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ABSTRACT 

The exponential growth of the web and the extended use of database 

management systems has brought to the fore the seamless interconnection of diverse 

and large numbers of information sources. The main problem in such an environment 

is the heterogeneity between these different sources.  

Our essential proposal to resolve the issue of heterogeneity, is finding 

mappings across schemata and a global reference ontology, the terms of which are 

used for annotation and querying. By accepting ontology as a point of common 

reference, naming conflicts are eliminated and semantic conflicts are reduced. 

Our contribution is a system that provides an automatic and scalable approach 

to integrate and then query transparently multiple data sources. It maps automatically 

semantic queries to SQL and presents the results to the user. Database metadata, are 

independently captured into XML documents, which also store semantic names for 

schema elements to identify identical concepts across systems. The query system is 

capable of handling complex join constructs, and choosing the appropriate attributes, 

relations and join conditions to preserve user query semantics.  

Moreover, since joins across databases are most difficult to handle, two join 

algorithms were implemented in order to study the efficiency of such a system. The 

query engine extended to support and exploit horizontal and vertical distribution of 

database’s tables. Those extensions boost the whole system performance when the 

knowledge of such a distribution exists. Experiments showed that the system has an 

acceptable performance even in large databases.   
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ΠΕΡΙΛΗΨΗ  

Η ραγδαία ανάπτυξη του διαδικτύου και η εκτεταμένη χρήση των 

συστημάτων διαχείρισης βάσεων δεδομένων, έφερε στο προσκήνιο  την ανάγκη για 

την διασύνδεση ποικίλων πηγών πληροφορίας. Κύριο πρόβλημα σε ένα τέτοιο 

περιβάλλον είναι η ετερογένεια  των διαφορετικών αυτών πηγών. 

Για την επίλυση του προβλήματος της ετερογένειας η βασική μας πρόταση 

είναι η ανεύρεση συσχετισμών ανάμεσα στα σχήματα και σε μια οντολογία 

αναφοράς, οι όροι της οποίας χρησιμοποιούνται για τον σχολιασμό των πηγών και για 

το σχηματισμό επερωτήσεων που απευθύνονται σ’ αυτές.  Με την αποδοχή της 

οντολογίας ως κοινό σημείο αναφοράς οι ονομαστικές συγκρούσεις εξαλείφονται και 

οι σημασιολογικές διαφορές μειώνονται αισθητά. 

Η συνεισφορά μας στον τομέα είναι ένα σύστημα που παρέχει μια αυτόματη 

προσέγγιση στην ενοποίηση πολλαπλών πηγών πληροφορίας. Η ενοποίηση αυτή είναι 

διάφανη στον τελικό χρήστη, ο οποίος μπορεί να εκτελεί επερωτήσεις σε πηγές 

δεδομένων που εξελίσσονται και εμπλουτίζονται συνεχώς. Οι διάφορες 

σημασιολογικές επερωτήσεις συσχετίζονται αυτόματα με SQL επερωτήσεις οι οποίες 

απευθύνονται στις ξεχωριστές πηγές. Τα μεταδεδομένα κάθε σχήματος  

καταγράφονται σε XML έγγραφα, στα οποία αποθηκεύονται και τα σημασιολογικά 

ονόματα για κάθε στοιχείο των υποκείμενων πηγών. Προσδιορίζονται έτσι τα 



 

ταυτόσημα στοιχεία ανάμεσα στις πηγές. Το σύστημα έχει τη δυνατότητα να 

χειρίζεται πολύπλοκες συνενώσεις, να επιλέγει τα κατάλληλα γνωρίσματα, τις σωστές 

σχέσεις και τις απαραίτητες συνθήκες έτσι ώστε να διατηρείται η σημασιολογία των 

επερωτήσεων του χρήστη. 

Επιπλέον, μια και οι συνενώσεις ανάμεσα σε διαφορετικές βάσεις δεδομένων 

είναι ιδιαίτερα δύσκολες στο χειρισμό τους, υλοποιήθηκαν δυο αλγόριθμοι με σκοπό 

να μελετηθεί η αποδοτικότητα ενός τέτοιου συστήματος. Η μηχανή επερωτήσεων 

επεκτάθηκε για να υποστηρίζει και να αξιοποιεί οριζόντια και κατακόρυφη κατανομή 

σχεσιακών πινάκων. Όταν υπάρχει εκ των προτέρων η γνώση για τέτοιες κατανομές, 

η απόδοση του συστήματος αυξάνεται κατακόρυφα. Οι μετρήσεις που 

πραγματοποιήθηκαν έδειξαν ότι το σύστημα έχει αποδεκτή συμπεριφορά ακόμα και 

σε μεγάλες βάσεις δεδομένων. 
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Chapter 1 

1Introduction 

“Mediation: a practice under which, in a conflict, the services 

of a third party are utilized to reduce the differences or to seek 

a solution. Mediation differs from "good offices" in that the 

mediator usually takes more initiative in proposing terms of 

settlement. It differs from arbitration in that the opposing 

parties are not bound by prior agreement to accept the 

suggestions made.” 

-Encyclopedia Britannica  

Contents 
1.1 MOTIVATION.................................................................................................................................2 
1.2 CONTRIBUTIONS ..........................................................................................................................4 

1.3 ORGANIZATION............................................................................................................................5 

 

 

Data Integration is one of the key problems for the development of modern 

information systems. The exponential growth of the web and the extended use of 

database management systems has brought to the fore the seamless interconnection of 

diverse and large numbers of information sources. An important factor on that 

problem is the capability to effectively store and process information and to provide 

access uniformly and efficiently. 

In order to provide uniform access to heterogeneous autonomous data sources, 

complex query mechanisms have to be designed and implemented. The design and 

implementation of a query mechanism is not trivial because of the heterogeneity of 

the various components. In information systems, heterogeneity appears for instance in 
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different structured schemas, different scopes and meanings of schema elements, and 

different access interfaces. Coping with heterogeneity is always cumbersome. The 

necessary effort grows with the degree of autonomy of systems being integrated.  

Several systems have been implemented in order to integrate heterogeneous 

databases and to query them. This thesis examines the current distributed query 

processing proposals, and proposes a framework for answering queries, in 

environments that integrate heterogeneous databases.  

 

1.1 Motivation 

The motivation for this thesis was the integration of two database systems in 

the project PROGNOCHIP [Potamias G. et al 2005]. The aim of the project was to 

develop and establish DNA microarray experiments in Greece and the identification 

and validation of classification and prognosis molecular markers for breast cancer. 

 

Figure 1. System Overview 
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Our task was to integrate two information systems as shown in figure 1: The 

Genomic Information System, that provides storage of microarray experiments, and 

the Clinical Information System, that provides storage of clinical information about 

patients. The task was to provide a transparent layer that could enhance knowledge 

extraction and data exchange between these two systems, which could accept queries 

from tools and users, and would transparently break queries based on metadata, send 

them to subsystems and integrate the results returned from them. 

The current approach to data source integration is using mediator and wrapper 

systems, which answer queries across a wide-range of data sources. These systems 

construct integrated global views, using designer-based approaches, which are 

mapped using a query language or logical rules into views or queries on the individual 

data sources. Once an integrated global view and corresponding mappings to source 

views are logically encoded, wrapper systems are systematically able to query and 

provide interoperability between diverse data sources. 

Unfortunately, mediator and wrapper systems require dedicated database 

designers and many man-hours of query design and engineering to build a global view 

for any given multidatabase environment. As a result, database integration is, in many 

cases, prohibitively expensive and the results are not usually transferable to other 

multidatabase environments. Further, when data sources are added or removed from 

the global view, the integration must be performed again.  

In our implementation, we try to resolve those boundaries by extending the 

mediator-wrapper architecture. Moreover, our framework tries to meet several 

requirements. Some of these are implemented in several systems designed for query 

answering in distributed database environments, but none of them meets them all: 

• The requirement to provide comfortable access to all available 

information in each field. 

• The capability to perform queries without the knowledge of the schemas of 

each database. 

•  The data could physically reside on computers distributed all over the 

world. 

• Data sources would be heterogeneous in terms of the access mechanisms 

they offer, the schemas they use to describe their data, the meaning they 
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give to schema elements, and the format in which data is eventually 

provided. 

• Data sources could be intentionally and extensionally overlapping. 

Intention is represented in schemas, whereas extension is represented in 

instances. 

• Data in different data sources could be inconsistent. 

• Data sources would evolve frequently and independently. 

 

The approach to data integration we develop in this thesis is by no means 

restricted to bioinformatics. On the contrary, it is completely domain independent. 

However, the motivation for its development was largely taken from problems 

occurred in Prognochip. 

  

1.2 Contributions 

The primary contributions of this thesis are: 

• A solution that provides full location, language and schema transparency 

for users. 

• Dynamic integration of large numbers of data sources in evolving 

environments. 

• Standardized Ontology for use across integration domains. 

• Capture process performed only once per data source using integration 

software.  

• Automatic global view updating to reflect local database changes. 

• Data integration at query time that does not depend on data replication. 

• Horizontal, Vertical, and Hybrid fragmentation is highly considered at 

query execution time. 

• Optimization based on fragmentation. 

• Dynamic Policy for query answering. 

• Quick results in large databases with a high number of joins between them. 

• Alternative join implementation for relations that span across databases. 
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1.3 Organization 

This thesis is structured as follows. Chapter 2 is an overview of query 

processing approaches and techniques used to query multidatabase systems. Then, in 

chapter 3 the most common integration approaches are shown, and the most important 

systems used to integrate biological data are presented.  

In Chapter 4 we give an overview of the architecture of our system, and we 

present its basic components. After describing abstractly system’s components, we 

describe the query language used to build queries in QueTe in Chapter 5, and we 

define its capabilities. 

 The implementation and the design choices we made are placed in Chapter 6, 

where also resides the system evaluation. Finally, Chapter 7 concludes the research 

contributions of the thesis, discusses ways to extend the capabilities of query 

processing and draws directions for further research work. 
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Chapter 2 

2Query Processing  

 “There can be no understanding between the brain and the 

hands, unless the heart acts as mediator.” 

-from the movie “Metropolis” 
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Research community has been interested in distributed database systems since 

the 1970s. Although many ideas had been appeared, distributed database systems 

were never commercially successful. The main reason for that was the instability of 

communication technology to ship megabytes of data as required and that large 

businesses managed to survive without sophisticated distributed database technology 

by using tapes, diskettes or just paper to exchange data.  

The situation today has changed dramatically. Distributed data processing is 

both feasible and needed. Almost all database vendors offer products to support 

distributed data processing (e.g., Oracle, Sybase, IBM, and Microsoft) and large 

database application systems have a distributed architecture. Distributed data 

processing is feasible because of recent technological advances and  is needed 

because of changing business requirements, which have made distributed data 

processing cost-effective and in certain situations the only viable option.  

Specifically, businesses are beginning to rely on distributed rather than 

centralized databases because of the cost and the scalability they provide, the 

capability to integrate different software models, legacy systems that were used and 

still coexist with modern systems. Furthermore an even growing number of 

applications have come to rely on distribution technology such as workflow 

management; tele-conferencing etc. and many companies are forced to reorganize 

their business in order to remain competitive and more effective.  

For the rest of this chapter it is assumed that users and application programs 

issue queries using a declarative query language such as SQL [Melton and 

Simon1993] and without knowing where and in which format the data is stored in the 

distributed system. The goal is to execute such queries as efficiently as possible in 

order to minimize the time that users must wait for answers or the time application 

programs are delayed. To this end, we will discuss a series of techniques that are 

particularly effective to execute queries in today’s distributed systems. For example, 

we will describe the design of a query optimizer that compiles a query for execution 
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and determines the best possible way among many alternative ways to execute a 

query. We will also show how techniques such as caching and replication can be used 

to improve the performance of queries in a distributed environment. Furthermore, we 

will cover specific query processing techniques for client-server, middleware 

(multitier), and heterogeneous database and information systems, which represent 

architectures that are frequently found in practice. 

 

2.1 Research Scope 

Over last decades a very large body of work exists in the area of databases. All 

this work can be roughly classified into work on architecture and techniques for 

transaction processing, work on query processing, and work on data models, 

languages, and user interfaces for advanced applications. In this chapter we will focus 

primarily on query processing. A discussion of transaction processing and of 

alternative data models is beyond the scope of this work. 

This thesis does not intend to give a full coverage of all query processing 

techniques used today; in fact, a number of query processing techniques for the World 

Wide Web are not discussed. For instance we will not present the architecture of 

search engines such as AltaVista. Furthermore there have been several proposals to 

manage Web sites and query a network of Web Pages [Florescu et al. 1998], to 

manage and query XML data [McHugh and Widom 1999],[Abiteboul et al. 1999], 

[Florescu et al.1999]. Instead of going into the details of all these techniques the focus 

of this chapter is on fundamental mechanisms to process queries that involve data 

from several sites. We will, therefore, concentrate on structured data and on query 

languages for structured data, so we will assume that the reader is familiar with basic 

database system concepts, SQL and the relational data model. Nevertheless, the 

techniques described in this paper are also relevant to process other kind of data in a 

distributed environment. 
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2.2 Distributed Query Processing: Basic Approach and 
Techniques 

In this section we will describe the “text-book” architecture for query 

processing and present a series of specific query processing techniques for distributed 

databases and information systems. The purpose of this section is to give an overview 

of basic mechanisms that can be used in any kind of distributed database system. 

 

2.2.1 Architecture of a Query Processor 

The “text-book” architecture was first used in IBM’s Starburst project [Haas et 

al. 1989] .This architecture can be used for any kind of database system including 

centralized, distributed or parallel systems. In this architecture, queries issued at the 

system are being translated and optimized in several phases into an execution plan. 

This plan is being executed in order to obtain the results of the query. Several plans of 

repeated queries (so called “canned” queries) can be stored in the database and 

executed by the query execution engine each time this query is issued [Chamberlin et 

al. 1981]. 

 

Figure 2. Phases of Query Processing 

The components of the “text-book” architecture are shown in the previous 

figure. At first, the query is issued in the parser component where it is parsed and 
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translated into an internal representation (e.g., a query graph [Jenq et al 1990], 

[Pirahesh et al. 1992]), that can be easily processed by the latter phases. Next, the 

parser query rewriter transforms a query in order to carry out the optimizations that 

are optimal regardless the state of the system. Typical transformations are the 

elimination of redundant predicates, simplification of expressions, and unnesting of 

subqueries and views. In a distributed system, query rewrite also selects the partitions 

of a table that must be considered to answer the query [Ceri and Pelagatti,1984],[Ozsu 

and Valduriez, 1999].   

The next step is Query Optimizer. This component carries out optimizations 

that depend on the physical state of the system. The optimizer decides which indices 

to use to execute a query, which methods (e.g., hashing of sorting) to use to execute 

the operations of a query and in which order to execute the operations of a query. 

Moreover it decides how much main memory to allocate for the execution of each 

operation. In a distributed system, the optimizer must also decide at which site each 

operation is to be executed. To make these decisions, the optimizer enumerates 

several alternative plans and chooses the best plan (usually a plan which is not the 

worst) using a cost estimation model. 

Usually in databases, plans are represented as trees, where the nodes are 

annotated, indicating where the operator is to be carried out. The edges represent 

consumer – producer relationships of operations. In the Plan Refinement stage, the 

plan produced by the optimizer is being transformed into an executable plan. 

Finally, each operator is implemented by the query execution engine. All state-

of-the-art query execution engines are based on an iterator model [Graefe 1993], 

where operators are implemented as iterators and all iterators have the same interface. 

As a result two iterators can be plugged together and moreover the results of one 

operator can be plugged as an input in another operator (pipelining). 

The main components cooperate with the Catalog. All the information needed 

for parsing rewriting and optimizing a query is stored in the+ Catalog. It maintains the 

schema of the database (i.e. definitions of tables, views, user-defined types and 

functions, integrity constraints etc.), the partitioning schema (information about what 

global tables have been partitioned and how they can be reconstructured) and physical 

information such as the location of replicas, information about indices, and statistics 

that are used to estimate the cost of a plan. In most relational database systems, 
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catalog information is stored like all other data in tables. In a distributed database 

however, the question of where to store the catalog arises. The simplest approach is to 

store the catalog at one central site, but in wide-area networks, it makes sense to 

replicate the catalog at several sites in order to reduce communication costs. It is also 

possible to cache catalog information [Williams et al 1981]. Both replication and 

caching of catalog information are very effective because catalogs are usually quite 

small and their information is rarely updated in most environments. However in 

certain environments, catalogs can become very large and be frequently updated. In 

such environments it makes sense to partition the catalog and store catalog data where 

it is most needed.  

Of course the architecture described above is not the only possible way to 

process queries. There is no such thing as a perfect query processor. For example, an 

alternative architecture has been developed in [Graefe 1995], [Graefe and McKenna 

1993], [Graefe et DeWitt 1987] and is used in several commercial database products 

such as Microsoft’s SQLServer. In that architecture, query rewrite and optimization 

are executed in one phase. 

 

2.2.2 Query Optimization 

In this section, we will give a short description of the main techniques used to 

implement the query optimizer of a distributed database system. First, we will 

describe the most popular algorithm called “enumeration algorithm” for query 

optimization. 

 

2.2.2.1 Plan Enumeration with Dynamic Programming 

A large number of alternative enumeration algorithms has been proposed in 

the literature [Steinbrunn et al 1997],[Kossman and Stocker 2000].One of them, 

which is used in almost all commercial databases, called dynamic programming, is 

described. The main advantage of this algorithm is that it produces the best possible 

plans if the cost model is sufficiently accurate. Unfortunately, its main disadvantage is 

that it has exponential space and time complexity and it is not viable in complex 

queries. Moreover in distributed environments, the complexity of dynamic 



CHAPTER 2 QUERY PROCESSING                                                                                                            13 

 

HARIS KONDYLAKIS 

programming is prohibitive for many queries. Several extensions exist with the most 

popular one being the “iterative dynamic programming”, which produces optimal 

plans, as the ones produced using basic dynamic programming for simple queries, and 

“as good as possible plans” for more complex ones [Kossman and Stocker 2000]. 

The basic dynamic algorithm is shown in the following figure and it works in 

a bottom-up way by building more complex sub-plans from simple sub-plans. In the 

first step the algorithm builds an access plan for every table involved in the query. 

Then it enumerates all two-way join plans using the access plans as building blocks. 

Next the algorithm builds three-way join plans using access plans and two-way join 

plans as building blocks, e.t.c. The algorithm continues in this way until it has 

enumerated all n-way join plans which are complete plans for the query, if the query 

involves n tables. 

 

 

Figure 3. Dynamic programming algorithm for query optimization 

 
The beauty of the dynamic programming is that inferior plans are pruned as 

early as possible. A plan is being discarded if an alternative plan exists that does the 

Input: SPJ query q on relations R1,. . . , Rn 

Output: A query plan for q 

1:  for i = 1 to n do { 

2:   optPlan({Ri}) = accessPlans(Ri ) 

3:   prunePlans(optPlan({Ri})) 

4:  } 

5:  for i = 2 to n do f { 

6:   for all  S ⊆ {R1, . . . , Rn} such that  |S| = i do {  

7:    optPlan(S) = Ø  

8:    for all O ⊂  S do { 

9:  optPlan(S) = optPlan(S) ∪  joinPlans(optPlan(O), optPlan(S - O)) 

10:  prunePlans(optPlan(S)) 

11:    } 

12:   }  

13:  } 

14:  return optPlan({R1, : : : , Rn})
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same or more work at a lower cost. Pruning significantly reduces the complexity of 

query optimization since the earlier inferior plans are pruned and more complex plans 

are not constructed from such inferior plans. 

As things get distributed the decision of which plan must be pruned gets more 

and more difficult. Two plans may do the same work, but they might produce their 

results at different sites so shipping time must be considered. In general a plan P1 may 

be pruned, if there exists a plan P2 that does the same or more work and the following 

criterion holds: 

 

∀  i ∈  interesting_sites(P1): Cost ( ship ( P1, i ) ≥ Cost ( ship ( P2, i ) ) 

 

Here, interesting_site denotes the set of sites that are potentially involved in 

processing the query. This means, that the plan with higher shipping cost shall be 

eliminated. The concept is formally defined in [Kossman and Stocker 2000] where it 

is shown that this expression can be evaluated efficiently during query optimization 

under certain conditions. 

 

2.2.2.2 Cost Estimation for Plans  

The classic way to estimate the cost of a plan is to estimate the cost of every 

individual operator and then sum up these costs [Mackert and Lohman 1986]. In this 

model, the cost of a plan is defined as the total resource consumption of the plan. In a 

centralized system the cost of an operator is composed of CPU costs plus disk I/O 

costs. In a distributed system, communication costs must also be considered. A 

general formula for determining the total cost can be specified as follows. 

 

Total_cost = CCPU * #insts + CI/O * #I/Os + CMSG * #msgs + CTR * #bytes 

 

The two first cost components measure the local processing time, where  CCPU  

is the cost of a CPU instruction and CI/O is the cost of a disk I/O. The communication 

cost is depicted by the two last components. CMSG  is the fixed cost of initiating and 

receiving a message, while  CTR  is the cost of transmitting a data unit from one site to 

another. The data unit is defined here in terms of bytes but could be in different units 
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(e.g., packets). A typical assumption is that CTR  is constant which simplifies query 

optimization. Thus the communication cost of transferring #bytes of data from one 

site to another is assumed to be a linear function of #bytes. 

 

   CC(#bytes)= CMSG + CTR * #bytes 

 

In general one optimizer will favor plans that carry out operations on fast and 

unloaded machines and avoid expensive communication links, whenever possible. 

 

2.2.2.3 Response time of Plans  

Except from total cost (time), the cost of a distributed execution strategy can 

be expressed with respect to the response time. When the response time is the 

objective function of the optimizer, parallel local processing and parallel 

communications must be considered. A general formula for response time is: 

 

 Response_time= CCPU * seq_#insts + CI/O * seq_#I/Os  

   + CMSG * seq_#msgs + CTR * seq_#bytes 

 

where seq_ denotes the maximum number of operations which must be done 

sequentially for the execution of the query. Thus any processing and communication 

done in parallel is ignored. Minimizing the response time is achieved by increasing 

the degree of parallel execution. This does not, however imply that the total cost is 

also minimized. On the contrary, it can increase the total cost, for example, by having 

more parallel local processing and transmissions. Minimizing the total cost implies 

that the utilization of the resources improves, thus increasing system throughput. In 

practice a compromise of those two is desired. 

 

2.2.3 Query Execution 

Here we will give a short overview of the alternative ways to execute queries 

in distributed database systems, how data can be shipped and how joins between 
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tables stored at different sites can be computed. We will not describe “standard” 

execution techniques that are commonly used in centralized database systems [Graefe 

1993], [Mishra and Eich 1992] and can consequently be used in distributed 

environments too. We will discuss some of the many options to implement some 

operators in distributed systems and we will examine how a query optimizer must be 

extended in order to decide if and how to make use of these techniques for a specific 

query. 

 

2.2.3.1 Row Blocking 

In a distributed environment, communication is typically implemented by send 

and receive operators. The more messages you send the more resources you are 

consuming. A good idea is to send fewer messages by sending a lot of tuples in a 

blockwise fashion instead of sending every tuple individually. This approach is 

obvious much cheaper than the naïve approach of sending one tuple at a time. 

Furthermore, the size of the blocks is a parameter that can be regulated according to 

the characteristics of the network. 

One particular advantage of row blocking is that it compensates for burstiness 

in the arrival of data up to a certain point. If tuples are shipped one by one through the 

network, any short delay would immediately stop the execution of the query at the 

receiving site because of shortage of tuples to consume. Due to row blocking, the 

receive operator has a reservoir of tuples and can feed its parent operator even if the 

next block of tuples is delayed. As a result, it is often better to choose a block size that 

it is larger than the message size used by the network. 

 

2.2.3.2 Optimization on Multicasts 

It is obvious that communication costs may vary significantly depending on 

the locations of the sending and receiving sites. Moreover sometimes, a site needs to 

send the same data to several sites to execute a query. If the network itself does not 

provide cheap ways to implement multicasts then it is desired to choose the “shortest” 

paths between sites. Furthermore the load of the sites and their processing capability 

is a matter that must be considered in order to build the best execution plan. 
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2.2.3.3 Multithreaded Query Execution 

In order to take the best advantage of intraquery parallelism, it is sometimes 

advantageous to establish several threads at a site [Graefe 1990]. As an example, 

consider the plan A1 ∪  A2 ∪  A3 where A1 is stored in Site 1, A2 is stored in Site 2 

and A3 in Site 3 and the result must be presented in Site 0. If the union and receive 

operators of Site 0 are executed within a single thread, then Site 0 only requests one 

block at a time and the opportunity to read and send the three partitions from the three 

sites is wasted. Only if the union and receive operators at Site 0 run in different 

threads, they can run and produce tuples in parallel. 

However establishing a separate thread for each operator is not the best thing 

to do every case. This is because the threads need to be synchronized since they use 

the same shared-memory which adds additional cost to the whole process. Moreover, 

it is not always advantageous to parallelize all operations and of course not all 

operations can be executed in parallel. The query optimizer must decide at run time 

which parts of the query should be run in parallel, and which operators should run in 

the same thread. 

 

2.2.3.4 Joins with Horizontally Partitioned Data 

The horizontal fragmentation function distributes a relation based on selection 

predicates. The reduction of queries on horizontally fragmented relations consists 

primarily of determining, after restructuring the subtrees, those that will produce 

empty relations, and moving them. Horizontally fragmentation can be exploited to 

simplify both selections and join operations. 

Selections on fragments that have a qualification, contradicting the 

qualification of the fragmentation rule, generate empty relations. Given a relation R 

that has been horizontally fragmented as R1, R2, . . . , Rw, where  Rj= σpj ( R ) , the rule 

can be stated formally as follows: 

 

 σpj ( Rj ) =  σpj (σpj ( R ))= Ø if  ∀  x in R: ¬  ( pi(x) ∧  pj(x) ) 

 

Here,  pi and pj are selection predicates, x denotes a tuple, and p(x) denotes 

“predicate p holds for x.”  The rule states that if our select condition does not interest 
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with the distribution predicate, empty result is produced. For example, in the 

following figure, the selection predicate ENO=”E5” conflicts with the predicates of 

fragments E1 and E3 and the reduced query is produced after examining the 

fragmentation. 

 

 

Figure 4. Reduction with Horizontal Fragmentation 

 
Moreover joins on horizontally fragmented relations can be simplified when 

the joined relations are fragmented according to the join attribute. The simplification 

consists of distributing joins over unions and eliminating useless joins. The 

distribution of join over union can be stated as  

 

        ( R1 ∪  R2 ) ><  R3 =   ( R1 ><R3 ) ∪  ( R2 ><R3) 

 

With these transformations, unions can be moved up in the query tree so that 

all possible joins of fragments are exhibited. Useless joins of fragments can be 

determined when the qualifications of the joined fragments are contradicting. 

Assuming that fragments Ri and Rj are defined, respectively, according to predicates 

pi and pj on the same attribute, the simplification rule can be stated as follows: 

 

            Ri ><Rj =  Ø if ∀ x in Ri, ∀ y in Rj : ¬  ( pi(x) ∧   pj(y) ) 

σENO=”E5” 

Ε1 
(σENO≤”E3”) 

Ε2 
(σ”E3”<ENO≤”E6”) 

Ε3 
(σENO>”E6”) 

(a) Generic Query 

          ∪   

σENO=”E5” 

Ε2 
(σ”E3”<ENO≤”E6”) 

(b) Reduced Query 
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The determination of useless joins can greatly reduce the cost of query 

processing. 

 

2.2.3.4 Semijoins 

The theory of Semijoins was defined in [Bernstein, 1981] and was proposed as 

another technique to process joins between tables stored at different sites. If a table A 

is stored at Site 1 and table B is stored at Site 2, then the conventional way to execute 

a join between those tables is to ship A from Site 1 to Site 2 and execute the join at 

Site 2 ( or the other way around ). The basic idea of a Semijoin is to send only the 

columns of A that are needed to evaluate the join predicates from Site 1 to Site 2, find 

the tuples of B that qualify the join criteria at Site 2, send those tuples to Site 1 and 

then match A with those B tuples at Site 1. Formally this procedure can be described 

as: 

A ><  B = A ><  ( B >< π ( A ) ) 

where >< is the Semijoin operator 

The use of Semijoin is beneficial if the cost to produce and send it to the other 

site is less than the cost of sending the whole operand relation and of doing the actual 

join. Several extensions such as like bloom filters [Babb 1979] exist, [Valduriez end 

Gardarin 1984]  but experimental work [Lu and Carey 1985], [Mackert and Lohman 

1986] has shown that Semijoin programs are not very attractive for join processing in 

standard distributed systems because the additional computational overhead is usually 

higher than the savings in communication costs. However in very specific tasks 

Semijoin is used with good results. 

  

2.2.3.5 Double Pipelined Hash Joins 

Recently, double-pipelined hash-join algorithms were proposed [Ives et al. 

1999] ,[Urhan and Franklin 1999]. The basic idea is that in order to execute A ><  B, 

two main memory hash tables are constructed, one for tuples of A and one for tuples 

of B. Initially, the two tables are empty and the tuples from A and B are processed one 

tuple at a time. To process a tuple of A, the B hash-table is probed in order to find the 



20                                                                                                            CHAPTER 2 QUERY PROCESSING 

 

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT 

B tuples that match this A tuple, A and the matching tuples are then immediately 

output. After that, the A tuple is inserted into the A hash table for matching B tuples 

that have not been processed yet. The algorithm terminates when all the tuples of A 

and B have been processed and is guaranteed to find all the results of the join. Special 

actions need to be taken if the hash tables grow in such a way that main memory is 

exhausted, like hybrid hashing and the use of partitioning schemata. 

The use of such join algorithms make it possible to deliver the first results of a 

query as early as possible. In addition such join algorithms make it possible to fully 

exploit pipelined parallelism and thus reduce the overall response time of the query in 

a distributed system. Those methods can be used with great advantages in distributed 

systems where the delivery of tuples through the network is bursty because certain 

phases of a join processing can be carried out at a site while the site waits for the next, 

possibly delayed batch of tuples. 

 

2.2.3.6 Top N and Bottom N Queries 

In specific cases, Top N or Bottom N queries are posed in database systems. 

Examples of such queries are “find the ten highest paid employees that work in a 

research department” or “find the ten researchers that have published the most 

papers”. The goal here is to avoid wasted work when executing these queries by 

isolating the top N (or bottom N) tuples as quickly as possible and then performing 

other operations only on those tuples. 

In standard relational databases, stop operators have been proposed to isolate 

the top N and the bottom N tuples [Carey and Kossmann 1998]. The techniques 

proposed have been developed primarily for centralized databases, but they can be 

directly applied to distributed systems as well. To give an example, consider a table A 

that is horizontally partitioned in three sites and we want the top ten tuples of table A. 

The stop operator in the individual sites makes sure that every site will ship at most 

ten tuples to the output site, and the stop operator at the output site makes sure that no 

more than ten query results are produced. 

Several algorithms have been proposed in multimedia databases [Chaudhuri 

and Gravano 1996], [Fagin 1996], or for meta-searching [Gravano and Garcia-Molina 
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1997], [Gravano et al 1997] but those implementations are beyond the scope of this 

thesis. 

 

2.3 Client-Server Database Systems 

Here we will turn to a specific class of distributed systems with client-server 

architecture. We will characterise different kinds of those systems and then we are 

going to give an overview of the crucial questions for query-processing in these 

systems and we will discuss query optimization and query execution issues. Some of 

these techniques presented here can be applied in other system architectures too, but 

they are presented in this section because are mostly used by client-server database 

systems. 

 

2.3.1 Architectures 

In general client-server protocols refer to a class of protocols that allows one 

site, the client, to send a request to another site, the server, which sends an answer as a 

response to this request [Tanenbaum 1992]. Using this mechanism, it is possible to 

implement a variety of different database architectures. 

The most general architecture is the peer-to-peer architecture where each node 

can act both as a client initiating queries and as a server answering them and storing 

parts of the database. 

In a strict client-server environment every node has a fixed role either as a 

client or as a server. Typically clients do not interact and often servers neither. The 

clients send queries which are being answered by the servers. 

Another type of architecture is the multitier architecture where the sites are 

organized in a hierarchical way and every site plays the role of a server for the sites of 

the upper level and the role of a client for the lower level sites. Thus, a site in one of 

the middle tiers can only communicate with its clients at the level above and its 

servers at the level below. 

Several examples of such systems exist, like SHORE [Carrey et al 1994], SAP  

R/3[Buck – Emden and Galimow 1996]  . Most of the commercial database systems 
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today have strict client-server architecture. Compared to a peer – to – peer 

architecture, one advantage of a strict separation between client and server machines 

is that only server machines need to be administrated and security issues can be 

addressed by controlling the server machines and the client – server communication 

links. Another advantage is that client and server machines can be equipped according 

to their specific purposes. Client machines are often PCs with good support for 

graphical user interfaces whereas server machines are usually more powerful with 

multiple processors, large disks (RAID), and very good I/O performance. Except from 

strict client – server architecture multitier architecture can be highly advantageous 

when we want to integrate functionality provided by different vendors. Scalability can 

be another reason to use middleware architecture because at every tier, additional sites 

can be added in order to deal with a heavier load. 

In the rest of this section we will describe query processing techniques that are 

applicable for all three architectures but we will concentrate on the strict client – 

server architecture and assume that every site has the fixed role of acting either as a 

client or as a server. 

 

2.3.2 Exploiting Client Resources 

The essence of client – server computing is that the database is persistently 

stored by server machines and that queries are initiated at client machines. The 

question is whether to execute a query at the client machine which initiated it, or at 

the server machines that store the relevant data. In other words the question is whether 

to move the query to the data or to move the data to the query. Another related 

question is whether and how to make use of caching and store temporarily copies of 

data at client machines. 

The first approach is called query shipping. The principle of query shipping is 

to execute queries at servers. The SQL is shipped from clients to the server machine 

and the server evaluates the query and sends back to the client the results. In systems 

with several servers, query shipping works only if there is a middle – tier site that 

carries out joins between tables stored at different servers or if there are gateways 

between the servers so that joins across sites, can be carried out at one of the servers. 
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Query shipping is used in many relational and object – relational database systems 

today such as IBM DB2, Oracle, and Microsoft SQL Server. 

The exact opposite of query shipping is data shipping. Here, queries are 

executed at the client machine at which they were initiated and data is rigorously 

cached at client machines in main memory or on disk [Franklin et al. 1993]. That is, 

copies of the data used in a query are kept at a client so that these copies can be used 

to execute subsequent queries at the client. Caching is typically carried out in the 

granularity of pages [DeWitt et al. 1990] and it is possible to cache individual pages 

of base tables and indices [Zaharioudakis and Carey 1997]. Data shipping is used in 

many object – oriented database systems such as ObjectStore and O2. 

Neither query shipping nor data shipping is the best policy for query 

processing in all situations. The advantages of both approaches can be combined in a 

hybrid shipping architecture [Franklin et al. 1996]. Hybrid shipping provides the 

flexibility to execute query operators on client and server machines, and it allows the 

caching of data by clients.  In the following figure this approach is shown.  

 

 

Figure 5. Hybrid Shipping 

Here, scan (A) and join operators are carried out at the client, whereas the scan 

(B) operator is carried out at the server. The scan (A) operator uses the client’s cache 

as much as possible and ships to the client only those parts of A that are not in the 

cache. In contrast, the scan (B) operator neither uses nor changes the state of the 
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client’s cache. Today hybrid shipping is used in some database products such as 

UniSQL [D’Andrea and Janus 1996], application systems such as SAP R/3, research 

prototypes such as ORION-2 [Jenq et al. 1990], KRISYS [Dessloch et al.  1998] and 

to some extent, in heterogeneous systems such as Garlic [Carey et al. 1995], 

TSIMMIS [Papakonstantinou et al. 1995] and DISCO [Tomasic et al 1998]. 

The performance tradeoffs of query, data and hybrid shipping have been 

studied in extent in [Franklin et al. 1996]. Query shipping performs well if the server 

machines are powerful and the client machines are really slow. On the negative side, 

query shipping does not scale well if there are many clients because the servers are the 

potential bottlenecks in the system. Data shipping scales well because it uses the 

client machines, but data shipping can be the cause of very high communication costs 

if caching is not effective and a great deal of unfiltered base data must be shipped to 

the clients. Obviously, hybrid shipping has the potential to, at least, match the best 

performance of data shipping and query shipping by exploiting caching and client 

resources such as data shipping if that is beneficial, or otherwise by behaving like 

query shipping. In some cases, hybrid shipping will show better performance than 

both data and query shipping by exploiting client and server machines and intraquery 

parallelism to execute a query. The price for this improved flexibility is that query 

optimization is significantly more complex in a hybrid shipping system than in a 

query or data shipping system because the optimizer must consider more options. 

Experiments have shown that in many cases it is better to read data from the 

server’s disks in a hybrid shipping system even if the data are cached at the client. 

This happens when we have to read and join for example two tables that are already 

cached at client. If we read the tables from the cache and we try to join them in the 

same time then concurrently I/Os on the same disk will delay the whole work whereas 

reading the tables from the server and executing locally the join is the preferable plan. 

Moreover, sometimes the best strategy to execute query in a hybrid shipping system is 

to ship cached data or intermediate query results from the client to the server. Such a 

strategy, for example, is useful in situations in which the data are cached in the 

client’s main memory, the network is fast, and join operations can be carried out most 

efficiently at the server. Furthermore, transactions that involve small update 

operations should be carried out at clients, whereas transactions that update large 

amounts of data should be carried out directly at servers. The advantage is that small 
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transactions can be rolled back at clients without affecting the server and that updates 

can be propagated to the server in one batch with fairly little overhead. [Bogle and 

Liskov 1994], [O’Toole and Shira 1994]. 

 

2.3.3 Query Optimization 

Having described the fundamental different approaches for query processing, 

we will now show how query optimizers for query, data and hybrid shipping systems 

can be built and describe several alternative query optimization strategies. 

 

2.3.3.1 Site Selection 

From the perspective of a query optimizer, data shipping, query shipping and 

hybrid shipping can be modelled by the options they allow for site selection. So every 

operator of a plan has a site annotation, which indicates where the operator is to be 

executed. For example, display operators that pass the results of select queries to 

application programs need to be carried out at the client which issued the query. For 

all other operators such as updates, joins, scans, sorts, group by, etc the approaches 

are different according to which model we are using. Data shipping carries out all 

operations at the client, whereas query shipping carries out all the operations at 

servers. Hybrid shipping allows the optimizer to annotate operations in any way 

allowed by data or query shipping.  

All site annotations are logical. A client site annotation indicates that the 

operator is to be carried out by the client that issued the query. Such an annotation 

does not indicate that the operator is carried out by a specific machine. Likewise, a 

consumer annotation indicates that the operator is carried out at the same site as the 

operator that processes the operator’s results. A server annotation for a scan indicates 

that the scan is carried out at one of the servers that store a copy of scanned data. A 

server annotation for an update indicates that the update is carried out at all the servers 

that store a copy of the affected data (read – one – write – all ROWA is assumed). 

These logical site annotations are translated into physical addresses when a plan is 

prepared for execution. As a result the same plan can be used to execute a query at 

different clients so that a query need not be recompiled for every client individually. If 
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there is replication, translating a server annotation for a scan involves selecting one 

specific server machine which can be done heuristically or based on a cost model. 

 

2.3.3.2 Where and When to Optimize 

The two main questions in query optimization are where and when a query 

should be optimized. The where question was extensively studied in [Hagmann and 

Ferrari 1986], in an environment with many clients and one server. They proposed 

carrying out certain steps of query processing at the client at which a query originates 

and other steps at the server. For example, parsing and query rewrite could be carried 

out at the client whereas query optimization and plan refinement could be carried out 

at the server. This approach makes sense because operations that can easily be 

executed at clients do not disturb the server whereas steps that require a good 

knowledge of the current state of the system should be carried out by the server. In 

systems with many servers, no single server has complete knowledge of the whole 

system so a server is chosen to carry out optimization. This server needs to either 

guess the state of the network and other servers based on statistics on the past, or try 

to discover the load of other servers by asking them for their current load. While 

asking is obviously better than guessing, asking involves at least two extra messages 

for every server that is potentially involved in a query. 

The answer to the second question determines the accuracy of the information 

about the state of the system that the optimizer receives. This question arises for 

canned queries that are part of application programs and evaluated during their 

execution. As already stated, the traditional approach is to compile and optimize these 

queries at the time the application program is compiled, store plans for these queries 

in the database, and retrieve and execute these plans whenever the application 

program is executed. When something drastic happens, it makes the execution of the 

plan impossible (for example when an index is dropped) the plan stored in the 

database is not valid any more, and a new plan must be generated before the 

application program is executed [Chamberlin et al. 1981]. Obviously, this approach 

cannot adapt to changes such as shifts in the load of sites, and the precompiled plans 

show poor performance in many situations. 
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More dynamic approaches were proposed in [Graefe and Ward 1989] , [Cole 

and Graefe 1994], [Ioannidis et al 1992]. The idea is to generate several alternative 

plans and subplans at compile time, store these alternative plans and subplans in the 

database, and choose the plan or subplans that best matches the current state of the 

system just before executing the query. Even more dynamic approaches optimize 

queries on the fly. The idea is to start executing a compiled or dynamically chosen 

plan and observe whether intermediate query results are produced and delivered at the 

expected rate. If the expectations are not met, the execution of the plan is stopped, 

intermediate results are materialized and the optimizer is called to find a new plan for 

those parts of the query that still need to be carried out. In [Uhran et al. 1998] is 

shown how useful can be a reoptimization like that to improve the response time, in 

situations in which the arrival of data from certain servers is delayed or bursty 

because those servers are heavily loaded or the communication links are congested.  

For this purpose the approach reorders and reschedules operations at the client so that 

the client carries out other operations while waiting for the delayed data. In [Kabra 

and DeWitt 1998] is shown how such a reoptimization approach helps in situations in 

which the initial plan performs poorly because it was based on wrong estimates of the 

size of tables and intermediate query results. 

In [Ozcan et al. 1997], another dynamic on the fly query optimization 

approach is proposed. In that approach queries are optimized and executed in two 

phases. First, the query is decomposed and it is divided into a set of subqueries that 

can each be executed by a single server. The final query result is composed by joining 

the results of the subqueries by the client or a middle-tier machine. Query 

decomposition for this purpose is described in [Evrendilek et al 1997]. The subqueries 

are processed by the servers in parallel. The order in which the results of the 

subqueries are joined at the client depends on the speed in which the servers produce 

subquery results and the selectivity and cost of joins which need to be carried out to 

combine the subquery results. Heuristic approaches can be used to decide whether to 

join the subquery results produced in two fast servers immediately or to delay a join 

and wait for the delivery of other subquery results from a slower server, first. The goal 

is to parallelize work at the client with work at slow servers as much as possible, and 

also to avoid the execution of very expensive joins that may result from poor join 

ordering. 
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2.3.3.3 Two Step Optimization 

Two step query optimization is an approach that has become popular for both 

distributed and parallel database systems [ Du et al. 1995], [Gangulu et al.1996], 

[Hasan and Motwani 1995], [Stonebraker et al. 1996], [Thomas et al. 1995]. Two step 

optimization is an alternative to the dynamic approaches presented in the previous 

section because it carries out certain decisions just before a query is executed. Two 

step optimization also reduces the overall complexity of distributed query 

optimization. Several variants of two – step optimization exist.  

For distributed systems, the basic variant of two – step optimization works as 

follows. At compile time, a plan is being generated that specifies the join order, join 

methods and access paths. Every time just before the query is executed, the plan is 

transformed and site selections are carried out. All the steps can be carried out by 

dynamic programming or any other enumeration algorithm. Two – step optimization 

has a reasonable complexity because both steps require reasonable effort. The first 

step has essentially the same, mostly acceptable, complexity as query optimization in 

a centralized database system. The second step also has acceptable complexity 

because it only carries out site selection.  

Moreover, two – step optimization is useful to balance the load on a 

distributed system because executing operators on heavily loaded sites can be avoided 

by carrying out site selection at execution time [Carey end Lu 1986]. Two – step 

optimization is also useful to exploit caching in a hybrid shipping system because 

query operators can dynamically be placed at a client if the underlying data is cached 

by the client [Franklin et al. 1996]. On the negative side, two – step query  

optimization can result in plans with unnecessarily high communication cost because 

in many cases the first step  ignores the location of data and the impact of join 

ordering on communication cost in a distributed system. 

 

2.3.3 Query Execution Techniques 

Most of the techniques presented in section 2.2.3 are useful in a client – server 

environment as well as any other distributed database system. Row blocking for 
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example, is essential to ship data from servers to clients and vice versa and it has been 

implemented in almost all commercial systems. 

One particular issue that arises in hybrid shipping systems is how to deal with 

transactions that first update data in a client’s cache and then execute a query at a 

server that involves the updated data. For example, consider a transaction that first 

updates the salary of one employee and then asks for the average salary of all 

employees. The update is likely to be executed at the client at which the transaction 

was started in order to batch updates as described in a previous section. On the other 

hand the optimizer will probably decide to execute the second query at the server that 

stores all the data needed in employee’s table in order to avoid the cost of shipping the 

whole table to the client. The point is that the computation of the average salary must 

consider the new salary of the updated employee, which is known to the client but not 

to the server. Two possible solutions have been proposed here. 

The fist solution is to propagate all relevant updates such as employee’s new 

salary to the server just before starting to execute the query at that server [Kim et al. 

1990] and the second one is to carry out the query a the server and then pad the results 

returned by the server at the client using the updated values [Srinivansan and Carey 

1992]. In either case, carrying out the query at the server involves additional costs that 

should be taken into account by a dynamic or two – step optimizer in order to decide 

whether it is cheaper to carry out the query at the server or at the client. Such issues 

do not arise in query shipping and data shipping systems. Query shipping systems do 

not support client-side caching and batched updates, and data shipping systems carry 

out all operators at the client using the latest cached versions of data. 

 

2.4 Heterogeneous Database Systems 

This section gives an overview of how queries can be processed in 

heterogeneous database systems.  The purpose of such systems is to enable the 

development of applications that need to access different kinds of component 

databases (e.g. multimedia databases, relational, object oriented, xml databases). One 

characteristic of heterogeneous database systems is that the individual component 

databases can have different capabilities to store data, carry out database operations, 
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and communicate with other component databases of the system. One of the 

challenges therefore, is to find query plans that exploit the specific capabilities of 

every component database in the best possible way and to avoid query plans that 

attempt to carry out invalid operations at a component database.  Another challenge is 

to deal with semantic heterogeneity, which arises for example, if several components 

use the same term but they mean different things. Furthermore, every component 

database has its own specific interface (API), decides autonomously when and how to 

execute a query, and might not be designed to interact with other databases.  

There has been done a great deal of work on various aspects of heterogeneous 

databases. There have been issued excellent tutorials in the past [ACM Computing 

Surveys 1990], and a lot of commercial systems. In this section therefore we will 

concentrate on basic technology and recent developments in this area. 

 

2.4.1 Wrapper Architecture 

In order to construct heterogeneous database systems, several tools have been 

developed in recent years. Examples are DISCO [ Tomasic et al.1998], Garlic [Carey 

et al.1995], Hermes [Adali et al. 1996], TSIMMIS [Papakonstantinou et al.1995], 

Pegasus [Shan et al. 1994], Junglee’s VDB [Gupta et al. 1997]. Furthermore a number 

of tools have been designed for the specific purpose of integrating data from different 

relational and object oriented databases (IBM’s data joiner etc). Essentially all of 

these tools have a three – tier software architecture as shown in the figure on the next 

page. 

Clients connect to a mediator [Wiederhold 1993]. The mediator parses a 

query, carries out query rewrite and query optimization, and executes some of the 

operations of a query. The mediator also maintains a catalog to store the global 

schema of the whole heterogeneous database system (i.e. the schema used in queries 

by application programs and users), the external schema of the component databases 

(i.e. which parts of the global schema are stored by each component database), and 

statistics for query optimization. Thus, the mediator has very much the same structure 

as the “textbook” query processor described in the beginning of this chapter. The 

difference is that an extended query optimization approach needs to be used and that 

certain query execution techniques are particularly attractive in the mediator that 
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might not be attractive in other distributed database systems. Also, in most cases, a 

mediator is designed to integrate any kind of component database. That is, a mediator 

does not contain any code that is specific to any one component database and as a 

result a mediator cannot directly interact with component databases. 

 

 

Figure 6. Wrapper Architecture 

 
To encapsulate the details of component databases, a wrapper is associated to 

every component database. The wrapper translates every request of the mediator so 

that the request is understood by the component database API, and translates the 

results returned by the component database so that the results are understood by the 

mediator and are compliant with the external schema of the heterogeneous database. 

In some cases, wrappers also implement special techniques such as row blocking or 

caching to improve performance. In addition, wrappers may participate in the 

optimization process. 

Obviously wrappers are fairly complex pieces of software, and it is not 

unusual for it to take several months to develop one. The TSIMMIS and Garlic 

projects have specifically addressed the question of how to make wrapped design as 

cheap as possible. Similar wrappers work for many different kinds of component 

databases and it is quite easy in most cases to adjust an existing wrapper in order to 

obtain a wrapper for a new component database. Moreover, it is possible for several 

component databases to be handled by the same wrapper as shown in the previous 
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figure. Furthermore, the architecture is extensible which means that at any time, 

wrappers and component databases can be upgraded or new component databases can 

be integrated without changing the mediator or adjusting existing wrappers. They can 

be installed at any machines in the system and they even can be distributed in several 

machines. It is quite likely that in the near future wrappers will be commercially 

available for many common classes of databases.  

 

2.4.2 Query Optimization 

One of the challenges of query optimization in heterogeneous database 

systems is that the capabilities of component databases are different. The optimizer of 

a heterogeneous system must therefore be generic and be able to understand what 

capabilities, component databases have. Several alternative approaches for query 

optimization in heterogeneous database systems have been proposed in the literature. 

One approach is to describe the capabilities of the component databases as views, 

store the definitions of these views in the catalog, and see during optimization how a 

query can be subsumed by these views [Levy 1999]. While this approach is flexible, it 

is very difficult to implement successfully. Other work has proposed the use of 

capability records [Levy et al. 1996] or context – free grammars to describe the 

capabilities of queries and the use of various new cost – based and heuristic 

algorithms to generate plans for a query [Papakonstantinou et al. 1996], [Tomasic et 

al. 1998]. In this section we will focus on the approach where the capabilities of the 

component databases are described by enumerating rules, which are interpreted by the 

optimizer, and this approach uses either dynamic programming in order to find a good 

plan or iterative dynamic programming in order to find a good plan with reasonable 

effort [Haas et al. 1997]. This approach was implemented in IBM’s system Garlic. 

 

2.4.2.1 Plan Enumeration with Dynamic Programming 

The idea of plan enumeration is quite simple. Every wrapper provides a set of 

planning functions, which are called by the optimizer’s accessPlan and joinPlan 

functions in order to construct subplans, which can be handled by the wrapper and its 

component databases. In other words, query optimization is carried out using the same 
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dynamic programming based algorithms as described before with the only difference 

being that accessPlan and joinPlan functions call planning functions defined by 

wrappers developers in order to enumerate subplans rather than constructing such 

subplans themselves. 

 

 plan_access( T, C, P ) = R_Scan ( T, C, P, ds(T)) 

 ds(T) returns the ID of the relational component database that stores T 

Figure 7. Access plan enumeration rule  

 
Conceptually, planning functions can be seen as enumeration rules. The figure 

above shows the plan_access rule of a wrapper for relational component databases. 

This rule generates an R_Scan operator to read table T from the component database 

that stores T (i.e. ds(T)), apply predicates P to the tuples of T, and project out columns 

C of T. This rule is called by the optimizer’s accessPlan function for every table used 

in a query that is stored by a component database which is associated to the relational 

wrapper. Consider for instance the following query: 

 

SELECT e.name, e.salary, d.budget 

FROM Emp e, Dept d 

WHERE e.salary > 100.000 and e.works_in = d.dno; 

 

 If both Emp and Dept are stored in the relational database D then the 

plan_access rule of the figure is instantiated twice as follows 

 

plan_access(Emp, {salary, works_in, name},{salary > 100,000})= 

 R_Scan (Emp, {salary, works_in, name},{salary>100,000}, D ) 

plan_access (Dept, {dno, budget},{})= 

 R_Scan (Dept, {dno, budget},{}, D ) 

 

The R_Scan operator generated with every application of the plan_access rule 

is specific to and used internally by the relational wrapper; neither other wrappers nor 

the mediator need to know about the existence or semantics of such an R_Scan 

operator. Likewise, the relational component databases do not need to know about 
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R_Scan operators. To execute plans that involve R_Scan operators the wrapper 

translates R_Scan(T,C,P,D) into “select C from T where P” and submits this query to 

the relational component D. 

Just like wrappers, the mediator provides a set of rules that enumerates 

portions of plans that are to be executed by the mediator. For example, the mediator 

provides a rule that says that any kind of join can be carried out by the mediator, 

regardless of where the tables involved in the join are stored. So an Emp ><  Dept 

operation could be carried out by the mediator or by the relational component 

database. The optimizer enumerates both alternatives by calling the mediator and 

wrapper join enumeration rules, and the overall cheaper plan is selected. 

The full details of the algorithm can be found in [Haas et al. 1997]. Having 

presented the basic idea, we will briefly summarize the major advantages of this 

approach. 

This approach relies on well established distributed database technology which 

gives vendors an easy migration path to adapt for their products. The use of dynamic 

programming or iterative dynamic programming will generate good plans with 

reasonable effort just as in any other distributed database system. Moreover this 

approach is very flexible since the capabilities of the component databases can be 

modeled very accurately by writing simple enumeration rules that might fit in several 

databases. Those enumeration rules and planning functions for wrappers can be very 

simple and easily implemented because the enumeration rules describe the  kind of 

operations that can be carried out rather than exactly how these operations are 

implemented. Finally it is possible to define very simple enumeration rules at the 

beginning and to add more sophisticated enumeration rules, or even change the rules  

once the wrapper is operational. 

   

2.4.2.2 Cost Estimation for Plans 

Having described how alternative query evaluation plans can be enumerated in 

a heterogeneous database system, we now turn to the question of how to estimate the 

cost or response time of these plans. 

Both the classic and response time approach presented in previous sections can 

be used for this purpose, and the cost or response time of the individual operators that 
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are to be carried out by the mediator can be estimated just as in any other distributed 

database system. This is because the mediator uses standard, well-understood 

algorithms to execute joins, group – bys and so on. The challenge is to estimate the 

cost or response time of wrapper plans that are to be carried out by the component   

databases because the details of how a component database executes such a plan 

might not be known. Estimating the cost of wrapper plans in heterogeneous database 

systems is still an open research issue. There are three alternative approaches, which 

differs in the accuracy of the estimates and in the amount of required effort by 

wrapper developers. 

The first one is called Calibration approach. The idea is to define a generic 

cost model for all wrappers and adjust certain parameters of this cost model for every 

individual wrapper and component database by executing a set of test queries. This 

way, the specific hardware and software characteristics of a wrapper and a component 

database can be taken into account. For example, a very simple generic model would 

be to estimate the cost of a wrapper plan as C*N where N is the estimated number of 

tuples returned and C is the wrapper specific parameter which would be small for very 

fast components and large for slow component databases or component databases that 

are only reachable by a slow communication link. Several generic cost models have 

been proposed to implement the calibration approach [Du et al. 1992], [Zhu and 

Larson 1994], [Gardarin et al. 1996], [Roth et al. 1999] and they are significantly 

more complex than the simple example given above. The big advantage of the 

calibration approach is that wrapper developers need not worry much about costing 

issues when they design a new wrapper. The generic cost model is predefined as part 

of the mediator, and the calibration of the generic cost model for a new component 

can be carried out automatically or semi – automatically. The big disadvantage of the 

calibration approach is that not all components databases can be tweaked into a 

generic cost model. 

An alternative to the calibration approach is to define a separate cost model for 

every wrapper. In this approach, the developer of the wrapper not only provides 

enumeration rules as described in previous section, but also a set of cost formulas. 

One cost formula is associated with every enumeration rule in order to estimate the 

cost of the plan generated by that rule. Obviously the advantage of this approach is 
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that the cost of all wrapper plans can be modeled as accurately as possible or desired. 

However a heavy burden is put on the developers. 

Finally the third approach to estimate the cost of wrapper plan is based on 

monitoring the system and keeping statistics about the cost to execute wrapper plans 

[Adali et al. 1996]. Like the calibration approach this one releases wrapper developers 

from the heavy burden of worrying about costing issues, but it can be very inaccurate. 

One particular advantage of this approach is that it automatically and dynamically 

adapts to changes in the system that impact the cost of operations. 

 

2.4.3 Query Execution 

In this section we are going to describe two techniques that are commonly 

used in executing queries in heterogeneous database systems. Of course all the 

techniques described in previous sections are applicable here but wrappers and 

component databases have usually limited capabilities which restrict the possible 

ways to execute a query. For instance, two component databases may not be capable 

of participating in a Semijoin program with duplicate elimination, or it may not be 

possible to place query operators at component databases (operators must be 

translated into queries that are understood by the components databases). 

The first technique simulates a nested – loop join in a heterogeneous system. 

This technique exploits the fact that many component databases take input parameters 

as part of their query interfaces. To illustrate how bindings can be exploited for query 

processing consider a heterogeneous system with two relational component databases 

D1 and D2, that store tables A and B respectively. One way to execute A ><  B with 

join predicate A.x=B.y would be firstly to ask the mediator D1 to execute the 

following query in order to scan table A.  

  

   Select  *  from  A 

 

 The wrapper of D1 then will return the tuples of table A to the mediator, one 

by one or in blocks using row blocking. For every tuple of A the mediator asks the 

wrapped of D2 to evaluate the following query in order to find the matching B’s: 
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  select  *  from  B  where  B.y=? 

 

Here “?”  denotes the binding parameter and is instantiated with the A.x value 

of the current tuple of A. This approach shows good performance if A is fairly small 

or a predicate restricts the number of tuples of A that need to be probed. This 

approach is also useful because it might be the only possible way to execute the join. 

Certain component databases accept blocks of tuples as parameters which can be 

exploited to process joins by passing a block of tuples to the outer table or even the 

whole outer table to the component database. Since this blocking reduces the number 

of messages it is usually significantly faster than the tuple at a time approach and 

should be used where possible. 

Except from bindings, cursor caching is another technique.  There are many 

workloads for which the mediator submits the same query, with different parameters, 

many times to a component database. The idea of cursor caching is to optimize a 

query only once in order to reduce the overhead of submitting the same query to the 

same component database again and again. For component database systems that 

understand JDBC, cursor caching can be implemented by using JDBC’s 

prepareStatement command to optimize the query, the set command to pass the 

binding parameters every time the query is executed and the executeQuery command 

to execute the query. Cursor caching is extensively used in systems such as SAP R/3, 

Oracle e.t.c. Of course, cursor caching has the same tradeoffs as static query 

optimizations since a cached plan may not be always the best plan to execute. 

  

2.5 Dynamic Data Placement 

The previous three sections answered the following question: Given a query 

and the location of copies of data and other parameters, how can this query be 

executed in the cheapest of fastest possible way. In this section we will look at this 

question from a different perspective and show where copies of data should be placed 

in a distributed system so that the whole query workload can be executed in the 

cheapest or fastest possible way. 
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Traditionally, data placement has been carried out statically. With static data 

placement, a system administrator decides where to place copies of data, speculating 

what type of queries might be carried out at what locations in the system. Obviously, 

static data placement has several weaknesses since most of the time the query 

workload is not predictable. Moreover even if the workload could be predicted it 

would be expected to change and in many cases so quickly that the administrator 

would be unable to keep up with the changes. Moreover the complexity of a 

sufficiently accurate model for static placement is too big ( N-P complete [Apers 

1988]). This section is therefore, focused on dynamic data placement approaches 

which keep statistics about the query workload and automatically move data and 

establish copies of data at different sites in order to adjust the data placement to the 

current workload. Those approaches do not aim to be perfect, but they try to improve 

the data placement with every move. Concurrency control and consistency are not 

addressed here nor techniques that place copies of entries of the catalog at different 

sites [Eickler et al. 1997]. 

 

2.5.1 Replication vs. Caching 

In principle there are two different mechanisms to establish copies of data at 

different sites of a distributed system: caching and replication. Whereas they share the 

same goal in order to reduce communication costs and balance the system load, there 

are a number of subtle differences between them. 

First, replication takes effect at server machines in a client-server 

environment. Replication establish copies of data at servers based on statistics that are 

kept with the purpose of better meeting the requirements of a potentially large group 

of clients. Caching on the other hand, takes effect at clients or at middle – tier 

machines and caching is based on statistics kept on these machines. Only one client or 

a small group of clients, therefore, benefit from a cached copy of a data item, but it 

establishes copies of data where the data is needed. Also, caching exploits client 

machine resources which might remain unused without caching. 

Moreover replication is typically coarse – grained. Only a whole table, a 

whole index, or a whole partition of a table or index can be replicated. Replicating 

data in a coarse granularity is acceptable because a large group of clients benefit from 
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replication and it is quite likely that most parts of a table or index will be used by this 

group of clients. Caching on the other hand, is typically fine – grained: Individual 

pages of a table or index can be cached by a client machine, and some systems even 

allow the caching of individual rows of a table. Caching in a fine granularity is 

important because caching supports the queries of a single client or a small group of 

them, and clients are usually interested in a small fraction of the whole data. 

Usually replication decisions are more long-term than caching decisions. That 

is because replication is intended to support a large group of clients whose overall 

access behavior does not change as rapidly as the access behavior of a single client. 

Replication typically involves placing data on servers’ disks, whereas a client’s 

working set of data typically fits in the client machine’s main memory. Server replicas 

are registered in the system’s distributed catalog so they can be used by all clients, 

while caching does not affect the catalog. Propagation – based protocols are used to 

keep replicas of data consistent and accessible at servers all the time. For caching on 

the other hand, it was shown that the best way to maintain consistency is to use a 

protocol that is based on invalidation, and removes out of date copies from client’s 

cache so that copies of data are only available in a client’s cache as long as they have 

not been updated [Franklin et al. 1997]. Furthermore replicas are kept at servers until 

they are explicitly deleted whereas copies of data are kept in a client’s cache until they 

are replaced by copies of other and more interesting data using a replacement policy 

such as LRU.  

The last difference between replication and caching concerns the mechanism 

used to establish copies of data. Replicas are established by a separate process that 

copies a table, index, or partition and moves it to the target server. Caching on the 

other hand is a by-product of query execution. When a table scan or index scan is 

executed at a client, the client fault in all the pages of the table or index that the client 

has not cached and, after the scan is complete, the client keeps all the used pages of 

the table or index in its cache, if the cache is large enough. As a consequence, caching 

decisions need to be made by the query processor while replication decisions can be 

made by a separate component that is established at every server and works 

independently. 

To conclude, there is no more useful technique between caching and 

replication. They are complementary and they should be both implemented. 
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Replication helps to move data near to a large group of clients so that these clients can 

access the data cheaply the first time they need the data. Caching makes it possible to 

access data cheaply when data are used repeatedly by the same client even when we 

have server failure. 

Several dynamic replication algorithms have been proposed in the literature 

[Bestavros and Cunha 1996], [Sidell et al. 1996], [Wolfson et al. 1997] and can be 

roughly classified in two groups. In algorithms that try to reduce communication costs 

in a WAN by moving copies of data to servers that are located near clients, and in 

algorithms that try to replicate “hot” data in order to balance the load of servers in a 

LAN or in an environment which communication is cheap. Just like replication, a lot 

of algorithms have been proposed for dynamic caching too. The most common 

algorithm is called “cache investment” and fully analyzed in [Kosssman et al. 2000]. 

 

2.5.2 View Caching, View Materialization and Data Warehouses 

So far we assumed that only base data can be cached and replicated (i.e. base 

tables or indices or parts of them). We will now illustrate systems that cache or 

replicate (i.e. materialize) derived data or views. Such systems could for example, 

cache the average salary of all Emps that work in a research department instead of or 

in addition to the complete salary information of all Emps. 

View caching and materialization has been addressed in a number of research 

projects [Desphpande et al. 1998], [Dessloch et al. 1998] and view materialization has 

also be implemented in Oracle [Bello et al. 1998]. Data warehouses are the most 

prominent example of commercial systems that materialize and cache views [Widom 

1995]. Data warehouses are typically established for decision support in companies or 

as product catalogs and classified ads for electronic commerce on the web. They are 

usually installed in a three – tier environment and they are located in the middle tier, 

which is connected to one or more data sources , and it keeps materialized views over 

the base data stored at those data sources. Its role is to answer queries from clients 

without interacting with data sources. From our narrow perspective, in a data 

warehouse, the data sources and the clients are part of a distributed system in which 

views are materialized or cached in the warehouse. 
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Compared to the replication and caching of base data, the benefits of 

materializing and caching views are significantly larger. Caching the result of a join 

for example, might completely eliminate the cost of join or group-by processing for 

subsequent queries in addition to savings in communication costs and potential load 

balancing effects. View caching and view materialization are significantly more 

complex to implement. That is because keeping cached or materialized views 

consistent in the presence of updates is complex and often expensive [Quass and 

Widom 1997], and it is unclear how invalidation based protocols, which have proven 

to be very useful to implement cache consistency, can be applied to view caching. 

Cache investment can be used but there is an explosion in the number of “what-if” 

analyses that need to be carried out for every query so that a naïve application of 

cache investment is impractical. Moreover query optimization is more complicated 

and more expensive in the presence of cached and materialized views [Levy 1999] 

because the optimizer must determine whether a cached or materialized view is 

applicable and which of the applicable views to use. To this end the optimizer must be 

extended in order to enumerate read (view) plans for applicable views just like other 

access and join plans and carry out cost based optimization using dynamic 

programming or iterative dynamic programming. 
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Chapter 3 

3Biological Data Integration Systems 

“If the informatics is not handled well, the HGI [human 

genome initiative] could spend billions of dollars and 

researchers might still find it easier to obtain data by 

repeating experiments than by querying the database. If this 

happens, someone blew it.”  

     - Frenkel, K. A. 
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While the previous set of techniques is sufficient for most of today’s 

applications the advent of biology has sparked a large number of new applications and 

led to systems with an ever growing number of challenges. 
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3.1 Characteristics and challenges 

The challenges that must be overcome when integrating heterogeneous 

bioinformatics sources are numerous. 

The first challenge that must be resolved is the variety of data. The data 

exported by the available sources cover several biological and genomic research 

fields. Typical data that can be stored includes gene expressions, and sequences, 

disease characteristics, molecular structures, microarray data, protein interactions etc. 

Depending on how large or domain specific the sources are, they can store different 

types of data. Moreover, bioinformatics data can be characterized by many 

relationships between objects and concepts, which are difficult to identify formally, 

usually because they span across several research topics. Not only the quantity of data 

available in a source can be quite large, but also the size of each datum or record can 

itself be extremely large (DNA sequences, protein structures etc). This differs from 

non-scientific integration scenarios where there is usually no specific need to address 

the issue of very large entries. 

Moreover, in bioinformatics, that similar data can be contained in several 

sources but represented in a variety of ways depending on the source. This 

representational heterogeneity encompasses structural, naming, semantic and content 

differences [Sujansky 2001]. In other words not only are they very large, but they also 

each have their own schema complexity. Furthermore, each source may refer to the 

same semantic concept or field with its own term or identifier, which can lead to a 

semantic discrepancy between the many sources. The opposite can also occur, as 

some sources may use the same term to refer to different semantic objects. Moreover 

the content differences involve sources that contain different data for the same 

semantic object, or that simply have some missing data, thus creating some possible 

inconsistencies between sources. This representational heterogeneity leads to issues 

such as entity identification across sources and data quality issues, as well as data 

consistency and redundancy. 

Most of these sources operate autonomously, which means that they are free to 

modify their design and schema, remove some data without prior notification, or 

occasionally block access to the source for maintenance purposes. Moreover, they 

may not always be aware of or concerned by other sources referencing them or 

integration systems accessing them. This instability and unpredictability is further 
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affected by the simple fact that nearly all sources are web – based and are therefore 

dependent on network traffic and overall availability. An important consequence of 

the sources being autonomous is that the data is dynamic. New discoveries or 

experiments will continually modify the source content to reflect new hypotheses or 

findings. In fact the only way for an integration system to be certain that it will return 

the latest data is to actually access the sources at query time. 

 Finally, individual sources provide their own user-access interface, all of 

which a user must learn in order to retrieve information that is likely spread across 

several sources. Additionally the sources often allow for only certain types of queries 

to be asked, thereby protecting and preventing direct access to their data. These 

intentional access restrictions force end-users and external systems to adapt and limit 

their queries to a certain form. In [Sujansky 2001] it is noted that some potentially 

useful information in many cases cannot be retrieved because of query restrictions and 

those potentially pertinent queries cannot be asked even though the data necessary to 

answer them is available at the sources. 

 

3.2 Integration Approaches 

The existing systems for integrating bioinformatics sources vary along several 

dimensions. The integration approaches used in the existing systems can be classified 

first in terms of the data model they use – text, structured data or linked records. For 

systems that view sources as exporting mainly text, integration involves supporting 

keyword/text search across the sources. When the sources are viewed as exporting 

more structured data, there are two board types of integration approaches based on 

whether the data from the sources is “warehoused” or accessed on demand from the 

sources. For systems that view sources as exporting a linked set of browsable records, 

integration involves supporting effective navigation across sources. Since the majority 

of systems use (semi-) structured or linked record models, we will discuss the 

integration approaches for these in more detail. 
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3.2.1 Warehouse Integration 

As we already discussed warehouse integration consists in materializing the 

data from multiple sources into a local warehouse and executing all queries on the 

data contained in the warehouse rather than the actual sources. Warehousing 

emphasizes data translation, as opposed to query translation in mediator-based 

integration. In fact, warehousing requires that all data loaded from the sources be 

converted through data mapping to a standard unique format before it is physically 

stored locally. 

Relying less on network to access the data, obviously eliminates various 

problems such as network bottlenecks, low response times and occasional 

unavailability of sources. They allow query optimization to be performed locally 

[Davidson et al. 1995] and provide, the user the functionality to filter, validate, 

modify and annotate the data obtained from the sources [Davidson et al. 2001], 

[Hammer and Schneider 2003] and this has been noted as a very attractive property 

for bioinformatics. 

This approach however has an important and costly drawback in terms of 

result reliability and overall system maintenance caused by the possibility of returning 

outdated results. As we have said, biological data usually evolve rapidly and 

warehouse integration must regularly check throughout the underlying sources for 

new or updated data and then reflect those modifications on the local copy of data. 

 

3.2.2 Mediator Based Integration 

Mediator based integration concentrates on query translation. A mediator in 

the information context is a system that is responsible for reformulating at runtime a 

query given by a user on a single mediated schema into a query on the local schema of 

the underlying data sources. Unlike in the warehouse approach, none of the data in a 

mediator-based integration system is converted to a unique format according to data 

translation mapping. Instead, a different mapping is required to capture the 

relationship between the source descriptions and the mediator, thus allowing queries 

on the mediator to be translated to queries on the data sources. Specifying this 

correspondence is a crucial step in creating a mediator, as it will influence both how 
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difficult the query reformulation is and how easily new sources can be added to or 

removed from the integration system. 

The two main approaches for establishing the mapping between each source 

schema and the global schema are global-as-view (GAV) and local-as-view (LAV) 

[Florescu et al. 1998]. In the GAV approach the mediator relations are directly written 

in terms of the source relations. In other words, each mediator relation is nothing but a 

query over the data sources. The GAV approach greatly facilitates query 

reformulation as it simply becomes a view unfolding process; however handling the 

addition or removal of a source in a GAV mediator is much more difficult as it 

requires a modification of the mediator schema to take into account changes. In a 

LAV based mediator every source relation is defined over the relations and the 

schema of the mediator. It is therefore, up to the individual sources to provide a 

description of their schema in terms of the global schema, making very simple to add 

or remove sources but also complicating the query reformulation and processing role 

of the mediator. Clearly both of these approaches have some positive and negative 

consequences, but LAV is considered to be much more appropriate for large scale ad-

hoc integration because of the low impact changes to the information sources that 

have on the system maintenance, while GAV is preferred when the set of sources 

being integrated is known and stable. 

Furthermore, most systems assume that sources they are integrating, export 

different parts of the same “complementary” schema. In real world applications, 

however, we should consider the possibility that sources may be overlapping in which 

case aggregation of information is required as opposed to pure integration of 

information. Integrating complementary sources is often called horizontal integration 

whereas integrating the overlapping sources is called vertical integration. 

Several of the bioinformatics integration systems were developed before the 

advent of the mediated systems, and instead follow the federated database model. A 

federated database integration system consists of underlying sources which are 

autonomous components but which also cooperate to allow controlled access to their 

data. In [Sheth et al 1990] it is explained that federated integration can be seen as the 

middle ground between no integration, where a user must query each source 

individually, and total integration, where a user can only query the sources through 

the integration system, in federated integration this schemas of the component sources 
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are put together to form an integrated schema on which queries will be asked. Seen 

from this vantage point, mediated systems could be seen as very loosely coupled 

versions of federated systems. 

 

3.2.3 Navigational Integration 

The idea of navigational or link-based integration emerged from the fact that 

an increasing number of sources on the web require the users to manually browse 

through several web pages and data sources in order to obtain the desired information 

[Davidson et al. 1995]. In fact the major premise and motive justifying this type of 

integration is that some sources provide the users with pages that would not or hardly 

be accessible without point-and-click navigation. The specific paths essentially 

constitute workflows in which the output of a source tool is redirected to the input of 

the next source until the requested information is reached [Buttler et al. 2002]. In 

effect queries are transformed into path expressions that could reach each answer the 

query with different levels of satisfaction [Mork P. et al 2001] 

Pure navigational integration eliminates relational modeling of the data, and 

instead applies a model where sources are defined as sets of pages with their 

interconnections and specific entry-points, as well as additional information such as 

content, path constraints, and optional or mandatory input parameters. In [Friedman et 

al. 1999] is claimed that this model effectively allows the representation of cases 

where the page containing the desired information, is only reachable through a 

particular navigation path across other pages. 

 

3.3 Existing Bioinformatic Integration Systems 

This section covers a description of some well – known systems that are 

currently available in the domain of bioinformatics. 
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3.3.1 SRS 

The Sequence Retrieval System is closer to a keyword – based retrieval 

system than an integration system. Its approach to Bioinformatic integration is to 

parse flat files or databanks that contains structured text with field names. It then 

creates and stores an index for each field and uses the local indexes at query time to 

retrieve relevant entries [Lopez 2001]. Although extensive indexed entries are kept 

locally to be used by the query processor at query time, SRS is not actually a 

warehouse system as the actual data is neither modified nor stored locally. The main 

feature of SRS is that it keeps track of the cross-references between sources. In order 

to parse the flat files, the system has its own parser which is called ICARUS and it is 

designed to recognize the presence of links and index all source records using a 

keyword-based indexing approach. Therefore, while parsing, the system can identify 

links that exist between entries in different sources. These links are then used to 

suggest more results to a user after a query has been processed. 

The user query interface is straightforward in SRS. A user first selects which 

of the many available sources should be queried, depending on the type of data 

expected, and then asks a keyword or gene sequence query on those sources. After the 

query is processed, the relevant document in terms of the query keywords is 

displayed. Additionally, SRS will search in its local index of parsed links for entries 

that are related in some way to the query. All such links are then made available to the 

user and grouped by source or by the type of data they point to. In other words, the 

results of the query in this system are essentially composed of a set of tuples or entries 

directly retrieved from the initially selected sources and a set of paths across other 

sources which lead to information that is related to the query. 

 

3.3.2 K2/BioKleisli 

BioKleisli is primarily a loosely – coupled federated database system. The 

mediator on top of the underlying sources relies mainly on a high-level query 

language that is more expressive than SQL and that provides the ability to query 

across several sources ( it is called Collection Programming Language or CPL). CPL  

[Davidson et al. 2001] requires source specific wrappers to map sub-queries to 

specific heterogeneous sources, which are accessed through predefined atomic query-



50                                                               CHAPTER 3 BIOLOGICAL DATA INTEGRATION SYSTEMS 

 

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT 

functions. The data model used is an object-oriented type system that is more 

expressive than the relational model since it includes bags, lists, variants, nested 

records etc.  

BioKleisli does not use any global molecular biology schema or ontology that 

the user could use to formulate queries. This approach therefore requires that the users 

posses an expertise in CPL and a perfect knowledge of the underlying data schemata. 

This project was mainly aimed at performing horizontal integration and in fact a query 

attribute is usually bound to an attribute in a single predetermined source. There is 

essentially no integration of sources with content overlap and as a consequence no 

optimization based on source characteristics or source content is performed. In fact 

the procedural nature of CPL makes the query optimization task really difficult. In the 

newer version K2 of the system, CPL is abandoned and OQL is used, but the overall 

flow of the system is not modified.  

 

3.3.3 TAMBIS 

Transparent Access to Multiple Bioinformatics Information Sources or 

TAMBIS [Baker et al 1998], [Paton et al 1999] is a mediator-based and ontology 

driven information system. Queries are formulated through a graphical interface 

where a user needs to browse through concepts defined in a global schema and select 

the ones that are of interest for the particular query. Then the system expresses the 

graphical query in GRAIL, declarative source independent description logic and after 

that the query is translated into a Query Internal Form (QIF), which is in turn 

translated into a source dependent query execution plan in CPL.  Because TAMBIS 

needs external wrappers, it uses wrappers from BioKleisli system to access the 

underlying sources. 

The planning and optimization subsystem in TAMBIS only performs 

reordering of query components. It does not store source statistics or analyze source 

capabilities. Reordering is based on the cost of individual query components, where 

the cost combines the predicted time necessary to evaluate a component as well as the 

expected number of results it will return. This optimization therefore does not include 

any evaluation of sources in terms of content overlap or source availability. In fact, a 

given concept and its CPL function are always linked to a predetermined source, 
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which means that even if several sources contain information about a concept, one of 

them will always be addressed for that particular concept.  Moreover, it must be noted 

that the ontology defined by TAMBIS is not primarily used for schema mapping 

between the underlying bioinformatic sources. Instead it is a dictionary and a 

classification of biological concepts that represents subsumption relationships 

between concepts. The mapping of ontology concepts to source dependent CPL 

functions is done by another subsystem called the Source Model. Hence the TAMBIS 

domain ontology mainly serves the purpose of easing the user’s task of formulating 

queries. 

 

3.3.4 DiscoveryLink 

DiscoveryLink [Hass et al. 2000], [Hass et al. 2001] was IBM’s proposal on 

the area of bioinformatics. It is a wrapper-oriented system and it serves as an 

intermediary for applications that need to access data from several biological sources. 

It is an integration layer built on the Garlic project technology and it serves as a 

middleware between the applications and a set of wrappers. The source specific 

wrappers must register their data source in order to be integrated. 

Users connect to DiscoveryLink and issue queries in SQL based on some 

global schema. Garlic technology is mainly a federated database query processor that 

communicates with source-specific wrappers to determine optimal plan for a given 

query and executes the query over possibly several sources. The data model used is 

the object-relational model and the wrappers provide source-specific information 

about query capabilities that help the optimizer to determine which parts of a query 

can be submitted to each source. 

Using the information provided by wrappers, the query is broken into portions 

that can be handled by different sources. Then each wrapper produces a plan that the 

underlying source is capable of executing, and evaluates the execution cost of that 

plan. The overall cost of all plans is calculated by the optimizer where several factors 

are taken into account such as the local execution cost, network cost, selectivity, and 

the cost of any remaining operations that cannot be performed by the data sources. 

After the wrappers have produced their plans and the optimizer have decided on the 

best plan to adopt, the execution engine will send out individual plans to be executed 
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by wrappers. Once the wrappers have performed their plan, the processed data flows 

from the data sources into DiscoveryLink engine, which in turn performs any 

operations that could not be handled by the sources, and returns the data to the client 

application.  

Unlike TAMBIS, DiscoveryLink is not a user-end product. A user interface is 

required to operate on top of DiscoveryLink to elicit queries that are processed and 

sent to the underlying sources. 

 

3.3.5 BACIIS 

Biological and Chemical Information Integration System [Ben Miled et al. 

2003] is an on-demand information integration system for life science web databases. 

It was developed using the mediator-based approach combined with extensive use of a 

knowledge base. The knowledge base contains a domain ontology which serves as 

global schema for the system and which captures object classes, attributes, and 

multiple complex relationships between them. The knowledge base also keeps the 

data source schema which maps the schema of individual sources to the domain 

ontology. One of the goals of this project is also to derive extraction rules 

automatically and store them in the source wrappers. The whole architecture consists 

of five servers that cooperate to answer multi-database queries over a set of 

geographically distributed life science databases. These servers can be executed on 

the same machine or in different machines, which maximize resources utilization and 

reduces the effort needed to add new services. The user formulates queries 

interactively within forms and the sources that need to be queried are automatically 

selected by the system while the data model used here is structured, object – 

relational. 

 

3.3.6 Other Systems and the ideal system 

Except from those systems several others exist. GUS [Davidson et al. 1995], is 

a system that follows the approach of data warehousing and allows users to add 

annotations that may want to associate to some retrieved data. KIND [Gupta et al. 
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2000], [Ludascher et al. 2001] attempts to combine the use of formal ontologies and 

conceptual models with source-specific wrappers and ENTREZ is a web-based link-

driven federation in which sources are interconnected so that any entry returned from 

one of the integrated sources will also have related links to the other sources. 

There is no such system that we could describe as the best one. The question 

here is what the biologists and other researchers want from a system. The primary use 

of such systems is to enable scientists to acquire some knowledge from large amounts 

of data, to then formulate hypotheses from the knowledge acquired and finally 

perhaps to validate these hypotheses. The amount of work necessary without an 

integration system is prohibitive, which is why the main goal of these systems should 

be to automate a maximum number of tasks.  It is clear that it is up to the system to 

ensure that users will find what they are looking for in a minimum amount of time and 

interactions. In many cases users may do not want a fully transparent query layer 

because they might want to choose which sources is to be accessed and by what plan 

(i.e. in TAMBIS). This tends to show that the system must be able to provide enough 

flexibility to the user as well as display the provenance of the data. 

Moreover, it is desirable that source representation and source capabilities be 

automatically extracted. As of today, most source descriptions are obtained through a 

manual analysis of the source schema or interface by both a domain expert and an 

integration expert, which are usually two distinct people. Automating the process will 

reduce the cost and time necessary to develop full-scale integration systems that can 

keep up with the pace at which biological data is generated. Furthermore, it is 

important for an integration system to gather source statistics in order to refine the 

query plans and improve the overall functionality and performance of the system even 

as the sources evolve. Except from that we must take into account the interesting fact 

that most biologists or researchers value data even though it may be only partially 

complete and potentially incorrect. Any data can indeed be relevant to a scientific 

researcher. 

Much like TAMBIS and K2, most of the currently widely used integration 

systems only address the horizontal dimension of data integration. In integrating only 

sources that have complementary data, an integration system does not take into 

account the potential overlapping aspect of sources or the probable incompleteness of 

some of them. Restricting the integration process to simply combining data from 
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sources that contain different types of information for the same semantic entity, limits 

the capability of a system, especially in terms of reliability and completeness. A 

purely horizontal integration system cannot address issues of effectiveness and 

efficiency. In fact, aggregation of information of sources is also necessary. 
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Chapter 4 

4Quete: A System For Data Integration 

“An expert is a man who has made all the mistakes which can 

be made, in a narrow field.”  

     - Niels Borh 
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4.1 Introduction 

In previous chapter, we illustrated that there is no system considered to be 

complete in the area of bioinformatics. The brief discussion justified the need for 

systems that provide an integration of bioinformatic sources as there exists a real 

demand from biological researchers who are now overwhelmed by the amount of 

work necessary to manually go through the integration process. After a short 

description of the major systems used by biologists we pointed out the lack of 

aggregation systems, which could integrate sources containing semantically similar 

data, also known as vertical integration. Existing methods either require the user to 
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know the semantics of all data sources or they impose a static global view that is not 

tolerant of schema evolution. These assumptions are not valid in many environments. 

Moreover we illustrated that when designing a heterogeneous database, the 

goal is to encapsulate the heterogeneity of the component databases and to use 

existing homogenous distributed database techniques as much as possible. 

Having all that in mind and knowing that the ideal integration system should 

truly take into consideration the wishes of those who will use the system we built 

QueTe. QueTe was based on Unity [Mason T. and Lawrence R. 2005] which was 

extended and enhanced in order to produce a system capable of integrating 

bioinformatic sources.  This work proposes an automatic schema integration 

algorithm which removes all naming conflicts by utilizing a standard ontology to 

describe schema element semantics. 

 

4.2 The Initial Idea 

  In this thesis we propose a method for semi-automatic schema integration by 

using a standard ontology to describe schema element semantics. The use of ontology 

resolves naming problems, which allows our algorithm to automatically resolve the 

more complex structural and semantic conflicts. The major contribution of this work 

is a systemized method for capturing data semantics using a reference ontology and a 

model which uses this information to perform schema integration in relational 

databases. 

The starting idea was to build a system that would integrate several databases. 

Those databases would be autonomous and independent and would evolve at will.  

Several kinds of databases have been studied but we eventually focused on relational 

ones, as they are most used today. All those databases, that could store data from 

several areas, would have a schema that describes how data are organized and stored. 

In many cases, different sources may want to share only a portion of their data so it 

was crucial to have the ability to decide which fragments of data were going to be 

shared. 

After deciding which parts of the local schema each database would share, 

those schemata would be integrated to build a Global Schema. The Global schema 
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would be used internally by the system and mappings between the Global schema and 

the local schemata would exist to determine data allocation.  

Moreover, users needed a common starting point in order to understand the 

information stored in the integration system and how to query it. That common 

starting point is an ontology that is defined at the top level of the system and users can 

use ontological terms to query underlying data sources. Of course a set of mappings is 

needed between the ontology and the Global Schema in order to answer queries 

transparently. 

That basic idea is shown at the figure below. Having that idea as a staring 

point we extended our implementation further, and we are going to examine it, in the 

rest of this chapter. 

 

 
 

Figure 8. Integration Schema 

 

4.3 The Integration Architecture 

Before going further we should describe the architecture of our system. The 

integration architecture consists of two separate and distinct phases: The capture 

process and the integration process. 
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The fist phase is used to capture the data to be integrated. This process is 

performed independently in each data source and the only “binding” between 

individual capture processes, at different data sources, is the use of the common 

ontology to provide standardized terms for referencing data. Here, the database 

schema to be integrated is being extracted and the metadata are stored in a specific 

XML file called X-Spec which we are going to describe later in this chapter. Those 

metadata extracted are being annotated using ontology terms, and that semantic 

information is stored in X-Spec too. 

The integration process actually performs the integration of the various data 

sources.  It is assumed that there is a central site where the integration is performed by 

combining the X-Specs of the data sources. Clients wishing to access the individual 

data sources submit their queries to this central site which handles the necessary 

mappings and transaction management. 

The key benefit of these two phases is that the capture process is isolated from 

the integration process. This allows multiple capture processes to be performed 

concurrently and without knowledge of each other. Thus, the capture process at one 

data source is not affected by the capture process at any other data source. This allows 

the first phase to be performed only once regardless how many data sources may 

actually be integrated. Moreover each data source is able to change the semantics, the 

schema and the portion of the data to be shared by just altering the X-Spec file that 

they provide. These are significant advantages as they allow application vendors and 

database designers to capture the semantics of their systems at design-time or at any 

other time they want, and the clients of their products are able to integrate them with 

other systems with minimum effort. 

The central site takes the X-Specs of the individual data sources and executes 

the integration algorithm to produce an integrated view ( i.e Context View) that will 

be used internally. Users then can issue queries on the central site using an SQL like 

query language that is going to be described in the following chapter. When a query is 

sent to the central site, the necessary mapping from ontology to system names is 

performed and the query is divided into several subqueries against the data sources. 

The central site is assumed to implement the functionality of a DBMS manager which 

includes transaction management and query processing. Once results are returned 
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from the individual data sources they are integrated based on the unified view and 

then returned to the user. 

It is important to note that by the use of a central site and relational underlying 

databases, no translational or wrapper software is required at individual data sources. 

Once the X-Spec has been provided for the data source and integrated by the central 

site, the software at the central site communicates directly with the data sources using 

ODBC or proprietary protocols. All translation, integration and global transaction 

management is handled by software at the central site.  

This approach allows full autonomy of the underlying data sources as the 

central site appears as another client issuing queries to them. Moreover this approach 

allows the development of standard ontologies that could be used across industries, 

organizations and the scientific community. Those ontologies do not need to be 

complete or widely accepted. Application specific ontologies can as well be used 

without any semantic loss. 

 

4.4 Integration Components 

After briefly describing the integration architecture it is necessary to explain 

the three basic components: The standardized ontology, the metadata specification for 

capturing data semantics, and an integration algorithm for combining metadata 

specifications into an integrated view. 

The ontology provides a set of terms for constructing semantic names 

describing schema elements. By defining semantic names using a standardized 

ontology we resolve naming conflicts since two schema elements with the same 

semantic name are assumed to represent identical concepts regardless of their 

structural organization.  Metadata specifications, called X-Spec, store schema 

information in XML documents. An X-Spec contains also mappings from semantic 

names to system names used in the data sources. The integration algorithm matches 

the semantic names to produce an integrated view of concepts. 
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4.4.1 The Reference Ontology 

People, in order to exchange knowledge, use a common language to describe 

knowledge. Knowledge transfer in conversation arises from the definitions of the 

words used and the structure in which they are represented. Since a computer has no 

built-in mechanism to associate semantics to words and symbols, a common point of 

reference is required to allow the computer to determine semantically equivalent 

expressions. 

Determining semantically equivalent words and phrases is a complex problem. 

The English language is very large with many equivalent words for specifying 

equivalent concepts. Thus, the size of the database is a problem, and it is complicated 

for the computer to determine in which cases two words represent semantically 

equivalent data. 

Ontologies are a common point of reference and they have been used in 

various roles for database integration [Batini et al 1986], [Sheth et al 1990]. Most 

organizations such as the National Cancer Institute or the National Institutes of Health 

have been developing standard ontologies for their domains that could be useful in the 

process of integrating several data sources. The idea is to match each source to the 

domain ontology, and each schema-to-ontology map is validated by the administrator. 

The advantage of this approach is that the administrator only needs to understand the 

semantics of their schema when validating matches. Schema-to-ontology mappings 

can be used to build mappings to any schema that is also matched to the ontology by 

composing the schema-to-ontology matching. 

The ontology in our system is organized as a graph of concepts. All concepts 

are placed into a graph and are related using two types of relationships. ‘IS-A’ 

relationships and ‘HAS-A’ relationships. ‘IS-A’ relationships are the standard 

subclass and superclass type of relationships and are used to model generalization or 

specialization data concepts. Component relationships relate terms using ‘Part-of’ or 

‘HAS-A’ relationship. For example, an address may have city, state, postal code, etc. 

Similarly, a person’s name may have first and last name components. To represent 

ontologies like these, we could use RDFS. Although this is a rather simple modeling 

mechanism it is adequate for modeling the real-world. In case that our ontology uses 

more complex relations, they can be rewritten by using only ‘IS-A’ and ‘HAS-A’ 

relationships. We believe that although it is a trivial task, it may be time consuming 
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for complex ontologies. We must note however that the ontology is not the integrated 

view. It is just a standard set of terms to consult in order to describe semantics for 

creating the integrated view and the ontology provides standardized names for 

concepts with unambiguous definitions. 

Initially the ontology may contain a limited set of concepts commonly stored 

in databases. We can assume that it is possible for the ontology to expand over time as 

new types of data appear and the underlying databases evolve. Thus, we allow an 

organization to add nodes to the ontology to both the concept hierarchy and 

component relationships to capture and standardize names used in their organization 

which are not in the standardized ontology. These additional links are stored and 

transmitted along with the metadata information during integration. We expect that 

the evolution of the ontology would be directed by some standardization organization 

to insure that new concepts are integrated properly over time. 

It is important to realize that the exact terms and the organization of the 

ontology are irrelevant. Although this may seem surprising, consider that language is 

simply a standard for expressing semantics. There is no fundamental reason why the 

word “table” should describe a table. Similarly, the exact organization of the concept 

hierarchy and the terms used to represent concepts is irrelevant as long as they are 

agreed upon. However the goal is to produce something readable by humans, so the 

terms should be recognized English words for their concepts, and the base hierarchy 

should be evolved in a way that models current standardization efforts and real-word 

organizations. Any standardized ontology can be used as long as it is formatted 

correctly and has the necessary terms to capture the semantics of every data element 

to be integrated in the corresponding data sources. 

The definition of a semantic name for a given schema element is not a 

straight-forward mapping to a single ontology term. A semantic name captures the 

system-independent semantics of a schema element including contextual information 

by combining one or more ontology terms. A semantic name has the form 

 semantic_name = “[“  OT [ [ ; OT ] | [ , OT ] ] “]” * [ ON ] 

 OT = < ontology_term > , ON = < ontology_term > 

 That is, a semantic name consists of an ordered set of context terms 

(OT) separated by either a comma or a semi-colon, and an optional concept name 

term (ON). The comma between terms A and B (A, B) represents that term B is a 
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subtype of term A. A semi-colon between terms A and B (A; B) means that term A 

HAS-A term B, or term B represents a concept that is part of term A. The context 

terms provide a context framework for the concepts that describe them. Every 

semantic name has at least one context term. The concept name is a single, atomic 

term describing the lowest level semantics. Fields have concept names to represent 

their base meaning void of any context information. 

Abstractly, a semantic name is a hierarchy of concepts related by IS-A and 

HAS-A relationships. Typically in relational databases all terms in a semantic name 

are related by HAS-A associations. For example consider the table Books ( ISBN, 

Title, Author, Publisher, Price). Their semantic names in a really simple ontology are 

shown in the following table.  

 

Type Semantic Name System Name 
Table [Book] Book 
Field [Book] ISBN ISBN 
Field [Book] Title Title 
Field [Book] Price Price 
Field [Book; Author] Name  Author 
Field [Book; Publisher] Name Publisher 

Table 1. Books Database schema 

 

4.4.2 X-Spec – Metadata Specification 

The definition of a standardized ontology by itself is not enough to achieve 

integration because the ontology is not defining a standard schema for 

communication. It simply defines terms used to represent concepts. These concepts 

can be represented in vastly different ways, in various data sources, and we are not 

assuming a standardized representation and organization for a given concept. Thus, a 

system for describing the schema of a data source using ontology terms and additional 

metadata must be defined. Our integration approach uses a structure called X-Spec to 

store semantic metadata on a data source. The X-Spec is essentially a database 

schema encoded in XML format and is organized in relational form with tables and 

fields as basic elements. 

An X-Spec consists of the relational database schema being described along 

with additional information about keys, relationships, and field semantics. More 



CHAPTER 4 QUETE: A SYSTEM FOR DATA INTEGRATION 63 

 

HARIS KONDYLAKIS 

importantly, each table and field in the X-Spec has an associated semantic name built 

from terms in the standardized ontology as previously discussed. 

The use of XML for describing an X-Spec is not required, but it is used 

because XML is an emerging standard to exchange semantics between systems. 

However, the definition and usefulness of an X-Spec is not tied to XML. Information 

stored in XML in an X-Spec can just be transmitted as a formatted text files or a 

structured binary file. XML is used for convenience and interoperability with 

emerging standards on semantic exchange. 

In order to ease the capture process of sources metadata, a tool (i.e. Extractor) 

has been developed that can read each database schema, and produce the X-Spec 

corresponding to the whole information needed. Key, foreign keys and constraints are 

captured automatically and the administrator has only to relate system names with 

ontology terms. 

 

4.4.3 Integration Algorithm 

The integration algorithm is a straightforward matching algorithm of terms. 

The same term used in two different X-Specs is assumed to represent an identical 

concept regardless of its representation. The algorithm receives as input one or more 

X-Specs describing data schemata and then it uses the semantic names present in them 

to match related concepts and to build a global view ( as we can see in the next 

chapter this global view is named Context View and has many interesting properties).  

For example consider that the database schema shown in table 1 is annotated 

and semantic names are given in tables and fields. When our algorithm starts, the first 

semantic name that is being processed is [Book]. This semantic name consists of only 

one term which does not match any other term in this depth. So, it is added to the tree 

under the root. The next semantic name to be processed is [Book] ISBN with two 

terms. The first term already exists in Global View and is matched. According to our 

algorithm, we go one level below the current term in V (i.e Book) and then we proceed 

to the next term ISBN which is not matched at this level and it is added below the 

Book term. The algorithm goes on the same way until [Book; Author] Name is met. 

The Book term is matched so we go one level down and we search under the Book 

term to find the Author term exists. Since Author does not exist the remaining terms 
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of the semantic name are placed under the Book term. Moreover, since the term Name 

is after the term Author in the semantic name it is placed under the Author term.  The 

algorithm will continue the same way if another table, Authors for example, exists. 

After processing every semantic name, the final global view constructed is shown in 

figure 10. 

 

 

Figure 9. Integration Algorithm 

 

The architecture identifies similar concepts by name regardless of their 

physical or logical representations in the individual data sources. The integration 

result is a hierarchy of contexts and concepts which implies no particular physical 

representation. The physical representation of the concepts is irrelevant to the user. 

The user accesses data sources through semantic names which map to physical 

schema elements. Thus, by not imposing structural constraints or concept 

representation, knowledge from systems is combined regardless of data representation 

characteristics, and the user is provided with only the relevant information. 

The integration is valid because it combines correctly database schema into an 

integrated view given the assumption of no naming conflicts. The architecture avoids 

naming conflicts by developing and using a standard list of terms referenced in our 

ontology and combining them appropriately into context and concept information to 

Input: One or more X-specs 
Output: Global View V  
1:  For each X-Spec X { 
2:  For each semantic_name SN in a X { 
3:   Go to top level in V 
4:   For each term T of SN { 
5:    If T does not match any term at this level Then 
6:     Add this and all remaining terms of SN to V 
7:     in the proper levels 
8:     Break 
9:    Else 
10:     Current term= matching term in V 
11:     Go one level below current term in V  
12:      
13:   } 
14:  } 
15: } 
16: return V 
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express schema element matches. Since the semantic names constructed are assumed 

to represent the same concept if their name matches, integration of concepts across 

schema is possible simply by matching semantic names. Concepts are integrated 

across data sources solely by name regardless of their implementation or physical 

structure. Of course, we keep in memory the corresponding fields for each semantic 

name. 

 

 

Figure 10. Building Integration Schema ( Context View ) 

 

4.4.4 Querying in QueTe 

After building the integrating view in memory, the user is given the capability 

to issue queries. The query language is an attribute-only version of SQL, where the 

SELECT clause contains the concepts to be projected in the final results and the 

optional WHERE specifies selection criteria for the query. An example query that gets 

the price of the book “A Semantic Web Primer” could be 

 

    SELECT [Book] Price WHERE [Book] Title = “A Semantic Web Primer” 

Notice that the FROM clause is absent since the integration system will 

automatically identify the tables to be used. Of course, the user must express the 

queried terms by describing them using their semantic name that is being built 

according to the ontology. Then the semantic names are matched against the global 

view and the query is answered. The required joins between the tables are 

automatically inserted by the query processor. The order in which X-Specs are 

   V (view root) 
    - [Book] 
     -ISBN 
     -Title 
     -Price 
     - [Author] 
      -Name 
     - [Publisher] 
      -Name 
    - [Author] 
     -Name 
     -Surname
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integrated is irrelevant, and the same X-Specs can be integrated several times with no 

change. 

Using the reference ontology, users can formulate queries as the previous one 

by choosing which terms they want to view through their semantic names according 

to the ontology. These semantic names map to physical fields and tables in the 

underlying data sources. The user is not responsible for determining joins between 

physical tables in a given data source or across a data source nor where each table is 

placed. The system handles the necessary joins based on the relationships between the 

schema elements. The query implementation is similar to MIX [Baru C. et al. 1999] 

except that the query is formulated on an integrated view based on the ontology 

instead of the mediated views. 

In many cases there is a straightforward mapping from semantic names to 

physical fields. Typically, a semantic name will have only one mapping to a physical 

field in each data source. Given a list of semantic names in the query used either for 

projection or for selection criteria, the query processor maps the semantic names to 

system names using the information stored in the X-Spec. To handle joins between 

tables, X-Specs stores information on join conditions between tables in order to be 

used by the query processor. Thus, all required mapping information is present to 

construct a select-project-join query which then is translated into several subqueries 

that are sent to the individual sources. When subqueries are answered the results are 

being integrated and then presented to the final user. Joins are selected by the system 

from X-Spec information and if no join condition exists between tables, a cross-

product is used as real databases do. “Global keys” are important in query generation, 

as they guarantee unique values across databases similar to social security number 

which identifies distinct human beings. Such keys allow the system to perform joins 

across databases. So when a query is divided into several subqueries that involve 

some global keys, the results returned, are joined or unioned using appropriate global 

keys and then the outcome is presented to the final user. 

As we have already said, in many cases most biologists or researchers value 

data even though it may be only partially complete and potentially incorrect. Any data 

can indeed be relevant to a scientific researcher. That’s why we designed the system 

to show even tuples when the data source does not have all the fields required in the 

result. In such cases, the fields missing are left blank in the returned result.
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Chapter 5 

5Multidatabase Querying in Quete 

“I only ask for Information” 

-Charles Dickens 
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5.1 Introduction 

Despite dramatic changes in database size, complexity and interoperability, 

SQL has remained fundamentally unchanged. The wide variety of applications, users 

and implementation systems accessing databases rely on the Structured Query 

Language (SQL) [Date C. J., 1994] to retrieve the required information. Although the 

complexity of SQL generation has been partially hidden by graphical design tools and 

more powerful programming languages, the fundamental challenges of SQL remain. 

The fundamental problem of SQL is also one of its greatest advantages. SQL 

allows a database to be queried by a clearly defined structure which is a vast 
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improvement over hierarchical methods and direct access technologies that require 

explicit navigation between records. Unfortunately an SQL user is responsible for 

understanding the structure of the database schema, the names associated with 

semantic names and the relations between them. Query formulation involves mapping 

query semantics into the semantics of the database and then realizing those semantics 

by combining the appropriate structures. 

SQL is a powerful language when used by people who understand its 

semantics and the database queried. However, nowadays the need to interact with 

multiple database systems with little and limited database understanding is emerging. 

Moreover, organizations are attempting to achieve database interoperability by 

combining database systems into a more unified organization.  Those systems force 

users to understand the structure and semantics of all databases which introduces 

exponential complexity as the number of databases increases.  

To address those shortcomings, our architecture automatically integrates 

diverse relational schemata into a unified view of concepts, called context view and 

those concepts come from the reference ontology. The context view is a special type 

of Universal Relation describing the data source and has features that resolve some of 

its problems. Although the context view and its associated query system were not 

developed to model the Universal Relation, they display many similar properties 

which can be used to better understand the foundations of the context view and may 

be used to develop similar query algorithms. 

 

5.2 Previous Languages Used  

Before we go further in describing our language and the query mechanisms it 

is useful to briefly describe the languages developed and used in previous 

multidatabase and federated environments. 

In order to achieve multidatabase querying, several languages were developed 

like MSQL [Krishnamurthy R. et al. 1991] and its successor IDL [Litwin W. and 

Abdellatif A, 1987]. Those languages allow the user to define higher order queries 

and views by providing database variables that can range over metadata in addition to 

regular data. Metadata include database names, relational names, and attribute names. 
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The language allows queries across database systems in addition to regular 

expressions. Other MDBS query languages include DIRECT [Merz U. and King R. 

1994] and SchemaSQL [Gingras F. et al. 1997]. The fundamental weakness in 

multidatabase query languages is the reliance on the user’s knowledge of the database 

structure and semantics to construct queries. Further, data organization is optimized 

for efficiency and not understanding. Understanding the structure and semantics of 

one data source is complicated in itself, and the in-depth knowledge required to 

formulate queries on multiple databases is extremely rare. Although, previous 

languages may allow the construction of multidatabase queries, they do nothing to 

reduce the need of the user to thoroughly understand the semantics. 

Several other languages have been developed that allow users to query by 

word phrases in order to simplify querying [Cohen W. 1998], [Konopnicki and 

Shmueli 1998], [Ogden and Brooks 1983]. These systems are not powerful enough for 

a general multidatabase environment because they do not allow the user to precisely 

define the exact data returned. Word systems that simplify query formulation by 

ignoring structure sacrifice query precision.  

Other systems try to augment a relational database with logical rules or 

knowledge [Kuhn E. et al. 1994], [Motro A. 1990] or change or add to the database in 

some manner. This is done in order to enable advanced queries to be posed, but that 

violates database autonomy and thus it is not desirable. 

A query system must isolate the user from structure and system details while 

at the same time should provide a query language powerful enough to produce 

precise, formatted results. SemQL [Lee J.O et al. 1999] attempts semantic querying 

using semantic networks and synonym sets from WordNet [Miller G.A et al. 1990]. 

Although their approach is similar to ours, using a large online dictionary such as 

WordNet in querying time, increases the complexity of matching word semantics. Our 

approach improves on SemQL by providing condensed term ontology, an integrated 

view to convey database semantics to the user, and a systematic method for SQL 

generation. 

A fundamental database model is the Universal Relation Model which 

provides logical and physical query transparency by modeling an entire database as a 

single relation. Just as the relational model relieves users of the responsibility for 

navigation within the physical database, a universal relation system relieves them of 
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the responsibility for navigation among the relations. We will demonstrate the 

similarity of our context view with the Universal Relation Model [Maier et al. 1984], 

and thus argue that our system provides logical and physical transparency. There has 

been substantial work presented on querying a universal relation environment 

[Bressan et al. 1988] and more generally in theory of joins [Aho et al 1979] and 

querying [Korth et al. 1984], [Sagiv Y. 1983]. 

It is important to note that our architecture extends wrapper and mediator 

systems. Simple mediator systems either assume that an integrated view of data 

sources is constructed a priori by designers or do not construct an integrated view. If 

an integration view is constructed, it is a conventional, structural organization of the 

data into relations and attributes. This integrated view is then mapped to the local 

views of the mediators by logical rules or query expressions specified by the designer. 

Mediators do not perform schema integration. Schema integration or the actual 

construction of the integrated view is manually performed by designers.  In our 

system although, an integrated view is automatically produced from data source 

specifications developed independently of other data sources and the global view 

itself. 

 

5.3 Context View as a Universal Relation 

The context view (CV) produced by the integration architecture models 

database schema knowledge as a hierarchy of contexts and concepts. In this section, 

we more formally describe the nature of the CV and its relationship to the Universal 

Relation. Firstly, it is necessary to define the concepts of a standardized ontology 

term, a semantic name and the context view. 

An Ontology term is a single, unambiguous word or word phrase present in 

the standardized Ontology. Each term represents a unique semantic connotation of a 

given word phrase, so words with multiple definitions are represented as multiple 

terms in the Ontology. A context term is an ontology term used in a semantic name 

which describes the context of schema element associated with the semantic name. A 

concept term is a single ontology term used in a semantic name which provides the 

lowest level semantic description of a database field. Basically, a concept is a 
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semantic name which maps to a database field whereas a context is a semantic name 

which maps to a database table. For example, the semantic name [Category] Id is a 

concept because it maps to the database field CategoryID. The semantic name 

[Category] is a context because it maps to the database table Categories. 

As we defined in the previous chapter, a semantic name Si consists of an 

ordered set of ontology terms T= T1,T2, …,TN, where N >=1, which uniquely 

describes the semantic connotation of a schema element. If N=1, then T1 is a context 

term. The last term TN is a concept name if Si has a concept name; otherwise it is the 

most specific context of Si. A semantic name is a hierarchy of contexts each of which 

has a meaning independent of the semantic name. When integrating semantic names 

into a context view it is necessary to match semantic names based on their associated 

terms. For this purpose it is useful to define the context closure of a semantic name: 

Definition: The context closure of a semantic name Si denoted Si
*, is the set of 

semantic names produced by extracting and combining consecutive ordered subsets of 

the set of terms T=T1, T2, …, TN of Si starting from T1. 

 

For example, given a semantic name Si = [A; B; C] D then Si
*= {[A], [A; B], 

[A; B; C], [A; B; C] D}. Based on the above we can define a Context View as follows: 

 

• If a semantic name Si
 is in CV, then for any Sj in Si

*, Sj is also in CV. 

• For each semantic name Si
 in CV which ends in a leaf node, there exists a 

set of one or more mappings Mi which associate a schema element (table 

field) Ej with Si. 

• A semantic name Si
 can only occur in the CV once. 

 

That is, for every semantic name that exists in the context view, all its 

associated semantic names formed by taking a consecutive subset of its terms are also 

in the context view. Moreover, each semantic name in the view can be mapped to 

physical fields and tables by the set of mappings provided by the system. The 

integration architecture combines schema elements into the context view by merging 

their associated semantic names with the semantic names currently present in the CV. 

Matching proceeds term-wisely until a complete match is found, or no further matches 

are found as we saw in the integration algorithm, described in the subsection 4.4.3. 



72                                                                CHAPTER 5 MULTIDATABASE QUERYING IN QUETE 

 

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT 

Thus the CV is a graph  of nodes N= N1, N2, …, Nn where each node Ni has full 

semantic name Si consisting of one or more ontology terms T1, T2, …, Tm. When a 

node is added, each of its corresponding terms are recursively added starting at the 

root. 

There is an underlying similarity between a Context View and Universal 

Relation (UR). A Universal Relation contains all the attributes of the database where 

each attribute has a unique name and semantic connotation. The fundamental feature 

of UR is that all attributes are uniquely named with a unique connotation. 

Lemma: A context view is a valid Universal Relation if each semantic name is 

considered an attribute. 

Proof: In order to violate the Universal Relation assumption, a given semantic 

name must either occur more than once in the CV (non-unique attribute names) or two 

or more semantic names have identical connotations (non-unique semantic 

connotations). By definition of CV, each semantic name can occur only once. Hence 

each semantic name is unique. Moreover, the construction of a semantic name by 

combining terms defines its semantics such that two different semantic names cannot 

have the same semantic connotation. Thus, a context view is a valid Universal 

Relation. 
Although, a given semantic name occurs only once in a context view, it is 

possible that there is more than one mapping to physical fields in a single data source. 

Consider for example two tables Orders and OrderDetails and one field called 

OrderId in both tables. That field is assigned the same semantic name in both tables ( 

e.g [Order] Id ) and this makes sense because each of these two fields has the same 

semantic connotation and is only represented in two different tables due to the 

normalization of the tables. When those two tables are combined into a UR, only one 

instance is retained. However, the query system must decide on the correct and more 

efficient mapping when generating query access plans. 

A context view examined as a Universal Relation addresses several of the 

problems that have been studied for the UR model. First, the context view is 

automatically generated by the system combining the semantics of each database that 

administrators provide. The system uses the supplied semantics, schema and join 

information and automatically builds the context view. This process can be applied in 
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reverse to extract query results from normalized database tables given a query 

expressed on the context view according to ontology terms. 

Furthermore, the context view resolves the issues of large and complex 

Universal Relations. Since the context view is organized hierarchically by context, 

there is an explicit division of the context view into semantically grouped topics as 

opposed to one, flat relation containing all attributes.  Unlike a strict Universal 

relation implementation, the context view is never physically constructed. Rather, like 

a view, it is an outlook of the data stored in other structures which is built as needed. 

Thus, the focus of the rest of this chapter is demonstrating how queries posed through 

the context view can be physically realized by an automatic algorithm which maps 

from semantics to structure and produces relational calculus (SQL) expressions on the 

underlying data sources to extract the relevant data. 

 

5.4 Query Parsing and Join Tree Construction 

By isolating the user from database structure, the system becomes responsible 

for correctly formatting the query based on the user’s intended semantics. The most 

important property the query system must provide is consistency, which means that 

the system must generate deterministic, repeatable, and semantically intuitive queries 

in all cases. 

Given an Ontology, users can generate queries which contain a subset of 

context view’s concepts. Since a query is just a subset of the context view, the query 

can be examined similar to a context view. There are two major requirements in 

mapping from semantic to structural querying. First, the system must select the 

appropriate fields to use for projection and selection, since multiple mappings to the 

same semantic name are possible within a given data source. The query result may be 

different for different mappings to the same semantic name because new joins may be 

introduced if the field is in another table. Second, the join conditions must be 

automatically be determined to combine the appropriate data source tables. 

Regardless, if the field is being used in a selection or projection operation, all 

fields are treated uniformly by the query system. Determining the correct field 

instance to select if a given semantic name can be mapped to multiple fields in the 
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underlying database is complex. Fortunately, it is unlikely that a semantic name has 

multiple field mappings when the database is normalized if the field is not a key field. 

However, the choice of a key field with multiple mappings is especially important as 

it affects the join semantics. Depending on the field mapping chosen, different tables 

are joined together. For example as we noted previously the semantic name [Order] 

Id may map to two physical fields, OrderId in the Orders table and OrderId in the 

OrderDetails table. In both cases, the field has the same semantics. However 

depending on which of the two mappings is selected, a new join may be introduced 

into the query if the table is not currently in the query. 

For a key field occurring in more than one database table, there are four cases 

to consider based on the interrelationships between the parent tables for field 

mappings. That is, if the key field is present in two or more tables, the inherent 

interrelationships between these tables determine the complexity in selecting the 

correct mapping. These cases are: 

1-1: An one-to-one relationship between tables normally implies that the 

tables share some key. The mapping chosen in this case is uniquely determined by the 

user’s choice of semantic name ( [Person] SSN and [Employee] SSN determines that 

in the first case SSN will be selected from Person table, whereas in the second case 

from the Employee table.) 

1-N: An one-to-many relationship between tables implies a foreign key from 

the N-side table to the one-side table. Consider the tables Orders and OrderDetails, 

where a record in OrderDetails table which contains information about the ordered 

products, cannot exist without an Order record. It is obvious that the OrderDetails 

table will have as a part of its key, the key for the Orders table and that both fields are 

assigned the semantic name [Order] Id. In this case, there are actually two field 

mappings to the same semantic name. Here the general heuristic is to choose the 

primary key instance (Orders) unless the user selects attributes from the OrderDetails 

table. 

M-N and M-N dependent:  Any many-to-many relationship will result in 

multiple field mappings to a single semantic name because the relationship is 

structured by constructing a joining table whose key is the combination of the keys of 

the two related tables. Consider, for example a database storing information on books 

and authors. Since a book may have multiple authors and an author may write 
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multiple books, a joining table BookAuthor ([Book; Author]) is necessary to 

implement the M-N relationship between books and authors. The BookAuthor table 

has mappings to both the Book ([Book] Id) and Author ([Author] Id) table keys. This 

table is not shown in the integrated view and the query engine must select the 

appropriate joins to be executed. 

There is one special case when a semantic name may have multiple field 

mappings. When a database is not normalized, multiple fields in a single table may 

map to a semantic name. The semantically correct query should automatically 

normalize the data by splitting one record into many normalized records.  A special 

case arises too when mappings exist to multiple fields that belongs to different tables 

within the same database. The query system first selects a field which is currently 

present into the tables already in the query. Otherwise, it chooses the mapping based 

on the shortest join paths to the current tables in query.  

This is done to identify the most logical semantic choice for the field. 

Presumably, this identifies the most common occurrences of the field and often is the 

primary key of the parent table. The algorithm, that is executed for every database, is 

presented in the figure in the next page and constructs a set of fields (F) and tables (T) 

which best map to the set of query nodes Q=Q1, Q2, …,Qn given by the user. 

For example consider the query “SELECT [Book]Price, [Book] Author, 

[Book] ISBN “ that is issued in a database with the following two tables: 

 

  Book ( ISBN, Price, Author1, Author2 ) 

  BookDetails ( ISBN, LibraryIndex ) 

 

A simple ontology is used with a class named Book with the attributes ISBN, 

Author, Price and LibraryIndex. The algorithm starts with [Book] Price. A mapping is 

found in Price column of Book table and Price, Book are added in the list of fields (F) 

and the list of tables (T) respectively. Then the [Book] Author element is going to be 

processed. Two mappings are discovered in only one table. So the fields Author1 and 

Author2 are added in F and the table Book is added in T. When the last element 

[Book] ISBN is going to be processed two mappings are found but in two different 

tables. The algorithm should decide which one of them will be added. As we can see 

the table Book already exists in T. According to our algorithm if a table already exists 
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in T then the mapping that involves this table is chosen. That’s why the ISBN field 

from table Book is selected and added to F. If the table Book did not exist in T then 

our algorithm would select the table with the minimum join distance to the current 

tables in T. When we say the table with the minimum join distance we mean the table 

that has the minimum distance from any of the tables that already exist in T. The 

specific algorithm is shown in Figure 11. 

 

 

Figure 11. Field Selection Algorithm 

 
In order to show how joins are handled, we have firstly to define a join graph. 

A join graph is an undirected graph where each node corresponds to a table in the 

database, and there is a link from node Ni to node Nj if there is a join between the 

corresponding two tables. For this discussion we ignore multiple joins between two 

tables on different keys. Moreover, a join path is a sequence of one or more joins 

interconnecting two nodes in the graph, and a join tree is a connected subset of the 

Input: Query Nodes Q=Q1, Q2, …, Qn given by the user 
Output: A set of fields (F) and tables (T) 
1: For each Qi  
2: { 
3:  SNi = semantic name of Qi 
4:  search_Xpec ( SNi, R )  
5:  //search for SNi in X-Specs. Return results in R   
6:  IF SNi  has only one mapping in R  
7:          Add field Rk to F 
8:          Add parent table of Rk to T 
9: 
12:  IF SNi  has multiple mappings all in one table 
13:          For each result Rk in R 
14:    Add field Rk to F 
15:          Add parent table of R1 to T  
16: 
17:  IF SNi has multiple mappings in several tables 
18:          IF mapping Rk is found that the parent table of Rk already in T 
19:    Add field Rk to F 
20:          Else select the mapping that leads ot the shortest join path to  
21:          the current tables in Query 
22:    Add field Rk to F 
23:    Add parent table of Rk to T 
24: 
25: return T,F 
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join graph. Let’s assume without loss of generality that the join graph is connected 

(otherwise, we apply the algorithm to each connected subset and connect them using a 

cross-product). Then, we can conclude to the following lemma. 

Lemma 1. If a join graph is acyclic, there exists only one join path between 

any two nodes. 

Proof. We will prove this lemma by using contradiction. Let’s assume that 

two join paths exist between two nodes Ni and Nj. Then, we could take the first path 

from Ni  to Nj and return on the second path from Nj to Ni . This implies that the graph 

has a cycle. 
Moreover, we can conclude the following lemma too. 

Lemma 2. If a join graph is acyclic, there exists only one join tree between 

any subset of its nodes. 

Proof.  For two nodes the statement is true as we proved in lemma 1.  Given a 

subset of m nodes where the lemma holds we will try to prove that lemma also holds 

if we add one more node. So, given a subset of m nodes with only one join tree, we 

add another node N to the set. Assume that by adding N there exist more than one join 

tree in the new subset of m+1 nodes. Since there was only one join tree for the 

previous m nodes, this implies that N must be connected to more than one node in the 

subset. It is obvious that this produces a cycle. Thus, the statement holds for m+1 

nodes and the result follows by induction. 
The consequences of lemma 2 are really important. If the join graph for a 

database is acyclic, there exists only one possible join tree for any of its tables. That 

means that the query system does not have to make any decisions involving which 

joins to apply. It has to identify which joins are required to connect the required tables 

by constructing the proper join tree. The order in which the joins are applied is a 

problem of optimization that will be discussed later in this chapter. 

From this result, it is possible to construct an algorithm which builds a matrix 

M where entry M [Ni, Nj] is the shortest join path between any pair nodes Ni and Nj.  

Theorem. Given a subset of nodes from a matrix M which stores the shortest 

join paths for an acyclic join graph, and a set of tables T to join, a join tree can be 

constructed by choosing any table Ti from T and unioning the join paths in M [Ni, 

N1], M [Ni, N2], …, M [Ni, Nn] where N1, N2,…, Nn are the nodes corresponding to 

the set of tables T. 
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Proof. Since the graph is connected, the matrix entries M [Ni, N1], M [Ni, N2], 

…, M [Ni, Nn] represent join paths from Ni to all other nodes in the subset. Thus, there 

is a path from Ni to Nj and from node Ni to Nk. Unioning those paths together results 

in a path from Nj to Nk. Thus, all nodes are connected with the join tree, and it is the 

only possible join tree as we proved with lemma 2. 
Normalized databases often have acyclic join graphs. However, we cannot 

assume that all databases would be acyclic, and the general case of a cyclic join graph 

must be considered. Cycles arise when joins are added for query convenience and 

when tables serve multiple semantic roles in a database. A given table can assume 

multiple semantic roles in a database, by acting for example as a lookup table for 

several others. For example, consider the tables Orders and OrderDetails. We can add 

another one table called Employees which will store information on the employee who 

entered each product in addition to what employee entered the overall order. In this 

case, Orders and OrderDetails have foreign keys to the Employees table. This 

produces a join, and according to the join path chosen, different semantic queries are 

represented. For example, the join path Orders-Employees-OrderDetails represents 

the orders entered by employee with their products whereas Order-OrderDetails-

Employees represents the orders with their products along the employee entering the 

product. Moreover cycles often occur when a table stores a generalized concept which 

may have multiple sub-concepts, where several tables join to the different semantic 

instances in the generalized table. 

 

Figure 12. Join Graph Example 

 
Finally, cycles may occur when redundant joins are added to the database. For 

example, the CategoryId field could be added to OrderDetails for a direct link to 

Categories instead of joining through Products. This results in a cycle involving 

1 

N 

1 N N 
Orders OrderDetails Products 

Categories 

1 
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OrderDetails, Products and Categories. Note that joins of this nature may be lossy 

when used in combination with other, valid lossless joins. An invalid lossy sequence 

of joins results when a join with a N-1 cardinality is followed by a join with a 1-N 

cardinality where the join attribute is not a key. There may be other joins between 

those two joins. The result is a lossy join because it results in a M-N cardinality 

relationship between the merged tables. Effectively, this results in invalid information 

being created by using these joins. Also, a join of cardinality M-N between two tables, 

without using an intermediate table, is always lossy. Of course, such databases are not 

normalized and we expect that most of the databases today are normalized ones. Thus, 

the algorithm first should attempt to find join paths without using these types of lossy 

joins. 

To handle cycles, the query system must make a determination of the best join 

paths between nodes. The query system uses join semantics, path length, and join 

properties such as total participation, lossless or lossy joins to determine best join 

paths. The breadth-first algorithm presented constructs the matrix M of best join paths 

and it works for both cyclic and acyclic join graphs. The algorithm selects the shortest 

join paths with no lossy joins and equal length join paths may be differentiated based 

on total participation or other join properties. Lossy joins are only used if there exists 

no other path between nodes (a cross-product would be necessary).The specific 

algorithm is shown in Figure 13. 

For a specific example, we will try to build the matrix M for the graph shown 

in figure 12. Starting from node Orders, initially M[ Orders, Orders ] is zero, count is 

zero too and we do not accept lossy joins. Then we add the Orders node to our FIFO 

queue NQ and since NQ is not empty we remove the first node N from NQ. So, N= 

Orders. Since there is only one outgoing link from Orders, LTN = OrderDetails and 

since it is not visited and we have no lossy joins, it is added to NQ, it is marked as 

visited and M[Orders, OrderDetails]= M[Orders, Orders] + OrderDetails. Then, 

count is set to one, NQ is not empty and N = OrderDetails. The only outgoing 

destination from OrderDetails is Products, so LTN = Products. The Products node is 

not visited yet, so we add Products to NQ, we mark it as visited and M[Orders, 

Products] = M[Orders, OrderDetails]+Products= OrderDetails + Products. The 

algorithm goes on the same way until the full matrix M is constructed. We would like 
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to note that for each node F in G the algorithm will go through line 7 at most two 

times, since by finishing the second round count will be equal to #of nodes in G. 

 

 

Figure 13. Algorithm to Calculate Join Paths. 

 

It would be ideal if we could use the algorithm of unioning join paths in the 

matrix to produce a join tree between any subset of nodes. However, if the graph is 

cyclic, there will be multiple join trees possible depending on the choice of starting 

Input: G as a graph 
Output: Matrix M  // N x N matrix where N the number of nodes in G 
1:   For each node F in G 
2:  { 
3: M [F, F] = Null // Empty join path to itself 
4: count = 0 
5: accept_lossy = false   // initially do not accept lossy joins 
6: 
7:        While count < # of nodes in G  
8: { 
9:    add F to NQ  //NQ is a FIFO queue structure 
10: 
12:       While NQ is not empty 
12:     { 
13:  remove first node N from NQ 
14:  For each outgoing link L of N 
15:   LTN = destination node of link L from N 
17:   If LTN is not visited and (accept_lossy or the path has not 
   a lossy join) 
18:    add LTN to NQ 
19:    mark LTN as visited 
20:    M [F, LTN] = M [F, N] + LTN 
21:    count++ 
22:  ElseIf accept_lossy or the path has not a lossy join 
23:   //you may want to replace a join path already  
24:   //constructed 
25:   //if new join path is the same length as current and 
26:   //new join path has better properties (total particip.) 
27:         } 
28:         clear_flags() //clear all visited flags for all nodes in G 
29: 
30:         accept_lossy = true 
31:       } 
32:   } 
33: return M   
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node. These join trees are all semantically valid depending on the query and the 

system cannot differentiate them for the user without more knowledge about the 

intended query semantics. Some work started to emerge in the area [Mason et al. 

2005] but finding heuristics that could choose the best join tree based on the attributes 

chosen for the query is beyond the scope of this thesis and is included in our future 

work. So, our system cannot handle cycles and lines 23-25 of the algorithm in Figure 

13 have not been implemented.   

  Whereas we cannot differentiate all semantic valid join trees when we have 

cycles, we can use “smart tricks” in order to avoid confusions. So, when the 

administrator constructs the X-Spec file, he can choose which valid paths to represent. 

It is not mandatory to represent the whole underlying schema and every relation 

across tables. He can choose only the parts that are of interest and if he wants later, he 

can add more relations or more tables. So when we have cycles we can choose which 

join tree to be constructed and we can declare an acyclic join tree. 

Moreover, it is possible for the user to declare explicit joins in the where 

clause that denotes the join path that his query will use. Whereas usually, joins paths 

are hidden from the users and the user doesn’t have to know the structure of the 

underlying database, it is possible if desired and if he knows the underlying schema to 

declare the explicit joins to be performed. Of course we do not expect from users to 

have in mind the underlying schema, but we give them the option to decide if such 

knowledge exists.   

 

5.5. Join Algorithms 

Except from determining the correct join path, an essential matter is to choose 

the proper join algorithm in order to efficiently answer the queries issued. Since the 

most costly operator is the join one, an important issue is to determine the more 

efficient algorithm to perform joins in each case. In centralized databases, this 

research area has been extensively studied and every database management system 

has an optimizer that chooses the best join algorithm (or nearly the best) to use in each 

case. 
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Whereas, a lot of work has been done in centralized databases, in distributed 

database systems there are a lot to be done. As we mentioned before, we can 

determine in most cases the proper join path needed to execute the query issued in our 

system. In that join path we can distinguish which joins need to be performed across 

tables that belong to the same data source or to different data sources. Having in mind 

the goal to encapsulate the heterogeneity of the component databases and to use 

existing homogenous distributed database techniques as much as possible we used 

underlying databases for applying specific joins.  

Since our policy is to use existing database techniques we “push” the joins that 

interfere tables within the same database to local databases and we leave the joins that 

span across data sources, to be handled from our system. In order to join data across 

data sources, two algorithms have been implemented. 

 

5.5.1 Main Memory Algorithm 

After the query is issued in our system, and it is decomposed into subqueries, 

these subqueries are executed in parallel, independently in each data source. So the 

time to execute the individual queries depends on the query that takes more time to be 

executed and transferred. When all the results from the independent data sources are 

loaded into the memory of our system, the join algorithm is being executed and as 

soon as we have some results they are presented to the final user. 

 

5.5.1.1 Nested Loops  

The first join algorithm that was implemented in our system, in order to study 

the join implications was the simple nested loops algorithm. This join algorithm may 

not be the more efficient join algorithm, but it is really simple to implement in a 

mediator-based environment.  If we want to join two relations with simple nested 

loops, for each tuple in the outer relation R, we scan the entire inner relation S as we 

can see in the following figure. 
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Figure 14. Simple Nested Loops Join 

 
If the smaller relation becomes the outer one, the algorithm is more efficient 

since its cost is: Total Cost = (tuples per page in R * #of pages in R) * #of pages in S 

+ #pages in R. Of course this is in centralized databases. Here, in the total query cost 

we have to add the time to get the results from the individual sources (local query 

time + communication costs) and to load them into memory.  

5.5.1.2 Result Processing 

Since, we load the result of each subquery into the main memory; it is our task 

to process them further if order, group and union operations have to be applied.   

If no join condition is specified the results of each database are being unioned 

according to their shared global key. Because each tuple presented, is constructed in 

our system, we can choose to accept unions of tuples that their schema does not fully 

match. If for example in one database a field is missing we can allow union to be 

performed with another database where that information exists, and whenever that 

field is missing is left blank. 

Ordering operations should be considered before showing the results. In order 

to apply these, we use the Quicksort algorithm to sort the results according to the 

required criteria. Grouping operation has not been implemented yet but in our near 

future we are going to examine them. 

 

5.5.2 Central Database Algorithm 

Whereas simple nested loops were efficient for joining a small number of 

tuples, when the number of tuples that need to be joined increased, the algorithm 

became really slow. The first thing that came into our mind was to try and implement 

Input: R, S relations 
Output: Join result 
1: for each tuple r in R  
2:  for each tuple s in S do 
3:   if   ri = si then 
4:    add <r, s> to result 
5: return result 
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several other algorithms, such as hash-join, sort/merge joins, and hash joins. After that 

we would build an optimizer to decide which join policy to use in each case. Doing all 

that, we would re-implement several well implemented algorithms (in central 

databases) and we would try to build something that is already well-done by several 

database vendors. 

Having that in mind, in addition to the principle of using as much as possible 

of the existing homogenous distributed database techniques, we leaded to the 

construction of a new join algorithm that could exploit current DBMS systems. The 

algorithm consists of the following six steps and it is implemented in our system. 

 

1. For every sub-query issued in each independent data source find the table that 

should be constructed in a central database in order to store the results of that 

sub-query. 

2. Build those tables in a central lightweight database. 

3. While executing sub-queries, store their results into those tables created in the 

first step. 

4. Build a new join graph based on the results stored in the central lightweight 

database. 

5. Build the global query that should be issued in the central database. 

6. Execute that query, get the results, and present them to the final user. 

 

The first three steps are being executed in parallel for every existing data 

source and they are implemented using threads. Parallel execution used since each 

subquery concerns only a single independent data source. After the results of each 

independent subquery are stored in a single database, we can build one single proper 

query based on the relations stored in memory. Thus, each join that needs to be 

performed across databases is performed within a DBMS. Of course, there is a 

payload to the whole procedure, which is the cost to build the proper tables in a 

central database, and the cost to store the results returned from each individual data 

source within the central database and the cost to build and execute the single query 

issued in the central database. 

Using this algorithm not only improves the time to execute joins across 

databases, but also has valuable side effects. It can be used to implement several 
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caching policies since after executing each query; data remain in the central site and 

can be used to answer future questions concerning the same fragment of data. Of 

course, matters of caching are beyond the scope of this thesis and are indented to be 

examined in our future work. 

5.5.2.1 Building the tables. 

Building the tables needed to store the results of the individual subqueries is a 

rather trivial matter. The only thing that needs to be examined is the subquery issued 

in the individual source, and of course the information about the fields queried, that is 

stored in the appropriate X-Spec. 

At first, each subquery is examined to define the returned fields in its select 

clause. Then a table is generated with a random name which is built in such a way that 

is unique in our lightweight database. The fields of that table are named after the 

fields in the select clause of each sub-query. Except from the field’s name, their data 

types should also be known in order to build the proper table to store these results. 

This is really simple too, because in X-Spec we have all the information needed about 

the data type and the length of each field and we can use that information to build the 

proper tables. For example if the query issued in data source 1 is: 

  

 select B.bioAssay, R.ReporterID, B.Intensity1, B.Intensity2  

 from bioAssayData as B, reporter as R 

 where R.id=B.Reporter  

 

the table TempTable12387986 ( B_bioAssay int, R_ReporterID varchar(50), 

B_Intensity1 int, B_Intensity2 int) is being constructed. The field’s data type 

corresponds to the data types of the selected fields in their individual data sources. 

After building one such table for each data source, the results returned from each 

individual subquery are being inserted in the appropriate table in our central database. 

 

5.5.2.2 Building the Query. 

When all data needed, are found in our central database the next task is to 

build one query that will combine them in a proper way. In order to build the query 
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that will be issued in our central database we need to examine the tables created in our 

database and the fields that correspond to those. 

A general policy is to build joins across tables that come from vertical 

distributed tables and then to union tables that have the same schema or more 

properly, that their schema corresponds to the same semantics. Finally the Cartesian 

of the tables is produced and if they share the same global key, join conditions are 

applied. A global key is a key that has the same semantic meaning across two or more 

data sources, and as a result tuples coming from different databases should be joined.  

Of course, we have to admit that these assumptions are valid, under the 

hypothesis that the fields mapped across data sources share the same domain where 

their values belong. So when in data source 1, the field bookId of table Writings with 

semantic name [Book] Id has value 1 and in data source 2, the field Id of table books, 

with the same semantic name [Book]Id, has value 1 too, we assume that we are 

referencing to the same element that is the same book instance. 

Since all the operations are performed within our central database, ordering, 

grouping, etc. can be performed by the database itself and we do not have to 

implement algorithms for those operations. Of course, because databases cannot 

perform union of tuples that do not have the same schema, relations with partial 

schema cannot be unioined using this policy. 

 

5.6 Considering Distribution 

In our system, is possible to declare fragmentation vertical of horizontal. Both 

vertical and horizontal fragmentation may exist and should be declared when data 

sources with fragmented data are going to be integrated into our system. The benefit 

from fragmentation is that queries that involve only specific fragments of data don’t 

have to involve the whole data of the table. 

Moreover if a table is horizontally distributed across several data sources, the 

system will recognize selections on fragments that have a qualification contradicting 

the qualification of the fragmentation rule and will remove them, since they produce 

empty relations. If selections are made across fragments that do not contradict the 

qualification of the fragmentation rule then the union of two selections will be 

returned. 
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In the case of vertical distribution, when a query is issued containing 

information from these two tables, a join between these tables should be produced. 

This is done when results are being formulated in our central site. So, whereas the 

definition of horizontal fragmentation rules has as a result the elimination of empty 

queries contradicting those rules, defining vertical fragmentation rules assures that the 

correct joins will be made across databases that share vertical fragments of the same 

table. Consider for example the table Reporters (Id, Name, Species, Date) which is 

horizontally distributed in two databases, the first containing the tuples with Id less 

than 500 and the second one tuples with Id more than or equal to 500. Imagine now 

that someone decides to fragment vertically the table in the second database for 

reasons of performance. So, two tables are being created, Reporters (Id, Name) in the 

second database and Reporters (Id, Species, Date) in one third database. Consider 

now a query that asks for every field of table reporters. If knowledge about 

fragmentation exists, the tables from the second and the third database will be joined, 

and then because the resulting table will have the same schema with the results from 

the first database a Union will correctly produced. But if no such knowledge exists, 

results from the first database and the second one may be joined since they share the 

same global key, and because they belong to the same horizontally distributed table 

no results will be returned. 

 

5.7 Example 

Consider for example that we have two databases which store information 

about books.  In the first database there are the tables Library, Book, Publisher and 

Author. A library has many books and each one of them has a publisher and an author. 

The second database stores information about the location of books that also have 

only one author. A simple ontology is built describing books, and we use that 

ontology to annotate the X-Spec produced from the two distinct databases. Assume 

that after building the integrated view in memory the following semantic query is 

issued: 

 

SELECT [Library] Name, [Book] Id WHERE [Book; Author] Name = “X“ 
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Using the field selection algorithm for the first database we conclude that the 

fields Library.Name, Book.Id, Author.Name and the tables Library, Book and Author 

will be used. For the second database, the fields Location.Name, Copy.Id and 

Author.Name and the tables Location, Copy and Author will be used. In each case the 

first two fields will be used for projection and the Author.Name field will be used to 

form selection criteria. For the two databases, the join graph is shown in the following 

figure. Having the projection fields, the fields that will be used for constructing the 

selection criteria and the join graph, we can build the proper sub-queries that will be 

issued in our two districts databases. Those queries are: 

 

Db1:  Select Library.Name, Book.Id From Library, Book, Author 

 Where  Author.name = “X” and Library.Id = Book.LibraryId and   

            Book.Author = Author.Id 

 

DB2:    Select Location.Name, Copy.Id From Location, Copy, Author 

 Where  Author.name = “X” and Location.Id = Book.LocationId and  

            Copy.Author = Author.Id 

 

 

Figure 15. Join Graphs for Database 1 (left)  and Database 2 (right) 

 

Library 
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Those sub-queries are issued in the two distinct databases, using threads. 

Assume that the Database algorithm is used. From these two sub-queries and using 

the information about queried fields from X-Spec, we can conclude that the following 

two tables should be constructed in our central database. 

 

      TempTable123123 ( Name varchar (50), Id int) 

      TempTable321321 ( Name varchar (50), Id int) 

  

The results from the two sub-queries are stored in those tables and then one 

global query should be constructed to be issued in our central database. Since the 

schemata of these two tables correspond to the same semanctics, the UNION operator 

should be used. As a result the final query to be issued is 

 

  Select Name, Id from TempTable123123   

    UNION  

  Select Name, Id from TempTable321321 

 
That query is issued in our central db and the results are presented to the final 

user. If the memory algorithm is used the system will recognize that the results 

coming from the two sub-queries correspond to the same semantics and as a result a 

union operation is required. That operation will be performed in memory after the 

results from the two sub-queries are returned and then the final result will be 

presented to the user.  
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Chapter 6 

6QueTe Implementation and Evaluation 

“Knowledge is of two kinds. We know a subject ourselves, or 

we know where we can find information on it” 

-Samuel Johnson 
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In this Chapter we are going to give an overview of our implementation and 

show the decisions made while developing QUETE. We will give a simple example 

of integrating two data sources and we will describe the necessary steps that need to 

be performed. After the implementation has been fully understood we are going to 

evaluate QueTe based on the demands of the project PROGNOCHIP. 
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6.1 QueTe Implementation 

As we have shown, our architecture is capable of handling large-scale 

integrations in evolving environments, where the specific databases participating in 

the whole system change frequently and their schema evolves over time. 

Moreover, the system’s database engine integrates distributed data sources 

without requiring middleware or database server support and allows programmers to 

access easily, several integration algorithms. The whole system is implemented in 

Java. Java was used because it is currently the standard language to develop web 

applications. It supports native multithreading and provides several distributed 

programming facilities. Moreover, a program written once in Java can run in any 

platform and in any operating system desired. 

Furthermore, we adopted Unity’s policy to implement the whole system within 

a standard JDBC driver, because providing a standard interface is essential for unified 

querying of heterogeneous databases. The JDBC standard allows the execution of 

queries in a general programming environment by providing library routines which 

interfere with the database. Most users and programmers are familiar with using the 

standard JDBC driver in order to interact with a single data source. We are using the 

same functions, and the same API to provide transparent access to multiple data 

sources instead of just one. In particular, JDBC has a rich collection of routines which 

make the interface simple and intuitive and provides portability since users are 

allowed to develop their own programs and interfaces using our driver. An example 

application using the driver is shown in the Appendix. In every application built, our 

driver should be explicitly declared to be used initially. Moreover the URL of the 

configuration file that will be described later in this chapter must be declared. Then 

one can use our driver exactly as the common JDBC driver. Note that the driver could 

be used even when no Ontology is used and no conceptual querying is performed. In 

this case, all relations from all databases are imported into the global view but not 

matched. Thus, at the lowest level, the driver functions as a standard federated system 

allowing distributed access to the data sources. However, its true benefit is abstracting 

away the challenges of building joins and matching schema constructs manually. 

The whole system, besides the JDBC driver has several components that 

should be described. 
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6.1.1 X-Spec Specification Documents 

As mentioned before, a standardized ontology is not enough to achieve 

integration, because a standard schema for communication is not defined. Data 

concepts can be represented in vastly different ways in various data sources thus we 

need a system for describing the schema of a data source using ontology terms and 

additional metadata. We use X-Spec to store all that relevant information. 

An X-Spec consists of the relational database schema being described along 

with additional information about keys, relationships, and field semantics. More 

importantly, each table and field in the X-Spec has an associated name built from 

terms in the standardized ontology. 

 

 

Figure 16. Example X-Spec 

<TABLE> 
        <semanticTableName>SAMPLE</semanticTableName> 
        <tableName>sample</tableName> 
    <FIELD> 
        <semanticFieldName> [SAMPLE] ID</semanticFieldName> 
        <fieldName>id</fieldName> 
        <dataType>4</dataType> 
        <dataTypeName>int</dataTypeName> 
        <fieldSize>10</fieldSize> 
        <decimalDigits>0</decimalDigits> 
        <numberRadixPrecision>10</numberRadixPrecision> 
        <remarks>null</remarks> 
        <defaultValue>null</defaultValue> 
        <characterOctetLength>0</characterOctetLength> 
        <ordinalPosition>1</ordinalPosition> 
        <isNullable>NO </isNullable> 
     </FIELD> 
       <PRIMARYKEY> 
        <keyScope>4</keyScope> 
        <keyScopeName>Global</keyScopeName> 
        <keyName>PK_sample</keyName> 
        <keyType>1</keyType> 
        <FIELDS> 
        <fieldName>id</fieldName> 
        </FIELDS> 
     </PRIMARYKEY> 
     <JOIN> 
      <joinName>sample->extract</joinName> 
      <fromKeyName>PK_sample</fromKeyName> 
      <fromTableName>sample</fromTableName> 
      <toKeyName>FK_extract_sample1</toKeyName> 
      <toTableName>extract</toTableName> 
      <joinType>2</joinType> 
     </JOIN> 
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An example X-Spec is given in the previous figure. As we can see the 

document is an XML document. In the beginning, we can see that table sample is 

annotated with the semantic name SAMPLE from our ontology. After annotating each 

table, we have to describe table fields too. In our example field id is being described. 

Firstly a semantic name is given to that field ([SAMLE] ID) and then information is 

shown about the type of the field. The current field has a data type no 4 as given in 

java.sql.Types and it is an integer (int) with size of ten. The dataTypeName is data 

source dependent and it is not enough for the specification of each field because each 

database may represent differently its own data types. Furthermore, the number of 

fractional digits (decimalDigits) and its radix (numberRadixPrecision) are defined and 

any comments about the field are given (remarks). Moreover, it is declared whether 

the field can accept null values (isNullable), its default value (defaultValue) and the 

index of column in table’s definition (ordinalPosition). Finally if the field is a char, 

the maximum number of bytes in the column is given (characterOctetLength) 

Except from specifying the specific attributes of each field in a database 

independent way, the relations across tables should also be declared. As shown in 

figure the primary key of each table should be declared. In primary key declaration, 

each field participating in primary key is shown, a unique semantic name is given for 

that primary key (keyName) and as well the type of that key (keyType) - 1-primary, 2-

foreign, 3-alternate or candidate. Moreover, the scope of the key is declared 

(keyScope) along with the name of the scope that this key participates 

(keyScopeName). Those declarations specify the scope of the keys they are valid and 

are used to match global keys across databases. If the primary keys within several 

databases have the same semantic name and the same scope, then the same global key 

is used and it will be used to join the subquery results. Whereas in our implementation 

every field is annotated using one single ontology and as a result they belong to the 

same scope, it is possible several ontologies and scopes to be used. Information is 

given for foreign keys too the same way with the primary ones. 

Finally if joins exist, they should also be explicitly declared as shown in the 

figure. The type of the join (joinType) is essential (1-1, 1-N, M-N) and the keys 

(fromKeyName, toKeyName) and tables (fromTableName, toTableName) that 

participate in the join should be given. More examples are shown in the cd that 

accompanies this thesis. 
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6.1.2 X-Spec Extractor 

It is obvious that the construction of an X-Spec with a lot of tables is really 

time consuming whether it is really simple and trivial for each administrator. That’s 

why an Extractor is provided with the whole system and the only thing that is required 

in order to be executed efficiently is the connection string (database, username and 

password) of each database. 

The Extractor will create an X-Spec automatically for a specific database in 

the proper format. All information relying in underlying data sources will be gathered 

and recorded in the output X-Spec. Of course, in order for the Extractor to create fully 

formed X-Specs, primary and foreign keys must be specified within the databases 

being extracted. 

After extraction, the annotation of each field and each table using reference 

ontology remains to the hands of the administrator. He should give afterwards 

semantic names in all fields of interest, that will be integrated using our system, and 

decide which tables, fields and joins should participate in the integrated schema. The 

tables that are not going to participate can be removed from each X-Spec, and if 

cycles exist, specific join paths can be removed by eliminating joins among tables 

within the same X-Spec. 

 

6.1.3 Configuration File 

After the extraction and the annotation process, all files generated should be 

placed in a central directory from where our system will use them, in order to properly 

answer the queries issued. One final configuration file has to be created that describes 

what data sources are being integrated and where their X-Spec files are stored. An 

example is shown in the following figure.  

 

Figure 17. Configuration File for Base 

<SOURCES> 
 <DATABASE> 
  <URL>jdbc:odbc:Base</URL> 
  <DRIVER>sun.jdbc.odbc.JdbcOdbcDriver</DRIVER> 
  <XSPEC>xspec/Base.xml</XSPEC> 
 </DATABASE> 
</SOURCES> 
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As we can see in the example, the configuration file is an XML file too.  In the 

URL tag is written the connection string used from the system to connect with each 

data source. In the current example, the specific data source is connected through 

ODBC and is given the name Base (note that this source should be declared in the 

System DSN of the ODBC data sources of the machine where our system is installed). 

Since our system is using ODBC, the proper ODBC java driver should be used to 

interact with that data source. This is declared in the DRIVER tag. Finally, the place of 

the X-Spec corresponding to the specific data source must be declared, and this is 

done in XPEC tag. 

 The goal of ODBC is to make possible to access any data from any 

application, regardless of which database management system is handling the data. 

ODBC manages this by inserting a middle layer, called a database driver, between the 

application and the DBMS. The purpose of this layer is to translate the application’s 

data queries into commands that the DBMS understands. This specific characteristic 

of ODBC makes it ideal for integrating different databases under a common API. 

 

6.1.4 Vertical and Horizontal Distribution 

As shown in the previous chapter, the system is optimized for horizontal and 

vertical, distributed, relational data sources. In order to benefit from these 

optimizations, somehow the distribution must be declared from the administrator.   

System can support horizontal fragmentation based on simple selection 

predicates.  Fragmentation rules are declared as:  

  Data_Source: Table: Field predicate value 

For example consider table Sampes( SampleId, SampleData, SampleDate). A 

possible horizontal fragmentation across two databases denoting that samples with id 

higher than 500 are stored in db1 and the rest in db2 could be declared as.: 

         DB1: Samples: SampleId > 500 and DB2: Samples: SampleId<=500 

Selection predicates could be <, >, =, <=, >=, <>, and values could be either 

numeric or strings within ‘ or “. The system will recognize selections on fragments 

that have a qualification contradicting the qualification of the fragmentation rule and 

will remove them, since they produce empty relations. If selections are made across 
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fragments that do not contradict the qualification of the fragmentation rule, the union 

of two selections should be returned. 

Moreover, system can support vertical fragmentation and the fragmented 

tables are denoted to belong to the same table. For example, if a table has been 

fragmented into two tables Diagnosis and Samples that remain into different data 

sources we can declare: 

   Vector fragment1=new Vector(); 

   fragment1. add("Data_Source1:Diagnosis"); 

   fragment1. add("Data_Source2:Samples"); 

Those tables are vertical fragmented according to their primary keys. If 

selections are made across vertical fragmented tables, then the join of these tables 

should be produced. 

 

6.2 Evaluation 

After providing X-Specs, configuration file, and the fragmentation rules, the 

system is ready to answer every question issued transparently and efficiently. To show 

system efficiency exhaustive testing and evaluation has been performed. Here we will 

only present, the evaluation based on the needs of project PROGNOCHIP. Detailed 

experiments were performed in order to study the performance of the system on the 

previous listed algorithms. 

Our resources were limited, so we used three machines with an Intel Pentium 

III processor on 1.0 GHz, and 256 MB of RAM. Our system achieved good 

performance even in these slow machines and we expect great results when more 

powerful machines are used. Those machines were on a 10/100 Mbps LAN. 

6.2.1 Starting Point - Simple Database Case Study 

In the beginning of our evaluation, we built two simple databases that were 

placed in the same machine. Those databases were in Microsoft Access and because 

they were placed on the same machine with our system there were no communication 

costs. The schema of those databases is shown in the following figure. 
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Figure 18. Example Database Schema 

 
In this simple case study the focus was to examine the performance of our 

system using the memory algorithm only, against the JDBC driver created by SUN. 

Of course our system provides transparency to users and ontology based queries 

whereas JDBC is a simple driver for single database access.  

We annotated our schema using a really simple ontology built only for those 

tables. Our ontology consisted of two classes: Patients with the attributes PatientId, 

PatientName and PatientSurname, and Samples with the attributes SampleId, 

ExtractionProtocol, SampleData, SampleDate and PatientId. All those attributes were 

mapped in the underlying data sources at X-Spec creation.  

We firstly tried a simple query against a single database. The query was to 

select all the Patient Ids from Patients. We run each query 10 times using our 

implementation and then the JDBC driver. As we can see in the following figure, 

JDBC had a better performance than our implementation, as we expected. Our system 

had to load into memory the schemata, to build the correct paths and to transform the 

semantic query to SQL, things that add a little overhead to our implementation. 

Moreover, our system is implemented in a way that after selecting the tuples and 

loading them into memory, every tuple has to be examined for checking if more 

actions have to be performed on our central site, even if our result comes from a 

single database. This adds an overhead relative to the number of tuples returned. In 

our future plans is to optimize the whole procedure. 

Database 1 
 Patients  

PatientId PatientName PatientSurname 
  
 Extractions  

PatientId SampleId ExtractionProtocol 
 
Database 2 
 Samples 

SampleId SampleData SampleDate 
 
 Clinical.Extractions.SampleID == Biological. Samples.SampleID 
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Quete vs Jdbc

0
500

1000
1500
2000
2500
3000

0 20000 40000 60000 80000 100000 120000

Rows

Ti
m

e 
(m

se
c)

Jdbc Quete
 

Figure 19. Quete versus Jdbc in a single select query 

 
The real advantage of our system is the transparent access to multiple, 

heterogeneous databases. In order to check the performance of our system in such an 

environment we tried to issue a query that would involve a join between two tables 

across databases. Of course this action cannot be performed by the JDBC driver, who 

can only ask separate databases. That’s why, in order to make estimation about the 

JDBC driver we issued “hard-code” the decomposed subqueries in the two data 

sources that our system would automatically produce. The results of these subqueries 

where then stored in a local database, and then another hard-coded query was sent to 

ask the local database for the final results. We have to note that all results from the 

two separate databases were joinable. The query issued in our system was: 

 

    Select  [Samples]PatientId, [Samples] SampleId, [Samples] SampleData; 

 

That query, decomposed into the two following subqueries issued in the two 

underlying databases: 

   Select E.PatientId, E.Sample From Extractions as E 

    Select S.SampleId, S.SampleData From Samples as S 

 

As we can see, in the following table our system has a better performance in 

cases where a small amount of rows is selected and joined. But when a lot of tuples 

appear the performance degrades quickly 
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Rows Jdbc-Odbc Quete 

DB1 
Extractions 

DB2 
Samples   

5 5 50 msec 30 msec 
10 10 50 msec 30 msec 
100 100 330 msec 71 msec 

1.000 1.000 2750 msec 3198 msec 
10.000 10.000 26533 msec 308945 msec 
50.000 50.000 134841 msec A lot of sec 
100.000 100.000 267198 msec  A lot min 
10.000 10 80 msec 1081 msec 
10.000 100 380 msec 3455 msec 
10.000 1000 3475 msec  30958 msec 
50.000 10 161 msec  4345 msec 
50.000 100 471 msec 16771  msec 
50.000 1000 3194 msec 145892 msec 

Table 2. Joining rows across databases 

 
Having those experiments in mind we started developing the Central Database 

algorithm we implemented. The memory algorithm was not efficient when a lot of 

tuples had to be joined. 

 

6.2.2 Prognochip Case Study 

Having the second algorithm implemented, the system was tested in real world 

applications and challenges. Since the motivation for this thesis was the project 

PROGNOCHIP, measuring the performance of the system when deployed in those 

databases was really important. 

In the beginning, the schema of each database participating in the project was 

collected and the Extractor tool was used, to capture the properties of each database. 

Then a trivial, plain ontology was built that was focused on the two databases 

participating in our project, and the fields of interest where annotated using terms 

from that ontology.  The two databases participating were developed to fulfill 

different, separate requirements. 

The Genomic database stores information about the execution and the result of 

microarray experiments. Protocols, procedures, and measurements occurring from 
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several experiments are stored and the whole process of a microarray experiment is 

modeled and stored. The results of such experiments are then analyzed using 

statistical methods and are stored in a different partition of the same database. The 

database has about 85 tables, but according to our ontology only 15 of them are 

needed to be used in our integration scheme, so only those tables were annotated. The 

whole database schema is really big to be presented here and can be found in the cd 

that comes with this thesis. The Genomic database is stored in MySQL, and since the 

join relations are not shown in MySQL we had to fully understand the design and the 

relations of those tables and to describe them in the X-Spec files. 

Whereas the Genomic database is dedicated to microarray experiments, the 

Clinical database was built in order to capture all the information needed in a 

Hospital. So the clinical database has about 500 tables, but in our project only 70 of 

them are needed. The clinical database is in SQLServer but the relationships among 

tables are not captured within the database because of implementation and 

multilingual reasons ( -SQLServer provides the capability to store table relationships 

within database and several constraints coming from these relations are checked when 

data are updated or inserted). So, we had to understand the whole schema related to 

the information that our project needed, and to capture the relationships across tables 

in the X-Spec files. Because cycles existed, whenever a table could be reached from 

many tables, we chose the more efficient and correct path. This was performed by 

eliminating the necessary relations from the appropriate X-Specs. The schema and the 

X-Spec files can be found in the cd and in the end of this thesis. 

 

6.2.2.1 No fragmentation 

The performance of the two algorithms implemented was initially tested. The 

Quete Database algorithm is the one where all the results are stored in a local database 

and joined there, whereas the Quete Memory algorithm loads the subquery results into 

memory and joins them using simple nested loops. 

In Database 1 was stored the Genomic Schema without the tables that are 

produced from data analysis, Database 2 contained the tables produced from Genomic 

data analysis, and Database 3 followed the clinical schema. The central database used, 

was SQLServer but any DBMS accessed by standard ODBC protocols could be used 
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as well. We built a benchmark program that was able to load all three databases with a 

prefixed number of rows that all could be joined within and across sites.  
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Figure 20. Memory algorithm VS Database Algorithm 

 
The previous figure summarizes data shown in the Appendix and we can 

observe that the Memory algorithm performs well when a small amount of tables is 

being joined, whereas the Database algorithm outperforms the Memory one when the 

data grows. These results confirm that current DBMS can handle heavy-load 

situations more efficiently than every implementation we might have. The query 

issued, involved all the tables in the Clinical and the Genomic database, and queries 

like that will be issued in the final stage of the project. 

 

6.2.2.2 Horizontal fragmentation 

After checking the performance of the system in the previous two cases, the 

performance of the system when horizontal fragmentation existed, was checked. So, 

we fragmented one large table in db1 such that half of it was put in a new table in db2 

and a small fraction of the initial table was put in a new table in db3. Then we 

submitted fragmentation rules to our system and we issued a query that could exploit 

fragmentation to achieve better performance. As shown in the figure and its 

corresponding table in the Appendix, when fragmentation rules are considered, we 

have a better performance. The performance gained from fragmentation knowledge is 
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optimal when Memory algorithm is used as shown, whereas in Database algorithm the 

performance gained is too small. As we can see in the figure, Database algorithm 

outperforms Memory algorithm.  
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Figure 21. Considering fragmentation rules 

 
Moreover we can conclude from the figure that in this simple case, Database 

Algorithm shows the same performance whether data are horizontally fragmented or 

not ( the line of DatabaseNoFragment is under the DatabaseHorizontal line in the 

graph) . This happens because as we said the subqueries are executed in parallel. So, 

when the network is not congested the overall time of the initial Query to be executed 

is the time for the slowest query to be executed, that overlaps the time to query and 

fetch the zero data into our central database. When communication links are highly 

congested, of course, using Horizontal Fragmentation rules achieves a better 

performance. 

 

6.2.2.3 Hybrid fragmentation 

In hybrid fragmentation except from defining horizontal fragmentation rules, 

we defined vertical fragmentation rules too and we fragmented a table across two 

databases. Then a Query that exploited the fragmentation rules was issued. The results 

are shown in the following graph. 
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Figure 22. Database vs Memory Algorithm with Hybrid Fragmentation  

 

As we can see in each case, the Memory algorithm is faster for a small number 

of tuples whereas Database algorithm is better when we have a lot of rows to join 

across databases. Moreover, as fragmentation knowledge exists our system can use 

that knowledge to achieve a better performance. We notice that the graph is similar to 

the Horizontal case one. This is because vertical fragmentation rules are only used to 

assure that the correct joins are applied, whereas horizontal fragmentation boosts the 

whole system performance. Of course, if a large table is vertical fragmented in two 

tables and a query concerning only the data of the one sub-table is issued, the cost is 

smaller than querying the whole large table. 

 

The previous experiments show, that Quete has an acceptable performance 

even when a lot of data are going to be queried. Of course, there are some trade-offs 

in our system. We sacrifice speed in order to be able to integrate answers from 

multiple sources and in order to be able to query them using a global reference 

ontology. Furthermore, we can conclude that when difficult operations with a lot of 

data are going to be performed, current database systems perform better than our 

implementation. 

 

 



CHAPTER 7CONCLUSIONS  105 

 

HARIS KONDYLAKIS 

Chapter 7 

7Conclusions 

“Everything should be as simple as it is, but not simpler” 

-Albert Einstein 
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In this chapter we will present the conclusions gained from our research 

concerning the area of query processing in data integration systems. Then we are 

going to present the directions for our future work since there are a lot to be done in 

the area. 

 

7.1 Conclusions 

The focus of research in information integration is currently changing.  While 

previous approaches concentrated on the integration of a given set of well-structured 
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databases, the Internet age is about providing a certain type of information to a user, 

independently of which information source is used. 

Examples of the new type of information services are companies that sell 

information integrated from autonomous web sites, interfaces that provide researchers 

with experimental results produced and managed in hundreds of laboratories, and 

bargain finders that harvest hundreds of data sources to find the cheapest offer for a 

certain good. In these scenarios, integration is provided by a third party, and the task 

of integration is to satisfy a source independent information requirement. Underlying 

data sources remain completely autonomous and may evolve independently over time. 

Despite the growing importance of this new wave in information integration, 

few successful solutions are known that are not ad-hoc, hard-coded “hacks”. We 

believe that this is because of several reasons. Firstly, information integration is 

difficult. The main source of difficulty is heterogeneity and independent evolution, 

which both are consequences of autonomy. Moreover, virtual information integration 

is prone to bad performance. It is inherently inefficient compared to homogenous, 

monolithic systems because in involves the execution of remote methods or queries, 

and as a result is almost defenseless to bandwidth limitations. Communication costs 

that arise between distinct data sources and their unknown availability over time limit 

the capabilities of integration systems.  Complicated structures have to be used and 

many complex problems arise that can only be partly solved in many cases. 

Our system is a typically Local-as-View system and is really flexible in 

addition/deletion of the local sources that participate in the integration system. 

Moreover underlying sources can evolve at will without any changes to the global 

schema. Whereas in LAV system, query processing is a difficult task we managed to 

build a processor that can easily decompose semantic queries to structured queries 

that will be answered from the underlying databases. Of course in order to achieve 

efficiency and good performance we sacrifice complexity and expressiveness and 

complex rules cannot be declared in our system. Only rules concerning table 

fragmentation can be declared and used and these optimizations make our system 

unique. 
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7.2 Extensions 

Our system tries to integrate several underlying databases by providing the 

user with the capability to transparently query them. Of course, our work does not 

claim to be complete. There are a lot to be done, since the area of data integration is a 

large and complex. Some of our future plans are presented in this section. 

 

7.2.1 Implementing more Querying algorithms  

First of all, our near future plan is to implement several other join algorithms 

and to build an optimizer that will decide which method to use based on cost 

estimates. Those cost estimates could be based on statistics kept, or by other cost 

functions based on predefined knowledge. By obtaining information about the data 

sources including selectivity and relation size, the global join strategy could be 

optimized. 

Moreover, in many cases nested queries need to be issued which are not 

currently being supported. Strategies to effectively implement those nested queries 

should be extensively studied. Except from nested queries, the “Group By” operator 

needs to be examined in order to be efficiently implemented. 

 

7.2.3 Database Cycles 

As we noted before, in many cases schemas may have multiple sets of joins 

that are equivalent in their semantic meaning. Trying to identify and reduce these 

duplicate join paths to a single core path will reduce the ambiguity. Heuristics and 

smart tricks are not always applicable, because user demands may change over time 

and the administrator cannon always predict the join path desired by users. So, an 

algorithm should be implemented that will be capable of finding the best join path in 

each case. 

  



108  CHAPTER 7  CONCLUSIONS 

 

UNIVERSITY OF CRETE, COMPUTER SCIENCE DEPARTMENT 

7.2.2 Non – Relational Data Sources 

Whereas relational data sources are the most common ones, the evolution of 

the internet and the web has brought forth opportunities to connect information 

sources across all types of boundaries. Examples of such information sources include 

XML and RDF databases, multimedia and object databases. 

A major challenge is to extend our implementation in order to integrate such 

sources with the relational ones. Uniformly querying those sources should add new 

dimensions to the query planning and execution across those data sources. 

 

7.2.2 Exploiting Systems for Automatically Schema Matching.  

In our system, the mapping between ontology and relational data sources is 

performed by each database administrator, and it is stored in a XML file, called X-

Spec. Mapping ontology terms into data sources, is in many cases really time 

consuming and requires a good knowledge of the underlying schema. 

Extending our approach, we could replace the administrator with a tool that 

would automatically generate the mappings between ontology and schema and would 

store them in a pre-defined structure. Several algorithms and tools exist [Aumueller et 

al. 2005], [Bernstein et al. 2004] for that purpose, which perform rather well in most 

cases and that could be done fully or semi automatic. The predefined structure that 

stores information about underlying schemata could be XML, or even tuples stored in 

our lightweight database under a specific schema. We believe that it is really trivial to 

port one of those systems in our approach, so that human evolvement in the 

configuration phases can be highly reduced. 

 

7.2.2 The Web Service approach – Grid approach 

The system we implemented builds subqueries that are being executed in the 

underlying data sources and pushes to them all operations, concerning only their 

distinct schema. Then all operations concerning the final results (ordering, join across 

databases, etc.) are being executed in our central site and the whole system is 

implemented in a JDBC driver. 
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A better approach would be to access data through a web service interface and 

to distribute the work done in central site, in several other sites according to specific 

parameters, building something like a grid. This ability to access the data stored in the 

several relational databases transparently, with mechanisms that will distribute the 

load, is likely to be a very powerful one, especially for scientists wishing to collate 

and analyze data distributed over the grid. The first steps in this direction have already 

started to emerge and several good implementations exist with one of them to 

distinguish, because it uses the same starting point with us [Arshad A. et al. 2005]. 

 

7.2.3 Caching Data  

Furthermore, since the results of each subquery are stored in our local 

lightweight database, it is possible for frequent subqueries, all the information needed 

to be stored and results to be returned without even querying underlying data sources. 

Caching could really boost the whole system performance since communication costs 

will be omitted in many cases.  

Of course, if some data are cached during the query processing it is essential to 

detect whether the query can be answered with the data stored in the cache. 

Furthermore, the cache replacement policy is really important since data can be 

invalid after a short period of time. Moreover, calculating missing data and getting 

them from underlying sources is another aspect of caching. 

  

7.2.4 Updating underlying data sources. 

Finally, future work also involves expanding the query processor to handle 

updates. Several constraints have to be met in the underlying data sources, in order to 

execute updates in the heterogeneous underlying data sources. The implementation of 

our system makes it ideal for updating sources too since we have a mechanism that 

can be easily extended to support updating. In the current state of the system, all the 

information needed to produce correct and efficient updates exist, since we know the 

mappings from ontology terms to local fields, the structure and the requirements of 

the underlying schemata that are captured in the X-Spec files. Update declarations 
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expressed using our ontology can be decomposed  into data source specific update 

operations the same way queries are decomposed into sub queries issued to local 

databases. 
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9Appendix 

List of Symbols and abbreviations. 

Symbol  Explanation 
 
∪      The union operator 
π ( A )    The projection operator 
σ ( Α )    The selection operator  
><     The join operator 
><    The Semijoin operator 
DBMS   Database Management System 
DSN   Data Source Name 
CV   Context View 
GAV   Global as View 
LAV   Local as View 
ODBC   Open DataBase Connectivity, standard database access mehtod 
SQL   Structured Query Language 
UR   Universal Relation 
 

Sample JDBC Application  

 
1: import java.sql.*; 
2:  
3: public class JDBCApplication 
4: { 
5:  public static void main(String[] args) 
6:  { 
7:    
8:   String url = “jdbc:QueTe://sources.xml”;  
9:   Connection con;  
10:    
11:   // Load QueTeDriver class 
12:   try { Class.forName(“Quete.jdbc.QueTeDriver”); } 
13:   catch (java.lang.ClassNotFoundException e)  
14:   {System.exit:} 
15:    
16:   try { // Initiate connection  
17:    con = DriverManager.getConnection(url);  
18:    Statement stmt = con.createStatement();  
19:    
20:    ResultSet rst = stmt.executeQuery(“ 
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21:   SELECT Part.Name, LineItem.Quantity, Customer.Name  
22:   WHERE Customer.Name=’Customer 25’”);  
23: 
24:    System.out.println(“Part , Quantity, Customer”);  
25: 
26:    while (rst.next())  
27:    { 
28:     System.out.println(rst.getString(“Part.Name”)  
29:     +“,”+rst.getString(“LineItem.Quantity”)  
30:     +“,”+rst.getString(“Customer.Name”));  
31:    } 
32:    con.close();  
33:   } 
34:   catch (SQLException ex) {System.exit(1); } 
35:  } 
36: } 
 
 

Evaluation Measurements 

 

No Fragmentation 

 
Rows Jdbc-Odbc QueTe 

Memory 
QueTe  

Database 

Db1 Db2 Db3    

5 5 5 9 + 1 + 97 443 897 
10 10 10 3 + 3 + 95  427 921 
100 100 100 11 + 7 + 102 410 3017 
1000 1000 1000 109 + 47 + 156 6508 24831 
5000 5000 5000 505 + 215 + 886 144500 119521 
10000 10000 10000 1031+432+654 529895 212513 
50000 50000 50000 6032+2218+3920 - - 
100000 100000 100000 11470+4440+21668 - - 
1000 100 100 110+5+46 1248 11237 
1000 1000 100 108+61+5 3871 23666 
100 1000 1000 12+48+83 5343 22438 
100 100 1000 12+26+70 2046 10683 

10000 10000 100 1045+430+8 266304 194603 
50000 50000 100 5955+2215+12 - 940119 

Table 3. Results with when no fragmentation exists 
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Horizontal Fragmentation 

Rows Jdbc-Odbc Quete 
Database 
Normal 

Quete 
Database  
Horizont 

Quete  
Mem  

Normal 

Quete  
Mem  

Horizont  

Db1 Db2 Db3      

5 5 5 1+1+1 724 471 233 223 
10 10 10 2+0+0 484 460 220 223 
100 100 100 0+2+2 1255 1362 243 240 
1000 1000 1000 6+9+21 12555 12629 974 734 
5000 5000 5000 27+26+26 56415 56122 26410 15169 
10000 10000 10000 55+48+207 109848 111990 88948 59858 
50000 50000 50000 245+221+749 508391 516580 2233303 1499815 
100000 100000 100000 447+428+1724 1009590 1015382 9005540 5783919 

Table 4. Results When Horizontal Fragmentation exists 

Vertical Fragmentation 

Rows Jdbc-Odbc Quete Database  
 

Quete  
Memory 

Db1 Db2 Db3    

5 5 5 1+1 1248 260 
10 10 10 2+1 714 226 
100 100 100 4+5 2526 320 
1000 1000 1000 32+18 23650 3387 
5000 5000 5000 68+64 104719 68390 
10000 10000 10000 123+124 229074 287871 
50000 50000 50000 572+597 1015868 6446310 
100000 100000 100000 1095+1192 - - 

Table 5. Results when Vertical Fragmentation exists 
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Hybrid Fragmentation 

 

Rows Jdbc-Odbc Quete 
Database 
Normal 

Quete 
Database  
Horizont 

Quete  
Mem  

Normal 

Quete  
Mem  

Horizont  

Db1 Db2 Db3      

5 5 5 1+1+1 861 1051 327 250 
10 10 10 1+1+1 797 701 237 223 
100 100 100 0+3+1 1295 1275 267 263 
1000 1000 1000 24+8+2 16377 13487 1054 951 
5000 5000 5000 27+26+21 59412 58464 20809 18149 
10000 10000 10000 49+45+42 111474 109679 71384 71747 
50000 50000 50000 251+209+303 520847 533516 1689826 1684386 
100000 100000 100000 458+424+368 1018832 1027887 6691803 6765256 

Table 6. Results when Hybrid Fragmentation exists 

 

 

 

 


