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Abstract

The interaction of laser pulses with an array of solids (such as metals, semi-
conductors, dielectrics, polymers) have the ability to cause significant modifica-
tions in their surface and consequentially lead to remarkable changes in their op-
tical and mechanical properties. A particularly distinct category of laser-matter
interaction which allows the investigation of the existing mechanisms in short time
scales, is highly recommended in the application of ultrashort laser pulses(in the
femptoseconds (fs) time scale). The materials interaction with this kind of pulsing
lasers, cause numerous of reliant operations in the spacetime interval which deter-
mine by the characteristics of the irradiation. In this thesis, a system of parabolic
differential equations using computational techniques that were based on the fi-
nite difference method is presented for the purpose of understand the physical
mechanisms that describe the response of the material after the irradiation. This
technique will allow the investigation of thermal phenomena which occur both in
the electron subsystem and in the lattice of the material. Ultimately, this will
constitute a useful tool for the prediction of the optical/mechanical properties of
the material as a result of the irradiation.
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Chapter 1

Introduction

Researchers have been studying how lasers damage different materials for sev-
eral decades. This has contributed both to the basic scientific understanding of
highly nonequilibrium processes and to the promotion of various industrial ap-
plications. Over the years material processing with intensive laser radiation has
found numerous applications such as micro-machining [15] and nano—technology
[16]. What is more, laser techniques are also encountered in the medical world
for the removal of biological tissues.

Selecting the most appropriate laser source is of a profound importance since
it can affect the material processing result. It seems that for each process and
material a most suitable laser source can be found. However, femtosecond (fs)
pulse lasers are easily tailored to desired specifications and are more powerful and
versatile tools compared to the nanosecond (ns) pulse lasers [17]. In addition,
femptosecond (fs) pulses have been shown to be more advantageous concerning
the microstructuring as they simultaneously result in sharper hole geometries and
smaller damage extention. This can be attributed to the limited heat transfer
perpendicular to the incoming laser pulse, which means that a smaller area around
the laser spot is being affected.

Additional studies, both theoretical [1] and experimental [16], have been con-
ducted for the purpose of investigating the processes taking place in the bulk
material or the surface during or after the laser pulse. Due to the complex char-
acter of the processes involved at different time and length scales, theoretical and
computational investigations are a challenging task. An important parameter
to investigate, is the electron—lattice relaxation time which is representative for
every material. When pulses become shorter than this time, the electrons and
the lattice are out of thermal equilibrium and have to be described separately.



One theoretical approach that has been widely used to allow a detailed investi-
gation of the process / mechanisms that characterise laser - matter interaction
is the Two—Temperature Model (TTM). This model constitutes the basis of the
simulations presented in this work. The TTM basically describes the lattice and
the electron temperature evolution via two coupled inhomogeneous partial differ-
ential equations.

The structure of this thesis is organized as follow. In the first part, an introduc-
tion to the theoretical background is given in order to define the basic principles
that occur during the irradiation of a metal sample. This process is described
qualitatively and a model for ultra—short laser pulses in metals is presented along
with the numerical methods that were used for approaching this process. After-
wards the implementation scheme of the basic equations is proposed, while in the
last part, the results from the simulations of various scenarios are discussed.



Chapter 2

Theoretical Background

Before explaining the numerical methods that approach this kind of problems, it
is very important to understand the mechanisms when an ultrashort laser pulse
hits a metal. In the following chapter, important basic theories are defined.

2.1 Laser Pulses

Laser ablation is considered to be one of the most important techniques for ma-
terial processing and is commonly used for mass removal. More specifically, it
can drill extremely small holes through very hard materials such as metals.

The pulsed laser refers to a short time (e.g., milliseconds to femtoseconds) out-
put. The irradiation of a solid surface by a long-pulsed (e.g., nanoseconds pulsed)
laser beam, results in the initiation of the material’s temperature rise due to the
absorbed laser energy. Then, the thermal motion of the particles is accelerated.
Once the absorbed energy exceeds the sublimation energy, these particles evapo-
rate or sublimate and eventually become vaporized particles.

Lasers with long wavelength are not suitable for metal ablation, as most of the
laser energy is reflected by the metal surface. On the other hand, ultrashort
laser pulses (e.g., femtosecond laser) allow even less thermal damage and a nearly
melt free ablation, in case the laser pulses are close to ablation threshold. For
this reason, ultrashort laser pulses are good candidates for metal ablation and
constitute the kind of pulses that we are studying in this work. The differences
between long (a) and short (b) laser pulses are shown in Figure 2.1.



(a) (b)

Femtosecond laser
Long-pulsed laser

Ejected matter

Focus lens Focus lens

Without damages Without droplets

Droplets The surrounding damage
< o A

long-pulsed laser femtosecond laser

Figure 2.1 The characteristics of different laser ablation processes [21]

2.2 Thermal Diffusion

The key feature to short pulse damage is its distinct non-thermal behaviour re-
sulting from the fact that the electron and lattice temperatures are far from
equilibrium. However, that doesn’t mean that there are no thermal processes
involved at all. For short pulse damage the electrons and lattice are never in
equilibrium during the laser pulse (figure 2.2).
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Figure 2.2 Sketch of the early excitation and relaxation processes in laser-
irradiated metal. Initially, the electronic system is excited to a non-equilibrium
distribution. Thermalisation to a new Fermi-Dirac distribution of elevated tem-
perature is depicted before relaxation with the lattice to a joint temperature. [1]



Nevertheless, the lattice will always be in a thermal distribution. Quickly after
the laser interaction the electrons will also form a thermal distribution within
themselves via Coulomb collisions, but at higher values of temperature than the
ions. So while it is not possible to treat the entire system as if it were in thermal
equilibrium, the two components individually are in a thermal configuration and
thus thermal effects are prevalent. Hence, it is possible to make sensibly accurate
predictions for damage threshold fluences of materials using only thermal pro-
cesses. As long as the electrons and lattice are handled separately, the expression
for heat flow can still be expressed as:

Qeq1 = —ke VI, (1)

where ¢ is the heat flux density, T is the local temperature, and & is the material
conductivity, and where the subscripts e and [ denote the electron population
and the lattice population, respectively.

2.3 Ablation Model

Laser ablation or photoablation is the process of removing material from a solid
surface by irradiating it with a laser beam. At low laser flux, the material is
heated by the absorbed laser energy and evaporates or sublimates. At high laser
flux, the material is typically converted to a plasma. Usually, laser ablation refers
to removing material with a pulsed laser.

The physical image of femtosecond laser ablation is quite different from nanosec-
ond laser ablation. When the pulse duration time is in the order of a femtosecond,
the impact of the relaxation time of electron—phonon interaction should be con-
sidered. When the femtosecond laser focuses on the surface of a metal, the photon
energy is first absorbed by electrons, leading to an accelerated thermal motion of
the electrons and a rapid temperature increase of the electron subsystem. How-
ever, during the short pulse, there is no time for the electron’s obtained energy to
be transmitted to the lattice. At this point, the temperature of the electron gas is
very high, while the lattice subsystem’s temperature is maintained relatively low.
Thus, a ‘cold’ ablation process occurs. Usually, the thermal equilibrium time of
the metal is roughly a few femtoseconds. This is in fact the relaxation time of
electron—phonon interaction.
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Figure 2.3 Processes of ablation in metals. After the pulse energy is absorbed,
the electrons thermalize quickly, electrons transfer their energy to the lattice.
Then, ablation and diffusion occurs [6]

In the short period of pulse, there are two temperature subsystems in the target:
the electronic subsystem and the lattice subsystem. These two subsystems can
be described using two electron—phonon coupling thermal conduction equations,
named as the two-temperature model for femtosecond laser ablation.
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Figure 2.4 Ultrafast laser beam - metal interaction [2]
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2.4 Modeling Laser Damage

2.4.1 Two-Temperature Model (TTM)

The theoretical method to examine the ultrashort laser-matter interaction is
widely known as the Two-Temperature Model (TTM). Laser energy is absorbed
in metals by the conduction band electrons within a few femtoseconds. After
the fast thermalization of the laser energy in the conduction band electrons may
quickly diffuse and thereby transport their energy deep into the lattice through
electron-phonon coupling. The thermodynamic equilibrium between electrons
and lattice is accomplished within tens to hundreds of picoseconds after the end
of the pulse. Two differential equations, referred to as TTM [1], are combined to
describe the temperature evolution of electrons and lattice, respectively

C%e =V (kVT,)—G(T.—T)+ S (2)
C% =V - (kVT) +G(T. — Tp) (3)

where the subscripts e and [ refer to the electron and lattice parameters.

C. and k. are the heat capacity and thermal conductivity of electron, Cj is the
lattice heat capacity which can be considered as a constant, the electron-phonon
coupling GG is dependent on the temperature. To capture the temperature depen-
dency of material thermal properties we assume that C' and k are also temperature
depended variables.

Considering temporally Gaussian-shape pulsed laser irradiation, the time and
space dependent source term can be expressed as

S(r,2,1) = loeap (~4m(2) 52 ) (1 = Ryeap (2 - (£)?) (4)
Iy = /2 (5)

Laser absorption from the surface into the bulk metal follows Lambert-Beers law
[1], where R is the target reflection coefficient, § is the optical penetration depth
of the metal film. The laser pulse is a Gaussian distribution both in time and
space, I, is the laser fluence, ro and zy are the r-coordinate and z-coordinate
radius of the laser spot and ¢, is the Full Width at Half Maximum (FWHM)
pulse duration. For t;, we assume ¢y = 3t,. The laser absorption into the work
piece begins at r=z=0.
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2.4.2 Boundary Conditions

In our latter simulations of laser ablation, finite-difference method is used to
solve equations (1) and (2). The simulation starts at time t=0, and the initial
conditions for both electrons and lattice are fixed at room temperature. As the
ablation process takes place during the femtosecond to picosecond time period, it
is reasonable to assume that heat losses from the metal film to the surrounding
can be ignored. Therefore, the initial and boundary conditions can be described

by

Te(r,z,t =0) =Ty(r,z,t =0) = 300K (6)
o —aml g
Q Q

where () represents the four boundary surfaces of the 2D film

12



Chapter 3

Numerical Methods

Numerical methods aiming to depict the TTM and describe the transient dy-
namics of the electron gas - lattice subsystems. Through this representation,
information such as Temperature evolution and melting can be noted. Conse-
quently, detailed information about the dynamics of the system can be gathered.
There are several numerical methods of solutions for these kind of problems. In
this thesis Finite Difference method were used to approach the model.

3.1 Method of Lines

The basic idea of the Method Of Lines (MOL) is to replace the spatial derivatives
in the Partial Differential Equation (PDE) with algebraic approximations. Once
this is done, the spatial derivatives are no longer expressed explicitly in terms
of the spatial independent variables. Thus, in effect only the initial value vari-
able, typically time in a physical problem, remains. In other words, with only
one remaining independent variable, we have a system of Ordinary Differential
Equations (ODEs) that approximate the original PDE. The challenge, then, is to
formulate the approximating system of ODEs. After this is done, we can apply
any integration algorithm for initial value ODEs to compute an approximate nu-
merical solution to the PDE. Thus, one of the prominent features of the MOL is
the use of existing, and generally well established, numerical methods for ODEs.

As mentioned at the beginning of this chapter, the finite difference method is
used for developing discrete nodebased approximations to derivatives.

3.1.1 Finite Difference

To illustrate this procedure, we consider the MOL solution of equations (2),(3).
First we need to replace the spatial derivatives with an algebraic approximation.
In this case we will use a finite difference (FD) such as

13



aT  T(xo+h)—T(zo—h)
bz ~ 2h (8)

T=x,

where z, is the grid point where the derivative is numerically calculated and
h is the spacing along the z-axis assumed constant for the time being.

We should also mention two points of terminology for FD approximations. The
equation (8) is a centered approximation since the two points at z,+h and x,—h
are centered around the point z, (Figure 3.1). However, there are also examples
of noncentered, one-sided or upwind approximations since the points x, and x,—h
are not centered with respect to h. Another possibility would be to use the points
x, and z, + h in which case the approximation of 7T, would be downwind. These
are called backward and forward approximations accordingly.

The numerical error for the centered approximation is of the order of O(h?) in
addition with the forward or backward method which is of the order of O(h). For
this reason, to obtain more accurate results, in the derivative approximations of
this work, centered approximation is used.

T(xo+h) —T(z,—h)
2h

slope =

To—h Zo To+ h

Figure 3.1 Centered Finite Difference method

Finally, to conclude the discussion of first order PDEs, since the Godunov the-
orem indicates that FD approximations above first order will produce numeri-
cal oscillations in the solution, the question remains if there are approximations
above first order that are nonoscillatory. In order to answer this question we
note that the Godunov theorem applies to linear approximations. Equation (8)
is a linear approximation. If, however, we consider nonlinear approximations for
T,, we can in fact develop approximations that are nonoscillatory. The details
of such nonlinear approximations are beyond the scope of this discussion, so we
will merely mention that they are termed high resolution methods which seek a
total variation diminishing (TVD) solution. Such methods, which include flux
limiter [23] and weighted essentially nonoscillatory (WENO) [24] methods, seek

14



to avoid non-real oscillations when shocks or discontinuities occur in the solution.

So far we have considered only the MOL solution of first order parts. We also
need an approximation for the second derivative 7T,,. A commonly used second
order, central approximation is

82_T ~ T(zo+h)—2T(x0)+T (xo—h) (9)
Ox2 ~ h?
=,

The numerical error of this approximation is of the order of O(h?).

3.1.2 Time Discretization

As noted in subsection 3.1.1, both forward and backward approximations have
notable temporal truncation errors. On the other hand, there are unconditionally
stable methods such as the Crank—Nicolson method. This makes it an attractive
choice for computing unsteady problems since accuracy can be enhanced without
loss of stability at almost the same computational cost per time step.

Nevertheless, the discretization of the problem is not alterable. For this reason,
MOL combined with centered finite difference approaches for spacial derivatives
are used in the present work. This kind of approaches, have been widely used in
various studies similar with this [3,9,19]. Moreover, for the requirements of our
project the method is well responding and hence we obtain reliable results that
also corresponds to the experimental data.

Concerning the time discretization part of MOL, a wide range of numerical meth-
ods can be used. These include Euler method, Runge-Kutta methods, variable
multistep methods etc. In the present work, we will use a build-in solver of
MATLAB, in order to obtain more accurate results, using a dynamical changing
timestep size.

In particular beginning at the initial time and with initial conditions, MATLAB
ODE solvers step through the time interval, computing a solution at each time
step. If the solution for a time step satisfies the solver’s error tolerance criteria,
it is a successful step. Otherwise, it is a failed attempt. Then, the solver shrinks
the step size and tries again.

Usually, the system of ODEs obtained after space discretization is quite stiff. For
a stiff problem, solutions can change on a time scale that is very short compared
to the interval of integration, but the solution of interest changes on a much longer
time scale. Methods not designed for stiff problems are ineffective on intervals
where the solution changes slowly because they use time steps small enough to
resolve the fastest possible change.

15



Stiff solvers can be used exactly like the other solvers. However, you can often
significantly improve the efficiency of the stiff solvers by providing them with
additional information about the problem. There are four solvers designed for
stiff (or moderately stiff) problems:

e ode23s is based on a modified Rosenbrock formula of order 2.

e ode23t is an implementation of the trapezoidal rule using a “free” interpolant.
e ode23tb is an implicit Runge-Kutta formula with a first stage that is a trape-
zoidal rule step and a second stage that is a backward differentiation formula of
order two.

e odelbs is a variable-order solver based on the Numerical Differentiation For-
mulas (NDFs). Optionally it uses the Backward Differentiation Formulas, BDFs,
(also known as Gear’s method) that are usually less efficient. Odelbs is a multi-
step solver.

In this thesis, odelbs is employed for time discritization due to the stiff character
of the TTM problem.

3.2 Stability

A critical issue with any time advancement scheme is its underlying stability. The
stability criterion may be written as
A
axp <3 (10)
The quantity, a At/(Ax)? | is a nondimensional quantity and it is called grid
Fourier number [25]. Furthermore, o denotes thermal diffusivity.

For fixed grid spacing, Az, Eq. (10) is equivalent to placing a restriction on
the time step that may be used to attain a stable solution with explicit time
advancement:

Sa (11)

One of the important implications of Eq. (11) is that the time step size must
also be correspondingly adjusted to a smaller value if the grid is refined. This
requirement places a severe burden on computational efficiency. For example, if
the grid size is halved, the time step size must be reduced by a factor of 4. This
implies that, even for a 1D problem, the computational time needed to reach a
certain instant of real time will go up by a factor of 8 if the grid size is halved.
Thus, even though the explicit time advancement method is advantageous from
the point of view of memory and ease of implementation, it can become compu-
tationally quite expensive when used for fine grids because of the restriction on
the time step size that can be used.

16



If such stability analysis were to be performed on a spatially 2D PDE, the fol-
lowing stability criterion would result for the explicit method:

1 1
At ey T myp) <

N |—=

For equal grid spacing in the two Cartesian directions (i.e., Az = Ay), Eq.
(12) reduces to

M

(Az)

[0}

At <

(13)

N

which implies that the restriction on the time step is even more severe for multi-
dimensional problems [25].

3.3 Different Coordinate Systems

In order to trace our problem to a simplified manner, geometrical properties are
taken under consideration. In order to do that the symmetry of a metal sample is
being exploited and thus we can simplify our model. Different coordinate systems
analysis can in principle be carried out. For this reason, diffusion equation can
be generalized to

o

S =aViu (14)
where V? is the coordinate independent Laplacian operator which can then be
expressed in terms of a particular coordinate system. For example, in cylindrical
coordinates Eq. (14) is

2

ou __ 9%u 1 0u 1 0%u 9%u
a—a<w+;m+r—zw+@) (15)

There is also an expression with shperical coordinates

ou _ % 20u 1 (0%u | cosh du 1 P
ot =olgs + 35+ (802 + Gino ae) + in7e a¢2] (16)

The challenge then in applying the MOL to PDEs such as equations (15) and (16)
is the algebraic approximation of the Right Hand Side (RHS) (V?u) using FDs
approximations, that have been used in MOL analysis. A particularly demanding
step is regularization of singularities such as at r = 0 (note the number of divisions
by r in the RHS of equations (15) and (16)) and at § = 0, 7/2 (note the divisions
by sin(f) in Eq. (16)).

17



The complexity of the numerical solution of higher dimensional PDEs in various
coordinate systems prompts the question of why a particular coordinate system
would be selected over others. The mathematical answer is that the prudent
choice of a coordinate system facilitates the implementation of the BCs in the
numerical solution.

The answer based on physical considerations is that the coordinate system is
selected to reflect the geometry of the problem system. For example, if the
physical system has the shape of a cylinder, cylindrical coordinates would be
employed. This choice then facilitates the implementation of the BC at the
exterior surface of the physical system (exterior surface of the cylinder). However,
this can also lead to complications such as the r = 0 singularities in Eq. (15) (due
to the variable 1/r and 1/r? coefficients). The resolution of these complications is
generally worth the effort rather than the use of a coordinate system that does not
naturally conform to the geometry of the physical system. Whether the physical
system is not shaped in accordance with a particular coordinate system, i.e., has
an irregular geometry, then an approximation to the physical geometry is used,
generally termed body fitted coordinates.

In our 2D model, an approximation, cylindrical coordinates are used to discritize
the metal sample and consequently solve the PDE system. However, as it is
refered above, our model seems to be functional under specific circumstances.
Therefore, axisymmetric properties of the sample needs to be taken into account.

18



3.3.1 Cylindrical Model
Inital and Boundary Conditions

The cylindrical domain is limited by the side surface and two bases. The surfaces
r = Ry (external radius of domain) and z = Z (bottom base of cylinder) are
far enough away from the source resulting from the laser’s action, that adiabatic
conditions can be accepted both for Ry and Z. A similar condition can be assumed
for z = 0.

laser beam

1
l,.]

t . : . O
_t""?wé-m?w# i, j-l@-0--@-O--e@i, j*1
booaeg ;
. : . : ®
r...{. i+1,
boeeaod

AR SR

\ I h

Figure 3.2 Differential mesh in Cylindrical Coordinates [14]

The Two-Temperature Model can be expressed as:

82 (kT (ke Te 02 (kT
Ceaaj;e - ( (37'2 ) + % (87' ) + (8z2 )> - G(Te - ﬂ) + S (17>
CoT = (azg;gn) I %“’gﬁ) n 62((91?2%)) +G(T.-T) (18)

The numerical solution of Eq. (17), (18) depends upon the explicit finite dif-
ference technique to calculate the electron and lattice temperature distribution
of plume through r and z axes. In the figure 3.1, the application of the centered
approximation of Finite Difference method can be observed. Indices i and j will
be used for indicating the points along the z and r directions respectively.
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Chapter 4

Results & Discussion

The TTM given by the equations (2) and (3) can be readily solved numerically
to analyse the heat penetration into the bulk of the material. We have set under
investigation both the one dimensional model and the 2D model. Simulations are
presented by choosing gold as a test material.

4.1 1D model

The parameters of our simulations are given in Table I, obtained from [8]. The
electron heat capacity is calculated proportional to the electron temperature when
the electron temperature is less than the Fermi temperature as C, = 77T, [8]. The
lattice heat capacity is set as a constant because of its relatively small variation
as the temperature changes. The electron heat conductivity is expressed as k. =
ke,BT./(AT? + BT)) (8], where k.,, A and B are the material constants. For
the electron—lattice coupling factor G we assume a temperature dependency G =
Go(A(T.+1T;)/B+1), where G is the coupling factor at room temperature[8]. The
lattice thermal conductivity k; set as constant due to insignificant contribution.
The penetration depth « is taken into account as 13.7 nm, obtained also from [§].

Table I. Thermophysical parameters of the system [8]

Go (107 Jm=3s 1K 1) 0.21
v (Jm3K™?) 68
A (107 s71K2) 1.18
B (10" s 1K) 1.25
key (Jm~1s™1K™) 318
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4.1.1 Temperature evolution

The numerical method is first performed to calculate a 100nm thick single-layer
gold film. The laser light source used in the simulation process is an 800 nm
100 fs laser with the laser fluence of 35 m.J/cm? and a pulse duration of the
magnitude of ¢, = 100fs. The surface reflectivity of gold is taken into account
as a constant value R = 0.974. However, it would be important to mention that
reflectivity coefficient constitute a variable value, depended on the characteristic
time of laser pulse ¢, [9)].

The temperature evolution as a function of time, of the gold sample is shown in
figure 4.1. Within the pulse interaction, the electron temperature is heated up
to over a thousand K, while the lattice temperature remains low being close to
the room temperature (300 K). It is noted that significant lattice heating occurs
with the beginning of the relaxation, due to electron-phonon coupling, reducing
the electron temperature simultaneously.
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Figure 4.1 Electron 7, and lattice T; temperatures versus time (¢, = 100fs,
E, = 35m.J/cm?, 800 nm laser wavelength, r = 0)

The lattice temperature subsystem not much increase in compared with the elec-
tron subsystem. Briefly the behaviour of electron and lattice can be expressed
as the electron temperature will be increased rapidly until the end of laser pulse,
then decreased rapidly. Moreover for the lattice subsystem, the temperature pro-
file increased slowly form the beginning of laser pulse and remain increased after
the end of pulse duration (for several pulse duration times), due to large heat
capacity for the lattice subsystem.
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The thermal equilibrium between electrons and lattice is achieved afterward (the
small plateau on the temperature curves). The time span between the initiation
of ablation and the thermal equilibrium between electron and lattice is denoted
as the ablation period, which depends on the electron-phonon coupling strength
as well. It can be noted that once ablation starts, the decreasing rate of electron
surface temperature is higher than the normal relaxation process
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Figure 4.2 Electron temperature distribution versus time at r =0 (¢, = 100fs,
E, = 35mJ/cm?, 800 nm laser wavelength)

A contour plot for the electron temperature is shown in figure 4.2. This figure,
vertical cuts, illustrates that the lattice remains cold for the first few picoseconds,
and lattice then heated via electron—phonon collisions over a time-scale of a few
picoseconds.
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4.2 2D model

Both the physical and the optical parameters of the simulation are given in Table
I1. Various thermophysical parameters of the material, such as heat conductivities
of the electron and lattice subsystems, calculated again in the basis of [8] and
their calculation explained in the framework of the 1D model. The lattice heat
capacity is set again as a constant. The electron heat conductivity is expressed
as k. = ke, BT./(AT? + BT;) , with k., A and B represent material constants.
As in the one-dimensional model, lattice thermal conductivity k; set as constant.
The penetration depth « is taken into account as 13.7 nm, obtained also from [8].

Table II. Thermophysical and optical physical parameters for the sample.[8,5]

C. (10°Jm3 K1) fitting
Oy (108 Jm 3K 1) 2.5
G (10" Jm=3s7 1K) fitting
A (107 s K2) 1.18
B (10" s K1) 1.25
a (1079m) 13.7

As it can be noted from [5], electron heat capacity can be expressed with linear
approximations, only in the limit of small Temperatures. Also, electron-phonon
coupling factor should not be considered as constant in high temperature regime.
For this reason, we calculate these parameters by using a fitting procedure with
polynomial interpolation, in order to make our model more accurate. MATLAB
functions that perform different forms of piecewise cubic Hermite interpolation
were used. Each function differs in how it computes the slopes of the interpolant,
leading to different behaviours when the underlying data has flat areas or undu-
lations.
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Figure 4.3 Geometric shape of the 2D metal sample (Modified from [4])

The numerical method is first performed to calculate a r = 20um x z = 10um
gold sample (Figure 4.3). The laser light source used in the simulation process is
an 500 fs laser with the laser fluence of 150 m.J/cm?. The surface reflectivity of
gold is taken again into account as a constant value R = 0.974.
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Figure 4.4 represents the first half of the evolution of the laser pulse. We capture
4 frames until the Temperature reach a peak. It can be observed that a steep shift
in the Temperature occurs in the z-axis. For that reason, in order to obtain more
accurate calculations, we amplify the z-axis discritization with sufficient number
of elements.

On the other hand, the slope of the diffusion in the r direction has a smooth
behaviour. To avoid angularity into the plot, we choose appropriate spot size for
the source term. A spot size of 7.5 x 0.1 pum (Figure 4.3) seems to be a good
candidate for our simulations.

During the second half of the evolution, the same behaviour of the plot can be
observed but in the opposite directions. The electron and the lattice subsystems
tend to reach the thermal equilibrium after a couple of picoseconds.
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Figure 4.4 Distribution of electron temperature at four different frames of the
evolution (¢, = 500fs, 800 nm laser wavelength, E,=150 m.J/cm?, ry=7.5 um,
20=0.1pum)

The theoretical model presented Equations (2), (3) is suffice to describe the ther-
mal response of the electron and lattice subsystems. The influence of various laser
beam parameters such as the laser fluence £, and the pulse duration ¢, needs to
be analysed in more details.
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4.2.1 Fluence dependence

The role of various absorbed fluences in electron and lattice temperature is shown
in Figure 4.5. It can be easily observed that fluence increasement, leads to higher
peaks in the electron temperature. Also, it can be noted that the thermal equi-
librium between electron and lattice is established after a few picoseconds for
low fluences. At higher fluences, an approximate electron—lattice equilibrium is
observed after more of picoseconds, and the energy is distributed over hundreds
of nanometers due to heat propagation effects.

Figure 4.5 Transient behaviour of electron temperature, T, for different expres-
sions of laser fluence E, (800 nm laser wavelength, ¢, = 500fs at r = z = 0).

It is important to mention that both widening and deepening of the craters appear
for increasing laser fluences, while the depth of the ablation craters increases
more quickly [3]. Under high fluence laser irradiation, both electron and lattice
temperature rise faster to trigger a much earlier ablation.
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This can be also noted from the lattice Temperature plot in Figure 4.6. Notable
variations in the lattice temperature can be observed for different values of laser
fluence. Consequently, upward trends in the fluence, enable the solid to reach the
melting threshold value.
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Figure 4.6 Transient behaviour of lattice temperature, T} for different expres-
sions of laser fluence E, (800 nm laser wavelength, ¢, = 500fs at r = z = 0).
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4.2.2 Pulse duration dependence

It is very important to investigate the effect of pulse duration on threshold fluence,
which is related to electron and lattice temperatures.

After a couple of runs, for different laser pulse widths, we can notice that figure
4.7 show variations in peak electron temperature for different pulse durations. It
is useful to note that the equilibrium temperature between electrons for longer
pulse durations moves to higher times. Furthermore, temperature peak is de-
creased and moves to higher time values. In fact, the pulse duration in ultrashort
regime is shorter than the electron-lattice coupling time.
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Figure 4.7 Electron temperature for different laser pulse widths (800 nm laser
wavelength, E, = 150mJ/cm?, r = z = 0)
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Figure 4.8 Lattice temperature for different laser pulse widths (800 nm laser
wavelength, E, = 150m.J/cm?, r = z = 0)

The results, in Figure 4.8, show insignificant variations in peak lattice tempera-
ture for different pulse durations to reach the melting temperature of gold. Thus,
the pulse duration in ultrashort regime does not play a major role in modifying
the melting threshold value.

In comparison with Figure 4.7, with an increase in pulse width, the peak of
electron temperature is decreased and moves to higher time values.
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Chapter 5

Concluding Remarks
& Future tasks

5.0.1 Concluding Remarks

The goal of this project is to present a detailed theoretical framework that de-
scribes the heat propagation through thin metal films. This need arose because
recent pump-probe experiments failed to observe structural dynamics in different
metal samples. Before the dynamics of the sample can be observed, the samples
are irreversibly damaged by a high energy femtosecond laser pulse.

A theoretical background for the transient dynamics of the system during the
laser interaction with thin metal samples is given. The two-temperature model
describes the heating of the electrons and phonons in a lattice. The electron
temperature will rise to high levels far above the lattice temperature before the
electron-phonon coupling exchanges energy between the electrons and the lattice.

The two-temperature model with temperature-dependent optical and thermo-
physical properties were proposed to study thermal response for a gold sample
irradiated by a femtosecond laser pulses. The system of the 2 time-dependent
partial differential equations was developed in the cylindrical coordinates. Unlike
the one-dimensional model, an axisymmetric model of finite geometry was em-
ployed to better understand the effects of multi-dimensionality on thermal wave
generations.

In order to obtain significant informations of the system, versatile tools from
the area of numerical analysis were used. A representation of the system in
algebraic nodal equations were taken under consideration. This representation of
the system constitutes the key point of the work. Derivative approximations by
using Finite Difference method and adiabatic boundary condition in the surface
were implemented.
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The effect of the uncertainty in electron—phonon coupling constant and electron
heat capacity were studied on two-temperature model output. A parametric anal-
ysis was performed for a range of pulse duration and fluence values with both
reflectivity and the absorption coefficient are assumed to be static. In the numer-
ical analysis, the laser pulse had a duration of 100 fs.

Finally, the following conclusions were drawn:

(1) Through the FD approximations, the model is not only able to describe the
absorption of the laser energy by the electron gas, but also produce the fast
diffusive heat transport which is characteristic for metals.

(2) Consideration of geometrical properties - symmetries of the irradiated sample
and expression of the equations in a different coordinate system, can lead to more
simplified calculations.

(3)Thermal response of the material is directly related to variations in pulse du-
ration and fluence of the laser pulse.

5.0.2 Future Tasks

Although the presented methods are very promising, it seems that they are too
simple for more complex systems. Also, it has to be noticed that only single pulse
laser ablation into vacuum was studied. For typical applications like drilling, tens
of thousands of pulses are needed.

Based on the current studies, several subjects are proposed for future work.

(1) First, it is very important to take under consideration the circumstances under
which the damage of the material occurs. In particular, Navier-Stokes Equations
can enrich our model, in order to obtain useful information when the liquid phase
occurs. Also, including plastic deformations (e.g stresses, strains) can constitute
noteworthy tools.

(2) Second, Quantum mechanical effects can broad our field of study and are
needed to observe in microscale the exact behaviour of electrons during the in-
teraction with ultrashort pulses (e.g electrons thermalisation).

(3) Third, dependence of the absorption coefficient from the various properties
of the material (e.g the Black-body radiation) should be taken under consider-
ation. Classical mechanics, represent invariable absorption coefficients which is
unreliable, especially for metals in a short time regime.

(4) Last, it could be shown, that for suitable systems the combination of the
Two—Temperature Model to molecular dynamics constitute a powerful tool to
predict and describe what is happening in laser heated metals by ultra short
pulses.
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