
Design and Implementation of a Scalable

IOMMU for RISC-V Architectures

Iason Mastorakis

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Manolis G.H. Katevenis

Thesis Supervisor: Dr. Vassilis D. Papaefstathiou

This work has been performed at and supported by the Computer Architecture and VLSI
Systems (CARV) Laboratory, Institute of Computer Science (ICS), Foundation for Research and
Technology - Hellas (FORTH).

Abbreviations

AR Address Read

ASID Address Space Identifier

ATC Address Translation Controller

ATU Address Translation Unit

AW Address Write

AXI Advanced eXtensible Interface

BRAM Block Random-Access Memory

CAM Content Addressable Memory

CDMA Central Direct Memory Access

CISC Complex Instruction Set Computer

CPU Central Process Unit

CTRL Controller

DMA Direct Memory Access

FIFO First In First Out

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GPU Graphics Processing Units

HPTW Hardware Page Table Walker

HW Hardware

I/O Input/Output

ID Identifier

3

IO-TLB Input/Output Translation Lookaside Buffer

IOMMU Input/Output Memory Management Unit

IPA Intermediate Physical Address

ISA Instruction Set Architecture

LFSR Linear Feedback Shift Register

LRU Least Recently Used

LUT Lookup Table

MM Main Memory

MMU Memory Management Unit

OS Operating System

PA Physical Address

PL Programmable Logic

PPN Physical Page Number

PTBA Page Table Base Address

PTE Page Table Entry

RAM Random-Access Memory

RISC Reduced Instruction Set Computer

RISC-V Reduced Instruction Set Computer Five

RV-IOMMU Reduced Instruction Set Computer Five Input/Output Memory
Management Unit

SMH Stream Miss Handler

SMMU System Memory Management Unit

SMU Stream Matching Unit

SRAM Static Random Access Memory

TCM Tightly Coupled Memory

TLB Translation Lookaside Buffer

TMH Translation Miss Handler

VA Virtual Address

VPN Virtual Page Number

Design and Implementation of a Scalable
IOMMU for RISC-V Architectures

Abstract

Virtual memory is ubiquitous in general purpose computing systems today be-
cause it has many advantages such as simplifying memory management to ease
the programmers, offering memory protection and isolation that improves secu-
rity, and enabling applications to use more memory than the physically available
capacity. The virtual memory is managed by the Operating System (OS) and the
processors include hardware Translation Lookaside Buffers (TLBs) and Memory
Management Units (MMUs) to accelerate virtual-to-physical address translation
for the common case. Similarly, I/O devices with Direct Memory Access (DMA) or
Graphics Processing Units (GPUs) that do not execute OS code can benefit from
virtual memory. For this purpose, many modern architectures offer I/O Virtual-
ization and protection by utilizing specialized Input-Output Memory Management
Units (IOMMUs).

This thesis contributes with the hardware design and implementation of an
IOMMU for the rising and fast growing open RISC-V architecture ecosystem.
We design a scalable IOMMU architecture that supports multiple concurrent I/O
devices following the RISC-V specifications for 39- and 48-bit virtual addresses
(SV39 and SV48). The design consists of two main components: (a) the Address
Translation Unit (ATU) and (b) the Address Translation Controller (ATC). These
components are configurable in terms of features and can be combined in several
different ways to create scalable and tailored systems with many devices and vary-
ing degrees of ATU and ATC sharing. To the best of our knowledge we are among
the first to design and implement an IOMMU for RISC-V systems since there are
no official specifications published to date (March 2021).

We implement and verify the IOMMU design in SystemVerilog and evaluate
its performance using RTL simulation with synthetic traffic patterns that exercise
different use cases. Moreover, we evaluate the area and frequency of our IOMMU
design on a Xilinx Zynq Ultrascale+ FPGA. Finally, we create an FPGA design
that includes our IOMMU and a typical DMA device and we verify its correct
functionality on the real system under stress patterns.

Keywords: IOMMU, RISC-V, FPGA, Hardware, Physical Address, Virtual Address

Σχεδίαση και Υλοποίηση μιας Κλιμακώσιμης

Μονάδας Διαχείρισης Μνήμης Εισόδου-Εξόδου

για Αρχιτεκτονικές RISC-V

Περίληψη

Η εικονική μνήμη είναι πανταχού παρούσα στα συστήματα υπολογιστών γενικού

σκοπού επειδή έχει πολλά πλεονεκτήματα όπως την απλοποίηση της διαχείρισης μνήμης

για διευκόλυνση των προγραμματιστών, την προστασία μνήμης και την απομόνωση που

βελτιώνουν την ασφάλεια, και τη δυνατότητα οι εφαρμογές να χρησιμοποιούν περισ-

σότερη μνήμη από τη διαθέσιμη φυσική μνήμη του συστήματος. Την εικονική μνήμη

τη διαχειρίζεται το Λειτουργικό Σύστημα και οι επεξεργαστές περιλαμβάνουν πίνα-

κες μετάφρασης υλοποιημένους σε υλικό (TLBs) και Μονάδες Διαχείρισης Μνήμης
(MMUs) για να επιταχύνουν τη διαδικασία μετάφρασης των εικονικών διευθύνσεων
σε φυσικές. Αντίστοιχα, συσκευές Εισόδου/Εξόδου με δυνατότητα ΄Αμεσης Προ-

σπέλασης Μνήμης (DMA) και Επεξεργαστές Γραφικών που δεν εκτελούν κώδικα
Λειτουργικού Συστήματος μπορούν να επωφεληθούν από τη χρήση εικονικής μνήμης.

Για το λόγο αυτό πολλές μοντέρνες αρχιτεκτονικές προσφέρουν Εικονικοποίηση και

προστασία για την Είσοδο-΄Εξοδο χρησιμοποιώντας εξειδικευμένες Μονάδες Διαχε-

ίρισης Μνήμης Εισόδου-Εξόδου (IOMMUs) .
Σε αυτή την εργασία σχεδιάστηκε και υλοποιήθηκε μια Μονάδα Διαχείρισης Μνήμης

Εισόδου-Εξόδου σε επίπεδο υλικού για το ανερχόμενο και ταχεία αναπτυσσόμενο ανοι-

χτό οικοσύστημα RISC-V. Σχεδιάσαμε και υλοποιήσαμε μια κλιμακώσιμη αρχιτεκτο-
νική Μονάδας Διαχείρισης Μνήμης Εισόδου-Εξόδου η οποία υποστηρίζει ταυτόχρονα

πολλαπλές συσκευές Εισόδου-Εξόδου τηρώντας τις προδιαγραφές της αρχιτεκτονικής

RISC-V για εικονικές διευθύνσεις με πλάτος 39 και 48 bits. Η σχεδίαση αποτελε-
ίται από δυο κύρια στοιχεία: (α) τη Μονάδα Μετάφρασης Διευθύνσεων (ΜΜΔ) και

(β) τον Ελεγκτή Μετάφρασης Διευθύνσεων (ΕΜΔ). Αυτά τα στοιχεία είναι διαμορ-

φώσιμα όσο αφορά τα χαρακτηριστικά τους και μπορούν να συνδυαστούν με πολλούς

διαφορετικούς τρόπους έτσι ώστε να δημιουργήσουν επεκτάσιμα συστήματα και να

προσαρμοστούν για σχέδια με πολλές συσκευές και διαφορετικούς βαθμούς διαμοι-

ρασμού των ΜΜΔ και ΕΜΔ. Απο όσο είμαστε σε θέση να γνωρίζουμε, είμαστε

μεταξύ των πρώτων που σχεδίασαν και υλοποίησαν μια Μονάδα Διαχείρισης Μνήμης

Εισόδου-Εξόδου για συστήματα RISC-V καθώς δεν υπάρχουν δημοσιευμένες επίση-
μες προδιαγραφές μέχρι σήμερα (Μάρτιος 2021).

Υλοποιήσαμε και επαληθεύσαμε τη σχεδίαση της Μονάδας Διαχείρισης Μνήμης

Εισόδου-Εξόδου σε SystemVerilog και αξιολογήσαμε την απόδοσή της χρησιμοποι-
ώντας προσομοίωση RTL με συνθετικά μοτίβα κυκλοφορίας που εξασκούν διαφορετι-
κά σενάρια χρήσης. Επιπλέον, αξιολογήσαμε τις απαιτήσεις χώρου και τη συχνότητα

λειτουργίας της Μονάδας Διαχείρισης Μνήμης Εισόδου-Εξόδου σε μια Xilinx Zynq
Ultrascale+ FPGA (συστοιχία επαναπρογραμματιζόμενης λογικής). Τέλος, δημιουρ-
γήσαμε ένα σχέδιο σε FPGA που περιέχει τη Μονάδα Διαχείρισης Μνήμης Εισόδου-
Εξόδου μας και μια τυπική Μονάδα ΄Αμεσης Προσπέλασης Μνήμης και επαληθεύσαμε

τη σωστή λειτουργία σε ένα αληθινό σύστημα κάτω από απαιτητικά μοτίβα δοκιμών.

Acknowledgments

There are so many people that I would like to thank; each one helped me in
their unique way.

First of all, I would like to thank my Advisor, Dr. Vassilis Papaefstathiou, for
his assistance and guidance throughout my MSc studies. I want to thank him for
the continued enthusiasm and willingness to help me at every stage of this thesis.
He was always supportive from the beginning of my M.Sc., and he trusted me
during my thesis.

Secondly, I would also like to thank my Supervisor, Prof. Manolis GH Kat-
evenis, for his overall assistance and the opportunity that he gave to me to be a
member of the CARV’s hardware team.

I want to thank Assistant Prof. Polyvios Pratikakis for being a member of my
M.Sc. Committee and his feedback.

I would also like to thank all the “hardware guys” of the CARV that helped me
evaluate my implementation on an FPGA. Specifically, I want to thank Nikolaos
Dimou, Michalis Giaourtas, Giorgos Ieronimakis, and Aggelos Ioannou.

Moreover, I would like to thank my fellow student, a good friend and “partner
in crime,” Sotiris Totomis.

I need to express my gratitude to the University of Crete and the Department
of Computer Science, and the Institute of Computer Science of the Foundation for
Research and Technology for supporting me.

στους γονείς μου

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

1.1 Contributions . 2

2 Background and Related Work 5

2.1 Virtual Memory . 5

2.1.1 Comparison between Physical and Virtual Addressing . . . 5

2.2 RISC-V . 6

2.2.1 Page Tables on RV64 . 7

2.2.2 Address Translation Process on RV64 9

2.2.2.1 Differences between SV39 and SV48 10

2.3 Advanced Extensible Interface 4 11

2.3.1 Introduction . 11

2.3.2 Channels . 11

2.3.3 AXI Read Transactions . 14

2.3.4 AXI Write Transactions . 15

2.3.5 Requirements . 15

2.4 Related Work . 15

2.4.1 ARM IOMMU (System MMU) 15

2.4.1.1 The Stream mapping table 16

2.4.1.2 Translation Context 16

3 Design and Implementation 19

3.1 Overview . 19

3.2 Design Overview . 20

3.3 Address Translation Unit . 24

3.3.1 Stream Matching Unit . 25

3.3.1.1 (Optional) AR-FIFO & AW-FIFO 26

3.3.1.2 Uniform AXI struct 26

i

3.3.1.3 Input CTRL . 27
3.3.1.4 AXIID to ASID Set Associative Cache 27
3.3.1.5 Unique entries FIFO 28
3.3.1.6 Replay (Duplicate) FIFO 28
3.3.1.7 Registers that hold data transmitted to the ATC . 29
3.3.1.8 Response Registers 29
3.3.1.9 Output CTRL . 29

3.3.2 Input Output Translation Look-aside Buffer (IO-TLB) . . . 29
3.3.2.1 Input CTRL . 30
3.3.2.2 Translation Lookaside Buffer (Sv39/Sv48) 30
3.3.2.3 Unique entries FIFO 31
3.3.2.4 Replay (Duplicate) FIFO 31
3.3.2.5 Registers that hold data transmitted to the ATC . 31
3.3.2.6 (Optional) Pipeline Register (Sv39/Sv48) 32
3.3.2.7 Construct Physical Address & Permission Checker

(Sv39/Sv48) . 32
3.3.2.8 Re-construct AXI struct 32
3.3.2.9 (Optional ROB) AXI AW FIFO 32
3.3.2.10 (Optional ROB) AXI AR FIFO 33

3.3.3 Controller Unit . 33
3.4 Address Translation Controller . 33

3.4.1 ATC Controller . 34
3.4.2 Stream Miss Handler . 35
3.4.3 Translation Miss Handler 35
3.4.4 FIFOs . 35

3.5 Communication between Address Translation Unit and Address Trans-
lation Controller . 36
3.5.1 Request switch . 36
3.5.2 Response switch . 36

4 Evaluation 37
4.1 Phase 1: Simulation . 37

4.1.1 Metrics . 38
4.1.1.1 The performance cost of reordering 39
4.1.1.2 Performance sensitivity analysis on ATU’s TLB size 50
4.1.1.3 Performance sensitivity analysis on SMU’s FIFO size 54
4.1.1.4 Performance sensitivity analysis on TLB’s FIFO size 56
4.1.1.5 Trying to simulate an actual system under a burst 58

4.2 Phase 2: Evaluation on FPGA . 63
4.2.1 Target Platform . 63
4.2.2 Implemented Experiment 63
4.2.3 Timing Requirements . 64
4.2.4 Synthesis Utilization . 66
4.2.5 Implementation Utilization 68

ii

5 Conclusion and future work 71
5.1 Summary . 71
5.2 Future Work . 71

Bibliography 71

A ARM’s Compressed StreamID indexing matching algorithm 75

iii

iv

List of Tables

2.1 Comparison between RISC-V SV39 & SV48 supported page sizes . 11

2.2 Signals of AXI’s Write Address (AW) channel 13

2.3 Signals of AXI’s Read Address (AR) channel 14

4.1 RV-IOMMU configurations used to explore the cost of the reorder-
ing feature feed by a randomized traffic generator 40

4.2 Time (in cc) results of configurations of Table 4.1 used to explore
the cost of the reordering feature (randomized traffic generator) . . 41

4.3 Architectural metrics of configurations of Table 4.1 used to explore
the cost of the reordering feature (randomized traffic generator) . . 41

4.4 RV-IOMMU configurations used to explore the cost of the reorder-
ing feature feed by a sequential traffic generator 46

4.5 Time (in cc) results of configurations found in Table 4.4, used to
explore the cost of the reordering feature (sequential traffic generator) 47

4.6 Architectural metrics of configurations of Table 4.1 used to explore
the cost of the reordering feature (sequential traffic generator) . . . 48

4.7 RV-IOMMU configurations used to explore the performance effects
of ATU’s L1 TLB size (random traffic generator) 51

4.8 Time (in cc) results of configurations of Table 4.7, used to explore
the performance effects of ATU’s L1 TLB size (random traffic gen-
erator) . 51

4.9 Architectural measurements of configurations of Table 4.7 exploring
the performance effects of the ATU’s L1 TLB size (random traffic
generator) . 52

4.10 RV-IOMMU configurations used to explore the performance effects
of ATU’s L1 TLB size (sequential traffic generator) 53

4.11 Time (in cc) results of configurations of Table 4.10, used to explore
the performance effects of ATU’s L1 TLB size (sequential traffic
generator) . 53

4.12 Architectural results of configurations of Table 4.10 exploring the
performance effects of the ATU’s L1 TLB size (sequential traffic
generator) . 54

4.13 RV-IOMMU configurations used to explore the performance effects
of the SMU’s FIFO sizes (random traffic generator) 55

v

4.14 Time (in cc) results of configurations of Table 4.13, used to explore
the performance effects of the SMU’s FIFO size (random traffic
generator) . 55

4.15 Architectural measurements of configurations of Table 4.13 explor-
ing the performance effects of the SMU’s FIFOs size (random traffic
generator) . 56

4.16 RV-IOMMU configurations used to explore the performance effects
of the TLB’s FIFO sizes (random traffic generator) 57

4.17 Time (in cc) results of configurations of Table 4.16, used to explore
the performance effects of the TLB’s FIFO size (random traffic gen-
erator) . 57

4.18 Architectural measurements of configurations of Table 4.16 explor-
ing the performance effects of the SMU’s FIFOs size (random traffic
generator) . 58

4.19 RV-IOMMU configurations used to explore the performance of RV-
IOMMU for multiple numbers of connected ATUs feed by sequential
traffic generator . 60

4.20 Table’s 4.19 time (in cc) results of configurations.These configura-
tions were used to explore the RV-IOMMU performance when mul-
tiple ATUs are connected and fed by the sequential traffic generator. 61

4.21 Architectural metrics of configurations of Table 4.19 used to explore
the performance of RV-IOMMU for multiple numbers of connected
ATUs feed by a sequential traffic generator 62

4.22 RV-IOMMU’s timing requirements for different configurations com-
paring the effect of input buffers of ATU 65

4.23 HW resources for RV-IOMMU with one ATU and one ATC 66
4.24 HW resources for RV-IOMMU with one ATU and one ATC with

ATU’s reordering feature . 67
4.25 HW resources for RV-IOMMU with one ATU and one ATC with

ATU’s reordering feature and input buffers 67
4.26 Actual HW resources for RV-IOMMU with two ATU and one ATC

implemented on the FPGA . 69
4.27 Actual HW resources comparison for (a) RV-IOMMU with two ATU

and one ATC, (b) Ariane core, and (c) CDMA - all implemented on
the same FPGA . 69

vi

List of Figures

2.1 A system that uses physical addressing 6

2.2 A system that uses virtual addressing 6

2.3 SV39 page table entry
Source: The RISC-V Instruction Set Manual Volume II: Privileged
Architecture [10] . 8

2.4 SV48 page table entry
Source: The RISC-V Instruction Set Manual Volume II: Privileged
Architecture [10] . 8

2.5 SV39 Virtual Address
Source: The RISC-V Instruction Set Manual Volume II: Privileged
Architecture [10] . 8

2.6 SV39 Physical Address
Source: The RISC-V Instruction Set Manual Volume II: Privileged
Architecture [10] . 8

2.7 SV48 Virtual Address
Source: The RISC-V Instruction Set Manual Volume II: Privileged
Architecture [10] . 8

2.8 SV48 Physical Address
Source: The RISC-V Instruction Set Manual Volume II: Privileged
Architecture [10] . 9

2.9 Abstract address translation with multi-level page tables 10

2.10 AXI channels . 12

3.1 An example of where an IOMMU could be located in a system. . . 20

3.2 Examples of where an SMMU could be located in a system.
Source: ARM . 20

3.3 Abstract schematic of RV-IOMMU instantiation with a unique Ad-
dress Translation Controller . 22

3.4 Abstract schematic of RV-IOMMU instantiation with many Address
Translation Controllers . 22

3.5 RV-IOMMU Overview . 23

3.6 Address Translation Unit Overview 25

3.7 Address Translation Unit Timing Diagram 25

3.8 Stream Matching Unit . 26

vii

3.9 AXI ID to ASID Cache Architecture 28
3.10 Input/Output Translation Lookaside Buffer 30
3.11 Address Translation Controller Overview 34
3.12 Address Translation Controller Timing Diagram 34

4.1 Abstract schematic of the simulation environment 38
4.2 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 1 of Table 4.1 . 42
4.3 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 2 of Table 4.1 . 43
4.4 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 3 of Table 4.1 . 43
4.5 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 4 of Table 4.1 . 44
4.6 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 5 of Table 4.1 . 44
4.7 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 6 of Table 4.1 . 45
4.8 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 1 of Table 4.4 . 46
4.9 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 2 of Table 4.4 . 47
4.10 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 3 of Table 4.4 . 48
4.11 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 4 of Table 4.4 . 49
4.12 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 5 of Table 4.4 . 49
4.13 Histogram of clock cycles that RV-IOMMU requires to accomplish

the run on Conf. 6 of Table 4.4 . 50
4.14 Implemented block design of FPGA evaluation 64
4.15 Critical path with source the ATU’s AXI ID to ASID Cache and

destination the Unique Entries TLB’s FIFO 65

viii

Chapter 1

Introduction

In today’s computer systems and particularly the more resource-intensive ones, like
servers, I/O transactions, such as reading data from a hard disk or a network card,
constitute a significant part of the overall workload execution time, making them
an important part for system performance. Most of today’s peripheral devices
bypass the processor to minimize the usage of the OS Kernel [8] and read and
write directly from and to the Main Memory (MM) using the Direct Memory
Access (DMA) hardware unit [14], [1].

While directly accessing the memory comes with performance benefits, it also
leads to stability and protection issues when, for instance, an external device at-
tempts to access a chunk of memory that it should not. An example is when a
peripheral device writes to an address that is part of a system’s running process
which in the best-case scenario will cause the process to terminate. However, one
should consider the possible dangers when an external device attempts to read
some sensitive data and forward them to the network. In the latter case, the re-
sults could be catastrophic. For instance, an external device with direct memory
access could be programmed to erase a chunk of the system’s memory or trig-
ger various system bugs. Moreover, it can lead to malware redistribution across
different systems [15].

Such issues led to creating a mechanism that applies the Virtual Memory to
the CPU. This mechanism provides a solution to this problem by introducing
an abstraction layer that prevents direct access to physical memory. Computer
architects and designers use this mechanism to resolve the CPU-related issues and
subsequently started utilizing similar mechanisms for I/O devices (called to I/O
virtual memory). The I/O Memory Management Unit (IOMMU) is the hardware
unit responsible for the I/O virtual memory, which translates virtual addresses
that are peripheral-visible to physical ones, unlike the MMU, which translates
CPU-visible virtual addresses to physical.

Over the past decade, both Intel and AMD include IOMMUs to their chipsets,
making them available the mainstream computer systems. Since then, multiple
processor architectures have followed this path. For instance, ARM implements

1

2 CHAPTER 1. INTRODUCTION

an IOMMU-alike mechanism called SMMU [5]. Nowadays, it is clear that the
IOMMU’s benefits are of high importance for the world of computer architecture.
Some of the advantages of having an IOMMU instead of using direct physical
addressing of the memory include: (a) the ability to allocate large regions of mem-
ory without the need to be contiguous in physical memory as the IOMMU maps
contiguous virtual addresses to the underlying fragmented physical addresses, (b)
devices that do not support memory addresses long enough to address the en-
tire physical memory can still address the entire memory through the IOMMU,
avoiding overheads associated with copying buffers to and from the peripheral’s
addressable memory space, (c) memory is protected from malicious devices at-
tempting to access a chunk of memory that is not allowed, (d) in systems that run
hypervisors and use virtualization, guest operating systems can utilize explicitly
the hardware that supports I/O virtualization. High performance hardware such
as graphics cards use DMA to access memory directly; in a virtual environment,
all memory addresses are re-mapped by the virtual machine software, which causes
DMA devices to fail. The IOMMUs can handle such re-mappings, allowing the
native device drivers to be used in a guest operating system [7].

This thesis aims to design and implement a scalable IOMMU compatible with
RISC-V architectures [17]. To this end, we design and implement an RV-IOMMU
that contains: (a) one or more Address Translation Unit(s) connected with one
AXI channel that performs address translation at the appropriate busses, (b) an
ATC that handles ATU misses by communicating with the main memory – through
an AXI-Lite protocol – to read Page Tables and the AXIID2ASID Table (see Sec-
tion 3 for more details) and (c) custom interconnect switches responsible for con-
necting one or more ATUs to one ATC. The scalability of the implementation is
a result of allowing the customization of the number of ATUs and ATCs. We
achieve this by introducing a simple handshake action among the involved com-
ponents. Lastly, the RV-IOMMU we implement in this work supports the 64-bit
RISC-V architecture, including the SV39 and SV48 as described in the Privileged
Architecture of the RISC-V Instruction Set Manual [10].

The rest of this thesis is organized as follows: Chapter 2 provides the back-
ground and related work, Chapter 3 presents the design of the implementation
of our IO-MMU, Chapter 4 describes the experimental evaluation and metrics.
Finally, in Chapter 5, we offer our conclusions and provide directions for future
work.

1.1 Contributions

The author of this thesis designed and built a hardware implementation of the RV-
IOMMU. This implementation was created and tested using SystemVerilog [2], a
hardware description and verification language used to model, design, simulate,
test, and implement electronic systems. It is crucial to mention that almost ev-
erything was designed and built by the author of this thesis. However, the author

1.1. CONTRIBUTIONS 3

used as reference the implementations of: (a) the Translation Lookaside Buffer
(TLB) and (b) the Hardware Page Table Walker (HPTW) from the Ariane core,
an open-source 64-bit RISC-V Application-Class Processor [6]. The latter two
modules could not be used as is from the Ariane implementation since they have
structures and interfaces that are tightly coupled with the core pipeline and re-
quire substantial modifications. For instance the HPTW interfaces in the author’s
implementation use the internal interfaces of the ATC and an external AXI-Lite
protocol interface that allows accessing main memory and offers compatibility with
a plethora of memory blocks that use AXI interfaces, unlike Ariane’s custom in-
terfaces. For case of the TLB implementation, the author developed custom logic
regarding the replacement policy to enhance performance. Lastly, the implemen-
tation of these two modules in Ariane follows the SV39 specification, whereas, the
author also implemented the SV48 specification in addition to SV39.

For the evaluation phase the author used an RTL simulator to produce metrics
related to performance and validation of the RV-IOMMU implementation. More-
over, the author created an FPGA design to test the implementation of the RV-
IOMMU on the Programmable Logic of Zynq Ultrascale+ Xilinx MPSoC FPGA.
The FPGA design contains: (a) the RV-IOMMU, (b) a CDMA Unit, and (c) AXI
interconnects for the internal communication. For the tests on the FPGA design
the author developed C-based bare-metal software that executes on a core of the
Zynq SoC. See Section 4 for more details.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

2.1 Virtual Memory

The first system implemented using the technique of virtual memory was a one-
level storage system in the Atlas Computer [16] in 1962. In this system, a paging
mechanism was used to map the programmer’s usable virtual addresses to the ac-
tual memory. Although Atlas was the first computer that used this technique, it
was Fritz-Rudolf Güntsch from the Technische Universität Berlin who first intro-
duced the concept of virtual memory in his doctoral thesis, namely Logical Design
of a Digital Computer with Multiple Asynchronous Rotating Drums and Auto-
matic High-Speed Memory Operation, in 1956 [13]. The virtual memory provides
a clean and practical programming model to the user, and it is an idealized ab-
straction of the storage resources available on a given machine. Programs perform
memory accesses using only virtual addresses, and the CPU and OS work together
to translate those virtual addresses into physical ones that specify the physical lo-
cation of the data. Some of the main advantages of using virtual memory is that:
(a) provide to programmers a large uniform address space which allows them to
focus on designing the program rather than dealing with managing the memory
used by it (b) it makes the code portable from one machine to another, (c) create
the illusion to the programmer that an allocated large region of memory is con-
tinuous (d) provides protection and isolation of each process’s address space from
corruption by other processes makes multi-programming easy and secure to use
and (e) more efficient utilization of the main memory (MM) by treating it as a
cache for process data stored on disk, keeping only the active areas in MM, and
swapping data disk and memory as needed.

2.1.1 Comparison between Physical and Virtual Addressing

This subsection compares a machine’s operation using physical addresses to the
operation using virtual addresses. This comparison would allow the user to under-
stand how these two approaches are being used from a machine. In Figure 2.1, the
CPU produces a physical address to load/store the data from MM. This address

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

is the absolute position of the word that the CPU wants to read/write in the data
array of the MM. As depicted in the example, to access the word starting from
address 4, the addresses that the CPU wants to access are 4,5,6, and 7.

Figure 2.1: A system that uses physical addressing

Figure 2.2: A system that uses virtual addressing

On the other hand, Figure 2.2 describes a system that the CPU that generates
a virtual address, and the MMU translates it to a physical one to get all the
benefits of using the concept of Virtual memory. In general, the MMU maps
virtual space pieces to equal-sized pieces of physical space. In this way, when the
CPU reads from or writes to a memory location, it indicates the virtual space
numbering location, i.e., the virtual address. The MMU is a hardware component
that intervenes and converts that address to a physical location in real memory
(i.e., the physical address). More specifically, Figure 2.2 presents a case where the
CPU wants to access the word at virtual address 800, and the MMU translates this
address on physical address 4. To translate the virtual address onto the physical
one, the MMU accesses the Page Tables by applying an algorithm described in
subsection 2.2.2, and it depends on the system’s ISA.

2.2 RISC-V

The concepts of modern Reduced Instruction Set Computers (RISC) date back to
the 1980s. In short, the main idea is to make the hardware simpler by having a
reduced number of simple instructions for loading, evaluating, and storing data.
In contrast, the Complex Instruction Set Computer (CISC) architecture utilizes
complex instructions that typically include the load and store steps. Both ideas

2.2. RISC-V 7

aim to make CPUs faster – RISC by reducing the cycles per instructions at the
cost of the overall number of instructions per application, and CISC by minimizing
the number of instructions per program at the cost of more complex hardware.
RISC-V Instruction Set Architecture (ISA) is open-source and free for personal,
academic and commercial use standard. ISA is the interface between hardware and
software. To be useful, ISA demands support from both sides. The RISC-V ISA’s
notable features include (a) a load-store architecture, (b) bit patterns to simplify
the multiplexers in a CPU, (c) IEEE 754 floating-point, (d) an architecturally
neutral design, (e) and placing most-significant bits at a fixed location to speed
sign extension. The instruction set is designed for a wide range of uses. The
base instruction set has a fixed length of 32-bit naturally aligned instructions, and
the ISA supports variable-length extensions where each instruction could be any
number of 16-bit parcels in length. The instruction set specification defines 32-bit
and 64-bit variants.

Ongoing efforts from both the research and industry areas aim to replace the
power-hungry, high-end servers with simpler, RISC-like ones, coupled with accel-
erators and DMAs, to reduce the energy consumption and the overall system cost.
That has a significant impact on our choice to develop an IOMMU compatible
with RISC-V architectures compatible with 64-bit virtual address space. RISC-V
64-bit is supporting both SV39 and SV48. The difference between the SV39 and
SV48 is the Virtual Address Space, where SV39 supports 39-bit virtual address
space and SV48 supports 48-bit virtual address space. Address space is a range
of valid and discrete addresses, each of which may correspond to a network host,
peripheral device, disk sector, a memory cell, or other logical or physical entity.
The address space size is the number of bits needed to represent the largest address
space. For example, a virtual address space with N = 2N addresses is called an
N-bit virtual address space.

2.2.1 Page Tables on RV64

A Page Table is a data structure generated by the OS which contains 29 Page
Table Entries (PTEs) stored on the MM of the system. A PTE follows RISC-V
ISA’s structure, which is this subsection’s main point of focus. More details can
be found in RISC-V’s privileged manual [10]. Each PTE holds a mapping between
a page’s virtual address and a physical frame address. Figure 2.3 describes a PTE
format according to the SV39 of RV64 ISA, whereas Figure 2.4 shows the format
when SV48 is enabled. The main difference is that in the SV48 structure, there
are four fields of Physical Page Number (PPN), while in the SV39 one, only three
of them exist. In both cases, the total width of all PPNs can be up-to 44-bits.
Consequently, when SV48 is enabled, an extra translation level is added.

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3: SV39 page table entry
Source: The RISC-V Instruction Set Manual Volume II: Privileged Architecture
[10]

Figure 2.4: SV48 page table entry
Source: The RISC-V Instruction Set Manual Volume II: Privileged Architecture
[10]

Figure 2.5: SV39 Virtual Address
Source: The RISC-V Instruction Set Manual Volume II: Privileged Architecture
[10]

Figure 2.6: SV39 Physical Address
Source: The RISC-V Instruction Set Manual Volume II: Privileged Architecture
[10]

Figure 2.7: SV48 Virtual Address
Source: The RISC-V Instruction Set Manual Volume II: Privileged Architecture
[10]

2.2. RISC-V 9

Figure 2.8: SV48 Physical Address
Source: The RISC-V Instruction Set Manual Volume II: Privileged Architecture
[10]

2.2.2 Address Translation Process on RV64

This subsection presents an overview of a virtual address translation process to a
physical one. More details can be found in the RISC-V Privileged Manual [10].
Firstly, Figure 2.5 presents the VA of SV39 that is translated on the PA of Figure
2.6. The same applies to SV48, described in Figure 2.7 and Figure 2.8, respectively.
The process of translation of a virtual address into a physical one as defined in the
privileged specification is:

1. Let a be satp.ppn × PAGESIZE, and let i = LEVELS − 1. Where the
physical page number of the root page table is stored in the satp regis-
ter’s PPN field (For Sv39, PAGESIZE = 212 and LEVELS=3 and for
Sv48,PAGESIZE = 212 and LEVELS=4.)

2. Let pte be the value of the PTE at address a+va.vpn[i]×PTESIZE. (For
Sv39, PTESIZE=8 and for Sv48 PTESIZE=8.) If accessing pte violates a
PMA or PMP check, raise an access exception corresponding to the original
access type.

3. If pte.v = 0, or if pte.r = 0 and pte.w = 1, stop and raise a page-fault
exception corresponding to the original access type.

4. Otherwise, the PTE is valid. If pte.r = 1 or pte.x = 1, go to step 5. Other-
wise, this PTE is a pointer to the next level of the page table. Let i = i − 1.
If i ¡ 0, stop and raise a page-fault exception corresponding to the original
access type. Otherwise, let a = pte.ppn × PAGESIZE and go to step 2.

5. A leaf PTE has been found. Determine if the requested memory access is
allowed by the pte.r, pte.w, pte.x, and pte.u bits, given the current privilege
mode and the value of the SUM and MXR fields of the mstatus register.
If not, stop and raise a page-fault exception corresponding to the original
access type.

6. If i > 0 and pte.ppn[i − 1 : 0] 6= 0, this is a misaligned superpage; stop and
raise a page-fault exception corresponding to the original access type.

7. If pte.a = 0, or if the memory access is a store and pte.d = 0, either raise a
page-fault exception corresponding to the original access type, or:

10 CHAPTER 2. BACKGROUND AND RELATED WORK

• Set pte.a to 1 and, if the memory access is a store, also set pte.d to 1.

• If this access violates a PMA or PMP check, raise an access exception
corresponding to the original access type.

• This update and the loading of pte in step 2 must be atomic; in particu-
lar, no intervening store to the PTE may be perceived to have occurred
in-between.

8. The translation is successful. The translated physical address is given as
follows:

• pa.pgoff = va.pgoff.

• If i > 0, then this is a superpage translation and pa.ppn[i − 1 : 0] =
va.vpn[i− 1 : 0].

• pa.ppn[LEV ELS − 1 : i] = pte.ppn[LEV ELS − 1 : i].

2.2.2.1 Differences between SV39 and SV48

The specification for the SV39 defines three different levels of the size of the pages,
whereas the SV48 defines four. As presented in Table 2.1, SV39 supports 1GiB
Gigapages, 2MiB megapages, and 4KiB pages, whereas SV48 supports all of them
plus 512GiB terapages. That occurs because any PTE could be a leaf PTE. More-
over, all pages must be virtually and physically aligned to a boundary equal to
their size. Page tables contain 29 PTEs, eight bytes each. In SV39, the 27-bit
VPN is translated into a 44-bit PPN via a three-level page table, while the 12-bit
page offset remains untranslated. In SV48, the 36-bit VPN is translated into a
44-bit PPN via a four-level page table, while the 12-bit page offset remains – once
again – untranslated. Figure 2.9 presents an abstract schematic of the translation
process on a multi-level page table hierarchy like RISC-V follows.

Figure 2.9: Abstract address translation with multi-level page tables

2.3. ADVANCED EXTENSIBLE INTERFACE 4 11

RISC-V SV39 & SV48 supported page sizes

Page Size SV39 SV48

4KiB (Kilopages) X X
2MiB (Megapages) X X
1GiB (Gigapages) X X
512GiB (Terapages) - X

Table 2.1: Comparison between RISC-V SV39 & SV48 supported page sizes

2.3 Advanced Extensible Interface 4

2.3.1 Introduction

The Advanced eXtensible Interface (AXI) [4], is an interface protocol defined by
ARM as part of the AMBA (Advanced Microcontroller Bus Architecture) stan-
dard [3]. The AXI specification describes a point-to-point protocol between two
interfaces: a master and a slave. There are three defined types of the AXI-4
Interfaces:

• AXI4 (Full AXI4): For high-performance memory-mapped requirements.

• AXI4-Lite: For simple, low-throughput memory-mapped communication (for
example, to and from control and status registers).

• AXI4-Stream: For high-speed streaming data.

2.3.2 Channels

A channel is an independent collection of AXI signals associated with the VALID
and READY signals. To increase the interface’s bandwidth, AXI uses separate
address and data channels for read and write transfers. There is no timing rela-
tionship between the groups of read and write channels. This means that a read
sequence can happen simultaneously as a write one. The AXI protocol defines
5 channels that share the same handshake mechanism based on the VALID and
READY signals. The VALID signal is assigned from the source to the destination,
whereas the READY is being assigned vice-versa. A transfer happens when both
the VALID and READY signals are high while there is a clock’s rising edge. These
5 channels are:

• Write Address (AW)

• Write Data (W)

• Write Response (B)

• Read Address (AR)

12 CHAPTER 2. BACKGROUND AND RELATED WORK

• Read Data (R)

While performing a simple handshake between master and slave, the address
channels are used to send address and control information from the former node to
the latter. The data channels are where data to be shared is positioned, and their
direction depends on the action (read or write). A master reads information from
a slave and writes data to it. Read response information is placed on the read data
channel, while write response has a dedicated channel named write response chan-
nel. The master can verify that a write transaction has been completed through
this action. A transaction is an exchange of data and includes the address and
control information, data sent (request), and data received (response).

To increase the interface’s bandwidth, the use of separate address and data
channels for read and write transfers help (see Figure 2.10). There is no timing
relationship between the groups of read and write channels. This means that a
read sequence can happen simultaneously as the write one.

Figure 2.10: AXI channels

The following Tables provide AW and AR signals with their directions and
a short description mentioned in the AXI Specification [4]. We focus on only
these channels due to these are the channels that each Address Translation Unit
performs the translation. Table 2.2 focuses on the AW, and Table 2.3 on the AR
channel.

2.3. ADVANCED EXTENSIBLE INTERFACE 4 13

Write Address (AW)

Name Direction Description

AWID Master→Slave Write address ID. This signal is the identifica-
tion tag for the write address group

AWADDR Master→Slave Write address. The write address gives the ad-
dress of the first transfer in a write burst trans-
action.

AWLEN Master→Slave Burst length. The burst length gives the exact
number of transfers in a burst. This information
determines the number of data transfers associ-
ated with the address.

AWSIZE Master→Slave Burst size. This signal indicates the size of each
transfer in the burst.

AWBURST Master→Slave Burst type. The burst type and the size informa-
tion determine how the address for each transfer
within the burst is calculated.

AWLOCK Master→Slave Lock type. Provides additional information
about the atomic characteristics of the transfer.

AWCACHE Master→Slave Memory type. This signal indicates how trans-
actions are required to progress through a sys-
tem.

AWPROT Master→Slave Protection type. This signal indicates the trans-
action’s privilege and security level and whether
it is data access or instruction access.

AWQOS Master→Slave Quality of Service, Quality of Service. The
Quality of Service identifier is sent for each write
transaction.

AWREGION Master→Slave Region identifier. Permits a single physical in-
terface on a slave to be used for multiple logical
interfaces.

AWUSER Master→Slave User signal. Optional User-defined signal in the
write address channel.

AWVALID Master→Slave Write address valid. This signal indicates that
the channel is signaling valid write address and
control information.

AWREADY Slave→Master Write address ready. This signal indicates that
the slave is ready to accept an address and as-
sociated control signals.

Table 2.2: Signals of AXI’s Write Address (AW) channel

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Read Address (AR)

Name Direction Description

ARID Master→Slave Read address ID. This signal is the identification
tag for the read address group of signals.

ARADDR Master→Slave Read address. The read address gives the ad-
dress of the first transfer in a read burst trans-
action.

ARLEN Master→Slave Burst length. This signal indicates the exact
number of transfers in a burst.

ARSIZE Master→Slave Burst size. This signal indicates the size of each
transfer in the burst.

ARBURST Master→Slave Burst type. The burst type and the size informa-
tion determine the calculation of each transfer’s
address within the burst.

ARLOCK Master→Slave Lock type. This signal provides additional infor-
mation about the atomic characteristics of the
transfer.

ARCACHE Master→Slave Memory type. This signal indicates how trans-
actions are required to progress through a sys-
tem.

ARPROT Master→Slave Protection type. This signal indicates the trans-
action’s privilege and security level and whether
it is data access or instruction access.

ARQOS Master→Slave Quality of Service, Quality of Service. Quality of
Service identifier sent for each read transaction.

ARREGION Master→Slave Region identifier. Permits a single physical in-
terface on a slave to be used for multiple logical
interfaces.

ARUSER Master→Slave User signal. Optional User-defined signal in the
read address channel.

ARVALID Master→Slave Read address valid. This signal indicates that
the channel is signaling valid read address and
control information.

ARREADY Slave→Master Read address ready. This signal indicates that
the slave is ready to accept an address and as-
sociated control signals.

Table 2.3: Signals of AXI’s Read Address (AR) channel

2.3.3 AXI Read Transactions

A master device, in order to read some data from the slave one, has to:

• Send the read address on the Read Address (AR) channel to inform the slave.

2.4. RELATED WORK 15

• In the good case scenario, the slave sends data from the requested address
to the master through the Read Data (R) channel; contrariwise, it sends
an error message on the same channel. An error occurs if, for instance, the
address is invalid, the data is corrupted, or the access does not have the
correct security permission

2.3.4 AXI Write Transactions

A master device, in order to write some data to the slave one, has to:

• Send an address on the Write Address (AW) channel and assign the data
that wants to store on the slave on the Write Data (W) channel.

• Then, the slave sends back to the master the write response allowing it to
know whether the transaction was successful or not.

2.3.5 Requirements

Below, one can find a number of the most critical requirements that the AXI
Specification defines.

• When a VALID signal is asserted, it must remain asserted until the rising
clock edge after the slave asserts the READY.

• The VALID signal of the AXI interface must not be dependent on the
READY signal.

• A write response must always occur after the transaction’s last write transfer.

2.4 Related Work

2.4.1 ARM IOMMU (System MMU)

System Memory Management Unit (SMMU) is the implementation of ARM’s
IOMMU as introduced by ARM Architecture Virtualization Extensions. SMMU
performs address translation of an incoming AXI virtual address and AXI ID to
an outgoing physical address. That is accomplished based on address mapping
and memory attribute information held in translation tables. The SMMU archi-
tecture supports the concept of translation regimes, in which required memory
access might require two stages of address translation. More information around
the different SMMU’s stages could found in [5]. The central concept is that any
memory accessed by a Guest OS or by an application requires two translation
stages that together define a single translation regime. Stage 1 translates the VA
to Intermediate Physical Address (IPA), and Stage 2 translates from IPA to PA.

An overview of an address translation process contains (a) the security state
determination, (b) the address translation, (c) the memory access permissions and

16 CHAPTER 2. BACKGROUND AND RELATED WORK

determination of memory attributes, and (d) the memory attribute check. More
precisely, the Security State Determination process identifies whether a transac-
tion is from a Secure or Non-secure device. The Context Determination process
identifies the Stage 1 or Stage 2 context resources that the SMMU uses to process
a transaction. To find out the appropriate translation context, a Stream Identifier
(StreamID) associates the transaction with a transaction stream. A Transaction
Stream is a sequence of transactions associated with a particular thread of activity
in the system and is associated with the same translation context. The StreamID
uniquely identifies the originator of a transaction.

2.4.1.1 The Stream mapping table

In System MMU, the Stream mapping table maps each transaction to a transaction
stream and its corresponding translation context. A System MMU implementation
supports one of the following stream mapping schemes:

• StreamID matching: The StreamID is looked up in the set of Stream Match
Registers (SMMU SMRn). When a unique match is found, the corresponding
Stream-to-Context register (SMMU S2CRn) holds the stream’s context.

• StreamID indexing: StreamID is a direct index to the required Stream-
to-Context Register (SMMU S2CRn). If the StreamID is m, the required
Stream-to-Context register is SMMU S2CRm.

• Finally, version 2 of SMMU defines a third scheme named Compressed StreamID
Indexing that requires StreamID Compressed Indexing extension to be en-
abled: In this scheme, the StreamID is an indirect index to the required
SMM S2CRn as follows: (a) The StreamID, m, indexes a single-byte S2CR
Indexi field in the array of SMMU COMPINDEXn registers. (b) The S2CR
Indexi field holds the value of the SMMU S2CRn for the stream. (So, if
the value of the S2CRIndexi field is m1, the required Stream-to-Context
register is SMMU S2CRm1). The Compressed StreamID indexing matching
algorithm could be found in A.

2.4.1.2 Translation Context

A Translation Context provides information and resources required by the System
MMU to process a transaction. The System MMU can process multiple transaction
streams from different threads of execution and supports multiple live translation
contexts. A translation context bank includes:

• State for configuring the translation process

• Capturing fault status and operations for maintaining cached translations

2.4. RELATED WORK 17

A Translation context bank specifies:

• The translation table base addresses

• Memory attributes to use during the translation table walk

• Translation table attribute remapping

The Translation context bank format depends on whether it is used for stage
1 or stage 2 translation. A translation context bank is arranged as a table in the
SMMU configuration address map. Each entry in the table occupies a 4 KB or
64 KB address space. The System MMU architecture provides space for up to
128 Translation context banks. Each context bank of the SMMU can be consid-
ered as a one-page table – to be more accurate, each context bank has a field
that points to a unique page table for this context. Each context bank has the
SMMUCBnTTBRm, where m can be 0 or 1. TTBR0, known as the Translation
Table Base Register 0, holds the base address of translation table 0. For each
context bank, the Translation Control Register, called SMMUCBnTCR, deter-
mines translation properties, including which one of the Translation Table Base
Registers, SMMUCBnTTBRm, defines the base address for the translation table
walk required when an input address is not found in the TLB. An extension of
the SMMUCBnTCR exists with the name SMMUCBnTCR2, which extends the
SMMUCBnTCR by adding control information about the translation granule size
and the size of the intermediate physical address.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Design and Implementation

3.1 Overview

As mentioned in Chapter 1, the IOMMU is a hardware piece that serves almost the
same purpose as a regular MMU. This purpose is to translate virtual addresses into
physical ones. While the MMU is tightly coupled with the CPU (e.g., on Ariane
RISC-V core, the MMU is located on the Execution pipeline stage), the IOMMU
is located outside the core. Figures 3.1 and 3.2 presents designs that provide the
potential location of the IOMMU inside a system. In general, IOMMUs allow
peripheral devices, just like the CPUs does via standard MMUs, to benefit from
the Virtual Memory. The Virtual Memory abstraction level’s key benefits are
mentioned in this thesis’s abstract and introduction. If one wishes to focus on the
benefits from an external device’s perspective, the first one would be the security
that IOMMU offers. The IOMMU ensures that an external device can not access
any memory region that is not allowed for a specific device. Another key benefit is
that many peripherals devices have fewer memory address bus bits than the rest of
the system. The IOMMU fills this gap by translating narrow device addresses into
the system’s wider addresses. By doing that, I/O devices can address the entire
memory through the IOMMU. For example, an x86 computer can address more
than 4 gigabytes of memory with the Physical Address Extension (PAE) feature
[9]. The way an IOMMU translates VAs to PAs is, in general, identical to the way
an MMU performs the same task. More specifically, it searches on/through the
Page Tables of a specific process to find the appropriate leaf PTE. The Page Tables
are stored on the MM of the system, and copies are also available on the CPU’s
Data Cache. Lastly, when the appropriate leaf PTE is found, the translation action
occurs if the permission checking allows it.

19

20 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.1: An example of where an IOMMU could be located in a system.

Figure 3.2: Examples of where an SMMU could be located in a system.
Source: ARM

3.2 Design Overview

In this thesis, we design and implement a generic and scalable IOMMU compati-
ble with the RISC-V ISA, supporting its Sv39 and Sv48 modes as defined in the
privileged manual [10]. We use SystemVerilog as the hardware description lan-
guage [2]. On this implementation, the user can customize the number of input
ports. On each input port, one peripheral could be connected. The communica-
tion protocol that the IOMMU supports is the AXI-4 AMBA [4, 3]. Nevertheless,

3.2. DESIGN OVERVIEW 21

the implementation could be extended to support several different communication
protocols, such as the AXI-3 AMBA. The IOMMU could support this protocol if
the user grounds the two flag values (AR ROB, AW ROB) related to the reorder
action for each one of the incoming channels. In general, these two flag values
are responsible for enabling (disabling) the in-order (out-of-order) serving of the
incoming requests for each one of the channels. This action is depending on the
communication protocol requirements the user wants to use. To accomplish all
requirements of the AXI-4 protocol, we have to enable the reordering logic. If we
choose the previous version of AXI-4, the AXI-3, we will disable the reordering to
maximize the IOMMU’s performance.

Moreover, all sizes of the caches, the TLBs, the FIFOs, and others are para-
metric, allowing our implementation to adapt to any given system’s requirements
efficiently. Finally, another parametric feature of our implementation is that it
allows the user to enable or not input buffers used for storing incoming requests.
If enabled, one clock cycle is added to ATU’s pipeline.

The central concept of our RV-IOMMU is that we separate the unit that ac-
cepts the incoming requests (only the channels that contain the address fields)
and the unit that serves the missing requests by searching on the MM of the sys-
tem using an AXI-Lite interface. The former unit is called Address Translation
Unit (ATU), whereas the latter Address Translation Controller (ATC). These units
communicate through two custom-made switches utilizing a custom-made protocol
based on a handshake action (Valid / Ready). The Request Switch is responsible
for connecting many ATUs with a single ATC and transfer their’s missing requests
to the ATC for serving. Based on the missing type, two different requests exist.
The first asks for information about the Stream Matching process (i.e., the process
that matches the external AXI ID with a process ID – ASID in terms of RISC-V)
when an SMU miss occurs, while the second asks for Translation information (also
known as PTE) when a TLB miss occurs.

On the other hand, the Response switch accepts ATC’s responses and forwards
them to the appropriate ATU. In case of receiving an invalidation message, the Re-
sponse Switch forwards it to all the connected ATUs when they are ready to receive
it. Figure 3.3 presents some of the system configurations that our RV-IOMMU
could generate with a unique ATC unit. However, as previously mentioned, our im-
plementation could create user-defined design configurations with multiple ATCs
such as those presented in Figure 3.4.

22 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.3: Abstract schematic of RV-IOMMU instantiation with a unique Address
Translation Controller

Figure 3.4: Abstract schematic of RV-IOMMU instantiation with many Address
Translation Controllers

3.2. DESIGN OVERVIEW 23

Figure 3.5: RV-IOMMU Overview

The RV-IOMMU is using two plus one main modules connected through switches,
as depicted in Figure 3.5. These modules are:

• The Address Translation Unit (ATU): This module is responsible for accept-
ing the incoming AXI AW & AR requests, performs the translation on the
AWADDR & ARADDR busses, and outputs the translated requests. The
RV-IOMMU supports one or more ATUs.

• The Address Translation Controller (ATC): This module is responsible for
accepting the ATU(s) miss requests and serving them. To serve them, the
ATC is connected with the MM using the AXI-Lite protocol.

• Internal switches: As above-mentioned, one or more ATUs can be connected
with a unique ATC. To achieve this, we implement two kinds of switches,
one that transfers the miss requests from ATUs to ATC and another for the
responses.

24 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3 Address Translation Unit

As shown in Figure 3.6, an ATU module is composed of three sub-modules, and its
responsibility is to accept the incoming AXI requests and performs the translation.
In particular, an ATU accepts only the AW and the AR channels of the AXI and
performs the translation on the address fields. The rest of these two channels’ data
fields remain unchanged and “travel” through the ATU’s pipeline accompanied
by the addresses. As previously mentioned, it is easy to configure the number
of the ATUs that will be generated in each implementation of RV- IOMMU by
changing a specific parameter (NO OF ATU). That could generate as many input
AXI channels, for translation, as the number of peripheral devices that one would
like to connect on the RV-IOMMU. Before performing an address translation,
it is crucial to report that the ATU performs permission checking to distinguish
whether it is permitted or not. For example, it is not allowed to write on an address
when the Write bit of the relevant PTE is not equal to one. In this case, the ATU
asserts the permission error signal and does not translate it for this request (see
3.3.2.7). Instead, it returns an AXI Error message to the master of this request.

The ATU needs to complete two steps to perform a translation. The first step
is to match the AXI ID of the incoming request with a specific process ID or, in
terms of the RV, an ASID, and identify the PTBA. These, alongside the VA, are
being used as an input to the second step of the process, i.e., the IO-TLB. IO’s
TLB responsibility is to accept the ASID, PTBA, and VA and, based on them,
translate the VA to PA. If, however, the TLB does not currently store the relative
PTE, it will miss. When a miss occurs, the TLB informs the ATU Controller (ATU
CTRL). Following, the latter is responsible to (a) transfer this miss request to the
ATC and (b) accept the response from the ATC and forward the appropriate data
to the TLB (e.g., the PTE). The three main ATU’s modules are:

• Stream Matching Unit (SMU)

• Translation Lookaside Buffer (TLB)

• ATU Controller CTRL

A detailed description of the aforementioned modules can be found in the
following subsections. Figure 3.7 depicts ATU’s Timing Diagram.

Moreover, ATU’s Timing Diagram is depicted in Figure 3.7.

3.3. ADDRESS TRANSLATION UNIT 25

Figure 3.6: Address Translation Unit Overview

Figure 3.7: Address Translation Unit Timing Diagram

3.3.1 Stream Matching Unit

The first module that accepts the incoming AW and the AR channels of the AXI
is the SMU. Its main task is to match the external AXI IDs from AW and the AR
with the appropriate ASID followed by the PTBA. As shown in Figure 3.8, the
main modules of the SMU are:

• (Optional) AR-FIFO & AW-FIFO

• Uniform AXI struct

• Input CTRL

• AXIID to ASID Set Associative Cache

• Replay (Duplicate) FIFO

26 CHAPTER 3. DESIGN AND IMPLEMENTATION

• Unique FIFO

• Response Registers

• Registers that holds the send data on the ATC

• Output CTRL

Figure 3.8: Stream Matching Unit

3.3.1.1 (Optional) AR-FIFO & AW-FIFO

These two synchronous FIFOs are generated if the user defines it and are respon-
sible for storing the ATU’s incoming AW and AR requests. The ATU is ready to
accept new requests from the master device only when the corresponding FIFO is
not full. The size of each FIFO is customizable, as users can define. Each FIFO
is connected to the Uniform AXI Struct component, where it dequeues its data.

3.3.1.2 Uniform AXI struct

This module’s task is to convert the dequeued requests to a new uniform struct.
This uniform struct includes the common fields of the two previously mentioned
channels (i.e., AW and AR): ID, address, etc. Moreover, it generates new fields
different from those included in AW and AR. These fields are: (a) the is aw, a
1-bit field that indicates if the request was read or write, and (b) the ROB ID,
which indicates in which position of the output FIFO the translated request will be
stored. It is crucial to mention that the ROB ID field per channel is optional as it
is utilized only if the Boolean parameter(s), ROB AW and/or ROB AR, is/are set
to True. If the latter applies, our implementation reorders the requests to follow
the flagged channel’s initial order. Nevertheless, for our implementation not to
violate the AXI-4 specification, reordering is mandatory for both channels.

3.3. ADDRESS TRANSLATION UNIT 27

3.3.1.3 Input CTRL

This module is located right before the AXIID to ASID Set Associative Cache,
and its task is to choose the cache’s input for each clock cycle. It can receive
input from two different components, namely (a) the Uniform AXI struct (b) the
Replay FIFO (described in Section [3.3.1.6]). The former is the most common
choice. When a write/refill action occurs on the cache during a one clock cycle,
an implemented mechanism is responsible for checking if the Replay FIFO’s head
entry exists in the unique FIFO. If true, the input controller continues to receive
input from the Uniform AXI Struct. If not, the input controller switches its input
method to the Replay FIFO one, if and only if the FIFO is not empty, at the next
clock cycle. This will only stop if : (a) a miss at the cache occurs or (b) the Replay
FIFO becomes empty. This logic is implemented through a Finite-State Machine
(FSM).

3.3.1.4 AXIID to ASID Set Associative Cache

This module is a set-associative cache with a parametric number of ways and size.
This cache will be a direct-mapped if the user configures its ways to be equal to
one. For indexing on it, the implementation checks the user’s parameters and uses
a number of the MS bits of the AXI ID based on them. This index defines the line
that an entry will be stored and where the implementation will search for it. The
selection of the way that an entry will be stored is in a pseudo-random approach.
This approach is basing on the Linear-Feedback Shift Register (LFSR) with a width
equals to the number of configured ways. Another feature of our implementation
of RV-IOMMU is the invalidation of the data stored on the local caches. For
the invalidation of the Stream Matching entries, we implement a mechanism to
discover the cache way that the entry for deletion is stored. An alternative would
be to delete the entire cache set. However, this could lead to undesired results,
such as the deletion of valid entries that could lead to potential cache misses. The
mechanism mentioned above for invalidation spends two clock cycles to tackle this
issue but eventually produces the desired result, i.e., to delete only the desired
entry. To achieve that, it spends the first clock cycle finding the way the entry we
want to delete is stored and, if found, it uses the second clock cycle to invalidate
it by grounding the valid bit. We implement the set-associative cache to have two
arrays of Static Random Access Memory SRAM cells for each way (see Figure
3.9). Below one can find details for the width of many cache-related entries, such
as:

• The width of TAG = AXI ID WIDTH − AXI ID TO ASID Cache Index
Width − AXI ID TO ASID Cache Offset Width.

• The width of AXI ID is predefined, and it depends on the system that we
include the RV-IOMMU.

28 CHAPTER 3. DESIGN AND IMPLEMENTATION

• The width of AXI ID TO ASID Cache Index = log2 (Number of cache sets),
which the number of cache sets is a parametric value.

• The width of ASID is a parameter defined by the RV core provided in the
system. The maximum width is 16-bits for both SV39 and SV48 [10].

• Page Table Base Address (PTBA) width is 44-bits and is only the PA’s
effective bits. The width of PA is 56-bits.

Figure 3.9: AXI ID to ASID Cache Architecture

3.3.1.5 Unique entries FIFO

The Unique Entries FIFO implementation is synchronous. The memory cells used
in it are Flip-Flops and CAM cells, and its size is a user-defined parameter. It is
responsible for storing the missed requests of the AXIID to ASID Set Associative
Cache. This could only occur if the AXI IDs are not already stored in this FIFO
or stored at the registers holding the data handled by the ATC. This FIFO store’s
structs consist of the AXI ID, the VA, and the uniform AXI Struct. The AXI
IDs are stored on CAM cells while the rest are on Flip-Flops. The AXI IDs are
stored on CAM cells to search all of them simultaneously when a potential enqueue
occurs to decide if it will be accepted or not. The dequeued data of this FIFO
are sending to the ATC through the Request Switch. More specifically, to avoid
(a) transferring unwanted data (from ATC’s perspective) and (b) to increase the
width of wires from ATU to Request Switch only, the AXI ID is being transferred
to the ATC whereas the remaining data – including the AXI ID – are being stored
on the “Registers that hold the send data on the ATC” (see 3.3.1.7).

3.3.1.6 Replay (Duplicate) FIFO

It is a synchronous FIFO that stores the above’s FIFO rejected data. Its size
is user-defined, and the implementation uses Flip-Flops. The dequeued data of
this FIFO are returned to the AXIID to ASID Set Associative Cache as shown in
Figure 3.8 through the input controller. Lastly, the following attributes are being
stored in this FIFO: (a) the AXI ID, (b) the VA, and (C) the Uniformed AXI
struct.

3.3. ADDRESS TRANSLATION UNIT 29

3.3.1.7 Registers that hold data transmitted to the ATC

An ATU module contains two sets of these registers to improve its performance
by sending a new request before storing the previous request’s answer. These
registers store the corresponding data of the AXI ID sent to ATC – including the
AXI ID – to match the incoming responses with them. These data are the VA,
the Uniformed AXI struct, and the Valid Register. When a response is received
from the ATC, our implementation searches its corresponding data on these sets
of registers and forwards them to the I/O TLB state of the pipeline. This occurs
at the same clock cycle which the SMU received them.

3.3.1.8 Response Registers

These registers are being enabled when the IO-TLB pipeline stage is not ready to
accept new requests. The data stored in the Response Registers are (a) the VA and
Uniformed AXI struct (located in the registers described in Section 3.3.1.7) and
(b) the ASID and PTBA from the incoming ATC response. When these registers
store valid data, the ATU that includes them is not ready to accept new SMU
responses from the ATC. It will become ready when the response registers become
empty. The key idea is to avoid stalling the ATC serving misses process if an
ATU’s IO-TLB stage is not ready.

3.3.1.9 Output CTRL

This module chooses the SMU stage’s output to feed the IO-TLB stage only when
the former stage is ready to accept new requests. This selection is made according
to a priority that following: (a) the hit answered data from AXIID to ASID Set
Associative Cache, (b) only in case of receiving SMU invalidation this module
checks if there are stored data on Response Registers to forward them to IO-TLB,
(c) in case of receiving SMU missed data from the ATC forward them at the same
clock cycle to IO-TLB as described on “Registers that holds the send data on the
ATC” and (d) the data stored on Response Registers in case that are valid.

3.3.2 Input Output Translation Look-aside Buffer (IO-TLB)

The next stage of ATU’s pipeline that accepts data from SMU is the Input-Output
Translation Look-aside Buffer (IO-TLB) (see Figure 3.6). This unit’s main task
is to generate the physical address while performing the appropriate permission
checking. The structure of this unit is similar to SMU’s one. Figure 3.10 presents
the main modules of the IO-TLB, which are:

• The Input CTRL

• The Translation Lookaside Buffer (TLB)

• A Unique FIFO

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

• A Replay (Duplicate) FIFO

• Registers that holds the send data on the ATC

• The Pipeline Register (Sv39/Sv48) (optional)

• The Construct Physical Address & Permission Checker (Sv39/Sv48)

• The re-construct AXI struct

• The AXI AW FIFO (ROB feature is optional)

• The AXI AR FIFO (ROB feature is optional)

Figure 3.10: Input/Output Translation Lookaside Buffer

3.3.2.1 Input CTRL

The Input Controller is responsible for choosing the data that will forward to the
TLB. This module can select between two different inputs. The first are data
coming from the SMU. The second is the ones coming from the Replay FIFO
3.3.2.4. If SMU data are valid, the controller will redirect them to the TLB. If not,
the redirected data will come from the Replay FIFO (supposing that this FIFO is
not empty). Thus, this module can be seen as a simple multiplexer.

3.3.2.2 Translation Lookaside Buffer (Sv39/Sv48)

A TLB is a fully associative cache with a parametric size of entries that can receive
two inputs. Inputs related to the translation process and input related to the flush
and update process. The former is the ASID and the VA, whereas the latter is the
flush asid i and update i (which, in turn, includes a PTE, a VPN, an ASID, and
some flags regarding the related page size). These inputs arrive at the TLB, which
is the main task to find the appropriate PTE to construct the virtual address’s
translation, namely the physical address. Our TLB implementation is compatible

3.3. ADDRESS TRANSLATION UNIT 31

with both the Sv39 and the Sv48 specifications. The implementation identifies if
invalid entries on TLB exist and chooses them in case of a replacement action. If
all stored entries are valid, then we evict an entry using a Pseudo Least Recently
Used Replacement policy.

In general, a TLB contains a CAM memory to hold the tags. Each tag consists
of the ASID, the VPN3 (if Sv48 is enabled), the VPN2, the VPN1, VPN0, the
is 512G (if Sv48 is enabled) flag value, the is 1G flag value, the is 2M flag value
and the valid bit. Moreover, it stores PTE’s data into separate memory. The
implementation also supports invalidation and flushing actions. More specifically,
there are two choices when it comes to flushing. The first is to flush the entire
TLB and the second is to flush all entries related to a specific ASID.

3.3.2.3 Unique entries FIFO

The Unique Entries FIFO implementation follows a synchronous way. The mem-
ory cells used in it are Flip-Flops and CAM cells, and its size is a user-defined
parameter. It is responsible for storing the missed requests of the TLB. That
could only occur if the ASID concatenated with the effective bits of VA is not
already stored in this FIFO or stored at the registers holding the data handled by
the ATC. The structs that this FIFO stores consist of the ASID, the PTBA, the
effective bits of VA (i.e., the VA without the 12-bit offset), and the write/read flag.
The ASID and the VA’s effective bits are stored on CAM cells while the rest of
the fields on Flip-Flops. We use the CAM cells to store the ASID and the effective
bits of VA to search all of them simultaneously when a potential enqueue action
occurs to decide if this action will be accepted or not. The dequeued data of this
FIFO are sending to the ATC through the ATU’s controller first and the Request
Switch after.

3.3.2.4 Replay (Duplicate) FIFO

This synchronous FIFO stores all entries that do not hit on the TLB even if they
were also stored on TLB’s Unique Entry FIFO. Its size is user-defined, and the
implementation uses Flip-Flops. The dequeued data of this FIFO return to the
TLB through the input controller (see Figure 3.10). Lastly, the Replay FIFO
stores the following attributes: (a) ASID, (b) PTBA, (c) VA, and (C) Uniformed
AXI struct.

3.3.2.5 Registers that hold data transmitted to the ATC

These registers store the ASID and the effective bits of VA. We store these to
distinguish if the new-coming TLB misses will be, in turn, stored on the Unique
Entries FIFO or not. When our implementation received the ATC response, it
flushes the stored data on its Flips-Flops.

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3.2.6 (Optional) Pipeline Register (Sv39/Sv48)

A pipeline register is a simple flip flop that exists only if the user enables the corre-
sponding flag value (ATU TLB PIPELINE REG). As shown in Figure 3.10, these
registers store the TLB’s output. The output consists of the following parameters:
(a) the PTE, (b) flags about the page size, (c) the VA, and (d) the Uniform AXI
struct. The parameters mentioned above will differ based on the enabled Sv.

3.3.2.7 Construct Physical Address & Permission Checker (Sv39/Sv48)

This combinatorial module aims to (a) check if the requested action is allowed
and (b) to generate the PA. At first, this module decides, based on the uniform’s
AXI struct is wr field, if the request’s action is read or write. Based on it, it then
checks if it is allowed to perform this action by reading the pte.w and pte.r field
of a PTE (as mentioned in the RISC-V privileged specification [10]). The module
generates the PA according to the previously mentioned specification if permitted.
To support both the Sv39 and Sv48, we implement two versions of this module.
If not permitted, the Construct Physical Address and Permission Checker module
assigns a predefined out-of-bound address to the AXI struct. By doing this, the
external AXI interconnect, or the AXI slave, returns an error response to the
master. That allows us to assign the handling of the master’s response to an
external device. Even if it is neither elegant nor permanent, this solution was
chosen due to time constraints. One of the future tasks would be implementing a
more sophisticated mechanism to handle such situations (see Section 5).

3.3.2.8 Re-construct AXI struct

This module has only combinatorial logic, which re-generates the initial AXI re-
quest that the ATU receives. The only difference is that the AWADDR field (if it is
a Write request) or ARADDR field (if it is a Read request) contains the translated
PA instead of the VA. This module has two output ports. One is connected with
the FIFO related with the Read requests and the other with the Write requests.
Also, it outputs the ROB ID, which indicates at which position of the ROB FIFO
the AXI struct will be stored (if the user has enabled the reordering feature).

3.3.2.9 (Optional ROB) AXI AW FIFO

As previously mentioned, our implementation allows the user to enable or not the
reordering logic. If the ROB flag equals to one, this module is a Reorder Buffer
that each new entry is inserted at a known position that rob id indicates, and the
dequeue is done as FIFO does it. In this way, we achieve the reordering that some
communication protocols require, e.g., the AXI-4. If the external communication
protocols do not have this requirement, this module becomes a typical synchronous
FIFO that stores the translated requests (e.g., the AXI-3). The size is a parameter.

3.4. ADDRESS TRANSLATION CONTROLLER 33

3.3.2.10 (Optional ROB) AXI AR FIFO

Same as above for the AR channel.

3.3.3 Controller Unit

This module communicates with the counterpart module of the ATC through
switches. We separate this into two tasks. The first is to decide the request that
will be sent to the ATC (for serving purposes). To accomplish this, it follows
a static priority which gives priority first to the TLB misses and then to the
full FIFOs. The second task is to receive the incoming responses from ATC’s
served requests. We achieve this by using input buffers (Flip-Flops) that store the
response and forward them to the appropriate Unit (SMU or IO-TLB).

3.4 Address Translation Controller

As shown in Figure 3.11, an ATC is composed of three sub-modules, and its
responsibility is to accept the missed requests from ATU(s) and then serve them.
The ATC is connected with the MM of the system through an AXI-Lite interface to
serve these requests. The missed requests could be sourced from the ATUs’ SMU
or TLB. When one missed request arrives at the ATC, the ATC recognizes the
request’s kind and forwards it to the appropriate handler. Such handler is either
the Stream Miss Handler or the Translation Miss Handler. As we will see with
more details in the following subsections, each of these handlers contains a cache
(L2 SMU cache for the Stream Miss Handler and L2 TLB for the Translation Miss
Handler). If a cache miss action occurs, the handler will search the MM entries.
If a TLB entry could not be found again on the MM, the OS will generate it. The
Stream Matching Table Finder performs the search action for a missing Stream
Matching. For Translation misses, the Hardware Page Table Walker (HPTW) finds
the appropriate PTE, which implements the algorithm described in Subsection
2.2.2. All responses are stored on the appropriate FIFO to transmit them to an
ATU. Moreover, the ATC receives information about an invalidation action and
forwards them to all connected ATUs through the Response switch. At the same
time, it invalidates these entries on its local caches. The five main ATC’s modules
are:

• ATC Controller CTRL

• Stream Miss Handler (SMH)

• Translation Miss Handler (TMH)

• FIFOs

A detailed description of the modules mentioned above can be found in the fol-
lowing subsections. Figure 3.12 depicts ATC’s Timing Diagram.

34 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.11: Address Translation Controller Overview

Figure 3.12: Address Translation Controller Timing Diagram

3.4.1 ATC Controller

This module is responsible for the communication between the ATU(s) and the
ATC and contains logic about the entire unit’s control. This controller’s implemen-
tation is identical to the ATC’s controller, with input buffers storing the incoming
requests. It is also responsible for distinguishing a request to either SMU or TLB
requests and forwarding them to the appropriate handler. Moreover, it is respon-
sible for checking if an ATC’s FIFO (SMU Response, TLB Response, SMU Inval-
idation, TLB Invalidation) contains valid data. If true, it forwards them to the
Response Switch connected with this ATC. This controller enforces static priority.
The highest of them belongs to the TLB Invalidation messages, then the SMU
Invalidation messages, then the TLB Responses, and at last the SMU Responses.
Our implementation provides the highest priority on the Invalidation messages to
communicate the information around the implementation as soon as possible. By
doing this, our implementation deletes all the stale data.

3.4. ADDRESS TRANSLATION CONTROLLER 35

3.4.2 Stream Miss Handler

This module handles SMUs’ missed requests, as previously mentioned. To achieve
that, the Stream Miss Handler contains an L2 SMU set-associative cache and the
Stream Matching Finder. The former contains the same parametric implemen-
tation with the 3.3.1.4, while the latter contains logic to calculate the address
that stores the appropriate Stream Matching entry. The Finder is a very basic
logic that follows a scalable policy. Its task is to add the AXI ID value with a
predefined base address and search it on the MM. The communication between
the Finder (AXI Master) and the MM (AXI Slave) is done through the AXI-Lite
communication protocol.

3.4.3 Translation Miss Handler

This module is responsible for handling TLBs’ missed requests. It contains a TLB
and a Hardware Page Table Walker (HPTW). The former follows the same para-
metric implementation described in Section 3.3.2.2, and the latter handles TLBs’
misses. The HPTW is a hardware component that follows the RISC-V privileged
ISA [10] and searches the MM to identify the requested PTE. The HPTW imple-
ments in a hardware manner that algorithm presented in Section 2.2.2. That being
said, the HPTW can communicate with the MM more than one time to identify the
leaf PTE. The HPTW uses an AXI-Lite interface to communicate with memory
and this permits the HPTW to be compatible with a plethora of memory blocks
that have AXI interfaces. Moreover, the implementation supports both the 3-level
page table walks required for SV39 and the 4-level page table walks required for
SV48.

3.4.4 FIFOs

For the ATC implementation, our implementation generates four (4) synchronous
FIFOs, where each one of them is customizing sized. These FIFOs are mentioned
below in descending priority order:

• TLB Invalidation FIFO: Holds the TLB invalidation messages.

• SMU Invalidation FIFO: Stores the invalidation messages related with the
SMU entries.

• TLB Response FIFO: Holds the TLB requests responses.

• SMU Response FIFO: Stores the SMU misses responses.

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.5 Communication between Address Translation Unit
and Address Translation Controller

The communication between these two modules is being accomplished via switches.
As depicted in Figure 3.5, two different kinds of switches exist. The Request switch
(REQ SWITCH) is responsible for forwarding the ATU request(s) to the ATC
while the Response Switch (RESP SWITCH) follows the other way around, i.e.,
receives the ATC responses and sends them back to the ATU. The communication
protocol is custom-made and performs a handshake action (READY / VALID).

3.5.1 Request switch

This switch is connected with a parametric number of ATU(s) and forwards their
request to a single ATC to serve them. Thus, this is an N-to-1 switch that transmits
the data using combinatorial logic. The selection of the ATU’s request forwarded
to the ATC is being made through the Round-Robin starvation-free scheduling
algorithm. More precisely, this switch contains a Flip-Flop that remembers the
last ATU that accomplished a transaction. The Flip-Flow’s purpose is to allow
the Request switch to start searching from the next ATU of the one stored in it if
this ATU is ready to make a transaction.

3.5.2 Response switch

This switch is connected with a single ATC and a parametric number of ATU(s).
It receives the ATC’s response message and forwards it only to the appropriate
ATU (i.e., the ATU that generated the request). Thus, this is a 1-to-N switch that
transmits its data through a combinatorial logic. The appropriate ATU selection
is indicated by a field included in the response. It is crucial to mention here that
if this switch’s combinatorial logic identifies an invalidation message, it forwards
it to all connected ATU(s) if they are in a ready state.

Chapter 4

Evaluation

The evaluation of our implementation includes two different phases. The first
phase is the evaluation of our implementation in a RTL simulation environment
whereas the second is performed on an actual hardware platform by placing our
design on the Programmable Logic (PL) of an FPGA. During the second phase,
we use Trenz, a hardware development board with a specific FPGA (part number:
xczu9eg-ffvc900-2-e).

4.1 Phase 1: Simulation

During the first phase (i.e., the Simulation phase), we validate our implementation
by simulating multiple components in an environment that includes a parametric
instantiation of RV-IOMMU. To accomplish this, we implement the testbench
environment of Figure 4.1. The total parametric approach of the implemented en-
vironment provides a user the ability to create its customized configuration. Some
of the parameters related to the aforementioned testbench are: (a) the number
of AW requests, (b) the number of AR requests, and (c) the read delay of Block
RAM (BRAM). Following, the parameters related to the implementation of RV-
IOMMU, also described in Chapter 3, are: (a) the number of ATU(s), (b) the
TLBs sizes, (c) the L1 and L2 SMU cache size and associativity, (d) the FIFOs
sizes and, optionally, (e) the pipeline register (on both of ATU and ATC). Finally,
there are also parameters related to the user’s needs. Such parameters, if enabled,
allow the user to (a) enforce the in-order functionality for each one of the incom-
ing channels and (b) if the incoming buffers of the ATU will be generated or not.
Lastly, our testbench generates the requests and then forwards them to the RV-
IOMMU. It also stores and validates the correctness of the responses. We achieve
these two actions by implementing two (2) SystemVerilog tasks. More specifically,
the response validity checking actions are achieved because the user knows a priori
the Page Tables.

37

38 CHAPTER 4. EVALUATION

Figure 4.1: Abstract schematic of the simulation environment

Moreover, we utilize the environment mentioned above to measure the RV-
IOMMU’s performance. We simulate the design with a variety of configurations
to obtain various measurements. These measurements include the clock cycles that
each request spends to be served and some architecture metrics (e.g., the number
of hits and misses on each cache and TLB). We add extra logic to the HPTW to
understand the number of times the HPTW needs to be activated per run and –
in each run – how many leaf PTEs of 4KB, 2MB, and 1Gb size were found on
the RAM. The testbench’s RAM simulates the MM of the System that, among
others, contains the AXI ID to ASID Table and the Page Tables. More precisely,
the former contains ten entries - supporting incoming AXI IDs for 0 to 9, whereas
the latter contains one three-level, two two-level, and four one-level Page Tables.
The rest of this section provides the results of some runs performed in this work.

4.1.1 Metrics

This subsection presents two measurement categories contributing to the over-
all evaluation of the implementation presented herein. The first is the required
clock cycles needed to accomplish the run, and the second is architectural met-
rics. The measurements were performed for several configurations to explore the
implementation’s behavior and capabilities. The below-presented tables depict
the parameters and the results of the measures. As one can observe, these tables
include, among others, the implementation’s TLBs and cache’s misses and hits.
More specifically, the calculation of the total clock cycles required for the trans-
lation of a request is measured from when the RV-IOMMU accepts this request
until it outputs the translated response (we only calculate the cycles that the re-
quest remained in the RV IOMMU pipeline). It is crucial to mention that all the
requests fed to the RV-IOMMU are pre-initialized inside a FIFO. Thus, there is
always a new request to “feed” our RV-IOMMU. This measurement, even if it does
not deliver our implementation’s absolute performance, it provides an estimation
of it.

4.1. PHASE 1: SIMULATION 39

Another factor taken into consideration to produce the measurements men-
tioned above is the requests’ traffic pattern. The worst-case scenario could occur
when all, or the majority of, the received requests’ AXI ID and PTE does not
exist on the corresponding caches/TLBs. As mentioned in Section 3, the AXI ID
to ASID cache follows a pseudo-random replacement policy, whereas the TLB an
LRU one. Considering this, we defined the worst-case scenario as the scenario that
generates random requests using the $urandom range() function of SystemVerilog.
More precisely, this function will decide both the AXI ID and the VA.

Conversely, the normal-case scenario occurs when all incoming requests are
refer to a specific AXI ID, and their virtual addresses are sequential. We defined
the normal-case scenario for our implementation to generate the AXI IDs randomly
(by using the $urandom range() function of SystemVerilog) and the VAs to be in
a sequential pattern. The first VA that the normal-case scenario generates is
randomly chosen. Then, for every future request, the sequential pattern will add
to the previously generated VA the decimal number 64 in order to model sequential
cache-line accesses.

4.1.1.1 The performance cost of reordering

Herein, we estimate the cost of the reordering feature that our implementation
provides on both the randomized and sequential traffic patterns. To calculate
this, we choose not to enable ATU(s)’ input buffers as we wanted to measure the
exact time that each incoming request spends to serve.

Table 4.1 depicts the RV-IOMMU configurations tested under the randomized
traffic generator. The required clock cycle measurements could then be found in
Table 4.2 with references to their corresponding histograms. Finally, the architec-
tural metric could be found in Table 4.3.

40 CHAPTER 4. EVALUATION

RV-IOMMU configuration (randomized traffic generator)

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6

Number of
ATU(s)

1 1 2 2 8 8

Total number of
AW Reqs

2048 2048 4096 4096 16384 16384

Total number of
AR Reqs

2048 2048 4096 4096 16384 16384

AR Reordering X - X - X -
AW Reordering X - X - X -
ATU Input
Buffers

- - - - - -

ATU TLB
Pipeline Reg

X X X X X X

ATC TLB
Pipeline Reg

X X X X X X

ATU L1 TLB Size 16 16 16 16 16 16
ATC L2 TLB Size 32 32 32 32 32 32
ATU L1 SMU
Cache Associativ-
ity

8 8 8 8 8 8

ATU L1 SMU
Cache Sets

2 2 2 2 2 2

ATC L2 SMU
Cache Associativ-
ity

16
Ways

16
Ways

16
Ways

16
Ways

16
Ways

16
Ways

ATC L2 SMU
Cache Sets

16 16 16 16 16 16

RAM Read La-
tency

2cc 2cc 2cc 2cc 2cc 2cc

Table 4.1: RV-IOMMU configurations used to explore the cost of the reordering
feature feed by a randomized traffic generator

4.1. PHASE 1: SIMULATION 41

Results about the required clock cycles of Table 4.1

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6

Average (50th

percentile)
51 cc 51 cc 102 cc 102 cc 415 cc 414 cc

95th percentile 71 cc 70 cc 137 cc 136 cc 526 cc 524 cc
99th percentile 81 cc 80 cc 207 cc 151 cc 560 cc 552 cc
Minimum value 15 cc 3 cc 29 cc 3 cc 60 cc 3 cc
Maximum value 196 cc 193 cc 580 cc 2046 cc 2392 cc 8913 cc
Histogram Figure See 4.2 See 4.3 See 4.4 See 4.5 See 4.6 See 4.7

Table 4.2: Time (in cc) results of configurations of Table 4.1 used to explore the
cost of the reordering feature (randomized traffic generator)

Results about the architectural metrics of Table 4.1

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6

One ATU’s L1
SMU cache hits

4096 4096 4069 4069 4069 4069

One ATU’s L1
SMU cache misses

18 19 26 25 22 26

One ATU’s L1
TLB cache hits

4096 4096 4096 4069 4069 4069

One ATU’s L1
TLB cache misses

38453 38465 79875 79999 333347 333680

ATC’s L2 SMU
cache hits

0 0 8 7 44 45

ATC’s L2 SMU
cache misses

6 6 6 6 6 6

ATC’s L2 TLB
cache hits

53 64 110 128 526 523

ATC’s L2 TLB
cache misses

4027 4020 8007 7999 31965 31971

HPTW total
searches on MM

4027 4020 8007 7999 31965 31971

of 1G PG found
by HPTW

1804 1784 3665 3645 14333 14380

of 2M PG
found by HPTW

902 921 1777 1762 7153 7010

of 4K PG found
by HPTW

1321 1315 2565 2592 10479 10581

Table 4.3: Architectural metrics of configurations of Table 4.1 used to explore the
cost of the reordering feature (randomized traffic generator)

42 CHAPTER 4. EVALUATION

Disclaimer: Table 4.3 results, as well as measurements presented below, present
a vast number of ATU’s L1 TLB misses. This measurement is growing accord to
the duration of the run. This occurs because the ATU’s TLB’s input controller
(see 3.3.2.1) will always select to forward the Replay FIFO entries to the TLB, if
invalid data are coming from the SMU. This is, of course, not optimal and can be
enhanced in future work.

Figure 4.2: Histogram of clock cycles that RV-IOMMU requires to accomplish the
run on Conf. 1 of Table 4.1

4.1. PHASE 1: SIMULATION 43

Figure 4.3: Histogram of clock cycles that RV-IOMMU requires to accomplish the
run on Conf. 2 of Table 4.1

Figure 4.4: Histogram of clock cycles that RV-IOMMU requires to accomplish the
run on Conf. 3 of Table 4.1

44 CHAPTER 4. EVALUATION

Figure 4.5: Histogram of clock cycles that RV-IOMMU requires to accomplish the
run on Conf. 4 of Table 4.1

Figure 4.6: Histogram of clock cycles that RV-IOMMU requires to accomplish the
run on Conf. 5 of Table 4.1

4.1. PHASE 1: SIMULATION 45

Figure 4.7: Histogram of clock cycles that RV-IOMMU requires to accomplish the
run on Conf. 6 of Table 4.1

Table 4.2 and 4.3 compare the results between Configuration 1 and 2, Configu-
ration 3 and 4, and Configuration 5 and 6. Concluding, based on the comparisons
mentioned above, one could easily understand that there is no extra overhead
when the Reordering feature is enabled if the incoming traffic follows a random
pattern. This is because the cost of the large number of TLB misses is the main
performance bottleneck for these configurations, resulting in the elimination of the
reordering cost.

Table 4.4 depicts the tested RV-IOMMU configurations under the sequential
traffic generator. Table 4.5 presents the required clock cycle measurements with
references to their corresponding histograms. Finally, Table 4.6 shows the archi-
tectural metrics.

46 CHAPTER 4. EVALUATION

Configurations RV-IOMMU (sequential traffic generator)

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6

Number of
ATU(s)

1 1 2 2 8 8

Total number of
AW Reqs

2048 2048 4096 4096 16384 16384

Total number of
AR Reqs

2048 2048 4096 4096 16384 16384

AR Reordering X - X - X -
AW Reordering X - X - X -
ATU Input
Buffers

- - - - - -

ATU TLB
Pipeline Reg

X X X X X X

ATC TLB
Pipeline Reg

X X X X X X

ATU L1 TLB Size 16 16 16 16 16 16
ATC L2 TLB Size 32 32 32 32 32 32
ATU L1 SMU
Cache Associativ-
ity

8 8 8 8 8 8

ATU L1 SMU
Cache Sets

2 2 2 2 2 2

ATC L2 SMU
Cache Associativ-
ity

16
Ways

16
Ways

16
Ways

16
Ways

16
Ways

16
Ways

ATC L2 SMU
Cache Sets

16 16 16 16 16 16

RAM Read La-
tency

2cc 2cc 2cc 2cc 2cc 2cc

Table 4.4: RV-IOMMU configurations used to explore the cost of the reordering
feature feed by a sequential traffic generator

Figure 4.8: Histogram of clock cycles that RV-IOMMU requires to accomplish the
run on Conf. 1 of Table 4.4

4.1. PHASE 1: SIMULATION 47

Results about the required clock cycles of Table 4.4

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6

Average (50th

percentile)
4 cc 3 cc 4 cc 3 cc 7 cc 3 cc

95th percentile 75 cc 9 cc 75 cc 15 cc 128 cc 59 cc
99th percentile 85 cc 116 cc 89 cc 94 cc 205 cc 167 cc
Minimum value 3 cc 3 cc 3 cc 3 cc 3 cc 3 cc
Maximum value 178 cc 153 cc 203 cc 167 cc 826 cc 752 cc
Histogram Figure See 4.8 See 4.9 See

4.10
See
4.11

See
4.12

See
4.13

Table 4.5: Time (in cc) results of configurations found in Table 4.4, used to explore
the cost of the reordering feature (sequential traffic generator)

Figure 4.9: Histogram of clock cycles that RV-IOMMU requires to accomplish the
run on Conf. 2 of Table 4.4

48 CHAPTER 4. EVALUATION

Results about the architectural metrics of Table 4.4

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6

One ATU’s L1
SMU cache hits

4096 4096 4069 4069 4069 4069

One ATU’s L1
SMU cache misses

18 20 21 27 22 26

One ATU’s L1
TLB cache hits

4096 4096 4096 4069 4069 4069

One ATU’s L1
TLB cache misses

584 452 639 690 4135 4616

ATC’s L2 SMU
cache hits

0 0 8 7 44 45

ATC’s L2 SMU
cache misses

6 6 6 6 6 6

ATC’s L2 TLB
cache hits

3 5 11 30 166 119

ATC’s L2 TLB
cache misses

72 72 142 144 574 583

HPTW total
searches on MM

72 72 142 144 574 583

of 1G PG found
by HPTW

4 4 4 10 13 31

of 2M PG
found by HPTW

2 2 7 4 30 24

of 4K PG found
by HPTW

66 66 131 130 531 528

Table 4.6: Architectural metrics of configurations of Table 4.1 used to explore the
cost of the reordering feature (sequential traffic generator)

Figure 4.10: Histogram of clock cycles that RV-IOMMU requires to accomplish
the run on Conf. 3 of Table 4.4

4.1. PHASE 1: SIMULATION 49

Figure 4.11: Histogram of clock cycles that RV-IOMMU requires to accomplish
the run on Conf. 4 of Table 4.4

Figure 4.12: Histogram of clock cycles that RV-IOMMU requires to accomplish
the run on Conf. 5 of Table 4.4

50 CHAPTER 4. EVALUATION

Figure 4.13: Histogram of clock cycles that RV-IOMMU requires to accomplish
the run on Conf. 6 of Table 4.4

Table 4.5 and 4.6 compare the results between Configuration 1 and 2, Con-
figuration 3 and 4, and Configuration 5 and 6. This comparison shows that the
performance decreases when the reordering feature is enabled (if and only if the
incoming traffic follows a sequential pattern). More precisely, if the reordering
feature is enabled, the response will be stored at a specific position of the output
FIFO (as described in 3.3.2.9) and will wait until its turn to be dequeued. This
will cause a performance overhead as all potential hit responses will have to wait
for a former miss to be served (all hits under miss requests). On the contrary,
disabling the reordering feature would allow our implementation to output the
responses immediately after their translation without stalling them, resulting in
an overall performance gain.

4.1.1.2 Performance sensitivity analysis on ATU’s TLB size

To analyse the performance sensitivity on different parameters of the RV-IOMMU,
we change one RV-IOMMU parameter at a time. The remaining (i.e., ones that will
not change) of the parameters will have realistic values. The first parameter that
we will explore is ATU’s TLB size by using the random pattern traffic generator.
Since we explore the ATU’s TLB size, we choose to have an RV-IOMMU with one
ATU.

4.1. PHASE 1: SIMULATION 51

RV-IOMMU configurations (randomized traffic generator)

Conf. 1 Conf. 2 Conf. 3 Conf. 4

Number of ATU(s) 1 1 1 1
Total number of AW Reqs 2048 2048 2048 2048
Total number of AR Reqs 2048 2048 2048 2048
AR Reordering X X X X
AW Reordering X X X X
ATU Input Buffers X X X X
ATU Input Buffers Size 2 entries 2 entries 2 entries 2 entries
ATU TLB Pipeline Reg X X X X
ATC TLB Pipeline Reg X X X X
ATU L1 TLB Size 2 8 32 128
ATC L2 TLB Size 8 8 8 8
ATU L1 SMU Cache Associa-
tivity

8 Ways 8 Ways 8 Ways 8 Ways

ATU L1 SMU Cache Sets 4 4 4 4
ATC L2 SMU Cache Associa-
tivity

8 Ways 8 Ways 8 Ways 8 Ways

ATC L2 SMU Cache Sets 8 8 8 8
RAM Read Latency 100cc 100cc 100cc 100cc

Table 4.7: RV-IOMMU configurations used to explore the performance effects of
ATU’s L1 TLB size (random traffic generator)

Results about the required clock cycles of Table 4.7

Conf. 1 Conf. 2 Conf. 3 Conf. 4

Average (50th

percentile)
1550 cc 1550 cc 1550 cc 1450 cc

95th percentile 1962 cc 1662 cc 1962 cc 1958 cc
99th percentile 2166 cc 2162 cc 2162 cc 2064 cc
Minimum value 423 cc 423 cc 423 cc 417 cc
Maximum value 3614 cc 3614 cc 3614 cc 3614 cc

Table 4.8: Time (in cc) results of configurations of Table 4.7, used to explore the
performance effects of ATU’s L1 TLB size (random traffic generator)

52 CHAPTER 4. EVALUATION

Results about the architectural metrics of Table 4.7

Conf. 1 Conf. 2 Conf. 3 Conf. 4

One ATU’s L1 SMU cache hits 4096 4096 4069 4069
One ATU’s L1 SMU cache misses 9 9 9 9
One ATU’s L1 TLB cache hits 4096 4096 4096 4069
One ATU’s L1 TLB cache misses 793698 790608 781011 744642
ATC’s L2 SMU cache hits 0 0 0 0
ATC’s L2 SMU cache misses 6 6 6 6
ATC’s L2 TLB cache hits 17 18 24 21
ATC’s L2 TLB cache misses 4078 4067 4024 3872
HPTW total searches on MM 4078 4067 4024 3872
of 1G PG found by HPTW 1811 1811 1795 1763
of 2M PG found by HPTW 915 912 908 868
of 4K PG found by HPTW 1352 1344 1321 1241

Table 4.9: Architectural measurements of configurations of Table 4.7 exploring the
performance effects of the ATU’s L1 TLB size (random traffic generator)

By observing tables 4.8, 4.9, and 4.7, one can identify no significant perfor-
mance gain when one increases the ATU’s L1 TLB size when the traffic pattern
of incoming requests is random. However, this does not come as a surprise as the
likelihood of a TLB miss for every new incoming request (generated from the ran-
dom algorithm) is extremely high. Because of this behavior, every missed request
will be served in the ATC’s HPTW. Similar behavior is also occurring on the L2
TLB of ATC.

Tables 4.10, 4.11, and 4.12 explore the performance fluctuations when the TLB
size changes and the sequential generator is utilized.

4.1. PHASE 1: SIMULATION 53

RV-IOMMU configurations (sequential traffic generator)

Conf. 1 Conf. 2 Conf. 3 Conf. 4

Number of ATU(s) 1 1 1 1
Total number of AW Reqs 2048 2048 2048 2048
Total number of AR Reqs 2048 2048 2048 2048
AR Reordering X X X X
AW Reordering X X X X
ATU Input Buffers X X X X
ATU Input Buffers Size 2 entries 2 entries 2 entries 2 entries
ATU TLB Pipeline Reg X X X X
ATC TLB Pipeline Reg X X X X
ATU L1 TLB Size 2 8 32 128
ATC L2 TLB Size 8 8 8 8
ATU L1 SMU Cache Associa-
tivity

8 Ways 8 Ways 8 Ways 8 Ways

ATU L1 SMU Cache Sets 4 4 4 4
ATC L2 SMU Cache Associa-
tivity

8 Ways 8 Ways 8 Ways 8 Ways

ATC L2 SMU Cache Sets 8 8 8 8
RAM Read Latency 100cc 100cc 100cc 100cc

Table 4.10: RV-IOMMU configurations used to explore the performance effects of
ATU’s L1 TLB size (sequential traffic generator)

Results about the required clock cycles of 4.10

Conf. 1 Conf. 2 Conf. 3 Conf. 4

Average (50th

percentile)
23 cc 6 cc 6 cc 6 cc

95th percentile 431 cc 422 cc 492 cc 492 cc
99th percentile 643 cc 620 cc 504 cc 504 cc
Minimum value 6 cc 6 cc 6 cc 6 cc
Maximum value 1661 cc 1661 cc 1661 cc 1661 cc

Table 4.11: Time (in cc) results of configurations of Table 4.10, used to explore
the performance effects of ATU’s L1 TLB size (sequential traffic generator)

54 CHAPTER 4. EVALUATION

Results about the architectural metrics of Table 4.10

Conf. 1 Conf. 2 Conf. 3 Conf. 4

One ATU’s L1 SMU cache
hits

4096 4096 4069 4069

One ATU’s L1 SMU cache
misses

9 10 10 10

One ATU’s L1 TLB cache hits 4096 4096 4096 4069
One ATU’s L1 TLB cache
misses

60822 23431 17528 17528

ATC’s L2 SMU cache hits 0 0 0 0
ATC’s L2 SMU cache misses 6 6 6 6
ATC’s L2 TLB cache hits 2670 60 1 1
ATC’s L2 TLB cache misses 252 92 72 72
HPTW total searches on MM 252 92 72 72
of 1G PG found by HPTW 88 9 4 4
of 2M PG found by HPTW 58 12 2 2
of 4K PG found by HPTW 106 71 66 66

Table 4.12: Architectural results of configurations of Table 4.10 exploring the
performance effects of the ATU’s L1 TLB size (sequential traffic generator)

By observing the tables mentioned above, one can understand that the perfor-
mance remains stable using the sequential generator if the L1 TLB size becomes
greater than or equal to 8. This is because every ASID’s starting VA will be a
TLB miss, and every address after that will be a TLB hit (due to the sequence
of incoming addresses) - also depending on the position of the randomly chosen
starting address on the page, the page size, etc. Thus, as our testbench includes
6 ASIDs in total, a TLB size equal to 8 is enough to store the appropriate PTE
for each of these ASIDs. Similar behavior will be observed for the L2 TLB of
the ATC, except that the TLB size will now be different. More specifically, L2’s
TLB size should be greater than or equal to the total number of unique ASIDs
communicating with the ATUs connected to the ATC.

4.1.1.3 Performance sensitivity analysis on SMU’s FIFO size

Tables 4.13, 4.14, and 4.15 explore the performance fluctuations when the SMU’s
FIFO size (unique and replay FIFO) changes, and the random traffic generator is
utilized.

4.1. PHASE 1: SIMULATION 55

RV-IOMMU configurations (randomized traffic generator)

Conf. 1 Conf. 2 Conf. 3

Number of ATU(s) 1 1 1
Total number of AW Reqs 2048 2048 2048
Total number of AR Reqs 2048 2048 2048
AR Reordering X X X
AW Reordering X X X
ATU Input Buffers X X X
ATU Input Buffers Size 2 entries 2 entries 2 entries
ATU TLB Pipeline Reg X X X
ATC TLB Pipeline Reg X X X
ATU SMU FIFOs size 4 8 16
ATU L1 TLB Size 8 8 8
ATC L2 TLB Size 16 16 16
ATU L1 SMU Cache Associa-
tivity

8 Ways 8 Ways 8 Ways

ATU L1 SMU Cache Sets 4 4 4
ATC L2 SMU Cache Associa-
tivity

8 Ways 8 Ways 8 Ways

ATC L2 SMU Cache Sets 8 8 8
RAM Read Latency 100cc 100cc 100cc

Table 4.13: RV-IOMMU configurations used to explore the performance effects of
the SMU’s FIFO sizes (random traffic generator)

Results about the required clock cycles of Table 4.13

Conf. 1 Conf. 2 Conf. 3

Average (50th percentile) 1550 cc 1550 cc 1550 cc
95th percentile 1962 cc 1962 cc 1962 cc
99th percentile 2166 cc 2166 cc 2162 cc
Minimum value 423 cc 423 cc 423 cc
Maximum value 3614 cc 3614 cc 3614 cc

Table 4.14: Time (in cc) results of configurations of Table 4.13, used to explore
the performance effects of the SMU’s FIFO size (random traffic generator)

56 CHAPTER 4. EVALUATION

Results about the architectural metrics of Table 4.13

Conf. 1 Conf. 2 Conf. 3

One ATU’s L1 SMU cache
hits

4096 4096 4069

One ATU’s L1 SMU cache
misses

10 9 9

One ATU’s L1 TLB cache hits 4096 4096 4096
One ATU’s L1 TLB cache
misses

790022 790020 790020

ATC’s L2 SMU cache hits 0 0 0
ATC’s L2 SMU cache misses 6 6 6
ATC’s L2 TLB cache hits 29 29 29
ATC’s L2 TLB cache misses 4064 4064 4064
HPTW total searches on MM 4064 4064 4064
of 1G PG found by HPTW 1809 1809 1809
of 2M PG found by HPTW 913 913 913
of 4K PG found by HPTW 1342 1342 1342

Table 4.15: Architectural measurements of configurations of Table 4.13 exploring
the performance effects of the SMU’s FIFOs size (random traffic generator)

By observing the tables mentioned above, one can understand that the SMU’s
FIFO size does not affect our implementation’s overall performance as there are
only 6 different ASIDs in our tests, which is not a number that can provide a
performance fluctuation. The same occurs for the sequential traffic generator as
the way that the AXI IDs (potential ASIDs) are generated is the same as the
AXI IDs generated by the random traffic generator. However, in theory, the only
thing that could be achieved by increasing the SMU’s FIFO size would also be to
increase the outstanding missing AXI IDs to ASIDs. This, however, would not
lead to a performance increase.

4.1.1.4 Performance sensitivity analysis on TLB’s FIFO size

Tables 4.16, 4.17, and 4.18 explore the performance fluctuations when the TLB’s
FIFO size (unique and replay FIFO) changes and the random traffic generator is
utilized.

4.1. PHASE 1: SIMULATION 57

RV-IOMMU configurations (randomized traffic generator)

Conf. 1 Conf. 2 Conf. 3

Number of ATU(s) 1 1 1
Total number of AW Reqs 2048 2048 2048
Total number of AR Reqs 2048 2048 2048
AR Reordering X X X
AW Reordering X X X
ATU Input Buffers X X X
ATU Input Buffers Size 2 entries 2 entries 2 entries
ATU TLB Pipeline Reg X X X
ATC TLB Pipeline Reg X X X
ATU TLB FIFOs size 8 16 32
ATU L1 TLB Size 8 8 8
ATC L2 TLB Size 16 16 16
ATU L1 SMU Cache Associa-
tivity

8 Ways 8 Ways 8 Ways

ATU L1 SMU Cache Sets 4 4 4
ATC L2 SMU Cache Associa-
tivity

8 Ways 8 Ways 8 Ways

ATC L2 SMU Cache Sets 8 8 8
RAM Read Latency 100cc 100cc 100cc

Table 4.16: RV-IOMMU configurations used to explore the performance effects of
the TLB’s FIFO sizes (random traffic generator)

Results about the required clock cycles of Table 4.16

Conf. 1 Conf. 2 Conf. 3

Average (50th percentile) 1550 cc 1550 cc 1550 cc
95th percentile 1962 cc 1962 cc 1962 cc
99th percentile 2166 cc 2166 cc 2162 cc
Minimum value 423 cc 423 cc 423 cc
Maximum value 3614 cc 3614 cc 3614 cc

Table 4.17: Time (in cc) results of configurations of Table 4.16, used to explore
the performance effects of the TLB’s FIFO size (random traffic generator)

58 CHAPTER 4. EVALUATION

Results about the architectural metrics of Table 4.16

Conf. 1 Conf. 2 Conf. 3

One ATU’s L1 SMU cache
hits

4096 4096 4069

One ATU’s L1 SMU cache
misses

10 10 10

One ATU’s L1 TLB cache hits 4096 4096 4096
One ATU’s L1 TLB cache
misses

790022 790022 790022

ATC’s L2 SMU cache hits 0 0 0
ATC’s L2 SMU cache misses 6 6 6
ATC’s L2 TLB cache hits 29 29 29
ATC’s L2 TLB cache misses 4064 4064 4064
HPTW total searches on MM 4064 4064 4064
of 1G PG found by HPTW 1809 1809 1809
of 2M PG found by HPTW 913 913 913
of 4K PG found by HPTW 1342 1342 1342

Table 4.18: Architectural measurements of configurations of Table 4.16 exploring
the performance effects of the SMU’s FIFOs size (random traffic generator)

By observing the aforementioned tables, one can understand that the TLB’s
FIFO size does not affect our implementation’s overall performance. This hap-
pens, as every new request is – almost always – a TLB miss when we use the
random traffic generator. The same also applies when we utilize the sequential
traffic generator. The only thing that could happen by increasing the TLB’s FIFO
size would be to increase the outstanding TLB miss requests accordingly. This,
however, would not lead to a performance increase in our test scenarios (traffic
generators).

4.1.1.5 Trying to simulate an actual system under a burst

This sub-section will try to identify potential fluctuations of RV-IOMMU’s per-
formance in a simulated environment that will mimic a scenario observed in an
actual system. Since we do not currently have a representative traffic generator
(as we only have two FIFO filled with requests), the only way to stress-test the
RV-IOMMU would be through the simulated environment. We will try to mimic
the scenario that a new incoming request will always be available until the FIFO
becomes empty. To simulate the MM (RAM) delay, we will enforce a 100cc read
delay to our RAM. Moreover, we will choose the sequential traffic pattern to match
most bursts as in an actual system. We expect that our implementation will be
stressed as all the requests for all ATUs will start at the same clock cycle (all
FIFOs are ready to feed the corresponding AW or AR of the ATU that is con-
nected at the same clock cycle). This will allow the ATC to accept simultaneous

4.1. PHASE 1: SIMULATION 59

valid requests from all connected ATUs. In this way, the ATC will choose one of
them and stall the remaining. This, however, would be a significant performance
bottleneck. Lastly, we will run the configurations shown on 4.19 to change the
number of connected ATUs on a unique ATC to observe the performance.

60 CHAPTER 4. EVALUATION

Configurations RV-IOMMU (sequential traffic generator)

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6

Number of
ATU(s)

1 2 8 32 64 128

Total number of
AW Reqs

2048 4096 16384 65536 131072 262144

Total number of
AR Reqs

2048 4096 16384 65536 131072 262144

AR Reordering X X X X X X
AW Reordering X X X X X X
ATU Input
Buffers

X X X X X X

ATU Input
Buffers Size

2 2 2 2 2 2

ATU TLB
Pipeline Reg

X X X X X X

ATC TLB
Pipeline Reg

X X X X X X

ATU L1 TLB Size 16 16 16 16 16 16
ATC L2 TLB Size 32 32 32 32 32 32
ATU SMU FIFOs
size

8 8 8 8 8 8

ATU TLB FIFOs
size

8 8 8 8 8 8

ATU L1 SMU
Cache Associativ-
ity

8 8 8 8 8 8

ATU L1 SMU
Cache Sets

4 4 4 4 4 4

ATC L2 SMU
Cache Associativ-
ity

16
Ways

16
Ways

16
Ways

16
Ways

16
Ways

16
Ways

ATC L2 SMU
Cache Sets

16 16 16 16 16 16

RAM Read La-
tency

100cc 100cc 100cc 100cc 100cc 100cc

Table 4.19: RV-IOMMU configurations used to explore the performance of RV-
IOMMU for multiple numbers of connected ATUs feed by sequential traffic gener-
ator

4.1. PHASE 1: SIMULATION 61

Results about the required clock cycles of Table 4.19

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6

Average (50th

percentile)
6 cc 6 cc 6 cc 6 cc 6 cc 6 cc

95th percentile 492 cc 1099 cc 3599 cc 15999
cc

33414
cc

64105
cc

99th percentile 504 cc 1125 cc 4332 cc 18023
cc

35886
cc

69108
cc

Minimum value 6 cc 6 cc 6 cc 6 cc 6 cc 6 cc
Maximum value 1661 cc 2918 cc 10893

cc
43011
cc

892663
cc

168375
cc

Table 4.20: Table’s 4.19 time (in cc) results of configurations.These configura-
tions were used to explore the RV-IOMMU performance when multiple ATUs are
connected and fed by the sequential traffic generator.

62 CHAPTER 4. EVALUATION

Results about the architectural metrics of Table 4.19

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6

One ATU’s L1
SMU cache hits

4096 4096 4069 4069 4069 4069

One ATU’s L1
SMU cache misses

10 10 9 12 13 12

One ATU’s L1
TLB cache hits

4096 4096 4096 4069 4096 4069

One ATU’s L1
TLB cache misses

17631 36818 164069 657673 1329197 2245960

ATC’s L2 SMU
cache hits

0 8 42 191 391 775

ATC’s L2 SMU
cache misses

6 6 6 6 6 6

ATC’s L2 TLB
cache hits

2 14 165 537 987 2353

ATC’s L2 TLB
cache misses

72 140 577 2323 4546 9064

HPTW total
searches on MM

72 140 577 2323 4546 9064

of 1G PG found
by HPTW

4 4 18 61 42 39

of 2M PG
found by HPTW

2 5 26 131 249 520

of 4K PG found
by HPTW

66 131 533 2131 4255 8505

Table 4.21: Architectural metrics of configurations of Table 4.19 used to explore
the performance of RV-IOMMU for multiple numbers of connected ATUs feed by
a sequential traffic generator

As observed, when we increase the number of connected ATUs on a unique
ATC, the tail latency increases accordingly. This is, however, an expected behavior
as the valid requests for the ATC (at least at the duration of the first burst)
are arriving in a synchronous way (meaning that the ATC will have to serve
simultaneous valid requests from all the connected ATUs). As we have already
mentioned in Section 3.5.1, the Request Switch, implemented in a round-robin
policy, is responsible for choosing a single request at a time. This, however, stalls
all the non-served requests increasing the tail latency if new ATUs are added.
Nonetheless, we observe that the meantime of serving a request remains at 6cc for
every configuration described in Table 4.19. This is a feature of our RV-IOMMU’s
architect structure and the reason we call it scalable.

4.2. PHASE 2: EVALUATION ON FPGA 63

4.2 Phase 2: Evaluation on FPGA

4.2.1 Target Platform

The Target Platform is an MPSoC module integrating a Xilinx Zynq UltraScale+.
Zynq UltraScale+ MPSoC is the Xilinx second-generation Zynq platform, combin-
ing a Processing System (PS) and user-Programmable Logic (PL) into the same
device. The Zynq UltraScale+ MPSoC PS block has three major processing units:

• Cortex-A53 application processing unit (APU) - ARM v8 architecture-based
64-bit quad-core multiprocessing CPU.

• Cortex-R5 real-time processing unit (RPU) - ARM v7 architecture-based
32-bit dual real-time processing unit with dedicated tightly coupled memory
(TCM).

• Mali-400 graphics processing unit (GPU) with a pixel and geometry proces-
sor and a 64KB L2 cache.

On the PL of this board, a user can program the FPGA and generate blocks
that the PS could access. This is where the RV-IOMMU is being generated and
evaluated.

4.2.2 Implemented Experiment

The design that we implement to evaluate the RV- IOMMU on the FPGA is
described in this subsection. In the block design, we use some IPs from Xilinx.
The Xilinx IPs we use are:

• AXI Interconnect: to connect the IPs as shown in Figure 4.14.

• AXI CDMA, a Xilinx’s implementation of DMA [11]: to create AXI Read
and Write requests with low software overhead and to stress the RV-IOMMU.

• AXI BRAM Controller & BRAM: We pre-load the AXI ID to ASID table
and a three-level Page Table that translates the incoming addresses from VA
9XXX XXXX to PA 4XXX XXXX and supports all possible AXI IDs.

• Virtual Input/Output (VIO): to easily reset all peripherals using Vivado’s
UI.

• Processor System Reset: to transfer the reset signal around the design.

The aforementioned block design is shown in Figure 4.14. As previously men-
tioned, we use the Zynq UltraScale+ MPSoC to run a bare-metal C program. We
run the C-based code on an ARM processor of the platform using the Vitis IDE.
This program consists of two main tasks. The first is to write 4KB to the RAM
from the IOMMU’s path. After that, to check their validity through both a non-
IOMMU path and an IOMMU one. The second one is to check if the RV-IOMMU

64 CHAPTER 4. EVALUATION

can handle more demanding situations by stress testing it. To accomplish that,
we needed to observe whether the RV-IOMMU could switch between a ready to a
not-ready state and then back to the former. By doing that, one can understand
that the RV-IOMMU can recover from a not-ready state after a short period of
time. To generate situations like this, we configure a DMA engine to generate
requests that will be handled from the RV-IOMMU. The DMA engine is needed
to feed our RV-IOMMU as, in this way, the overhead/time penalty of passing a
request from PS to PL is minimized. The CDMA is programmed by writing spe-
cific addresses referring to its control registers. As indicated in [11], this process
is part of the C-program’s second task mentioned above. In this way, the CDMA
is programmed to transfer 2KB of data. Both of the read and write addresses
are referred to as virtual addresses allowing the RV-IOMMU to translate them.
The C-program’s last step is to validate that the new chunk of memory written by
the CDMA contains the correct/new values. It is important to mention here that
the same experiment was executed with both AXI4 compatible configurations, i.e.,
with and without input buffers on ATU.

Figure 4.14: Implemented block design of FPGA evaluation

4.2.3 Timing Requirements

This subsection provides the report of the timing requirements of the RV-IOMMU
for different configurations. All these metrics are generated using the Synthesis
function (with Flow PerfOptimized high strategy) of Vivado 2020.1. Since we use
only the Synthesis function of Vivado and not the implementation (where I/O
errors occur due to the limitation of available pins), these metrics are pessimistic.

The effect of enabling the input buffers (FIFOs) at ATU regarding the timing
requirements for different configurations is collected and presented in Table 4.22.

4.2. PHASE 2: EVALUATION ON FPGA 65

Timing Requirements comparison when the in. buffers are enabled or not

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5 Conf. 6

AR Reordering X X X X X X
AW Reordering X X X X X X
ATU Input
Buffers

X - X - X -

ATU TLB
Pipeline Reg

X X X X X X

ATC TLB
Pipeline Reg

X X X X X X

ATU L1 TLB Size 16 16 16 16 16 16
ATC L2 TLB Size 32 32 32 32 32 32
ATU L1 SMU
Cache Associativ-
ity

Direct
Mapped

Direct
Mapped

8 8 8 8

ATU L1 SMU
Cache Sets

8 8 4 4 8 8

ATC L2 SMU
Cache Associativ-
ity

16
Ways

16
Ways

16
Ways

16
Ways

16
Ways

16
Ways

ATC L2 SMU
Cache Sets

16 16 16 16 16 16

Critical Path See
4.15

See
4.15

See
4.15

See
4.15

See
4.15

See
4.15

Timing Require-
ments

187MHz 187MHz 187MHz 187MHz 168MHz 168MHz

Table 4.22: RV-IOMMU’s timing requirements for different configurations com-
paring the effect of input buffers of ATU

Figure 4.15: Critical path with source the ATU’s AXI ID to ASID Cache and
destination the Unique Entries TLB’s FIFO

66 CHAPTER 4. EVALUATION

4.2.4 Synthesis Utilization

This subsection provides the FPGA HW sources report needed to generate an RV-
IOMMU for three different configurations. All there metrics were generated by
using the Synthesis function (with Flow PerfOptimized high strategy) of Vivado
2020.1.

The first examined configuration had the following parameters:

• One ATU & one ATC

• No ATU input buffers

• No Reordering

• ATU: SMU FIFO size (Replay and Unique) = 4

• ATU: TLB FIFO size (Replay and Unique) = 4

• ATC: SMU Invalidation FIFO size = 4

• ATC: TLB Invalidation FIFO size = 4

• ATC: SMU Response FIFO size = 4

• ATC: TLB Response FIFO size = 4

• ATC: SMU Invalidation FIFO size = 4

• ATU: SMU Set-associative Cache (Level 1): Associativity = 8 & Cache Sets
= 8

• ATC: SMU Set-associative Cache (Level 2): Associativity = 16 & Cache Sets
= 16

• ATU: Level 1 TLB size = 16

• ATC: Level 2 TLB size = 64

Based on the above, the hardware sources are presented in Table 4.23.

RV-IOMMU with one ATU and one ATC

Configurable Logic
Block

Total Number ATU’s ATC’s

LUT as logic 20754 6161 14509
Registers as Flip Flop 37883 10533 27350
CARRY8 14 14 0
F7 Muxes 2585 532 2053
F8 Muxes 1013 0 1013

Table 4.23: HW resources for RV-IOMMU with one ATU and one ATC

4.2. PHASE 2: EVALUATION ON FPGA 67

The second configuration is almost identical to the first, except that we chose to
apply the reordering feature on both AW and AR channels. Table 4.24 shows the
HW requirements of this second configuration. In this way, we manage to estimate
the additional HW resources of the reordering feature. Based on Table 4.23 and
Table 4.24, this configuration’s reordering feature needs an extra 1561 Lookup
Tables LUTs as logic, 76 registers as Flip-Flops, and 20 F7 Muxes. While the
reordering feature reflects only on the ATU, the above numbers can be interpreted
as 25% more ATU LUTs as logic, 0.007% more registers as Flip-Flops, and 0.037%
more F7 Muxes (the percentages refer only to ATU metrics).

RV-IOMMU with one ATU and one ATC

Configurable Logic
Block

Total Number ATU’s ATC’s

LUT as logic 22315 7723 14508
Registers as Flip Flop 37959 10609 27350
CARRY8 14 14 0
F7 Muxes 2605 552 2053
F8 Muxes 1013 0 1013

Table 4.24: HW resources for RV-IOMMU with one ATU and one ATC with ATU’s
reordering feature

The third and last configuration that we use is almost identical to the second
with the addition of two input FIFOs (buffers) of size 8 on ATU incoming channels.
Table 4.25 shows the HW requirements of this configuration. This allows us to
estimate the additional HW resources for the reordering feature and input buffers.
By comparing 4.24 to Table 4.25, one can observe that the input buffers with the
reordering feature need an extra 286 LUTs as logic, 1599 registers as Flip-Flops,
and 97 F7 Muxes, as opposed to the second configuration. While the input buffers
are on the ATU, the above numbers can be interpreted as approximately 0.037%
more ATU LUTs as logic, 0.15% more register as Flip-Flops, and 0.175% more F7
Muxes (the percentages refer only to ATU metrics).

RV-IOMMU with one ATU and one ATC

Configurable Logic
Block

Total Number ATU’s ATC’s

LUT as logic 22601 8190 14327
Registers as Flip Flop 39558 12208 27350
CARRY8 14 14 0
F7 Muxes 2702 649 2053
F8 Muxes 1013 0 1013

Table 4.25: HW resources for RV-IOMMU with one ATU and one ATC with ATU’s
reordering feature and input buffers

68 CHAPTER 4. EVALUATION

4.2.5 Implementation Utilization

This subsection provides the report of the timing requirements of the RV-IOMMU
for the configuration that we evaluate on the Ultrascle+ FPGA (see 4.2). All these
metrics were generated using the Implementation function (with Flow PerfOptimized high
strategy) of Vivado 2020.1.

The examined configuration had the following parameters:

• Two ATUs & one ATC

• Enabled input buffers with size = 8

• Enforce Reordering on both AW & AW channels

• ATU: SMU FIFO size (Replay and Unique) = 4

• ATU: TLB FIFO size (Replay and Unique) = 4

• ATC: SMU Invalidation FIFO size = 4

• ATC: TLB Invalidation FIFO size = 4

• ATC: SMU Response FIFO size = 4

• ATC: TLB Response FIFO size = 4

• ATC: SMU Invalidation FIFO size = 4

• ATU: SMU Set-associative Cache (Level 1): Associativity = 8 & Cache Sets
= 8

• ATC: SMU Set-associative Cache (Level 2): Associativity = 16 & Cache Sets
= 16

• ATU: Level 1 TLB size = 16

• ATC: Level 2 TLB size = 64

Based on the above, the hardware resources are presented in Table 4.26. The
Configurable Logic Block (CLB) is the main resource for implementing general-
purpose combinatorial and sequential circuits. Every CLB contains one slice with
eight 6-input LUTs and sixteen Flip Flops (storage elements). One LUT can be
configured as (a) a 6-input LUT with one output or (b) two 5-input LUTs with
separate outputs but common addresses or logic inputs. The available FPGA
resources are 274080 CLB LUTs and 548160 CLB Registers.

4.2. PHASE 2: EVALUATION ON FPGA 69

FPGA implemented RV-IOMMU with two ATUs and one ATC (4.2)

Configurable Logic
Block

Total Number one ATU’s one ATC’s

CLB LUTs 8016 3130 or
3000

1885

CLB Registers 12447 5095 2256
CARRY8 44 22 0
F7 Muxes 122 26 70
F8 Muxes 0 0 0

Table 4.26: Actual HW resources for RV-IOMMU with two ATU and one ATC
implemented on the FPGA

In this way, we figure out that the instance mentioned above of RV-IOMMU
that we also use for the evaluation on FPGA (see 4.2) uses 2.9% of the available
CLB LUTs and 2.3% of the available CLB Registers.

Table 4.27 provides a comparison of the required HW resources comparing
the RV-IOMMU (with 2 ATUs and 1 ATC), the Ariane core [6], and the CDMA
[11]. All these metrics were generated using the Implementation function of Vivado
2020.1 with the target platform a Zynq UltraScale+ MPSoC ZU9CG (part number:
xczu9eg-ffvc900-2-e) [12].

Comparison of used HW resources

Configurable Logic
Block

RV-IOMMU (2
ATUs, 1 ATC)

Ariane core CDMA

CLB LUTs 8016 39855 949
CLB Registers 12447 21373 1444
CARRY8 44 676 14
F7 Muxes 122 2414 10
F8 Muxes 0 181 0

Table 4.27: Actual HW resources comparison for (a) RV-IOMMU with two ATU
and one ATC, (b) Ariane core, and (c) CDMA - all implemented on the same
FPGA

70 CHAPTER 4. EVALUATION

Chapter 5

Conclusion and future work

5.1 Summary

This thesis contributes to multiple aspects of the hardware design for RISC-V
IOMMUs. First of all, we design the architecture of a scalable IOMMU for RISC-
V Architectures. Then we implement the RV-IOMMU in SystemVerilog following
a parametric approach and develop many user-defined features such as reordering
and controlling the number of generated ATUs. According to the 64-bit RISC-V
ISA, our RV-IOMMU is compatible with Sv39 and Sv48. We also evaluate our
implementation using simulation. Lastly, we evaluate the RV-IOMMU on FPGA
by creating a block design that includes RV-IOMMU in order to verify our design.
To conclude, we implement an HW component that accepts read and write AXI
requests and, if allowed, performs the address translation from Virtual (included
in the initial incoming request) to Physical (included at the outcome request of
the RV-IOMMU) addresses.

5.2 Future Work

Some logic of the implementation was not implemented optimally due to time
constraints. As a next step, efforts will focus on implementing the modules listed
below:

• A more sophisticated way to handle the incoming request that does not have
the permission to accomplish the action.

• Improve the TLB input controller with an FSM (similar to the SMU’s one).

• Replace the control logic of the RV-IOMMU with a credit-based one.

71

72 CHAPTER 5. CONCLUSION AND FUTURE WORK

Bibliography

[1] Dynamic dma mapping using the generic device. https://www.kernel.org/
doc/Documentation/DMA-API.txt.

[2] Ieee standard for systemverilog–unified hardware design, specification, and
verification language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012),
pages 1–1315, 2018.

[3] Advanced microcontroller bus architecture - amba. https://developer.arm.
com/architectures/system-architectures/amba, 2021.

[4] Amba axi and ace protocol specification. https://developer.arm.com/

documentation/ihi0022/h, 2021.

[5] Arm system memory management unit architecture specification - smmu
architecture version 2.0. https://developer.arm.com/documentation/

ihi0062/dc/, 2021.

[6] The cva6 (formerly ariane) is an application class 6-stage risc-v cpu capable
of booting linux. https://github.com/openhwgroup/cva6, 2021.

[7] Input–output memory management unit. https://en.wikipedia.org/

wiki/Input%E2%80%93output_memory_management_unit, 2021.

[8] Kernel. https://en.wikipedia.org/wiki/Kernel_(operating_system),
2021.

[9] Physical address extension. https://en.wikipedia.org/wiki/Physical\

_Address_Extension, 2021.

[10] The risc-v instruction set manual volume ii: Privileged architecture docu-
ment version 1.12-draft. https://riscv.org/technical/specifications/

privileged-isa/, 2021.

[11] Axi central direct memory access v4.1. https://www.xilinx.com/support/
documentation/ip_documentation/axi_cdma/v4_1/pg034-axi-cdma.pdf,
April 4, 2018.

73

74 BIBLIOGRAPHY

[12] Zynq ultrascale+ device: Technical reference manual. https:

//www.xilinx.com/support/documentation/user_guides/

ug1085-zynq-ultrascale-trm.pdf, December 4, 2020.

[13] Virtual memory. https://en.wikipedia.org/wiki/Virtual_memory,
February 2021.

[14] Jonathan Corbet. Linux device drivers, chapter 15: Memory mapping and
dma. 3rd edition, 2005.

[15] Jimi Xenidis Muli Ben-Yehuda. The price of safety: Evaluating iommu per-
formance. pages 9–20, 2007.

[16] M. J. Lanigan T. Kilburn, D. B. G. Edwards and F. H. Sumner. One-level
storage system. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), EC-
11(2):223–235, April 1962.

[17] Andrew Waterman and Krste Asanovic. The risc-v instruction set manual,
volume i: Unprivileged isa, document version 20191213. RISC-V Foundation,
2019.

Appendix A

ARM’s Compressed StreamID
indexing matching algorithm

Following the Compressed StreamID indexing matching algorithm of ARM’s Sys-
tem MMU v2.

• Assume that StreamID = strm id

• Column = strm id MOD 4 (SMMU COMPINDEXn registers size equals to
4 bytes)

• Row = strm id DIV 4

• The column byte of SMMU COMPINDEXrow holds the value of the SMMU S2CRn
for the stream.

This array’s total size is 64KB and is calculated if we think that the StreamId
is up to 16-bits to support 64K different StreamIDs. There are 16K rows at the
array. As a result, this array’s total size is 16K * 4 B = 64KB (one byte per
StreamID).

75

ctrl + s , alt + F4

	imast_MSc_Thesis_RV_IOMMU_final
	υπογραφεσ_2

