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Abstract

Cytometry techniques allow the quantification of the morphological characteristics
and protein abundances at a single-cell level. Data collected with these techniques can
be used for addressing the fascinating, yet challenging problem of reconstructing the net-
work of protein interactions, forming signaling pathways and governing cell biological
mechanisms. Network reconstruction is an established and well studied problem in the
machine learning and data mining fields, with several algorithms already available. More-
over, standard statistical analysis on such data is widely used, mainly for modeling the
relationship among proteins and comparing different cell populations. In this thesis, we
present the first, freely available, web-oriented application, SCENERY from "Single CEll
NEtwork Reconstruction sYstem", that allows scientists to rapidly apply state-of-the-art
network-reconstruction methods along with standard pre-processing and statistical analy-
sis functions on cytometry data, through advanced visualization functions.
SCENERY comes with an easy-to-use, step-wised user interface, along with an open mod-
ular architecture for ease of its extension. The functionalities of the application are illus-
trated and validated on data from a publicly available immunology experiment.



Περίληψη

Οι τεχνικές κυτταρομετρίας επιτρέπουν την ποσοτικοποίηση των μορφολογικών

χαρακτηριστικών και της αφθονίας πρωτεΐνων σε επίπεδο ενός κυττάρου. Τα δεδο-

μένα που συλλέγονται με αυτές τις τεχνικές μπορούν να χρησιμοποιηθούν για την

αντιμετώπιση του συναρπαστικού μεν αλλά και απαιτητικού προβλήματος της ανασυ-

γκρότησης του δικτύου των αλληλεπιδράσεων των πρωτεινών που σχηματίζει μονο-

πάτια σηματοδότησης και διέπει βιολογικούς μηχανισμούς του κυττάρου. Η ανακατα-

σκευή δικτύων είναι ένα καθιερωμένο και καλά μελετημένο πρόβλημα σε τομείς όπως

αυτούς της μηχανικής μάθησης και της εξόρυξης δεδομένων, με αρκετούς αλγορίθ-

μους να είναι ήδη διαθέσιμοι. Επιπλέον, η τυπική στατιστική ανάλυση των δεδομένων

αυτών χρησιμοποιείται ευρέως, κυρίως για την μοντελοποίηση της σχέσης μεταξύ των

πρωτεϊνών και τη σύγκριση διαφορετικών πληθυσμών κυττάρων. Σε αυτή την εργα-

σία, παρουσιάζουμε το SCENERY, την πρώτη ελεύθερα διαθέσιμη διαδικτυοκεντρική
εφαρμογή, που επιτρέπει στους επιστήμονες να εφαρμόσουν γρήγορα και εύκολα με-

θόδους, τελευταίας τεχνολογίας, για την ανασυγκρότηση δίκτυων, σε συνδιασμό με

λειτουργίες προ-επεξεργασίας και στατιστικής ανάλυσης δεδομένων κυτταρομετρίας,

μέσα από προηγμένες λειτουργίες απεικόνισης των δεδομένων και των αποτελεσμάτων.

Το SCENERY διέπεται από μια εύκολη στη χρήση, σταδιακά διαβαθμισμένη διεπαφή
χρήστη σε συνδιασμό με μια ανοικτή, αρθρωτά σχεδιασμένη αρχιτεκτονική για ευκολία

της επέκτασής του. Οι λειτουργίες της εφαρμογής παρουσιάζονται και πιστοποιούνται

σε δεδομένα από ένα δημόσια διαθέσιμο πείραμα στον τομέα της ανοσολογίας.
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Chapter 1

Introduction

1.1 Background

Single-cell analysis is becoming increasingly popular in biology, lately, for numerous
reasons. Analyzing the mechanisms underlying single cells is mainly about studying the
smallest organizational system that by definition implies life. The fact that such a small
system maintains, through different organizations and over millions of years, such a high
complexity and hierarchical structure imparts a fascinating and challenging aspect on the
analysis of this kind of data [1], [2]. The statistical analysis of single cell data usually
consists of standard pipelines that are mainly aim to a mathematical indication and un-
derstudying of the cells’ biological reactions and mechanisms. This kind of analysis is
mainly used for modeling the relationships among a limited set of molecular quantities,
such as proteins, for identifying and comparing different cell populations and for recon-
structing the structure and the properties of the network of different molecular events that
forms signaling pathways and governs cell biological mechanisms.

Signaling pathways or signaling networks are well-organized chains of complex molec-
ular events [3]. Molecular stimuli trigger these events by orderly changing the state of
specific proteins ultimately perturbing the cell’s metabolism, shape, gene expression, or
ability to divide.

Cytometry has been traditionally used for extracting information on intra- and extra-
cellular properties on a single cell level. The most widely used format of cytometry is
flow cytometry. Flow cytometry is a robust and broadly accessible method nowadays,
able to provide quantitative measurements on such sensitive macro-molecular interactions
[4] by using fluorochromes in order to detect the corresponding measurements. Still,
the statistical analysis and the reconstruction of signaling networks from flow cytometry
measurements has not become popular, primarily due to the limited molecular quantities
the method can measure. Recently, a novel format of cytometry termed Mass Cytometry
was introduced revolutionizing the state of the art [4]. Mass cytometry uses a set of
tagged antibodies in order to detect each molecular measurement and its inherent ability
to investigate more than 30 quantities simultaneously, offers, now, the opportunity to delve
deeper into the analysis of such data.

1



CHAPTER 1. INTRODUCTION 2

1.2 Motivation

Inducing signaling networks from data can be thought as a Network Reconstruction (NR)
problem. NR methods have become increasingly popular in biology, especially for infer-
ring gene-gene interaction networks, with numerous scientific works currently published
on this subject [5], [6]. The first successful case of signaling NR in the cytometry field
was achieved by Sachs and co-authors [7], followed by several applications [8], [9]. How-
ever, NR methods are not yet routinely used on single-cell cytometry data. Arguably, this
is mainly due to the intrinsic complexity of the task. Attempting to reconstruct signal-
ing pathways requires knowing in detail the semantics of the data, the peculiarities of the
cytometry technology, and all available information on the specific pathway and its com-
ponents. On the other hand, successfully applying NR algorithms requires mastering all
the technicalities of these methods, since inaccuracies in the analysis pipeline are poten-
tially able to invalidate all results [10]. In addition to those intrinsic problems, a horizontal
factor that limits broadcasting, sharing and reusing scientific results in this domain is the
reluctance towards social media [11], [12] and the limited use of online services that sup-
port sharing of credible and accurate analysis methods. These tools promote openness,
hiding at the same time sensible, core aspects of an experiment of this kind (in order to
prevent copyright infringement).

1.3 The Application

In this work, we present SCENERY (Single CEll NEtwork Reconstruction sYstem), a
web-based application specifically devised to allow researchers to apply NR methods
and standard pre-processing, statistical analysis and advanced visualization methods on
single-cell cytometry data, even with limited knowledge of the technical details of these
algorithms. In order to ensure a complete, efficient and robust platform for single-cell
analysis, this work was focused on the development of the modular architecture and the
appropriate functionality after deriving feedback from experts in various, relevant, fields
such as human computer interaction, computational biology and particularly, cytometry
analysis. Moreover, one of our main goals in this work was to render this type of anal-
ysis accessible, especially, in non-experts users in data analysis. This ensures an ease of
selecting the appropriate pipeline and rapidly applying advanced, state-of-the-art compu-
tational methods and standard work-flows in single-cell analysis by avoiding the common
and most of the times, demanding programming and algorithmic overhead associated with
such types of analyses. SCENERY interface guides the user through a set of easy steps;
from data loading and study design specification, to the set-up of the analysis and results
visualization and sharing. Its core is built on R and its modularity grants to easily add ex-
tensions, particularly additional analysis methods and visualizations. Finally, worth noted
is that the idea and a part of this work was first introduced in [13].
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1.4 Related Work

To the best of our knowledge, SCENERY is the first available software of its kind. Sev-
eral other applications exist for cytometry data analysis, both as stand-alone softwares
(FlowJo, www.flowjo.com); web-services (CytoBank, [14]); R packages such as the
’flowCore’ [16], ’flowStats’ [17], ’flowViz’ [18] and ’flowWorkspace’ [19] and libraries
(e.g. FlowPy [20], [15]); however none of these tools provide the user with NR function-
alities.

The rest of this thesis is structured as follows. First, we provide an overview of SCENERY
functionalities and current incorporated methods with indicating examples and visualiza-
tions (chapters 2, 3), and then a closer look to its internal modular architecture (chapter
4). A use case on real, publicly available data from the immunology field is then pre-
sented for better illustrating SCENERY capabilities (chapter 5). Finally, conclusions,
future work and extensions of the application are discussed in chapter 6.

www.flowjo.com


Chapter 2

The SCENERY Application

2.1 Software Functionality

Figure 2.1: Flowchart of typical user-application interaction. In step 1 users upload data
and define the study design. In step 2 they setup a computational experiment by selecting
datasets and the analysis method. In step 3, users calibrate the input parameters and
execute the analysis. The analysis can be reconfigured and repeated multiple times.

The functionality of SCENERY is structured by a step-wised wizard that guides the
users through a specific sequence of analysis steps, as shown in Fig. 2.1. Basic aspects
of the overall design and parameterized functionality of this wizard lay from the input
derived from experts and bibliography for available methods [21]. This input was cov-
ered in the interface and system design, implemented on the first version of the described
system, which is currently tested as for usability, user acceptance and efficiency. The user
supplies the data (Step 1), defines the computational experiment (Step 2) and then sets
the execution parameters (Step 3). The user may run the analysis, and redefine the execu-
tion parameters or select another analysis method until the desired outcome is achieved.
This sequence of steps also serves as an educational path for less experienced users who
are interested in exploring any aspect of the available analysis methods. Moreover, as
the system provides dedicated services to the biologist research community, to succeed
wider acceptance of the achieved results, exported data are presented in well-known and
acceptable to the community presentation and formats to make them universally readable
and accessible. The analysis output can be exported in various ways, mainly publication-

4



CHAPTER 2. THE SCENERY APPLICATION 5

quality figures and standard formats for graph-representation (i.e., Graph Exchange XML
Format, GEXF). In the next, currently developing, version of SCENERY the user will be
able to share the output of the analysis privately (via email or a repository) or publicly (via
social media or blogs accounts) to a group of colleagues, for further analysis and discus-
sion. Recent social-media citation practices indicate that scientific content is becoming
more and more part of every day’s conversations, thus increasing chances of citation [12].
Finally, one of the most important features of SCENERY’s functionality and architecture
is its modularity, described in Section 4.2, that offers the ability to the users to, easily, pro-
duce, submit and incorporate their own single-cell analysis methods, privately or publicly,
under SCENERY’s structure and layout.

2.2 Data Loading

Figure 2.2: Data Loading in SCENERY.

As first step, the users upload one or more data files in various formats such as TXT,
CSV or, mainly, as Flow Cytometry Standard (FCS), listing to the users’ account, as
shown in Fig. 2.5. FCS files are universally used for storing and exchanging flow and
mass cytometry data, with all major software for cytometry analysis adopting this stan-
dard. This, also allows SCENERY to import and analyze data, already, pre-processed by
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other applications. The main content of these single-cell data files is a dataset correspond-
ing to the expressions of different markers (columns), such as proteins or experimental
parameters, through a cell population (rows). In the rest of this thesis the corresponding
uploaded files will be referred as (FCS or data) files or datasets.

Experimental Study Design FCS files contain measurements that may correspond to
different samples (e.g. patients, cell types) or conditions (e.g., stimuli, inhibitor dosages).
For example, an FCS file may correspond to a different patient, to a specific cell type, may
be produced by a different laboratory, or under a specific experimental setting. SCENERY
goes beyond traditional study design declaration, and it allows users to assert any type of
metadata knowledge concerning variables, quantities, attributes, or characteristics of the
samples (e.g. gender, age, etc.). Hence, any type and number of factors can be defined
in a custom study design, both qualitative (e.g, cell type) and quantitative (e.g., drug
dosage). This flexibility permits to accommodate virtually all possible study designs,
both current and future ones. A study design can be uploaded through a CSV or a TXT
file, created in advance or created online, in-browser, by filling a dynamic two dimension
(2D) table with the columns corresponding to different experimental design factors and
the rows corresponding to the values of the factors for each FCS file that is under the
current design, respectively, as shown in Fig. 2.3.

Figure 2.3: Experimental design table uploading by submitting a CSV/TXT file or by
filling a dynamic HTML table online, as incorporated in the first step of SCENERY’s
wizard.

SCENERY automatically informs the user about the submitted study design in a 2D
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HTML table format alongside with metadata information about the uploaded dataset such
as the dimensions (number of cells and number of markers) and the markers’ description
and ranges summary (see Fig. 2.4).

Figure 2.4: Experimental design table and metadata information of the uploaded datasets,
as incorporated in the first step of SCENERY’s wizard.

2.3 Analysis Setup

In the second step, the users set up the desired computational experiment. This essentially
involves the selection of (a subset of) the uploaded data files, usually on the basis of
factors of the study design, and the application of a single data analysis method. On that,
the users can select the relevant, to the current analysis, files one by one or by filtering
their selection on the basis of the study design factors (see Fig. 2.5).

The analysis methods included in the current version of SCENERY are subdivided
into an, analysis independent, visualization method, standard pre-processing and statisti-
cal analysis methods and network reconstruction (NR) algorithms. The, analysis indepen-
dent, visualization method allows users to visualize their data in terms of histograms or
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Figure 2.5: Data selection and filtering, in terms of the uploaded ’Experimental Design
Table’ as defined in the second step of SCENERY wizard.

scatter-plots. The pre-processing methods allow users to apply data transformations and
standard single-cell pre-processing procedures for cytometry files, such as compensation
and gating. The statistical analysis methods, currently contain standard functions such
as t-test, analysis of variance and regression. Finally, the last analysis methods’ category
supports a variety of methods for reconstructing different networks in terms of associa-
tion, Bayesian and probabilistic causal analysis.

An extensive overview of the analysis methods’ categories along with the current
available methods is presented on chapter 3.

2.4 Perform Analysis

Once an analysis method is selected the wizard redirects to the third step where the users
will perform the analysis with the selected method and files from the second step. The
’Perform Analysis’ step is structured under a global user interface (UI) layout for each
method where the main components are: A ’Workflow & Details’ panel, an ’Analysis
Calibration’ panel and a ’Results’ panel, as shown in Fig. 2.6.

In the ’Workflow & Details’ panel, the users are informed for the metadata of the
current analysis such as the number of datasets that are involved, the method’s description
and characteristics and a rating system for grading the current method and their analysis
use-case experience.

In the ’Analysis Calibration’ panel the users are provided with the analysis calibration
options. Common options for all methods are deciding which markers and the number of
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cells to employ for the analysis. Next on this panel, the user defines the method-specific
hyper-parameters, such as thresholds for statistical significance, statistical tests, scoring
functions, and submits the analysis to the system (see Fig. 2.6).

Figure 2.6: Typical layout and structure of a method in SCENERY showing the main
panels and tabs as incorporated in the third step of the wizard. Here, as a use-case, we run
an analysis on flow cytometry data with the MMPC NR analysis method.

The analysis output is presented in the separate ’Results’ panel. This panel consists
of two main sections/tabs; namely, ’Summary’ and ’Plots’. The ’Summary’ tab recapitu-
lates the performed analysis reporting metadata information and a textual overview of the
results. For example, at each statistical analysis method the appropriate summary statis-
tics are reported and for each NR algorithm a textual representation of the reconstructed
network and corresponding method summary results are given.

In the ’Plots’ tab and depending on the selected analysis method used, a separate
graphical (downloadable) representation of the results is included. In most of the gener-
ated plots in this tab, extra visualization options are available, while a modal semi full-
screen view is supported for a better user interaction experience. Regarding the data
visualization method, different functionalities are available to the users for exploring their
data in terms of histograms for standalone markers or (matrix) scatter-plots with overlap-
ping density contour plots, on demand, for more than one selected markers. Regarding the
statistical analysis methods, the results are graphically displayed by a variety of visualiza-
tions such as overlapping density plots, violin plots and scatter-plots with fitted regression
lines. For the NR analysis, an interactive JavaScript-based, R-wrapped implementation
for networks’ visualization (R package ’visNetwork’ [23]) is available (see Fig. 2.6). Fi-
nally and as previously said, a variety of options for exporting the generating analysis
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output figures, are available in multiple formats.
More information on the visualization along with the implementation and the inter-

pretation of each analysis method are described, analytically, in the next chapter.



Chapter 3

Methods

Analysis methods in SCENERY are, currently, grouped into four major categories: Data
visualization, Pre-processing, Univariate statistical analysis and Network reconstruction
analysis. As previously said in Section 2.4, all methods are available online under the
same UI layout and structure composed by the ’Workflow & Details’ panel, the ’Analysis
Calibration’ panel and the ’Results’ panel. All analysis methods are implemented in R
[22], while the R Shiny web framework is used (shiny.rstudio.com), [24], in order
to wrap and transform the R functions into multiple interactive web applications. Be-
low, we present analytically the methods’ semantics and visualizations, the algorithms’
description and implementation and use-case examples for each category. For reference,
these are also summarized in table 3.1 at the end of this chapter.

3.1 Data Visualization

The data visualization category, currently contains a set of methods that allow users to
directly visualize their data, even before further applying any analysis method. After
discussing and getting feedback by researchers and scientists on the single-cell analysis
field, it came up that this is a usual first ’pre-analysis’ step, as it offers a quick remark
on specific markers of the selected data and an insight on the next steps of the analysis
pipeline and work-flow.

As shown in figures Fig. 3.1, Fig. 3.2 and Fig. 3.3, in the ’Analysis Calibration’
panel, the users select a dataset and the number of cells involved in the analysis. Then,
the users have to select the marker(s) that they want to visualize. If a single marker is
selected, its histogram for the current dataset is plotted in the ’Results’ panel under the
’Plot’ tab (see Fig. 3.1). If two markers are selected, a scatter-plot is plotted instead. If
more than two markers are selected, there are two options. Either visualize all scatter-
plots, overlapping each other on a single axis by using different colors for each marker
(see Fig. 3.2) or as a series of scatter-plots arranged in a matrix format (See Fig. 3.3). In
addition, to better illustrate the density of each scatter-plot, overlapping density contour
plots are also available, on demand. The ’ggplot2’ [25] R package was used for most of
the plots in this method while the generic R function ’plot’ and the R function ’hist’ from

11
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the built-in R package ’graphics’ [22] were used for the rest.

Figure 3.1: UI of the ’Data Visualization’ method, showing a histogram of a selected
measurement from a mass cytometry file.

Figure 3.2: UI of the ’Data Visualization’ method, showing an overlapping scatter-plot
among three selected measurements from a mass cytometry file.
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Figure 3.3: UI of the ’Data Visualization’ method, showing a scatter-plot matrix among
one selected marker versus four different selected measurements from a mass cytometry
file.

3.2 Pre-Processing

By selecting a method from the ’Pre-Processing’ analysis category, SCENERY users are
able to apply standard single-cell pre-processing pipelines to their data, in order to better
explore the data semantics and to create more appropriate samples for further statistical
and probabilistic analysis. The available methods in this category are presented below:

Compensation This method allows SCENERY users to apply the, widely used, com-
pensation procedure to raw, FCS data. This procedure, mainly, corrects the overlap among
the spectra of the fluorochromes used as protein markers in flow cytometry files. More
specifically, fluorescent probes are used in flow cytometry, in order to detect each marker.
The emission spectra of these fluorochromes massively overlap, hence, the detectors of
the machine instead of recording information coming from a single marker, they may be
recording overlapping information coming from markers on neighboring channels. The
main problem is that, obviously, this overlapping phenomenon (referring as spillover) im-
pacts the accuracy and the quality of the initial data. As a solution, the amount of spillover
is proved to be a linear function, so the measured average signal levels can be corrected
(i.e. aligning population medians) by the compensation process. Finally, with a proper
compensation setup, the pre-processed datasets will then properly visualized and analyzed
[26].

The implementation that we used in SCENERY is the ’compensate’ R function from



CHAPTER 3. METHODS 14

the R package ’flowCore’ [16], that applies a compensation for spillover between channels
by further applying on the data a spillover/compensation matrix, containing single-stained
compensation controls, to one or more FCS files, assuming a simple linear combination
of values.

Figure 3.4: UI of the ’Compensation’ pre-processing method.

As shown in Fig. 3.4 the users first select the FCS files involved in the compensation
procedure (lets define the number of the files as N). Then, the system scans the files for
an existing compensation matrix in the competent slot of the FCS file. If a compensation
matrix is not found the user can upload a CSV file with the compensation matrix values.
The compensation matrix is visualized even before the submission of the method and can
be viewed in the ’Compensation Matrix’ tab of the ’Results’ panel. By going further
in the calibration of this procedure, the users select the markers that are referenced and
matched one by one with the compensation’s matrix columns. An auto pre-selection of
the markers is available if the matrix is automated loaded from the FCS file. Finally, a
logicle transformation (see the next ’Transformation’ method) is available on demand, in
order to be applied on the selected markers, as well. The output of this method is N new,
compensated, FCS files, directly uploaded to the users account and available for selection
in the second step (’Analysis Setup’) of the SCENERY wizard.

Transformation This method allows SCENERY users to apply standard transforma-
tions to the original data. The users can select multiple files to apply the current trans-
formation automatically to all of them. The available transformations in SCENERY are,
currently, the: linear, log, arcsinh, the quadratic and the logicle that are all implemented
in the R package ’flowCore’ [16] and are listed more specifically below:
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• Linear Transformation. Creates a transformation defined by the linear transforma-
tion by the function: x’ = a*x + b.

• Log Transformation. Creates a transformation defined by the function:
x’ = log(x, logbase)*(r/d).

• Arcsinh Transformation. Creates a transformation defined by the function:
x’ = asinh(a+b*x)+c).

• Quadratic Transformation. Creates a transformation defined by the function:
x’ = a * x2̂ + b*x + c.

• Logicle Transformation. This transformation creates, automatically, a subset of
the hyperbolic sine transformation functions that provides several advantages over
linear/log transformations for display of flow cytometry data.

For more on these methods and their functions’ hyper parameters, please read the
flowCore’s R package reference manual [16].

Figure 3.5: UI of the ’Transformation’ pre-processing method.

Figure 3.5 illustrates this method’s UI. The users select the files involved in the trans-
formation procedure (lets define the number of the files as N) and the selected markers
to apply the transformation on. Then they select the transformation method and calibrate
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the current hyper parameters which are the parameters of each transformation’s function.
The result of this method, after submitted by the users, is the generation of N new, trans-
formed, FCS files, directly uploaded to the users account and available for selection in the
second step (’Analysis Setup’) of the SCENERY wizard.

Gating This method allows SCENERY users to apply the, widely used, gating or filter-
ing procedure for cytometry files. Gating in cytometry is the process of isolating groups of
cells from the bulk measurement, based on observed cytometric events. Typically, these
cell sub-populations (or gates) are manually annotated by drawing the boundaries around
a set of data points. This is a hierarchical procedure, usually performed by experts, where
bi-axial scatter-plots are sequentially plotted and annotated (see below for further details).
It is also possible to define gates, algorithmically, by discrimination analysis (i.e. density
based methods) [9]. The generated gates may then be used either for selectively gathering
cell sub-populations or for segregating the cell population for further analysis.

Figure 3.6: UI of the ’Gating’ pre-processing method.

As shown in Fig. 3.6 in the ’Calibrate your Analysis’ panel, the users first select
the FCS file involved in the gating procedure. Then they select the desired parent node,
from the generated hierarchical structure, to apply the gating and give a new name to the
node that they are about to create, which will be added, automatically in the referenced
hierarchical gating structure. This basically means, that after a series of gating procedures,
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an hierarchy of cell sub-populations (nodes) will be created and it will be valid to the
users for further pre-processing by selecting one of these nodes. After selecting the node,
the users are able to select to perform one, none, or several of the gating procedures,
currently available in SCENERY, that is the Boundary gating, the Density gating and the
Lymphocytes gating.

At the Boundary gating procedure, the users select two markers, and set the bound-
aries, interactively, in the scatter-plot by drawing a rectangle area. This results to the
removal of the events (cells) outside of the boundaries.

At the Density gating procedure, the users select one marker and they set the gate,
interactively, in the density plot by selecting the minimum and the maximum x in the
x-axis. This, usually, applies to procedures such as small event’s filtering or filtering of
stimulation beads (debris) and cell doublets. The small event’s filtering is based on a
density plot of the FS-lin (Forward Scatter Linear) channel, which is proportional to cell
size. Moreover, a filtering based on a density plot of the Pulse Width marker, will remove
events that are probably debris (these events are very big on pulse width) or cell doublets
(events very small on pulse width).

At the Lymphocytes gating the users select the Forward Scatter Linear (FS Lin) chan-
nel and the Side Scatter Linear (SS Lin) channel from the current data, and submit the
gating. An automatic density-based function of elliptical shaped cell sub-populations,
called ’flowGate’ from the R package ’flowStats’ [17], is applied while a scatter-plot vi-
sualization along with a summary of the results are available.

All interactive plots implementations are a combination of functions from the R pack-
ages ’ggplot2’, graphics and shiny [25], [24]. The internal R functions involved in the
Boundary and the Density gating procedures are implemented in The R package ’flow-
Core’ [16] (i.e. the ’rectangleGate’ function used in the ’Boundary Gating’ procedure).
See the mentioned R packages’ reference manuals for more.

Finally, the users can select multiple sub-populations or nodes in the created gating
hierarchy and export them as new FCS files, which are directly uploaded to the users
account and are available for selection and further analysis in the second step (’Analysis
Setup’) of SCENERY’s wizard.

3.3 Univariate Statistical Analysis

The univariate statistical analysis category contains methods that allow users to apply
basic and state of the art statistical analysis methods, in order to model the relationship
among standalone markers and study design factors, across different samples of the same
study. A study design factor is selected with respect to the uploaded experimental de-
sign, as discussed in Section 2.2, and it takes a unique value for each FCS file (cell sub-
population) involved in the analysis.

Factor Analysis The Factor Analysis method in SCENERY includes a t-test and an
analysis of variance for deriving a population comparison across different levels of the
same factor for standalone markers.
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As shown in Fig. 3.7, the users have to select two or more FCS files that are under
the same experimental design. Then, the users select one of the available markers and one
factor, with respect to the experimental design table that is available in the ’Design Table’
tab of the ’Results’ panel, and submit the analysis.

Figure 3.7: UI of the ’Factor Analysis’ statistical analysis method.

If the corresponding unique values of the selected factor are less than two, the popu-
lation comparison can not be performed. For exactly two unique values, the Welch’s two
Sample t-test statistic is used [27], [28] for comparing the two different populations, while
for more than two unique values of the factor, an analysis of variance [29] is performed to
the corresponding populations.

After the submission of the analysis, a textual representation of the results is available
in the ’Summary’ tab, which contains meta-data information about the analysis such as
the involved datasets, the unique values of the selected factor and the total number of cells,
along with a summary of the comparison results in terms of statistics. The ’Plots’ tab of
the ’Results’ panel consists by an overlapping density plot of the selected marker’s sub-
populations retrieved with respect to the factor values and a violin plot which is similar
to a box plot with a rotated kernel density plot on each side for showing the probability
density of the measurement (i.e. the select marker) across the different values of the factor.
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As previously said, all plots are, publication-quality figures, downloadable in multiple
formats such as PNG, PDF, JPG and postscript.

For the implementation of this method, the built-in R function ’t.test’ (R package stats)
was used for applying the Welch’s t-test statistic, while the built-in R function ’anova’ (R
package stats) was used for the analysis of variance. For the density plot, the generic plot
function of the R package graphics was used, while for the violin plot, the R function
’qplot’ of the R package ’ggplot2’ [25] was used.

Linear & Logistic Regression Univariate linear and logistic regression methods are
also available in SCENERY for modeling the relationship between markers and study
design’s factors, by fitting a linear model in case of a numeric factor or a logistic model
in case of a categorical factor.

As shown in Fig. 3.8, the users have to select two or more FCS files that are under
the same experimental design. Then, the users select one of the available markers and one
factor, with respect to the experimental design table that is available in the ’Design Table’
tab of the ’Results’ panel, and submit the analysis.

Figure 3.8: UI of the ’Logistic Regression’ statistical analysis method.

If a numeric factor with more than two unique values is selected, the method fits a
linear model among the different marker sub-populations and a summary of the generated
results is available on the ’Summary’ tab of the ’Results’ panel. This summary contains
meta-data information about the analysis and results of the fitted model in terms of the
residuals, the coefficients and more.

If a categorical factor with more than two unique values, is selected, the method fits
a logistic model instead. For exactly two unique values of the factor, a binomial logistic



CHAPTER 3. METHODS 20

regression is fitted, while for more than two unique values, a multinomial logistic regres-
sion is fitted. A summary of the generated results is then available on the ’Summary’ tab
of the ’Results’ panel. This summary contains meta-data information about the analysis
and results of the fitted model in terms of the deviance residuals, the coefficients, the Std.
errors and more.

The ’Plots’ tab of the ’Results’ panel consists by a scatter-plot of the marker values
across the different factor values, with a fitted regression line for a visual interpretation of
the relationship. As previously said, all plots are publication-quality figures, download-
able in multiple formats such as PNG, PDF, JPG and postscript.

For the implementation of this method, the built-in R function ’lm’ (R package stats)
was used for fitting the linear regression, while the R functions ’glm’ (R package stats)
and ’multinom’ (R package nnet [30]) were used for the binomial and the multinomial
logistic regressions, respectively. For the scatter-plot with the fitted regression line, the R
function ’ggplot’ of the R package ’ggplot2’ [25] was used.

3.4 Network Reconstruction Analysis

This analysis category imparts a ton of innovation in this work, as SCENERY is the first
free software to support a number of NR algorithms for single-cell data. In addition, the
name of our system was inspired by this main functionality (SCENERY: a Single CEll
NEtwork Reconstruction sYstem). All NR methods represent statistical relationships in
the data as networks composed by nodes and edges. Nodes always stand for measurements
(e.g., protein abundances). Edges, on the contrary, have different semantics, depending
on the type of network that the method outputs.

A typical analysis with a method from this category consists of the calibration of
the analysis in the ’Calibrate your Analysis’ panel, a textual representation of the results
(i.e. a summary of the graph in text form) along with the analysis meta-data information
(Summary) which are the involved in the analysis datasets, the total number of cells and
the hyper parameters values. Regarding the visual results, an interactive visualization of
the reconstructed network (Plot) in the ’Results’ panel is available. Each network visu-
alization is generated by using the R package ’visNetwork’ [23] with the default ’Force-
directed’ layout [31]. The purpose of this layout is to position the nodes of a network
so that all the edges have more or less equal length and there are as few crossing edges
as possible. The visualized networks’ interactivity, currently, relies on features such as
nodes re-positioning, zooming, and a capability of locating a network node along with its
direct neighbors. In addition, every generated reconstructed network can be download as
a GEXF (Graph Exchange XML Format) file. GEXF is a standard, widely used, graph-
representation format and GEXF files are, usually, used as input in state-of-the-art graph
visualization tools such as Gephi [32].

Moreover, a standard graph theory analysis is available in SCENERY, below every
reconstructed network visualization, as shown in Fig. 3.9. This analysis, contains the
basic graph characteristics from standard metrics and algorithms in the graph theory field,
for further interpretation and analysis of each generated reconstructed network in aspects
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such as connectivity, topology, ranking of nodes given a specific metric, cliques identifica-
tion and more. This functionality of SCENERY, mainly, relies on algorithms for deriving
each network’s density, average nodes’ degree, diameter, average shortest path length, the
betweenness centrality and the clustering coefficient of each node along with the average
clustering coefficient of the network. More specifically:

• Density: Ratio of the current number of edges and the number of possible edges in
the graph. A graph can be interpreted as dense if the number of its edges are close
to the maximal number of edges (usually when density >= 0.5). So, this metric
shows, intuitively, how connected is the generated network. If a network reach the
maximal density, which is the value one (1), it is characterized as a complete graph
where every node is connected with every other node. Finally, the density of a graph
can be interpreted as an intuitive indicator of the network’s connectivity.

• Average Degree: The degree of a node is the number of edges that are connected to
that node. The average degree of a graph is the average number of the degree of all
nodes in the current network. For directed graphs, the In-degree and the Out-degree
can also defined and the average quantity of them, respectively. In-degree of a node
is the number of the incoming edges to that node, while Out-degree is the number
of the outgoing edges from this node. The sum of the average In-degree and the
average Out-degree is the average degree of a directed graph.

• Average Shortest Path Length: The shortest path of two nodes is defined as a path,
among this nodes, such that the number of the path’s edges (or the sum of the
path’s edges’ weights) is minimized. The average shortest path length in a graph, is
defined as the average number of the shortest paths’ length for all possible pairs of
the networks’ nodes.

• Diameter: The longest shortest path in the network. It can be also interpreted as an
intuitive indicator of the network’s connectivity.

• Betweenness Centrality: This algorithm is an indicator of each node’s centrality in
the network. Betweeness centrality of a node is defined as the ratio of the number
of the shortest paths, from all pairs of nodes, that pass through that node, divided
by the number of all possible shortest paths. On that, we can say that a node with
high betweeness centrality has a large influence on the generated network’s paths,
under the assumption that a transferring quantity follows the shortest paths.

• Clustering Coefficient: Measures the degree to which nodes in a network tend to
cluster together. The local clustering coefficient of a node in a network quantifies
how close its neighbors are to being a clique (complete graph).

• Average Clustering Coefficient: The global clustering coefficient (or transitivity)
gives an indication of the clustering in the whole network. Both global and lo-
cal clustering coefficient measures can be interpreted as intuitive indicators of the
network’s connectivity.
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Figure 3.9: Summary of the typical network’s characteristics by applying several graph
theory analysis algorithms in a reconstructed association network, derived by the ’Corre-
lation’ NR method.

For the implementation of these algorithms, the R package ’igraph’ [33] was used and
more specifically the R functions ’edge_density’ and ’degree’ were used for deriving the
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network’s density and average degree, while the ’mean_distance’ and the ’diameter’ R
functions, based on an unweighted breadth first search (BFS) [34], were used for generat-
ing the average shortest path length and the diameter (longest shortest path), respectively.
The R function ’betweenness’ was used for retrieving each node’s normalized between-
ness centrality by using the ’Brandes’ algorithm [35]. Finally, the R function ’transitivity’
was used for deriving the local clustering coefficient of each node, along with the global
clustering coefficient of the network, assuming that for directed graphs the direction of
the edges is ignored [36]. The results in the betweenness centrality and the clustering
coefficient of the network nodes are presented decreasingly sorted. For more details on
these methods, read the ’igraph’ R package reference manual [33].

Finally and by returning to each NR method’s analysis overview, a description of the
algorithm used in each NR method along with a ’help’ section are available for ease of
usage.

Based on the edges’ semantics criterion, we distinguished the available NR methods
into the following sub-categories:

3.4.1 (Conditional) Association Networks

Association Networks (AN) connect two nodes with an undirected edge if the correspond-
ing measurements are found statistically associated. Conditional Association Network
(CAN) are similar to AN, but associations between nodes are computed conditioning on
all (or part) of the remaining measurements. An example of such a network is shown in
the ’Results’ panel at the right of the Fig. 3.11.

Correlation The Correlation method, which is used for deriving ANs, is based on the
Pearson’s pairwise correlation coefficient between different paired measurements [37],
[38]. The method’s main loop tests each marker with all the rest for any statistical uni-
variate association. Each association among two markers is represented in the network as
an undirected edge.

As shown in Fig. 3.10, the users select one or more FCS files, which are pooling all
together and the, involved in the analysis, markers. Then an appropriate input for taking a
random sub-population (sub-sampling) is available. Finally, the users calibrate the thresh-
old for testing the statistical significance of the generated p-value of each correlation test,
and submit the analysis.

For the implementation of this method, the built-in R function ’cor.test’ (R package
stats) was used for generating each association’s p-value.

MMPC MMPC (Max Min Parent and Children [39], [40]) employs the theoretical foun-
dation of causal discovery to perform feature selection for a target variable, by identifying
the neighborhood of the target variable (parents and children) in the graph with respect
to a conditioning set. By limiting the area of interest to a single node, MMPC manages
to efficiently selects the signature for the desired target even among thousands of input
variables. MMPC has proven to be one of the most robust and efficient feature selection
algorithms [41].
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Figure 3.10: UI of the ’Correlation’ NR analysis method, showing a textual representation
of the results in the ’Summary’ tab, after submitting an analysis.

The MMPC method in SCENERY is used for deriving CANs. The incorporated
method sets each marker as a target variable in order to find it’s associated parent and
children set of features. Then and in order to derive the conditional association network,
the method generates an undirected edge between two nodes A and B, if the correspond-
ing measurement of A was found in the parent and children set of B and vice versa, with
respect to a conditioning set. The default statistic test, currently used, in the MMPC
method for testing the conditional independence among the measurements is the Fisher’s
Z test [42] for continuous measurements, while for future releases of SCENERY, a robust
version of this test will be available [44], [45]. Moreover, future versions will contain
the Spearman’s correlation-based test statistic [43], as well, since measurements may not
exhibit a linear relationship and the Spearman’s correlation measures how well the rela-
tionship between two continuous measurements can be fit by a monotonic function [6].

As shown in Fig. 3.11, the users select one or more FCS files, which are pooling
all together and the, involved in the analysis, markers. Then an appropriate input for
taking a random sub-population (sub-sampling) is available. Finally, the users calibrate
the MMPC hyper parameters from a range of available values. These parameters consist
of a threshold for testing the conditional independence among a measurement and the
target measurement given a conditioning set CS. The second hyper parameter is the max_k
which is the maximum length of the conditioning set.

For the implementation of this method, the R function ’MMPC’ of the R package
’MXM’ [40] was used, while the R function ’testIndFisher’ from the same package, was
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used internally for testing the conditional independence with the Fisher’s Z statistic test.
For more, check the MXM package’s reference manual.

Figure 3.11: UI of the ’MMPC’ NR analysis method, showing the generated reconstructed
network in the ’Plots’ tab, after submitting an analysis.

3.4.2 Probabilistic Causal Networks

Therefore, some algorithms output Partial DAGs (PDAGs), that use directed edges for
representing causal relations, and undirected edges to represent edges whose causal di-
rection is unclear. If hidden common confounders are also a possibility, Maximal An-
cestral Graphs (MAGs) are typically used instead of Bayesian networks (BN). MAGs
use directed edges to represent causal relationships, and bi-directed edges to represent
confounded relationships. Again, since some causal directions are not identifiable, the
algorithms usually output Partial Ancestral Graphs (PAGs) that use circle endpoints to
indicate ambiguous orientations [46].

PC PC ([47]) is a landmark constraint-based algorithm, named after its inventors Peter
Spirtes and Clark Glymour [48], that remains one of the most popular Bayesian-based
NR algorithms. PC outputs a representative of all Bayesian networks that satisfy the
conditional independencies that hold in the input dataset, under the standard causal dis-
covery assumptions (Causal Markov Condition, Faithfulness) and the absence of latent
confounders. The directed edges in the output graph can be interpreted as causal links but
the direction of some edges may be undetermined, in the sense that they point one way in
one directed acyclic graph (DAG) in the equivalence class, while they point the other way
in another DAG in the equivalence class. So, the reconstructed network by this method
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can be uniquely represented by a partially directed acyclic graph (PDAG) that contains
undirected and directed edges.

Figure 3.12: UI of the ’PC’ NR analysis method, showing the generated reconstructed
network in the ’Plots’ tab, after submitting an analysis.

As shown in Fig. 3.12 and in consistency with all the NR methods in SCENERY, the
users select one or more FCS files, which are pooling all together and the, involved in the
analysis, markers. Then an appropriate input for taking a random sub-population (sub-
sampling) is available as well. Finally, the users calibrate the significance level threshold
for testing the generated p-value of each of the individual conditional independence tests,
and submit the analysis.

The implementation of this method was based on the R function ’pc’ of the R package
’pcalg’ [47], while the default Gaussian based conditional independence test was used.
For more, check the ’pcalg’ package’s reference manual.

FCI FCI ([48], [49], [50]), Fast Causal Inference, is one of the first algorithms that can
be used to produce causal networks in the presence of latent confounders. The output
graph summarizes all pairwise relationships. Each pair of variables may be connected
by a causal relationship (directed edge) or be confounded by a hidden common cause
(bi-directed edge). Endpoints of the edges that cannot be uniquely identified (i.e. are
ambiguous in different models that fit the data equally well) are denoted by circles and
the reconstructed network can be represented by a maximal ancestral graph (MAG) or by
a partial ancestral graph (PAG).

As shown in Fig. 3.13 and in consistency with all the NR methods in SCENERY, the
users select one or more FCS files, which are pooling all together and the, involved in the
analysis, markers. Then an appropriate input for taking a random sub-population (sub-
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sampling) is available as well. Finally, the users calibrate the significance level threshold
for testing the generated p-value of each of the individual conditional independence tests,
and submit the analysis.

Figure 3.13: UI of the ’FCI’ NR analysis method, showing the generated reconstructed
network in the ’Plots’ tab, after submitting an analysis.

In the ’Results’ panel, instead of a textual network summary, a summary of the gener-
ated R object of the FCI R function is presented. Moreover, the network adjacency matrix
is available on the tab ’Graph Adjacency matrix’ along with a heat-map visualization. In
this adjacency matrix (adj_mat), the edges’ ending points are encoded by numbers that can
be summarized by: 0 = no edge, 1 = circle, 2 = arrowhead. For example, if adj_mat[i,j]
= 1 and adj_mat[j,i] = 2, this represents the edge i <-o j. Finally, the interactive R based
visualization (R package visNetwork) of the reconstructed network is available in the tab
’Plots’.

The implementation of this method was based on the R function ’fci’ of the R package
’pcalg’ [47], while the default Gaussian based conditional independence test was used.
For more, check the ’pcalg’ package’s reference manual.

IDA The Intervention-calculus when the DAG is absent, IDA [47] algorithm, computes
a lower bound for the size of the causal relationships between two variables by implicitly
and efficiently enumerating the whole set of causal structures consistent with the data
[51]. In this way IDA can estimate causal effects on the basis of solely observational data;
the applicability of the method is limited by the assumptions of causal sufficiency (no
confounders) and linearity.

In order to estimate these causal effects in SCENERY, the users select one or more
FCS files, which are pooling all together and the two stand alone markers. Then an appro-
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priate input for taking a random sub-population (sub-sampling) is available. Finally, the
users calibrate the significance level threshold for testing the generated p-value of each of
the individual conditional independence tests, and submit the analysis.

The result of this method is a summary of the possible causal effects, derived by
the selected measurements and it is presented along with the analysis’s meta-data in the
’Summary’ tab of the ’Results’ panel (see Fig. 3.14). This method does not plot any
reconstructed network.

Figure 3.14: UI of the ’IDA’ NR analysis method, showing a textual representation of the
results in the ’Summary’ tab, after submitting an analysis.

3.4.3 Bayesian Networks

Bayesian Networks (BNs) use Directed Acyclic Graphs (DAGs) for representing the mul-
tivariate distribution of the data. A common misconception is interpreting a directed edge
in a BN as an indication of causal interaction. This is possible only under the standard
causal discovery assumptions (Causal Markov Condition, Faithfulness), Even then, not
all causal relationships are identifiable by data alone.

HC The Hill Climbing (HC, [52]) algorithm is a greedy-search algorithm that performs
a heuristic search across the space of Bayesian networks that may represent the data, and
returns the best candidate according to a given metric [53].

As shown in Fig. 3.15 and in consistency with the other NR methods in SCENERY,
the users select one or more FCS files, which are pooling all together and the, involved
in the analysis, markers. Then an appropriate input for taking a random sub-population
(sub-sampling) is available. Finally, the users select the network’s scoring algorithm,
and submit the analysis. The available algorithms for scoring the candidate Bayesian
networks, with respect to the continuous values of the measurements, are the Bayesian
Information Criterion, the Multivariate Gaussian log-likelihood, the Akaike Information
criterion and the Gaussian posterior density.
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Figure 3.15: UI of the ’HC’ NR analysis method, showing the generated reconstructed
network in the ’Plots’ tab, after submitting an analysis.

The implementation of this method was based on the R function ’hc’ of the R package
’bnlearn’ [52]. For more information about the implementation of the algorithm and the
scoring algorithms, check the bnlearn package’s reference manual.
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Method Analysis Category Short Description Result

Data Visualization Visualization Visualization of single-
cell measurements

Histograms,
scatter-plots,
density-contour
plots

Transformation Pre-Processing Transformation procedure
for cytometry files

New FCS files

Compensation Pre-Processing Compensation procedure
for flow cytometry files

New FCS files

Gating Pre-Processing Gating procedure for flow
cytometry files

R shiny interactive
plots, new FCS
files

Factor Analysis Uni. Statistical Population comparison
based on experimental
design factors (t-test,
anova)

Summary statistics,
density plots, vio-
lin plots

Linear Regression Uni. Statistical Fits a linear model be-
tween a numeric experi-
mental design factor and a
measurement

Summary statistics,
scatter-plots with
fitted regression
lines

Logistic Regression Uni. Statistical Fits a logistic model be-
tween a categorical exper-
imental design factor and
a measurement

Summary statistics,
scatter-plots with
fitted regression
lines

Correlation NR Reconstructs an associa-
tion network

Undirected graphs

MMPC NR Reconstructs a con-
ditional association
network

Undirected graphs

PC NR Reconstructs a causal net-
work assuming no latent
confounders

Partial directed
acyclic graphs

FCI NR Reconstructs a causal net-
work assuming possible
latent confounders

Partial ancestral
graphs

IDA NR Estimates possible total
causal effects

Causal effects sum-
mary

HC NR Reconstructs a Bayesian
network

Directed acyclic
graphs

Table 3.1: Summary table of the current analysis methods in SCENERY.



Chapter 4

Architecture

4.1 Software Architecture

Figure 4.1: Overview of SCENERY’s architecture components and interactions among
the different users of the application.

SCENERY is a platform-independent web application of Client-Server architecture;
built on R and PHP running on an Apache web server (www.apache.org/). The ar-
chitecture follows the Client-Server model, where the basic idea is the partition of the
User Interface (Client) from the resources/services (Server). The interface on the Client
side is implemented using HTML5, CSS3 for structuring and presenting the content and
JavaScript for handling light-weight tasks such as validation of forms, effects on mov-
ing elements, asynchronous communication and more. In order to alleviate the over-
head associated with common tasks in web development, the Bootstrap web framework
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(getbootstrap.com/) is used, which is considered as the state-of-the-art web frame-
works lately, while the R Shiny web framework is used (shiny.rstudio.com/), in
order to wrap each method into an independent web-application and in order to allow R
functions communicate among Client and Server. By going further in web frameworks,
we can say that they are, usually, used in the development of dynamic websites, promoting
the code-reuse idea, which is the idea of using existing software in order to build new one.
They, mainly, provide templates, CSS classes and functions for structuring the content
of the Client side, while libraries are also providing for session management, database
access and client-server interactions (i.e. Bootstrap provides JavaScript functions while
R shiny provides, mainly, R along with some JavaScript functionality). Regarding the
analysis methods, they are all implemented in R and run on the Server. Additionally, PHP
was used as an application skeleton/controller, for managing most of the Client-Server
interaction and database operations. A MySQL database (www.mysql.com/) is used
for storing users’ information and history and for saving the vital entities of the applica-
tion such as the users, the methods and the results. Finally, a windows-based file storage
system is currently available, for storing the users’ uploaded files.

Figure 4.1 illustrates the architecture of SCENERY along with the typical users of the
application, which are the standard users, the administrators and the developers. Standard
users interact directly with the client side of the application by using the UI. These users
are mostly scientists and researchers from the single-cell analysis field. When such a user
login to SCENERY, a PHP session regarding the current user’s information and history is
created for ease of maintaining the state of these information across different pages of the
application, while HTTP cookies are used for recording the user’s browsing activity for a
more personalized and easy use in future sessions. On the same page, the developers of
SCENERY are, at most, computer scientists that develop new R analysis methods under
SCENERY’s layout and structure. Finally, the SCENERY administrators maintain and
develop further the system while they are responsible for the smooth operation of every
analysis method, as well as, scaling up the system as it grows in terms of new users and
methods. Moreover, the administrators moderate each new method submission by testing
it further and incorporating it in the system.

Regarding the run of the R analysis methods on the server side, a single R shiny
web application is created for each method and initialized in our system by calling the
R function ’runApp’ of the R package ’shiny’, with the appropriate arguments. Every R
shiny application should listen to a host’s IPv4 address, which in our case is the IPv4 of the
server that hosts SCENERY. Moreover, each application commits and listens to a unique
TCP port on the server, making it available under a port-oriented URL. For example if
the IPv4 address of our server is ’127.0.0.1’ and a method listens to the TCP port ’3030’,
then this method is available under the URL ’http://127.0.0.1:3030’. Then, and in order to
be available in SCENERY, each method’s port-oriented, unique URL is displayed to the
users by an HTML inline frame (iframe) which interacts with the whole system.

Finally, in order to overcome the issues of the current system’s architecture, a scaling
up of the application is already on development. The current issues of the SCENERY
architecture are, mostly, rely on (a) the support of running an analysis method by multi-
ple users simultaneously, (b) the limitations of the current processing power and (c) the

getbootstrap.com/
shiny.rstudio.com/
www.mysql.com/
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limited file storage space. In order to overcome (a) in the current version of SCENERY,
we incorporated multiple instances (currently three, under different TCP ports) for each
R shiny application that corresponds to a specific method. This solution is considered as
a temporary, because it is very demanding on memory and CPU resources, while it sets
a limit on the number of users that simultaneously run an analysis with the same method
(currently three).

On that, we are currently incorporating SCENERY to a cloud server, along with the
ability of using high performance computing (HPC) and multiple virtual machines (VM)
services. This will offer to our system an effective use of the required resources than the
current local server, for ease of, efficiently, running each analysis process. Hence, that
solved the issues (b) and (c). Moreover a Docker-based [54] idea will be applied to the
internal architecture of each analysis method. More specifically, we are currently develop-
ing a ’dockerized’ version of the available architecture of our R-shiny based applications,
that will efficiently used in order to overcome issue (a). By going further on the ’docker-
ization’ of our system, a single Linux-based Docker container (like a lightweight, machine
independent, virtual machine) will be initialized after a user clicks to a specific analysis
method and will be closed after the user exits the current method. This will ensure of
running each user’s analysis independently and simultaneously with other users, without
any limitations. For more on the Docker technology please visit www.docker.com.

Figure 4.2: Overview of SCENERY’s Docker-based architecture moved on a cloud server.
Currently on development.

While the current architecture is a ‘work in-progress’, future version(s) will be ex-
tended with operational information built upon Design Strategy for Device Independence
[55] enabling the web application to be utilized in various screen dimensions and envi-
ronments of use.

www.docker.com
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4.2 Modularity

One of the main and most important features of SCENERY is its modularity. The impor-
tance of this feature is mainly relies on the aspect of extending massively the system in
term of easily incorporating new, publicly available single cell analysis methods submitted
by the users, transforming SCENERY to an essential tool for the cytometry community.

On that, each analysis method is provided by a single R function with a standardized
signature (datasets, design table, method’s options) and results’ type (summary, visual-
ization). This ensures that further analysis methods can be easily integrated within the
step-wised SCENERY structure, by allowing users submitting their own NR methods as
R code.

In order to incorporate new users’ methods in SCENERY, an online step-wised tutorial
and an HTML form are available for ease of submission.

Method Definition At first step, the users have to define their method by completing
the appropriate online form. Required fields of this form are the method name, the cor-
responding analysis category that it belongs, the method’s short and extended description
and the visibility status of this method in SCENERY as public or private. Future versions
of SCENERY will allow user methods to be visible in a group of users as well. Moreover,
optional fields are available, regarding the method’s references and a text field about the
generated method’s visualization manual. Finally, the author of the method is defined
automatically as the user that submits the current method.

Method Standardization The next step of the submission is about the standardization
of the method. Each method in SCENERY must be formatted in a standardized way, in
order to be compatible with our system, as shown in Fig. 4.3 and described below.

Figure 4.3: Standardized modular architecture of the R methods in SCENERY.
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Standardized Input Each method is a main R function and is under a standardized
input signature which is described by the following:

method_name <- function(datasets, design_matrix=NULL, ...)
{ ... }

The first required argument is called datasets and it is an R object of the class list
that contains all the FCS file expressions (datasets) as data.frame objects in R. In each
data.frame, the columns correspond to the markers (measurements) and the column names
correspond to these marker names. The rows of each data.frame correspond to different
cells, containing the expression of each measurement (i.e. marker). All the datasets in-
volved in the method’s analysis procedure must be retrieved, internally, by this argument.

The second optional argument is called design_matrix and it is under the data.frame
R class, as well. This argument corresponds to the experimental design table that will
be involved in the analysis. An analysis method may be independent of the experimental
design so this argument is optional and its default value is set to NULL. The columns of
this data.frame object correspond to the experimental design factors, as defined in Section
2.2 and the column names correspond directly to these factor names. Worth noted is that
the first column corresponds to the current file name and it is named as ’Name’. The rows
of this data.frame object correspond to the FCS files or samples that are involved in the
experimental design, containing the values of each factor for the current sample (i.e. row).

Finally, the three dots (or ellipsis) argument corresponds to the methods’ hyper pa-
rameters. The number, the names and the R classes of these arguments are decided by the
method’s author, without any limitations, and they have to be described analytically in the
extended description of the method in the first step of the submission.

Standardized Output On the same page, each analysis method’s generated results
should be under a standardized output. In order to alleviate this, each methods’ output
should be an R object of the class scenery.output along with the generic R functions
summary and plot that correspond to the ’Summary’ and ’Plot’ tabs, respectively, of each
method’s ’Result’ panel in the system’s UI.

More specifically, an R class called scenery.output.network (sub-class of the generic
class scenery.output) is available as output for a network reconstruction method. The
Slots of this class are the ’nodes’ and the ’edges’. The ’nodes’ slot corresponds to an R
data.frame object with required named columns the ’id’, a character R object that corre-
sponds to the node names (i.e. marker names) and the ’type’, a character R object for
describing the type of each node (i.e. protein marker). Optional columns, defined by the
method authors, are allowed as well. On the same hand, the ’edges’ slot corresponds to an
R data.frame object with required named columns the ’from’ and ’to’, character R objects
corresponding to a node id and the ’type’ which is a numeric R object that corresponds
to each edge’s ending points. Zero (0) value is used no ending point (i.e. undirected
edge), one (1) value is used for an arrow head, while value 2 is used for a circle end-point
and 3 for an ’X’ end point. Optional named columns are currently incorporated such
as the ’weight’, a numeric R object for the edge’s weight (i.e. a p-value or a statistic)
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and ’dashed’, a boolean R object corresponding to a dashed edge or not. More optional
columns can be declared by the authors for extra annotation of each edge.

In addition, another R class called scenery.output.general (sub-class of the generic
class scenery.output) is also available as output for other analysis methods except the NR
ones. The unique slot of this class is called ’results’ and it is defined under the abstract R
class-keyword "ANY" which basically means it can be under any R class that the author
decides.

Each SCENERY method’s output class has to contain two polymorphic generic func-
tions which are the R functions ’summary’ and ’plot’ that are directly correspond to the
’Summary’ and ’Plot’ tabs of the UI and they get as the only argument the, generated from
the method, R scenery.output object. The ’Summary’ function prints out the textual repre-
sentation of the generated method’s results as an overview by printing the key-objects of
the output, needed for interpreting the results by other users, and it is required. The ’plot’
function contains the code for the graphical representation of the generated output object
and it is optional. In case of a NR method, the default visNetwork-based visualization will
be used. In case of other methods no default visualizations are available and they need to
be incorporated by the method authors, if there are any.

Finally, R script examples and function templates are available online, for ease imple-
mentation of the new users’ methods.

In order to guarantee that a method works and its compatible with the SCENERY
layout and structure, an offline validation and unit tests of the method will be performed
by the system moderators once the method is submitted.

File Uploading The final part of a new method’s submission is the uploading of the
required files. At first, users have to submit an R file containing the implementation of the
method with at least one R function. Then, an R file with the appropriate generic functions
’summary’ and ’plot’, compatible with the method’s standardized output (see previous
sub-section) has to be uploaded. R script templates are available online, containing the
skeleton and appropriate comments for the definition of the requested files. Finally, a
TXT file, containing the desired calibration panel R shiny widgets that will be used in
the method’s UI, referenced by name for each method’s hyper parameter, is optionally
requested. In case of absence of this file in the submission, default R shiny widgets will
be used by the system’s administrators. On the other hand, each line of this file has to
contain a hyper-parameter along with the desired R shiny widget name corresponding
to the official R shiny widget gallery (http://shiny.rstudio.com/gallery/
widget-gallery.html), separated by a comma.

http://shiny.rstudio.com/gallery/widget-gallery.html
http://shiny.rstudio.com/gallery/widget-gallery.html
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Application on Immunology

5.1 Definition of the Problem

To a computer scientist, signaling networks are informal causal models for which pro-
teins are key members. Their role is to relay the signal by switching between active and
inactive states, thereby altering their function. Information is passed on sequentially from
one protein to the other until the response is produced. We demonstrate an application
of SCENERY by trying to reconstruct a part of a signaling pathway, using public mass
cytometry data published in [56]. In the original study, the authors use mass-cytometry
to measure 31 proteins related to the human hematopoietic system in two healthy bone
marrow donors. Cells were stimulated with several activators to uncover distinct signal-
ing mechanisms. Here, we use data from B-cell populations. Particularly, cells treated
with stimulus of the B-cell antigen-receptor (BCR). BCR signaling is known to trigger
several signaling cascades simultaneously permitting many distinct outcomes [57]. These
include proliferation, survival and differentiation as well as orchestrating the generation
of antibodies. Hence, this dataset provides an excellent showcase for the features and
applicability of SCENERY in the research of signaling pathway networks.

Figure 5.1 illustrates the user functionality of our platform in the current use case.
The user can first configure his analysis in the calibration panel shown on the left of the
figure by selecting the involved in the analysis markers and setting the appropriate values
to the method’s hyper parameters. After submitting the analysis, the user can view the
generated output of the method as a summary text or as a network visualization, as shown
on the right part of the figure.

5.2 Analyzing Cytometry Data with SCENERY

In the following examples we employ a subset of proteins, known to be involved in BCR
signaling, which are the spleen tyrosine kinase (SYK), the B-cell linker protein (BLNK or
pSLP-76), the phospholipase C,γ2 (PLCγ2), the mitogen-activated protein 14 (p38) and
the mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2).

Figure 5.1 displays the network reconstruction analysis results as they were retrieved
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by running the ’MMPC’ method in SCENERY. The undirected edges denote correlation
between the respective protein markers in a sense that both bi-connected nodes have been
selected in the Parent-Children set of each other. Starting from the top left corner, then,
the reconstructed network indicates that SYK, BLNK (pSLP-76) and PLCγ2 are inter-
correlated. This is true biologically because the stimulated BCR attracts and activates
SYK which, in turn, attracts, interacts and phosphorylates both BLNK (pSLP-76) and
PLCγ2 [57],[58]. This process is part of a complex stimulation process that ultimately ac-
tivates several proteins. One of them is p38 which interacts with both PLCγ2 and BLNK
(pSLP-76) in order to be activated [59]. This process is captured in SCENERY’s output
and is shown in the reconstructed network by the respective correlation edges. After p38
and further downstream, the reconstructed network extends to MAPKAPK2. This edge
is also consistent with the literature, where MAPKAPK2 is found to be directly phos-
phorylated by p38 [60]. Activated MAPKAPK2 can then mediate the regulation of many
biological responses including gene transcription and cell cycle control by amplifying the
p38 signal [61].

Figure 5.1: Visualizing results in SCENERY. The retrieved reconstructed network after
applying the MMPC method on selected mass cytometry data (see text for details). The
analysis calibration panel is also displayed at the left of the reconstructed network, as
indicative of the UI.

Moreover, Fig. 5.2 illustrates how SCENERY would visualize a population compar-
ison result (Univariate Statistical Analysis) by the ’Factor Analysis’ method. For this
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graph we employed data from 2 donors for the protein marker p38. At the left half of
the figure, the screen-shot shows the configuration of the calibration options. At the right
half, the two overlapping density plots for this specific analysis are shown. This popu-
lation comparison analysis was performed on the protein marker p38 with respect to an
experimental design factor denoted the donor id. Two FCS files (samples) were used and
the population comparison was performed by a two-sample t-test. The summary results
shown a significant difference on the compared donor populations by considering the t-
test statistic summary and the generated overlapping density plot of the analysis as shown
in Fig. 5.2.

Figure 5.2: Visualizing results in SCENERY. The retrieved overlapping density plot by
applying a population comparison among two donors for the protein marker p38. The
univariate statistical analysis method ’Factor Analysis’ was used on two selected sub-
populations from a mass cytometry public dataset (see text for details) with respect to
the ’donor.id’ factor from the experimental design. The analysis calibration panel is also
displayed at the left of the reconstructed network, as indicative of the UI.
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Conclusions and Future Work

In this work we introduced SCENERY, the first freely available web-based application
for network reconstruction (NR), visualization and statistical analysis of single-cell data.
SCENERY packages advanced machine-learning methods in a user-friendly environment:
a wizard guides users through all phases of the complex single cell analysis effort, with
an emphasis to the NR analysis, delivering a simple-to-use interface. This, mainly, allows
biology researchers unfamiliar with the technical details to exploit NR methods in discov-
ering novel signaling pathways, while it allows SCENERY to serve as an educational tool
for exploring the features of single cell analysis methods.

Regarding each step of SCENERY’s pipeline we indicated that uploading data in the
FCS file format allows it to be used as a companion other cytometry analysis tool. We also
argued about the important novelty of the software to look ahead and allow as descriptors
of the experimental study design any type of factors, beyond the experimental ones (see
Chapter 2). We pointed out the available standard cytometry data visualization and pre-
processing functionalities (e.g. data compensation, transformation, gating); the statistical
analysis methods for modeling the relationship of the experiment measurements and an
analytic description of the powerful NR methods employed with numerous figures illus-
trating these functionalities (see Chapter 3). Moreover, a typical graph theory analysis on
each reconstructed network was employed, for pointing out each network’s characteris-
tics. The outline and the typical work-flow of each customizable analysis execution was
also provided, from the datasets’ selection and filtering to the calibration of the analysis
parameters and the interpretation of the results. Finally, we stressed out that results are
given in well-known textual and graphical formats, acceptable to the biology community,
with the ability of exporting the generated output in various ways, mainly publication
quality figures and standard graph-representation formats.

More features will be implemented in feature releases. These include: implementation
of an online archive for the users sessions; establishment of the connection with other on-
line services for directly loading of public data (e.g. CytoBank); sharing analysis results
via email or social media; and enriching SCENERY with even more analysis methods.
New single cell analysis methods and UI improvements have already been considered,
after getting feedback and discussing with beta-version test-users and colleagues from
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the cytometry field. Particularly, new analysis methods regarding NR, data dimensional-
ity reduction (e.g. t-SNE) and visualization improvements are already on development.
Regarding the future work on the visualization, new layouts and annotations of the recon-
structed networks will be implemented, along with UI improvements for, massively, visu-
alizing the appropriate quantities of different files and analysis results, organized together,
for ease of interpretation and comparison. Moreover, an extension of the NR analysis to
the one that will involve experimental design factors (such as disease indicator, patient
ID, genre, cell-type etc) as nodes will be released in future versions, for exploring even
more the reconstructed networks in terms of statistical and causal associations among
measurements and such factors. Finally, public single cell data will be available online, in
order for the users to explore and try out easily and immediately a variety of SCENERY
features, giving also a ton of educational use to the application.

Regarding the current SCENERY architecture, as exploited in chapter 4, we indicated
that SCENERY is a platform-independent web application that follows the client-server
approach built, mainly, in HTML, PHP and R. We pointed out the different types of the
typical users (single-cell analysis researchers, computer scientists, developers and admin-
istrators) of the application and how the interact within the SCENERY infrastructure.
Moreover, we discussed about the modular design of the system, which offers the abil-
ity to further extend SCENERY on new single-cell analysis methods, submitted, as R
source code, by users and developers working on the analysis of such fields, transforming
SCENERY into an essential tool for the cytometry community. These custom, modular
methods may be re-utilized by colleagues or members of a group specified by the end-
user. Particularly and in order to develop this vital feature, we employed each analysis
method in a modular way by standardizing its input and output, ensuring that further anal-
ysis methods will be easily integrated within the SCENERY layout and structure. Further
more, an online step-wised tutorial and a submission form were created for letting users,
easily, develop and incorporate, publicly, their methods. Regarding the scaling up of
the system as a future work, we argued that a new Docker-based version of the internal
SCENERY architecture is already on development, while the whole system will be hosted
under a cloud server for ensuring an efficient use of the required resources. This, along
with the capabilities of using HPC and VM services, will establish the running of each
analysis process independently and efficiently by multiple users simultaneously, without
any limitations in terms of processing power, storage space and number of users.

Finally, We showcase most of SCENERY’s functionality by using test single-cell
datasets in various use cases across the available analysis methods, as discussed in Chap-
ter 3. Moreover, we illustrated and validated, through literature, the system’s capabilities
by using a public mass cytometry B-cell dataset published in [56], by employing a BCR
signaling dataset and by demonstrated the software’s applicability in the field of signal-
ing pathway research. We illustrated in Fig. 5.2 the simplicity with which the software
can represent standard statistical analysis results and in Fig. 5.1, we show how users can
easily assess results from a NR analysis in SCENERY.

By concluding this thesis, our efforts towards this open-source approach hold the
promise to transform SCENERY in an essential tool for the cytometry community for
understanding the organization of complex cellular processes such as signaling networks.
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Availability. Instructions on how to access and use SCENERY are available at http:
//mensxmachina.org/en/software/. Moreover, an installation manual of the
latest version and its current dependencies, along with the system’s requirements, is avail-
able, on demand, for the system’s administrators.

http://mensxmachina.org/en/software/
http://mensxmachina.org/en/software/
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