automatically extracted. As of today, most source descriptions are obtained through a

manual analysis of the source schema or interface by both a domain expert and an

integration expert, which are usually two distinct people. Automating the process will

reduce the cost and time necessary to develop full-scale integration systems that can

keep up with the pace at which biological data is generated. Furthermore, it is

important for an integration system to gather source statistics in order to refine the

query plans and improve the overall functionality and performance of the system even

as the sources evolve. Except from that we must take into account the interesting fact

that most biologists or researchers value data even though it may be only partially

complete and potentially incorrect. Any data can indeed be relevant to a scientific

researcher.

Much like TAMBIS and K2, most of the currently widely used integration

systems only address the horizontal dimension of data integration. In integrating only

sources that have complementary data, an integration system does not take into

account the potential overlapping aspect of sources or the probable incompleteness of

some of them. Restricting the integration process to simply combining data from

54 CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

sources that contain different types of information for the same semantic entity, limits

the capability of a system, especially in terms of reliability and completeness. A

purely horizontal integration system cannot address issues of effectiveness and

efficiency. In fact, aggregation of information of sources is also necessary.

CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION 55

HARIS KONDYLAKIS

Chapter 4

4Quete: A System For Data Integration

“An expert is a man who has made all the mistakes which can

be made, in a narrow field.”

 - Niels Borh

Contents
4.1 INTRODUCTION ..55
4.2 BASIC IDEA...56
4.3 THE INTEGRATION ARCHITECTURE ..57
4.4 INTEGRATION COMPONENTS..59

4.4.1 THE REFERENCE ONTOLOGY ..60
4.4.2 X-SPEC – METADATA SPECIFICATION ..62
4.4.3 INTEGRATION ALGORITHM ...63
4.4.4 QUERYING IN QUETE...65

4.1 Introduction

In previous chapter, we illustrated that there is no system considered to be

complete in the area of bioinformatics. The brief discussion justified the need for

systems that provide an integration of bioinformatic sources as there exists a real

demand from biological researchers who are now overwhelmed by the amount of

work necessary to manually go through the integration process. After a short

description of the major systems used by biologists we pointed out the lack of

aggregation systems, which could integrate sources containing semantically similar

data, also known as vertical integration. Existing methods either require the user to

56 CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

know the semantics of all data sources or they impose a static global view that is not

tolerant of schema evolution. These assumptions are not valid in many environments.

Moreover we illustrated that when designing a heterogeneous database, the

goal is to encapsulate the heterogeneity of the component databases and to use

existing homogenous distributed database techniques as much as possible.

Having all that in mind and knowing that the ideal integration system should

truly take into consideration the wishes of those who will use the system we built

QueTe. QueTe was based on Unity [Mason T. and Lawrence R. 2005] which was

extended and enhanced in order to produce a system capable of integrating

bioinformatic sources. This work proposes an automatic schema integration

algorithm which removes all naming conflicts by utilizing a standard ontology to

describe schema element semantics.

4.2 The Initial Idea

 In this thesis we propose a method for semi-automatic schema integration by

using a standard ontology to describe schema element semantics. The use of ontology

resolves naming problems, which allows our algorithm to automatically resolve the

more complex structural and semantic conflicts. The major contribution of this work

is a systemized method for capturing data semantics using a reference ontology and a

model which uses this information to perform schema integration in relational

databases.

The starting idea was to build a system that would integrate several databases.

Those databases would be autonomous and independent and would evolve at will.

Several kinds of databases have been studied but we eventually focused on relational

ones, as they are most used today. All those databases, that could store data from

several areas, would have a schema that describes how data are organized and stored.

In many cases, different sources may want to share only a portion of their data so it

was crucial to have the ability to decide which fragments of data were going to be

shared.

After deciding which parts of the local schema each database would share,

those schemata would be integrated to build a Global Schema. The Global schema

CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION 57

HARIS KONDYLAKIS

would be used internally by the system and mappings between the Global schema and

the local schemata would exist to determine data allocation.

Moreover, users needed a common starting point in order to understand the

information stored in the integration system and how to query it. That common

starting point is an ontology that is defined at the top level of the system and users can

use ontological terms to query underlying data sources. Of course a set of mappings is

needed between the ontology and the Global Schema in order to answer queries

transparently.

That basic idea is shown at the figure below. Having that idea as a staring

point we extended our implementation further, and we are going to examine it, in the

rest of this chapter.

Figure 8. Integration Schema

4.3 The Integration Architecture

Before going further we should describe the architecture of our system. The

integration architecture consists of two separate and distinct phases: The capture

process and the integration process.

Ontology

Global Schema

Local Schema
(Rel DB)

Local Schema

Local Schema
(Rel DB)

Local Schema

58 CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

The fist phase is used to capture the data to be integrated. This process is

performed independently in each data source and the only “binding” between

individual capture processes, at different data sources, is the use of the common

ontology to provide standardized terms for referencing data. Here, the database

schema to be integrated is being extracted and the metadata are stored in a specific

XML file called X-Spec which we are going to describe later in this chapter. Those

metadata extracted are being annotated using ontology terms, and that semantic

information is stored in X-Spec too.

The integration process actually performs the integration of the various data

sources. It is assumed that there is a central site where the integration is performed by

combining the X-Specs of the data sources. Clients wishing to access the individual

data sources submit their queries to this central site which handles the necessary

mappings and transaction management.

The key benefit of these two phases is that the capture process is isolated from

the integration process. This allows multiple capture processes to be performed

concurrently and without knowledge of each other. Thus, the capture process at one

data source is not affected by the capture process at any other data source. This allows

the first phase to be performed only once regardless how many data sources may

actually be integrated. Moreover each data source is able to change the semantics, the

schema and the portion of the data to be shared by just altering the X-Spec file that

they provide. These are significant advantages as they allow application vendors and

database designers to capture the semantics of their systems at design-time or at any

other time they want, and the clients of their products are able to integrate them with

other systems with minimum effort.

The central site takes the X-Specs of the individual data sources and executes

the integration algorithm to produce an integrated view (i.e Context View) that will

be used internally. Users then can issue queries on the central site using an SQL like

query language that is going to be described in the following chapter. When a query is

sent to the central site, the necessary mapping from ontology to system names is

performed and the query is divided into several subqueries against the data sources.

The central site is assumed to implement the functionality of a DBMS manager which

includes transaction management and query processing. Once results are returned

CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION 59

HARIS KONDYLAKIS

from the individual data sources they are integrated based on the unified view and

then returned to the user.

It is important to note that by the use of a central site and relational underlying

databases, no translational or wrapper software is required at individual data sources.

Once the X-Spec has been provided for the data source and integrated by the central

site, the software at the central site communicates directly with the data sources using

ODBC or proprietary protocols. All translation, integration and global transaction

management is handled by software at the central site.

This approach allows full autonomy of the underlying data sources as the

central site appears as another client issuing queries to them. Moreover this approach

allows the development of standard ontologies that could be used across industries,

organizations and the scientific community. Those ontologies do not need to be

complete or widely accepted. Application specific ontologies can as well be used

without any semantic loss.

4.4 Integration Components

After briefly describing the integration architecture it is necessary to explain

the three basic components: The standardized ontology, the metadata specification for

capturing data semantics, and an integration algorithm for combining metadata

specifications into an integrated view.

The ontology provides a set of terms for constructing semantic names

describing schema elements. By defining semantic names using a standardized

ontology we resolve naming conflicts since two schema elements with the same

semantic name are assumed to represent identical concepts regardless of their

structural organization. Metadata specifications, called X-Spec, store schema

information in XML documents. An X-Spec contains also mappings from semantic

names to system names used in the data sources. The integration algorithm matches

the semantic names to produce an integrated view of concepts.

60 CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

4.4.1 The Reference Ontology

People, in order to exchange knowledge, use a common language to describe

knowledge. Knowledge transfer in conversation arises from the definitions of the

words used and the structure in which they are represented. Since a computer has no

built-in mechanism to associate semantics to words and symbols, a common point of

reference is required to allow the computer to determine semantically equivalent

expressions.

Determining semantically equivalent words and phrases is a complex problem.

The English language is very large with many equivalent words for specifying

equivalent concepts. Thus, the size of the database is a problem, and it is complicated

for the computer to determine in which cases two words represent semantically

equivalent data.

Ontologies are a common point of reference and they have been used in

various roles for database integration [Batini et al 1986], [Sheth et al 1990]. Most

organizations such as the National Cancer Institute or the National Institutes of Health

have been developing standard ontologies for their domains that could be useful in the

process of integrating several data sources. The idea is to match each source to the

domain ontology, and each schema-to-ontology map is validated by the administrator.

The advantage of this approach is that the administrator only needs to understand the

semantics of their schema when validating matches. Schema-to-ontology mappings

can be used to build mappings to any schema that is also matched to the ontology by

composing the schema-to-ontology matching.

The ontology in our system is organized as a graph of concepts. All concepts

are placed into a graph and are related using two types of relationships. ‘IS-A’

relationships and ‘HAS-A’ relationships. ‘IS-A’ relationships are the standard

subclass and superclass type of relationships and are used to model generalization or

specialization data concepts. Component relationships relate terms using ‘Part-of’ or

‘HAS-A’ relationship. For example, an address may have city, state, postal code, etc.

Similarly, a person’s name may have first and last name components. To represent

ontologies like these, we could use RDFS. Although this is a rather simple modeling

mechanism it is adequate for modeling the real-world. In case that our ontology uses

more complex relations, they can be rewritten by using only ‘IS-A’ and ‘HAS-A’

relationships. We believe that although it is a trivial task, it may be time consuming

CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION 61

HARIS KONDYLAKIS

for complex ontologies. We must note however that the ontology is not the integrated

view. It is just a standard set of terms to consult in order to describe semantics for

creating the integrated view and the ontology provides standardized names for

concepts with unambiguous definitions.

Initially the ontology may contain a limited set of concepts commonly stored

in databases. We can assume that it is possible for the ontology to expand over time as

new types of data appear and the underlying databases evolve. Thus, we allow an

organization to add nodes to the ontology to both the concept hierarchy and

component relationships to capture and standardize names used in their organization

which are not in the standardized ontology. These additional links are stored and

transmitted along with the metadata information during integration. We expect that

the evolution of the ontology would be directed by some standardization organization

to insure that new concepts are integrated properly over time.

It is important to realize that the exact terms and the organization of the

ontology are irrelevant. Although this may seem surprising, consider that language is

simply a standard for expressing semantics. There is no fundamental reason why the

word “table” should describe a table. Similarly, the exact organization of the concept

hierarchy and the terms used to represent concepts is irrelevant as long as they are

agreed upon. However the goal is to produce something readable by humans, so the

terms should be recognized English words for their concepts, and the base hierarchy

should be evolved in a way that models current standardization efforts and real-word

organizations. Any standardized ontology can be used as long as it is formatted

correctly and has the necessary terms to capture the semantics of every data element

to be integrated in the corresponding data sources.

The definition of a semantic name for a given schema element is not a

straight-forward mapping to a single ontology term. A semantic name captures the

system-independent semantics of a schema element including contextual information

by combining one or more ontology terms. A semantic name has the form

 semantic_name = “[“ OT [[; OT] | [, OT]] “]” * [ON]

 OT = < ontology_term > , ON = < ontology_term >

 That is, a semantic name consists of an ordered set of context terms

(OT) separated by either a comma or a semi-colon, and an optional concept name

term (ON). The comma between terms A and B (A, B) represents that term B is a

62 CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

subtype of term A. A semi-colon between terms A and B (A; B) means that term A

HAS-A term B, or term B represents a concept that is part of term A. The context

terms provide a context framework for the concepts that describe them. Every

semantic name has at least one context term. The concept name is a single, atomic

term describing the lowest level semantics. Fields have concept names to represent

their base meaning void of any context information.

Abstractly, a semantic name is a hierarchy of concepts related by IS-A and

HAS-A relationships. Typically in relational databases all terms in a semantic name

are related by HAS-A associations. For example consider the table Books (ISBN,

Title, Author, Publisher, Price). Their semantic names in a really simple ontology are

shown in the following table.

Type Semantic Name System Name
Table [Book] Book
Field [Book] ISBN ISBN
Field [Book] Title Title
Field [Book] Price Price
Field [Book; Author] Name Author
Field [Book; Publisher] Name Publisher

Table 1. Books Database schema

4.4.2 X-Spec – Metadata Specification

The definition of a standardized ontology by itself is not enough to achieve

integration because the ontology is not defining a standard schema for

communication. It simply defines terms used to represent concepts. These concepts

can be represented in vastly different ways, in various data sources, and we are not

assuming a standardized representation and organization for a given concept. Thus, a

system for describing the schema of a data source using ontology terms and additional

metadata must be defined. Our integration approach uses a structure called X-Spec to

store semantic metadata on a data source. The X-Spec is essentially a database

schema encoded in XML format and is organized in relational form with tables and

fields as basic elements.

An X-Spec consists of the relational database schema being described along

with additional information about keys, relationships, and field semantics. More

CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION 63

HARIS KONDYLAKIS

importantly, each table and field in the X-Spec has an associated semantic name built

from terms in the standardized ontology as previously discussed.

The use of XML for describing an X-Spec is not required, but it is used

because XML is an emerging standard to exchange semantics between systems.

However, the definition and usefulness of an X-Spec is not tied to XML. Information

stored in XML in an X-Spec can just be transmitted as a formatted text files or a

structured binary file. XML is used for convenience and interoperability with

emerging standards on semantic exchange.

In order to ease the capture process of sources metadata, a tool (i.e. Extractor)

has been developed that can read each database schema, and produce the X-Spec

corresponding to the whole information needed. Key, foreign keys and constraints are

captured automatically and the administrator has only to relate system names with

ontology terms.

4.4.3 Integration Algorithm

The integration algorithm is a straightforward matching algorithm of terms.

The same term used in two different X-Specs is assumed to represent an identical

concept regardless of its representation. The algorithm receives as input one or more

X-Specs describing data schemata and then it uses the semantic names present in them

to match related concepts and to build a global view (as we can see in the next

chapter this global view is named Context View and has many interesting properties).

For example consider that the database schema shown in table 1 is annotated

and semantic names are given in tables and fields. When our algorithm starts, the first

semantic name that is being processed is [Book]. This semantic name consists of only

one term which does not match any other term in this depth. So, it is added to the tree

under the root. The next semantic name to be processed is [Book] ISBN with two

terms. The first term already exists in Global View and is matched. According to our

algorithm, we go one level below the current term in V (i.e Book) and then we proceed

to the next term ISBN which is not matched at this level and it is added below the

Book term. The algorithm goes on the same way until [Book; Author] Name is met.

The Book term is matched so we go one level down and we search under the Book

term to find the Author term exists. Since Author does not exist the remaining terms

64 CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

of the semantic name are placed under the Book term. Moreover, since the term Name

is after the term Author in the semantic name it is placed under the Author term. The

algorithm will continue the same way if another table, Authors for example, exists.

After processing every semantic name, the final global view constructed is shown in

figure 10.

Figure 9. Integration Algorithm

The architecture identifies similar concepts by name regardless of their

physical or logical representations in the individual data sources. The integration

result is a hierarchy of contexts and concepts which implies no particular physical

representation. The physical representation of the concepts is irrelevant to the user.

The user accesses data sources through semantic names which map to physical

schema elements. Thus, by not imposing structural constraints or concept

representation, knowledge from systems is combined regardless of data representation

characteristics, and the user is provided with only the relevant information.

The integration is valid because it combines correctly database schema into an

integrated view given the assumption of no naming conflicts. The architecture avoids

naming conflicts by developing and using a standard list of terms referenced in our

ontology and combining them appropriately into context and concept information to

Input: One or more X-specs
Output: Global View V
1: For each X-Spec X {
2: For each semantic_name SN in a X {
3: Go to top level in V
4: For each term T of SN {
5: If T does not match any term at this level Then
6: Add this and all remaining terms of SN to V
7: in the proper levels
8: Break
9: Else
10: Current term= matching term in V
11: Go one level below current term in V
12:
13: }
14: }
15: }
16: return V

CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION 65

HARIS KONDYLAKIS

express schema element matches. Since the semantic names constructed are assumed

to represent the same concept if their name matches, integration of concepts across

schema is possible simply by matching semantic names. Concepts are integrated

across data sources solely by name regardless of their implementation or physical

structure. Of course, we keep in memory the corresponding fields for each semantic

name.

Figure 10. Building Integration Schema (Context View)

4.4.4 Querying in QueTe

After building the integrating view in memory, the user is given the capability

to issue queries. The query language is an attribute-only version of SQL, where the

SELECT clause contains the concepts to be projected in the final results and the

optional WHERE specifies selection criteria for the query. An example query that gets

the price of the book “A Semantic Web Primer” could be

 SELECT [Book] Price WHERE [Book] Title = “A Semantic Web Primer”

Notice that the FROM clause is absent since the integration system will

automatically identify the tables to be used. Of course, the user must express the

queried terms by describing them using their semantic name that is being built

according to the ontology. Then the semantic names are matched against the global

view and the query is answered. The required joins between the tables are

automatically inserted by the query processor. The order in which X-Specs are

 V (view root)
 - [Book]
 -ISBN
 -Title
 -Price
 - [Author]
 -Name
 - [Publisher]
 -Name
 - [Author]
 -Name
 -Surname

66 CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

integrated is irrelevant, and the same X-Specs can be integrated several times with no

change.

Using the reference ontology, users can formulate queries as the previous one

by choosing which terms they want to view through their semantic names according

to the ontology. These semantic names map to physical fields and tables in the

underlying data sources. The user is not responsible for determining joins between

physical tables in a given data source or across a data source nor where each table is

placed. The system handles the necessary joins based on the relationships between the

schema elements. The query implementation is similar to MIX [Baru C. et al. 1999]

except that the query is formulated on an integrated view based on the ontology

instead of the mediated views.

In many cases there is a straightforward mapping from semantic names to

physical fields. Typically, a semantic name will have only one mapping to a physical

field in each data source. Given a list of semantic names in the query used either for

projection or for selection criteria, the query processor maps the semantic names to

system names using the information stored in the X-Spec. To handle joins between

tables, X-Specs stores information on join conditions between tables in order to be

used by the query processor. Thus, all required mapping information is present to

construct a select-project-join query which then is translated into several subqueries

that are sent to the individual sources. When subqueries are answered the results are

being integrated and then presented to the final user. Joins are selected by the system

from X-Spec information and if no join condition exists between tables, a cross-

product is used as real databases do. “Global keys” are important in query generation,

as they guarantee unique values across databases similar to social security number

which identifies distinct human beings. Such keys allow the system to perform joins

across databases. So when a query is divided into several subqueries that involve

some global keys, the results returned, are joined or unioned using appropriate global

keys and then the outcome is presented to the final user.

As we have already said, in many cases most biologists or researchers value

data even though it may be only partially complete and potentially incorrect. Any data

can indeed be relevant to a scientific researcher. That’s why we designed the system

to show even tuples when the data source does not have all the fields required in the

result. In such cases, the fields missing are left blank in the returned result.

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 67

HARIS KONDYLAKIS

Chapter 5

5Multidatabase Querying in Quete

“I only ask for Information”

-Charles Dickens

Contents
5.1 INTRODUCTION ..67
5.2 PREVIOUS LANGUAGES USED..68
5.3 CONTEXT VIEW AS A UNIVERSAL RELATION..70
5.4 QUERY PARSING AND JOIN TREE CONSTRUCTION ...73
5.5. JOIN ALGORITHMS...81

5.5.1 MAIN MEMORY ALGORITHM ..82
5.5.1.1 Nested Loops ..82
5.5.1.2 Result Processing ...83

5.5.2 CENTRAL DATABASE ALGORITHM..83
5.5.2.1 Building the tables..85
5.5.2.2 Building the Query. ..85

5.6 CONSIDERING DISTRIBUTION ...86
5.7 EXAMPLE..87

5.1 Introduction

Despite dramatic changes in database size, complexity and interoperability,

SQL has remained fundamentally unchanged. The wide variety of applications, users

and implementation systems accessing databases rely on the Structured Query

Language (SQL) [Date C. J., 1994] to retrieve the required information. Although the

complexity of SQL generation has been partially hidden by graphical design tools and

more powerful programming languages, the fundamental challenges of SQL remain.

The fundamental problem of SQL is also one of its greatest advantages. SQL

allows a database to be queried by a clearly defined structure which is a vast

68 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

improvement over hierarchical methods and direct access technologies that require

explicit navigation between records. Unfortunately an SQL user is responsible for

understanding the structure of the database schema, the names associated with

semantic names and the relations between them. Query formulation involves mapping

query semantics into the semantics of the database and then realizing those semantics

by combining the appropriate structures.

SQL is a powerful language when used by people who understand its

semantics and the database queried. However, nowadays the need to interact with

multiple database systems with little and limited database understanding is emerging.

Moreover, organizations are attempting to achieve database interoperability by

combining database systems into a more unified organization. Those systems force

users to understand the structure and semantics of all databases which introduces

exponential complexity as the number of databases increases.

To address those shortcomings, our architecture automatically integrates

diverse relational schemata into a unified view of concepts, called context view and

those concepts come from the reference ontology. The context view is a special type

of Universal Relation describing the data source and has features that resolve some of

its problems. Although the context view and its associated query system were not

developed to model the Universal Relation, they display many similar properties

which can be used to better understand the foundations of the context view and may

be used to develop similar query algorithms.

5.2 Previous Languages Used

Before we go further in describing our language and the query mechanisms it

is useful to briefly describe the languages developed and used in previous

multidatabase and federated environments.

In order to achieve multidatabase querying, several languages were developed

like MSQL [Krishnamurthy R. et al. 1991] and its successor IDL [Litwin W. and

Abdellatif A, 1987]. Those languages allow the user to define higher order queries

and views by providing database variables that can range over metadata in addition to

regular data. Metadata include database names, relational names, and attribute names.

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 69

HARIS KONDYLAKIS

The language allows queries across database systems in addition to regular

expressions. Other MDBS query languages include DIRECT [Merz U. and King R.

1994] and SchemaSQL [Gingras F. et al. 1997]. The fundamental weakness in

multidatabase query languages is the reliance on the user’s knowledge of the database

structure and semantics to construct queries. Further, data organization is optimized

for efficiency and not understanding. Understanding the structure and semantics of

one data source is complicated in itself, and the in-depth knowledge required to

formulate queries on multiple databases is extremely rare. Although, previous

languages may allow the construction of multidatabase queries, they do nothing to

reduce the need of the user to thoroughly understand the semantics.

Several other languages have been developed that allow users to query by

word phrases in order to simplify querying [Cohen W. 1998], [Konopnicki and

Shmueli 1998], [Ogden and Brooks 1983]. These systems are not powerful enough for

a general multidatabase environment because they do not allow the user to precisely

define the exact data returned. Word systems that simplify query formulation by

ignoring structure sacrifice query precision.

Other systems try to augment a relational database with logical rules or

knowledge [Kuhn E. et al. 1994], [Motro A. 1990] or change or add to the database in

some manner. This is done in order to enable advanced queries to be posed, but that

violates database autonomy and thus it is not desirable.

A query system must isolate the user from structure and system details while

at the same time should provide a query language powerful enough to produce

precise, formatted results. SemQL [Lee J.O et al. 1999] attempts semantic querying

using semantic networks and synonym sets from WordNet [Miller G.A et al. 1990].

Although their approach is similar to ours, using a large online dictionary such as

WordNet in querying time, increases the complexity of matching word semantics. Our

approach improves on SemQL by providing condensed term ontology, an integrated

view to convey database semantics to the user, and a systematic method for SQL

generation.

A fundamental database model is the Universal Relation Model which

provides logical and physical query transparency by modeling an entire database as a

single relation. Just as the relational model relieves users of the responsibility for

navigation within the physical database, a universal relation system relieves them of

70 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

the responsibility for navigation among the relations. We will demonstrate the

similarity of our context view with the Universal Relation Model [Maier et al. 1984],

and thus argue that our system provides logical and physical transparency. There has

been substantial work presented on querying a universal relation environment

[Bressan et al. 1988] and more generally in theory of joins [Aho et al 1979] and

querying [Korth et al. 1984], [Sagiv Y. 1983].

It is important to note that our architecture extends wrapper and mediator

systems. Simple mediator systems either assume that an integrated view of data

sources is constructed a priori by designers or do not construct an integrated view. If

an integration view is constructed, it is a conventional, structural organization of the

data into relations and attributes. This integrated view is then mapped to the local

views of the mediators by logical rules or query expressions specified by the designer.

Mediators do not perform schema integration. Schema integration or the actual

construction of the integrated view is manually performed by designers. In our

system although, an integrated view is automatically produced from data source

specifications developed independently of other data sources and the global view

itself.

5.3 Context View as a Universal Relation

The context view (CV) produced by the integration architecture models

database schema knowledge as a hierarchy of contexts and concepts. In this section,

we more formally describe the nature of the CV and its relationship to the Universal

Relation. Firstly, it is necessary to define the concepts of a standardized ontology

term, a semantic name and the context view.

An Ontology term is a single, unambiguous word or word phrase present in

the standardized Ontology. Each term represents a unique semantic connotation of a

given word phrase, so words with multiple definitions are represented as multiple

terms in the Ontology. A context term is an ontology term used in a semantic name

which describes the context of schema element associated with the semantic name. A

concept term is a single ontology term used in a semantic name which provides the

lowest level semantic description of a database field. Basically, a concept is a

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 71

HARIS KONDYLAKIS

semantic name which maps to a database field whereas a context is a semantic name

which maps to a database table. For example, the semantic name [Category] Id is a

concept because it maps to the database field CategoryID. The semantic name

[Category] is a context because it maps to the database table Categories.

As we defined in the previous chapter, a semantic name Si consists of an

ordered set of ontology terms T= T1,T2, …,TN, where N >=1, which uniquely

describes the semantic connotation of a schema element. If N=1, then T1 is a context

term. The last term TN is a concept name if Si has a concept name; otherwise it is the

most specific context of Si. A semantic name is a hierarchy of contexts each of which

has a meaning independent of the semantic name. When integrating semantic names

into a context view it is necessary to match semantic names based on their associated

terms. For this purpose it is useful to define the context closure of a semantic name:

Definition: The context closure of a semantic name Si denoted Si
*, is the set of

semantic names produced by extracting and combining consecutive ordered subsets of

the set of terms T=T1, T2, …, TN of Si starting from T1.

For example, given a semantic name Si = [A; B; C] D then Si
*= {[A], [A; B],

[A; B; C], [A; B; C] D}. Based on the above we can define a Context View as follows:

• If a semantic name Si
 is in CV, then for any Sj in Si

*, Sj is also in CV.

• For each semantic name Si
 in CV which ends in a leaf node, there exists a

set of one or more mappings Mi which associate a schema element (table

field) Ej with Si.

• A semantic name Si
 can only occur in the CV once.

That is, for every semantic name that exists in the context view, all its

associated semantic names formed by taking a consecutive subset of its terms are also

in the context view. Moreover, each semantic name in the view can be mapped to

physical fields and tables by the set of mappings provided by the system. The

integration architecture combines schema elements into the context view by merging

their associated semantic names with the semantic names currently present in the CV.

Matching proceeds term-wisely until a complete match is found, or no further matches

are found as we saw in the integration algorithm, described in the subsection 4.4.3.

72 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Thus the CV is a graph of nodes N= N1, N2, …, Nn where each node Ni has full

semantic name Si consisting of one or more ontology terms T1, T2, …, Tm. When a

node is added, each of its corresponding terms are recursively added starting at the

root.

There is an underlying similarity between a Context View and Universal

Relation (UR). A Universal Relation contains all the attributes of the database where

each attribute has a unique name and semantic connotation. The fundamental feature

of UR is that all attributes are uniquely named with a unique connotation.

Lemma: A context view is a valid Universal Relation if each semantic name is

considered an attribute.

Proof: In order to violate the Universal Relation assumption, a given semantic

name must either occur more than once in the CV (non-unique attribute names) or two

or more semantic names have identical connotations (non-unique semantic

connotations). By definition of CV, each semantic name can occur only once. Hence

each semantic name is unique. Moreover, the construction of a semantic name by

combining terms defines its semantics such that two different semantic names cannot

have the same semantic connotation. Thus, a context view is a valid Universal

Relation.
Although, a given semantic name occurs only once in a context view, it is

possible that there is more than one mapping to physical fields in a single data source.

Consider for example two tables Orders and OrderDetails and one field called

OrderId in both tables. That field is assigned the same semantic name in both tables (

e.g [Order] Id) and this makes sense because each of these two fields has the same

semantic connotation and is only represented in two different tables due to the

normalization of the tables. When those two tables are combined into a UR, only one

instance is retained. However, the query system must decide on the correct and more

efficient mapping when generating query access plans.

A context view examined as a Universal Relation addresses several of the

problems that have been studied for the UR model. First, the context view is

automatically generated by the system combining the semantics of each database that

administrators provide. The system uses the supplied semantics, schema and join

information and automatically builds the context view. This process can be applied in

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 73

HARIS KONDYLAKIS

reverse to extract query results from normalized database tables given a query

expressed on the context view according to ontology terms.

Furthermore, the context view resolves the issues of large and complex

Universal Relations. Since the context view is organized hierarchically by context,

there is an explicit division of the context view into semantically grouped topics as

opposed to one, flat relation containing all attributes. Unlike a strict Universal

relation implementation, the context view is never physically constructed. Rather, like

a view, it is an outlook of the data stored in other structures which is built as needed.

Thus, the focus of the rest of this chapter is demonstrating how queries posed through

the context view can be physically realized by an automatic algorithm which maps

from semantics to structure and produces relational calculus (SQL) expressions on the

underlying data sources to extract the relevant data.

5.4 Query Parsing and Join Tree Construction

By isolating the user from database structure, the system becomes responsible

for correctly formatting the query based on the user’s intended semantics. The most

important property the query system must provide is consistency, which means that

the system must generate deterministic, repeatable, and semantically intuitive queries

in all cases.

Given an Ontology, users can generate queries which contain a subset of

context view’s concepts. Since a query is just a subset of the context view, the query

can be examined similar to a context view. There are two major requirements in

mapping from semantic to structural querying. First, the system must select the

appropriate fields to use for projection and selection, since multiple mappings to the

same semantic name are possible within a given data source. The query result may be

different for different mappings to the same semantic name because new joins may be

introduced if the field is in another table. Second, the join conditions must be

automatically be determined to combine the appropriate data source tables.

Regardless, if the field is being used in a selection or projection operation, all

fields are treated uniformly by the query system. Determining the correct field

instance to select if a given semantic name can be mapped to multiple fields in the

74 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

underlying database is complex. Fortunately, it is unlikely that a semantic name has

multiple field mappings when the database is normalized if the field is not a key field.

However, the choice of a key field with multiple mappings is especially important as

it affects the join semantics. Depending on the field mapping chosen, different tables

are joined together. For example as we noted previously the semantic name [Order]

Id may map to two physical fields, OrderId in the Orders table and OrderId in the

OrderDetails table. In both cases, the field has the same semantics. However

depending on which of the two mappings is selected, a new join may be introduced

into the query if the table is not currently in the query.

For a key field occurring in more than one database table, there are four cases

to consider based on the interrelationships between the parent tables for field

mappings. That is, if the key field is present in two or more tables, the inherent

interrelationships between these tables determine the complexity in selecting the

correct mapping. These cases are:

1-1: An one-to-one relationship between tables normally implies that the

tables share some key. The mapping chosen in this case is uniquely determined by the

user’s choice of semantic name ([Person] SSN and [Employee] SSN determines that

in the first case SSN will be selected from Person table, whereas in the second case

from the Employee table.)

1-N: An one-to-many relationship between tables implies a foreign key from

the N-side table to the one-side table. Consider the tables Orders and OrderDetails,

where a record in OrderDetails table which contains information about the ordered

products, cannot exist without an Order record. It is obvious that the OrderDetails

table will have as a part of its key, the key for the Orders table and that both fields are

assigned the semantic name [Order] Id. In this case, there are actually two field

mappings to the same semantic name. Here the general heuristic is to choose the

primary key instance (Orders) unless the user selects attributes from the OrderDetails

table.

M-N and M-N dependent: Any many-to-many relationship will result in

multiple field mappings to a single semantic name because the relationship is

structured by constructing a joining table whose key is the combination of the keys of

the two related tables. Consider, for example a database storing information on books

and authors. Since a book may have multiple authors and an author may write

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 75

HARIS KONDYLAKIS

multiple books, a joining table BookAuthor ([Book; Author]) is necessary to

implement the M-N relationship between books and authors. The BookAuthor table

has mappings to both the Book ([Book] Id) and Author ([Author] Id) table keys. This

table is not shown in the integrated view and the query engine must select the

appropriate joins to be executed.

There is one special case when a semantic name may have multiple field

mappings. When a database is not normalized, multiple fields in a single table may

map to a semantic name. The semantically correct query should automatically

normalize the data by splitting one record into many normalized records. A special

case arises too when mappings exist to multiple fields that belongs to different tables

within the same database. The query system first selects a field which is currently

present into the tables already in the query. Otherwise, it chooses the mapping based

on the shortest join paths to the current tables in query.

This is done to identify the most logical semantic choice for the field.

Presumably, this identifies the most common occurrences of the field and often is the

primary key of the parent table. The algorithm, that is executed for every database, is

presented in the figure in the next page and constructs a set of fields (F) and tables (T)

which best map to the set of query nodes Q=Q1, Q2, …,Qn given by the user.

For example consider the query “SELECT [Book]Price, [Book] Author,

[Book] ISBN “ that is issued in a database with the following two tables:

 Book (ISBN, Price, Author1, Author2)

 BookDetails (ISBN, LibraryIndex)

A simple ontology is used with a class named Book with the attributes ISBN,

Author, Price and LibraryIndex. The algorithm starts with [Book] Price. A mapping is

found in Price column of Book table and Price, Book are added in the list of fields (F)

and the list of tables (T) respectively. Then the [Book] Author element is going to be

processed. Two mappings are discovered in only one table. So the fields Author1 and

Author2 are added in F and the table Book is added in T. When the last element

[Book] ISBN is going to be processed two mappings are found but in two different

tables. The algorithm should decide which one of them will be added. As we can see

the table Book already exists in T. According to our algorithm if a table already exists

76 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

in T then the mapping that involves this table is chosen. That’s why the ISBN field

from table Book is selected and added to F. If the table Book did not exist in T then

our algorithm would select the table with the minimum join distance to the current

tables in T. When we say the table with the minimum join distance we mean the table

that has the minimum distance from any of the tables that already exist in T. The

specific algorithm is shown in Figure 11.

Figure 11. Field Selection Algorithm

In order to show how joins are handled, we have firstly to define a join graph.

A join graph is an undirected graph where each node corresponds to a table in the

database, and there is a link from node Ni to node Nj if there is a join between the

corresponding two tables. For this discussion we ignore multiple joins between two

tables on different keys. Moreover, a join path is a sequence of one or more joins

interconnecting two nodes in the graph, and a join tree is a connected subset of the

Input: Query Nodes Q=Q1, Q2, …, Qn given by the user
Output: A set of fields (F) and tables (T)
1: For each Qi
2: {
3: SNi = semantic name of Qi
4: search_Xpec (SNi, R)
5: //search for SNi in X-Specs. Return results in R
6: IF SNi has only one mapping in R
7: Add field Rk to F
8: Add parent table of Rk to T
9:
12: IF SNi has multiple mappings all in one table
13: For each result Rk in R
14: Add field Rk to F
15: Add parent table of R1 to T
16:
17: IF SNi has multiple mappings in several tables
18: IF mapping Rk is found that the parent table of Rk already in T
19: Add field Rk to F
20: Else select the mapping that leads ot the shortest join path to
21: the current tables in Query
22: Add field Rk to F
23: Add parent table of Rk to T
24:
25: return T,F

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 77

HARIS KONDYLAKIS

join graph. Let’s assume without loss of generality that the join graph is connected

(otherwise, we apply the algorithm to each connected subset and connect them using a

cross-product). Then, we can conclude to the following lemma.

Lemma 1. If a join graph is acyclic, there exists only one join path between

any two nodes.

Proof. We will prove this lemma by using contradiction. Let’s assume that

two join paths exist between two nodes Ni and Nj. Then, we could take the first path

from Ni to Nj and return on the second path from Nj to Ni . This implies that the graph

has a cycle.
Moreover, we can conclude the following lemma too.

Lemma 2. If a join graph is acyclic, there exists only one join tree between

any subset of its nodes.

Proof. For two nodes the statement is true as we proved in lemma 1. Given a

subset of m nodes where the lemma holds we will try to prove that lemma also holds

if we add one more node. So, given a subset of m nodes with only one join tree, we

add another node N to the set. Assume that by adding N there exist more than one join

tree in the new subset of m+1 nodes. Since there was only one join tree for the

previous m nodes, this implies that N must be connected to more than one node in the

subset. It is obvious that this produces a cycle. Thus, the statement holds for m+1

nodes and the result follows by induction.
The consequences of lemma 2 are really important. If the join graph for a

database is acyclic, there exists only one possible join tree for any of its tables. That

means that the query system does not have to make any decisions involving which

joins to apply. It has to identify which joins are required to connect the required tables

by constructing the proper join tree. The order in which the joins are applied is a

problem of optimization that will be discussed later in this chapter.

From this result, it is possible to construct an algorithm which builds a matrix

M where entry M [Ni, Nj] is the shortest join path between any pair nodes Ni and Nj.

Theorem. Given a subset of nodes from a matrix M which stores the shortest

join paths for an acyclic join graph, and a set of tables T to join, a join tree can be

constructed by choosing any table Ti from T and unioning the join paths in M [Ni,

N1], M [Ni, N2], …, M [Ni, Nn] where N1, N2,…, Nn are the nodes corresponding to

the set of tables T.

78 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Proof. Since the graph is connected, the matrix entries M [Ni, N1], M [Ni, N2],

…, M [Ni, Nn] represent join paths from Ni to all other nodes in the subset. Thus, there

is a path from Ni to Nj and from node Ni to Nk. Unioning those paths together results

in a path from Nj to Nk. Thus, all nodes are connected with the join tree, and it is the

only possible join tree as we proved with lemma 2.
Normalized databases often have acyclic join graphs. However, we cannot

assume that all databases would be acyclic, and the general case of a cyclic join graph

must be considered. Cycles arise when joins are added for query convenience and

when tables serve multiple semantic roles in a database. A given table can assume

multiple semantic roles in a database, by acting for example as a lookup table for

several others. For example, consider the tables Orders and OrderDetails. We can add

another one table called Employees which will store information on the employee who

entered each product in addition to what employee entered the overall order. In this

case, Orders and OrderDetails have foreign keys to the Employees table. This

produces a join, and according to the join path chosen, different semantic queries are

represented. For example, the join path Orders-Employees-OrderDetails represents

the orders entered by employee with their products whereas Order-OrderDetails-

Employees represents the orders with their products along the employee entering the

product. Moreover cycles often occur when a table stores a generalized concept which

may have multiple sub-concepts, where several tables join to the different semantic

instances in the generalized table.

Figure 12. Join Graph Example

Finally, cycles may occur when redundant joins are added to the database. For

example, the CategoryId field could be added to OrderDetails for a direct link to

Categories instead of joining through Products. This results in a cycle involving

1

N

1 N N
Orders OrderDetails Products

Categories

1

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 79

HARIS KONDYLAKIS

OrderDetails, Products and Categories. Note that joins of this nature may be lossy

when used in combination with other, valid lossless joins. An invalid lossy sequence

of joins results when a join with a N-1 cardinality is followed by a join with a 1-N

cardinality where the join attribute is not a key. There may be other joins between

those two joins. The result is a lossy join because it results in a M-N cardinality

relationship between the merged tables. Effectively, this results in invalid information

being created by using these joins. Also, a join of cardinality M-N between two tables,

without using an intermediate table, is always lossy. Of course, such databases are not

normalized and we expect that most of the databases today are normalized ones. Thus,

the algorithm first should attempt to find join paths without using these types of lossy

joins.

To handle cycles, the query system must make a determination of the best join

paths between nodes. The query system uses join semantics, path length, and join

properties such as total participation, lossless or lossy joins to determine best join

paths. The breadth-first algorithm presented constructs the matrix M of best join paths

and it works for both cyclic and acyclic join graphs. The algorithm selects the shortest

join paths with no lossy joins and equal length join paths may be differentiated based

on total participation or other join properties. Lossy joins are only used if there exists

no other path between nodes (a cross-product would be necessary).The specific

algorithm is shown in Figure 13.

For a specific example, we will try to build the matrix M for the graph shown

in figure 12. Starting from node Orders, initially M[Orders, Orders] is zero, count is

zero too and we do not accept lossy joins. Then we add the Orders node to our FIFO

queue NQ and since NQ is not empty we remove the first node N from NQ. So, N=

Orders. Since there is only one outgoing link from Orders, LTN = OrderDetails and

since it is not visited and we have no lossy joins, it is added to NQ, it is marked as

visited and M[Orders, OrderDetails]= M[Orders, Orders] + OrderDetails. Then,

count is set to one, NQ is not empty and N = OrderDetails. The only outgoing

destination from OrderDetails is Products, so LTN = Products. The Products node is

not visited yet, so we add Products to NQ, we mark it as visited and M[Orders,

Products] = M[Orders, OrderDetails]+Products= OrderDetails + Products. The

algorithm goes on the same way until the full matrix M is constructed. We would like

80 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

to note that for each node F in G the algorithm will go through line 7 at most two

times, since by finishing the second round count will be equal to #of nodes in G.

Figure 13. Algorithm to Calculate Join Paths.

It would be ideal if we could use the algorithm of unioning join paths in the

matrix to produce a join tree between any subset of nodes. However, if the graph is

cyclic, there will be multiple join trees possible depending on the choice of starting

Input: G as a graph
Output: Matrix M // N x N matrix where N the number of nodes in G
1: For each node F in G
2: {
3: M [F, F] = Null // Empty join path to itself
4: count = 0
5: accept_lossy = false // initially do not accept lossy joins
6:
7: While count < # of nodes in G
8: {
9: add F to NQ //NQ is a FIFO queue structure
10:
12: While NQ is not empty
12: {
13: remove first node N from NQ
14: For each outgoing link L of N
15: LTN = destination node of link L from N
17: If LTN is not visited and (accept_lossy or the path has not
 a lossy join)
18: add LTN to NQ
19: mark LTN as visited
20: M [F, LTN] = M [F, N] + LTN
21: count++
22: ElseIf accept_lossy or the path has not a lossy join
23: //you may want to replace a join path already
24: //constructed
25: //if new join path is the same length as current and
26: //new join path has better properties (total particip.)
27: }
28: clear_flags() //clear all visited flags for all nodes in G
29:
30: accept_lossy = true
31: }
32: }
33: return M

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 81

HARIS KONDYLAKIS

node. These join trees are all semantically valid depending on the query and the

system cannot differentiate them for the user without more knowledge about the

intended query semantics. Some work started to emerge in the area [Mason et al.

2005] but finding heuristics that could choose the best join tree based on the attributes

chosen for the query is beyond the scope of this thesis and is included in our future

work. So, our system cannot handle cycles and lines 23-25 of the algorithm in Figure

13 have not been implemented.

 Whereas we cannot differentiate all semantic valid join trees when we have

cycles, we can use “smart tricks” in order to avoid confusions. So, when the

administrator constructs the X-Spec file, he can choose which valid paths to represent.

It is not mandatory to represent the whole underlying schema and every relation

across tables. He can choose only the parts that are of interest and if he wants later, he

can add more relations or more tables. So when we have cycles we can choose which

join tree to be constructed and we can declare an acyclic join tree.

Moreover, it is possible for the user to declare explicit joins in the where

clause that denotes the join path that his query will use. Whereas usually, joins paths

are hidden from the users and the user doesn’t have to know the structure of the

underlying database, it is possible if desired and if he knows the underlying schema to

declare the explicit joins to be performed. Of course we do not expect from users to

have in mind the underlying schema, but we give them the option to decide if such

knowledge exists.

5.5. Join Algorithms

Except from determining the correct join path, an essential matter is to choose

the proper join algorithm in order to efficiently answer the queries issued. Since the

most costly operator is the join one, an important issue is to determine the more

efficient algorithm to perform joins in each case. In centralized databases, this

research area has been extensively studied and every database management system

has an optimizer that chooses the best join algorithm (or nearly the best) to use in each

case.

82 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Whereas, a lot of work has been done in centralized databases, in distributed

database systems there are a lot to be done. As we mentioned before, we can

determine in most cases the proper join path needed to execute the query issued in our

system. In that join path we can distinguish which joins need to be performed across

tables that belong to the same data source or to different data sources. Having in mind

the goal to encapsulate the heterogeneity of the component databases and to use

existing homogenous distributed database techniques as much as possible we used

underlying databases for applying specific joins.

Since our policy is to use existing database techniques we “push” the joins that

interfere tables within the same database to local databases and we leave the joins that

span across data sources, to be handled from our system. In order to join data across

data sources, two algorithms have been implemented.

5.5.1 Main Memory Algorithm

After the query is issued in our system, and it is decomposed into subqueries,

these subqueries are executed in parallel, independently in each data source. So the

time to execute the individual queries depends on the query that takes more time to be

executed and transferred. When all the results from the independent data sources are

loaded into the memory of our system, the join algorithm is being executed and as

soon as we have some results they are presented to the final user.

5.5.1.1 Nested Loops

The first join algorithm that was implemented in our system, in order to study

the join implications was the simple nested loops algorithm. This join algorithm may

not be the more efficient join algorithm, but it is really simple to implement in a

mediator-based environment. If we want to join two relations with simple nested

loops, for each tuple in the outer relation R, we scan the entire inner relation S as we

can see in the following figure.

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 83

HARIS KONDYLAKIS

Figure 14. Simple Nested Loops Join

If the smaller relation becomes the outer one, the algorithm is more efficient

since its cost is: Total Cost = (tuples per page in R * #of pages in R) * #of pages in S

+ #pages in R. Of course this is in centralized databases. Here, in the total query cost

we have to add the time to get the results from the individual sources (local query

time + communication costs) and to load them into memory.

5.5.1.2 Result Processing

Since, we load the result of each subquery into the main memory; it is our task

to process them further if order, group and union operations have to be applied.

If no join condition is specified the results of each database are being unioned

according to their shared global key. Because each tuple presented, is constructed in

our system, we can choose to accept unions of tuples that their schema does not fully

match. If for example in one database a field is missing we can allow union to be

performed with another database where that information exists, and whenever that

field is missing is left blank.

Ordering operations should be considered before showing the results. In order

to apply these, we use the Quicksort algorithm to sort the results according to the

required criteria. Grouping operation has not been implemented yet but in our near

future we are going to examine them.

5.5.2 Central Database Algorithm

Whereas simple nested loops were efficient for joining a small number of

tuples, when the number of tuples that need to be joined increased, the algorithm

became really slow. The first thing that came into our mind was to try and implement

Input: R, S relations
Output: Join result
1: for each tuple r in R
2: for each tuple s in S do
3: if ri = si then
4: add <r, s> to result
5: return result

84 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

several other algorithms, such as hash-join, sort/merge joins, and hash joins. After that

we would build an optimizer to decide which join policy to use in each case. Doing all

that, we would re-implement several well implemented algorithms (in central

databases) and we would try to build something that is already well-done by several

database vendors.

Having that in mind, in addition to the principle of using as much as possible

of the existing homogenous distributed database techniques, we leaded to the

construction of a new join algorithm that could exploit current DBMS systems. The

algorithm consists of the following six steps and it is implemented in our system.

1. For every sub-query issued in each independent data source find the table that

should be constructed in a central database in order to store the results of that

sub-query.

2. Build those tables in a central lightweight database.

3. While executing sub-queries, store their results into those tables created in the

first step.

4. Build a new join graph based on the results stored in the central lightweight

database.

5. Build the global query that should be issued in the central database.

6. Execute that query, get the results, and present them to the final user.

The first three steps are being executed in parallel for every existing data

source and they are implemented using threads. Parallel execution used since each

subquery concerns only a single independent data source. After the results of each

independent subquery are stored in a single database, we can build one single proper

query based on the relations stored in memory. Thus, each join that needs to be

performed across databases is performed within a DBMS. Of course, there is a

payload to the whole procedure, which is the cost to build the proper tables in a

central database, and the cost to store the results returned from each individual data

source within the central database and the cost to build and execute the single query

issued in the central database.

Using this algorithm not only improves the time to execute joins across

databases, but also has valuable side effects. It can be used to implement several

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 85

HARIS KONDYLAKIS

caching policies since after executing each query; data remain in the central site and

can be used to answer future questions concerning the same fragment of data. Of

course, matters of caching are beyond the scope of this thesis and are indented to be

examined in our future work.

5.5.2.1 Building the tables.

Building the tables needed to store the results of the individual subqueries is a

rather trivial matter. The only thing that needs to be examined is the subquery issued

in the individual source, and of course the information about the fields queried, that is

stored in the appropriate X-Spec.

At first, each subquery is examined to define the returned fields in its select

clause. Then a table is generated with a random name which is built in such a way that

is unique in our lightweight database. The fields of that table are named after the

fields in the select clause of each sub-query. Except from the field’s name, their data

types should also be known in order to build the proper table to store these results.

This is really simple too, because in X-Spec we have all the information needed about

the data type and the length of each field and we can use that information to build the

proper tables. For example if the query issued in data source 1 is:

 select B.bioAssay, R.ReporterID, B.Intensity1, B.Intensity2

 from bioAssayData as B, reporter as R

 where R.id=B.Reporter

the table TempTable12387986 (B_bioAssay int, R_ReporterID varchar(50),

B_Intensity1 int, B_Intensity2 int) is being constructed. The field’s data type

corresponds to the data types of the selected fields in their individual data sources.

After building one such table for each data source, the results returned from each

individual subquery are being inserted in the appropriate table in our central database.

5.5.2.2 Building the Query.

When all data needed, are found in our central database the next task is to

build one query that will combine them in a proper way. In order to build the query

86 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

that will be issued in our central database we need to examine the tables created in our

database and the fields that correspond to those.

A general policy is to build joins across tables that come from vertical

distributed tables and then to union tables that have the same schema or more

properly, that their schema corresponds to the same semantics. Finally the Cartesian

of the tables is produced and if they share the same global key, join conditions are

applied. A global key is a key that has the same semantic meaning across two or more

data sources, and as a result tuples coming from different databases should be joined.

Of course, we have to admit that these assumptions are valid, under the

hypothesis that the fields mapped across data sources share the same domain where

their values belong. So when in data source 1, the field bookId of table Writings with

semantic name [Book] Id has value 1 and in data source 2, the field Id of table books,

with the same semantic name [Book]Id, has value 1 too, we assume that we are

referencing to the same element that is the same book instance.

Since all the operations are performed within our central database, ordering,

grouping, etc. can be performed by the database itself and we do not have to

implement algorithms for those operations. Of course, because databases cannot

perform union of tuples that do not have the same schema, relations with partial

schema cannot be unioined using this policy.

5.6 Considering Distribution

In our system, is possible to declare fragmentation vertical of horizontal. Both

vertical and horizontal fragmentation may exist and should be declared when data

sources with fragmented data are going to be integrated into our system. The benefit

from fragmentation is that queries that involve only specific fragments of data don’t

have to involve the whole data of the table.

Moreover if a table is horizontally distributed across several data sources, the

system will recognize selections on fragments that have a qualification contradicting

the qualification of the fragmentation rule and will remove them, since they produce

empty relations. If selections are made across fragments that do not contradict the

qualification of the fragmentation rule then the union of two selections will be

returned.

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 87

HARIS KONDYLAKIS

In the case of vertical distribution, when a query is issued containing

information from these two tables, a join between these tables should be produced.

This is done when results are being formulated in our central site. So, whereas the

definition of horizontal fragmentation rules has as a result the elimination of empty

queries contradicting those rules, defining vertical fragmentation rules assures that the

correct joins will be made across databases that share vertical fragments of the same

table. Consider for example the table Reporters (Id, Name, Species, Date) which is

horizontally distributed in two databases, the first containing the tuples with Id less

than 500 and the second one tuples with Id more than or equal to 500. Imagine now

that someone decides to fragment vertically the table in the second database for

reasons of performance. So, two tables are being created, Reporters (Id, Name) in the

second database and Reporters (Id, Species, Date) in one third database. Consider

now a query that asks for every field of table reporters. If knowledge about

fragmentation exists, the tables from the second and the third database will be joined,

and then because the resulting table will have the same schema with the results from

the first database a Union will correctly produced. But if no such knowledge exists,

results from the first database and the second one may be joined since they share the

same global key, and because they belong to the same horizontally distributed table

no results will be returned.

5.7 Example

Consider for example that we have two databases which store information

about books. In the first database there are the tables Library, Book, Publisher and

Author. A library has many books and each one of them has a publisher and an author.

The second database stores information about the location of books that also have

only one author. A simple ontology is built describing books, and we use that

ontology to annotate the X-Spec produced from the two distinct databases. Assume

that after building the integrated view in memory the following semantic query is

issued:

SELECT [Library] Name, [Book] Id WHERE [Book; Author] Name = “X“

88 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Using the field selection algorithm for the first database we conclude that the

fields Library.Name, Book.Id, Author.Name and the tables Library, Book and Author

will be used. For the second database, the fields Location.Name, Copy.Id and

Author.Name and the tables Location, Copy and Author will be used. In each case the

first two fields will be used for projection and the Author.Name field will be used to

form selection criteria. For the two databases, the join graph is shown in the following

figure. Having the projection fields, the fields that will be used for constructing the

selection criteria and the join graph, we can build the proper sub-queries that will be

issued in our two districts databases. Those queries are:

Db1: Select Library.Name, Book.Id From Library, Book, Author

 Where Author.name = “X” and Library.Id = Book.LibraryId and

 Book.Author = Author.Id

DB2: Select Location.Name, Copy.Id From Location, Copy, Author

 Where Author.name = “X” and Location.Id = Book.LocationId and

 Copy.Author = Author.Id

Figure 15. Join Graphs for Database 1 (left) and Database 2 (right)

Library

Book

Publisher Author

Location

Copy

Author

Database 2 Database 1

CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 89

HARIS KONDYLAKIS

Those sub-queries are issued in the two distinct databases, using threads.

Assume that the Database algorithm is used. From these two sub-queries and using

the information about queried fields from X-Spec, we can conclude that the following

two tables should be constructed in our central database.

 TempTable123123 (Name varchar (50), Id int)

 TempTable321321 (Name varchar (50), Id int)

The results from the two sub-queries are stored in those tables and then one

global query should be constructed to be issued in our central database. Since the

schemata of these two tables correspond to the same semanctics, the UNION operator

should be used. As a result the final query to be issued is

 Select Name, Id from TempTable123123

 UNION

 Select Name, Id from TempTable321321

That query is issued in our central db and the results are presented to the final

user. If the memory algorithm is used the system will recognize that the results

coming from the two sub-queries correspond to the same semantics and as a result a

union operation is required. That operation will be performed in memory after the

results from the two sub-queries are returned and then the final result will be

presented to the user.

90 CHAPTER 5 MULTIDATABASE QUERYING IN QUETE

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION 91

HARIS KONDYLAKIS

Chapter 6

6QueTe Implementation and Evaluation

“Knowledge is of two kinds. We know a subject ourselves, or

we know where we can find information on it”

-Samuel Johnson

Contents
6.1 QUETE IMPLEMENTATION ...92

6.1.1 X-SPEC SPECIFICATION DOCUMENTS ...93
6.1.2 X-SPEC EXTRACTOR..95
6.1.3 CONFIGURATION FILE ...95
6.1.4 VERTICAL AND HORIZONTAL DISTRIBUTION ...96

6.2 EVALUATION...97
6.2.1 STARTING POINT - SIMPLE DATABASE CASE STUDY..97
6.2.2 PROGNOCHIP CASE STUDY ..100

6.2.2.1 No fragmentation..101
6.2.2.2 Horizontal fragmentation ...102
6.2.2.3 Hybrid fragmentation...103

In this Chapter we are going to give an overview of our implementation and

show the decisions made while developing QUETE. We will give a simple example

of integrating two data sources and we will describe the necessary steps that need to

be performed. After the implementation has been fully understood we are going to

evaluate QueTe based on the demands of the project PROGNOCHIP.

92 CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

6.1 QueTe Implementation

As we have shown, our architecture is capable of handling large-scale

integrations in evolving environments, where the specific databases participating in

the whole system change frequently and their schema evolves over time.

Moreover, the system’s database engine integrates distributed data sources

without requiring middleware or database server support and allows programmers to

access easily, several integration algorithms. The whole system is implemented in

Java. Java was used because it is currently the standard language to develop web

applications. It supports native multithreading and provides several distributed

programming facilities. Moreover, a program written once in Java can run in any

platform and in any operating system desired.

Furthermore, we adopted Unity’s policy to implement the whole system within

a standard JDBC driver, because providing a standard interface is essential for unified

querying of heterogeneous databases. The JDBC standard allows the execution of

queries in a general programming environment by providing library routines which

interfere with the database. Most users and programmers are familiar with using the

standard JDBC driver in order to interact with a single data source. We are using the

same functions, and the same API to provide transparent access to multiple data

sources instead of just one. In particular, JDBC has a rich collection of routines which

make the interface simple and intuitive and provides portability since users are

allowed to develop their own programs and interfaces using our driver. An example

application using the driver is shown in the Appendix. In every application built, our

driver should be explicitly declared to be used initially. Moreover the URL of the

configuration file that will be described later in this chapter must be declared. Then

one can use our driver exactly as the common JDBC driver. Note that the driver could

be used even when no Ontology is used and no conceptual querying is performed. In

this case, all relations from all databases are imported into the global view but not

matched. Thus, at the lowest level, the driver functions as a standard federated system

allowing distributed access to the data sources. However, its true benefit is abstracting

away the challenges of building joins and matching schema constructs manually.

The whole system, besides the JDBC driver has several components that

should be described.

CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION 93

HARIS KONDYLAKIS

6.1.1 X-Spec Specification Documents

As mentioned before, a standardized ontology is not enough to achieve

integration, because a standard schema for communication is not defined. Data

concepts can be represented in vastly different ways in various data sources thus we

need a system for describing the schema of a data source using ontology terms and

additional metadata. We use X-Spec to store all that relevant information.

An X-Spec consists of the relational database schema being described along

with additional information about keys, relationships, and field semantics. More

importantly, each table and field in the X-Spec has an associated name built from

terms in the standardized ontology.

Figure 16. Example X-Spec

<TABLE>
 <semanticTableName>SAMPLE</semanticTableName>
 <tableName>sample</tableName>
 <FIELD>
 <semanticFieldName> [SAMPLE] ID</semanticFieldName>
 <fieldName>id</fieldName>
 <dataType>4</dataType>
 <dataTypeName>int</dataTypeName>
 <fieldSize>10</fieldSize>
 <decimalDigits>0</decimalDigits>
 <numberRadixPrecision>10</numberRadixPrecision>
 <remarks>null</remarks>
 <defaultValue>null</defaultValue>
 <characterOctetLength>0</characterOctetLength>
 <ordinalPosition>1</ordinalPosition>
 <isNullable>NO </isNullable>
 </FIELD>
 <PRIMARYKEY>
 <keyScope>4</keyScope>
 <keyScopeName>Global</keyScopeName>
 <keyName>PK_sample</keyName>
 <keyType>1</keyType>
 <FIELDS>
 <fieldName>id</fieldName>
 </FIELDS>
 </PRIMARYKEY>
 <JOIN>
 <joinName>sample->extract</joinName>
 <fromKeyName>PK_sample</fromKeyName>
 <fromTableName>sample</fromTableName>
 <toKeyName>FK_extract_sample1</toKeyName>
 <toTableName>extract</toTableName>
 <joinType>2</joinType>
 </JOIN>

94 CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

An example X-Spec is given in the previous figure. As we can see the

document is an XML document. In the beginning, we can see that table sample is

annotated with the semantic name SAMPLE from our ontology. After annotating each

table, we have to describe table fields too. In our example field id is being described.

Firstly a semantic name is given to that field ([SAMLE] ID) and then information is

shown about the type of the field. The current field has a data type no 4 as given in

java.sql.Types and it is an integer (int) with size of ten. The dataTypeName is data

source dependent and it is not enough for the specification of each field because each

database may represent differently its own data types. Furthermore, the number of

fractional digits (decimalDigits) and its radix (numberRadixPrecision) are defined and

any comments about the field are given (remarks). Moreover, it is declared whether

the field can accept null values (isNullable), its default value (defaultValue) and the

index of column in table’s definition (ordinalPosition). Finally if the field is a char,

the maximum number of bytes in the column is given (characterOctetLength)

Except from specifying the specific attributes of each field in a database

independent way, the relations across tables should also be declared. As shown in

figure the primary key of each table should be declared. In primary key declaration,

each field participating in primary key is shown, a unique semantic name is given for

that primary key (keyName) and as well the type of that key (keyType) - 1-primary, 2-

foreign, 3-alternate or candidate. Moreover, the scope of the key is declared

(keyScope) along with the name of the scope that this key participates

(keyScopeName). Those declarations specify the scope of the keys they are valid and

are used to match global keys across databases. If the primary keys within several

databases have the same semantic name and the same scope, then the same global key

is used and it will be used to join the subquery results. Whereas in our implementation

every field is annotated using one single ontology and as a result they belong to the

same scope, it is possible several ontologies and scopes to be used. Information is

given for foreign keys too the same way with the primary ones.

Finally if joins exist, they should also be explicitly declared as shown in the

figure. The type of the join (joinType) is essential (1-1, 1-N, M-N) and the keys

(fromKeyName, toKeyName) and tables (fromTableName, toTableName) that

participate in the join should be given. More examples are shown in the cd that

accompanies this thesis.

CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION 95

HARIS KONDYLAKIS

6.1.2 X-Spec Extractor

It is obvious that the construction of an X-Spec with a lot of tables is really

time consuming whether it is really simple and trivial for each administrator. That’s

why an Extractor is provided with the whole system and the only thing that is required

in order to be executed efficiently is the connection string (database, username and

password) of each database.

The Extractor will create an X-Spec automatically for a specific database in

the proper format. All information relying in underlying data sources will be gathered

and recorded in the output X-Spec. Of course, in order for the Extractor to create fully

formed X-Specs, primary and foreign keys must be specified within the databases

being extracted.

After extraction, the annotation of each field and each table using reference

ontology remains to the hands of the administrator. He should give afterwards

semantic names in all fields of interest, that will be integrated using our system, and

decide which tables, fields and joins should participate in the integrated schema. The

tables that are not going to participate can be removed from each X-Spec, and if

cycles exist, specific join paths can be removed by eliminating joins among tables

within the same X-Spec.

6.1.3 Configuration File

After the extraction and the annotation process, all files generated should be

placed in a central directory from where our system will use them, in order to properly

answer the queries issued. One final configuration file has to be created that describes

what data sources are being integrated and where their X-Spec files are stored. An

example is shown in the following figure.

Figure 17. Configuration File for Base

<SOURCES>
 <DATABASE>
 <URL>jdbc:odbc:Base</URL>
 <DRIVER>sun.jdbc.odbc.JdbcOdbcDriver</DRIVER>
 <XSPEC>xspec/Base.xml</XSPEC>
 </DATABASE>
</SOURCES>

96 CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

As we can see in the example, the configuration file is an XML file too. In the

URL tag is written the connection string used from the system to connect with each

data source. In the current example, the specific data source is connected through

ODBC and is given the name Base (note that this source should be declared in the

System DSN of the ODBC data sources of the machine where our system is installed).

Since our system is using ODBC, the proper ODBC java driver should be used to

interact with that data source. This is declared in the DRIVER tag. Finally, the place of

the X-Spec corresponding to the specific data source must be declared, and this is

done in XPEC tag.

 The goal of ODBC is to make possible to access any data from any

application, regardless of which database management system is handling the data.

ODBC manages this by inserting a middle layer, called a database driver, between the

application and the DBMS. The purpose of this layer is to translate the application’s

data queries into commands that the DBMS understands. This specific characteristic

of ODBC makes it ideal for integrating different databases under a common API.

6.1.4 Vertical and Horizontal Distribution

As shown in the previous chapter, the system is optimized for horizontal and

vertical, distributed, relational data sources. In order to benefit from these

optimizations, somehow the distribution must be declared from the administrator.

System can support horizontal fragmentation based on simple selection

predicates. Fragmentation rules are declared as:

 Data_Source: Table: Field predicate value

For example consider table Sampes(SampleId, SampleData, SampleDate). A

possible horizontal fragmentation across two databases denoting that samples with id

higher than 500 are stored in db1 and the rest in db2 could be declared as.:

 DB1: Samples: SampleId > 500 and DB2: Samples: SampleId<=500

Selection predicates could be <, >, =, <=, >=, <>, and values could be either

numeric or strings within ‘ or “. The system will recognize selections on fragments

that have a qualification contradicting the qualification of the fragmentation rule and

will remove them, since they produce empty relations. If selections are made across

CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION 97

HARIS KONDYLAKIS

fragments that do not contradict the qualification of the fragmentation rule, the union

of two selections should be returned.

Moreover, system can support vertical fragmentation and the fragmented

tables are denoted to belong to the same table. For example, if a table has been

fragmented into two tables Diagnosis and Samples that remain into different data

sources we can declare:

 Vector fragment1=new Vector();

 fragment1. add("Data_Source1:Diagnosis");

 fragment1. add("Data_Source2:Samples");

Those tables are vertical fragmented according to their primary keys. If

selections are made across vertical fragmented tables, then the join of these tables

should be produced.

6.2 Evaluation

After providing X-Specs, configuration file, and the fragmentation rules, the

system is ready to answer every question issued transparently and efficiently. To show

system efficiency exhaustive testing and evaluation has been performed. Here we will

only present, the evaluation based on the needs of project PROGNOCHIP. Detailed

experiments were performed in order to study the performance of the system on the

previous listed algorithms.

Our resources were limited, so we used three machines with an Intel Pentium

III processor on 1.0 GHz, and 256 MB of RAM. Our system achieved good

performance even in these slow machines and we expect great results when more

powerful machines are used. Those machines were on a 10/100 Mbps LAN.

6.2.1 Starting Point - Simple Database Case Study

In the beginning of our evaluation, we built two simple databases that were

placed in the same machine. Those databases were in Microsoft Access and because

they were placed on the same machine with our system there were no communication

costs. The schema of those databases is shown in the following figure.

98 CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Figure 18. Example Database Schema

In this simple case study the focus was to examine the performance of our

system using the memory algorithm only, against the JDBC driver created by SUN.

Of course our system provides transparency to users and ontology based queries

whereas JDBC is a simple driver for single database access.

We annotated our schema using a really simple ontology built only for those

tables. Our ontology consisted of two classes: Patients with the attributes PatientId,

PatientName and PatientSurname, and Samples with the attributes SampleId,

ExtractionProtocol, SampleData, SampleDate and PatientId. All those attributes were

mapped in the underlying data sources at X-Spec creation.

We firstly tried a simple query against a single database. The query was to

select all the Patient Ids from Patients. We run each query 10 times using our

implementation and then the JDBC driver. As we can see in the following figure,

JDBC had a better performance than our implementation, as we expected. Our system

had to load into memory the schemata, to build the correct paths and to transform the

semantic query to SQL, things that add a little overhead to our implementation.

Moreover, our system is implemented in a way that after selecting the tuples and

loading them into memory, every tuple has to be examined for checking if more

actions have to be performed on our central site, even if our result comes from a

single database. This adds an overhead relative to the number of tuples returned. In

our future plans is to optimize the whole procedure.

Database 1
 Patients

PatientId PatientName PatientSurname

 Extractions

PatientId SampleId ExtractionProtocol

Database 2
 Samples

SampleId SampleData SampleDate

 Clinical.Extractions.SampleID == Biological. Samples.SampleID

CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION 99

HARIS KONDYLAKIS

Quete vs Jdbc

0
500

1000
1500
2000
2500
3000

0 20000 40000 60000 80000 100000 120000

Rows

Ti
m

e
(m

se
c)

Jdbc Quete

Figure 19. Quete versus Jdbc in a single select query

The real advantage of our system is the transparent access to multiple,

heterogeneous databases. In order to check the performance of our system in such an

environment we tried to issue a query that would involve a join between two tables

across databases. Of course this action cannot be performed by the JDBC driver, who

can only ask separate databases. That’s why, in order to make estimation about the

JDBC driver we issued “hard-code” the decomposed subqueries in the two data

sources that our system would automatically produce. The results of these subqueries

where then stored in a local database, and then another hard-coded query was sent to

ask the local database for the final results. We have to note that all results from the

two separate databases were joinable. The query issued in our system was:

 Select [Samples]PatientId, [Samples] SampleId, [Samples] SampleData;

That query, decomposed into the two following subqueries issued in the two

underlying databases:

 Select E.PatientId, E.Sample From Extractions as E

 Select S.SampleId, S.SampleData From Samples as S

As we can see, in the following table our system has a better performance in

cases where a small amount of rows is selected and joined. But when a lot of tuples

appear the performance degrades quickly

100 CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Rows Jdbc-Odbc Quete

DB1
Extractions

DB2
Samples

5 5 50 msec 30 msec
10 10 50 msec 30 msec
100 100 330 msec 71 msec

1.000 1.000 2750 msec 3198 msec
10.000 10.000 26533 msec 308945 msec
50.000 50.000 134841 msec A lot of sec
100.000 100.000 267198 msec A lot min
10.000 10 80 msec 1081 msec
10.000 100 380 msec 3455 msec
10.000 1000 3475 msec 30958 msec
50.000 10 161 msec 4345 msec
50.000 100 471 msec 16771 msec
50.000 1000 3194 msec 145892 msec

Table 2. Joining rows across databases

Having those experiments in mind we started developing the Central Database

algorithm we implemented. The memory algorithm was not efficient when a lot of

tuples had to be joined.

6.2.2 Prognochip Case Study

Having the second algorithm implemented, the system was tested in real world

applications and challenges. Since the motivation for this thesis was the project

PROGNOCHIP, measuring the performance of the system when deployed in those

databases was really important.

In the beginning, the schema of each database participating in the project was

collected and the Extractor tool was used, to capture the properties of each database.

Then a trivial, plain ontology was built that was focused on the two databases

participating in our project, and the fields of interest where annotated using terms

from that ontology. The two databases participating were developed to fulfill

different, separate requirements.

The Genomic database stores information about the execution and the result of

microarray experiments. Protocols, procedures, and measurements occurring from

CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION 101

HARIS KONDYLAKIS

several experiments are stored and the whole process of a microarray experiment is

modeled and stored. The results of such experiments are then analyzed using

statistical methods and are stored in a different partition of the same database. The

database has about 85 tables, but according to our ontology only 15 of them are

needed to be used in our integration scheme, so only those tables were annotated. The

whole database schema is really big to be presented here and can be found in the cd

that comes with this thesis. The Genomic database is stored in MySQL, and since the

join relations are not shown in MySQL we had to fully understand the design and the

relations of those tables and to describe them in the X-Spec files.

Whereas the Genomic database is dedicated to microarray experiments, the

Clinical database was built in order to capture all the information needed in a

Hospital. So the clinical database has about 500 tables, but in our project only 70 of

them are needed. The clinical database is in SQLServer but the relationships among

tables are not captured within the database because of implementation and

multilingual reasons (-SQLServer provides the capability to store table relationships

within database and several constraints coming from these relations are checked when

data are updated or inserted). So, we had to understand the whole schema related to

the information that our project needed, and to capture the relationships across tables

in the X-Spec files. Because cycles existed, whenever a table could be reached from

many tables, we chose the more efficient and correct path. This was performed by

eliminating the necessary relations from the appropriate X-Specs. The schema and the

X-Spec files can be found in the cd and in the end of this thesis.

6.2.2.1 No fragmentation

The performance of the two algorithms implemented was initially tested. The

Quete Database algorithm is the one where all the results are stored in a local database

and joined there, whereas the Quete Memory algorithm loads the subquery results into

memory and joins them using simple nested loops.

In Database 1 was stored the Genomic Schema without the tables that are

produced from data analysis, Database 2 contained the tables produced from Genomic

data analysis, and Database 3 followed the clinical schema. The central database used,

was SQLServer but any DBMS accessed by standard ODBC protocols could be used

102 CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

as well. We built a benchmark program that was able to load all three databases with a

prefixed number of rows that all could be joined within and across sites.

QueteMem vs QueteDat

-100000
0

100000
200000
300000
400000
500000
600000

0 2000 4000 6000 8000 10000 12000
Rows

Ti
m

e
(m

se
c)

QueteMem QueteDat

Figure 20. Memory algorithm VS Database Algorithm

The previous figure summarizes data shown in the Appendix and we can

observe that the Memory algorithm performs well when a small amount of tables is

being joined, whereas the Database algorithm outperforms the Memory one when the

data grows. These results confirm that current DBMS can handle heavy-load

situations more efficiently than every implementation we might have. The query

issued, involved all the tables in the Clinical and the Genomic database, and queries

like that will be issued in the final stage of the project.

6.2.2.2 Horizontal fragmentation

After checking the performance of the system in the previous two cases, the

performance of the system when horizontal fragmentation existed, was checked. So,

we fragmented one large table in db1 such that half of it was put in a new table in db2

and a small fraction of the initial table was put in a new table in db3. Then we

submitted fragmentation rules to our system and we issued a query that could exploit

fragmentation to achieve better performance. As shown in the figure and its

corresponding table in the Appendix, when fragmentation rules are considered, we

have a better performance. The performance gained from fragmentation knowledge is

CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION 103

HARIS KONDYLAKIS

optimal when Memory algorithm is used as shown, whereas in Database algorithm the

performance gained is too small. As we can see in the figure, Database algorithm

outperforms Memory algorithm.

-2000000

0

2000000

4000000

6000000

8000000

10000000

0 20000 40000 60000 80000 100000 120000

Rows

Ti
m

e
(m

se
c)

DatabaseNoFragment DatabaseHorizontal
MemoryNoFragmentation MemoryFragmentation

Figure 21. Considering fragmentation rules

Moreover we can conclude from the figure that in this simple case, Database

Algorithm shows the same performance whether data are horizontally fragmented or

not (the line of DatabaseNoFragment is under the DatabaseHorizontal line in the

graph) . This happens because as we said the subqueries are executed in parallel. So,

when the network is not congested the overall time of the initial Query to be executed

is the time for the slowest query to be executed, that overlaps the time to query and

fetch the zero data into our central database. When communication links are highly

congested, of course, using Horizontal Fragmentation rules achieves a better

performance.

6.2.2.3 Hybrid fragmentation

In hybrid fragmentation except from defining horizontal fragmentation rules,

we defined vertical fragmentation rules too and we fragmented a table across two

databases. Then a Query that exploited the fragmentation rules was issued. The results

are shown in the following graph.

104 CHAPTER 6 QUETE IMPLEMENTATION AND EVALUATION

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

-2000000

0

2000000

4000000

6000000

8000000

10000000

0 20000 40000 60000 80000 100000 120000

Rows

Ti
m

e
(m

se
c)

DatabaseNoFragment DatabaseHorizontal
MemoryNoFragmentation MemoryFragmentation

Figure 22. Database vs Memory Algorithm with Hybrid Fragmentation

As we can see in each case, the Memory algorithm is faster for a small number

of tuples whereas Database algorithm is better when we have a lot of rows to join

across databases. Moreover, as fragmentation knowledge exists our system can use

that knowledge to achieve a better performance. We notice that the graph is similar to

the Horizontal case one. This is because vertical fragmentation rules are only used to

assure that the correct joins are applied, whereas horizontal fragmentation boosts the

whole system performance. Of course, if a large table is vertical fragmented in two

tables and a query concerning only the data of the one sub-table is issued, the cost is

smaller than querying the whole large table.

The previous experiments show, that Quete has an acceptable performance

even when a lot of data are going to be queried. Of course, there are some trade-offs

in our system. We sacrifice speed in order to be able to integrate answers from

multiple sources and in order to be able to query them using a global reference

ontology. Furthermore, we can conclude that when difficult operations with a lot of

data are going to be performed, current database systems perform better than our

implementation.

CHAPTER 7CONCLUSIONS 105

HARIS KONDYLAKIS

Chapter 7

7Conclusions

“Everything should be as simple as it is, but not simpler”

-Albert Einstein

Contents

7.1 CONCLUSIONS...105
7.2 EXTENSIONS ..107

7.2.1 IMPLEMENTING MORE QUERYING ALGORITHMS ...107
7.2.3 DATABASE CYCLES ..107
7.2.2 NON – RELATIONAL DATA SOURCES...108
7.2.2 EXPLOITING SYSTEMS FOR AUTOMATICALLY SCHEMA MATCHING.....................................108
7.2.2 THE WEB SERVICE APPROACH – GRID APPROACH...108
7.2.3 CACHING DATA ..109
7.2.4 UPDATING UNDERLYING DATA SOURCES...109

In this chapter we will present the conclusions gained from our research

concerning the area of query processing in data integration systems. Then we are

going to present the directions for our future work since there are a lot to be done in

the area.

7.1 Conclusions

The focus of research in information integration is currently changing. While

previous approaches concentrated on the integration of a given set of well-structured

106 CHAPTER 7 CONCLUSIONS

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

databases, the Internet age is about providing a certain type of information to a user,

independently of which information source is used.

Examples of the new type of information services are companies that sell

information integrated from autonomous web sites, interfaces that provide researchers

with experimental results produced and managed in hundreds of laboratories, and

bargain finders that harvest hundreds of data sources to find the cheapest offer for a

certain good. In these scenarios, integration is provided by a third party, and the task

of integration is to satisfy a source independent information requirement. Underlying

data sources remain completely autonomous and may evolve independently over time.

Despite the growing importance of this new wave in information integration,

few successful solutions are known that are not ad-hoc, hard-coded “hacks”. We

believe that this is because of several reasons. Firstly, information integration is

difficult. The main source of difficulty is heterogeneity and independent evolution,

which both are consequences of autonomy. Moreover, virtual information integration

is prone to bad performance. It is inherently inefficient compared to homogenous,

monolithic systems because in involves the execution of remote methods or queries,

and as a result is almost defenseless to bandwidth limitations. Communication costs

that arise between distinct data sources and their unknown availability over time limit

the capabilities of integration systems. Complicated structures have to be used and

many complex problems arise that can only be partly solved in many cases.

Our system is a typically Local-as-View system and is really flexible in

addition/deletion of the local sources that participate in the integration system.

Moreover underlying sources can evolve at will without any changes to the global

schema. Whereas in LAV system, query processing is a difficult task we managed to

build a processor that can easily decompose semantic queries to structured queries

that will be answered from the underlying databases. Of course in order to achieve

efficiency and good performance we sacrifice complexity and expressiveness and

complex rules cannot be declared in our system. Only rules concerning table

fragmentation can be declared and used and these optimizations make our system

unique.

CHAPTER 7CONCLUSIONS 107

HARIS KONDYLAKIS

7.2 Extensions

Our system tries to integrate several underlying databases by providing the

user with the capability to transparently query them. Of course, our work does not

claim to be complete. There are a lot to be done, since the area of data integration is a

large and complex. Some of our future plans are presented in this section.

7.2.1 Implementing more Querying algorithms

First of all, our near future plan is to implement several other join algorithms

and to build an optimizer that will decide which method to use based on cost

estimates. Those cost estimates could be based on statistics kept, or by other cost

functions based on predefined knowledge. By obtaining information about the data

sources including selectivity and relation size, the global join strategy could be

optimized.

Moreover, in many cases nested queries need to be issued which are not

currently being supported. Strategies to effectively implement those nested queries

should be extensively studied. Except from nested queries, the “Group By” operator

needs to be examined in order to be efficiently implemented.

7.2.3 Database Cycles

As we noted before, in many cases schemas may have multiple sets of joins

that are equivalent in their semantic meaning. Trying to identify and reduce these

duplicate join paths to a single core path will reduce the ambiguity. Heuristics and

smart tricks are not always applicable, because user demands may change over time

and the administrator cannon always predict the join path desired by users. So, an

algorithm should be implemented that will be capable of finding the best join path in

each case.

108 CHAPTER 7 CONCLUSIONS

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

7.2.2 Non – Relational Data Sources

Whereas relational data sources are the most common ones, the evolution of

the internet and the web has brought forth opportunities to connect information

sources across all types of boundaries. Examples of such information sources include

XML and RDF databases, multimedia and object databases.

A major challenge is to extend our implementation in order to integrate such

sources with the relational ones. Uniformly querying those sources should add new

dimensions to the query planning and execution across those data sources.

7.2.2 Exploiting Systems for Automatically Schema Matching.

In our system, the mapping between ontology and relational data sources is

performed by each database administrator, and it is stored in a XML file, called X-

Spec. Mapping ontology terms into data sources, is in many cases really time

consuming and requires a good knowledge of the underlying schema.

Extending our approach, we could replace the administrator with a tool that

would automatically generate the mappings between ontology and schema and would

store them in a pre-defined structure. Several algorithms and tools exist [Aumueller et

al. 2005], [Bernstein et al. 2004] for that purpose, which perform rather well in most

cases and that could be done fully or semi automatic. The predefined structure that

stores information about underlying schemata could be XML, or even tuples stored in

our lightweight database under a specific schema. We believe that it is really trivial to

port one of those systems in our approach, so that human evolvement in the

configuration phases can be highly reduced.

7.2.2 The Web Service approach – Grid approach

The system we implemented builds subqueries that are being executed in the

underlying data sources and pushes to them all operations, concerning only their

distinct schema. Then all operations concerning the final results (ordering, join across

databases, etc.) are being executed in our central site and the whole system is

implemented in a JDBC driver.

CHAPTER 7CONCLUSIONS 109

HARIS KONDYLAKIS

A better approach would be to access data through a web service interface and

to distribute the work done in central site, in several other sites according to specific

parameters, building something like a grid. This ability to access the data stored in the

several relational databases transparently, with mechanisms that will distribute the

load, is likely to be a very powerful one, especially for scientists wishing to collate

and analyze data distributed over the grid. The first steps in this direction have already

started to emerge and several good implementations exist with one of them to

distinguish, because it uses the same starting point with us [Arshad A. et al. 2005].

7.2.3 Caching Data

Furthermore, since the results of each subquery are stored in our local

lightweight database, it is possible for frequent subqueries, all the information needed

to be stored and results to be returned without even querying underlying data sources.

Caching could really boost the whole system performance since communication costs

will be omitted in many cases.

Of course, if some data are cached during the query processing it is essential to

detect whether the query can be answered with the data stored in the cache.

Furthermore, the cache replacement policy is really important since data can be

invalid after a short period of time. Moreover, calculating missing data and getting

them from underlying sources is another aspect of caching.

7.2.4 Updating underlying data sources.

Finally, future work also involves expanding the query processor to handle

updates. Several constraints have to be met in the underlying data sources, in order to

execute updates in the heterogeneous underlying data sources. The implementation of

our system makes it ideal for updating sources too since we have a mechanism that

can be easily extended to support updating. In the current state of the system, all the

information needed to produce correct and efficient updates exist, since we know the

mappings from ontology terms to local fields, the structure and the requirements of

the underlying schemata that are captured in the X-Spec files. Update declarations

110 CHAPTER 7 CONCLUSIONS

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

expressed using our ontology can be decomposed into data source specific update

operations the same way queries are decomposed into sub queries issued to local

databases.

BIBLIOGRAPHY 111

HARIS KONDYLAKIS

8Bibliography

ABITEBOUL, S., BUNEMAN, P., AND SUCIU, D. 1999. “Data on the Web, from

Relations to Semistructured Data and XML”. MORKAU, MKADDR.

ACM Computing Surveys. 1990. Special issue on heterogeneous databases. ACM

Computing Surveys, 22, 13.

ADALI, S., CANDAN, K., PAPAKONSTANTINOU, Y., AND SUBRAHMANIAN,

V. S. 1996. “Query caching and optimization in distributed mediator systems.” In
Proceedings of the ACM SIGMOD Conference on Management of Data
(Montreal, Canada, June), 137–148.

AHO A.V., BEERI C., ULMAN J.D., 1979, “The theory of joins in relational

databases”, ACM Transactions on Database Systems, 4(3):297-314

ANTONIOU G., HARMELEN F. V., 2004, ” A semantic Web Primer”, ISBN 0-262-

01210-3

APERS, P. 1988. “Data allocation in distributed DBMS.” ACM Transactions on

Database Systems 13, 3 (Sept.), 263–304.

ARSHAD ALI, ANJUM ASHIQ, AZIM TAHIR, BUNN JULIAN, IQBAL SAIMA,

MCCLATCHEY R., NEWMAN H., SHAH S.YOUSHAF, SOLOMONIDES
TONY, STEENBERG C., THOMAS M., LINGEN F., WILLERS I., 2005, “
Heterogeneous Relational Databases for a Grid-enabled Analysis Environment”,
Workshop on Web and Grid Services for Scientific Data Analysis at the Int Conf
on Parallel Processing

AUMUELLER D., DO H.H, MASSMANN S., RAHM E., 2005, “Schema and

Ontology Matching with COMA++”, SIGMOD, Baltimore

BABB, E. 1979. “Implementing a relational database by means of specialized

hardware.” ACM Transactions on Database Systems 4, 1 (March), 1–29.

BAKER P., BRASS A., BECHHOFER S., GOBLE C., PATON N., STEVENS R.,

1998, “TAMBIS: Transparent Access to Multiple Bioinformatics Information
Sources” , In proceedings of the Sixth International Conference on Intelligent
Systems for Molecular Biology

BARU C., GUPTA A., LUDASHER B., MARCIANO R., PAPAKONSTANTINOU

Y.,VELIKHOV P, CHU V., 1999, “XML-based information Mediation with MIX”.

112 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

In proceedings of the ACM SIGMOD International Conference on Management of
Data, p 597-599

BATINI C., LENZERINI M., NAVATHE S.,1986 “A comparative Analysis of

Methodologies for Database Schema Integration”, ACM Computing Surveys 18,
323-364

BELLO, R. G., DIAS, K., DOWNING, A., JR., J. F., NORCOTT, W. D., SUN, H.,

WITKOWSKI, A., AND ZIAUDDIN, M. 1998. “Materialized views in oracle.” In
Proceedings of the Conferencce on Very Large Data Bases (VLDB) (New York,
Aug.), 659–664.

BEN MILED Z., LI N., BAUMGARTNER M. LIU Y., 2003 “A Decentralized

Approach to the Integration of Life Science Web Databases”, Informatica. 27(1)

BERNSTEIN, P., GOODMAN, N., WONG, E., REEVE, C., AND ROTHNIE, J.

1981. “Query processing in a system for distributed databases” (SDD-1). ACM
Transactions on Database Systems 6, 4 (Dec.), 602–625.

BERNSTEIN, P., MELKIN S., PETROPOULOS M., QUIX C., 2004, “Industrial

strength Schema Matching”, SIGMOD Record, 33(4), 38-43

BESTAVROS, A. AND CUNHA, C. 1996. “Server-initiated document dissemination

for the WWW.” IEEE Data Engeneering Bulletin 19, 3 (Sept.), 3– 11.

BOGLE, P. AND LISKOV, B. 1994. “Reducing cross domain call overhead using

batched futures.” In Proceedings of the ACM Conference on Object- Oriented
Programming Systems and Languages (OOPSLA) (Portland, OR, Oct.), 341–354.

BUCK-EMDEN, R. AND GALIMOW, J. 1996. “SAP R/3 System, A Client/Server

Technology.” Addison- Wesley, Reading, MA.

BROSDA V., VOSSEN G,, 1988, “Update and Retrieval in a relational database

through a universal schema interface”, ACM Transactions on Database Systems,
13(4):449-485

BUTTLER D., COLEMAN M., CRITCHLOW T., FILETO R., HAN WEI, LIU

LING, PU CALTON, ROCCO D., XIONG LI, 2002 “Querying Multiple
Bioinformatics Data Sources: Can Semantic Web Research Help?”, ACM Sigmod
Record, 31(4)

CAREY, M. AND KOSSMANN, D. 1998. “Reducing the braking distance of an SQL

query engine.” In Proceeding of the Conference on Very Large Data Bases
(VLDB) (New York, Aug.), 158–169.

CAREY, M., HAAS, L., SCHWARTZ, P., ANYA, M., CODY, W., FAGIN, R.,

FLICKNER, M., LUNIEWSKI, A.,NIBLACK, W., PETKOVIC, V., THOMAS,
J., WILLIAMS, J., AND WIMMERS, E. 1995. “Towards heterogeneous

BIBLIOGRAPHY 113

HARIS KONDYLAKIS

multimedia information systems”. In Proceedings of the International Workshop on
Research Issues in Data Engineering (March), 124–131.

CAREY, M. AND LU, H. 1986. “Load balancing in a locally distributed database

system.” In Proceedings of the ACM SIGMOD Conference on Management of
Data (Washington, DC, June), 108–119.

CERI, S. AND PELAGATTI, G. 1984. “Distributed Databases—Principles and

Systems.” McGraw- Hill Inc., New York, San Francisco,Washington, D.C.

CHAMBERLIN, D., ASTRAHAN, M., KING, W., LORIE, R.,MEHL, J., PRICE, T.,

SCHKOLNIK, M., SELINGER, P.,SLUTZ, D., WADE, B., AND YOST, R. 1981.
“Support for repetitive transactions and ad hoc queries in System R.” ACM
Transactions on Database Systems 6, 1 (March), 70–94.

CHAUDHURI, S. AND GRAVANO, L. 1996. “Optimizing queries over mulitmedia

repositories.” In Proceedings of the ACM SIGMOD Conference on Management
of Data (Montreal, Canada, June),91–102.

COHEN W., 1998 “Integration of heterogeneous databases without common domains

using queries based on textual similarity”. SIGMOD Record, 27(2):201-212

COLE, R. AND GRAEFE, G. 1994. “Optimization of dynamic query evaluation

plans.” In Proceedings of the ACM SIGMOD Conference on Management of Data
(Minneapolis, MI, May), 150–160.

D’ANDREA, A. AND JANUS, P. 1996. “UniSQL’s nextgeneration object-relational

database management system.” ACM SIGMOD Record 25, 3 (Sept.), 70–76.

DATE C. J., 1994, “The SQL standard” Addison Wesley, Reading, US, third edition

DAVIDSON S., OVERTON C., BUNEMAN P.,1995, “Challenges in Integrating
Βiological Data Sources” , Journal of Computational Biology. Vol 2, No 4

DAVIDSON S., CRABTREE J., BRUNK B., SCHUG J. TENNEN V., OVERTON

C., STOECKERT C., 2001, “ K2/Kleisli and GUS: Experiments in Integrated
Access to Genomic Data Sources “ IBM Systems Journal, 40(2), 512-531

DEWITT, D., FUTTERSACK, P., MAIER, D., AND VELEZ, F. 1990. “A study of

three alternative workstation server architectures for object-oriented database
systems.” In Proceedings of the Conference onVery Large Data Bases (VLDB)
(Brisbane, Australia, Aug.), 107–121.

DESHPANDE, P., RAMASAMY, K., SHUKLA, A., AND NAUGHTON, J. 1998.

“Caching multidimensional queries using chunks.” In Proceedings of the ACM
SIGMOD Conference on Management of Data (Seattle, WA, June), 259–270.

DESSLOCH, S., H¨ARDER, T., MATTOS, N., MITSCHANG, B., AND THOMAS,

J. 1998. “KRISYS: Modeling concepts, implementation techniques, and
client/server issues.” The VLDB Journal 7, 2 (April), 79–95.

114 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

DU, W., KRISHNAMURTHY, R., AND SHAN, M.-C. 1992. “Query optimization in

heterogeneous DBMS.” In Proceedings of the Conference onVery Large Data
Bases (VLDB) (Vancouver, Canada, Aug.), 277–291.

DU, W., SHAN, M.-C., AND DAYAL, U. 1995. “Reducing multidatabase query

response time by tree balancing.” In Proceedings of the ACM SIGMOD
Conference on Management of Data (San Jose, CA, May), 293–303.

EICKLER, A., KEMPER, A., AND KOSSMANN, D. 1997. “Finding data in the

neighborhood.” In Proceedings of the Conference on Very Large Data Bases
(VLDB) (Athens, Greece, Aug.), 336–345.

ENTREZ – Search and Retrieval System . http://www.ncbi.nlm.nih.gov/Entrez

EVRENDILEK, C., DOGAC, A., NURAL, S., AND OZCAN, F. 1997.

“Multidatabase query optimization.” Distributed and Parallel Databases 5, 1
(Jan.), 77–114.

FAGIN, R. 1996. “Combining fuzzy information from multiple systems.” In

Proceedings of the ACM SIGMOD/SIGACT Conference on Principle of Database
Systems (PODS) (Montreal, Canada, June), 216–226.

FLORESCU, D., KOSSMANN, D., AND MANOLESCU, I. 2000. “Integrating

keyword search into XML query processing”, In Proceedings of the WWW
Conference (WWW9) (Amsterdam, The Netherlands, May).

FLORESCU, D., LEVY, A., AND MENDELZON, A. 1998. “Database techniques

on the worldwide web: A survey.” ACM SIGMOD Record 27, 3 (Sept.), 59–74.

FRANKLIN, M., CAREY, M., AND LIVNY, M. 1993. “Local disk caching for

client-server database systems.” In Proceedings of the Conference on Very Large
Data Bases (VLDB) (Dublin, Ireland, Aug.), 543–554.

FRANKLIN, M., J´ONSSON, B., AND KOSSMANN, D. 1996. “Performance

tradeoffs for client-server query processing.” In Proceedings of the ACM
SIGMOD Conference on Management of Data (Montreal, Canada, June), 149–160.

FRIEDMAN M., LEVY A., MILLSTEIN T., 1999, “Navigational Plans For Data

Integration “, In proceedings of the National Conference on Artificial Intelligence
(AAAI), 67-73

GARDARIN, G., GRUSER, J.-R., AND TANG, Z.-H. 1996. “Cost-based selection of

path expression processing algorithms in object-oriented databases.” In
Proceedings of the Conference on Very Large Data Bases (VLDB) (Bombay,
India, Sept.), 390– 401.

GINGRAS F., LAKSHMANAN L., SUBRAMANIAN I., PAPOULIS D., SHIRI N.,

May 1997, “Language for multidatabase interoperability”. In Proceedings of the

BIBLIOGRAPHY 115

HARIS KONDYLAKIS

ACM SIGMOD International Conference on Management of Data, vol 26,2 of
SIGMOD record, 536-538

GRAEFE, G. 1993. “Query evaluation techniques for large databases.” ACM

Computing Surveys 25, 2 (June), 73–170.

GRAEFE, G. 1995. “The cascades framework for query optimization.” IEEE Data

Engeneering Bulletin 18, 3 (Sept.), 19–29.

GRAEFE, G. 1996. “Iterators, schedulers, and distributed-memory parallelism.“

Software Practice and Experience 26, 4 (April), 427–452.

GRAEFE, G. ANDDEWITT,D. 1987. “The EXODUS optimizer generator.” In

Proceedings of the ACMSIGMOD Conference on Management of Data (San
Francisco, CA, May), 160–172.

GRAEFE, G. AND MCKENNA, W. 1993. “The Volcano optimizer generator:

Extensibility and efficient search.” In Proceedings of the IEEE Conference on Data
Engineering (Vienna, Austria, April), 209–218.

GRAEFE, G. AND WARD, K. 1989. “Dynamic query evaluation plans.” In

Proceedings of the ACM SIGMOD Conference on Management of Data (Portland,
OR, May), 358–366.

GRAVANO, L., CHANG, C.-C., GARCIA-MOLINA, H., AND PAEPCKE, A. 1997.

“STARTS: stanford proposal for internet meta-searching.” In Proceedings of the
ACM SIGMOD Conference on Management of Data (Tucson, AZ, May), 207–
218.

GRAVANO, L. AND GARCIA-MOLINA, H. 1997. “Merging ranks from

heterogeneous internet sources.” In Proceedings of the Conference on Very Large
Data Bases (VLDB) (Athens, Greece, Aug.), 196–205.

GUPTA, A., HARINARAYAN, V., AND RAJARAMAN, A. 1997. “Virtual data

technology.” ACM SIGMOD Record 26, 4 (Dec.), 57–61.

GUPTA, A.,LUDASCHER B., MARTONE M.E. 2000, “Knowledge Based

integration of Neuroscience Data Sources.” , In Intl. Conference on Scientific and
Statistical Database Management.

HAAS, L., KOSSMANN, D., WIMMERS, E., AND YANG, J.1997. “Optimizing

queries across diverse data sources.” In Proceedings of the Conference on Very
Large Data Bases (VLDB) (Athens, Greece, Aug.), 276–285.

HAGMANN, R. AND FERRARI, D. 1986. “Performance analysis of several back-

end database architectures.” ACM Transactions on Database Systems 11, 1
(March), 1–26.

116 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

HAMMER J., SCHNEIDER M., 2003 “Genomics Algebra: A new Integrating Data
Model, Language, and Tool Processing and Querying Genomic Information”, In
proceedings of the 2003 CIDR conference.

HASAN, W. AND MOTWANI, R. 1995. “Coloring away communication in parallel

query optimization.” In Proceedings of the Conference on Very Large Data Bases
(VLDB) (Z ¨ urich, Switzerland, Sept.), 239–250.

IOANNIDIS, Y., NG, R., SHIM, K., AND SELLIS, T.1992. “Parametric query

optimization.” In Proceedings of the Conference on Very Large Data Bases
(VLDB) (Vancouver, Canada, Aug.), 103–114.

IVES, Z., FLORESCU, D., FRIEDMAN, M., LEVY, A., AND WELD, D. 1999. “An

adaptive query execution engine for data integration.” In Proceedings of the
ACM SIGMOD Conference on Management of Data (Philadelphia, PA, USA,
June), 299–310.

JENQ, B., WOELK, D., KIM, W., AND LEE, W. 1990.”Query processing in

distributed ORION.” In Proceedings of the International Conference on Extending
Database Technology (EDBT) (Venice, Italy, March), 169–187.504.

KIM, W., GARZA, J., BALLOU, N., AND WOELK, D. 1990. “Architecture of the

ORION next-generation database system.” IEEE Transactions on Knowledge and
Data Engineering 2, 1 (March), 109–124.

KONOPKI D. AND SHMUELI O., 1998, “Information gathering in the World-Wide

Web: The W3QL query language and the W3QS system”, ACM Transactions on
Database Systems, 23(4):369-410

KORTH H, JUPER G., FEIGENBAUM J, GELDER A, ULMAN J, 1984, “

Sustem/U: A database system based on the universal relation assumption”, ACM
Transactions on Database Systems, 9(3):331-347

KOSSMANN, D., FRANKLIN, M., AND DRASCH, G. 2000. “Cache Investment:

Integrating query optimization and dynamic data placement.” ACM Trans. Data
Syst.

KUHN E., TSCHERNKO T., SCHWARZ K, 1994, “A language based

multidatabase system”, SIGMOD Record, 23(2):509

HAAS, L., FREYTAG, J. C., LOHMAN, G., AND PIRAHESH, H. 1989.

“Extensible query processing in starburst.” In Proceedings of the ACM SIGMOD
Conference on Management of Data (Portland, OR, USA, May), 377–388.

HAAS, L., KODALI P., RICE J.E., SCHWARZ P., SWOPE W.C. 2000, “Integrating

Life Sciences Data – With a Little Garlic.” IEEE International Symposium on Bio-
Informatics and Biomedical Engineering

BIBLIOGRAPHY 117

HARIS KONDYLAKIS

HAAS, L., SCHWARZ P., KODALI P., KOTLER E., RICE J.E., SWOPE W.C.
2001, “DiscoveryLink: A system for Integrated Access to Life Sciences Data
Sources”, IBM Systems Journal, 40(2), 489-511

KABRA, N. AND DEWITT, D. 1998. “Efficient mid-query re-optimization for sub-

optimal query execution plans.” In Proceedings of the ACMSIGMOD Conference
on Management of Data (Seattle, WA, June), 106–117.

KOSSMANN, D. AND STOCKER, K. 2000. “Iterative dynamic programming: A

new class of query optimization algorithms.” ACM Transactions on Database
Systems 25, 1 (March).

KRISNAMURTY R., LITWIN W., KENT W., June 1991, “Language features for

interoperability of databases with semantic discrepancies”, SIGMOD record,
20(2), 40-49

LEE J.O, BAIK D.K, 1999, “ SemSQL: A semantic query language for multidatabase

systems.”, In proceedings of the 8th International Conference on Information
Knowledge Management CIKM’99, 259-266

LEVY, A. 1999. “Answering Queries Using Views: A Survey.” In preparation.

LEVY, A., RAJARAMAN, A., AND ORDILLE, J. 1996. “Querying heterogeneous

information sources using source descriptions.” In Proceedings of the Conference
on Very Large Data Bases (VLDB) (Bombay, India, Sept.), 251–262.

LITWIN W. ABDELLATIF A., May 1987, “An overiview of the database

manipulation language MDSL”, In Proceedings of the IEEE. 69-73

LOPEZ R., 2001, “SRS – Sequence Retrieval System “ .Presentation

http://www.pdg.cnb.uam.es/cursos/BioInfo2001/pages/-SRS/, Universidad
Autonoma de Madrid

LU, H. AND CAREY, M. 1985. “Some experimental results on distributed join

algorithms in a local network.” In Proceedings of the Conference on Very Large
Data Bases (VLDB) (Stockholm, Sweden), 229–304.

LUDASCHER B., GUPTA, A., MARTONE M.E. 2001, “Model – Based Mediation

with Domain Maps”, 17th Intl. Conference on Data Engineering

MACKERT, L. AND LOHMAN, G. 1986. “R* optimizer validation and

performance evaluation for distributed queries.” In Proceedings of the Conference
on Very Large Data Bases (VLDB) (Kyoto, Japan), 149–159.

MAIER D., VARDI M., ULMAN J. D., 1994, “On the foundations of the universal

relation model”, ACM Transactions on Information Systems, 12(4):339-359

MASON T., LAWRENCE M., 2005 “Dynamic Database Integration in a JDBC

Driver”, 7th International Conference on Enterprise Information Systems -
Databases and Information Systems Integration Track, Miami, FL

118 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

MASON T., WANG LIXIN, LAWRENCE R., 2005, “ Autojoin: Providing freedom

from Specifying Joins”, 7th International Conference on Enterprise Information
Systems - Human-Computer Interaction Track

MCHUGH, J. AND WIDOM, J. 1999. “Query optimization for XML.” In Proceedings

of the Conference on Very Large Data Bases (VLDB) (Edinburgh,GB, Sept.), 315–
326.

MERZ U., KING R. , October 1994, “DIRECT: A Query Facility for Multiple

Databases” ,ACM Transactions on Information Systems, 12(4):339-359

MILLER G.A, BECKWITH R., FELLBAUM C., GROSS D., MILLER K., “Five

papers on WordNet.”, Technical Report CSL Report 43, Cognitive Systems
Laboratory, Princeton University 1990

MISHRA, P. AND EICH, M. 1992. “Join processing in relational databases.” ACM

Computing Surveys 24, 1 (March), 63–113

MELTON, J. AND SIMON, A. 1993. “Understanding the New SQL:A Complete

Guide.” Morgan Kaufmann Publishers, San Mateo, CA.

MORK P., HALEVY A., TARCZY-HORNOCH A. 2001, “ A model for Data

Integration Systems of Biomedical Data Applied to Online Genetic Databases”, In
proceedings of the Symposium of the American Medical Informatics Association

MOTRO A., YUAN Q., 1990,“Querying database knowledge”, SIGMOD Record,

19(2): 173-183

O’TOOLE, J. AND SHRIRA, L. 1994. “Opportunisic Log:Efficient Reads in a

Reliable Object Server.” Technical Report MIT/LCS-TM-506 (March),
Massachusetts Institute of Technology, Cambridge, MA 02139.

OGDEN W., BROOKS S., 1983,“Query languages for the casual user: Exploring the

ground between formal and natural languages”, In Proc. Annual Meeting of the
Computer Human Interaction of the ACM, 161- 226

OZCAN, F., NURAL, S., KOKSAL, P., EVRENDILEK, C., AND DOGAC, A. 1997.

“Dynamic query optimization in multidatabases.” IEEE Data Engineering Bulletin
20, 3 (Sept.), 38–45.

OZSU, T. AND VALDURIEZ, P. 1999. “Principles of Distributed Database Systems

(second ed.)”. Prentice Hall, Englewood Cliffs, NJ.

PAPAKONSTANTINOU, Y., GARCIA-MOLINA, H., AND WIDOM, J. 1995a.

“Object exchange across heterogeneous information sources.” In Proceedings of
the IEEE Conference on Data Engineering (Taipeh,Taiwan, 1995), 251–260.

BIBLIOGRAPHY 119

HARIS KONDYLAKIS

PAPAKONSTANTINOU, Y., GUPTA, A., GARCIA-MOLINA, H.,AND ULLMAN,
J. 1995b. “A query translation scheme for rapid implementation of wrappers.” In
Proceedings of the Conference on Deductive and Object-Oriented Databases
(DOOD) (Dec.),161–186.

PAPAKONSTANTINOU, Y., GUPTA, A., AND HAAS, L. 1996. “Capabilities-

based query rewriting in mediator systems.” In Proceedings of the International
IEEE Conference on Parallel and Distributed Information Systems (Miami Beach,
FL, Dec.).

PATON N, STEVENS R., BAKER P., GOBLE C., BECHHOFER S., BRASS A.

1999“Query Processing in the TAMBIS Bioinformatics Source Integration
System”, In proceedings of SSDBM, 138-147, IEEE press

PIRAHESH, H., HELLERSTEIN, J., AND HASAN, W. 1992. “Extensible/rule
based query rewrite optimization in starburst.” In Proceedings of
theACMSIGMOD Conference on Management of Data (San Diego, CA, June),
39–48.

POTAMIAS G., ANALYTI A., KAFETZOPOULOS D., KAFOUSI M,

MARGARITHS T., PLEXOUSAKIS D., POIRAZI P., RECZKO M., TOLLIS I.G,
SANIDAS M.E, STATHOPOULOS E., TSIKANKIS, VASSILAROS S. I, 2005,
“Breast Cancer and Biomedical Informatics: The PrognoChip Project”,
Proceedings of the 17th IMACS world Congress Scientific Computation, Applied
Mathematics and Simulation, Paris, France

QUASS, D. AND WIDOM, J. 1997. “On-line warehouse view maintenance.” In

Proceedings of the ACM SIGMOD Conference on Management of Data (Tucson,
AZ, May), 393–404.

ROTH, M. T., OZCAN, F., AND HAAS, L. 1999. “Cost models DO matter:

Providing cost information for diverse data sources in a federated system.” In
Proceedings of the Conference on Very Large Data Bases (VLDB)
(Edinburgh,GB, Sept.), 599–610.

SAGIV Y. 1983, “A characterization of globally consistent databases and their

correct access paths.”, ACM Transactions on Database Systems, 8(2):266-286

SHAN, M.-C., AHMED, R., DAVIS, J., DU, W., AND KENT, W. 1994. Pegasus: A

heterogeneous information management system. InW.KIMED., Modern Database
Systems, Chapter 32. Reading, MA. ACM Press (Addison-Wesley publishers).

SHETH A.P., LARSON J.A. 1990, “Federated Database Systems for Managing

Distributed, Heterogeneous, and Autonomous Databases”, ACM Computing
Surveys, 22(3) 183-236

SIDELL, J., AOKI, P., BARR, S., SAH, A., STAELIN, C., STONEBRAKER, M.,

AND YU, A. 1996. “Data replication in Mariposa.” In Proceedings IEEE
Conference on Data Engineering (New Orleans, LA, Feb.), 485–494.

120 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

STEINBRUNN, M., MOERKOTTE, G., AND KEMPER, A. 1997. “Heuristic and
randomized optimization for the join ordering problem.” The VLDB Journal 6, 3
(Aug.), 191–208.

SRINIVANSAN, V. AND CAREY, M. 1992. “Compensation based on-line query

processing.” In Proceedings of the ACM SIGMOD Conference on Management
of Data (San Diego, CA, June), 331–340.

STONEBRAKER, M. 1985. “The design and implementation of distributed

INGRES.” Reading, MA.
Addison-Wesley.

SUJANSKY W. 2001, “Heterogeneous Database integration in Biomedecine

Methological Review”, Journal of Biomedical Informatics, 34, 285-298

TANENBAUM, A. 1992. “Modern Operating Systems.” Prentice Hall, Englewood

Cliffs, NJ.

THOMAS, J., GERBES, T., H¨ARDER, T., AND MITSCHANG, B. 1995.

“Implementing dynamic code assembly for client-based query processing.” In
Proceedings of the International Symposium for Advanced Applications,
(DASFAA) (Singapore, April), 264–272.

TOMASIC, A., RASCHID, L., AND VALDURIEZ, P. 1998. “Scaling acccess to

distributed heterogeneous data sources with DISCO.” IEEE Transactions on
Knowledge and Data Engineering 10, 5 (Oct.), 808–823.

URHAN, T. AND FRANKLIN, M. 1999. “Xjoin: Getting Fast Answers from Slow

and Bursty Networks.” Technical report CS-TR-3994 (Feb.), University of
Maryland, College Park.

URHAN, T., FRANKLIN, M., AND AMSALEG, L. 1998. “Cost based query

scrambling for initial delays.” In Proceedings of the ACM SIGMOD Conference
on Management of Data (Seattle, WA, June), 130–141.

VALDURIEZ, P. AND GARDARIN, G. 1984. “Join and Semijoin algorithms for a

multiprocessor database machine.” ACM Transactions on Database Systems 9, 1
(March), 133–161.

WIDOM, J. 1995. “Research problems in data warehousing.” In Proceedings of the

International Conference on Information and Knowledge Management (Baltimore,
MD, Nov.), 25–30.

WIEDERHOLD, G. 1993. “Intelligent integration of information.” In Proceedings of

the ACM SIGMOD Conference on Management of Data (Washington, DC, May),
434–437.

BIBLIOGRAPHY 121

HARIS KONDYLAKIS

WILLIAMS, R., DANIELS, D., HAAS, L., LAPIS, G., LINDSAY, B., NG, P.,
BERMARCK, R., SELINGER, P., WALKER, A., WILMS, P., AND YOST, R.
1981. R§: “An Overview of the Architecture.” IBM Research, San Jose, CA,
RJ3325. Reprinted in: M. Stonebraker (ed.), Readings in Database Systems,
Morgan Kaufmann Publishers, 1994, 515–536.

WOLFSON, O., JAJODIA, S., AND HUANG, Y. 1997. “An adaptive data

replication algorithm.” ACM Transactions on Database Systems 22, 42
(June),255–314.

ZHU, Q. AND LARSON, P. 1994. “A query sampling method of estimating local

cost parameters in a multidatabase system.” In Proceedings IEEE Conference on
Data Engineering (Houston, TX, USA, Feb.), 144–153.

122 BIBLIOGRAPHY

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

APPENDIX 123

HARIS KONDYLAKIS

9Appendix

List of Symbols and abbreviations.

Symbol Explanation

∪ The union operator
π (A) The projection operator
σ (Α) The selection operator
>< The join operator
>< The Semijoin operator
DBMS Database Management System
DSN Data Source Name
CV Context View
GAV Global as View
LAV Local as View
ODBC Open DataBase Connectivity, standard database access mehtod
SQL Structured Query Language
UR Universal Relation

Sample JDBC Application

1: import java.sql.*;
2:
3: public class JDBCApplication
4: {
5: public static void main(String[] args)
6: {
7:
8: String url = “jdbc:QueTe://sources.xml”;
9: Connection con;
10:
11: // Load QueTeDriver class
12: try { Class.forName(“Quete.jdbc.QueTeDriver”); }
13: catch (java.lang.ClassNotFoundException e)
14: {System.exit:}
15:
16: try { // Initiate connection
17: con = DriverManager.getConnection(url);
18: Statement stmt = con.createStatement();
19:
20: ResultSet rst = stmt.executeQuery(“

124 APPENDIX

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

21: SELECT Part.Name, LineItem.Quantity, Customer.Name
22: WHERE Customer.Name=’Customer 25’”);
23:
24: System.out.println(“Part , Quantity, Customer”);
25:
26: while (rst.next())
27: {
28: System.out.println(rst.getString(“Part.Name”)
29: +“,”+rst.getString(“LineItem.Quantity”)
30: +“,”+rst.getString(“Customer.Name”));
31: }
32: con.close();
33: }
34: catch (SQLException ex) {System.exit(1); }
35: }
36: }

Evaluation Measurements

No Fragmentation

Rows Jdbc-Odbc QueTe

Memory
QueTe

Database

Db1 Db2 Db3

5 5 5 9 + 1 + 97 443 897
10 10 10 3 + 3 + 95 427 921
100 100 100 11 + 7 + 102 410 3017
1000 1000 1000 109 + 47 + 156 6508 24831
5000 5000 5000 505 + 215 + 886 144500 119521
10000 10000 10000 1031+432+654 529895 212513
50000 50000 50000 6032+2218+3920 - -
100000 100000 100000 11470+4440+21668 - -
1000 100 100 110+5+46 1248 11237
1000 1000 100 108+61+5 3871 23666
100 1000 1000 12+48+83 5343 22438
100 100 1000 12+26+70 2046 10683

10000 10000 100 1045+430+8 266304 194603
50000 50000 100 5955+2215+12 - 940119

Table 3. Results with when no fragmentation exists

APPENDIX 125

HARIS KONDYLAKIS

Horizontal Fragmentation

Rows Jdbc-Odbc Quete
Database
Normal

Quete
Database
Horizont

Quete
Mem

Normal

Quete
Mem

Horizont

Db1 Db2 Db3

5 5 5 1+1+1 724 471 233 223
10 10 10 2+0+0 484 460 220 223
100 100 100 0+2+2 1255 1362 243 240
1000 1000 1000 6+9+21 12555 12629 974 734
5000 5000 5000 27+26+26 56415 56122 26410 15169
10000 10000 10000 55+48+207 109848 111990 88948 59858
50000 50000 50000 245+221+749 508391 516580 2233303 1499815
100000 100000 100000 447+428+1724 1009590 1015382 9005540 5783919

Table 4. Results When Horizontal Fragmentation exists

Vertical Fragmentation

Rows Jdbc-Odbc Quete Database

Quete
Memory

Db1 Db2 Db3

5 5 5 1+1 1248 260
10 10 10 2+1 714 226
100 100 100 4+5 2526 320
1000 1000 1000 32+18 23650 3387
5000 5000 5000 68+64 104719 68390
10000 10000 10000 123+124 229074 287871
50000 50000 50000 572+597 1015868 6446310
100000 100000 100000 1095+1192 - -

Table 5. Results when Vertical Fragmentation exists

126 APPENDIX

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT

Hybrid Fragmentation

Rows Jdbc-Odbc Quete
Database
Normal

Quete
Database
Horizont

Quete
Mem

Normal

Quete
Mem

Horizont

Db1 Db2 Db3

5 5 5 1+1+1 861 1051 327 250
10 10 10 1+1+1 797 701 237 223
100 100 100 0+3+1 1295 1275 267 263
1000 1000 1000 24+8+2 16377 13487 1054 951
5000 5000 5000 27+26+21 59412 58464 20809 18149
10000 10000 10000 49+45+42 111474 109679 71384 71747
50000 50000 50000 251+209+303 520847 533516 1689826 1684386
100000 100000 100000 458+424+368 1018832 1027887 6691803 6765256

Table 6. Results when Hybrid Fragmentation exists

