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Abstract

We are going to examine the negative answer to Hilbert’s tenth
problem, i.e. the problem of finding an algorithm which, given an
arbitrary Diophantine equation with integer coefficients, is able to
decide if the equation has integer solutions. The non-existence of
such an algorithm will be obtained by combining the original proof of
Yuri Matijasevic, Hilary Putnam, Julia Robinson and Martin Davis
in 1970, along with Alan Turing’s invention, the Turing machine.
First we will define formally what a Turing machine is and how it
operates. Then we will prove that the Halting problem is unde-
cidable with the aid of the universal Turing machine and then the
negative answer to Hilbert’s Diophantine problem will be obtained
with the aid of the Halting problem. In Chapter 3, two extensions of
Hilbert’s problem will be examined, one in which the solutions are
sought in the polynomial ring R[T ], where R is an integral domain
of characteristic zero that contains Z, with the coefficients being el-
ements of Z[T ]. The other extension will be for the ring of power
series F [[t]] where F is an integral domain of characteristic greater
than zero with a parameter t.
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Chapter 1

Introduction

In 1900 the German mathematician David Hilbert presented a list
of 23 unsolvable, at the time, problems. By the way Hilbert posed
the problems, one can see that he expected each of them to have
a definite, yes or no, answer. Mathematicians, to this day, are still
concerned with some of these problems regarding to whether they
have a solution or not. A conspicuous example is the Riemann Hy-
pothesis, the 8th problem of the list. For some problems a definite
answer has been given while others are too vague to have such an
answer, like the 23rd problem concerning the further development of
the calculus of variations. It should be noted that, the fact that all
the problems are formulated as if they are going to have a specific
answer, has its roots in an entire philosophy of mathematics that
Hilbert expressed, namely formalism. Hilbert belonged to a group
of mathematicians whose goal was to prove that mathematics, as a
theory, is consistent, i.e. one can not derive both a statement and its
negation, complete, i.e. any statement can be proved or disproved
and decidable, i.e. there exists an algorithm that can decide whether
any statement is true or false in a theory. In order to achieve this
they tried to construct a universal formal system which would con-
tain the proof to any theorem. It was about to be proved that this
is impossible.

First, it was in 1931 with Kurt Gödel’s first incompleteness the-
orem, [9]. It stated that, given any consistent set of axioms that
is decidable, i.e. there is an algorithm to decide if a statement is
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an axiom, in which elementary arithmetic is used with addition and
multiplication, there will always exist true statements that can not
be derived from the axioms. If such a system is not consistent, then
there is a proof for a statement and its negation. Hence any state-
ment can be derived from the system and therefore it is complete.
Another contribution was that of Alan Turing in 1936 when he
proved, with the aid of his famous ”Turing machines”, that the halt-
ing problem is undecidable, meaning that there will never exist an
algorithm to decide it. The Turing machine and the halting problem
will be examined more explicitly in 2.1 and 2.4 respectively.

1.1 Hilbert’s Tenth Problem

In this thesis we will deal with Hilbert’s tenth problem. The prob-
lem seeks an algorithm to decide whether an arbitrary Diophantine
equation, i.e. a polynomial equation with finite variables and inte-
ger coefficients, has integer solutions or not. We will also examine
analogues of Hilbert’s tenth problem over rings other than the inte-
gers.

In order to understand what Hilbert’s tenth problem talks about,
we need to give some definitions first (see [7], [6]).

Definition 1.1.1: A language L is a union of two disjoint sets.

• The set R of relation symbols , such as <, =.

• The set F of function symbols , such as +, · , 0, 1.

Each of these symbols is associated with an arity m, a function from
R ∪ F to N, where m(r) = n is the number of the arguments each
symbol takes. In general a symbol r ∈ R ∪ F with r(a1, a2, . . . , an)
has arity n.

For the needs of the thesis the arity won’t be greater than 2.

Example 1.1.1: m(<) = 2, m(+) = 2, the constants 0 and 1
are function symbols of arity 0. No relation symbol has arity 0.
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Example 1.1.2: L1 = {·,+, 0, 1} is the language of rings, such
as Z.

Example 1.1.3: L2 = {−,+, 0} is the language of additive Abelian
groups.

It should be mentioned that the symbols of the languages do not
suffice to explain the way they behave in a particular set. For any
set, the interpretation of those symbols must be defined. With this,
each symbol is assigned with a meaning and a structure serves ex-
actly that purpose.

Definition 1.1.2: Let L be a language and A a non-empty set.
A structure A for L is the triplet (A,RA, FA) where RA, FA are the
interpretations of R, F in A . In particular, RA is a subset of Am,
where m is the arity of R, and FA is the operation FA : An → A
where n is the arity of F .

Example 1.1.4: Consider the language L = {+, ·,−, 0, 1}, then
Z = (Z, 0Z , 1Z ,+Z ,−Z , ·Z) is a structure for L.
Here we have the function symbols 0Z , 1Z ,+Z ,−Z , ·Z , where:

1. +Z : Z2 → Z, for a, b ∈ Z +Z(a, b) = a+ b

2. ·Z : Z2 → Z, for a, b ∈ Z ·Z(a, b) = a · b

3. −Z : Z2 → Z, for a, b ∈ Z −Z(a, b) = a− b

0Z and 1Z represent the constant symbols of 0 and 1 in Z respec-
tively.

Consider a ring R and a subring A of R.

Definition 1.1.3: Consider a polynomial P with n variables. A
Diophantine equation is an equation of the form

P (x1, . . . , xn) = 0
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Definition 1.1.4: The Diophantine problem for R with coefficients
in A seeks an algorithm to decide if a Diophantine equation with
coefficients in A has a solution in R. If such an algorithm exists
(does not exist), the problem is solvable (unsolvable).

Definition 1.1.5: Consider the n−ary relation D ∈ R. D is Dio-
phantine over R with coefficients in A if there exists a polynomial
P ∈ A[X1, . . . , Xn+m] such that for all x1, . . . , xn ∈ R we have

D(x1, . . . , xn)←→ ∃y1, . . . , ym ∈ R : P (x1, . . . , xn, y1, . . . , ym) = 0

Example 1.1.5: The equation x2 − 2x + 1 = 0 is a Diophantine
equation in Z (solution x = 1 ∈ Z), with coefficients in Z.

Example 1.1.6: For x, y ∈ Z, x < y is Diophantine over Z (with
coefficients in Z) since

x < y ←→ ∃z ∈ Z : x+ z = y

Intuitively an algorithm is a finite set of rules which form the guide-
lines for a certain task to be carried out. This was known in Hilbert’s
time, but the intuitive notion alone did not suffice to prove the
nonexistence of an algorithm to a certain problem. For such an ap-
proach, a rigorous and precise definition of what an algorithm is,
was needed.
This was achieved in 1936 in the Church-Turing Thesis in which
Alonzo Church and Alan Turing, independently, gave two formal
definitions for the notion of the algorithm. Eventually, Church’s
λ−calculus and Turing’s Turing machines were proved to be equiv-
alent definitions.

The original problem that Hilbert expressed, concerned the Dio-
phantine problem for Z with coefficients in Z. It was proven in 1970
(see [3], [4]), with the contribution of Yuri Matijasevich, Hilary Put-
nam, Martin Davis and Julia Robinson, that it is unsolvable. This
result became known as the DPRM theorem.
In this thesis we will give an overview of the DPRM theorem as well
as some results concerning Hilbert’s tenth problem for rings other
than Z.
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Chapter 2

Turing Machines

A Turing machine is an abstract computing model which consists
of an infinite tape and a cursor. On the tape one can insert an ar-
bitrarily long string as input. In each step of the computation, the
machine is capable of making changes to the initial string using its
cursor in order to read, one symbol at a time, and write another in
its place, if instructed to do so. The cursor can also move to the left
or to the right in the tape and in each step it can only move once.
After the computation, the machine either prints an output, accept
or reject, or nothing at all and enters in an infinite loop.
We say that the machine halts if it prints an output, otherwise it
loops.

Alan Turing invented this model in 1936 for the need to solve the
decision problem that was posed in 1928 by Hilbert and Ackermann,
known as Entscheidungsproblem. The problem asked for an algo-
rithm to decide whether, any given statement of first-order logic, is
universally valid, i.e. valid in any structure in which the axioms are
satisfied, or not. The answer to the problem was that there exists
no algorithm to carry out the task. To give the answer, Turing re-
duced the initial problem to that of seeking a Turing machine that
decides if any other Turing machine halts or not in an arbitrary in-
put. This is known as the halting problem and Turing proved its
undecidability.
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2.1 Definition of Turing Machine

We will use [15] as a main reference for the definition of Turing ma-
chines.

Definition 2.1.1: A Turing machine is a 7−tuple (Q,A,B, δ, q0, qa, qr)
where

1. Q is the set of states

2. A is the input alphabet

3. B is the tape alphabet

4. δ is the transition function δ : Q × B → Q × B × {L,R,−},
R =right, − =stay

5. q0 is the starting state

6. qa is the accept state

7. qr is the reject state

A and B are both finite sets. A contains the symbols allowed to
use as input and B contains A and the blank symbol, denoted as
⊔. In some cases B contains additional symbols, except for ⊔, not
contained in A. Those symbols are only used during the computa-
tion in order to make it easier for the machine in cases of long input
strings. We will make this more precise later.

Definition 2.1.2: A string produced by the alphabet A is a fi-
nite sequence a1a2 . . . an where ai ∈ A and i = 1, . . . , n ∈ N. We
will denote the set of strings produced by A as A∗.

Definition 2.1.3: Consider an alphabet A. A language L is a
subset of A∗ and it contains strings produced by A.

To initiate the computation, one must enter a string as input. Once
the input string is inserted it occupies the leftmost side of the tape.
The rest of the tape contains the blank symbol.
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The Turing machine M = (Q,A,B, δ, q0, qa, qr) makes the computa-
tion in the following way:

The steps of the computation are determined by the transition func-
tion δ : Q×B → Q×B × {L,R,−}.
Let q1 ∈ Q, w, a1 ∈ B and δ(q0, a1) = (q1, w,R). From this we un-
derstand that the cursor points at the first symbol, a1, of the word
and the current state is the starting state q0.
In the first step, the cursor will type the symbol w in the place of
a1 and move to the right, as R denotes. At the end of the first step
the string will be a = wa2a3 . . . an, the cursor pointing at a2 and at
state q1.
If in the above step we had L instead of R, since a1 is in the leftmost
side of the tape, the cursor would remain in the same position after
the replacement of a1 with w.
In each state of the computation, the exact position of the cursor,
the part of the string on the left of the cursor and the part on the
right compose a clear image of the status of the computation.
Let u be the string on the left, v the string on the right and q the
current state. The triplet (u, q, v) is called configuration of the Tur-
ing machine.
In a configuration the cursor points at the first symbol of the string
on the right.

For the configurations C1 = (u1, q1, v1), C2 = (u2, q2, v2) we say
that C1 yields C2 if the machine makes the transition from state q1
to q2 in s single step.

We say that the Turing machine accepts a string if there is a se-
quence C1C2 . . . Cn of configurations, in which Ci yields Ci+1 and
the state in Cn is the accepting state.

Let x an input string of a Turing machine M , the output will be
denoted as M(x) and if M loops on x we write M(x) =↗

Consider an alphabet A and a language L of A.
Consider also a Turing machine M = (Q,A,B, δ, q0, qa, qr).
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Definition 2.1.4: If for every a ∈ L we have that, M results in
an accepting state with input a, and for a /∈ L, M results in a re-
jecting state or M(a) =↗, then we say that M recognises L.

Definition 2.1.5: A language is Turing-recognisable (or recursively
enumerable) if there exists a Turing machine that recognises it.

If a Turing machine M recognises a language L then it is called
recogniser of L.
Turing machines that always halt regardless of the input are called
deciders.

Definition 2.1.6: A language is decidable (or recursive) if there
exists a decider that recognises it.

From the definitions it becomes clear that if a language is decid-
able then it is also Turing-recognisable.

Example 2.1.1: Below we describe a decider for
L = {a ∗ a|a ∈ {0, 1}∗}.

Consider ML such a decider, the input alphabet is {0, 1, ∗} and
the tape alphabet is {0, 1, ∗, x,⊔}.
The machine has to accept the input if the string on the left and
the string on the right of ∗ are identical and comprised only by 0’s
and 1’s. Otherwise it must reject.

1. First, the cursor will begin reading the word from left to right,
if no ∗ is found in the input, the machine rejects, as the word
doesn’t belong in the language.
If one ∗ is found, the word splits to two parts, the one on the
left of the ∗ and the one on the right.
If more than one ∗ are found, the machine rejects.

2. The cursor will start reading the first symbol of the left part
and then the first symbol of the right part.
If those symbols are not the same, reject.

11



3. Else, replace each symbol with x and go on with the procedure.
If this procedure is repeated n times, the cursor will have re-
placed the n first symbols of each word with a x. This will
help the machine to keep in memory which of the symbols are
identical and how many symbols remain to be examined.
At the end of the above procedure, if both parts have the same
length and all their symbols have been replaced with a x,
accept. Otherwise, reject.

The symbol x ∈ B is an example of the additional symbols,
as mentioned above, contained only in the tape alphabet. In
this example the symbol clarifies what part of the string re-
mains to be examined in order to terminate the computation.
If A also contained x, it would cause confusion.

In the following page, a detailed description of the machine
is presented, with 9 states in total, including qa, qr.
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q ∈ Q a ∈ B δ(q, a)
q0 0 (q1, x, R)
q0 1 (q4, x, R)
q0 ∗ (q7, ∗, R)
q1 0 (q1, 0, R)
q1 1 (q1, 1, R)
q1 ∗ (q2, ∗, R)
q2 0 (q3, x, L)
q2 x (q2, x, R)
q2 1 (qr, 1,−)
q2 ∗ (qr, ∗,−)
q3 0 (q3, 0, L)
q3 1 (q3, 1, L)
q3 ∗ (q6, ∗, L)
q3 x (q3, x, L)
q4 0 (q4, 0, R)
q4 1 (q4, 1, R)
q4 ∗ (q5, ∗, R)
q5 x (q5, x, R)
q5 1 (q3, x, L)
q5 0 (qr, 0,−)
q6 0 (q6, 0, L)
q6 1 (q6, 1, L)
q6 x (q0, x, R)
q6 ∗ (qr, ∗,−)
q7 x (q7, x, R)
q7 ⊔ (qa,⊔,−)

In the above example, we constructed a Turing machine able to de-
cide, in a finite number of steps, whether any string belongs in L
or not. If we want to use different words for our result and ignore
the notion of the Turing machine, we can say that an algorithm was
given to carry out the task.
The association between Turing machines and algorithms is every-
thing but accidental. Actually in 1936, it was Alan Turing who gave
the formal definition of algorithm using the Turing machines. This
made possible to prove that there exist algorithmically unsolvable
problems, i.e. problems for which a finite sequence of instructions
will never be constructed in order to obtain a solution.
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2.2 Undecidability

Every Turing machine recognises exactly one language by construc-
tion. Even though there is a wide range of computing capabilities
concerning Turing machines, there exist many languages that can
not be decided or even recognised.
One way to capture the concept of undecidability of some languages
is to compare the size of the set of all Turing machines and the size
of the set of all languages. We will now make this claim more precise.

The definition of Turing machines makes clear that the transition
function δ generates the computation. The domain of δ is the Carte-
sian product of the set of states Q and the alphabet B, while the
image belongs to Q × B × {L,R,−}. It is easy to see that since
Q, B are countable sets then both Q × B × {L,R,−}, Q × B are
countable as well. So all the transition functions, therefore all Tur-
ing machines, are countably many.

We will prove that the set of all languages is uncountable.

Let L the set of all languages over a finite alphabet A and
A∗ = {s1, s2, . . . } the set of all strings produced by A. The strings
of A∗ are enumerated in terms of their length and we keep this enu-
meration for the rest of the chapter.
For instance, consider the alphabet A = {a, b, c} then

A∗ = {⊔, a, b, c, ab, bc, . . . , abc, . . . , abcb, . . . }

Consider also the set B of all the binary sequences,
i.e. B = {f : N −→ {0, 1}}.
We will find a, one to one and onto, correspondence g : L → B in
order to prove that they have the same size.
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For each language L ∈ L where L ⊆ A∗ produced by A,
g(L) = b1b2 . . . where

bi =

{
1, if si ∈ L
0, if si /∈ L

Example 2.2.1: Consider the alphabet A = {a, b, c} and the lan-
guage L = {anbcn|n ∈ N}.
Every string in L is a concatenation of a string of a’s and a string of
c’s, both of the same length, seperated by a single b. It also includes
the empty string ⊔.
We have

A∗ = {⊔, a, b, c, ab, bc, . . . , abc, acb, cba, . . . , abcb, . . . }

L = {⊔, b, abc, aabcc, aaabccc, . . . }
Hence the characteristic function of L is

g(L) = 101000 . . . 100 . . .

By definition, g is one to one.
g is also onto because for any binary sequence s ∈ B there exists
L ∈ L that contains, in the i-th position according to the enumera-
tion, the i-th string of A∗ for which the sequence has 1 in the same
position.

Now it is easy to see that B is an uncountable set.
We will prove it using Cantor’s diagonal argument, a technique first
used by Georg Cantor to prove that the real numbers are not in a
one to one correspondence with the naturals, hence uncountable.

If it was countable one could sort all the binary sequences in a list
of infinite length.

1 010101010101111. . .
2 101011111000000. . .
3 000111000011111. . .
...

...
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Now we choose a binary sequence that differs from the nth sequence,
of the above table, in the nth element.
Meaning that its first element is 1, the second is also 1 and so on.
Therefore we have a binary sequence different from the others so it
doesn’t belong in the list.
A contradiction since we assumed that all the binary sequences are
listed.
Hence B is an uncountable set.

If we omit the countable set of languages that are recognised from
the uncountable set L, what remains is an uncountable set of un-
recognisable languages.

2.3 Universal Turing Machine

Turing machines are constructed to receive a string as input. This
seems restricting since, there are several mathematical objects, other
than strings, of common use. Those objects could be polynomials,
sets that contain numbers, graphs and many more that compose a
wide variety of problems. In order to work on these problems with
the aid of Turing machines, we will have to encode those objects
as strings. In other words, we try to turn the language that con-
tains them, into a language that contains their encodings. If this is
achieved and the objects are successfully encoded as strings, it be-
comes feasible to use them as input to the machine. Once we insert
the input, the machine first must confirm if the encoding is valid or
not. If it is valid, i.e. the encoding of the object is the proper one,
then the machine resumes the computation. Let S be an object,
then the encoding of S to a string will be denoted as ⟨S⟩ and the
encoding of a combination of objects S1, S2, . . . , Sn will be denoted
as ⟨S1, S2, . . . , Sn⟩.

Example 2.3.1: We want to devise a Turing machine that de-
cides whether a polynomial, in one variable with coefficients in
Z2 = {0̄, 1̄}, the field with 2 elements, has roots in Z2.
The language of the problem is
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L = {p(x) ∈ Z2[X]| p(x) has roots in Z2}.
Before we devise the machine we have to represent the polynomials
as strings.

Let p(x) ∈ Z2[X], we define ⟨p(x)⟩ = (a0, a1, . . . , an) where
n is the degree of p(x), ai = 0 or 1 and each of the ai’s is the
coefficient of xi

p(x) = 1 + x+ x3 + x5

⟨p(x)⟩ = (1, 1, 0, 1, 0, 1)

Once ⟨p(x)⟩ is inserted, the machine should examine its validity first.
⟨p(x)⟩ is the encoding of p(x) if:

1. its first and last symbol is ”(” and ”)” respectively

2. the symbols between the parentheses should only be ”0”, ”1”
and ”, ”.
More precisely, the first symbol on the right of ”(” and on the
left of ”)” is always 0 or 1. ”, ” comes always after a 0 or 1 and
vice versa.

For instance, ”(1, 0, 1)” is a proper encoding of 1 + x2 and there-
fore the machine goes on with the computation. On the other hand
”(, , 0, 1)” is not a proper encoding of any polynomial and the ma-
chine rejects.

The following fact will be crucial in order to construct the algo-
rithm that will decide L.

Fact: Consider p ∈ Z2[X], 0 is a root of p if and only if the constant
term is 0. 1 is a root of p if and only if the sum of the coefficients is
a multiple of 2.

Lm is decided in the following way:

1. If the first symbol after the opening parenthesis is 0, then the
computation stops and the machine accepts.

17



2. Else the cursor reads all the symbols of the string.
If the number of 1’s is even then accept, else reject.

Let’s consider a Turing machine M and an input string w. We can
encode both of these objects to a string ⟨M,w⟩ and use it as input in
another Turing machine M1. In [1] the reader will find an example
of such an encoding. In this case we say that M1 simulates M on
input w. There is a particular kind of a Turing machine, able to
simulate any other Turing machine. It is called universal Turing
machine and its computing capabilities are of a much wider variety
comparing to those of any Turing machine. Briefly, this machine
is able to compute anything that can be computed by a Turing
machine.
The use of this machine is crucial for proving the unsolvability of
several problems and we will use it to examine one of the most
famous problems of this kind, the Halting problem.

2.4 The Halting Problem

A famous undecidable problem, i.e. a problem for which no Turing
machine can be constructed to give a solution, is the halting prob-
lem. It states that, given a Turing machine M and a string w, can
we decide if M halts on w? We ask for the existence of a universal
Turing machine H which will decide the language
HP ={⟨M,w⟩| M halts on w} printing the appropriate output.

H functions as follows:

H(⟨M,w⟩) =

{
accept, if M halts on w

reject, if M loops on w

If such a machine exists, we can construct another Turing machine
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D that simulates H to produce an output:

D(⟨M⟩) =

{
accept, if H rejects ⟨M, ⟨M⟩⟩
↗, if H accepts ⟨M, ⟨M⟩⟩

For the input of D we use the encoding of a machine M and for the
output D loops if M halts on ⟨M⟩ and accepts if M loops on ⟨M⟩.
Since D is a Turing machine it has an encoding to a string ⟨D⟩ so
let’s use it as it’s own input.
We have that, if H accepts ⟨D, ⟨D⟩⟩, it means that D halts on ⟨D⟩.
Then by definition, D loops on ⟨D⟩.
If H rejects on ⟨D, ⟨D⟩⟩, i.e. D loops on ⟨D⟩, then by definition, D
halts on ⟨D⟩. In both cases we have contradiction.

It must be noted, though, that HP is Turing-recognisable.
The recogniser is the following:

R(⟨M,w⟩) =

{
accept, if M halts on w

↗, if M does not halt on w

So we have an example of a language that is Turing-recognisable,
but undecidable.

Theorem 2.4.1
A language L is decidable iff both L, Lc are Turing-recognisable.

Proof. Let M1, M2 the recognisers of L and Lc respectively., and w
a string.
A new Turing machineM can be obtained which operates as follows:

M(w) =

{
accept, if M1(w) = accept

reject, if M2(w) = accept

M simply has M1 and M2 run in parallel and, regardless of the in-
put, exactly one of them halts.
When that happens it outputs the appropriate word.

Since HP is undecidable but Turing-recognisable it is easy to see
that its complement HP c ={⟨M,w⟩| M loops on w} is not Turing-
recognisable.
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2.5 Proof of Hilbert’s Tenth Problem

Given an arbitrary polynomial P ∈ Z[X1, X2, . . . , Xn], n ≥ 1.
Is there an algorithm to decide if there exist an n−tuple
(a1, a2, . . . , an) ∈ Zn for which P (a1, a2, . . . , an) = 0?

As mentioned above this is Hilbert’s tenth problem, first presented
in 1900. In 1970 it was proven that such an algorithm does not exist.
More information about the proof can be found in [3]. The main
idea is to reduce the procedure of finding such an algorithm to the
procedure of finding a Turing machine that will solve the Halting
problem.

The main step is to prove the DPRM theorem which states:

Theorem 2.5.1(DPRM Theorem): A subset X of Zn is Dio-
phantine if and only if it is recursively enumerable.

Before we proceed to the proof we should define first what it means
for a set to be Diophantine and what it means to be recursively
enumerable.

Definition 2.5.1: Let S ⊆ Zn and P ∈ Z[X1, . . . , Xn+m]. Then
S is called Diophantine if

(x1, . . . , xn) ∈ S ⇐⇒ ∃(y1, . . . , ym) ∈ Zm : P (x1, . . . , xn, y1, . . . , ym) = 0

In short,
S = {x̃ ∈ Zn|∃ỹ ∈ Zm : P (x̃, ỹ) = 0}

is a Diophantine subset of Zn

Example 2.5.1: The set of even numbers S = {x|∃y : x = 2y} ⊂ Z
is Diophantine with P (x, y) = x− 2y

Diophantine sets are closed under the operations of intersection and
union. Take D1 and D2 to be Diophantine sets defined by the poly-
nomials P1 and P2 respectively. Then D1 ∪ D2 and D1 ∩ D2 are
Diophantine sets with polynomials P = P1P2 and R = P 2

1 + P 2
2
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respectively.

Definition 2.5.2: A function f : Zn → Z is called Diophantine
if the set of (n+ 1)−tuples of the form (x1, . . . , xn, f(x1, . . . , xn)) is
a Diophantine set.

Example 2.5.2: f(x, y) = xy is a Diophantine function.
Let D = {(x, y, xy)|x, y ∈ Z}, then

(x, y, z) ∈ D ⇐⇒ z − xy = 0

Consider a natural number n, the number

T (n) = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

is called triangular number.
We have that for any z ∈ N, where T (n) < z ≤ T (n + 1) there are
unique a, b such that

z = T (a+ b− 2) + b

Theorem 2.5.2(Pairing Function Theorem): There are Dio-
phantine functions

P : N2 → N
R : N→ N
L : N→ N

such that

1. for all a, b ∈ N: L(P (a, b)) = a, R(P (a, b)) = b.

2. for all z ∈ N: P (L(z), R(z)) = z and L(z) ≤ z, R(z) ≤ z

For the proof see page 5 of [3].

Now we define the function S : N2 → N as S(i, u) = w where
i, u ∈ N and w is the least remainder when L(u) is divided by
1 + iR(u), i.e.

w ≡ L(u) mod 1 + iR(u)

w ≤ 1 + iR(u)
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Theorem 2.5.3 (Sequence Number Theorem): There is a Dio-
phantine function S such that:

1. S(i, u) ≤ u

2. for any finite sequence a1, . . . , an where ai ∈ N there exists a u
such that

S(i, u) = ai

for i = 1, . . . , n

Proof. See page 7 of [3].

From the above theorem it is clear that every finite sequence of nat-
ural numbers can be expressed solely by the Diophantine function
S, one need only find the natural number u.

Example 2.5.3: Set u = 16, we have L(16) = 6, R(16) = 1 so

S(i, 16) ≡ 6 mod 1 + i

S(1, 6) = 2, S(2, 6) = 3, S(3, 6) = 2, S(4, 6) = 1, S(5, 6) = S(6, 6) =
· · · = 6

So the sequence 2, 3, 2, 1, 6, 6, . . . , 6 is encoded by u = 16

This technique was first used by Gödel, [4], in his attempt to find a,
one to one and onto, correspondence between the natural numbers
and the finite sequences of natural numbers.

Consider the functions
c(x) = 1

S(x) = x+ 1

P n
i (x1, . . . , xn) = xi

S(i, u) = w

Definition 2.5.3: A function is called recursive if it is obtained by
the above functions by applying composition, primitive recursion
and minimalization.
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Definition 2.5.4:

1. For the given functions g1, . . . , gm : Zn −→ Z, f : Zm −→ Z.
A function, h : Zn −→ Z, of the form

h(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)))

is the composition of g1, . . . , gm, f

2. A function h : Zn+1 −→ Z is yielded by primitive recursion
if it satisfies the following conditions:

h(z1, . . . , zn, 1) = f(z1, . . . , zn)

h(z1, . . . , zn, t+ 1) = g(t, h(z1, . . . , zn, t), z1, . . . , zn)

for given functions f : Zn −→ Z, g : Zn+2 −→ Z

3. For given functions f, g : Zn −→ Z, the function h : Zn −→ Z
of the form

h(x1, . . . , xn) = miny(f(x1, . . . , xn, y) = g(x1, . . . , xn, y))

is yielded by minimalization and it takes, as value, the least
natural number y for which f(x1, . . . , xn, y) = g(x1, . . . , xn, y).
Provided, of course, that there exists at least one such y that
satisfies this equation.

The interested reader can check [7] for more details.

Example 2.5.4: f(x, y) = x+ y is recursive since

f(x, 1) = s(x) = x+ 1

f(x, t+ 1) = s(x+ t) = s(P 3
2 (t, x+ t, x))

Intuitively a recursive function, for an element (x1, . . . , xn) ∈ Nn,
computes the value f(x1, . . . , xn) in a finite number of steps by re-
ferring to itself in every step of the computation.
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Theorem 2.5.4: A function is Diophantine if and only if it is re-
cursive.

Proof. Consider a Diophantine function f : Zn −→ Z, we have that

y = f(x1, . . . , xn)←→ ∃y1, . . . , ym : P (x1, . . . , xn, y, y1, . . . , ym) = 0

it is a fact that for every polynomial P with integer coefficients there
exist polynomials Q,R, both with positive integer coefficients, such
that P = Q−R. Therefore the above expression turns into

y = f(x1, . . . , xn)←→ ∃y1, . . . , ym : Q(x1, . . . , xn, y, y1, . . . , ym) =
R(x1, . . . , xn, y, y1, . . . , ym)

For the sequence y, y1, . . . , yn we have from the Sequence Number
Theorem that ∃u ∈ N such that y = S(1, u), y1 = S(2, u), . . . , ym =
S(m+ 1, u)
Hence ∃u ∈ N : Q(x1, . . . , xn, S(1, u), S(2, u), . . . , S(m + 1, u)) =
R(x1, . . . , xn, S(1, u), S(2, u), . . . , S(m+ 1, u))

We can take u = minu(Q(x1, . . . , xn, S(1, u), S(2, u), . . . , S(m+1, u)) =
R(x1, . . . , xn, S(1, u), S(2, u), . . . , S(m+ 1, u)))
Hence f(x1, . . . , xn) = S(1, u) where u as above.
Since S,Q,R are recursive, so is f by using composition and mini-
malization.

Conversely, let f be recursive. Every recursive function is obtained
by c(x), S(x), P n

i (x1, . . . , xn), S(i, u) using composition, minimal-
ization and primitive recursion.
It is already known that the above functions are Diophantine, hence
we need only prove that composition, minimalization and primitive
recursion of Diophantine functions yield a Diophantine function.

1. Composition: For given Diophantine functions g1, . . . , gm :
Zn −→ Z, f : Zm −→ Z, composition yields the function

h(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)))

we have
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y = h(x1, . . . , xn)←→ ∃t1, . . . , tm :(∧m
i=1 ti = gi(x1, . . . , xn)

)
∧ y = f(t1, . . . , tm)

since f, g1, . . . , gm are Diophantine, the elements (ti, x1, . . . , xn)
for i = 1, . . . ,m and (y, t1, . . . , tm) belong, each, to a Dio-
phantine set. We consider the polynomials of these sets to
be P1, P2, . . . , Pm+1 respectively. Therefore the right hand side
of the relation above is a Diophantine set defined by the poly-
nomial P = P 2

1 + P 2
2 + · · ·+ P 2

m+1 and the relation turns into

y = h(x1, . . . , xn)←→ ∃t1, . . . tm : P (y, x1, . . . xn, t1, . . . , tm) = 0

Hence y = h(x1, . . . , xn) is a Diophantine relation, so h is a
Diophantine function.

2. Primitive recursion: For given Diophantine functions
g : Zn+2 −→ Z, f : Zn −→ Z , primitive recursion yields the
function h : Zn+1 −→ Z

h(x1, . . . , xn, 1) = f(x1, . . . , xn)

h(x1, . . . , xn, t+ 1) = g(t, h(x1, . . . , xn, t), x1, . . . , xn)

For the finite sequence h(x1, . . . , xn, t), where t ∈ N, it is known
from the Sequence Number Theorem that ∃u ∈ N such that

S(t, u) = h(x1, . . . , xn, t)

we have that

y = h(x1, . . . , xn, t)←→ ∃u(∃v{v = S(1, u) ∧
v=f(x1, . . . , xn)}

∧
(∀z)≤t{z = t ∪ (∃v)v = S(z + 1, u)

∧v = g(z, S(z, u), x1, . . . , xn)}
∧
y = S(t, u)

Note: The predicate (∀z)≤t . . . is equivalent to the expression
(∀z)(z > t ∪ . . . ) and in Theorem 5.1 of [3] is proven to be a
Diophantine predicate, like the existential quantifier ∃.

Therefore, in the same manner as 1., h is Diophantine since
f, g, S are Diophantine and (∀z)≤t is a Diophantine predicate.
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3. Minimalization yields the function
h(x1, . . . , xn) = miny(f(x1, . . . , xn, y) = g(x1, . . . , xn, y)),
where f, g are Diophantine functions. h is Diophantine because

y = h(x1, . . . , xn, t)←→ ∃z(z = f(x1, . . . , xn, y) ∧ z =
g(x1, . . . , xn, y))

∧
(∀t)≤y{t = y ∪ (∃u, v)(

(u=f(x1, . . . , xn, t) ∧ v = g(x1, . . . , xn, t)) ∧ (u < v ∪ v < u)
)
}

Definition 2.5.5: A recursively enumerable set S is a subset of
Zn for which there exist recursive functions f, g such that

(x1, . . . , xn) ∈ S ⇐⇒ ∃x : f(x, x1, . . . , xn) = g(x, x1, . . . , xn)

Intuitively a recursively enumerable set S is created by an algorithm
which, if left running, will eventually list only the elements of S.

Definition 2.5.6 A subset S of Zn is recursive if there exists a
recursive function f : Zn → {0, 1} such that

f(x̃) =

{
1, if x̃ ∈ S
0, if x̃ /∈ S

Lemma 2.5.1: If a set S is recursive, then it is recursively enumer-
able.

Proof. Consider a recursive set S. Then there exists a recursive
function f such that

x̃ ∈ S ←→ f(x̃) = 1

The constant function 1 is a recursive function as well, therefore we
have that there exist recursive functions f, g (where g is the constant
function 1) such that

x̃ ∈ S ←→ f(x̃) = g(x̃)

By Definition 2.5.5 S is recursively enumerable.

The main difference between recursively enumerable sets and re-
cursive sets is that the algorithm for the former does not produce
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an output if the input is not in the set, while the algorithm for the
latter always produces an output.

Proof of the DPRM Theorem

Proof. Consider a recursively enumerable set S then

S = {(x1, . . . , xn) ∈ Zn|∃x : f(x, x1, . . . , xn) = g(x, x1, . . . , xn)}

where f, g are recursive functions.
Equivalently

S = {(x1, . . . , xn) ∈ Zn|∃(x, z) : z = f(x, x1, . . . , xn) ∧ z =
g(x, x1, . . . , xn)}

Since f, g are recursive, by Theorem 2.5.3 they are Diophan-
tine.
So the expression

z = f(x, x1, . . . , xn) ∧ z = g(x, x1, . . . , xn)

is equivalent to the expression

∃ỹ ∈ Zm : P1(x, z, x1, . . . , xn, ỹ) = 0 ∧ P2(x, z, x1, . . . , xn, ỹ) = 0

and we have that

P1 = 0 ∧ P2 = 0⇐⇒ P 2
1 + P 2

2 = 0

so we can find a polynomial P such that

S = {(x1, . . . , xn) ∈ Zn|∃x, z, ỹ : P (x, z, x1, . . . , xn, ỹ) = 0}

Hence S is Diophantine.

Conversely, consider S to be Diophantine, from Definition 2.5.1
there exist a polynomial P ∈ Z[X1, . . . , Xn+m] such that

(x1, . . . , xn) ∈ S ←→ ∃y1, . . . , ym : P (x1, xn, y1, . . . , ym) = 0

We have the fact that P can be equal to R−Q for
R,Q ∈ Z[X1, . . . , Xn+m] both with positive integer coefficients. We
have

(x1, . . . , xn) ∈ S ←→ ∃y1, . . . , ym : R(x1, . . . , ym) = Q(x1, . . . , ym)
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For the finite sequence y1, . . . , ym and the Sequence Number The-
orem we have that ∃u ∈ Z such that S(i, u) = yi for i = 1, . . .m.
Therefore, we have

(x1, . . . , xn) ∈ S ←→ ∃u : R(x1, . . . , xn, S(1, u), . . . , S(m,u)) =
Q(x1, . . . , xn, S(1, u), . . . , S(m,u))

Since R,Q are recursive functions, according to Definition 2.5.5,
S is recursively enumerable.

Hence it is proved that all the Diophantine sets are recursively
enumerable and vise versa.

Along with the proof of the DPRM Theorem came the proof
of the negative answer to Hilbert’s tenth problem in 1970. In 1949
Martin Davis had conjectured that Diophantine sets and recursively
enumerable sets are equivalent notions. A year later, Julia Robinson
made the following hypothesis (J.R Hypothesis) in her attempt
to prove that a set is exponential Diophantine if and only if it is
Diophantine:
J.R Hypothesis:

Consider (a, b) ∈ Z2, there exists a Diophantine set D such that

1. If (a, b) ∈ D then b < aa and

2. For every k ∈ N there exists (a, b) ∈ D such that b > ak.

Consider a polynomial P ∈ Z[X1, . . . , Xn+3m], a set S ⊂ Zn is ex-
ponential Diophantine if

x̃ ∈ S ↔ ∃ỹ, ũ, z̃ ∈ Zm : P (x̃, ỹ, ũ, z̃) = 0
∧m

i=1 yi = uzii

The J.R. Hypothesis was an open problem for 20 years and it
was a sufficient condition for the negative answer to Hilbert’s tenth
problem. Later in 1959, Davis and Putnam, assuming that the J.R.
hypothesis was true, proved that a set is recursively enumerable if
and only if it is exponential Diophantine. Finally in 1970, Yuri Mati-
jasevic proved the hypothesis and therefore the negative answer to
the problem.

Consider now, a Diophantine set S and ⟨S⟩ to be the language that
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contains the encodings of the elements of S as strings.

Theorem 2.5.5: There is a Turing machineM = (Q,A,B, δ, q0, qa, qr)
that recognises ⟨S⟩. Furthermore, if S is recursive there exists a Tur-
ing machine that decides ⟨S⟩.

Proof. Consider a polynomial P ∈ Z[X1, . . . , Xn+m] where n,m ∈ N,
then

S = {x̃ ∈ Zn|∃ỹ ∈ Zm : P (x̃, ỹ) = 0}
Consider the strings of the form ⟨x̃, ỹ, P (x̃, ỹ)⟩ of length n +m + 1
where ⟨x̃⟩ of length n, ⟨ỹ⟩ of length m and ⟨P (x̃, ỹ)⟩ the 1−digit
string representing the value of P in x̃, ỹ. The language ⟨S⟩ con-
tains ⟨x̃, ỹ, P (x̃, ỹ)⟩ if and only if P (x̃, ỹ) = 0. The input alphabet
of the Turing machine is A = {0, 1, (, ), ; } and the tape alphabet
B = A∪{⊔}. The machine receives as input a string, then uses the
cursor to read it from left to right.
For the string to be accepted, it must always start with a ”(” (the
first digit of the substring ⟨x̃⟩), then it must contain the numbers
of x̃ in binary representation (for instance 2 = 01, 3 = 11, 4 = 001,
the interested reader can check [14] for more about binary repre-
sentations of integers) seperated by ”;”. After the last number of
x̃ follows a ”)” and then proceeds to substring ⟨ỹ⟩, examining it in
the same way. After that, follows a single number 0 or 1, whether
the value of P in (x̃, ỹ) is zero or not. If the last digit is 0, the
machine accepts and we have an element of ⟨S⟩. Else, the machine
moves the cursor to the right without stopping, thus producing no
output. Hence every recursively enumerable set can be translated
to a recursively enumerable language.

Consider now a recursive set S. In the same manner as above,
we can consider a Turing machine M that accepts input strings of
the form ⟨x̃, f(x̃)⟩ where f is the recursive function from definition
2.5.6. M accepts if the last digit of the string is 1, else it rejects.
Therefore M is the decider for ⟨S⟩ where S is recursive.

We will use a counter example to prove the following.

Theorem 2.5.6: There is a recursively enumerable set that is not
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recursive.

Proof. Consider the set S that contains numbers of the form 2p3x,
where p, x ∈ N, whenever a Turing machine p halts on input x.
Notice that we are allowed to consider natural numbers as Turing
machines or input strings of such machines, because, as mentioned
in chapter 2.2, there is a one to one and onto correspondence be-
tween the set of Turing machines, N and the set of finite strings.
What we seek is a universal Turing machine U that, given a prime
factorization of a number as input, it will be able to tell if the power
of 2 is a proper encoding of a Turing machine and the power of 3 an
encoding of a string. Then it will examine if p halts on x.

Before we go on with the proof let’s first explain how is a Tur-
ing machine, along with a string as its input, encoded in order to
be used as input to a universal Turing machine.
Since this kind of Turing machine can simulate several other Turing
machines, we do not know beforehand how many states it will have.
So if we consider an arbitrary Turing machineM = (Q,A,B, δ, q0, qa, qr)
we will treat its states as natural numbers, same for the alphabet,
i.e. B = {1, 2, . . . , |A|, . . . , |B|}, Q = {|B| + 1, . . . , |B| + |Q|}. The
symbols L, R, − are the numbers |Q| + |B| + 1, |Q| + |B| + 2,
|Q|+ |B|+ 3.
All these numbers will be given as input in binary representation.
The encoding of M starts with the number |B| followed by ”, ”
and then the number |Q|. Then follows all the pairs of the form
((q, s), (q, a, S)), where (q, s) and (q, a, S) are such that
δ : (q, s)→ (q, a, S) and S ∈ {L,R,−}. The symbols ”(”, ”, )”, ”, ”
will appear in the input string of U as |Q|+ |B|+ 4, |Q|+ |B|+ 5,
|Q|+ |B|+ 6 (in binary). After the last ”)” follows the symbol ”; ”,
which has the number |Q|+ |B|+7 and then the input string of M .
Without loss of generality we can consider that the alphabet of M
is {0, 1}, so in every input of U , what follows after ”; ” is a sequence
of 0 and 1.

Let’s consider, for instance, the Turing machine with the follow-
ing properties:
A = {0, 1}, B = {0, 1,⊔}, Q = {q0, q1, qa, qr} and δ operates as
follows
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q ∈ Q a ∈ B δ(q, a)
q0 0 (qr, 0,−)
q0 1 (q1, 1, R)
q1 0 (qa, 0,−)
q1 1 (qr, 1,−)

and input string x = 010101.

What we want the machine to see is

|B|, |Q|, ((q0, 0), (qr, 0,−)), ((q0, 1), (q1, 1, R)),
((q1, 1), (qa, 0,−)), ((q1, 1), (qr, 1,−)); 010101

But since, |B| = 3, |Q| = 4, we have the following encoding

0 = 1, 1 = 2,⊔ = 3, q0 = 4, q1 = 5, qa = 6, qr = 7, L = 8, R = 9,− =
10, ”(” = 11, ”)” = 12, ”, ” = 13, ”; ” = 14

So the machine receives the following string as input (in binary):

31341311114131 . . . 121214121212

After the input is received by the machine, the computation begins.
The universal machine moves the cursor to find the starting state,
then moves to the right of ”; ” and operates as δ commands on x.
This goes on until an accept or reject state occurs.(The procedure
on how the universal machine simulates M on input x is explained
explicitly in [10])

Proceeding to the proof of Theorem 2.5.6, U receives a prime
factorization of a number.
The number has the following form

2p3x5p17p2 · · ·

if at least one of the powers of 5, 7, . . . is not 0 then U rejects.
Else, the input has the form 2p3x and U has to examine if p is a
proper representation of a Turing machineM = (Q,A,B, δ, q0, qa, qr)
and if x is a proper representation of an input string of M .
In order to do that, p will be written in the form

2a13a25a3 · · ·
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each of the powers is a natural number and U has to check if those
numbers, from left to right, follow the encoding rules as explained
above.
For instance, if they follow those rules, then a1 = |B|, a2 = ”, ”,
a3 = |Q| and so on.
We can again consider, without loss of generality, that A = {0, 1}.
For the number x, the power of 3, U has to examine the powers of
its prime factors. If at least one of the powers is not 1 or 0, U rejects.

If the input is valid, U simulates M on input x.
We can see now that S is recursively enumerable because, if p halts
on x, U will halt as soon as p does and accept. If p does not halt
on x, then neither will U . Therefore U lists S.
If, for the sake of contradiction, S was recursive, then U should al-
ways print an output regardless of the input. In this case U could
decide if p halts on x, where p is an arbitrary Turing machine and
x its input. Hence U solves the halting problem, but it is already
proven in 2.4 that it is not possible.

What we want to prove is:
Theorem 2.5.7: An algorithm to decide whether an arbitrary Dio-
phantine equation with coefficients in Z has a solution in Z, or not,
does not exist.

Proof. Consider a polynomial P ∈ Z[X1, . . . , Xn+m] and the Dio-
phantine set S ⊆ Zn

S = {x̃ ∈ Zn|∃ỹ ∈ Zm : P (x̃, ỹ) = 0}

If there existed an algorithm to decide if a Diophantine equation has
a solution, then it could decide if any (x̃, ỹ) ∈ Zn+m where x̃ ∈ Zn,
ỹ ∈ Zm is or isn’t a root of P , equivalently if x̃ is or is not an element
of S. This would mean that S is recursive.
Since we assumed that S is an arbitrary Diophantine set, i.e. re-
cursively enumerable, then the existence of this algorithm implies
that all the recursively enumerable sets are recursive. This is not
possible from Theorem 2.5.6.

Therefore such an algorithm does not exist and Hilbert’s tenth
problem is unsolvable.
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Chapter 3

Extensions of Hilbert’s
tenth problem

After the negative answer to the Diophantine problem for Z, the
question now extends to whether there is an algorithm to decide the
same problem for rings other than Z. Such rings are the set of real
numbers (R), the set of imaginary numbers (C), the set of rational
functions in one variable with coefficients in a finite field (Fq(t)) and
many more. For some rings the problem has a positive solution and
for others it is still open. The most famous open problem in this
area is the Diophantine problem for the rational numbers (Q). To
understand a little better the results we need give some definitions.

We have already given the definition of a language and of a struc-
ture.
Along with the symbols in a language consider also the logical sym-
bols:

A = {¬,∨,∧,=,∃, ∀}
and the set of variables

V = {x1, x2, . . . }

The definitions are taken from [7] and [13].

Consider a language L, V and the function symbols of L
(denoted Lf ) with arity greater than 0.
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Definition 3.1.1: A term is an expression produced by the al-
phabet V ∪ Lf and it is defined as follows:

1. the constants and every variable are terms.

2. if a1, a2, . . . , an are terms then f(a1, . . . , an), where f ∈ Lf of
arity n, is a term.

The set of relation symbols in L is denoted by R.

Definition 3.1.2: A formula is an expression produced by the al-
phabet L ∪ A ∪ V and is defined as follows:

1. Consider a1, a2, . . . , an terms and r ∈ R of arity n, then
r(a1, . . . , an) is a formula.

2. if a1, a2 are terms then a1 = a2 is a formula.

3. if ϕ, ψ are formulas then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ are also formulas.

4. let x a variable and ϕ a formula, then ∃xϕ(x) and ∀xϕ(x) are
also formulas.

∃ is called existential quantifier.
∀ is called universal quantifier.
For a formula ϕ and variables x, y, we say that x, y occur in ϕ if
ϕ = ϕ(x, y).
If a formula is of the form ∃xϕ(x, y) we say that x occurs in ϕ
bounded by the existential quantifier and y occurs free in ϕ.

Definition 3.1.3: A sentence ϕ is a formula in which all the vari-
ables are bounded by quantifiers.

Example 3.1.1: Consider L = {+, ·, 0, 1, <} and the Z−structure
(integers).
In the formula ∃x(x < y2), x occurs bounded and y occurs free,
while in the formula ∀x∃y(x = y) all the variables are bounded.
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Therefore the second formula is a sentence.

A formula that contains no quantifiers is called quantifier-free.
The sentences that contain the symbols in V , A and L are called
first-order sentences.
For the needs of the thesis we will simply call them sentences.

Definition 3.1.4: The sentences of the form ∃xϕ(x), where x =
(x1, . . . , xn), xi are variables and ϕ is a quantifier free formula, are
called existential sentences. Existential sentences in which ϕ con-
tains no negations are called positive existential sentences.

Definition 3.1.5: The theory of a structure is the set of sentences
that are true in the structure.
Respectively the existential theory is the set of existential sentences
that are true in the theory. Same goes for the positive existential
theory.

Example 3.1.2: The sentence ∀x∃y(y < x) belongs to the theory
of Z but not in the theory of N in the language L = {0, 1,+, ·, <}.

Definition 3.1.6: A theory of a structure is decidable if there is an
algorithm to decide if an arbitrary sentence is true or false in the
structure.

3.1 Some results

A usual technique for proving the decidability of a theory of a given
structure, is to show that the theory admits elimination of quanti-
fiers. That is, if a theory T possesses this property, then any for-
mula in the given language is equivalent, in T , to a quantifier-free
formula. It has been proved that the theory of C in L = {+, ·, 0, 1}
is decidable due to quantifier elimination. Same is true for the
Presburger arithmetic, i.e. the arithmetic for natural numbers in
L = {+, 0, 1,≥} (see [13]). In [16] is presented an algorithm for
quantifier elimination to obtain the decidability for the elementary
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algebra. By elementary algebra, we mean the part of the theory of
real numbers axiomatized by the following system:

• ∀x, y ∈ R: x+ y = y + x and x · y = y · x

• ∀x, y, z ∈ R: (x+ y)+ z = x+(y+ z) and (x · y) · z = x · (y · z)

• ∃a ∈ R : x+ a = a+ x = x ∀x ∈ R

• ∃b ∈ R, b ̸= a : x · b = b · x = x ∀x ∈ R

• ∀x ∈ R: x+ (−x) = (−x) + x = 0 and x · x−1 = x−1 · x = 1

• ∀x, y ∈ R: x · (z + y) = x · z + x · y

consisting of expressions in which the variables represent real num-
bers and only elementary logic symbols are being used, such as ∧,
∨, ¬, ∀, ∃.

For instance, ”∀a, b ∃x : ax + b = 0 is an expression of elemen-
tary algebra.
But, ”Every polynomial of odd degree has at least one root” is not
an expression of elementary algebra.

In general, if a theory of a structure is decidable, then so is its ex-
istential theory, therefore a positive answer to Hilbert’s tenth prob-
lem can be obtained. So for the above structures there exists the
procedure required to solve the problem. The converse, though,
is obviously not true. The existential theory of Z in the language
{+, |, 0, 1} is decidable but the full theory is undecidable (see [2]).

As far as Hildert’s tenth problem is concerned, we list below some
structures in which it is proven to be unsolvable.

1. In Z with the language L = {+, ·, 0, 1}. (the original problem)
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2. In Fq(t) (rational functions in variable t with coefficients in a
finite field with a positive characteristic other than 2) HTP is
unsolvable (see [12]). We also have unsolvability for character-
istic 2 (see [17]).

3. In all function fields where the constant field has characteristic
greater than 2 in L = {0, 1,+, ·} (see [8]).

4. In F [[t]], the ring of power series with coefficients in F , which is
an integral domain of positive characteristic, in L = {+, ·, 0, 1, t, P}
where P (x)↔”x is a power of t”
(see [11]).

5. In all quadratic rings, i.e. integral domains that contain the
quadratic integers of quadratic fields (extensions of Q of degree
2), in the language of rings {+, ·, 0, 1} (see [5]).

6. In polynomial rings R[T ], where R is an integral domain of
characteristic zero, we have unsolvability concerning equations
with solutions in R[T ] and coefficients in Z[T ] (see [6]).

There are numerous rings in which the problem of decidability re-
mains open, but the most famous of them is the ring of rationals.
The board below contains results regarding the decidability of the
full theory and existential theory of some rings, with ”Y” to mean
decidable, ”N” to mean undecidable and ”-” to mean that it is an
open problem. The language is L = {+, ·, 0, 1} and in case of rings
of functions with one parameter, it is augmented with the predicate
T which expresses those elements of the ring that are not constants.
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exist. theory in L full theory
C Y Y
Q - N
Z N N

R(z) - N
Fq(z) - N

Fq[z], R[z] N N
R[[z]] Y Y
Fq[[z]] Y -

Below we are going to analyze some examples of the Diophantine
problem for rings other than the integers, in order to see the tech-
niques being used to prove their undecidability.

3.2 Hilbert’s tenth problem for polynomial rings

Consider an integral domain R of characteristic zero that contains
Z. We will prove the following theorem (see [6]):

Theorem 3.2.1: The Diophantine problem for R[T ] with coeffi-
cients in Z[T ] is unsolvable.

To proceed to the solution we will use the Pell equation

X2 − (T 2 − 1)Y 2 = 1

where X, Y ∈ R[T ].
Consider U an algebraic element over R[T ] for which we have U2 =
T 2 − 1. Notice that U /∈ R[T ] if R is an integral domain but it is
the root of x2 − (T 2 − 1) ∈ R[T ][X].
We define the sequences Xn, Yn where n ∈ Z and Xn + UYn =
(T + U)n.

Example 3.2.1:

X1 + UY1 = T + U ⇔ X1 = T, Y1 = 1
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X2 + UY2 = (T + U)2 = 2T 2 − 1 + 2TU ⇔ X2 = 2T 2 − 1, Y2 = 2T

...

Xi = TXi−1 + (T 2 − 1)Yi−1, Yi = TYi−1 +Xi−1

Hence Xn, Yn are defined recursively and, since X1, Y1 ∈ R[T ], we
have that Xi, Yi ∈ R[T ] for every i ∈ Z.

Lemma 3.2.1: Let X, Y ∈ R[T ]. Then X, Y form a solution of
the Pell equation if and only if X = ±Xn and Y = ±Yn for some
n ∈ Z

Proof. See page 4 of [6].

For two polynomials P,N ∈ R[T ] we define the relation P ∼ N
if P = N when T = 1. In other words, for P,N ∈ R[T ] we have

P ∼ N ←→ ∃X ∈ R[T ] : P −N = (T − 1)X

For instance, if P,N ∈ Z[T ] and P = T − 1, N = (T − 1)2(T + 1)
then P = N = 0 when T = 1, so P ∼ N .
Now if P = T 2 − 1 and N = T + 1, then for T = 1: P = 0 and
N = 2, hence P ≁ N

Lemma 3.2.2: We have that Yn ∼ n for n ∈ N.

Proof. From the relation Xn + UYn = (T + U)n we have that

Yn =
n∑

i=1
i=odd

(
n

i

)
(T 2 − 1)

i−1
2 T n−i

So when T = 1 we have that Yn = n

We now define the relation Imt(Y ) to be:
Y ∈ R[T ] ∧ ∃X ∈ R[T ] : X2 − U2Y 2 = 1

Lemma 3.2.3:

1. Imt(Y ) is a Diophantine relation over R[T ] with coefficients in
Z[T ].
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2. If Imt(Y ) is satisfied for some Y then there exists an integer n
such that Y ∼ n.

3. For every integer n there exists a polynomial Y ∈ R[T ] such
that Y ∼ n and it satisfies Imt(Y )

Proof. 1. By the definition of Imt(Y ) we have that ∃X ∈ R[T ] :
P (X, Y ) = 0 with P (x, y) = x2 − U2y2 − 1 and 1, U2 ∈ Z[T ]

2. If Imt(Y ) is satisfied, for Y ∈ R[T ], then ∃X ∈ R[T ] such that
X2 − U2Y 2 = 1 so from Lemma 3.2.1 we have X = Xn, Y =
Yn for an integer n and from Lemma 3.2.2 we have that Y ∼ n

3. From Lemma 3.2.2 we have Ym ∼ m where m is a natu-
ral number. We have Xm + UYm = (T + U)m and (Xm +
UYm)(X−m + UY−m) = 1 = X2

m − U2Y 2
m, so X−m = Xm and

Y−m = −Ym. So if Ym ∼ m then Y−m ∼ −m, hence proved for
every integer.
Consider an integer m, there exists a polynomial Y = Ym ∼ m
that along with another polynomial X = Xm form the solution
of X2 − (T 2 − 1)Y 2 = 1, so Imt(Y ) is satisfied.

Fact: We have that, since R is an integral domain, if two sets S1,
S2 are Diophantine over R[T ] with coefficients in Z[T ], then the sets
S1 ∧S2 and S1 ∨S2 are also Diophantine over R[T ] with coefficients
in Z[T ].
To make this clear, consider P1, P2 the polynomials of S1, S2 then

P1 = 0 ∨ P2 = 0←→ P1P2 = 0

P1 = 0 ∧ P2 = 0←→ P 2
1 + P 2

2 = 0

If R was not an integral domain the above equivalences would not
hold.

From Lemma 3.2.3 we have that

z ∈ Z←→ ∃Y ∈ R[T ] : Y ∼ z
∧

Imt(Y )
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z ∈ Z←→ ∃Y,X,X ′ ∈ R[T ] : Y−(T−1)X ′ = z
∧

X2−(T 2−1)Y 2 = 1

z ∈ Z←→ ∃Y,X,X ′ ∈ R[T ] : (Y−(T−1)X ′−z)2+(X2−(T 2−1)Y 2−1)2 = 0

Hence we proved that the set of the integers is Diophantine over
R[T ] with coefficients in Z[T ].
This result along with the unsolvability of the Diophantine problem
for Z prove the Theorem 3.2.1.
This happens because we can find a procedure which turns the re-
lation

∃z1, z2, . . . , zn ∈ Z : P (z1, z2, . . . , zn) = 0

into the relation

∃Z1, . . . , Zn ∈ R[T ] : P ∗(Z1, . . . , Zn) = 0

All the struggle is to find a polynomial P ∗ starting from P . We are
going to use the above relations for this purpose.
For each zi we have that

zi ∈ Z←→ ∃Zi ∈ R[T ] : Zi ∼ zi
∧

Imt(Zi)

And since ∃Xi ∈ R[T ] : Zi − (T − 1)Xi = zi then the expression

P (z1, . . . , zn) = 0

turns into

P (Z1 − (T − 1)X1, . . . , Zn − (T − 1)Xn) = 0

Hence for T = 1 : P (Z1, . . . , Zn) = 0←→ P (Z1, . . . , Zn) ∼ 0.
So we have that the relation

∃z1, z2, . . . , zn ∈ Z : P (z1, z2, . . . , zn) = 0

is equivalent to

∃Z1, . . . , Zn ∈ R[T ] : Imt(Z1) ∧ · · · ∧ Imt(Zn) ∧ P (Z1, . . . , Zn) ∼ 0

Since the relations ∼ and Imt are Diophantine over R[T ] with co-
efficients in Z[T ] we can obtain P ∗.

In the above procedure we started with an arbitrary Diophantine
equation in the integers and obtained an equivalent equation in R[T ]
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with coefficients in Z[T ].
Hence if we assume that the Diophantine problem for R[T ] with co-
efficients in Z[T ] is solvable, it will follow that it is solvable for the
integers as well. But we proved in chapter 2 that it is not true.
So Theorem 3.2.1 is proved.

3.3 Hilbert’s tenth problem for power series

In this section we will deal with Hilbert’s tenth problem concerning
the ring of power series over an integral domain F , with
char(F ) = p > 0 and an indeterminate t, denoted F [[t]]

a ∈ F [[t]]⇔ a =
N∑
i=1

ait
i

where ai ∈ F . The language we will use is L = {0, 1,+, ·, P, t} where
P is the predicate for the powers of t,
i.e. for x ∈ F [[t]]

P (x)←→ ∃n ∈ N : x = tn

We also consider K as the quotient field of F and K((t)) the ring of
Laurent series with coefficients in K. The answer to Hilbert’s tenth
problem for this ring is again negative and it is proven explicitly in
[11], we will examine the proof of the answer briefly below.

First we are going to reduce the existential problem for F [[t]] in
L to the Diophantine problem for N in L1 = {+, |p, 0, 1} where for
n,m ∈ N

n|pm←→ ∃y ∈ N : m = pyn

Then the latter will be proved to be equivalent to the Diophantine
problem for N in L2 = {0, 1,+, ·}.

For the first part we have the following lemma:
Lemma 3.3.1:

1. For m,n ∈ N we have n|pm if and only if ∃a ∈ K((t)) such that
t−m − t−n = ap − a.
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2. The Diophantine problem for F [[t]] in L can be reduced to the
Diophantine problem for N in L1.

Proof. 1. The proof is number theoretical an out of the scope of
the thesis. You can find it in [11].

2. For this we need to give a Diophantine definition of the op-
erations +, |p between natural numbers over F [[t]]. Above we
have such a definition of |p over K((t)). Observe that for any
a ∈ K((t)) there exists b ∈ F [[t]] such that ab ∈ F [[t]].
To understand this better consider

a = a−2t
−2 + a−1t

−1 + a0 + a1t+ a2t
2 ∈ K((t))

where ai ∈ K, i.e. ∃ai1, ai2 ∈ F such that ai = ai1
ai2

for any

i ∈ {−2,−1, 0, 1, 2}. Therefore ai2ai = ai1 ∈ F . At last we see
that

t2a−22a−12a02a12a22a ∈ F [[t]]

Therefore we have a Diophantine definition of a ∈ K((t)) over
F [[t]] and that is

a ∈ K((t))←→ ∃b, c ∈ F [[t]] : ab = c

It follows that we can obtain a Diophantine definition of the
operations +, |p over F [[t]] as well.
We have that for m,n, l ∈ N

n|pm←→ ∃b, c, d ∈ F [[t]] : bp(tn−tm) = cp−cbp−1∧c ̸= 0∧tm = dtn

m+ n = l←→ tl = tmtn

Therefore if the Diophantine problem for F [[t]] in L is solvable,
so is the Diophantine problem for N in L1.

Now we proceed to the second step in which we reduce the lat-
ter to the Diophantine problem for N in L2 = {0, 1,+, ·}.
This is proven by finding a Diophantine definition of multiplication
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over N in the language L1.
The proofs below are purely from number theory and will be omit-
ted. They can be found in [11].

Lemma 3.3.2:

1. Given any m,n, s ∈ N then m = psn if and only if n|pm and
n+ 1|pm+ ps and n+ p|pm+ ps+1.

2. Given any m,n, ps ∈ N the relation m = psn is Diophantine
over N in the language L1.

Proposition 3.3.1:

1. Let m,n ∈ N then n|m if and only if pn − 1|pm − 1

2. Let m,n ∈ N and m ≥ 1 then
(pmn − 1)/(pm − 1) ≡ nmod(pm − 1)

Lemma 3.3.3: For n,m ∈ N then m = n2 if and only if
∃r, s ∈ N : p2s − 1|pr − 1

∧
(pr − 1)/(p2s − 1) ≡ nmod(p2s − 1)

∧
n < ps − 1

∧
((pr − 1)/(p2s − 1))2 ≡ mmod(p2s − 1)

∧
m < p2s − 1.

Therefore we have seen that the relations m = psn and m = n2

are Diophantine over N in the language L1. Hence we can prove
that for n,m, k ∈ N the relation m = nk is Diophantine in N with
L1.

Proof. For n,m, k ∈ N we have that m = nk if and only if
(n + k)2 = n2 + 2m + k2 and from Lemma 3.3.3 we have that
m = n2 is Diophantine over N in L1, hence the relation m = nk is
Diophantine over N in L1.

Hence the initial Diophantine problem for F [[t]] with L = {0, 1,+, ·, t, P}
can be reduced to the problem for N in L2 = {0, 1,+, ·}.
The latter can be shown to be unsolvable as an immediate conse-
quence of Hilbert’s tenth problem for the integers.
That is because, we can prove that the integers are Diophantine over
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N in L2 = {0, 1,+, ·}.
We have that, if

k ∈ Z←→ ∃m, l ∈ N : k +m = l

Hence, the Diophantine for N with L2 can be reduced to the Dio-
phantine problem for Z in the same language. Assuming that the
latter has a solution, we come to the conclusion that the former
also has a solution, which is known to be proven false. Hence, the
Diophantine problem for F [[t]] in L is unsolvable.
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