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Abstract

The vision-based tracking and the segmentation of an object of interest in an image
sequence are two challenging, tightly coupled computer vision problems. By solving
the segmentation problem, a solution to the tracking problem can be obtained, while
tracking may provide important input to segmentation. The coupling between these
two problems is an actively researched topic because, besides its theoretic interest, it
may lead to robust solutions in a number of important applications including object
localization and recognition, vision-based automated surveillance, activity recognition,
human-computer/robot interaction, etc.

In this work we propose a new method for integrated tracking and segmentation of a
single non-rigid object in a monocular video, captured by a possibly moving camera. It is
assumed that a binary mask is available for the initial frame of an image sequence, fully or
partially indicating the previously unseen object of interest that is to be segmented and
tracked throughout that image sequence. A closed-loop interaction between Expectation
Maximization (EM) color-based tracking and Random Walker-based image segmentation
is proposed. The tracking algorithm represents the position and the area of the object
in the form of an ellipse in each frame of the image sequence. At each frame, a finely
segmented object mask is available from the segmentation performed at the previous
frame. The spatial position and variance of the object mask are utilized to initialize the
ellipse of the tracking algorithm for the current frame. Through EM iterations performed
by the tracking method, a new ellipse is computed, estimating the new position and
variance of the object in the current frame. The initial and the evolved ellipses are used
to estimate a 2D affine transformation that propagates the segmented object shape of the
previous frame to the current frame. A shape band is then defined indicating a region of
uncertainty where the true object boundaries lie. In the following, pixel-wise spatial and
color image cues are fused using Bayesian inference to guide object segmentation. A finely
segmented object mask of the target object is finally computed in the current frame using
the Random Walker-based segmentation methodology, closing the loop between tracking
and segmentation.

The proposed method efficiently tracks and segments previously unseen objects re-
quiring no off-line training or prior knowledge regarding the object of interest and its
scene context. As confirmed by both the qualitative and quantitative experimental eval-

uation carried out on a variety of image sequences, the proposed methodology results



in reduced tracking drifts and in fine object segmentation. Additionally, it operates ef-
fectively for previously unseen objects of varying appearance and shape that perform

complex motions under varying illumination conditions.



ITepiindm

H ontiny| mapaxohotinon xou 1 tunuatonolnoyn evoc aviixeluévou oe uia axoroudio et-
XOVOVY ATOTEAOVY GTUAVTLXE TEOBAAUATA TNS UTOAOYLOTIXTC 6paoTc oy oyeTilovTal oTevd
uetall touc. 'Eva aviixeluevo to onolo éyel tunuatonownfel unopel elxoha vo mapoxo-
houlnfetl. Tautdypova, 1 Tapaxoholinoy Tou avTiXeELWEVOU TopéyEL GNUAVTLXY TATPOPORl
Yoo TV Tunuatonoinoy tou. H odvdeon uetold tov dbo autdv npofAnudtwy anoteiel uia
evepY ") epeuvnTixt| Teploy ) xabde épa and To OewpnTtind TNne evilagépoy, uropel va odn-
YHoel oc elpwoteg MIOELC 0 UEYANO aptiud ONUAVTIXGDY EPUOUOYOY OIS 1) AVAYVOELOT)
xau N extiunon 0éong avixewévmy, 1 avayvoplor dpactnplotitwy and Bivieo, 1 ontixy
EMOTTEVOY) Y GpwV, 1 ahAnhenidpaon avlpdnou ue UTOAOYLOTY 1} POUTOTIXG GUGTNUO X.0.

Yy epyooto auty) neplypdgetol Uior véa UEBOB0C GUVSUACUEYTC OTITIXNC TOEAXONOV-
Onone xou tunuatonolnong evéc avtixelévou oe axoloubia exdvemy Tou €youv hnglel and
uta eVOEYOUEVWS xvoluevn Buvteoxduepa. Oswpeltol ¢ 1 LOVAdIXY YVOOT YLl TO TEOG
Topaxoholinon aviixelpgevo elvat uia Suadixy| EOVa-Udoxo TOU TaEEYEL UL TEPLYPAPY) TOU
TEELY PAUMATOC TOU 0TV TR TY exéva tTng axorouvbiog. Ipotelveta uia uebodoroyia Bact-
ouévn oty alnlenidpaon uetall evéc akyoplfuou Meyiotonolnorng Ipoadoxioc (Expec-
tation Maximization - EM) yia v napaxoholiinen aviixeluévou pe Bdon my ypwuatxn
TAnpogopla xat lac uehddou yia Tunuatonoinoy Baoiouévn otr fewpla Twv Tuyalwy Ilept-
nétwv oe yedgoue (Random Walks). To anotéheoua tne tunuatonolnong tne emdvag tny
TpoNYOUUEVY Yeovixrh oTiyur odnyel otov oploud ulac éhhewdne mou meptypdpel Ty Héom
xaL TNV €xtaon Tou avuxelévou. O aiydplbuog Tapaxorolinore apyixonoleital Ue auth
TNV €MLY XaL UE TNV eQapUoYT Ulog eravainmTixrc dtadixastiac Meylotonoinone Ilpoo-
doxloc (EM) mopdyet uia véa éhheudn nou arotehel npdBhedn yio tn Béon xal éxtaon Tou
avTIXELUEVOU TNV Tapoloa Ypovixn ottyun. Me Bdon Tic d¥o autéc ehheldelc utoroyiletat
€vog SLodLAoTATOS APIXOC UETAOY NUATIOUOS TOU ETLTEETEL TNV TEOBAedn Tou oy fuaTtog
TOU OVTLXELUEVOU GTYY TpEyouca exdva. ['Vpw amo auth v npdBiedn oyfuatog, oplletol
uta teployh afefatdtnTac evioc Tne onolog unopel vo tpoodlopLotel To axplBéc teplypauua
TOU AVTIXELLEVOL YLOL TNV TPEYOUGH YPOVLXT) OTLYUY. AUTO ETLTUYYAVETAL UE TNV EQUPUOYT
Tou aAyoplfuou tunuatonoinong oty meployn afeBatdtntog, mou Paciletor oty Mret-
Clavy) oUvlheon yapaxTneloTix®y, otwe 1 Béon xar to ypdua xdbe onuelou tng ewdvog
oty neployh afeBatdTnTac.

H npotewvbuevn uébodog ouvdudlelr tnv mapaxorolinon xat tnv tunuatonoinoy evog
avTIXELUEVOU Ywoelg vo amattel exmaldeuon ¥ Tponyoluevr YvOoT Yia TO avTiXeluevo ev-
SLAPEEOVTOC XAl TO TEQLEYOUEVO NS oXNVAC 0Ty onolo autd eunepéyetat. 'Onwe eme-

Batdvetal and TNV TOLOTIXA XL TNV TOCOTIXT TELRAUATIXY AZLOAOYNGY) TS, 1) TEOTELVOUEVT



uefodoroyia yeidvel To o@diua Tapaxohotinong evog aviixeluévou xol BEATIOVEL TNV axpl-
Bela tng Tunuatonoinotc tou. Emnpdoheta, n uebodoroylo hettovpyel anoteheopatind yia
avTiXelUeVa TwY OTolwY TO oy AU X0l 1) EUQAVLeT) UETABSAAETOL oNuUaYTIXd XaTd T SLdpxela

¢ mbavéy mordmhoxng xivnorc Toug oe cuviixeg ueTafahhOUEVOU PWTLOUOU.



Euyoaplotieg

Oa el va exppdon Tig Oepuéc evyapioties wou oe avlpdroug Tou Aray xat elvar dinia
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Chapter 1
Introduction

The vision-based tracking and the segmentation of an object of interest in an image
sequence are two challenging problems in computer vision. Each of them has its own
importance and challenges. The two problems are highly interrelated and can be con-
sidered as “chicken-and-egg” problems. By solving the segmentation problem, a solution
to the tracking problem can be obtained, while tracking may provide important input to
segmentation. Moreover, the robustness and the accuracy of the tracking object repre-
sentation affects the quality of the information provided to the segmentation throughout
an image sequence. The coupling between these two main problems in computer vision
is an actively researched topic because of the large number of important applications in-
cluding but not limited to automated surveillance, visual attention, video analysis, object
pose estimation and recognition, activity recognition, human-computer interaction, robot

navigation,etc.

In this work, a new methodology is proposed considering the efficient combination of
tracking and explicit fine segmentation towards an online, robust 2D object tracking and

segmentation framework.

Both qualitative and quantitative experimental evaluation had been carried out in
order to assess the tracking and segmentation performance of the proposed method.
A large variety of image sequences is selected as test datasets, containing previously
unseen objects of varying appearance and shape, performing in presence of challenging
environmental conditions. The proposed method is compared to the stand-alone EM-shift
color-based tracking method [77] utilized in the proposed framework in order to assess the
improvement on the localization accuracy and the prevention of tracking drifts. Moreover,
a quantitative assessment is carried out based on ground truth tracking and segmentation

data on two image sequences. The Recall, Precision and F-score statistic metrics are



calculated to validate the segmentation performance of the proposed framework. An
overview of the proposed method is presented in [54].

This report is organized as follows. In Chapter |2, an introduction to the algorithmic
tools of EM-shift object tracking [77] and Random Walker based image segmentation
[30], that have been utilized in the proposed framework, is provided. Chapter |3| describes
each part of the proposed methodology in detail. In Chapter [4 the qualitative and the
quantitative evaluation of the proposed method is presented. Finally, in Chapter [j a
discussion regarding the effectiveness and the contributions of the proposed methodology
is accorded, whereas future work is discussed in order to extent its capabilities and to
eliminate the reported weaknesses.

This chapter is organized as follows. An extended introduction to the problem of
visual object tracking is provided in Section [I.I} A short categorization of the visual
object tracking methods is provided in Section whereas Section specializes to

methods that perform joint tracking and segmentation.

1.1 Visual Object Tracking

Visual object tracking can be defined as the problem of estimating the trajectory of a
moving object throughout the frames of a video. Additionally, depending on the tracking
domain and the application, a tracker can also provide object-centric information, such
as orientation, size of its area, accurate or coarse representation of the its shape, etc.

Object tracking is a challenging problem due to the:

e loss of information caused by projection of the 3D world on a 2D image,
e complex and/or abrupt object motion,

e nonrigid and/or articulated object shape,

e complex appearance of the object,

e dynamic changes of the object’s appearance and shape,

e scene context/background clutter,

e object occlusions,

e real-time processing requirements.



Being one of the most important and actively researched fields of computer vision,
visual tracking is the main research topic in numerous publications trying to deal with
a variety of applications concerning tracking of a single or multiple objects of interest
throughout an image sequence. Human tracking, vehicle tracking, face tracking, hand
tracking are only some of the main applications of visual object tracking. Most of the
existing tracking methods are trying to impose constraints (i.e rigidity of object shape,
smooth object motion etc.) or use prior information (i.e appearance models, shape prior
information) regarding any of the aforementioned challenges towards an efficient solution
of the tracking problem. There is a number of crucial decisions that need to be made
throughout the development of any tracking algorithm regarding its functionality. These
decisions can also be considered as keypoints, regarding its tracking performance and

applicability, including:
e object shape and appearance representation
e image feature selection
e object detection
e object propagation/prediction

Each of the first three issues is briefly outlined in the following paragraphs, whereas a

short categorization of the visual object tracking methods arises based on the last issue
and is described in Section

Object Representation

In a tracking scenario, an object can be defined as anything that is of interest for further
analysis. An object can be represented by its shape and its appearance. Object shape
representations commonly employed for tracking include: the object centroid point, points
of interest in object area, primitive geometric shapes, object silhouette and contour,
articulated shapes and skeletal models, as illustrated in Fig[I.1]

There are multiple ways to represent the appearance features of objects. There are
many tracking approaches [19], where the shape representation of the target object is
combined with its appearance representation. Some common appearance representations

in the context of object tracking are:
e Probability densities of object appearances, which are divided in:
— Parametric (Gaussian [76], mixture of Gaussians [56])

3



(f) (&) {h) (i)

Figure 1.1: Object shape representations. (a) Object centroid, (b) multiple points
of interest, (c) rectangle bounding box, (d) ellipsoid region of interest, (e) part-
based (articulated) multiple shape patches, (f) object skeleton, (g) selected con-

trol points on object contour, (h) object contour, (i) object silhouette (Figure

originally appeared in [72]).

— Non-parametric (Parzen windows [25], histograms [1§])

The probability densities of object appearance features (color,texture) can be com-
puted from the image regions specified by the shape models (interior region of an

ellipse, a contour or a bounding box).

e Shape templates using geometric shapes or silhouettes [26], carrying both spatial
and appearance information. Templates, however, only encode the object appear-
ance generated from a limited number of views. Thus, they are only suitable for

tracking objects whose poses do not vary considerably during the course of tracking.

e Active appearance models by simultaneously modeling the object shape and
appearance [19]. Active appearance models are based on shape landmarks for which

a model is computed capturing single or multiple appearance image features. They

4



require a training phase where both the shape and its associated appearance is

learned from a set of samples.

e Multi-view appearance models encoding different views of the appearance and
the shape of the object usually by generating a subspace from given multiple views
of the object using Principal Component Analysis [10], Independent Component

Analysis, trained Bayesian Networks[57], trained support vector machines [3], etc.

There is a strong relationship between the chosen object representations and the
tracking algorithms, according to the application domain. For tracking objects with
complex shapes, for example humans, a contour or a silhouette-based representation is
appropriate [9], whereas an ellipsoid region is commonly utilized as a shape representation

in combination with a color histogram in to track non-rigid objects [1§].

Image Feature Selection

Image feature selection is crucial in object tracking. The image features should be se-
lected so that the objects of interest can be easily distinguished in the feature space.
Feature selection is closely related to the object appearance representation. For example,
a color-based histogram of the object area encodes the appearance of the object combin-
ing the image feature of color within the object area with a non-parametric appearance
representation. Common primary visual features are the color, edges, spatial pizel coor-
dinates, optical flow and texture image cues. In the majority of the proposed methods,
visual features are chosen manually by the user depending on the application domain.
However, there are many recently proposed techniques [14] [70] enabling automatic feature
selection based on application-driven criteria that facilitate the discrimination between
the object and the rest of the scene in the feature space. Moreover, combinations of image

features are widely utilized to improve tracking performance.

Object Detection

The object detection mechanism is an indispensable part of every tracking method that is
applied to every video frame. There are numerous stand-alone object detection methods
that can be exploited in an integrated visual tracking framework.

Object detection can be based on information of a single frame or on temporal infor-
mation provided by the outcome of the tracking process in the previous frame. Here, the

most popular methods in the context of object tracking are briefly outlined.



e Interest points detectors have been long used in object detection towards visual
tracking, motion estimation and stereo. Point detectors are used to find interest
points in images which have an expressive texture in their respective localities.
Desirable features of an interest point is its invariance to changes in illumination
and camera viewpoint. Commonly used interest point detectors are Harris [33],
SIFT [44], KLT [45] and SURF [7], which exhibit significant invariances towards
illumination changes, camera viewpoints, object scaling and rotation etc. A concise
review followed by a thorough benchmarking of various interest point detectors is
presented by Mikolajezyk and Schmid in [49] [48].

e Background subtraction is a well-known and widely used method for detect-
ing moving objects in an image sequence captured by a stationary camera. Object
detection can be achieved by building a pixel-wise representation of the scene (back-
ground model) and then finding deviations between the model and the next frame.
Any significant change in an image region from the background model signifies a de-
tected moving object, indicated by a binary mask. Usually, a connected components
algorithm is applied to obtain connected regions corresponding to objects. Efficient
background subtraction is performed by several methods, using multi-modal sta-
tistical models to describe per-pixel background color. The method in [67] utilizes
a mixture of Gaussians to model the pixel color. A pixel in the current frame is
checked against the background model by comparing it with every Gaussian in the
model until a matching Gaussian is found. Each pixel is classified based on whether
the matched distribution represents the background process. Another efficient ap-
proach incorporates region-based (spatial) scene information instead of only using
color-based information, using non-parametric kernel density estimation to model

the per-pixel background [25].

e Segmentation is also widely utilized to perform object detection in visual track-
ing tasks. Image segmentation is an important research field in computer vision,
including a variety of methods to perform efficient image partitioning. Each seg-
mentation algorithm addresses two main problems, the definition of criteria for a
good partition and the algorithmic method for performing efficient partitioning [65].
Some of the most widely-used methods in image segmentation are the Mean-Shift
clustering [15], Graph-Cuts [11], Active Contours[61], 55 19, 9], Random Walks[31],

Bayesian classification etc.

e Finally, supervised learning can be used for object detection by learning different



views of the objects of interest from a set of example views. Common techniques
of supervised learning are Support Vector Machines [3, 53], Adaptive Boosting [70],

Neural Networks [63], Decision Trees etc.

1.1.1 A Short Categorization of Visual Object Tracking Methods

The aim of an object tracking algorithm is to establish correspondences between the
object instances among video frames and to generate the trajectory of the object’s position
over time [72]. Object tracking is mainly dependent on the selected shape representation,
appearance representation and the object detection mechanisms in order to establish
the correspondences of the detected object instances among video frames. The object
detection and tracking can be performed separately or jointly. In both cases, the objects
are represented using the shape and/or appearance models described in Section . In
the first case, possible object regions in every frame are obtained by means of an object
detection algorithm, and then the tracker corresponds objects across frames. In the latter
case, the object region and correspondence is jointly estimated by iteratively updating
object location and region information obtained from previous frames. The selected
shape and appearance representations control the type of motion or deformation and the
appearance changes that the tracked object can undergo, respectively. The suitability of
a particular tracking algorithm depends on object appearances, object shapes, number
of objects, object and camera motions, and illumination conditions.

A short categorization of the state-of-art object tracking methods is provided by the
recent and thorough review in [72].

The categorization of object tracking methods concerns three main categories namely,

point tracking, kernel tracking and shape tracking and it is graphically illustrated in

Fig. [1.2]

e Point Tracking. Objects are represented by points. Correspondences between
objects in consecutive frames can be established based on deterministic or prob-
abilistic methods [40] [5]. One of the most popular among deterministic method
is the Hungarian algorithm [41]. Greedy search methods also belong to this cate-
gory. The most popular subcategory consists of the probabilistic methods including
Kalman filters [6] based and particle filters [36] based algorithms, HMMs [58], as
well as the Multiple Hypothesis Tracking (MHT) [59] and Joint Probability Data
Association Filter (JPDAF) techniques [20].

e Kernel Tracking. In kernel tracking methods [I8] 68, 38, 37] a simple geometric
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Figure 1.2: Categorization of visual tracking methods

shape is utilized to represent the region of the object of interest. Based on this, a
parametric model for the object motion from frame to frame is computed. Thus,
kernel-based methods provide a coarse representation of the object shape. Based
on the utilized appearance representation, these tracking methods can be divided in
two subcategories, including the template matching and density-based appearance
models and the multi-view appearance-based models. The most popular and widely-
used method of the first subcategory is the mean-shift object tracking algorithm
[18, 15]. Moreover, Jepson et al. [38] proposed a novel method that tracks an
object as a three-component mixture, consisting of the stable appearance features,
transient features and a noise process. The object shape is represented by an ellipse,
whereas an online version of the popular Expectation Maximization algorithm is

used to learn the parameters of the three-component mixture.

Tracking methods based on the multi-view appearance models requires off-line
learning of multiple views of an object. They mostly use Principal Component
Analysis (PCA) to generate subspace-based representations as appearance models.
They are able to track an object the appearance of which may undergo consider-
able changes over time [62]. Other methods use Support Vector Machines to classify

on-line test views of the tracked object between positive and negative examples.

Shape Tracking. The goal of the shape tracking methods is to track complex (non-
rigid or articulated) shapes, providing an accurate shape description of the whole

object area that evolves from frame to frame. They are able to capture potential



deformations and transformations of the object shape and to provide an accurate
object mask in each frame. There are two main subcategories, concerning the
contour tracking approaches and the shape matching approaches. On the one hand,
contour tracking methods iteratively evolve the initial object contour to capture the
contour of the shape instance of the object in the current frame. Various energy
minimization techniques (variational approaches) have been used to develop efficient
contour tracking algorithms, such as level sets [55] [73, 9, 8], utilizing static image
cues, optical flow information and region statistics. Moreover, state space models
(Kalman filtering, Particle filtering) have been used to develop contour tracking
methods [69],[36]. On the other hand, shape matching [66] 135] is closely related to
tracking by template matching. An object silhouette supported by its associated
appearance model is searched to capture the shape instance of the tracked object in
the current frame. The appearance model as well as the object silhouette instance
may have been incrementally updated exploiting the tracking result of the previous
frame, thus handling appearance changes and shape deformations of the object from

frame to frame.

1.1.2 Visual Object Tracking by Segmentation

This section provides a literature review on visual object tracking methods that explic-
itly or implicitly provide an accurate shape representation, enabling combined tracking
and segmentation of the object area throughout an image sequence. The references on
the research publications presented in this section are grouped toward the top-level cat-
egorization of tracking methods provided in Section [I.I1.1} concerning the three main

categories, namely the point, kernel and shape based tracking methods.

Shape-based tracking methods [69) [36, 55| [73, 9] provide an accurate representation of
the tracked object, therefore they capture the entire object shape in each video frame,
inherently providing combined tracking and segmentation. In [69], the object state is
defined by the dynamics of the control points, which are modeled in terms of a spring
model. This model moves the control points based on defined spring stiffness parameters.
The new state (spring parameters) of the contour is predicted using the Kalman filter.
The correction step uses the image observations which are defined in terms of the image
gradients. The method presented in [36] defines the object state in terms of spline shape
and affine motion parameters. The measurements consist of image edges computed in the

normal direction to the contour. During the testing phase, the current state variables are



estimated through particle filtering based on the edge observations along normal lines at

the control points on the contour.

The direct minimization methods evolves the contour by minimizing the contour en-
ergy using direct minimization techniques (i.e gradient descent), variational methods (i.e
level-sets) or heuristic approaches [61]. In [55], a variational framework is introduced
for detecting and tracking multiple moving objects in image sequences using the front
propagation theory and the level-set methodology. The motion detection boundaries are
determined using a probabilistic edge detection on analysis of the inter-frame difference.
The tracking boundaries are determined by performing edge detection on the input image.
Then, a partial differential equation (PDE) is defined, as an objective function, to trans-
form the detection and tracking into a geodesic computation problem. The equation is
implemented using the level-set theory, whereas the obtained function is minimized using

gradient descent.

A contour-based nonrigid object tracking method is proposed in [73]. The method
is able to perform robust object tracking in the presence of occlusions in video acquired
from moving cameras. Along with color and texture models generated for the object
and the background regions, the method maintains an shape prior, which is generated
on-line, for recovering occluded object parts. The energy functional, evolving the contour
from frame to frame, is derived using a Bayesian framework and is evaluated within a
band area around the estimated object contour. The energy function is minimized using

gradient descent.

More recently, in [9], a probabilistic, level-set framework for robust visual tracking is
introduced. The method handles the tracking problem using a bag-of-pixels representa-
tion, in terms of pixel-wise posteriors, as opposed to a product over pixel-wise likelihoods.
On-line appearance learning provides continual refinement of both the object and back-
ground appearance models. The object shape is based on a level-set representation of
its contour that is propagated by performing a rigid registration between frames. The
proposed method is able to track previously unseen objects from a moving camera in

real-time.

Point-tracking algorithms, either deterministic or statistics-based, can also combine track-
ing and object segmentation using multiple image cues. The two following tracking meth-
ods can be considered as a hybrid of point and shape-based tracking methods. In [60],
figure/ground segmentation operates sequentially in each frame by utilizing both static

image cues and temporal coherence cues. The method generates an appearance model
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of brightness (or color) and a spatial model propagating figure/ground masks through
low-level region correspondence. A super-pixel-based Conditional Random Field (CRF)
linearly combines cues and loopy belief propagation is used to estimate marginal pos-
teriors of figure versus background, thus providing an accurate segmented object mask
throughout an image sequence. A similar but more elaborate work is presented in [75].
This work provides a shape constrained figure-ground segmentation in a CRF graph
model and proposes a new method to embed global shape probability and region-based
probability of object boundary into graph link terms. Simulated annealing and local vot-
ing align the on-line obtained deformable shape template with the image to yield a global
shape probability map. Moreover, multiple low-level image cues are fused to provide a
region-based probability of the object boundary map. The obtained global shape prob-
ability is combined with the region-based probability of object boundary map and the
pixel-level intensity gradient to determine each link cost in the graph formulation. The
CRF energy is minimized by min-cut, followed by Random Walker-based segmentation
on the uncertain boundary region to get a soft segmentation result. This method is able
to handle partial occlusions of the object. The method described in [I], is mainly based
on the efficient method proposed in [51], presenting a probabilistic framework that jointly
considers both tracking and fine segmentation of multiple objects in videos captured by
a stationary camera. The proposed method jointly formulates the pixel color and lo-
cation in a Maximum a Posteriori (MAP) estimator to perform pixel-wise classification
toward the target objects list and the background image. A Probabilistic PCA method
(PPCA) is utilized to construct and on-line update a robust appearance model for each
target object throughout the image sequence. Another multiple object tracking approach
is introduced in [5] supporting hand and face tracking in videos captured by a possibly
moving camera. A pixel-wise representation is utilized. The location and the speed of
each object is modeled as a discrete time, linear dynamical system which is tracked using
Kalman filtering. The spatial distribution of the pixels of each tracked object is passed on
from frame to frame by propagating a set of pixel hypotheses, estimated by the Kalman
filter.

The majority of the kernel-based tracking algorithms provide a coarse representation
of each tracked object based on a bounding box or an ellipsoid region. The research work
presented in [74], introduces a kernel-based tracking method that enables combined track-
ing and fine segmentation of non-rigid foreground objects in videos captured by a possibly

moving camera. The foreground and background objects are modeled using spatial-color
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Gaussian mixture models (SCGMM). These two models jointly capture the shape and the
appearance, in terms of pixel-wise colors, of the foreground objects in the scene. Com-
bining the two SCGMMs into a generative model of the whole image, the maximization
of the joint data likelihood is computed using a constrained Expectation-Maximization
(EM) algorithm [2I]. The segmentation of the foreground objects is finally computed
using the Graph-Cut algorithm, which minimizes a Markov Random Field (MRF) energy
function modeled by the information encoded by the SCGMM models. Moreover, in [27]
a novel method is presented for illumination invariant kernel tracking that is based on
computing an illumination-invariant optical flow field in conjunction with a graph cuts

formulation.

Another kernel-based method concerning foreground /background modeling, thus track-
ing foreground objects, is presented in [25]. A nonparametric kernel density estimation
technique is presented, as a tool for constructing statistical representations for the scene
background and foreground regions in video surveillance (stationary videos). A back-
ground modeling and background subtraction technique is also introduced. The statis-
tical representations of the foreground regions (moving objects) support their tracking
and occlusion reasoning throughout an image sequence. In [40] a Maximum a Posteriori
(MAP) probabilistic framework for segmentation is presented , using multiple cues, such
as spatial location, color and motion. A weighting scheme is introduced to weight pixel-
wise color and motion terms, based on a confidence measure of each feature. The correct
modeling of the spatial pdf imposes temporal and color consistency among the resulting
image segments in consecutive frames. The segmentation and tracking of a specific object

in the scene, could be a post-product of this work.

Finally, one of the most popular and efficient kernel-based tracking method of non-
rigid objects is the mean-shift algorithm [I8], which is not mentioned in this section be-
cause of its coarse representation of the tracking object area with an ellipse. One of the
main drawbacks of the original work of mean-shift tracking is the lack of scale adaptation
of the tracking kernel towards the object shape changes throughout an image sequence,
which gradually diminishes the tracking performance. Numerous research works have
been published trying to deal with the scale adaptation of the tracking kernel in order to
get a more refined object representation. An extension of the original mean-shift tracking
method is presented in [I7], enabling a variable bandwidth of the mean shift search win-
dow. Another extension is presented in [I3] exploiting the Lindeberg theory [42]. It refers
to the feature scale selection based on local maxima of differential scale-space filters, pro-

viding a solution to the problem of selecting kernel scale for mean-shift blob tracking. A
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new formulation of the original mean-shift object tracking method is presented in [77],
simultaneously estimating the position and the covariance matrix of the tracking kernel
that describes the shape of tracking object based on a color-histogram and an EM-like
procedure for scale selection. More recently, the proposed method in [71] presents an
object tracking method based on the asymmetric kernel mean shift, in which the scale
and orientation of the kernel adaptively change depending on the observations at each
iteration. The afore-mentioned extensions of the original mean-shift method produce a
better object representation than the original method capturing the shape/scale changes
to some extend. However, this result is still characterized as a coarse representation of

the tracked object area.

Despite the many important research efforts devoted to the problem, the development
of algorithms for tracking objects in unconstrained videos constitutes an open research
problem. Moving cameras, appearance and shape variability of the tracked objects, vary-
ing illumination conditions and clutter backgrounds constitute some of the challenges
that a robust tracking algorithm needs to cope with. To this end, in this work we con-
sider a novel framework that explicitly combines tracking and segmentation of previously
unseen objects in monocular videos captured by a possibly moving camera. No strong
constraints are imposed regarding the appearance and the texture of the target object or
the rigidity of its shape. All of the above may dynamically vary over time under chal-
lenging illumination conditions and changing background appearance. The basic aim of
this work is to preclude tracking failures by enhancing its target localization performance
through explicit fine object segmentation that is appropriately integrated with tracking
in a closed-loop algorithmic scheme. A kernel-based object tracking algorithm [77], a
natural extension of the popular mean-shift tracker [10] [I8], is efficiently combined with
Random Walker-based image segmentation [29] 30]. Explicit segmentation of the target
region of interest in an image sequence enables reliable tracking and reduces drifting by
exploiting static image cues and temporal coherence. The final goal of the proposed
methodology is to simultaneously enhance the performance of the kernel-based tracking

and provide a fine segmentation result of the tracked object, as illustrated in Fig/l.3|

The key benefits of the proposed method are (i) the close-loop interaction between
tracking and segmentation (ii) enhanced tracking performance under challenging con-
ditions (iii) fine object segmentation (iv) the capability to track objects regardless of
camera motion (v) increased tolerance to extensive changes of object’s appearance and

shape and, (vi) continual refinement of both the object and the background appearance
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Figure 1.3: (a) Two ellipses representing a human hand while tracking. Red el-

lipse corresponds to the performance of the stand-alone EM-shift object tracking
algorithm [77], whereas the blue ellipse corresponds to the tracking result obtained
by the proposed methodology providing enhanced localization performance. (b)
Precise object shape representation provided by the Random Walker-based seg-
mentation procedure [31] of the proposed framework following the object tracking.
(c¢) The desired result of the proposed methodology. A finely segmented object

mask.

models. Last but not least, the proposed scheme can easily be extended to incorporate

more image cues.
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Chapter 2
Algorithmic Tools

The purpose of this chapter is to provide an introduction to previously presented al-
gorithms that have been utilized in the proposed methodology, concerning EM-shift
kernel-based object tracking [77] and Random Walker-based image segmentation [31],

respectively.

2.1 Kernel-based Object Tracking

In this section, an kernel-based object tracking algorithm is presented, that is further
utilized in the proposed joint tracking and segmentation methodology. The EM-shift
algorithm for color-histogram based object tracking, that has previously appeared in
[77], is a natural extension of the popular mean-shift tracking method [18| [16]. There are
two main advantages regarding this previously introduced method. Firstly, its robustness
in tracking performance keeps up with the performance of the popular Mean-Shift object
tracking method. Secondly, the EM-shift algoritm simultaneously estimates the position
of the local mode and the covariance matrix that describes the approximate shape of
the local mode, thus adapting the position and the scale of the tracking kernel. Both
object tracking methods can be seen as special versions of closely-related robust statistics
procedures [47, 34] toward the extreme outlier model, described in [77]. Both methods
perform kernel-based tracking and rely on image color. In the following, a brief description
and derivation of the color-histogram based tracking algorithm is provided.

Given an image I; of size m x n, the data set of the N independent samples-pixels

are denoted by X = {36)1, . QN}, where z; denotes the location (spatial coordinates)
—
of pixel 7. Moreover, a Gaussian probability density function p (?) =N (537 0, 2) is

o
considered, as a generative model to efficiently represent the data samples. The § and
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Y. parameters correspond to the position mean vector and the covariance matrix of a
Gaussian distribution, respectively, which approximates the shape of the tracked object.
A projection of the Gaussian distribution on the image plane consists of an ellipsoid
region that represents the object shape while tracking. The spatial covariance Y is based

on the second order moment that approximates the shape of the object:

2= Y (5-6) (n-4;) . (2.1)

T, €Xo
where X, C X is the subset of pixels that belong to the object area.
The appearance of the ellipsoid region is modeled by an M-bins color histogram. Let
b(%l) : R?2 — 1,...., M be the function that assigns a color value of the pixel at location

Z; to its bin. The color histogram model of the object consists of the values of the M bins

of the histogram ¢ = [0y, ...,0n]". The value of the m-th bin is calculated by:
N,
on=S N (f fo, zo) 3[b (7)) — ml], (2.2)
i=1

where § is the Kronecker delta function. The effect of the utilized Gaussian kernel N is
to rely more on the pixels in the center of the object and to assign smaller weights to
the less reliable pixels near the borders of the object. Moreover, the pixels from a finite
neighborhood Ny, of the kernel N are used to populate the color histogram, whereas the
pixels further than 2.5-sigma are disregarded.

The goal of object detection in each frame based on its appearance model can be
achieved by computing a Maximum Likelihood (ML) estimation of the Gaussian pdf
p(i) that maximizes the likelihood function Hfilp(zz) Based on the notion of the
extreme outlier model and the Taylor expansion, a new pixel-wise weighted objective

function to be maximized is derived:

() = S (5.5). 23

The pixel-wise weight factors w; of the objective function are estimated iteratively by
computing the Bhattacharrya coefficient based similarity measure between the color his-
tograms of the target and the candidate regions of a new frame, where the object is to
be detected/tracked. Let N, C N be the subset of pixels that belong to a candidate sub-
region of the new image frame I;,,, with position 02 and covariance Y., where the target
object may be localized. Using Eq. to model the color information of pixels in N,,

an appearance model of the candidate region is generated, denoted as rm(ﬁz, Y.). The
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goal is now to compare these two color histograms by using the Bhattacharrya coefficient

p, as a measure of similarity between two histograms:

oIF (90, 5 ) Z P (90, 5 )@ (2.4)

The first Taylor approximation of the current estimate F(HC, Y.) is given by:

Ny
F(H_;, Ec) ~C1+ Co ZC«JZN (ZLT;, 5, 2) 5 (25)

i=1
where the ¢; and ¢, are constant factors. Since the last term of Eq. has the same form
as the object function in Eq. , an EM-shift algorithm can be utilized to search for the
local maximum of the current similarity function Eq. , as will be described below. In
other words, an EM-like procedure will search for the candidate image subregions, where
the candidate appearance model maximizes the similarity with the target appearance

model. The w; values in Eq. (2.5)) are computed as:

Z — b (55) — ], (26)
)

The key point of the described method is the multiplication of the estimated den-

sity function (2.5) by |X|”. The objective function to be maximized now is called ‘-

normalized’:

£, (8:3) = 2P (6.3). (2.7)

Note that v € (0,1). The ‘y-normalization’ introduces an informative prior for ¥ to

regularize the solution and get non-biased estimates. An interesting connection of this

technique is with some image filtering algorithms. For example, in [42], y-normalized
image convolution was studied for selecting the scale of the filtering operator.

To bring up again the main computational core of the described tracking method,

parameter 0 and X for which the maximum value of Eq. is achieved. Based on the

Jensen’s inequality of the 'y-normalized’ density function, we get:

N N(* g 2) v
Wy iy 0,
logf,(6,%) > GO, qu,...,qn) = ZZOQ\EW! ” : (2.8)

where ¢;-s are non-negative arbitrary constants and Zf;l ¢; = 1. Jensen’s inequality

relates the value of a convex function of an integral to the integral of the convex function.
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Given its generality, the inequality appears in many forms depending on the context,
especially in probability theory, generalizing the statement that the secant line of a convex
function lies above the graph of the function (see [64] for details).

The idea is to involve the ¢;-s parameters that are contained in and the de-
sired spatial parameters of the tracking kernel 0 and X from the ‘v-normalized’ objective
function in an iterative Expectation Maximization procedure to obtain the de-
sired Maximum Likelihood solution. At the same time, the obtained parameters g and
>) will provide an accurate representation of the object area in the new image, position
and covariance respectively, enabling the automatic scale selection of the tracking region,
through the estimated covariance parameter .

The EM algorithm is performed in the following E and M steps that are repeated
until convergence. Denote by 0 and ©® the estimates of the parameters at iteration
k.

e E step: Find ¢;-s to maximize G in (2.8) while keeping 0k and £® fixed, by
using;:

wilN (fz 0, E)

SN wiN (fi; g, E>.

e M step: Maximize G in (2.8) with respect to 0*) and ©*®) while keeping ¢;-s
constant. To achieve this, the part of G that depends on the parameters need to
be minimized. This part is g(6) = S0, gilog|Z["/2N <:E’; g, E).

From %g(@ﬁ7 ¥) = 0, the position and the covariance parameters are updated by:

N
P =3 g (2.10)
i=1
N T
Ek+1 - Btrack ZQZ' (I_; - 9(k)> (-f; - e(k)) ) (211)
i=1

where B0 = 1/(1 — ). An outline of the EM-shift color histogram based tracking
method follows is provided in Algorithm/[I]

In Fig. an example is shown to illustrating the performance of the presented EM-
shift object tracking algorithm. The simulated data consists of 600 samples generated
using a mixture of three Gaussian distributions. The three modes are clearly visible

(horizontally aligned). The evolution of the tracking kernel, computed through mean-
shift iterations is illustrated in Fig. 2.1fa). In Fig. 2.1j(b), the kernels computed during
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Algorithm 1 EM-shift color-based object tracking algorithm

Input:

. N . e . . _’0 . 0
Image I; 11, object model d,,, its initial location 6}, ; and shape covariance ¥;

for frame I;;.

1.

Set k=0 (iterations)

O

. Compute the candidate color histogram Tm< 1 t+1) of the current region

defined by H_ZCH and Egi)l.
Calculate weights w; using ((2.6)).
Perform E step of EM algorithm. Compute ¢;-s using (2.9).

Perform M step of EM algorithm.

e Compute new position estimate Qﬁt(ﬁl) using (2.10)).

e Compute new covariance estimate Egﬁl) using (2.11]).

If no new pixels are included in the new elliptical region defined by the new
estimates G:Eff{l), Egﬁl) stop.

Otherwise, set k=k+1 and go to 1.

Output: An ellipse that contains the tracked object in frame I;,;, defined by H_ET{I),
y(k+1)
t+1
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Figure 2.1: Qualitative performance of (a)mean-shift and (b) EM-shift tracking
algorithms on synthetic data representing a mixture of 3 Gaussians. Note the
scale adaptation of the Gaussian kernel to covariance of the middle local mode
of the mixture, achieved by the EM-shift algorithm, as opposed to the one of the

Mean-shift algorithm where no scale adaptation is performed.(Figure originally

appeared in [77]).

the iterations of the EM-shift algorithm with v = 1/2 (Byqck

algorithm simultaneously estimates both the position of the local mode and the covariance

matrix that describes the shape of the mode.

As described in [77], Birqcr = 2 is appropriate in case of a Gaussian distribution. If

some other distribution is approximated by a Gaussian some other value for Sy.qc might

be needed in order to avoid biased solutions.

20

b) EM-shift iterations

= 2) are illustrated. The



2.2 Random Walks for Image Segmentation

The aim of image segmentation is the partition of the image pixels into a set of re-
gions, which are visually distinct and uniform with respect to some property, such as
gray level, texture, color, etc. Another natural bottom-up view of segmentation is the
grouping of image sub-regions, or pixels, attempting to determine visually distinct and
uniform regions from image parts that naturally “belong together”, based on a given
property /criterion.

Both partitioning and grouping can be considered as categories of the clustering prob-
lem, often referred in the literature as divisive and agglomerative clustering, respectively.
The general intuitive goal of clustering is to divide the data points into several groups
such that points in the same group are similar and points in different groups are dissimilar
to each other.

A large number of segmentation methods have been proposed in the literature and
a review or a taxonomy of the methods is beyond the scope of this report. A brief
introduction to the segmentation based on the graph partitioning approach of spectral
clustering will be firstly presented, enabling a smooth transition to the description of
the Random Walker-based image segmentation method, which is the main point of the

current section.

2.2.1 Mathematical Background

Spectral clustering goes back to Donath and Hoffman in 1973 [23], who first suggested to
compute graph partitions based on eigenvectors of the adjacency matrix of an available
dataset.

Let a set of data points z1,..., %, and some notion of similarity s;; > 0 between all
pairs of data points z; and z;. Consider G = (V, E) to be an undirected weighted graph
with vertices (nodes) u € V and edges e € E CV x V, with n = |V| and m = |E|, where
| - | denotes cardinality. Each vertex v; in this graph represents a data point x;. An edge
e, spanning two vertices, u; and u;, is denoted as e;;, weighted with a non negative value
denoted as w;;. The weighted adjacency matriz of the graph G is the W = (wy;); j=1,..n-
The degree of a vertex u; € V' is defined as

d;, = Zw(e”), Veij c E. (212)
81J
The degree matriz D is defined as the diagonal matrix with the degrees dy,...,d, on

the diagonal.
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Define the m x n edge-vertex incidence matriz as

+1 ifi=k
Ay =3 =1 ifj=k (2.13)
0 otherwise,
for every vertex uy and edge e;;. The notation Aei].uk is used to indicate that the rows
of A are indexed by edge e;; and the columns by node u;. Moreover, define the m x m
constitutive matriz, C, as the diagonal matrix with the weights w;; of each edge ¢;; along
the diagonal.
For any two subsets of vertices A, B C V, the weight matriz W is defined as

W(AB) = Y wy (2.14)
i€A,jeB
There are several popular constructions to transform a given set z;....,x, of data

points with pairwise similarities s;; or pairwise distances d;; into a graph. When con-
structing a weighted graph the goal is to model the local neighborhood relationships
between the data points. Thus, the most common used types of graphs, concerning the

neighboring connectivity are:

e ¢ - neighborhood graph: All vertices whose pairwise distances are smaller than

e are connected.

e k - nearest neighbor graphs: Any vertex v; is connected with vertex v; if the

latter is among the k-nearest neighbors of v;.

e Fully connected graph: connect all vertices with positive weights with each other
based on the evaluation of the defined similarity function over the corresponding

data points.

The main tools for spectral clustering are graph Laplacian matrices. There exists a
whole field dedicated to the study of those matrices, called spectral graph theory [46],
however there is no unique convention which matrix exactly is called “graph Laplacian”
[22]. As an operator, A may be interpreted as a combinatorial gradient operator and
AT as a combinatorial divergence [I12]. The isotropic combinatorial Laplacian is the
composition of the combinatorial divergence operator with the combinatorial gradient
operator, L = AT A. There are numerous approaches to the construction of a graph
Laplacian matrix of a graph-based representation of a given dataset. The unnormalized

graph Laplacian is defined as
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L=D-W. (2.15)

The unnormalized Laplacian matrix is symmetric and positive-definite. The smallest
eigenvalue of L is 0, the corresponding eigenvector is the constant one vector. Moreover,
L has n non-negative, real-valued eigenvalues \; > 0.

There are two matrices called normalized graph Laplacians, defined as

Loym =1 — D7 V2WD™V2, (2.16)
Lyw=1—D"W. (2.17)

Lsym and L,, have n non-negative, real-valued eigenvalues \; > 0. The Laplacian
operator matriz can be defined as L = AT A. As a matrix, the Laplacian may be derived

directly from knowledge of V' and FE as:

d, ifi—j

0 otherwise,

The notation L,,; is used to indicate that the matrix L is being indexed by vertices
v; and v;. To give an intuitive implementation of a supervised spectral clustering, two
general algorithmic templates are presented below, based on the unnormalized and the
normalized Laplacian, respectively.

In all spectral clustering algorithms, the main idea is to change the representation of
the abstract data points z; to points y; in R*. It is due to the properties of the graph
Laplacians that this change of representation is useful, so that clusters can be trivially
detected in the new representation. The wide variety of spectral clustering algorithms
is up to the number of choices concerning the type of similarity graph, the weighting
function and the type of the Laplacian matrix that will be chosen to obtain the resulting

clusters.

Graph-Cuts and Random Walks are two special cases of spectral clustering toward the
graph-based partitioning problem. A random walk on a given similarity graph is a sto-
chastic process which randomly jumps from vertex to vertex, according to [43]. A spectral
clustering algorithm based on random walks can be interpreted as trying to find a parti-
tion of the graph such that a random walk that begins from a given cluster, stays long

within that cluster and seldom jumps between clusters.
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Algorithm 2 Unnormalized spectral clustering

Input:

Similarity matrix S € R™*"™, number of k clusters to construct

Construct a similarity graph based on the desired graph connectivity scheme.
Generate W, the weighted adjacency matrix, based on the chosen weighting

function.

Compute the unnormalized Laplacian L of .

Compute the first k eigenvectors u,,...,u; of L.

Let U € "> be the matrix containing the vectors u, ..., u; as columns.
Consider the vector y; € R* fori =1,...,n to be the i — th row of U.

Cluster the points y; in R* with the k-means algorithm into clusters C, ..., C}.

Output: Clusters Ay,..., A, with A; = jly; € C..

Algorithm 3 Normalized spectral clustering according to [65]

Input:

Similarity matrix S € R™*"™, number of k clusters to construct

Construct a similarity graph based on the desired graph connectivity scheme.

Generate W, the weighted adjacency matrix, based on the chosen weighting

function.
Compute the unnormalized Laplacian L of ([2.15)).

Compute the first k generalized eigenvectors u, ..., u; of L of the gen-

eralized eigenproblem Lu = ADu.
Let U € ™" be the matrix containing the vectors uy,...,u; as columns.
Consider the vector y; € R* fori = 1,...,n to be the i — th row of U.

Cluster the points y; in R* with the k-means algorithm into clusters C1, ..., Cj.

Output: Clusters Ay, ..., A, with A; = jly; € C.
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The transition probability of a random walker jumping in one step from vertex v;
to vertex v; is proportional to the edge weight w;; and is given by p;; = w;;/d;. The
transition matrix P = (p;j)i j=1,.» of the random walk is thus defined by P = D'V

If the graph is connected and non-bipartite, then the random walker always possesses
a unique stationary distribution 7 = (my,...,7,), where m; = d;/vol(V') and vol(V') =
Yievd;. It stands that A is an eigenvalue of L,,, with eigenvector « if and only if 1 —\ is an
eigenvalue of P with eigenvector u. It is well known that many properties of a graph can
be expressed in terms of the corresponding random walk transition matrix P, see [43] for
an overview. Therefore, the largest eigenvectors of P and the smallest eigenvectors of L,,,
can be used to describe cluster properties of the graph, thus to further develop a spectral
clustering algorithm based on random walks on a graph by utilizing the Laplacian L,,,.

An application of a graph partitioning algorithm based on Random Walks to the
image segmentation problem [30, 29] will be presented in Section [2.2.2]

2.2.2 Random Walker-based Image Segmentation

In [31), B0] a novel approach to the K-way image segmentation problem is presented,
based on the formulation of Random Walks on a graph-based representation of an image.
Given user-defined seeds (each seed is a single or a set of image pixels) indicating regions
of the image belonging to K objects, consider that each seed specifies a location with a
user-defined label. The introduced algorithm labels an unseeded pixel by answering the
question: Given a random walker starting at this location, what is the probability that it
first reaches each of the K seed points?

By performing the algorithmic computation, a K-tuple vector is assigned to each
unseeded pixel that specifies the probability that a random walker starting from that
pixel will first reach each of the K seed points (soft segmentation-the values in each tuple
sum up to unity). A final segmentation may be derived from these K-tuples by selecting
for each pixel the most probable seed destination for its random walker. By biasing
the random walker to avoid crossing sharp intensity gradients, a quality segmentation is
obtained that respects object boundaries (including weak boundaries), as opposed to the
popular graph-cut algorithm that is guaranteed to give the minimum-cut between two
groups of labeled nodes. The above statement is validated by the segmentation of the
synthetic-image-example illustrated in Fig.

This calculation can be performed without the actual simulation of a random walk,
which is infeasible for segmentation problems. To obtain the K-tuple vector of prob-

abilities for each unseeded graph vertices, a sparse, symmetric positive-definite system
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of K — 1 linear equations must be solved. An analytic mathematical formulation of the
problem is presented in [30].

The advantage of formulating the problem on a graph is that purely combinatorial
operators may be used that require no discretization and therefore incur no discretization
errors or ambiguities. It has been previously established [39, 24] that the probability a
random walker first reaches a seed point exactly equals the solution to the Dirichlet
problem [39] with boundary conditions at the locations of the seed points and the seed
point in question fixed to unity while the others are set to zero.

To begin with the review of the main algorithmic parts, an image should be treated
as a purely discrete object, thus the undirected similarity graph G = (V, E), as defined
in Section [2.2.1] Each vertex of the graph now represents an image pixel, whereas an
undirected edge between any two vertices represents the interaction between the corre-
sponding image pixels or a set of pixels within a local neighborhood. Each edge is assigned
a real-valued weight corresponding to the likelihood that a random walker will cross that
edge (e.g., a weight of zero means that the walker may not move along that edge). The
likelihood value is computed based on the weighting function W that evaluates a single
or multiple combined properties of the interacting pixels.

Let n = |V| the number of image pixels and m = |E| the number of edges that connect
interacting vertices (pixels) in the constructed graph. Given the seeds, the set of graph
vertices V is divided into two disjoint subsets, the set of labeled (marked) vertices V;,
and the set of unlabeled (unmarked) vertices Vy;, such that V,,, UV, = V. The goal of the
K-way graph-based segmentation is to label each free verter u; € Vi with a label from
the set G = {g',...,¢"}. The marked vertices are assigned with a label y; € G.

The random walker approach to this problem is to assign to each free vertex u; € Vy,
the probability x° that a random walker starting from that vertex first reaches a marked
vertex v; € Vi, assigned to label ¢° (set 25 = 1), as opposed to reaching a vertex v; € V,,
with label g7 (set ti s; = 0), obtaining a soft segmentation. The solution to this problem

is given by the minimization of the following energy equation:

Espatial - xSTLl'Sy (219)

where x° is a real-valued n x 1 vector. L represents the combinatorial Laplacian matrix
of size n x n defined in Eq. (2.18) of Section By partitioning the Laplacian matrix
into labeled L, and free blocks B, we obtain:

Ly B
BT Ly

(2.20)
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and defining the indicator vector f* of size |Vy| x 1, as

. 1 ify;, =g¢°
fr=q P We (2.21)
0 if y; # g°,

the minimization of the energy in (12.19) with respect to xj, can be obtained by solving

the following sparse, symmetric, positive-definite system of K linear equations

Ly}, = —Bf°. (2.22)

For the resulting probabilities, it holds that ) a7 = 1,Vi. Therefore, each graph
vertex is soft-assigned to each of the K labels. The final segmentation is completed by
assigning each free vertex to the label for which it has the highest probability, i.e., y; =
max;(z$). The above derivation reveal a property of the Random Walker-based algorithm:
In the absence of labeled points (i.e., V3y = @), the probabilities are undefined. Therefore,
this algorithm is presented as a strictly semi-automated segmentation algorithm.

An extension of this algorithm is introduced in [29], presenting a new mechanism that
enables the incorporation of label priors into the above framework and resulting in a seg-
mentation algorithm that need not have any user interaction or an explicit determination
of seeds. Given a set of real-valued vertex-wise priors A] that represent the probability
density that a feature (i.e pixel color intensity) at vertex u; belongs to the distribution of
label ¢®, the diagonal square matrix A® is defined having the values of A* on the diagonal.
A new functional is considered based on the label prior values. The so called aspatial

functional may be combined into a single functional weighted by the free parameter +:

Eifotal = Esspatial + /YEZspatial‘ (223)

The minimum energy of (22.23)) is obtained by solving the following modified system

with respect to x°

(L + ’yi AT) x® =\ (2.24)

r=1
The modified system of linear equations is guaranteed to be positive definite (and
therefore nonsingular), since L is positive semi-definite and the diagonal matrices (see A)
are strictly positive definite. If desired, the seeds may also be incorporated by solving a

new system

k
(LU + ’yZAT> z3 = v\ — Bf°. (2.25)
r=1
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Figure 2.2: Comparison of Random Walker-based algorithm to graph cuts for a
weak boundary using seeds. (a) Original synthetic image. (b) Graph cuts solu-
tion. (c) Random walker-based solution. (d) Pixel-wise probabilities computed

by the Random Walker-based algorithm (Figure originally appeared in [30]).
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Figure 2.3: Graph construction of Random Walker-based graph partitioning tech-
nique using label priors (Figure originally appeared in [29]).

The introduced parameter v controls the weighting of the prior values over the ob-
servations encoded by the edge weights of the graph and the seeds in case they are
considered. Thus, the tuning of parameter ~ is crucial to the behavior and the efficiency
of the random walks based image segmentation technique presented. A new graph repre-
sentation is required to enforce the incorporation of the prior values to the problem. The
graph representation illustrated in Fig. [2.3] as well as the development of the algorithm
bears a close resemblance to the construction of the graph cuts problem with the inclu-
sion of vertex-wise priors. In the terminology of graph-cuts the weights w;; of an edge
e;i between vertices u; and u; corresponds to the N-links (or pairwise energy potentials)

and the weights yA{ to the T-links (or unary energy potentials).

To summarize, three different closely related algorithms may be obtained based on

the development in this subsection and the provided equation regarding the systems of
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linear equations that simulate the random walks of a similarity graph. A first algorithm
is based only on the defined seed points, utilizing the Eq. . In that case, the user
interaction or a automatic mechanism that will determine the seed points is necessary,
based on specified image cues (i.e color, texture etc) depending on the application. A
second algorithm is based only on label prior values. In that case, a mechanism that will
provide the prior values is necessary, based also on specified image cues depending on
the application and Eq. is utilized. The third case refers to a combined algorithm,
where both seeds and priors are combined in Eq. . A single algorithmic template
of the three aforementioned algorithms is provided in Algorithm

It is important to note that the main computational hurdle regarding the described
random walks based image segmentation is the numerical solution of each of the large,
sparse, symmetric positive-definite systems of linear equations i.e Eq. . Iterative
methods, such as preconditioned conjugate gradient, exhibit a more acceptable memory
consumption, as well as easy parallelization, as opposed to the direct methods (e.g LU

decomposition), see [28] for an excellent treatment on matrix computations.

Algorithm 4 Random Walker based image segmentation algorithm [29] 30]

Input: Image I, weighting function W, optional:Seeds
1. Construct an undirected graph to model pixels I;;. Decide on their connectivity.

2. Use the weighting function W to generate edge weights w;;, between any two
connected vertices of the graph, u; and u;. Function W may model the distance

of color intensities between connected vertices.
3. Construct the graph Laplacian L.
4. Use the seed vertices to generate vector f from ([2.21)), if available.

5. OPTIONAL: Compute prior values A; for each vertex u; for all potential labels

¢° based on application-specific image cues.

6. Use an efficient numerical method to solve the appropriate system of linear equa-
tions ((2.22)),(2.24)),(2.25))).

Output: A probability vector xf; for each unlabeled graph vertex(pixel) to belong to

each of the potential labels ¢° (class regions).

Figure [2.4] illustrates the qualitative segmentation performance of the potential Ran-

dom Walker-based algorithms against a simple density estimation based segmentation.
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Figure 2.4: (a) input image of cells. (b) Density estimation-based segmentation
result. (¢) Random Walker-based segmentation result by using seeds only. (d)
Random Walker-based segmentation result using seeds and priors (Figure origi-

nally appeared in [29]).

The simple density estimation of the two groups (cells, background) finds pieces of the
cells and background, but ultimately yields a fractured segmentation that lacks spatial
cohesion. Applying the Random Walker-based algorithm yields a correct segmentation
of the cell within which the seeds were placed, but incorrectly identifies the other cells.
In that case, additional seed points are required within each cell that is to be segmented,
which leads to an undesired situation. The extended Random Walker-based segmentation
formulations based on equations , efficiently combine the intensity profiling
and long-range aspects of the density estimation approach with the spatial cohesion of the
Random Walker-based algorithm in a principled way that produces the correct result, de-
spite variability of the intensity values present in the image, according to [29]. Moreover,
their novelty is to extend the success of the basic Random Walker approach (Eq. )
by employing image priors to find disconnected pieces of an object and to remove the
necessity of user interaction, which set these algorithmic procedures suitable and highly

efficient to be used in the proposed framework of joint tracking and segmentation.
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Chapter 3

Methodology

3.1 Method Preface

For each input video frame, the proposed framework encompasses a number of algorithmic
steps, tightly interconnected in a closed-loop, which is illustrated schematically in Fig3.2]
To further ease understanding, Fig. provides sample intermediate results of the most
important algorithmic steps.

The method assumes that at a certain moment ¢ in time, a new image frame I; be-
comes available and that a fine object segmentation mask M; ; is available, as a result
of the previous time step ¢ — 1 (see Fig. [3.1)). For time ¢ = 0, M;_; should be provided
for initialization purposes. Essentially, M;_; is a binary image, where foreground ob-
ject pixels have a value of 1 and background pixels that of 0. The goal of the method
is to produce the current object segmentation mask M;. Towards this end, the spatial

mean and covariance matrix of the foreground region of M; ; is computed, thus defin-

(b)

Figure 3.1: (a) Previous image frame at time t-1. (b) Segmented object mask

M, 1 of frame I; ;. (¢) New image frame [; at current time t, where the object

is to be tracked and segmented.
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Figure 3.2: Outline of the proposed method.

ing a spatial Gaussian distribution, practically an ellipsoid region on image plane that
coarsely representing the location and the shape of the object at time £ — 1. Addition-
ally, a color-histogram-based appearance model of the segmented object (i.e., the one
corresponding to the foreground of M, 1) is computed using a Gaussian weighting kernel
function. The iterative (EM-shift) tracking algorithm in [77] is initialized based on the
computed Gaussian distribution (ellipsoid) and the object appearance model. The track-
ing thus performed, results in a prediction of the position and covariance of the ellipsoid
representing the tracked object. Based on the transformation parameters of the ellipsoid
between t — 1 and ¢, a 2D spatial affine transformation of the foreground object mask
M,_; is performed. The propagated object mask M, indicates the predicted position
and shape of the object in the new frame I;. The Hausdorff distance [50] between the
contour points of M, ; and M, masks is then computed and a shape band [4] around the
Mt/ contour points is determined, denoted as B;. The width of B; is equal to the com-
puted Hausdorff distance of the two contour point sets. This is performed to guarantee
that the shape band contains the actual contour pixels of the tracked object in the new
frame. Additionally, the pixel-wise Distance Transform likelihoods for the object and
background areas are computed together with the pixel-wise color likelihoods based on

region-specific color histograms. Pixel-wise Bayesian inference is applied to fuse spatial
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Figure 3.3: Sample intermediate results of the proposed tracking and segmenta-
tion algorithm. To avoid clutter, results related to the processing of the scene

background are omitted.

and color image cues, in order to compute two probability distributions for the object
and the background regions, respectively. Given the estimated pdfs for each region, a
Random Walker-based segmentation algorithm is finally employed to obtain M, in ;.
The proposed methodology is divided in two distinct parts, one for object tracking
and one for object segmentation. The following two sections of this chapter are dedicated

to these parts.

3.2 Visual Object Tracking

This section presents the visual object tracking part of the proposed methodology (see
the bottom-left part of Fig. . It is further divided in two subsections describing the
functionality of the EM-shift color-based tracking algorithm and the affine propagation
of the prior object shape.

3.2.1 EM-shift Color Based Object Tracking

The tracking method presented in [77], is closely related to the widely-used and robust

mean-shift tracking method [18, [16]. More specifically, this algorithm coarsely represents
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the objects’ shape by a 2D ellipsoid region, modeled by its center 0 that is a mean vector
of spatial coordinates on the image plane and the covariance matrix V' that approximates
the shape of the tracked object, as can be seen in Fig.

The spatial covariance X is based on the second order moment of the spatial coordi-
nates of the pixels 7; € Xo, which are assigned to the object O of spatial mean 0 and

can be computed as follows:

2= Y (f _ 5) (f _ é)T (3.1)

2i€Xo

Thus, a Gaussian probability density function p (5) = N(?; 5, E) is utilized, as a
generative model, to represent the image data samples of the tracked object area. The
covariance of the Gaussian kernel is the crucial parameter towards the scale adaptation of
the tracking region to the size/shape changes of the tracked object, that is presented by
this algorithmic extension. A Maximum Likelihood (ML) estimation for the mean vector §
and the covariance V is a solution toward the tracking task localizing the tracked object
in a new frame based on its color appearance. A detailed derivation of the tracking
algorithm is presented in Section [2.1]

The tracking task is performed based on color information only, thus the appearance
model of the tracked object is represented by an M-bins color histogram of the image
pixels under the 2D ellipsoid region corresponding to f and Y, is computed using a
Gaussian weighting kernel function.

Given M,;_; and I;_4, 9:_1, Y1 the target appearance model o,, of the tracked object
can easily be computed by Eq. , utilizing the color information of the pixels in I;
which are indicated to belong to the object area according to M;_; at time ¢ — 1 of an
image sequence. Given a new image frame [;, where the tracked object is to be local-
ized, the tracking algorithm evolves the initial ellipsoid region of previously computed
covariance ;1 and position 575_1 based on the Expectation-Maximization iterative pro-
cedure described in Algorithm (I} in order to determine the image area in I; that best
matches the appearance model o0, of the tracked object in terms of a Bhattacharrya
coefficient-based color similarity measure.

This gives rise to the parameters 9; and >; that represent the predicted object position
and covariance in I;. The updated position indicates the localization of the object in the
new frame, whereas the evolved covariance of the ellipsoid region indicates the scale
adaptation of the tracking kernel towards the object shape/size. The latter is one of the
main contributions of the utilized tracking method and is crucial regarding the efficiency

of the proposed methodology, as will become more clear later in this chapter.
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Figure |3.4] shows representative examples regarding the evolution of the tracking
Gaussian kernel, computed by the iterative EM procedure of the Algorithm [T} Notice the
adaptation of the Gaussian kernel covariance between the initial and the final estimation
regarding the object shape and size changes.

Finally, Fig. 3.5 illustrates the output of the described EM-shift color-based track-
ing procedure described in this section, consisting of a new Gaussian kernel estimation
tracking the object in the new frame I;, represented by the position 0_; and covariance >;

estimations/predictions.

Figure 3.4: Representative examples of the Gaussian kernel evolution during the

EM-shift tracking procedure. Red-dotted ellipses in each image correspond to
intermediate estimations of the Gaussian kernel parameters (position and covari-
ance), one for each EM iteration performed by the EM-shift tracking procedure.
The green-dotted ellipse in each image represents the final estimation on the pa-
rameters of the Gaussian kernel, after EM convergence is achieved, giving rise to
new estimated parameters regarding the location and spatial covariance of the

Gaussian kernel, that is tracking the object in the new frame.
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Figure 3.5: In (a) the Gaussian kernel of position §,_; and covariance 2,_1, as
well as the prior object shape mask M;_; from previous I;_; are illustrated, both
superimposed on image frame [; and colorized in red. Image in (b) illustrates
the previous Gaussian kernel in red and the newly estimated Gaussian kernel in
blue. The latter is computed by the tracking method for I;, providing an updated

position 9: and covariance ;) of the tracked object.

3.2.2 Affine Propagation of Object Shape

The EM-shift tracking algorithm presented above assumes that the shape of an object
can be accurately represented as an ellipse. In the general case, this is a quite limiting
assumption. In the cases where this assumption does not hold, the objects’ appearance
model is forced to include background pixels, causing tracking to drift. The goal of this
work is to prevent tracking drifts by integrating tracking with fine object segmentation.

To accomplish that, the contour C}_; of the object mask in M;_; is propagated to
the current frame I; based on the transformation suggested by the parameters 9;1, 0:,
-1 and ;. A 2D spatial, affine transformation is defined between the corresponding
ellipses. Exploiting the obtained ¥; ; and ¥; covariance matrices, a linear 2 x 2 affine
transformation matrix A, can be computed based on X'/2. Tt is known that a covariance
matrix is a square, symmetric and positive semidefinite matrix. The square root of the

matrix ¥ can be calculated by diagonalization as:
21/2 — QA1/2Q_1, (32)

where @ is the square 2 x 2 matrix whose i column is the eigenvector ¢; of ¥ and A'/? is
the diagonal matrix whose diagonal elements are the square values of the corresponding
eigenvalues. Since X is a covariance matrix, the inverse of its () matrix is equal to

the transposed matrix Q7, therefore /2 = QAY2QT. Accordingly, we compute the
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transformation matrix A; by:

A= QiNPAPQY (3.3)
Finally, C} is derived from C, based on the following transformation

Cl = A (Cy — 0,_1) + 6, (3.4)

The result indicates a propagated contour Cj, practically a propagated object mask Mt'
that serves as a prediction of the position and the shape of the tracked object in the new
frame [;, It attains temporal coherence of the implicitly tracked object contour, between
consecutive object movements and appearance changes. Finally, Fig. illustrates the
procedure of object shape propagation, based on the estimated position and covariance
parameters, computed by the EM-shift method closing the object tracking part of the

proposed framework.

Figure 3.6: Affine propagation of the prior object shape. Image (a) illustrates
the prior object contour C;_; and the covariance estimation >;_; for the previ-
ous frame I;_; superimposed on the current frame I;, in red color. In (b), the
tracking task is initialized by the parameters 6,_; (red dot) and %, ; (red el-
lipse) superimposed in the current frame I;, and after convergence it results the
updated parameters 6, (blue dot) and 3; (blue ellipse) representing the object’s
current position and shape/scale. These parameters suggest an affine transfor-
mation of the prior object contour C;_; (red contour) to the C; (blue contour)
(see Eq. (3.4)), which are illustrated in (c), approximating the current real object

contour C}.

3.3 Visual Object Segmentation

This section presents the segmentation part of the proposed methodology (see the right
part of Fig.|3.2). First, the idea of creating a shape band area, based the affine-propagated
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(c) (d)

Figure 3.7: Affine propagation of the prior object shape. Image (a) illustrates

the prior object mask M; ; and the covariance estimation ¥; ; (ellipse in red
color) for the previous frame I; ;. In (b), the tracking task is initialized by the
parameters 9:_1 and ¥, ;1 (red ellipse) and after convergence it results the updated
parameters 9: and Y, (green ellipse) representing the object’s new position and
shape/scale. The affine transformation computed by Eq. is illustrated in
two parts. In (c) the linear transformation part of the Eq. is applied to the
object mask M; 1, whereas in (d) the translation part of the affine transformation

is applied to result the object mask M,.

prior object shape is described. The following two subsections outline the extraction of
pixel-wise spatial and color static image cues. Then, the probabilistic fusion of these cues
using Bayesian Inference is presented. The probabilistic fusion results pixel-wise posterior
values for the segmentation classes, which are finally utilized to guide the Random Walker-
based segmentation method, resulting in the desired fine foreground object mask, as will

be described in the last section.

3.3.1 Object Shape Band

The propagated object contour C; approximates the actual but unknown object bound-
aries, noted as contour C}, in the current frame [;. Thus, a direct segmentation based on
the C’t/ will not provide an accurate mask of the tracked object. However, it is assumed
that the actual object boundaries can be precisely localized around the predicted object
contour C;. To this end, the object shape band B; is determined. Our notion of shape
band is similar to the ones used in [4, [75]. B; can be regarded as an area of uncertainty,
where the true object contour may be detected in image I;. An illustration of the shape-
band area is provided in Fig. [3.8] The width of B; is determined by the Euclidean 2D
Hausdorff distance [50] between the contours C;,_; and C,, that is given by:

dy (Cy, Cio1) = maz{supyecyinfyec, ,d(x,y), supyec, ,infrecid(z,y)} (3.5)
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where sup represents the supermum and inf represents the infimum. Given a subset S of
a partially ordered set T, the supremum (sup) of S, if it exists, is the least element of T
that is greater than or equal to each element of S. The infimum of a subset S of some set
T is the greatest element (not necessarily in the subset) that is less than or equal to all
elements of the subset S. Thus, the Hausdorff distance calculates the greatest of all the
minimum distances of each point of each of the point sets to each point of the other set.

The width of B; is limited by the spatial properties of Cj, in order to retain a non-
compact annotated area. In other words, that the shape band area should never cover the
entire inner object area. The automatically identified area can be seen as a symmetrically
dilated object contour, defining an area of uncertainty, a search area in other words, where
the object boundaries may be localized in the new frame I;. The usability of the object

shape band will become more clear in the following subsection.

(a) (b)

Figure 3.8: (a) Given the previous object contour Cy_; (red outline) and the

propagated object contour C} (blue outline), the Hausdorff distance between them
determine the width of the shape band area. (b) The shape band is created sym-
metrically around the C] in the right image, defining an local area of uncertainty,

where the true object boundaries may be detected.

3.3.2 Spatial Prior Image Cue

The first of the image cues that is computed to discriminate between the foreground
object and the background classes refers to the pixel-wise spatial cue based on the known
propagated object contour Ct'. The Euclidean 2D Distance Transform is used to compute
the probability of a pixel x; in image I; to belong to either the object L, or the background

Ly, region/class, based on its 2D location &; = (x,y) on the image plane. As a first step,
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the shape band B; of the propagated object contour Cj is considered and its inner and
outer contours are extracted. The Distance Transform is then computed starting from the
outer contour of B; towards the inner part of the object. The probability P(L,|z;) of a
pixel to belong to the object given its image location is set proportional to its normalized
distance from the outer contour of the shape band. For pixels that lie outside the outer
contour of By, it holds that P(L,|z;) = €, where € is a small constant.

Similarly for the background, the Euclidean Distance Transform measure starting
from the inner contour of B; towards the exterior part of the object is computed. The
probability P(L|x;) of a pixel to belong to the background given its image location is set
proportional to its normalized distance from the inner contour of the shape band. For
pixels that lie inside the inner contour of By, it holds that P(Ly|z;) = €. Both probability
maps are illustrated in Fig.

3.3.3 Color Prior Image Cue

The second of the image cues that is computed to discriminate between the foreground
object and the background classes is color, represented by a histogram that is updated
after each segmentation step.

Based on the segmentation mask M; ; of the image frame I;_; that is available from
the previous segmentation step, a partition of image pixels €2 into sets 2, and €2, is de-
fined, indicating the object and background image pixels, respectively. The appearance
model of the tracked object is represented by a color histogram defined as H, computed
on the €2, set of pixels. The normalized value in a histogram bin ¢ encodes the condi-
tional probability P(c|L,). Similarly, the appearance model of the background region
is represented by the color histogram H,, computed over pixels in 2, and encoding the
conditional probability P(c|L;). Fig. illustrates some examples of foreground color

probability maps, representing the pixel-wise values for P(c|L,).

3.3.4 Probabilistic Fusion of Prior Image Cues

Image segmentation can be considered as a pixel-wise classification problem for a number
of classes/labels. Neither the color, nor the spatial image cue individually provide an
accurate representation of the desired foreground object class. Our goal is to efficiently
combine the computed pixel-wise spatial and color probabilities to generate the posterior
probability distribution for each of the classes L, and L;, which will be further utilized

to guide the Random Walker-based image segmentation.
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(c) (d)

Figure 3.9: The Distance Transform based spatial cue computed for both fore-

ground object and background classes. (a) The input image frame I, and (b)
the shape band computed. (¢) The map indicating the probability of each pixel
to belong to the foreground object P(L,|z;), based on the normalized Distance
Transform metric which starts from the outer contour of the shape band to the
inner area of the object. (d) The map indicating the probability of each pixel to
belong to the background P(Ly|x;) based on the normalized Distance Transform
metric which starts from the inner contour of the shape band to the outer of the

object.
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Figure 3.10: Examples of input images and obtained foreground maps, mod-
eling the pixel-wise probability P(c|L,) of the pixel’s color to belong to the
foreground object based regarding the updated foreground color histogram H,,.
Notice the ambiguities that arise based on the color cue based on the natural
foreground /background boundaries of the real images. (a) & (b) A human hand
in action in a cluttered background. (c) A green caterpillar in an image of low

resolution. (d) A green book of complex texture in a homogeneous background.

Using Bayesian inference, we formulate a probabilistic framework to fuse the available
prior image cues, based on the pixel color and position information, as described earlier.
Considering the pixel color ¢ as the evidence and conditioning on pixel position z; in

image frame I;, the posterior probability distribution for class L; is given by

P(c| Ly, z;)P(Ly | x;)
SVoPle| Ly, xi)P(Ly | x;)

P(Ly | ¢,x;) = (3.6)
where N = 2 in our case. The probability distribution P(c | L;, z;) encodes the condi-
tional probability of color ¢ taking the pixel class I, as the evidence and conditioning
on its location x;. We assume that knowing the pixel position x;, does not affect our
belief about its color ¢. Thus, the probability of color ¢ is only conditioned on the prior
knowledge of its class L; following that P(c | L;,z;) = P(c | L;). Given this, Eq.
transforms to

P(Li| ¢,1;) = f(c | L)PALe | 25) (3.7)

2 imo Ple [ Li)P(Ly | ;)

The conditional color probability P(c | L;) for the class L, is obtained by the color
histogram Hj, as described in Section [3.3.3] The conditional spatial probability P(L; |
x;) is obtained by the Distance-Transform measure calculation, as described in Section

Figure illustrates the fusion procedure of the proposed probabilistic framework

and highlights the advantages of combining two static class-specific image cues. Notice
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the results in Figs. [3.11fe) and B.1I|f). In the hand sequence, the background patches
with similar color with the hand presented in (a) have been suppressed in (e) under the
influence of the certainty provided by the foreground spatial cue in the corresponding
image areas. In the book sequence the patches within the book area of similar color with
the background illustrated in (b) have been filled in (f) for the same reason.

There are many cases in object tracking where the foreground object consists of colors
that also appear to be dominant in the background, see for example Fig. (a,b). In
such cases, the probabilistic fusion of the color cue with the spatial cue may not avert
the probability P(L, | ¢,x;) to be higher than the corresponding P(L; | ¢, x;) for the
foreground class for a pixel x;. Such information will lead the following algorithmic step
of the Random Walker-based segmentation to produce background seeds or priors to the
foreground object region and vice versa. Thus, to prevent such behavior, the prior object
shape information is exploited. Given the computed shape band of the propagated object
contour C, for the current frame I;, the image region of the interior of the inner contour
of the shape band is assumed to belong to the foreground object. This conservative
assumption enables us to discard posterior probabilities P(L; | ¢, z;) of pixels within that
region for which it holds that P(L, | ¢,x;) < P(Ly | ¢, x;) setting both to 0.5. Moreover,
the posterior probabilities of pixels within the region of the image that is outside of the
outer contour of the shape band for which it holds that P(L, | ¢,z;) > P(Ly | ¢, x;)
are discarded and set equal to 0.5. By setting the posterior probabilities of pixels that
exhibit such behavior to 0.5, we let their labeling to be “decided” by their neighboring
pixels. This simple technique will prevent inexistent foreground object to be generated
by the segmentation procedure in the background and background regions to be created
within the true foreground object area, because of similar color appearance. To conclude,
a more elaborate technique would be more effective in case of more complex appearance
of the foreground object, where a large region within it will contain similar colors with

those of the background.

3.3.5 Random Walker Based Object Segmentation

The resulting posterior distribution P(L; | ¢, z;) for each of the two labels L, and L,
(segmentation classes) on pixels x; guides the Random Walker-based image segmentation
towards an explicit and fine segmentation of the tracked object in 1;.

In order to represent the image structure by random walker biases, we map the edge
weights to positive weighting scores computed by the Gaussian weighting function on the

normalized Euclidean distance of the color intensities between two adjacent pixels, thus
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(d) (f)

Figure 3.11: Images in (a),(b) represent the pixel-wise color probabilities P(c|L,).

Images in (c),(d) refer to the pixel-wise spatial probabilities P(L,|z;). Finally,
performing the probabilistic fusion of the two image cues, images in (e),(f) repre-
sent the fusion maps, which efficiently indicates the foreground object after the
posterior probabilities computed by Eq. (3.7).

the image brightness. The Gaussian weighting function is
_ oo lllei=¢;1)?
wij=e ¢ + ¢, (3.8)

where ¢; stands for the vector containing the color channel values of pixel/node i, € is a
small constant (i.e e = 107%) and p is a normalizing scalar p = max(||¢; — ¢l|), Vi, j € E.

The parameter 3 is user-defined and modulates the spatial random walker biases, in
terms of image color contrast (brightness). Figure illustrates the Gaussian weighting
function in Eq. for different values of 3. Moreover, Fig. illustrates the graph
Laplacian matrix, as a color contrast map. For different values of § in the weighting
function of Eq. , the Laplacian matrix of size equal to the number of image pixels
per dimension is populated. For a fixed 3, we compute the column-wise summation and
obtain a measure of brightness for each image pixel based on the edge weights of all its
direct connected neighbors. For example, a pixel in a 4-connected graph, which models
the image, with very low color contrast against all its direct connected pixels will obtain
a mean value of 1 in the visualized color-contrast map, indicating that it is very likely
for a random walker to cross any of its edges (weak bias).

Lower values of 8, implies that even a high value of color residual, which indicates high

color contrast (Euclidean distance of color vectors), thus strong edge, will be weighted
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with high probability of being crossed by a random walker, meaning relaxed random
walker biases. See for example the function graph for 5 = 10 and the corresponding
image from Fig. Red color for an image pixel stands for high probability (near
to 1) of a random walker to cross each of its adjacent edges. Blue color stands for low
probability of a random walker to cross each of the adjacent edges of that pixel. Higher
values of the § parameter implies for a strict scheme of weighting. Only edges that

connect pixels of very low contrast will be weighted with a high probability to be crossed
by a random walker (see Fig. [3.13|(b-c)).

- 1

B=5 ]
- — - p=10
p=20 ||
B=30
B=50
— p=100 H
- B=150

100 150

Figure 3.12: Illustration of the Gaussian weighting function, defined by Eq. (3.8)
and utilized to measure color contrast between neighboring pixels and populate
the combinatorial Laplacian graph of the image using Eq. (2.18). Multiple graphs

of the function are superimposed in the figure for different values of J parameter.

Many good sources exist on the solution to large, sparse, symmetric, linear systems
of equations [28]. A direct method, such as LU decomposition with partial pivoting
is a fair option, although it is impractical for large systems because of high memory
and computational requirements. The standard alternative to the class of direct solvers
for large, sparse systems is the class of iterative solvers [32]. These solvers have the

advantages of a small memory requirement and the ability to represent the matrix-vector
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(d) (e) (f)

Figure 3.13: Visualization of Laplacian matrix for different values of § parameter.
In (a) a low value of § equal to 10 is used in Eq. to populate the Lapla-
cian matrix. The resulting color contrast map (image brightness) indicates weak
random walker biases even for natural strong edges in the image. In (b) 3 is set
equal to 25. Random walker biases are now stronger and only edges of low color
contrast are valued with higher Gaussian weighting values. In (c), S is set to 50.
The random walker biases are now too strong, thus only edge with very low color
contrast are valued with higher weights. Images in (d-f) illustrates the resulting
probabilities for the foreground object label corresponding to the (a-c) Laplacian

matrices.
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multiplication as a function. Solving the linear system of equations, the obtained posterior
probability distribution P(L; | ¢, x;) computed over the pixels z; of the current image I;
suggest the probability of the pixels to be assigned to the label ;. Therefore, we consider
the pixels of highest posterior probability values for the label L; as pre-labeled /seeds nodes
of that label in the formulated graph (see Fig. for an intuitive example).

(c)zf;: Foreground probabilities (d) Segmentation outline

Figure 3.14: (a) Fusion probability map is illustrated. Pixels of probability higher
than 0.9 are selected to act as seeds in the Random Walker-based segmentation
formulation. (b) The color contrast map computed by the Laplacian matrix of
the graph with § = 25. (c¢) The soft segmentation result for the object label,
x{;, obtained by solving the system in Eq. and illustrated as a probability
image/map. (d) The segmented foreground object indicating the outline of the
binary mask which is computed by considering the pixels of highest posterior

probability values between the labels L, and L.

To further comprehend the influence of 8 regarding the resulting probabilities xf,,
we compute the solution of Eq. of Random Walker formulation for each of the
Laplacian matrices visualized in (a-c) of Fig. The resulting real-valued probability
maps in (d-f) for the foreground object label gradually vary regarding the accuracy of
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the soft segmentation they provide. For the lowest value of /3, the (a) contrast map is
obtained, where the Random Walker biases are more relaxed, meaning that the natural
image edges are easier to be crossed by a Random Walker. The resulting probabilities
illustrated in (d) indicate high uncertainty regarding the object boundaries. For higher
values of 3, as in (b) and (c¢), more accurate probability maps are obtained regarding the
object boundaries and the quality of the object segmentation. However, using a higher
value of 3, a high number of seed points within the foreground object area should be

feasible in order to get an accurate real-valued, therefore an accurate binary segmentation.

An alternative formulation of the Random Walker-based image segmentation method
is presented in [29]. This method incorporates non-parametric probability models, that
is prior beliefs on label assignments. In [29], the sparse linear systems of equations that
is to be solved to obtain a real-valued density-based multi-label image segmentation are
also presented. The two modalities of this alternative formulation suggest for using only
prior knowledge on the belief of a graph node toward each of the potential labels, or

using prior knowledge in conjunction with pre-labeled/seed graph nodes, also presented
in Section [2.2] of Chapter [2]

The prior probabilities P(L; | ¢, ;) obtained using the probabilistic framework for
the fusion of color and spatial image cues for both labels are illustrated as an image in
Fig. (a). In case of using only seeds solving the Eq. , user-defined thresholding
was applied on these probabilities in order to get the most probable points belonging
to the foreground object label (i.e up to 0.9) the whole information provided by these
probabilities will be utilized with no thresholding, denoted as A\*, in order to solve the
following modified linear system of Eq. (2.24).

Regarding the second modified formulation, the seeds may also be incorporated in

conjunction with the prior values. The modified system of equation to be solved is
provided in Eq. (2.25)).

The ~ scalar weighting parameter is introduced in these formulations, controlling the
degree of authority of the prior belief values towards the belief information obtained by
the random walks per potential segmentation label. This extended formulation of using
both seeds and prior beliefs on graph nodes is compatible with our approach considering
the obtained posterior probability distributions P(L; | ¢, x;) for the two segmentation
labels. Considering the formulation utilizing both seeds and prior information, a low
value of the v parameter will set the system to behave like the seeds only formulation,
whereas a high value of it will bias the results towards the input information, meaning that

random walks and the contrast map will have minor contribution to the final real-valued
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segmentation result.

Regardless of the utilized formulation, the primary output of the algorithm consists
of K probability maps, that is a soft image segmentation per label. By assigning each
pixel to the label for which the greatest probability is calculated, a K-way segmentation

is obtained. This process gives rise to object mask M; for image frame I;.
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Chapter 4

Results

Experimental results, implementation issues and discussion on the effectiveness of the
proposed methodology are presented in this chapter. The proposed method was exten-
sively tested to simultaneously track and segment an object of interest on a variety of
image sequences under challenging conditions. A description of each of these sequences
is provided in the first section of this chapter. The second section is dedicated to some
implementation issues regarding the proposed method. The third section is dedicated
to a qualitative assessment of the proposed method, regarding the tracking and the seg-
mentation results individually. Finally, a quantitative assessment is provided in the last

section.

4.1 Test Image Sequences

A variety of test image sequences is chosen, illustrating a single object to validate the per-
formance and the efficiency of the proposed joint tracking and segmentation framework.
The represented objects in these image sequences go through persistent and extensive
changes regarding their appearance, shape and pose. Additionally, these sequences differ
with respect to the camera motion and the surrounding illumination changes, affecting
the appearance of the tracked objects. Figure [4.1| provides a single frame for each of the
15 test image sequences.

In the first three sequences, illustrated in Fig. (a—c), a human hand undergoes
complex articulations in a simple static background. The varying illumination condi-
tions significantly affect its skin color tone, thus the object also undergoes noticeable ap-
pearance changes throughout each image sequence consisting of 340,420 and 630 frames

respectively, of size 640 x 480 pixels each.
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The sequence represented by the frame in Fig. [1.1(d) also contains a human hand
acting in a static but rather complex background. Moreover, the surrounding illumination
conditions vary over time. The sequence consists of 100 frames of resolution 640 x 480

pixels.

In each of the sequences shown in Fig. [f.1(e-f), a textured book is illustrated under-
going significant changes regarding its pose and shape, whereas light reflections on its
glossy surface significantly affect its appearance over time. The image sequence of (e)
consists of 420 frames and that of (f) consists of 360 frames. The size of each frame is
640 x 480 pixels.

The image sequences represented in Fig. (g—i) illustrate human faces. The goal here
is to track the face skin color despite of the non-uniform colored face area. The human
head in (g) undergoes abrupt scale changes and significant variations of the lighting
conditions in a static background. The length of this sequence is 470 frames of resolution
equal to 320 x 240 pixels. The video of the human head, illustrated in (h), is of lower
quality and resolution and presents the same challenges, as the previous ones, but in a
changing background. Its length is 380 frames, each one of size 174 x 144 pixels. The
sequence illustrated in (i) goes through extended pose variations in front of a static but
rather complex background. This image sequence consists of 400 frames of size 640 x 480

pixels.

Following, the image sequences of Fig. (j—l) also represent human hands. In the
challenging sequences of (j) and (k), the articulations of a human hand are observed by a
moving camera in the context of a continuously varying cluttered background. Moreover,
the illumination conditions undergo extensive variations throughout the video. The image
sequence represented in (1) include a static complex background. All these sequences

consist of 550 frames each. The size of each frame is 640 x 480 pixels.

The last three image sequences shown in Fig. (m—o) are of low quality. The sequence
in (m) is captured by a moving camera, illustrating the body deformations of a moving
green caterpillar. The number of frames is 280 of size 320 x 240 pixels. The sequence in
(n) illustrates a polar bear moving in a low-contrast background. The sequence consists
of 160 frames of 320 x 240 pixels each. Finally, the low resolution sequence depicted in (o)
has been acquired by a medical endoscope. A target white colored object is moving within
a low-contrast background performing large position displacements between consecutive

frames. It consists of 15 frames of size 256 x 256 pixels.
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(m) (n)

Figure 4.1: Single frames representing the 15 test image sequences used to validate

the performance of the proposed joint tracking and segmentation framework.
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4.2 Implementation Issues

The foreground object and background appearance models used to capture the appear-
ance of the two regions consist of two three-dimensional histograms of 32 bins per dimen-

sion, based on RGB colorspace.

The original parameter configuration of the EM-shift color tracking algorithm is pre-
served, as described in [77], throughout the whole experimental evaluation carried out for
the current work. The appearance model of the tracked object utilized in the EM-shift
color tracking algorithm is based on the RGB color space. It is a three-dimensional color
histogram of 8 bins per dimension. The convergence criterion of the EM procedure of
the tracking method is a combination of maximum number of iterations, set to 20, and
a stopping threshold value that refers to the number of new pixels added to the ellip-
soid tracking region between consecutive iterations with respect to the image size. The
threshold is set to 5% of the total number of pixels. The mean value of EM iterations
throughout the test image sequences was 10. The crucial parameter 8,4 of the tracking

method, in order to work properly for a Gaussian kernel is set to 1.2, as described in [77].

The Random Walker segmentation method involves three variant formulations to
obtain the probabilities of each pixel to belong to each of the segmentation labels, as
described in Section The three formulations refer to the usage of seeds (pre-labeled
graph nodes), prior values (probabilities/beliefs on label assignments for some graph
nodes), or a combination of them. The edge weights of the graph are computed by
Eq. , where the parameter § controls the scale of the color contrast (brightness) be-
tween adjacent graph nodes (pixels). The pixel-wise posterior values are computed using
Bayesian Inference as described in Section and are exploited to guide the segmenta-
tion. Each pixel z; with posterior value P(L; | ;) greater or equal to 0.9 is considered
as a seed pixel for the label L;. Any other pixel with posterior value P(L; | x;) less than
0.9 is considered as a prior value for label L;. In the case of prior values, the v parameter
is introduced to adjust the degree of authority of the prior beliefs towards the definite
label-assignments expressed by the seed pixels of the image. In the experiments carried
out toward the qualitative assessment of the proposed method presented in the following
section, the 8 parameter was selected within the interval of [10—50], whereas the v ranges
within [0.05 — 0.5].

The reported experiments were generated based on a Matlab implementation, running
on a PC equipped with an Intel i7 CPU and 4 GB of RAM memory. The Random
Walker-based image segmentation method developed is based on the Graph Analysis
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Toolbox of Matlab [30] and is available online[[] The EM-shift tracking method performs
in real-time on a conventional PC of 1Gz. The computational bottleneck of the proposed
method is the solution of the large system of the sparse linear equations of the Random
Walker formulation regarding the image segmentation part of the proposed method. The
runtime performance of the current unoptimized Matlab implementation varies between
4 to 6 seconds per frame for 640 x 480 images on a PC with the aforementioned setup.
However, a near real-time runtime performance is feasible by optimizing both the EM-
shift part of the tracking method and the solution of the large sparse linear system of

equations of the Random Walker-based image segmentation method.

4.3 Qualitative Assessment

A two-phase qualitative assessment has been carried out in order to validate the individual
tracking and segmentation performance of the proposed method. First, we compare
the proposed joint tracking and segmentation method with the stand alone EM-shift
color tracking method, that is originally presented in [77] and utilized in our proposed
framework, in order to present the effectiveness and the key role of the fine segmentation
part of the method towards a more robust and drift-free tracking performance. In the
following, a qualitative assessment of the proposed method with the state-of-art skin color
detection and tracking algorithm, that is presented in [2], is carried out. The tracking
and the detection results obtained by the skin color tracker are qualitatively compared
with the corresponding result of the proposed method, in two test image sequences,

representing human hands in action. Video containing the qualitative results are available

online?]

Proposed Method Vs. Stand-alone EM-shift Object Tracking

First, we compare the proposed joint tracking and segmentation method with the stand-
alone EM-shift color tracking method presented in [77] and utilized in our proposed
framework. The parameters of this algorithm were kept identical in the stand-alone
run and in the run within the proposed framework. It is important to note that the
stand-alone tracking method is initialized with the appearance model extracted in the
first frame of the sequence. Moreover, its appearance model is not updated over time,

because in the challenging sequences we used as the basis of our experimental evaluation,

Thttp://cns.bu.edu/~lgrady /software.html
http://www.ics.forth.gr/~argyros/research /trackingsegmentation.html
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updating the appearance model based on the results of tracking, soon causes tracking
drifts and total loss of the tracked object.

Figure illustrates representative snapshots of the tracking results (i.e., five frames
for each of the eight sequences). Each frame shown in Fig. is annotated with the
results of the proposed algorithm and the results of the stand-alone tracking method.

Figure illustrates representative snapshots of the tracking results on the rest of the
test image sequences. Each frame shown in Fig. is annotated with the tracking only
results of the proposed algorithm and the results of the stand-alone tracking method.

Finally, Fig.[d.4]illustrates the segmentation results computed by the proposed method
on the same test image sequences of Fig. [4.3]

The performance of the stand-alone EM-shift tracking method drifts out in cases
where the appearance and shape of the object undergoes extensive changes, whereas the
proposed method provides stable tracking and adaptation of the tracking kernel size to
the shape changes exploiting the information provided by the incorporated segmentation

procedure.

Proposed Method Vs. State-of-art Skin-Color Detection & Tracking

The efficient skin color detection and tracking method presented in [2] provides near-
optimal results for the image sequences presenting human hands and/or head in action.
In brief, the skin color tracking method adopts a non-parametric model of skin color. Skin-
colored objects are detected with a Bayesian classifier that is bootstrapped with a small
set of training data. By using on-line adaptation of skin-color probabilities the classifier
is able to cope with considerable illumination changes. Moreover, the tracking over time
is achieved by a novel technique that can handle multiple objects simultaneously, which
may move in complex trajectories, occlude each other in the field of view of a possibly
moving camera and vary in number over time.

We compare the tracking results of the proposed method to those of the skin color
detection and tracking method in two image sequences to obtain a qualitative evaluation
on the tracking performance. The object representation is based on a tracking ellipse
in both methods. The first test image sequence illustrates a human hand performing
complex articulations in a simple static background. It is the one represented by the
single frame Fig. (a). Figure presents results on selected frames of that sequence.
In the left column, the tracking ellipse computed by the proposed method is superimposed
to each frame. The tracking ellipses computed by the skin color tracking method are

superimposed to each frame in the right column.
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Figure 4.2: Experimental results and qualitative comparison between the pro-

posed framework providing tracking and segmentation results (blue solid ellipse
and green solid object contour, respectively) and the tracking algorithm of [77]
(red dotted ellipse).

57



Figure 4.3: Experimental results and qualitative comparison between the pro-

posed framework providing tracking only results (green solid ellipse) and the
tracking algorithm of [77] (red solid ellipse).
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Figure 4.4: Experimental results on the segmentation performance of the the pro-

posed framework providing the object outline in snapshots of the test sequences

(green solid object contour).
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The second image sequence that is utilized to obtain qualitative results is similar
to the one presented in Fig. [4.1c). The image sequence consists of 860 frames of size
640x 480 pixels each. Figure[d.6|illustrates results on selected frames of that test sequence,

organized in the same way as described above.

4.4 Quantitative Assessment

In this section, a quantitative assessment of the individual tracking and segmentation
performance of the proposed method is presented. Ground truth data have been obtained
for two test image sequences, representing human hands in action. The ground truth data
consist of binary masks indicating the full area of the tracked hand throughout each of
the image sequences. Moreover, an ellipse that includes the segmented hand is computed
for each frame. The ground truth object masks have been obtained by visual inspection
on the results of the the state-of-art skin color detection and tracking algorithm presented
in [2].

The first test image sequence, represents a human hand performing articulations in a
simple background. It is the one represented by the frame in Fig. (a) and is denoted
as Hand-1. The second test image sequence is similar to the one presented in Fig. [4.1](c).
This image sequence consists of 860 frames of size 640 x 480 pixels and is denoted as
Hand-2.

A two phase analysis of the performance of the proposed methodology is carried out,

regarding the tracking and the segmentation results, individually.

Quantitative Assessment on Tracking

A quantitative assessment regarding the tracking performance of the proposed method
is provided for the Hand-1 and Hand-2 test image sequences. The performance of the
EM-shift color tracking method [77] that is utilized in the proposed framework rely on a

set of options regarding:

the Bi0cr parameter that controls the adaptation of the tracking Gaussian kernel

the colorspace (or a subspace) that is utilized to represent color information
e the number of bins of the color histogram (appearance model)

e the convergence criterion of the EM algorithm (fixed number of EM iterations,

minimum error of convergence or a combination of them)
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Figure 4.5: Selected frames from the image sequence of Fig. |4.1{(a), representing
a human hand in action are provided in this figure. Each row shows the same
frame, whereas the left column illustrates the tracking green ellipse computed by
the proposed frame and the right column illustrates the corresponding results, in

cyan color, computed by the state-of-art skin color tracking method [2].
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Figure 4.6: Selected frames from an image sequence representing a human hand
in action are provided in this figure. Each row shows the same frame, whereas
the left column illustrates the tracking green ellipse computed by the proposed
frame and the right column illustrates the corresponding results, in cyan color,

computed by the state-of-art skin color tracking method [2].
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An efficient configuration of the S, parameter depends on prior knowledge of the
underlying distribution of the color that is to be tracked and the level of the noise that
is present in the image sequence, according to the authors of the method in [77]. The
parameter [, practically controls the iso-contour of the Gaussian parametric kernel
that will be considered to represent the foreground object and to build its appearance

model.

An important decision regards the colorspace that is chosen to represent the color
information of an image. For example, skin colored objects are efficiently represented in
HSV or YCbCr colorspace. Discarding the V (value) or Y (luminance) component that
stands for illumination-brightness, the skin-color objects representation is inherently more
robust to illumination changes. Moreover, the choice for the number of histogram bins
between 8,16 or 32 is to be determined according to the image content, adding only a

insignificant influence to the performance of the tracking method.

Last but not least, the convergence criterion of the EM procedure of the tracking
method is a crucial option towards its performance. A fixed number of EM iterations or
a stopping threshold value can be determined to defined the convergence of the EM pro-
cedure. A combination of a maximum number of EM iterations and a stopping threshold
value is the best setup for efficient tracking regardless the image content, the velocity of

the moving object and the frame rate of the video that is processed.

Based on the described parameter configuration of the tracking part of the proposed
method, the tracking performance is evaluated based on the selected test image sequences.
Given the resulting binary object mask, produced by the proposed method for each frame
of a test image sequence, the area of the bounding box (the number of pixels within it)
containing the object mask is calculated, indicating its scale with respect to the total

image area.

Figure graphically illustrates the measurements of the resulting bounding box area
throughout each of the test image sequences, approximating the true bounding box area.
However, this statistic metric is provided to partially assess the tracking performance of
the proposed method. To this end, two additional measures are computed based on the
resulting bounding box object representation. The first measure regards the overlapping
area between the bounding box produced by the proposed method and the true bound-
ing box for each frame. The second measure refers to the Euclidean distance in pixels
between the centers of these bounding boxes for each frame. More specifically, the ratio
of the true bounding box area to the resulting bounding box area, indicates a measure

of accuracy towards the tracking performance of the proposed method. Graphs (a) and
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(b) of Fig. illustrate the results for the two test image sequences, showing the high
tracking performance of the proposed method. The overlapping area ratio approximates
the unity throughout each of the test image sequences. Figure illustrates the mea-
surements regarding the Euclidean distance in pixels between the centers of the bounding
boxes for each of the test image sequences.

Moreover, the algebraic differences in pixels per dimension of the bounding boxes
are calculated. The algebraic difference for each dimension of the bounding boxes is
normalized with respect to the corresponding dimension of the image. Figure graph-
ically illustrates the results for the two test sequences, Hand-1 in (a) and Hand-2 in (b).
These results provide an additional confirmation of the high tracking performance of the

proposed method in both test image sequences.

Quantitative Assessment on Segmentation

The second part of the quantitative evaluation of the proposed method regards the object
segmentation performance, in each of the Hand-1 and Hand-1 test image sequences.

Based on the derivation of the Random Walker-based image segmentation method
and its integration within the proposed framework presented in Section and in Sec-
tion respectively, there are three customizable parts that control the segmentation
performance affecting the performance of the overall framework.

The first of these parts regards the graph construction options, that is the graph
connectivity policy and the weighting function that is chosen to weight the graph edges,
practically to populate the Laplacian matrix (Eq. (2.18)). The connectivity policy of
the graph controls the sparsity of the Laplacian matrix affecting the Random walker
segmentation performance. In our case, the connectivity of the graph is set to 4-closest-
neighbors of each graph node, that is an image pixel. Regarding the weighting function,
the ubiquitous Gaussian function of Eq. is utilized, that despite its simplicity, serves
efficiently in mapping nodal intensities between the image pixels to connecting weights of
the undirected graph representation. Moreover, a single parameter is introduced to the
system by using the Gaussian function, that is S parameter, keeping the tuning of the
procedure less complex. The parameter 3 controls the variance of the Gaussian function,
thus the severity of the random walks biases on the graph. See Fig. and Fig.
in Section for more details. A more elaborate function could easily be introduced
to the proposed method providing a different type of mapping of the pixel intensities or
any other cue or combination of cues to the connecting weights of the Laplacian graph.

The second part of customizable options regards the choice between the three variants
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Figure 4.7: The area of each of the tracking bounding boxes computed by the two
competing methods is measured and illustrated in this figure. The area of each
bounding box is normalized with respect to the total image area. The green line
corresponds to the true bounding box area, whereas the blue line indicates the
results computed by the proposed method. Images (a) and (b) correspond to the

Hand-1 and Han-2 test image sequences utilized in the quantitative assessment.
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Figure 4.8: The ratio of the overlapping area between the bounding boxes com-
puted by the two competing methods is provided. The ratio of the true bounding
box area to the bounding box area computed by the proposed method, indicates
a measure of accuracy for the tracking performance of the proposed method. Im-
ages (a) and (b) illustrate the results for the two test image sequences utilized
in the quantitative assessment, showing the high tracking performance of the

proposed method (overlapping area ratio approximates the unity).
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Figure 4.9: The Euclidean distance in pixels between the centers of the two
bounding boxes is calculated throughout each frame of each of the test image
sequences. The results are illustrated in (a) and (b). The resulting distance of
the bounding box centers indicates the high tracking performance of the proposed
method.
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Figure 4.10: The algebraic difference in pixels per dimension of the resulting
bounding boxes is calculated throughout each of the test image sequence and
illustrated in (a) and (b), respectively. Red line corresponds to normalized al-
gebraic difference of the width dimension of the true bounding box to the one
computed by the proposed method. The blue line corresponds to the algebraic

difference of the height dimension between the two bounding boxes.

of the Random Walker formulation for the image segmentation problem, presented in Sec-
tion [3.3.5] The three formulations regard the use of seeds (Eq. (2.22))), priors (Eq. (2.24))
or a combination of them (Eq. (2.27)) to form the system of linear equations that is to
be solved in order to obtain a real-valued solution for each label of the K-way segmen-
tation. We remind that in case where prior information is incorporated to the Random
Walker formulation, the v parameter is introduced, controlling the authority of the prior
information (probability) as opposed to the label information (probability) provided by
random walks carried out through the biases on the graph toward the potential labels.
These biases are in turn controlled by parameter /.

Finally, the third set of options, that control the segmentation performance of any
selected Random Walker-based formulation, regards the appearance models utilized to
model the region-specific color information after the segmentation of each frame. Two
color histograms are utilized for this purpose, serving the computation of the color prior
information, which is probabilistically fused with the spatial image cue to further be
utilized are seeds and/or priors for the segmentation of the current frame. The selected
number of bins in both color histograms is 16 per dimension.

The segmentation performance is assessed for the two selected test image sequences,
based on the ground-truth data. To this end, the statistic metrics of Recall, Precision and

F-measure, from the field of Information Retrieval, are utilized to evaluate the quality of
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the produced fine segmented mask per frame by the proposed method.

A brief description of the utilized statistic metrics is provided, blending their meaning
in the context of the information retrieval and the image segmentation problem. Consider
the ground truth binary image provided by the skin-color detection and tracking method
for the foreground object class per frame, as the list of pixels that are known to belong
to (are relevant) to that class. A set of retrieved pixels per frame refers to the pixels that
are annotated to the foreground object class by the testing segmentation method in that
frame. Based on these descriptions, the Precision metric is the fraction of the retrieved
pixels by the testing method that are relevant to the foreground object class for a single
processed frame. The Recall metric is defined by the fraction of pixels that are relevant to
the foreground object class that are successfully retrieved. It is possible to interpret pre-
cision and recall as probabilities. Precision is the probability that a (randomly selected)
retrieved pixel is relevant to the foreground object class. Recall is the probability that a
(randomly selected) relevant pixel is retrieved through the segmentation procedure, thus
correctly annotated to the foreground object class. Finally, the F-measure (or balanced

F-score) combines precision and recall, yielding an harmonic mean of precision and recall

defined by:

Precision - Recall

Fmeasure =2 . 4.1
Precision + Recall (1)

To start with the experimental evaluation, the influence of the parameters § and -
in the segmentation performance of the proposed method is explored, using each of the
three variants of the Random Walker formulation.

We initially assess the performance of the basic Random Walker formulation for image
segmentation, utilizing only seeds and solving the linear system of Eq. . The seg-
mentation performance is tested for a set of 3 values, that is [1, 20, 100,200]. The scores
in Table indicate the overall high performance of the proposed framework for each
tested value of the 8 that exceed 90%. The highest scores are noticed for the medium
values of # = 20 for Hand-1 and § = 35 for Hand-2 image sequence.

In the following, keeping the [ value for which the highest score is exceeded using
only seeds, the incorporation of prior information to the system is assessed by setting
the v parameter to values of various scale. The formulation of linear system of equations
provided by Eq. is utilized. We remind that the value of the v parameter expresses
the “degree of authority” of the provided prior information to the system as opposed to
the label-wise soft assignments, which are computed by the random walks on the graph.

Table provides the resulting scores for medium values of the 3, which are equal to
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20 and 35 for Hand-1 and Hand-2 test sequences, respectively, while the v ranges within
[0 — 0.5]. For the Hand-1 test sequence, the higher performance of 98.8% is achieved
for v+ = 0.05. The highest score for the Hand-2 sequence is (94%), that is achieved
for v = 0.005. The configuration of v = 0 indicates the usage of the Random Walker
formulation, where only seeds are utilized. In that case, the linear system of equations is
constructed based on Eq. .

In order to overlook the random walker biases and explore the influence of the prior
information to the system, the [ is set equal to 1 and the v parameter ranges within
[0—0.5]. The segmentation performance degrades in overall based on the resulting scores
in Table[4.2] Especially, for the Hand-1 sequence the attenuation of the previously highest
value is around 8%. There are slightly lower resulting scores for the Hand-2 sequence for
all the tested values of ~.

The second set of experiments assess the influence of § to the segmentation perfor-
mance for a fixed value of . Table 4.4 provides the obtained statistic scores for v = 0.05
for both test image sequences. [ ranges within [1—200]. The highest score for the Hand-1
sequence is validated for the configuration with g = 20 and v = 0.05, whereas the scores
for the rest of the configurations are notably lower but over 90%.

Finally, the variations on the segmentation performance using each of the three vari-
ants of the Random Walker formulation is assessed. For each test image sequence, we
adopt the parameter configurations per test sequence, that resulted the highest scores
throughout the already provided experimental results. Thus, [ is set to 20 and v to 0.05
for the Hand-1 sequence, whereas $ = 35 and v = 0.05 for the Hand-2 sequence.

Table summarizes the average Precision, Recall and F-measure performance of the
proposed algorithm compared to the ground truth data throughout each of the test image
sequences. Although all three options perform satisfactorily, the usage of both seeds and

priors together improves the segmentation performance in both test image sequences.
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Figure 4.11: Inputs toward the quantitative evaluation of the two test image
sequence. (a) Input frame (b) Prior pixel-wise likelihood values for the input
frame, computed by the probabilistic fusion of color and spatial image cues. (c-f)
The visualization of the Laplacian matrix, representing the graph weights or else
the Random Walker biases for various values of 3, in Eq. .
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Hand-1 | Precision | Recall | F-measure
g=1 91.2% | 91.0% 91.0%
B =20 93.2% | 92.8% 93.0%
B =50 91.4% | 90.6% 91.0%
B =100 91.3% | 90.5% 90.9%
B =200 91.2% | 90.7% 90.9%
Hand-2 Precision | Recall | F-measure
g=1 92.4% | 94.5% 93.3%
B =35 94.0% | 94.0% 94.0%
B =50 94.1% | 94.0% 94.0%
B =100 94.0% | 94.2% 94.0%
B =200 93.5% | 94.4% 94.0%

Table 4.1: Quantitative assessment of Random Walker based segmentation per-
formance using only seeds on the two hand image sequences. The segmentation

performance is assessed for various values of § within [1 — 200].

Hand-1 g =1 Precision | Recall | F-measure
v=10.5 91.3% | 90.9% 91.7%
v =0.25 91.1% | 91.0% 91.0%
v =0.05 91.3% | 90.9% 91.7%
v =0.025 91.2% | 91.0% 91.0%
v = 0.005 91.3% | 90.9% 91.7%
v = 0 (seeds only) 91.2% | 91.0% 91.0%
Hand-2 g =1 Precision | Recall | F-measure
v=20.5 96.7% | 97.8% 97.2%
v =0.25 96.7% | 97.8% 97.2%
v =0.05 96.4% | 98.2% 97.3%
v =0.025 96.4% | 98.2% 97.3%
v = 0.005 96.2% | 98.2% 97.2%
v = 0 (seeds only) 92.4% | 94.5% 93.3%

Table 4.2: Quantitative assessment of Random Walker based segmentation per-
formance using seeds and priors on the two hand image sequences. [ is set to 1,

whereas 7 ranges within [0 — 0.5].
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Hand-1 g = 20 Precision | Recall | F-measure
v=20.5 90.9% | 90.6% 90.7%
v =0.25 90.9% | 90.3% 90.6%
v = 0.05 99.2% | 98.4% 98.8%
v = 0.025 91.4% | 90.7% 91.0%
~v = 0.005 91.4% | 90.7% 91.0%
~v = 0.0005 94.2% | 93.8% 94.2%
v = 0 (seeds only) 93.2% | 92.8% 92.9%
Hand-2 =35 Precision | Recall | F-measure
v=20.5 97.0% | 96.5% 96.7%
v=0.25 97.1% | 97.3% 97.2%
v =0.05 97.6% | 97.4% 97.5%
v =0.025 97.8% | 97.4% 97.6%
v = 0.005 98.0% | 98.0% 98.0%
v = 0.0005 98.1% | 98.0% 98.0%
v = 0 (seeds only) 94.0% | 94.0% 94.0%

Table 4.3: Quantitative assessment of Random Walker based segmentation per-
formance using seeds and priors on the two test image sequences Hand-1 and
Hand-2, where 3 is set to 20 and 35, respectively. v values range within [0 — 0.5]

for different numerical scales.
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Hand-1 v =0.05 | Precision | Recall | F-measure
g=1 91.2% | 91.0% 91.0%
B=5 91.3% | 90.9% 91.0%
B =20 99.2% | 98.4% 98.8%
B =50 90.9% | 90.5% 90.7%
B =100 90.9% | 90.8% 90.8%
B =200 90.6% | 91.0% 90.8%
Hand-2 v = 0.05 | Precision | Recall | F-measure
g=1 96.4% | 98.2% 97.3%
B =10 93.8% | 94.1% 94.0%
B =35 97.6% | 97.4% 97.5%
B =50 97.0% | 97.3% 97.1%
B =100 96.9% | 95.6% 96.2%
B =200 93.2% | 91.7% 92.5%

Table 4.4: Quantitative assessment of Random Walker based segmentation per-
formance using seeds and priors on the two test image sequences. v parameter is

predefined equal to 0.05 and the segmentation performance is tested for various

values of g parameter.

Segmentation option Hand-1 Precision | Recall | F-measure
Priors (v = 0.05) 91.3% | 90.9% 91.7%
Seeds (8 = 20) 93.2% | 92.8% 93.0%
Seeds & Priors (8 = 20,7 = 0.05) 99.2% | 98.4% 98.8%
Segmentation option Hand-2 Precision | Recall | F-measure
Priors (v = 0.05) 96.4% | 98.2% 97.3%
Seeds (8 = 35) 94.0% | 94.0% 94.0%
Seeds & Priors (8 = 35,7 = 0.05) 97.6% | 97.4% 97.5%

Table 4.5:

variant formulations of the Random Walker image segmentation method. Results

Quantitative assessment of segmentation performance for the three

for the Hand-1 and Hand-2 test image sequences are provided.
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Chapter 5
Discussion

In this work, we presented a novel method for on-line, joint tracking and segmenta-
tion of a non-rigid object in a monocular video, captured by a possibly moving camera.
The proposed approach aspires to relax several limiting assumptions regarding the ap-
pearance and shape of the tracking object, the motion of the camera and the lighting
conditions. The key contribution of the proposed framework is the efficient combination
of an appearance-based tracking algorithm with a Random Walker-based segmentation
algorithm in a close-loop that jointly enables drift-free tracking and fine segmentation of
the target object. A 2D affine transformation is computed to propagate the segmented
object shape of the previous frame to the new frame exploiting the information pro-
vided by the ellipse region (iso-contour of a spatial Gaussian distribution) capturing the
segmented object and the ellipse region predicted by the tracker in the new frame. A
shape-band area is computed indicating an area of uncertainty where the true object
boundaries lie in the new frame. Static image cues including pixel-wise color and spatial
likelihoods are fused using Bayesian inference to guide the Random Walker-based object

segmentation in conjunction with the brightness likelihoods between neighboring pixels.

The performance of the proposed method is qualitatively demonstrated, in a series
of challenging videos in comparison with the results of the EM-shift tracking method
presented in [77] and ground truth tracking and segmentation data. Moreover, the quan-
titative performance of the individual tracking and the segmentation parts of the proposed
framework is assessed. The tracking performance of the proposed method is compared
to both the stand-alone EM-shift color tracking method of [77] and ground truth data.
The segmentation performance of the proposed method is compared to the ground-truth
data. The experimental results validate the effectiveness of the the proposed framework

as opposed to the stand-alone EM-shift color tracking method. Moreover, high perfor-
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mance is achieved regarding the individual tracking and segmentation results compared

to ground-truth data.

The performance of the EM-shift color tracking method [77], relies on a set of options
regarding the colorspace (or a subspace) that is utilized to represent the color informa-
tion, the number of bins of the color histogram that act as an appearance model, the
convergence criterion of the EM algorithm (maximum number of iterations, stopping
threshold value or a combination or them) and finally the (4. parameter that controls
the adaptation of the tracking Gaussian kernel of the method. A correct configuration
for the Bi.qcx parameter depends on prior knowledge of the underlying distribution of
the color that is to be tracked and the level of the noise that is present in the image
sequence, according to [77]. The parameter (4. practically controls the iso-contour of
the Gaussian parametric kernel that is determined to represent the foreground object and

to build its appearance model.

Moreover, the convergence criterion of the EM procedure of the tracking method is a
crucial option affecting its performance. A fixed number of EM iterations or a stopping
threshold value can be determined to define the convergence of the EM procedure. A
combination of a maximum number of EM iterations and a stopping threshold value is the
best option for efficient tracking. A stopping threshold value can be defined regarding the
number of new pixels added to the new estimated elliptical tracking region as compared
tho the previous estimation of that region between consecutive iterations with respect to
the image size. Many alternative heuristic functions can be utilized to implement a new
stopping criterion integrating additional information regarding the underlying tracked
distribution, the residual of the position of the Gaussian kernel between consecutive

frames on the image plane etc.

Based on the description of the Random Walker-based image segmentation technique

provided in Sections |3.3.5and [2.2.2] there are three main parts that are customizable and

control its segmentation performance within the proposed framework.

The first of these parts regards the graph construction options, that is the graph
connectivity policy and the weighting function that is utilized to weight the graph edges.
The connectivity of the graph controls the sparsity of the Laplacian matrix, thus it affects
the Random walker-based segmentation performance for fixed values of its parameters.
The ubiquitous Gaussian function of Eq. is utilized, which despite its simplicity
serves efficiently for mapping nodal intensities between the image pixels to connecting
weights of its undirected graph representation. Moreover, there is only the § parameter
which is introduced, keeping the tuning of the algorithm less complex. See Fig. and
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Fig. in Section for more details regarding the key role of this parameter to the
image segmentation procedure. A more elaborate function could easily be introduced to
the system providing a alternative type of mapping of the pixel intensities or any other
cue or combination of cues, to connecting weights of the Laplacian graph.

The second part regards the choice between the three variants of the Random Walker
formulation for the image segmentation problem, as they presented in Section [3.3.5] The
usage of seeds (Eq. (2.22)), priors (Eq. (2.24)) or a combination of them (Eq. (2.25)) is
chosen to form the system of linear equations that is to be solved in order to obtain a real-
valued solution for each label of the K-way segmentation. We remind that in case that
prior information is incorporated to the Random Walker formulation, the v parameter is
introduced, controlling the authority of the prior information (probability) as opposed to
the label information (probability) provided by random walks carried out on the graph
toward the potential labels. These biases are in turn controlled by parameter .

Finally, the third set of options affecting the segmentation performance of the Ran-
dom Walker-based method regards the two appearance models, which maintain the color
information of the resulting foreground object and background regions after the seg-
mentation of each frame. The role of these appearance models is crucial towards the
integration of the segmentation part with the tracking one in the proposed framework.
Two multi-dimensional histograms are used as appearance models. Based on them, the
color likelihoods per region are computed and are further utilized to compute the prob-
abilistic fusion of the the color and the spatial image cues. Thus, the color information
directly influence the resulting likelihoods of the fusion procedure, which in turn are used
to guide the automatic seed selection and/or act as prior information on the potential
labels of the segmentation. The number of dimensions of a histogram is controlled by
the number of channels of the colorspace that is selected to encode the color information
of each frame. The number of bins per dimension of a histogram is selected by the user.
Moreover, alternative appearance models could be utilized to capture the region-specific
color information, such as mixture of Gaussians.

To conclude the discussion, it is essential to present some limiting factors regarding
the performance of the proposed joint tracking and segmentation method. There are some
representative examples of image sequences shown in Fig. [5.1] where any of the following

issues or a combination of them causes failure of the proposed tracking methodology.

e Object natural boundaries are of low contrast with regard to the underlying back-

ground

e There is a big overlap among the object and the background color-based appear-
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ances

e non-rigid objects of very small surface

The segmentation part of the method fails to extract an accurate object mask result.
As a consequence, an invalid image partitioning of the foreground-object and background

image regions results an invalid feed-back of color information to the appearance models.

5.1 Future Work

In this last section, we outline a number of algorithmic issues that could be investigated
in more detail, as work of future interest. These issues could be incorporated to the
proposed method in order to alleviate the aforementioned limiting factors, regarding its
tracking and segmentation performance, and to extend its capabilities.

An immediate extension of the proposed work involves the incorporation of additional
image cues such as texture and low-level motion information as prior information towards
increased robustness of both tracking and segmentation components.

The performance of alternative weighting schemes regarding the construction of the
graph Laplacian matrix needs to be explored, except for the Gaussian weighting function
used in Eq. . Moreover, the idea of incorporating additional information to the
construction of the Laplacian, such as texture and low-level motion cues besides the
utilized image brightness information, provides an interesting field on investigation toward
an enhanced Random Walker based segmentation performance.

Another part of the proposed method that is to be optimized refers to the computation
of the shape-band area around the propagated prior object shape. The width of the shape-
band area is uniformly determined around the propagated object shape and is currently
defined equal to the Hausdorff distance between the previously segmented object contour
points and the propagated object contour points. A point-wise computation of the shape-
band width across the propagated object contour is an interesting modification of the
proposed system that may lead to better and more robust segmentation performance.

In the following, a bootstrapping mechanism that will automatically determine an
optimal configuration of the crucial parameters of the proposed method is an interesting
extension, that will set the proposed method fully automatic requiring no tuning of these
parameters by the user.

Last but not least, an interesting extension of the proposed method would be the
ability to track multiple objects with partial of full, instant or long-term occlusions by

unifying it with the efficient and elaborate method presented in [52].

78



Figure 5.1: Representative example image sequence where the proposed method-

ology failed to perform. The segmentation failures (green contour) are illustrated
in four image sequences on a variety objects that are to be tracked. From left to

right in each row, the provided frames preserve temporal coherency.
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