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Abstract

The objective of this thesis is the development of an algorithm for au-
tonomous robot navigation in a well-known environment. The method that
was used was Artificial Potential Fields (APF), which is an online reactive
navigation method that has been studied extensively over the years. After an
overview of the basic theory of APF, its mathematical structure is presented
and explained analytically.

The development was done by using the Robot Operating System (ROS)
and the testing occurred in a sophisticated simulation platform, the Gazebo.
The robot that the algorithm was implemented to, was an Unmanned Aerial
Vehicle (UAV), the Firefly, part of the Ascending Technologies research line.
Moreover, a real-time 3D environment mapping application was constructed
by using a Visual-Inertial (VI) sensor.

Although the algorithm is limited due to the assumption of prior knowl-
edge of the environment, it manages to safely reach the goal point by creating
a collision-free path. It works fast and finds the optimal path in almost every
configuration that it has been tested on. Additionally, in order to solve a
pretty common problem of the APF method -the local minimum trap-, an in-
doors navigation algorithm was developed that manages to escape and plans
an alternative path. Finally, the 3D mapping produces satisfying results, by
mapping all the navigated area perfectly.
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Chapter 1

Introduction

Nowadays, robots possess an essential part in our everyday life; both directly
and indirectly, with their impact becoming greater day by day. From the
production line to self-driving cars, it is certain that our life wouldn’t be the
same without them. More and more companies are investing in automation
with the purpose of increasing the productivity and minimizing the cost.
This fast-growing industry is expected to reach just under 210 billion U.S.
dollars by 2025.[1]

Aerial robotics is a field of robotics that is rapidly growing popularity.
In the last decade, UAVs have been researched extensively since they can
be used in many fields such as agriculture, healthcare, military etc. Un-
manned Aerial Vehicles (UAVs) are becoming standard platform for research
in robotics because of their high maneuverability, sufficient flight endurance
and the ability to move in 3D space. There is a vast variety of applications
that they are already being used in, such as search and rescue missions [2],
3D environment mapping [3], crop spraying [4] and many more.

Autonomy is an issue that many researchers are trying to resolve, nev-
ertheless it is still an open problem. There are many difficulties with fully
autonomous robots and specifically UAVs, that need to be addressed to en-
sure that no human supervision is required. First and foremost, safety is the
number one priority since some robots can cause serious injuries to humans.
Moreover, due to their fragile nature, hardware damages usually occur in
case of collision and such damages are expensive to fix and they can even
prove to be fatal for the robot’s functionality. Limited computational power
is also considered to be an issue, especially in dynamic environments where
complicated calculations(e.g. obstacle detection, pose estimation, trajectory
planning) need to be done in real-time, in order to avoid collision with a
moving object. In the case of UAVs, computational power is even more lim-
ited because of the restrictions in size and weight of the on-board hardware.
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Hopefully, as technology advances, with hardware getting smaller and more
powerful these restrictions will seize to exist.

Motion planning by the robot itself without any external intervention,
is essential in order to achieve autonomy. A motion planning algorithm is
considered to be complete if and only if it finds a path when one exists and
optimal when it finds the optimal path with respect to some criterion.[5]
There are numerous algorithms for path planning in aerial vehicles, with
each having advantages and disadvantages. In this thesis, a motion plan-
ning algorithm is developed and implemented in a simulated UAV, with the
purpose of achieving fully autonomous flight in a well-known environment.
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Chapter 2

Autonomous navigation

Navigation is the process or activity to plan and direct a route or path. It is a
task that an autonomous robot must do correctly in order to move safely from
one location to another without getting lost or colliding with other objects.
There are three general problems with the navigation process: localization,
path planning and motion control.

Robot localization is the process of determining where a mobile robot
is located with respect to its environment. Localization is one of the most
fundamental competencies required by an autonomous robot, as the knowl-
edge of the robot’s own location is an essential precursor to making decisions
about future actions. In a typical robot localization scenario, a map of the
environment is available and the robot is equipped with sensors that observe
the environment as well as monitor its own motion. Robot localization tech-
niques need to be able to deal with noisy observations and generate not only
an estimation of the robot’s location but also a measure of its uncertainty
[6]. The most famous and most used localization sensor for outdoor activity
is the Global Position System (GPS), however the uncertainty of the output
position is approximately one meter.

Path planning or find-path problem is well known in robotics and it plays
an important role in the navigation of autonomous mobile robots [7]. An ideal
path planner must be able to handle uncertainties in the sensed world model,
to minimize the impact of objects to the robot and to find the optimum path
as fast as possible especially if the path is to be negotiated regularly [7].
Path-planning problem belongs to a class of non-deterministic polynomial-
time (NP) hard problems which is usually solved for realistic problems by
making some assumptions and using heuristics to reduce the complexity [8].
Global path planning is a relatively well-studied research area supplied with
many thorough reviews. Some common global path-planning algorithms are
summarized as follows [9]:
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1. Rapidly-exploring random trees [10]. This method is based on building
a tree of possible actions to connect initial and goal configurations.

2. Graph search algorithms. Graph search algorithms explore a graph ei-
ther for general discovery or explicit search. These algorithms carve
paths through the graph, but there is no expectation that those paths
are computationally optimal [11]. Some famous graph search algo-
rithms are Dijkstra’s algorithm and the A* algorithm [12].

3. Artificial potential field methods. They are ideally suited to online re-
active navigation of robots (without path planning). These can also
be used as path planning approaches, essentially by using more infor-
mation about the environment. There are some variations of these
methods such as adaptive potential fields [13] and evolutionary poten-
tial fields [14]
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Chapter 3

Artificial potential fields

3.1 Theory

Artificial Potential Fields (APF) was first introduced in 1985 [15] by O.
Khatib. He suggested this idea where the robot was treated as a point under
the influence of the field generated by goals and obstacles in search spaces.
Nowadays, APF is commonly used in path planning by many researchers
because of its advantages such as high safety, simplicity and elegance. It is
also widely applied to overcome unknown dynamic scenarios, by taking into
account the state of the current environment and the robot’s motion. APF
is suitable for real-time applications even with slight modifications [16]. The
basic concept behind artificial potential fields is to treat the robot’s configu-
ration as a point inside a potential field. More specifically, the autonomous
navigation in unknown environments is being done by assigning an attractive
potential to the desired goal position and a repulsive one to every obstacle.
The APF approach provides a simple and effective motion planning method
for practical purposes, but has a major problem which is that the robot
sometimes gets trapped to local minima before reaching the goal. This prob-
lem will be explained later in detail. The forces applied on the robot are
the negative gradients of the potential fields, which point towards the global
minimum potential value, in other words the goal point. These forces are
used to determine the direction of the robot’s motion and speed of travel
while avoiding collision. In the following figure , the potential fields with
their gradients respectively are illustrated graphically (fig. 3.1).
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Figure 3.1: Single potentials and forces [17]

The upper graphs represent the potential fields and the bottom ones
their negative gradients. The left image typifies a repulsive potential field
(an obstacle). The right one shows an attractive potential field (goal point)
and the middle one is a saddle somewhere in the total field where the other
two co-exist. The saddle is usually formed between two close repulsive fields.
The bottom graphs are the directions of the forces that are applied to the
robot with respect to where the robot is located.

By combining all of the information above, it’s easy to comprehend the
basic principals of how a robot would be able to navigate safely through the
environment and reach the goal. On top of that, in figure 3.2, the full poten-
tial field is illustrated in a space with two obstacles. The line demonstrates
the trajectory that the robot will follow to find the minimum.
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Figure 3.2: 3D illustration of a total potential field [18]

3.2 Mathematical representation

3.2.1 Potentials

In the path planning of a robot, potentials are often expressed in Cartesian
workspace. Obstacles that have to be avoided are surrounded by repulsive
potential fields and the goal point is surrounded by an attractive field. Con-
sider the Cartesian coordinate of a robot in two dimensions is, q = (x, y)T .
The APF function can be represented as

U(q) = Uatt(q) + Urep(q) (3.1)

where

U(q) = Artificial potential field.
Uatt(q) = Attractive field.
Urep(q) = Repulsive field.

Note that Urep(q) is the total potential of all the obstacles that affect the
robot. More precisely,

Urep(q) =
n∑

i=1

U i
rep(q) (3.2)
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with n being the number of obstacles.
The most common attractive field is the quadratic well [19], which is

described as

Uatt(q) =
1

2
ka|q− qd|2 (3.3)

where

ka = Attractive coefficient.
q = Current position vector of the robot.
qd = Goal position vector.

Before the repulsive potential is formulated, it must be noted that when
the robot is far away from an obstacle, it shouldn’t get repelled by it at
all. In order for this to happen, the repulsive potential function should be
branched. Now, the repulsive potential [20] will be

Urep(q) =

{ 1
2
kr(

1
d(q,qobs)

− 1
d0

)2 if d(q,qobs) ≤ d0
0 if d(q,qobs) > d0

(3.4)

where

kr = Repulsive coefficient.
d(q,qobs) = Current distance between the robot and an obstacle.

d0 = Distance threshold of the repulsive force field.

As the distance between the robot and the obstacle is getting smaller
the repulsive field is getting bigger with the purpose of avoiding potential
collision. Finally, the distance threshold is set manually by the user and its
value depends on the robot’s speed, the available space and other parameters
with regard of the given circumstances (e.g. wind speed, human presence
etc.).

In figure 3.4, it is represented step by step how the final visualization of
(3.1) is derived by the above mathematical equations (3.3) and (3.4).
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Figure 3.3: Components of total potential field [16]

3.2.2 Forces

The forces applied on the robot, are the negative gradients of each potential
respectively. Without further ado, the total force is

F(q) = −∇U(q)

= −∇Uatt(q)−∇Urep(q)

= Fatt(q) + Frep(q)

(3.5)

where

F(q) = Total force.
Fatt(q) = Attractive force.
Frep(q) = Repulsive force.

The components of F(q) are computed as follows
Attractive force:

Fatt(q) = −∇Uatt(q)

= −ka(q− qd)
(3.6)

Fatt(q) is a direct vector towards qd with magnitude proportional to the
distance between q and qd.
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Repulsive force:

Frep(q) =

{
kr(

1
d(q,qobs)

− 1
d0

) 1
d2(q)

∇d(q,qobs) if d(q,qobs) ≤ d0
0 if d(q,qobs) > d0

(3.7)

with d(q,qobs) being the Euclidean distance between the robot and an ob-
stacle. By assuming that q = (x, y, z)T and qobs = (x′, y′, z′)T then d(q,qobs)
will be

d(q,qobs) =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (3.8)

With that in mind, it is now feasible to compute the gradient term of (3.7)

∇d(q,qobs) =
∂d

∂x
î +

∂d

∂y
ĵ +

∂d

∂z
k̂

=
x− x′

d(q,qobs)
î +

y − y′

d(q,qobs)
ĵ +

z − z′

d(q,qobs)
k̂

(3.9)

The repulsive force points to the opposite direction of the obstacle’s posi-
tion. The forces mentioned above (3.5),(3.6) and (3.7), are displayed in the
following simple figure in two dimensions

Figure 3.4: Forces applied on a robot
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3.3 Local minimum problem

APF methods provide simple and efficient motion planners for practical pur-
poses, however it is widely known that sometimes it is possible to be trapped
in local minimum situations [21]. This problem occurs due to the fact that
in certain environment configurations, the gradient of the field becomes zero
in some locations even though none of these are the goal point. This causes
the robot to stand there still or to oscillate around the minimum with no
way of escaping and get back on track. Despite the fact that this problem
is known for a long time and a significant amount of research has been put
on solving it, an optimal way of dealing with it, is yet to be discovered. In
the following figure the problem of local minimum is presented for a random
configuration (fig. 3.5).

Figure 3.5: Local minimum demonstration [22]
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Chapter 4

Software and platform

In this chapter, the software that has been used throughout this thesis, along
with the platform, are presented. More specifically, the following sections
contain all the tools used for the development of the algorithm, the simulation
environment, the visualization tools for 3D mapping and finally the operating
system as well as the programming languages.

4.1 Robot Operating System

The Robot Operating System1 (ROS) is an open source flexible framework
for writing robot software. It is a collection of tools, libraries and conventions
that aim to simplify the task of creating complex and robust robot behavior
across a wide variety of robotic platforms. It is extremely useful and has
many reliable drivers for communicating with the hardware of the platform.
The latter is very helpful, because it makes it easy to directly create high
level control applications without concerning about all the necessary low level
firmware. Software developed in ROS, is easily integrated from one platform
to another and thus it has a very active ecosystem with members all around
the globe, sharing their software for everyone to use. Moreover there are
many tutorials and information, that help a lot to grasp the structure and
functions, especially for newer users.

ROS processes are represented as nodes in a graph structure, connected
by edges called topics. ROS nodes can pass messages to one another through
topics, make service calls to other nodes, provide a service for other nodes, or
retrieve shared data from a communal database called the parameter server.
A process called the ROS Master makes all of this possible by registering
nodes to itself, setting up node-to-node communication for topics, and con-

1https://www.ros.org
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trolling parameter server updates [23]. Messages and service calls do not pass
through the master, rather the master sets up peer-to-peer communication
between all node processes after they register themselves with the master.
Next, a brief review of each component of ROS is listed.

4.1.1 Master

The ROS Master provides naming and registration services to the rest of the
nodes in the ROS system. It tracks publishers and subscribers to topics as
well as services. The role of the Master is to enable individual ROS nodes to
locate one another [24].

4.1.2 Nodes

Nodes are single processes that perform computations. They are combined
together into a graph and communicate with one another using streaming
topics, services, and the Parameter Server [25]. They are executables usually
written in C++ or Python.

4.1.3 Topics

Topics are the way that nodes exchange messages. When a node needs infor-
mation, it subscribes to a certain topic, when it wants to give information,
it publishes to a topic. Topics are essential for connecting individual nodes
in order to perform complicated tasks [26].

4.1.4 Messages

ROS uses a simplified messages description language for describing the data
values that nodes publish. This description makes it easy for ROS tools to
automatically generate source code for the message type in several target
languages [27].

4.1.5 Services

The publish / subscribe model is a very flexible communication paradigm,
but its many-to-many one-way transport is not appropriate for Remote Pro-
cedure Call (RPC) request / reply interactions, which are often required in
a distributed system. Request / reply is done via a Service, which is defined
by a pair of messages: one for the request and one for the reply. A providing
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ROS node offers a service under a string name, and a client calls the service
by sending the request message and awaiting the reply [28].

4.2 Gazebo

Gazebo2 is an open-source 3D robotics simulator, used by many researchers
and companies all around the world. It provides a simple and robust plat-
form, where anyone can rapidly test algorithms, design robots and even train
AI algorithms in realistic environment. Gazebo offers the ability to accurately
and efficiently simulate populations of robots in complex indoor and outdoor
environments. Lastly, it supplies its users with a robust physics engine, high-
quality graphics, and convenient programmatic and graphical interfaces.

4.3 RotorS

RotorS [29] is a ROS package created by ETH Zurich, it contains very use-
ful tools for development such as low level controller, ROS msgs, URDFs,
waypoint publisher nodes etc. It is built on top of gazebo and has all the
necessary files to begin working on the drone, both in simulation and in real-
life. The transition from the simulated UAV to real one, is supposed to be
straightforward by only making some minor changes. Finally, this package
contains a variety of examples and tutorials on how to use, making easy to
implement and get a quick start on high level programming without having
to worry about the dynamics of flight and the hardware.

4.4 Rviz

Rviz3 (ROS Visualization) is a ROS graphical interface, that allows the user
to visualize data obtained from ROS topics. These topics usually contain
data from a variety of sensors. It is a very useful tool especially in projects
that include computer vision. Rviz displays 3D sensor data from stereo
cameras, lasers, Kinects, and other 3D devices in the form of point clouds or
depth images. 2D sensor data from webcams, RGB cameras, and 2D laser
rangefinders can be viewed in rviz as image data [30].

2http://gazebosim.org
3http://wiki.ros.org/rviz
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4.5 Versions

In the following table are listed all the versions for the software mentioned
above as well as the operating system and the programming languages used.

Table 4.1: Software versions

Software Version

ROS Kinetic Kame
Gazebo 7.16.0

Rviz 1.12.17
Ubuntu Xenial Xerus 16.04.6
C++ C++11

Python 2.7.12

4.6 Platform

Although the algorithm was developed and implemented in a simulated en-
vironment, the UAV exists and its specifications were transferred to the sim-
ulation via a Unified Robot Description Format (URDF) file. The URDF
contains all the necessary information of the robot model (e.g. size, weight,
rotors etc.). The simulated UAV is the Firefly (fig 5.1), a hexacopter created
by Ascending Technologies mainly for research purposes. It is equipped with
a low level controller, a GPS, an Inertial Measurement Unit (IMU) sensor
and finally an on-board processor for high level development.

Figure 4.1: AscTec Firefly
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Chapter 5

Implementation

In this chapter, after a brief overview of the reasons that led to the develop-
ment of autonomous navigation software with the APF method, the created
algorithm will be presented and explained extensively. Moreover, some other
noteworthy attempts and ideas will be mentioned and compared with the
main algorithm and lastly the tools used for the 3D environment mapping
application will be briefly mentioned.

Firstly, the objective of this thesis was to create an algorithm with the
purpose of making a UAV fly autonomously in a well-known environment.
By “well-known environment”, is meant the knowledge not only of the posi-
tions of every obstacle but also the drone’s. This of course, is ideal and even
thought it is possible to recreate in real life scenarios, it is constrained to
highly controlled and static environments, with limited applications. Nev-
ertheless, it is often very useful in the context of developing and testing
a motion planning algorithm. The APF method was chosen because it is
simple, elegant and mainly because it has low demands on computational
power. Moreover, it has high maneuverability, meaning that the adjustment
of this method to new situations can be made effortlessly. For example, if
the purpose is to go from point A to point B where A and B are far away
in outdoor environment, one could tweak the constants (kr, d0ofeq.3.4) to
make the UAV fly furthest from the detected obstacles. On the contrary, for
indoors navigation the drone should fly closer to the obstacles due to space
limitations.

Finally, it should be mentioned here that the APF method as described in
chapter 3, was slightly reformulated. Instead of computing the forces applied
on the UAV, the algorithm only computes several total potential field values
and finds the minimum in each move. This process will be over when it finds
the global minimum. How this happens, will be explained further in the
following sections.

18



5.1 Grid construction

For the UAV to move in the right direction in each instance, it needs to know
the value of the total artificial potential field. This value is computed and
stored inside a grid each time the UAV changes its position. To be more
precise, the algorithm computes twenty six values of the potential field and
stores them inside a 3x3x3 grid where each cell represents a point in the 3D
space. The drone’s position is the central cell (2,2,2) and that is the reason
it computes twenty six instead of twenty seven values. The following figure
(fig 5.1), presents a visualization of the grid.

Figure 5.1: 3D grid around the UAV

Each one of the 27 cells (except the central one) contains a float value

inside it, which represents the total potential field U
(i)
tot(qi) in that point. This

value is computed by adjusting equation 3.1 to fit the above layout.

U
(i)
tot(qi) = U

(i)
att(qi) +

n∑
j=1

U
(i)
rep,j(qi) (5.1)

where

i = A specific cell of the grid.
qi = Position vector of the ithcell.
n = The number of obstacles that interact with the robot.
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Each cell represents a fixed-size shift with respect to the UAV’s position,
this shift is just a parameter that could be changed by the user. For example,
let q = (xd, yd, zd)

T be the position vector of the UAV and L the distance
between two adjacent cells. By cutting out a slice of the grid, a plane 3x3 is
formed and let’s assume that this plane is the x− y with z fixed at zd. The
following figure (fig. 5.2) demonstrates the equivalence between each cell of
the 2D grid and its spatial coordinates with respect to the UAV’s position.

Figure 5.2: Slice of grid with displacements

According to figure 5.2, the central cell contains the UAV’s position vec-
tor, and the other eight its closest displacements. The other two levels, zd+L
and zd − L can be constructed accordingly.

5.2 Algorithmic procedure

Now that the notation has been well established, the procedure that the
algorithm follows in order to find in which cell to move will be explained
extensively. Once it finds out which cell this is, it publishes the correspondent
waypoint with respect to the UAV’s position and it moves there.

To start with, the software created consists of three ROS nodes. The
task of the first node is only to extract the initial UAV position from the
gazebo simulator. This is done by subscribing to a topic created by the
gazebo itself, where it publishes the positions of all the objects inside the
simulation. The second one does a similar job; it extracts the number of the
obstacles that exist in the simulator (added by the user) and their positions.
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The positions are just the Cartesian coordinates of the center of mass of
each object. The last node is the main algorithm; it uses all the information
obtained by the other two, also stores the desired goal position (user input),
the set of parameters for the APF method and the cell displacement’s length
from a file. These APF parameters are the two constants for repulsive and
attractive potential kr and ka respectively and the distance threshold d0 for
the repulsion. The cell displacement is L according to the notation of section
5.1. These parameters are stored in a file with purpose of making it easier
to change them and test the algorithm without having to interact with the
code itself. After obtaining all the aforementioned information, the goal is
to output the desired coordinates in which the UAV will move to, and also
the desired orientation.

After acquiring all the necessary information, a loop is created. The
iterations of this loop will stop when the UAV’s position vector is equal to
the goal’s one. Inside this loop, the first step is to create a 3x3x3 grid as
mentioned in section 5.1. This specific grid is used only for one step and
then a new one replaces it. After that, only the attractive potential field,
generated by the goal point, is computed and stored inside the grid for each
cell’s position (see fig. 5.2). Since each cell expresses a different location, the
values inside them are not identical. Afterwards, it checks if any of the twenty
six cells is inside the range of any obstacle. If it is, the repulsive potential
will be computed and added to the current value. Finally, it searches for the
minimum value and after it finds it, the UAV moves to that specific cell’s
location and the process is repeated until the central cell (2,2,2) is equal to
the goal’s position.

This heuristic approach on implementing the artificial potential fields
method for autonomous UAV navigation was made with the purpose of cre-
ating a fast and robust algorithm for real-time exploration. It could be
possible to analyze a lot more data from a variety of available sensors, but
this would have made the algorithm much more computational demanding
and thus very restricted.

The whole procedure described above is presented below in a more com-
pact way by using pseudocode.
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Algorithm 1: Autonomous navigation with APF

GetParameters(ka, kr, d0, L);

obstacle pos← GetObstaclePos();
drone pos← GetDronePos();
goal pos← GetGoalPos();

while goal pos 6= drone pos do
array grid(3x3x3) ;
addAttractivePotential(grid, ka, L) ;

for i← 1 to 27 do
distance← FromObstacle(drone pos, obstacle pos, L);
if distance ≤d0 then

addRepulsivePotential(grid,i,kr,d0,obstacle pos);
else

continue;
end

end
New Position← FindMinimumV aluePos(grid);
drone pos ← New Position

end

Finally, an rqt graph (fig. 5.3) provided by ROS, illustrates all the ROS
nodes and topics that are up and running, including their connections, while
the algorithm is executed. Rqt graph is a Graphical User Interface (GUI)
plugin used for visualization. The square boxes indicate a topic while oval
shaped ones are the nodes. The output from this procedure will be discussed
further below.

22



Figure 5.3: rqt graph

5.3 Indoors navigation algorithm

Throughout the development process, in an effort to fix the local minimum
problem (section 3.3), a very similar algorithm to the original was con-
structed. This method creates again a 3D grid, but this time the size of
the grid is larger and user dependent. This implementation works explicitly
for indoors navigation or more generally, in small-sized areas. The user must
give as input the dimensions of the room, then the algorithm creates a grid
with dimensions proportional to the size of the room divided by the desired
displacement between two neighbouring cells. Let’s assume that the input
dimensions of the room are XR, YR, ZR and L the displacement as described
in section 5.1. The size of the grid would be:

Grid Size =
XR · YR · ZR

L3
(5.2)

where Grid Size is the number of elements that can be stored inside the
grid and L represents the length of displacement in each step. As L gets
smaller the accuracy of the navigation gets bigger and thus this method is
very limited, because the size of the grid (eq. 5.2) becomes enormous either
by big inputs or small L.

Nevertheless, it is quite efficient dealing with the local minimum problem,
since the grid remains constant throughout the execution and the information
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inside it is not lost after each iteration. With that in mind, after each step, a
constant is added to the existing value of the previous cell. By doing that, in
case the UAV gets trapped in a local minimum, it will oscillate a few times
and each time it will add a constant to its previous position (i.e. cell in the
grid) and eventually escape by following a less optimum trajectory.

5.4 3D environment mapping

In this section, an application for real-time 3D environment mapping is pre-
sented. For the mapping process to be feasible, an estimation of depth is
required. With that in mind, a Visual Inertial (VI) sensor (fig. 5.4) was
added to the simulated UAV with the purpose of generating a point cloud
dataset and using it to map the environment.

Figure 5.4: VI sensor

The VI sensor was developed by Autonomous Systems Lab (ASL), ETH
Zurich and Skybotix, both the hardware and software [31]. This sensor pro-
vides fully time-synchronized and factory calibrated IMU and stereo-camera
data streams [32]. Stereo cameras are able to calculate distance, by comput-
ing the disparity of each pixel of the two images taken by each camera.

The package used for the 3D mapping is octomap [33]. It takes the data
from the stereo camera and builds a 3D occupancy grid mapping approach
and also provides data structures and mapping algorithms in C++ particu-
larly suited for robotics. It does all of the above without having any prior
knowledge of the environment and in real time.
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Chapter 6

Results and discussion

After extensive testing of the algorithm in a variety of different configura-
tions, it is safe to say that in almost every case, it manages to achieve the
goal without collisions.1. The linked video of the footnote demonstrates the
algorithm in action. These particular configurations were created randomly
in order to display the maneuverability of the UAV in avoiding obstacles by
moving both vertically and horizontally. It is fast, optimal and complete
because it finds the shortest possible trajectory to the goal position.

Even thought there is prior knowledge of the obstacle positions, some-
thing that’s impracticable in real life, it could be used in a laboratory or
a highly controlled environment for various testing experiments such as low
level controller functionality, velocity control, maneuverability testing, bat-
tery endurance etc. Although, the algorithm is robust, it gets trapped some-
times in local minima2, due to the nature of the APF method. It is unlikely
to predict when this is going to happen or in what precise configuration it is
possible to occur, thus testing for this particular problem is very difficult.

The 3D environment mapping procedure, works perfectly and it should
be trivial to implement in a real camera as long as it is stereo. It successfully
recreates a map of the navigated area, making it very useful for a variety of
applications. Some results of the mapping are presented in the next figures.

1https://www.youtube.com/watch?v=Pul8T9lTZyI
2https://www.youtube.com/watch?v=wVnaOq3JV o
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Figure 6.1: 3D environment mapping (1)

Figure 6.2: 3D environment mapping (2)

The procedure of creating the mapping in figure 6.1 is presented in this
video (https://www.youtube.com/watch?v=LuHsqYgnkdg). It was done by
using the rviz as mentioned in section 4.4.
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Except from the local minimum problem, there is something more that
needs to be addressed. Because of the fact that vision has not been added to
the simulated UAV, it is impossible to know the exact size of the obstacle.
As mentioned before, the input of each obstacle position is a set of Cartesian
coordinates (x,y,z), representing the center of mass. According to this, it is
impossible for the algorithm to avoid obstacles -regardless of their size- by
using only a single set of parameters (kr, d0). For example, let’s assume that
the parameter d0 is big enough in order to avoid efficiently small objects, but
if an object with size greater than d0 exists in the environment, a collision will
occur. This problem could be fixed by using vision for 3D object detection
and localization. Then, it would be feasible to extract some key points on the
surface of each obstacle, let’s say the edges, and add a repulsive potential
to each one of them. Even thought this would be more computationally
demanding due to the fact that there will be more repulsive potentials instead
of one for each obstacle, this approach could ensure a collision-free path. To
address this problem, during the testing of the algorithm all the obstacles
where one-sized boxes.

Finally, the indoors navigation algorithm manages to escape from local
minima traps very efficiently. After some oscillations around the trap point,
it recreates a different path and manages to find the goal point successfully.
In this video (https://www.youtube.com/watch?v=z6BQ7kkrmQI), there is
a demonstration of how it manages to deal with a situation like this, in
reasonable amount of time.

Further research

At this point, it should be clear the idea behind the algorithm and how it
manages to find the goal position without colliding. All of the work that has
been done in this thesis, should be transferred to the real UAV in order to
see how close or how far apart is from autonomy and test its robustness more
extensively. According to Fadri Furrer et al. [29], the implementation from
the simulated to the real UAV should be very reliable and work almost the
same as it did in the simulation.

Although the algorithm is a good step towards autonomy, it still lacks a
very basic feature, the vision. By using input data from cameras, it would
be able to detect not only the position of the obstacles, but also their sizes,
making the algorithm much more efficient. Also by using vision techniques,
the UAV would be able to locate its own position by using the Simultaneous
Localization and Mapping technique (SLAM).
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