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Extevnc Iepiindm

To xevtpixd éua g SimAwPaTIXAC €lvor TO oV 0 BaXTUMOC TV EXVETIXDV
adpoloudtwy éyel amogaoiown Vetixr unapdion Yewpla. Autd etvon Eva TpdBANUL
avéroyo tou 10%* mpofArjuatog tou Hilbert yio to SaxtOAo TV exdetinwmy
adpoloudTwy plog UETABANTAS UTEPAVE TOU COUUTOS TOV ULYUOIX®Y aptiucy
(mopaxdte Yo dotdolv axpBeic opiopol). To mpdfinue autd unopel vo Yew-
endel we éva TpmTo Brida yioe var Sovel plar amdvtnon oty axdroudr) epdTNom:

‘Eotw H 0 5exTOAOS TV AVIAUTIXGY CUVIPTACERY TAVG GTOUG ULyadxo0g
NG ave€dpTNTNg HETUBANTAC 2 X L, 1 YAOOGO TNE aptdunTixnc Teocouénuévn
xotd évo otadepd — ovyPoro yw tn 2 ¢ L, = {+,-,0,1, 2}

Epwtnom: Eivor n etinr| unapiany| Yewpla tou H oty L, anogacioun;

Auté To mEOPAnua €yel ovolao Ty onuaocta xon etvon axduo avoryté. T
TEPLOCOTERES AETTOUERELES O aVAY VOO TNG UTtopel var dlof3doel T oyeTinr BiBAL-
oypaplo Tou avagépetar oto Introduction.

Mépoc tng dimAwpatixfc etvon emlong 1 cUvToUrn TaEOLGIAoT ALY TELWOY
TEOBANUATOY ATOPUACIGHIOTNTAS TWV OTOIWY TEYVIXES XU OTOTENECUATO YPNOL-
womoUnxay otny anddelln tou avdioyou tou 10° TlpoBiruatoc tou Hilbert
Yot T SaxTOAO TV eXVETIUOV opOIOUSTLY.
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Ewcoaywyued
To 10° IIp6BAnua tou Hilbert

To 10° ITpéBinua tou Hilbert (Yo to oupforiloupe HTP) pwtder av undpyet
EVag oahyopripog ToU Vo amavTAEL TEVTOL OWOTE TNV EEWTNON oV Wiot TOAUGY-
vy €€loewon TOAMGOY PETUBANTOV UE OXEPUIOUS CUVTEAECTEC EYEL 1) BEV EYEL
axépaneg Aoelg. To mpdinuo avoxowvainxe and tov (Blo tov Hilbert to 1900.
O Yuri Matjiasevich €dwoe apvntiny andvinorn oto meofinua to 1970. O
Matjiasevich yio vo xotahiEet 0To cuumépaopa 6Tt BEV UTdEYEL TETOLOC oAy OQL-
Yuog Paciotnre otny gpeuvnTny dovketd twv Martin Davis , Hilary Putmnan
xau Julia Robinson. ‘Eneita ¥tav Aoywd vo avapwtniolv av Ja urnopovoe
vo uTdpéel évag TETolog alyopriuog av Yewpr|couue Evay dAAOY BuxTUALO Tépa
am6 Toug axepaioug. T'ar mopdderyua, elvon HON YVOOTY 1) AmdVTINON YLo TOUG
0AXTUALOUG TWY QUOIXMY, TEAYHUUTIXDY Xl ULY oGV apltiudy 6mne enlong xal
YL TO OOUOL TV PNV CLVAPTACEWY. (201600, TOo avdroyo tou HTP vy
TO COUA TWV ENTOV aEiu®Y elvor avolyté xon udhiota Vempeitar ¢ o xUpLo
avoly T TEOBANUA TS TEployS. LTO xe@dAiato Introduction mapoucidlouue
xdmowa avéroya tou HTP unepdve doxtuhiny tomv onolwy 1 dour| Toug yenot-
uomotetton cuyvd oTor hardnuaTIxd.

Avogavtixd IlpoBAnua - Octixr YTroapliaxy) Oswpia - Opiopol

Ocewpla pioag doung: civon 10 GOVOLO TWV TEOTACEWY ToU elvor aknlelc o

oou.

(Oetixy]) unopdiaxh Yewplo ploag SowRc: civar 10 chvolo Twv
(VeTindv) umopElax®y TEoTdoewy o eivar okndeic ot doun.

I'\wooa L: ebvan pio axorovdia cuuforwy 1 omolo ev yével tepthauSdver
o0 oVuBoha + (yio v mpdoleon) , - (Y Tov molamiactaoud) , 0 (o to
oudétepo ototyelo g npdodeons otov R) xan 1 (Yo to oudétepo aToryelo Tou
TOMOTAACLOCUO) GTOV R). Enlong, otnv L unopel va nepthapdvovton oly-
Boha yuo edixd otovyelo Tou daxtuhiou .

Adue 6L 0 ArogavTtixd TEOBANUA Yo TO BuXTUA0 R UE GUVTEAEGTEQ
otov R elvor pn emAdotuo av umdpyet évag alyoprduog mou vo amo@actlel ov
ular Tohvwvupxr €&lomon TOAGY UETUBANTOY Ue CUVTEAECTEC oTov R €yel
Aoon otov R.
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H E&lowon tou Pell

H Srogavtind eiowon
2} —dy® =1 (0.0.1)

omou d etvan Yetindg axéparog eheliepog TeTpay VO, Efval YVKOO T 0¢ 1) e€iowor
Ttou Pell.

Ou J.Robinson, M.Davis xou o Y.Matjiasevich ypnowonoincav e€iodoeic tng
TOEATVG LORPHG XAl ELOTyaryay VEOUS UEDOBOUS Yo TNV eniAucT) TEOBANUTWY
¢ meployfc. Mio onuavti| xou Wwitepa yeriown topathenot Y i AoeEg
¢ e€loworng tou Pell etvon 1 axdroudn:

IMopathenon: Eotw (ar, b)) xou (ag, by) Moeic e topandve elicnmone.
Téte 1o Levydpl (a1,b1) ® (az,by) = (aras + dbiba, a1by + asby) eivon eniong
Aoom g e€lowong.



To avdroyo tou HTP yia toug mToAvwvupixodg dax-
TuAloug xow ToLg TETEAYWVIXOVSE BaxTLUAIOLG

To avdhoyo HTP yia Toug moAuvwvuuixolg daxtuiiouvg

Ocwenuo: 'Eotw R pio axépoua teployy| yapaxtneotixic 0 t6Te T0 dlogayv-
w6 medBhnuo v tov R[T] pe ouvteheatéc ato Z[T] elvor un emAdotyo.

IBga tng anddegng: O Denef opilel ye umaplloxd TpOTO TOUC OXER-
afoug péoa ato daxtiMo R[T]. To xotopépvel autd YenoUloTotdvTag Tic AVoELS
ulac e&lowong mou etvon plor wopey| tne e€iowone tou Pell unepdve Tou RI[T].
LUYHEXQUIEVOL UTOOELXVUEL TO TUEAXEITEL AHUUL

OplZet povoorjuavta 800 axohoultieg TOAVWYOUWY (25 ), (Yn),n =0,1,2, ...,
oto Z[T], $étovtog
T+ Uy, = (T +U)". (0.0.2)
omou U etvan éva ototyelo tne alyeBpuric Orxne tou R[T] mou woavorotel to
TOEAX AT
U?=T*-1. (0.0.3)

Afppor O Moewe e e€iowone 22 — (T? — 1)y? = 1 unepdvew tou dox-
tukiou R[T| divovton axpiBede omd

r==z, y==xy,, n=012 ...
bty Beloxopacte o char(R) # 2.
xan énertar v T=1 avtiotowyel tic Aoel yy, pe to n 6tou n = 0,1,2,---.

KartoAfyet oto cupmépaoya 6Tt ov 10 AlogavTind TeoBhnua yio To SaxTOAO
R[T] pe ouvtekeotéc oto doxtOho Z[T] eivor emhdowo, t6T€ 10 Alogovtixd
TEOBANUA Yior Toug axepaioug Vo elvon eTAUGLUO TO OTolo AVTIPAOXEL UE TNV
apVNTWX amdvTnoT ou €dwoe o Matjiasevich.
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‘Eva avdroyo tou HTP yia toug molvwvuuixolLg daxtuiioug
ot YA®wcoa Ly

‘Eotw n yAdooa Ly = {0,1,+, -, T} xou to xotnyépnuo T'[x] epunvedeton o¢
771: ¢ A?) .

Ocwpnpa: H et unapdlond dewpio evog moluwvuuxod Soaxtuliou A,
ue A plo océponar meployn, ot YAwcoo Ly, etvon un amogaciowrn .

O Moeg g e€loworng tou Pell yenowonowivton xou anéd toug Pheidas
xau Zahidi yoo va oploouv Ue €vay Yetixd unaplloxd TEOTO TOUC AXECUIOUC
uTEEAVe Tou daxtuliou Aft] péoo and Tt dour e Ly. Ondte, amodetxviouv
T0 oaxOhovdo Auua:

ARppo: Trodétouye 6t a € Aft] yia to onolo Tla] (nA. a dev eivor pio
otadepd). Tote o Moewg ¢ e&lowong

2t — (> = 1)y =1 (0.0.4)
Stvovton axpiBde ond (z,y) = (£x,lal, ynla]) yian € Z.

Tehixd xaTah)YOUY TNV ToEUXATL AVaywYY| TOU ATOBEXVUEL TO VeEMETUL
Av urrpye ahyopripoc mou v anogactlel mota VeTiny| umapdlaxy| TEoTACT) TNG
Ly eivar odndhc péoo otov Aft] téte Vo elyope évay olybpriyo mou v amo-
paociler av pioa Aogavtixr e€lonmon uTepdve Twv axepaiwy €xel uioa Aoorn otoug
axepafoug 1) Oyt, To omolo avTipdoxel pe TNV apvnTixy andvinon oto HTP mou
€dwoe o Matjiasevich.

To avdroyo tou HTP yia to daxTtOA0 Twv axepalwy Tou Gauss

Ocwenua: To avdroyo tou HTP yio xdlde tetpaywvind daxtOAo bvar un
emtA0OGLO.

Eudc poag evolapépel :oT600, 1) ETMAVCUOTNTA TV SLOQUVTIXOY EEIOMOENDY
UTEEAVE Tou SaxtuAiou Tou Gauss o onolog cupPoiileton pe Z[i]. To otovyeln
Tou Z[i] ebvon tne wopyhc a + b 6mou a,b € 7Z.

"ot vor avorydet to HTP oto avéhoyo tou yio 1o Z[i] o Denef yenotponotel
anoteléopoto and 1o [5] Belyver 61 1 oyéon x € N eivon Sogovtixs utepdve
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ToU Z[i] xou €nertor amodexvUEL 6TL TO GUVORO TwV oxepalwy elvan opioluo ut-
epdve ToU Z[i] xotooxeudlovtog €va aloTNU BLoPavTiXdY EELOOOEWY OTKC
@ofveTon 0TO ToPUXdTL AAUUY To omolo yia vor To amodel€el xdvel yprion Covd
TV Moewv e e&lowone tou Pell.

Aqppa: Trdpyel €vo TEMEQUOUEVO CUGTNUA X OLOPAUVTIXGDY cCloMOoELY
Ue oyvodoTtoug ¢, x, ..., s € Z[i] tétoi0 dote ol oxdrovdec BV cuviixeS va
IXVOTIOLOUVTOL:

(1) Av X éyet pio MNoon (¢, z, ..., s) oto Z[i], t6te t € Z.

(2) Avk eNxa k #0, tote T éyer plo Mon (t,z, ..., s) v Zi] pe t = k>
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'Eva avdhoyo tou HTP yia to SaxtOA0 Twv ex-
YeTxwV a¥poloudTwY

Opropodg: O daxtOhog Twv ExIETiXdV ToAL VLRV, ouuf. Clz]? evo
0 upEoTepoc doxtOMoc Tou Teptéyel To Clz] xou to e xou efvar xheloTodC *dTew
oo Tic apriunTéc medlelc xou TN ouvieon).

Optopdg: O doxtiAog Tov eXVETIXNWY AFpOoLoUATLY P TI¢ cUVH el
mpdlewc, ouuf. EX P(C) eivor évag umodoxtdog Tou Clz]¥ »o to oT0LYELRL TOU

elvon TG Lopic
a=ay+ a e’ 4+ ayethN? (0.0.5)

omoL v, g, - .., ay € C\ {0} xou p; € C\ {0} xou gbvon avé B0 Broxpld.

Opiopodg: To noiuivupo Laurent pe cuvieeoTtéc oe €va owua F etvor

piar Exgpoon e popgnc

p=>Y _m?* peF
k

omou z elvon plar TuTX UETABANTY, k elvon ax€ponog xalL TETEQUOUEVOL GUVTE-
AeoTéC py, ebvan BLdpopol Tou uNdevOS.

OewpoVUE TORA TN YAMOCU
L={+,-01¢€} (0.0.6)

Epdtnon: Eivor n detny| tpwtotdéio dewpla tou EX P(C), we yio douh
™e YAwooag L, anogaciown 1 un anogoacioyn);

Ye éva mpdogato un onuooieuuévo paper ot P.D Aquino, Th.Pheidas xau
G.Terzo €youv dKOOEL apvnTixY| amdvInoyn o auTh TNV cpwnon. Edw du
TOEOUCIAGOUYE (ol SLaPOPETIXT| AmMODEILT UEQIXWS BaCIoUEVn ot O] Toug,
YENOWOTOLOVTUS OUnS 06 Pacixd epyaletio tig Aoeig tng e€iowong tou Pell
ovTl yiar TiC EAAEITTINES XUUTOAES TIC OTIOlES YENOWOTOL00Y TNV GAAY AOOELLT).
H 18éa tne yprone tne e€iowong tou Pell eivon tov A. Macintyre. H otpatnyin
NG am6delng mou oxohoudfoaue elvon 1o Tou O©.Peldd xon uetd uall detlope
OTL auTd oL oXEPTNXE oyVouy. To anoteréopata pag Yewpolviar wg Eva
avéroyo tou HTP xan €vor yeydio Brjua yior vor omodetydet 1 (B epcdytnomn yio
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Tor exVeTind moAuvwvupa.  Anodeixvioupe Baoxd 800 Hewprjlato Twv onoiwy
divoupe xou pla tepthndn Twv amodelewy Touc.

Ocwenua: O Aoeic tne ediowong
(€% —1)2=a2—1 (0.0.7)
6mou Tz xou y avixouy oto EX P(C) divovton ané
(z,y) =k O (£e*,1) @A O (e 7,1e77) (0.0.8)
OTOoL
kO (e,1)=(e51)d - D (e, 1)

((e#,1) mpootideton oTOV EAUTO TOL LTS TOV VOUO B K POpEC.)
xou yor x&de Aoon (ar,br), (ag,be) tne ediowone o véuoc @ opiletoun amd
(a1,b1) ® (as, ba) = (arag + (€** — 1)by1ba, a1by + asby).

Enpavtixd onueio Tng anddegng:

‘Eva avdhoyo tng e&lowong tou Pell unepdvew touv EXP(C)
Ocwpolue TNV e&lowon
(e —1y* =21 (0.0.9)

6nov z,y € EXP(C). Tw va YopoxTneloouue OAeg TIg AUOEIC TNG TUPATAVE
e€lowong Ya yenowonoicoupe 1déeg amd [38]xon [28]. Apywxd Vo dwoouyue
xdmolec TAnpogoplec ayeTés Ue TNV ahyeBpy| Sour Tou EX P(C).
Yrodepornooolue pla hoon (z,y) tne e&iowone (0.0.9) xou mapotnpolue and
TOV 0PLOUO TOU EXP(C) bttt & xou g VX0V OE €V BUXTUALO TNG LOPPTC
R = Clef? e 7 ... el * e %] bmou k etvon évog Quotndg oprdude xon xdie
i € C. Xoplc BAUEN e yevixdtnTag Yewpolue otL oy Vel

,ulz]-a

vl To daxtOMo R.
‘Eotw {1, pa, -+, pe}, 6mou p; € C, vo eivon plo fdon tou Slavuouatixol yeeou



TOU YEVWIETOL atd [t UTERAVG Tou onuatog Q. Tote elvon mpogavég dtL xde
fi €bvan évog yeauuxos ouvBuaoUos utepdve touv Q twv {1, pa, -+ -, e}
‘Apa, v xdde p; umdpyouv axéponol ny; xan €vag VeTixog oxépatog V; Té-

’ o Lzﬁ o A )\/ N ’ )\ ’ /
TOLOC WOTE [l = 77— NijPj- Awhéyoviog To N va efvan 10 €AEy10T0 %0v6

/7 A ’ ’ - /7 1 l !

molamhdolo Twv N; €youue OTL vy xde ¢ = 1,... k 6T p; = ]—szzl niiP;
yia xdmoloug axgpatoug n/k;;. Tote mapatnpodue ot yio xdle 4, el® e Hi* €

_ _ . _ _ 1, 1 1. 1
Cler,e ... et * e ?] doo Cle*, e % ..., eM* e "?] C CleN? e  N?, ... eNPFe NP2,
Apa,

1. . Los 1,
r,y € R=CleNZ® e N7 ... eNftZ e  NPUZ

Z|=

/. / / i. L . Vé /. /
Topo oyvelouacte 6L ta {eN?, ... eNP?} elvon oAYEBpG aveldpTnTa
/ 3 ’ 3 3 1 1 /. /
urepdve tou €. Autéd oxohoudel amd o 6Tl {5, ..., P} €bvon Yoouwxd
aveZopTnTo UTEREVL Tou Q xon amd To axdhouto AMuua ond [38]:
Afppa: Eotww ot {vy, ..., v} elvon évol alvoho uryadixdv oprdudy, ot ottolol
elvon ypouuixae aveldotntot utepdve Tou Q. Téte T0 GOVORO TWV GUVUPTACEWY
{erz, ... e’} elvon ahyeBpindde aveldptnta oto C.
’ /. 14 1é L. _L. i . _L .
Apo, 10 GUVORO TV CUVUPTACEWY Elvon {eN? ™ N'Z ... eNPIF em NPUFY
elvan ahyePpinmg aveldptnto unepdve tou C. Oétouue

1

Z =enN~
1

ty = enNP2=
1

tf — eNPUZ

(0.0.10)

Tote x,y € C[eﬁz, 6_%'3,152,152_1, .. .tg,tzl] xaL o oToLyEla o, . ..ty umopoly
va Yewendolv we petafintéc tou C[e%'z, e‘ﬁz].

‘Apa 1 apyxr e€iowon yivetan
(Z*2N —1)y* =2 — 1 (0.0.11)

/ /7
UTEEAV® TOL BoxTUAOU

ClZ, Z o, tyh ottt Y]

x1



Y& enopevo otddo BAémoue 6Tt xde hOor mapamdve eiowoelg Yo BploxeTtan
oto C[ZN, Z=N].

oo bpwe amodetxviouue 6t i, y ebvan péoa otov C[Z, Z71).

Afppo: "Eotw A va ebvon plo axépona teploy, mou nepéyet to C[Z, Z71,
tétoloc wote Z2 — 1 vo uny ebvon tetpdywvo oto A. ‘Eoto ¢ va ebvon pio
LETOBANTA xou (x,y) va efvon plo Aoon g 3.3.7 pe x,y € Aft,t71]. Térte
x,y € A.

"Apa 1y Moo (z,y) e e&lowone 3.3.7 avixer oto doxtOho C[Z, Z71] xou
n hoon (,9) e e&iowong 3.3.7 avixel 670 SaxtiAlo Clev=, e 7).

Ou Ndoeg tng vevixevpévng eilowong tou Pell unepdvew Tou
Clz,Zz71]

Afppo: Ovhboeig e ediowone 3.3.7 divovta amd (2, y) = (2.[ZV], yx[ZV])®
(22l Z-N], ~iZ-Nya[Z-N]), yio 5 A € 7

I8a tng anddeidng:
Eotw (z,y) plo Aon tne 3.3.7 , énov 2,y € C[Z, Z7!] xou z & C.
I'vopiCoupe amd ta tponyolueva 6Tt oL AOoelg Tng 3.3.7 @Tidyvouy uio oudda
ue Ty npdén @ mou divetan amd (aq, by) @ (ag, b2) = (a,b), 6mou

a = ajag + (Z*N — 1)biby xou b = aiby + bas . (0.0.12)
Opilouye,
(#,9) = (2,y) ® (21 [27], 1 [2"]) (0.0.13)
avd
(2,y) = (z.9) © (11 [Z7]. 1 [Z)) (0.0.14)

/ /. / 7 /7 /7 /
omou © elvan To apYNTWS cUPPolo To onolo oyetileTon Ye TO VOUO Tou B.
O TpéTOC TOL UTOBENVOOUUE TO AU efva:

Trodétouue 6T degy(z) > N. Anodewxviouue 6Tt éva and to deg, (T) xou
deg, (z) eivon puixpdtepo and deg, (x). Emovohopfdvovtoc v B Saducosio
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nadpvoupe 6Tt uTdpyet éva k € Z tétolo HoTe, Vétovtog (,9) = (2,y) S (K ©
(ZN)1)), éyouue 6T deg, (&) < N. 'Enerta anodemvioupe 6Tt oL ubveg MNIGELS
(&, 9) pe deg, (&) < N ebvon utepdve tou C[Z 7. (Ze auth Ty Tepintwon To
Afupa axohovdel omo [23]).

Me enaywyh oo Jetied Podud Tou T amodexvioUUE TO AAUUOL.

Ocdpnuo: O SaxtVlog Z[i] elvon Yetind unoplaxd oploUEvos UTEREVL
wou EXP(C), wc L-Soun. Apa 1 Vet vraplion Yewpio oauthc e Sounc

elvon un anogaciown.

Oplloupe V' ~ U vo orpatver 6ttt tohucdvope Voxew U oto C[Z, Z71]
madpvouv TNy Bt T i Z = 1. AmodevOoupe Tor TopoxdTey Aot To
omoia yeewdlovton yiow TV an6delln Tou Yewpruatoc.

Aqppa ‘Eyovue 6Tt gy ~ & — 1A, yian, K, A =0,1,2,...

IMopathenon: H oyéon W ~ 0 ebvou Sogavtixd utepdve C[Z, Z71] ue
ouvteheotéc oto Z[Z, Z71):

W~ 0 oav o pévov edy Jx € C[Z,Z71 W = (Z — 1)z .
OplZoupe v npwtotdiio oyéon Imt(y) oto C[Z, Z71] we efhc :
Imt(y) <>y €C[Z, 2\ \FzeClZ,Z27": 2 = (2N = 1)y’ = 1.
Aqppa: Ioylel 6T :

v H oyéon Imi(y) etvon Srogavtind| unepdve C[Z, Z 71 ye cuvieheotéc 670
7|7, 77Y).

W Av 1o y wovorotel T Imt(y), t6te uTdpyouy axépatol K, A TETOLOL HOTE
Y~ K—IA\

w I xdde oaxépono K, A umdpyel Eva tohuwvupo Laurent y mou xavonolel
™ Imt(y) xou Ty ~ K — A
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Amndderén tov Oewpnuarog
Ané 1o mponyoluevo Afupo £Youue OTL Loy UEL:
ElZl,...,Zn € Z[Z] . P(Zl,...,Zn) :O<:>E|Z1,...,Zn € C[Z,Zﬁl] .

(Imt(Zy) N--- Nmt(Z,) N P(Zy, ..., 2Z,) ~0).

H teheutaio oycon yedgetour 1oodivopua
NImt(Z) \ P(Z1,.... Z,) ~ 0
i=1

X0l TTPOGOUOLOVOUNE X8V Imt(Z;) pe to
31X, €C[Z, 271 : X —(Z2N -1 722 =1

Aqgol o Imt xan ~ elvon BloQovTnéc UTERAVE ClZ, Zil] UE OUVTEAECTEC OTO
Z|Z, Z~] ehxola pmopolye vo Bpolue évo Tohudkvupo P* tou vo ixavorotel Ta
nopaxdtw: Trdpyet ohybprduog mou va Beloxet yio xdde mohudvupgo Pz, ..., 2,)
urepdve Z[i], éva tohudvupo P*(Zy,. .., Zy) vrepdve Z[Z, Z~ tétowo dote

321,020 € Z[H] : P21, .., 2,) = 0 av xou uévo av 324, ..., Zy € C[Z,Z7Y : P*(Z, ...

(0.0.15)

"Apa o 0 drogavTind TpdPhnua v to C[Z, Z 71 ue cuvteheotéc oto Z[Z, Z 1]
fray emhdolo, t6te T0 Blogavtixd mpofinua vl to Z[i] Yo Hrav emhdowo,
70 omofo avVTIPdoXEL Y TNV apvNTIXY amdvtnon Tou avdhoyou tou HTP yia to
Z[i] mou édwoe o [7].
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Abstract

At a glance: We prove that the positive existential theory of the ring of
exponential sums is undecidable.

Define the set of ezponential sums, EXP(C), to be the the set of expres-
sions

a=aoag+ ae’* + .-+ ayetN®

where a;, 1; € C. We ask whether the positive existential first order theory
of EXP(C), as a structure of the language

L={+,-0,1¢}

is decidable or undecidable. Our result may be considered as an analogue
of Hilbert’s Tenth Problem for this structure and as a step to answering the
similar problem for the ring of exponential polynomials, which is still open.
We prove:

Theorem 1 The ring of gaussian integers Z|i] is positive existentially defin-
able over EXP(C), as an L-structure. Hence the positive existential theory
of this structure is undecidable.



In order to prove Theorem 1 we adapt techniques of [8] and we show
Theorem 2:

We consider the equation
(e -1y =2"—-1 (0.0.16)
where z,y € EXP(C).
Let (a1, b1) and (ag, by) be solutions of (0.0.16). We define the law & by
(a1,b1) @ (ag, by) = (araz + (€ — 1)byby, arby + azby)
The pair (a,b) = (a1, b1) ® (ag,bs) is also a solution of (0.0.16).
We denote by k ® (a,b) = (a,b) & --- & (a,b). ((a,b) added to itself by & «
times.)
Theorem 2 The solutions of the equation (0.0.16) are given by
(x,y) =Kk O (£e*,1) DO (£e ?,ie 7).
The proof uses techniques of [38], [28] and [23].

Important points of the proof

We would like to characterise all the solutions of Equation (0.0.16) over
EXP(C). Observe that, by the definition of EXP(C), « and y lay in some ring
of the form R = Clet# e #1# ... el * e~ M| where k is a natural number
and each p; € C.

In [28] it is shown that one can choose the y; in such a way that p; = %,
for some natural number N, and the set {1, po,- -, ux} is linearly indepen-
dent over the field Q. By results of [38] it follows that the set {e/# ... et *}
is algebraically independent over C. So the question about solutions of
(0.0.16) becomes

Given a natural number N, find the solutions of

(722N —1)y* =2" -1 (0.0.17)



over the ring
ClZ, Z ottt )Y,

where Z = eV and the elements to, ...ty are variables over may be consid-
ered as variables over C[Z, Z7!]. At a first stage we show that any solu-
tion of (0.0.17) does not depend on the varables t;, i.e. is over C[Z, Z7].
Then, extending techniques of [23] we show that any solution is over the ring
C[ZN,Z=N]. Finally we give the characterization of solutions as in Theorem
2. Subsequently the set of integers is positive existentially definable, by tech-
niques of [8] and [7].

The results of Theorem 2 may be stated as
The set of solutions of

(T* —1)y* =2 -1
over the tower of rings
UnC[T™, T~ ]

stabilizes at the level of C[T, T™1].



Chapter 1

Introduction

The focus of this Thesis is on answering an analogue of Hilbert’s Tenth
Problem for the ring of Exponential Sums of one variable over the field of
complex numbers (which we denote by EX P(C)). Specifically, we show that
this analogue is unsolvable. One may view this problem as an effort towards
answering the following question. We consider the ring of functions H of the
independent variable z, analytic on C. Let L, be the language of arithmetic,
augmented by a constant-symbol for z: L, = {+,-;0,1, z}. We ask:

Question 1 Is the positive existential theory of H in L, decidable?

History-Previous results: The Question is still open. For details on
known relative facts see [24]. R. Robinson in [30] proved that the L -theory of
H is undecidable. Rubel in [31] asked the Question and the more general one:
Given a polynomila equation of many variables over C[z], decide whether it
has a solution which is a tuple of analytic functions of z, with a prescribed
radius of convergence (say around z = 0). The Question is also mentioned
in the surveys [29] and [32].

More is known for the ring H, of functions analytic on the p-adic plane
C, (undecidable diophantine theory, [17]) and for its quotient field M, (un-
decidable diophantine theory in the language that extends L, by a predicate
for the property of a meromorphic function to have no pole at z = 0, [41]).

To show that the positive existential theory of ring of Exponential Sums
is undecidable which is presented in Chapter 3, we used results from [8], [23]
and [7]. For this reason in Chapter 2 we give the main Theorems and Lem-
mas of these papers.



In Chapter 1 we also present some information regarding Hilbert’s Tenth
Problem and some analogues of Hilbert’s Tenth Problem for some structures
of common use.

1.1 Hilbert’s Tenth Problem

Hilbert’s Tenth Problem: Give a procedure which, in a finite number
of steps, can determine whether a polynomial equation (in several variables)
with integer coefficients has or does not have integer solutions.

In modern mathematics Hilbert’s Tenth Problem asks for an algorithm to
determine the solvability in integers of Diophantine equations over Z .i.e. of
polynomials with integer coefficients (1900).

Yuri Matiyasevich gave a negative answer to Hilbert’s Tenth Problem
in 1970. He based his work on M.Davis’, H.Putman’s and J.Robinson’s re-
search work. More concretely, in 1953 Martin Davis had shown that every
listable set (recursively enumerable) has an arithmetical representation with
a single bounded universal quantifier. After some years Martin Davis, Hilary
Putnam and Julia Robinson considered the broader class of so called expo-
nential Diophantine equations and obtained a purely existential exponential
Diophantine representations for all listable sets (Exponential Diophantine
Equation are allowed to have expressions of the form z¥, for variables = and
y, ranging over the natural numbers). However in the beginning of the 1950’s
Julia Robinson had found a sufficient condition for transforming an arbitrary
exponential Diophantine equation into an equivalent Diophantine equation.
The final step, performed by Yuri Matiyasevich in 1970, consisted in fulfilling
this condition of Julia Robinson by providing a Diophantine representation
of the set of ordered pairs (u,v) such that v = F,, where F), is the nth Fi-
bonacci number.

After this results, it was natural to ask whether such an algorithm exists
if one considers a ring other than the ring of integers. For example, the Real
Numbers, the Complex numbers and a field of rational functions. Hilbert’s
Tenth Problem for the field of rational numbers is a (or the) major open
problem of this area. However Jochen Koenigsmann have showed that Z is



definable in Q by a universal first-order formula in the language of rings.

We now present a list of decidability properties of some ring structures
of common use.

Ly is the language {+, -; =; 0, 1} which, for rings of functions is augmented
by the predicate T which is interpreted as ‘x is not a constant function’. For
rings of functions of the variable z the language L. is as above.

Z is the ring of rational integers, Ok is the ring of integers of the number
field K, Q is the field of rational numbers, R the field of real numbers, C
the field of complex numbers, F, is the finite field with ¢ elements, B|z| the
ring of polynomials in the variable z with coefficients in the ring B, B(z)
the corresponding field of rational functions in z, H(D) the ring of analytic
functions of the variable z as that ranges in an open superset of the subset
D in the complex plane, M(D) is the corresponding field of meromorphic
functions, U is the open unit disk. EX P(C) is the ring of exponential sums.

The first column shows whether the positive existential theory of the
ring in the language L7 is decidable or not (‘Y’ means decidable, ‘N’ means
undecidable, ‘conj. N’ means ‘conjectured to be undecidable’, ‘?” denotes an
open problem), the second column corresponds to the similar properties in
the language L, and the third column to that of the full theory in the language
Ly for the rings Z, Ok and Q and the language L, for the remaining rings.

Note that it is known that the theories of many rings Ok are undecidable
(e.g. for abelian K') and it has been conjectured that all of them are, but
the question for arbitrary K remains open.



ex. th. (in Ly) | ex. th. in L, | full th.
Z N N
Ok conj. N N
Q ? N
F,[z],R[z], C[z] N N N
(%) ? N N
R(2) ? N N
C(2) ? ? ?
H({a}) Y Y Y
H(U) Y ? N
H(C) ? ? N
M(U) Y ? ?
M(C) ? ? ?
R[[2]] Y Y Y
F 2] v v ?
EXP(C) ? N N

For a fast introduction to applications of Model Theory to Algebra the
reader may consult [3] and [40]. The solution of HTP can be found in [18§]
and is explained very nicely to the non-expert in [5]. Surveys of questions
similar to the present paper’s are [22], [24], [29] and [33]. Surveys of elimi-
nation (‘decidability’) techniques and results can be found in [36] (and many
later more specialized articles, from the Algebraist’s point of view). For our
terminology in Algebra we follow [16].

1.2 Positive Existential Theory, a definition
The definitions are from [26].

Structure: consists of a set along with a collection of finitary operations
and relations that are defined on it.

Language: each structure comes with a language i.e. a set of symbols for
the relations, functions and distinguished elements of the structure.



The first order sentences: of the language of the structure are the sen-
tences built using the symbols of the language, with the variables rang-
ing over the universe of the structure, quantifiers and logical connec-
tives, by the usual rules.

Existential Formula «(Z): is a formula of the form
Elylzly2 I Elym ¢(*T7 Y1, Y2, - - 7ym)

where m > 0 and ¢(z,y) is quantifier-free ( without quantifiers).

Positive existential formula «(Z) : An existential formula, as above, with
the formula ¢(Z,y) has no negations.

(Positive) Existential sentence : a (positive) existential formula which
is a sentence (without free variables).

The (full) theory: of the structure is the set of sentences which are true
in the structure.

The (positive) existential theory of a structure: is the set of (positive)
existential sentences that are true in the structure.

We say that the theory (resp. existential theory, positive-existential the-
ory) is decidable if there is an algorithm that determines whether any given
sentence (resp. existential sentence, positive-existential sentence) is true or
false in the structure. Otherwise the theory is undecidable.

1.3 Diophantine Problem

The definitions are from [8] and [22].

Let R be a commutative ring with unity and R’ be a subring of R. Let
D(zy,...,z,) be a relation in R.



Language L (more detail definition): is a sequence of symbols which
generally include the symbols + (for addition), - (for multiplication), 0
(for the additive identity of R) and 1 (for the multiplicative identity of
R). L can also include symbols for special elements of R. Also, in some
cases can exist a structure of a ring R without the full strength of mul-
tiplication or addition. In this case, the language L contains symbols
for other operations or relations.

Diophantine polynomial in L over R: is a polynomial in several vari-
ables whose coefficients can be built from the elements which have
symbols to represent them in the language, using addition and multi-
plication (that is, the coefficients of Diophantine polynomials are ele-
ments of the ring which is generated by the elements with symbols in
the language).

Diophantine equation: is of the form P(xy,...,x;,y1,....,yx) = 0 where
P(z,7y) is a diophantine polynomial. (Diophantine inequation is P(Z, ) #
0.)

Diophantine Relation: The D(z4,...,x,) is diophantine over R if there
exists a polynomial P(x1,...,Zn, Y1, .., Ynm) over R such that for all
r1,...,T, in R

D(zy,...,x,) is diophantine over R <>

D(xy,...,zp) < 3y1, -, ym € R P(xy, ..., Tp, Y1y - -+, Ym) = 0.

We have the same definition for subsets of R by regarding them as 1-
ary relations:

If P can be chosen such that its coefficients lay in R’, then we have that
D(zy,...,x,) is diophantine over R with coefficients in R’.

We say that the diophantine problem for R with coefficients in R’ is
unsolvable (solvable) if there exists no (an) algorithm to decide whether
or not a polynomial equation in several variables with coefficients in R’
has a solution in R.

Observation: If R is an integral domain and if D; and Dy are dio-
phantine over R[T] with coeflicients in R'[T], then also D; U Dy and
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often Dy N Dy (if T is not a square in R[T]) are diophantine over R[T]
with coefficients in R'[T].
Indeed,

(P, =0UP,=0) ¢ (PP, =0) and (P, =0NP,=0)<« (PP+TP; =0).

Note: In a similar fashion: Let R be an integral domain and L be the lan-
guage of rings extended by constant symbols. Consider R as an L-structure.
Assume that D is in L such that the interpretation of D is not a square in R.
Then any system of diophantine equations in R[D] is (effectively) equivalent
to one diophantine equation. Moreover, the Diophantine problem for R[D]
in language L is unsolvable if and only if the positive existential theory of
R[D] as a structure of L is undecidable.

1.4 Pell’s Equation

(Based on [22] and [27])

An especially notorious Diophantine equation,is the equation
2 —dy? =1 (1.4.1)

where d is a positive integer other than a perfect square.

The equation is referred to as Pell’s Equation. Julia Robinson, Martin
Davis and Yuri Matiyasevich used such an equation of the above form in
solving some problems of the area.

Solutions with y =0 will be called trivial, all the rest non-trivial.

Over Z it can be proved that such an equation has always non-trivial
solutions.

Important Observation: Let (ay,b;) and (ag, by) be solutions of 1.4.1.
Then the pair (ay,b1) @ (az, be) = (ayaz + dbibe, a1by + agby) is also a solution
of 1.4.1.

The set of points of Equation 1.4.1 forms an abelian group with the
negative element of S(a, b) is (a, —b) and the identity element of the group is
(1,0). The group operation is given by algebraic functions of the coordinates
of the involved points. Such group is called an Algebraic group.



Chapter 2

Analogues of Hilbert’s Tenth
Problem for Polynomial Rings
and Quadratic Rings

2.1 The analogue of Hilbert’s Tenth Problem
for Polynomial Rings

Tn August of 1977 Denef published his proof that the Diophantine problem
for a ring of polynomials over an integral domain of characteristic zero is
unsolvable.

The main theorem is:

Theorem 3 Let R be an integral domain of characteristic zero; then the
Diophantine problem for R[T] with coefficients in Z[T| is unsolvable. (R[T]
denotes the ring of polynomials over R, in one variable T.)

It is obvious that the Diophantine problem for R[T] with coefficients in
Z is solvable if and only if the Diophantine problem for R with coefficients
in Z is solvable.

Let R be a commutative ring with unity.

Hor the full proof see [8]



Denef managed to find an existential definition of Z in R[T] using the so-
lutions of an analogue of Pell’s Equation. Particularly, he constructs a model
of Z in R[T] by ‘interpreting’ the rational integers as certain polynomials in
R[T]: to the integer n associate an polynomial y,, (see below).

2.1.1 The solutions of an analogue of Pell’s equation

Denef considers the following analogue of Pell’s equation

2 — (T* - 1)y =1 (2.1.1)
over R[T].
Then, he defines two sequences (z,,), (y,),n = 0,1,2,... of polynomials

in Z[T], by setting

T+ Uy, = (T +U)". (2.1.2)

where U is an element in the algebraic closure of R[T] satisfying

U?=T*—-1. (2.1.3)

Observation: The relation (2.1.2) defines x,, and y, uniquely seperating
rational and irrational parts.

Denef proves the following Lemma for char(R) # 2.
Lemma 4 The solutions of (2.1.1) over R[T] are given precisely by

r==xx, y==xy,, n=012 ...

2.1.2 The final result

One defines the Diophantine relation V' ~ W means that the polynomials V
and W in R[T] take the same value at T=1.

Then one observes the following relation of the polynomial y, with the
integer n : corresponds the solutions y,, with the naturals numbers as follows:

9



Lemma 5 For n=0,1,2,... we have y, ~ n.

Proof From (2.1.2) and (2.1.3) it follows

Yo = i (n> (T? — 1)(=D/2n=i, (2.1.4)

- 7
=1
i odd

and for T=1 we obtain that y,, = n. [ ]

Then, one defines the 1-ary relation Imt(y) in R[T] by

Imt(y) <>y € R[T] [\ 3z € R[T] : 2” — (T* = 1)y” = 1

Lemma 6 (i)The relation Imt(y) is diophantine over R[T] with coefficients
in Z[T).

(i) If y satisfies Imt(y), then there exists an integer m such than y ~ m.
(iii) For every integer m there exists a polynomial y satisfying Imt(y) and
Yy~ m.

Proof They are followed immediately from Lemma 3 and Lemma 4. [ ]

The proof of Theorem 1
Proof There exists an algorithm to find for any polynomial P(z1,...,z,)
over Z, a polynomial P*(Zy, ..., Z,) over Z[T] such that

321,...,ZnEZZP(Zl,...,Zn):0(—>E|Zl,...,ZmGR[T]ZP*(Zl,...,Zm):O
(2.1.5)

One can construct a system of polynomial equations over R[T] with coeffi-
cients in Z[T] by taking the original equation together with and for each i
=1, . . . , n the relation Imt(Z;) ~ 0. The new system of equations has
a solution over R[T] if and only if P(z,...,2,) has a solution in Z. Also,
the system of equations over R[T] with coefficients in Z[T] is equivalent to a
single polynomial equation with coefficients in Z[T]. Thus, one easily obtain
a polynomial P* satisfying (2.1.5).

10



Hence if the diophantine problem for R[T| with coefficients in Z[T'] were
solvable, then the diophantine problem for Z would be solvable which would
contradict the negative answer to Hilbert’s Tenth Problem given in [Matija-
sevich]. n

11



2.2 The udecidability of a ring of polynomials
over an integral domain of characteristic
zero in the language Ly

*Pheidas and Zahidi in 1999 worked over a polynomial ring A[t] (with A an
integral domain) in the language

LT = {07 17 =+, T}

where the predicate T'[z] is interpreted as "z ¢ A” (i.e. T is a symbol for the
property ”is not a constant”).

They proved that the positive existential theory of a polynomial ring A
with A an integral domain, in the language L7, is undecidable.

Note that from above Denef’s results, it is known that if A[t] is a poly-
nomial ring over an integral domain A then its positive existential theory in
the language

L=10,1,t,+,-}

is undecidable.

Theorem 7 The positive existential theory of a polynomial ring A, with A
an integral domain, in language Ly, is undecidable.

Let a € Alt], with a not a constant, that is T'[a]. Pheidas and Zahidi
worked with the solutions of the following analogue of Pell’s equation

2 —(a®* = 1)y =1 (2.2.1)

Observations: (a,1) is a non constant solution of 2.2.1.
Consider g = 1 and yp = 0 and working inductively setting x; = a and
y1 = 1, implies that the pairs (x,,y,) for any positive integer n defined by

Tnp1 = Tpa + (a2 — 1Dy,

and
Yn+1 = Tn + ayn,

2for the full proof see [23]
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are solutions of 2.2.1.
Holds that x_,, = z,, and y_,, = —y,.

Therefore, the above equation has obviously the solutions
r=*tx,[a], y==xy,lal, n=0,1,2,...

over A[t] and the question is if there are more solutions than the knowns.
The answer to the question is no as we can see from the following Lemma:

Lemma 8 Assume that a € A[t] for which Tla] (i.e. a is non constant).
Then the solution of 2.2.1 are given by (v,y) = (fx,la],ynla]) for n =
0,1,2,--.

Notes of the proof:

The proof is an induction on the degree of the polynomial = (‘Method
of descent’). Assume that (z,y) is a solution of 2.2.1 and deg(z) = m the
degree of the polynomial z. Assume that the lemma holds for the solutions
(z,w) of 2.2.1 with deg(z) < m. Then they prove that (x,y) is of the form
(g, yx) for some integer k, which proves the lemma. The idea of the proof
may be found in chapter 3 in the proof of Lemma 17.

From this (Lemma 6) one can give a diophantine definition of Z in a
manner similar to that did Denef.

13



2.3 The analogue of Hilbert’s Tenth Problem
for Gaussian Ring

3In August of 1975 Denef proved that:

Theorem 9 The analogue of Hilbert’s Tenth problem for any quadratic ring
s unsolvable.

In this section, we will present the main Lemma of Denef for an imaginary
quadratic ring, known as Gaussian Ring and denoted by Z[i]. The elements
of Z[i] are of the form a+ib where a,b are in Z and called Gaussian integers.

The undecidability of the positive existential theory of the ring of Gaus-
sian integers is reduced to the undecidability of the positive existential theory
of the ring of rational integers.

So, it is sufficient to establish that the set of rational integers is Diophan-
tine in the ring of Gaussian integers.

For this purpose, Denef uses results of [5] and he only has to show that
the relation « € N is Diophantine over Z[i] as follows:

Let d’ be a square free rational integer

T,y €Ll = (x=0Ay=0%& 2> —dy*=0)

. Denef combines the previous fact with

Lagrange’s Theorem (: Every natural number is the sum of four squares of
natural numbers.) and finally it is sufficient to prove the following Main
Lemma:

Lemma 10 There ezists a (finite) system % of Diophantine equations in
the unknowns t,x,...,s € Z[i| such that the following two conditions are
satisfied:

(1) If ¥ has a solution (t,x,...,s) in Z[i], then t € Z.

(2) If k € N and k # 0, then X has a solution (t,z,...,s) in Zl[i] with
t = k2

Denef constructs such a system of diophantine equations for any imagi-
nary quadratic ring which is obviously suitable for Z][i].

3for the full proof see [7] and [19]
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Chapter 3

An analogue of Hilbert’s Tenth
Problem for Exponential Sums

In this chapter we prove that the positive existential theory of the ring of
exponential sums, in a rather natural language is undecidable. These results
are new. Thanases Pheidas conjectured the strategy of proof and then we
showed that it works.

3.1 Exponential Polynomials

In general, exponential polynomials are functions on fields, rings or abelian
groups that take the form of polynomials in a variable and an exponential
function. We define

Definition 11 The ring of exponential polynomials, denoted by C[z]F,
is the smallest ring that contains Clz] and €* and is closed under the arith-
metical operations and composition.

The ring of exponential sums is a subring of the ring of exponential polyno-
mials.

15



3.1.1 Exponential Sums

Define the set of exponential sums, denoted by EX P(C), to be the the
set of expressions

a=ay+ e+ ayetN? (3.1.1)

where ag, aq,...,ay € C\ {0} and u; € C\ {0}; and p; are pairwise
distinct.

Definition 12 The ring of exponential sums, denoted by EXP(C), is the
ring of elements of exponential sums.

3.2 Laurent Polynomials

We will use the Laurent polynomials so we list some basic relevant facts.

A Laurent polynomial in the variable z over a field F is an element of
Flz,271].
Obviously, a Laurent polynomial with coefficients in a field F' is an expression
of a unique form of

p=>Y _m?* peF
k

where z is a formal variable, the summation index & is an integer (not nec-
essarily positive) and only finitely many coefficients p;, are non-zero.

Later we will use the following fact:

Lemma 13 If F is an integral domain, the units (i.e. divisors of 1) of the
Laurent polynomial ring Flz, z='] have the form \z*, where )\ is a unit of F
and k is an integer.

Proof We observe that any non zero element of F[z, 27!] can be written
as p(z)z* where p(z) € F[z] and p(0) # 0 and k € Z. It is obvious that for
any 2F there exists 27% in F[z,27!] such that 27%2F = 1. Thus, if p(z)2* is
invertible, then p(z) will be invertible. The inverse of p(z) would be of the
form ¢(z)2z™ where ¢(z) € F[z] and ¢(0) # 0 and n € Z. So it is hold that

p(z)q(z)2" =1 (3.2.1)
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but for z = 0 the 3.2.1 is impossible except for n = 0. Therefore, p(z)q(z) =1
in F[z] so we obtain that p(z) and q(z) belong to F and are both units of F
so p(z) = X for A € F. On the other hand, every element of the form A\z*
where A € F and A # 0 is invertible in F[z, 27!]. m

3.3 Undecidability of the existential theory
of the ring of exponential sums

We consider the following language
L={+,-0,1,¢} (3.3.1)

L contains symbols for the ring operations on £X P(C) and constant-symbols
for its elements 0, 1 and e*. The only relation symbol of L is the usual one for
equality (=). We consider EX P(C) as a model of L, with the interpretation
of the symbols.

We ask

Question 2 Is the positive existential first order theory of EXP(C), as a
structure of the language L, decidable or undecidable?

In other words, we ask whether there is an algorithm, which, given a
finite set of polynomial equations, in many variables and with coefficients in
Z[e*], the algorithm replies (always correctly) to the question whether the
equations have or do not have a common solution over EX P(C) .

In a recent unpublished paper P. D Aquino, Th. Pheidas and G. Terzo
have had partial results in the direction of proving a negative answer (actu-
ally, a considerably more general statement) but they do it only pending on
a number theoretic hypothesis. We provide a new proof, based partially on
theirs, but using different tools (‘Pell Equations’ instead of Elliptic Curves).
Our approach has been suggested by A. Macintyre. Our result may be con-
sidered as an analogue of Hilbert’s Tenth Problem for this structure and as
a step to answering the similar problem for the ring of exponential polyno-
mials, which is still open. We prove:

Theorem 14 The ring of gaussian integers Z[i] is positive existentially de-
finable over EX P(C), as an L-structure. Hence the positive existential theory
of this structure is undecidable.
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In order to prove Theorem 14 we adapt techniques of [7] and we show the
following Theorem

We consider the equation
(e -1y =2"—-1 (3.3.2)
where z,y € EXP(C).
Let (a1, b1) and (ag, by) be solutions of 3.3.2. We define the law & by
(a1,b1) @ (ag, by) = (araz + (€** — 1)byba, ayby + asby) (3.3.3)
The pair (a,b) = (a1, b1) ® (ag,bs) is also a solution of 3.3.2.

It is easy to see that the law & makes the set of solutions of 3.3.2 into a
commutative group. This follows from the observation that @ corresponds
to multiplication in EX P[C][Ve** — 1] as follows: (with notation as above)

(a1 +Ve?* —1by) - (ag + Ve?* — 1by) = a+ Ve?* — 1b .

The ‘negative’ of the point (a,b) denoted &(a,b) is (a, —b) and the identity
element of the group is (1,0).
We denote by k @ (a,b) = (a,b) @ --- ® (a,b). ((a,b) added to itself by & x
times.)
Theorem 15 The solutions of the equation

(e -1y =2"—1 (3.3.4)
where the unknowns x and y range over EX P(C) are given by

(z,y) =K O (£e*,1) BAO (e 7, ie 7). (3.3.5)

The proof uses techniques of [38], [28] and [23].

3.3.1 An analogue of Pell’s equation over EX P(C)
We would like to characterise all the solutions of Equation 3.3.2 over EX P(C).
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The algebraic structure of £EX P(C)

We need some information about the algebraic structure of EX P(C).

From now on we fix a solution (z,y) of Equation 3.3.2. Observe that,
by the definition of EX P(C), = and y lay in some ring of the form R =
Clerr# e = . et e k] where k is a natural number and each p; € C.
Fix such a ring. Without loss of generality we adopt the convention that

ILL1:1.

(for reasons that will become clear later).

Let {1, pa, -+, pe}, where p; € C, be a basis of the vector space which
is generated by the u; over the field Q. Then it is obvious that each pu; is a
linear combination over Q of {1, ps, -, ps}.
Hence, for each p; there are integers n;; and a positive integer N; such that
i = NLZ§=1 n;;p;.- Taking N to be the least common multiple of the N; we

have that for each ¢« = 1,...k we have u; = %Zﬁ:l n;;p; for some integers

n;;. Then we observe that, for each i, e#*, e™#* € Cle*,e™* ... el e7H?]
hence Cle*, e % ..., et * e He2] C C[eﬁzj eTNE, ... eNP?, e*%pgz]‘
Therefore,

T,y € R = (C[G%.Z, 6_%%7 cy 6%92'2’7 e—%PZ'Z]

Now we claim that the set {e%'z, e ,e%p’f'z} is algebraically independent

over C. This follows from the fact that the set {=,...,~pc} is linearly
independent over Q and the following Lemma from [38]:

Lemma 16 Assume that {v1,...,vs} is a set of complex numbers, which is
linearly independent over Q. Then the set of functions {e" %, ... e"*} is
algebraically independent over C.

Thus, the set of functions {e%'z,e’%'z, o ,e%pf'z,e’%p"'z} is algebraically
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independent over C. Set

1

Z = enN~*
1

tg = eﬁpz"z

tg = eNP*

(3.3.6)

Then z,y € C[e%'z, e’%'z, to, t5h, . Ly, t;l] and the elements 5, . ..t, may be
considered as variables over the ring Cle~x?, e~ 2]. (Recall that the mean-
ing of the phrase to, - - - |, are variables over an integral domain A means by

definition that o, - - - , ¢, are algebraically independent over the quotient field
of A.)

Therefore, Equation 3.3.2 becomes

(22N — 1y =2 -1 (3.3.7)

over the ring
ClZ, Z7 o, tyh ot t) 1]

At a later stage we will see that any such solution has to be over C[ZV, Z
(that is, the variables to, - -+ , ¢, do not occur in z, y and each of z, y is a func-
tion over C only of ZV).

—N]_

First we prove that x,y are in C[Z, Z71].

Lemma 17 Let A be an integral domain, containing C[Z, Z~], such that
Z*N — 1 is not a square in A. Let t be a variable and let (x,y) be a solution
of 3.3.2 with x,y € A[t,t™']. Then z,y € A.

Proof By factoring 22 — (Z2Y — 1)y?> = 1 over the ring R[t,t™!], where
R = A[VZ?*N — 1] we obtain that

(x —VZN = 1y)(z+ V22N —1y) =1
so (z —VZ2N —1y) and (z + v Z2N — 1y) are both divisors of 1 in R[t,t™!].

So they are units of R[t,¢7!] and by 13 they are of the form

20



r+ 22N — 1y = A" (3.3.8)
r— 22N —ly=\"1" (3.3.9)

where A is a unit in A[VZ2N — 1] and & € Z.

We add the 3.3.8 and 3.3.9 equations and solving for x we obtain that

DY AT ED Wt
r=———————""

; (3.3.10)

Assume that xk # 0. We will prove this leads to a contradiction.
By hypothesis x € Aft,t7!]. Considering z as an element of A[v/Z2N — 1][t, t1],
it is written uniquely as a sum of terms of the form at™, for pairwise distinct
n and with a € A[v/Z2N — 1]\ {0}. Since k # —k we obtain that A, \™! € A.

Now we subtract the 3.3.9 by 3.3.8 equation and solve for y to obtain

A — AT1tE

VAN 1

By hypothesis y € A[t,t!]. Working in a way similar to that we worked
with x we obtain

A A
VZIN 1" /Z72N 1

which, since vVZ2N —1 ¢ A, contradicts the fact that A is a unit in A.
Therefore Kk = 0 and consequently x,y € A. [

cA

By the Lemma, through an easy induction on the number of variables t;,
z,y € C[Z,Z71.

Corollary 18 Let (z,y) be as above then z,y € Clev=, e v7].
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3.3.2 The solutions of the ‘generalised Pell’s Equation’
3.3.7 over C|Z,Z71]

We will find explicity the solutions of Equation 3.3.7.
Consider Equation

(T? — 1)y =2° — 1 (3.3.11)
with z,y € C[T, T 1.

We know from Lemma 2 in Subsection 2.1.1 that the solutions of 3.3.11
over C[T] are given by (z,y) = (2, yn) where, for n € N

(T n) = (T2p1— (1 =THyYp-1, Tyn-1+20_1), (x1,91) = (T,1) (3.3.12)

and for n € Z (2_n, Y—n) = (Tn, —Yn)-
Observe that (3.3.11) is written equivalently as

(T2 = 1)[iTy) =2* -1 (3.3.13)

hence, by the above, has as solutions over C[T!] the pairs (z,y) = (£, Un),
where

(Zrs Un) = (2 (T, =T 1y (T71)) . (3.3.14)

Obviously
(1, 0) = (T, =T .

Now we are interested in finding the solutions (z,y) over C[Z, Z™!] of
Equation 3.3.7. By setting T' = Z” we see that the solutions of 3.3.11 which
we have over C [T] and over C [T~!] remain solutions of 3.3.11 over C [T, T~ ']
and therefore 3.3.7 has the solutions

(:l:.l?, y) - (:E.IN(ZN),:(/R(ZN)) = (ZNxH—l - (1 - ZQN)yn—la ZNy/i—l + xn—l)a

with (z1,y1) = (ZV,1). (which are over C [Z"]) and the solutions

(£2,y) = (@\(ZY),50(Z2")) = (@:[Z7"), -iZ7V[Z27N)), (2. 30) = (277, -1Z277).

(which are over C[Z~"]). Therefore Equation 3.3.7 has as solutions the
following

(:l:ﬂf,y) = (i‘rn(ZN)a yH(ZN)) @ (jA(ZN)7gA(ZN)) (3315)
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over C[Z, Z7'] (where the law & is defined in section .
We will now see that there are no solutions other than the above of
Equation (3.3.7) over C[Z, Z~!], other than those of (3.3.15).

Lemma 19 The solutions of Equation 3.5.7 over C[Z,Z7'] are given by
(F2,y) = (F2ex, Yep) = (@[ ZV], 0 ZV)) @ (2a[Z27F], -1Z27Nya[Z27]), for
K, \ € Z (the £ sign is read ‘plus or minus’).

Proof Let (z,y) be a solution of 3.3.7, with z,y € C[Z, Z7!], with z & C.
If ue C[Z,Z71\ (C[Z] U C[Z7}]) then we write it as

¢
u = Zuka, u, € C

k=—r

with r and ¢ non-negative integers and u_, - uy # 0. We call r the neg-
ative degree and ¢ the positive degree of u. We write (negative degree of
u)=deg_(u) = r and (positive degree of u)=deg (u) = (. If u € C[Z'] and
up = 0 then we write deg, (u) = —oo. If u € C[Z] and ug = 0 then we write
deg_(u) = —oo. We adopt the convention that for any real number m we
have —oo < m.

Notice that the positive and negative degrees have the following proper-
ties:

1. If both deg, (a), deg, (b) are > 0, then deg_ (a-b) = deg, (a)+deg (b).
If both deg_(a) and deg_(b) are > 0 then deg_(a - b) = deg_(a) +
deg_(b).

2. If any of deg, (a) and deg (b) is # —oo (respectively, any of deg_ (a)
and deg, (b) is # —oo) then deg, (a + b) < max {deg,(a),deg, (b)}
(resp. deg_(a + b) < max {deg_(a),deg_(b)}. Under the additional
hypothesis that deg, (a) # deg, (b) (respectively deg_(a) # deg_(b))
then we have that equality holds.

Let the positive degree of = be k, with k € NU {0} U {—o0}.

We define

(j7g> = (I7y) S5 (Il[ZN]vyl[ZN]) (3316>
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and

(z,y) = (z.9) © (11 [Z7], 1 [Z7)) (3.3.17)

The way that we will prove the Lemma is the following:

Assume that deg,(z) > N. We will prove that one of deg,(Z) and
deg, (z) is less than deg, (z). Iterating the procedure we will have estab-
lished that there is a k € Z such that, setting (i,9) = (z,y) © (k ® (ZV, 1)),
we have deg, () < N. Next we will prove that the only solutions (&, y) with
deg, (&) < N are over C[Z'] (in this case the Lemma follows from Lemma
2 in Subsection 2.1.1 ). Then the Lemma will follow by induction on k.

By the definition of the law & we have

F=2e+ (2N - 1)y (3.3.18)
jg=x+yzZ" (3.3.19)
x=72No — (72N — 1)y (3.3.20)
y=—z+yzZ" (3.3.21)

We want to estimate the quantities deg, () and deg, (z) and show that,if
deg, () > 0 one them is less than deg, (). We have from 3.3.18 and 3.3.20:

oz =27 — (7N 1)} = (3.3.22)

xZZQN - (1 - Z2N)(1 _1,2) — 1’2Z2N . (1 _x2 o ZQN+.I'QZ2N) —
2?24+ 72N —1

and
F+ax=227" (3.3.23)
and

F—x=22" 1)y (3.3.24)
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At this point we observe that if deg (z) < 0 then z € C[Z™!] so we know
all the solutions of 3.3.7 from Lemma 2 in Subsection 2.1.1 and they are of
the required form.

Therefore from now on we assume that deg; (z) > 0 .

We notice that if one of deg, (%) or deg,(x) is —oo or 0 then the Lemma
follows from Lemma 8subsection.

Therefore, from now on we assume that deg, () > 0 and deg, (z) > 0.
We also observe that if deg, () = deg, (z) then Relation 3.3.22 implies
2deg, (7) = deg, (z* + Z*" — 1) < 2max{deg_ (x), N}
and Relation 3.3.23 implies
deg, (Z) > deg, (z) + N
which, combined, give
max{deg, (z), N} > deg (Z) > deg (z) and N

which is impossible since deg, (z) > 0 so deg, (%) # deg, (z).

Let us now assume that deg, (z) > deg (Z). (We leave it to the reader
that one obtains the same results if one assumes that deg, (z) < deg, (Z).)

Assume that deg, () > N. Then, by 3.3.22 we have
deg (%) + deg, (z) = deg. (7 - z) = deg, (z* + Z°" — 1) = 2deg_ (7) .
By 3.3.23,
max{deg, (), deg, (2)} > deg, () + deg, (2) > deg, ()
By the two latter relations we obtain

min{deg, (Z),deg (z)} < deg,(z)
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Therefore, deg, (x) > deg, (Z).
Assume now that deg, () < N.

From relation 3.3.24 we obtain

degi(z) = 2N + deg(y) (3.3.25)

From relation 3.3.22 we obtain

deg, (z) + deg, () = 2N (3.3.26)

If deg, (y) > 0 then subtracting the above we have

deg.(T) = —deg4(y)

which is impossible.

If deg, (y) = —oo then 3.3.24 implies that deg, (z) = deg, () which con-
tradicts our assumption that deg; (z) > deg(Z).

If deg (y) = 0 then 3.3.25 implies that deg,(xz) = 2N and from relation
3.3.26 we obtain that deg,(Z) = 0.
Thus, deg, (z) > deg, (Z).

Finally assume that deg, (x) = N. Then, by 3.3.22 we have
deg, (7) + deg, (z) = deg, (7 - z) = deg_ (2% + Z*" — 1) < 2deg, () .

Therefore, we obtain again that
deg_ (z) > deg, ().

As a result, the solutions of Equation (3.3.2) over EXP(C) are given by

ko (£e*,1) A (Le ?,ie ) (3.3.27)
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where
kO (e5,1) = (z4[e], yle™])
and
AO (5,1) = (zr[e™?], —ie % - ya[e™?])

which proves Theorem 15.

3.3.3 The proof of Theorem 14

As we said above, by adapting techniques of [7] we will prove our main result,
Theorem 14.

Throughout this section we write V' ~ U to denote that the Laurent
polynomials V and U in C[Z, Z~!] take the same value at ZV = 1.

Lemma 20 We have y.\ ~ k — i\, for s, A =0,£1,£2, ...
Proof Recall that for for k = 0,4+1,4+2,... we have

xm|ZN:1 =1

and
yn'ZNzl =K

. Then for A =0,+1,4+2,... we have
l’)\|Z—N:1 =1

and
25 ’Z-N=1 = —IA

. By the definition of the law & we have y, \[1] = 2A[1]y.[1] + z.[1]ya[1]
Thus we obtain

YeNzN=1,2z-N=1 = Kk — ()
]
Notice now that the relation W ~ 0 is diophantine over C[Z, Z~!] with
coefficients in Z[Z, Z~1]:

W ~0ifand only if 3X € C[Z,Z7 '] : W = (Z - 1)X .
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Let us define the 1-ary relation Imt(Y") in C[Z, Z~!] by
Imt(Y) « Y € C[Z, Z7] /\ X eClZ, 27 : X*— (22N —1)Y?=1.
Now from the above two Lemmas we obtain the following:

Lemma 21 We have :

i The relation Imt(y) is diophantine over C[Z, Z~1 with coefficients in
717,271,

it If y satisfies Imit(y), then there exist rational integers k, \ such that
Y~ K—1TA.

1s For any rational integers k, \ there exists a Laurent polynomial y sat-
isfying Imit(y) and y ~ K — Q.

Proof of Theorem 14
Proof
By Lemma 19, we have

2oy 2 €D P21, .. 20) =0 32y, ..., Z, € C[Z, Z7Y] :(Imt(Z))A- -
(3.3.28)
Since ~ and I'mt are diophantine (by Lemma 19 i) over C[Z, Z~!] with coef-
ficients in Z[Z, Z~!], substituting each of occurrences of any of this relation
in 3.3.28 we obtain a polynomial P and each Imt(Z;) is substituted by
31X, €C[Z, 271 : X —(Z2N -1 722 =1

Considering now the note 1.3, we easily obtain a polynomial P* satisfying the
following: There exists an algorithm to find, for any polynomial P(z1, ..., z,)
over Z[i], a polynomial P*(Zy,...,Z,,) over Z[Z, Z~'] such that

321,..., 20 € Z[i) : P(21,...,2,) = 0if and only if 321,...,Z,, € C[Z, Z7'] :

(3.3.29)
If there were an algorithm to decide the correctness of sentences as the right
-hand side of the last line then the same algorithm would decide the existence

of a solution of P = 0 in Z[i], which contradicts the negative answer to the
analogue of Hilbert’s Tenth Problem given in [7]. u

28
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