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Abstract

The vision-based tracking and the segmentation of an object of interest in an image

sequence are two challenging, tightly coupled computer vision problems. By solving

the segmentation problem, a solution to the tracking problem can be obtained, while

tracking may provide important input to segmentation. The coupling between these

two problems is an actively researched topic because, besides its theoretic interest, it

may lead to robust solutions in a number of important applications including object

localization and recognition, vision-based automated surveillance, activity recognition,

human-computer/robot interaction, etc.

In this work we propose a new method for integrated tracking and segmentation of a

single non-rigid object in a monocular video, captured by a possibly moving camera. It is

assumed that a binary mask is available for the initial frame of an image sequence, fully or

partially indicating the previously unseen object of interest that is to be segmented and

tracked throughout that image sequence. A closed-loop interaction between Expectation

Maximization (EM) color-based tracking and Random Walker-based image segmentation

is proposed. The tracking algorithm represents the position and the area of the object

in the form of an ellipse in each frame of the image sequence. At each frame, a �nely

segmented object mask is available from the segmentation performed at the previous

frame. The spatial position and variance of the object mask are utilized to initialize the

ellipse of the tracking algorithm for the current frame. Through EM iterations performed

by the tracking method, a new ellipse is computed, estimating the new position and

variance of the object in the current frame. The initial and the evolved ellipses are used

to estimate a 2D a�ne transformation that propagates the segmented object shape of the

previous frame to the current frame. A shape band is then de�ned indicating a region of

uncertainty where the true object boundaries lie. In the following, pixel-wise spatial and

color image cues are fused using Bayesian inference to guide object segmentation. A �nely

segmented object mask of the target object is �nally computed in the current frame using

the Random Walker-based segmentation methodology, closing the loop between tracking

and segmentation.

The proposed method e�ciently tracks and segments previously unseen objects re-

quiring no o�-line training or prior knowledge regarding the object of interest and its

scene context. As con�rmed by both the qualitative and quantitative experimental eval-

uation carried out on a variety of image sequences, the proposed methodology results



in reduced tracking drifts and in �ne object segmentation. Additionally, it operates ef-

fectively for previously unseen objects of varying appearance and shape that perform

complex motions under varying illumination conditions.



Ðåñßëçøç

H ïðôéêÞ ðáñáêïëïýèçóç êáé ç ôìçìáôïðïßçóç åíüò áíôéêåéìÝíïõ óå ìéá áêïëïõèßá åé-

êüíùí áðïôåëïýí óçìáíôéêÜ ðñïâëÞìáôá ôçò õðïëïãéóôéêÞò üñáóçò ðïõ ó÷åôßæïíôáé óôåíÜ

ìåôáîý ôïõò. ¸íá áíôéêåßìåíï ôï ïðïßï Ý÷åé ôìçìáôïðïéçèåß ìðïñåß åýêïëá íá ðáñáêï-

ëïõèçèåß. Ôáõôü÷ñïíá, ç ðáñáêïëïýèçóç ôïõ áíôéêåéìÝíïõ ðáñÝ÷åé óçìáíôéêÞ ðëçñïöïñßá

ãéá ôçí ôìçìáôïðïßçóÞ ôïõ. Ç óýíäåóç ìåôáîý ôùí äýï áõôþí ðñïâëçìÜôùí áðïôåëåß ìßá

åíåñãÞ åñåõíçôéêÞ ðåñéï÷Þ êáèþò ðÝñá áðü ôï èåùñçôéêü ôçò åíäéáöÝñïí, ìðïñåß íá ïäç-

ãÞóåé óå åýñùóôåò ëýóåéò óå ìåãÜëï áñéèìü óçìáíôéêþí åöáñìïãþí üðùò ç áíáãíþñéóç

êáé ç åêôßìçóç èÝóçò áíôéêåéìÝíùí, ç áíáãíþñéóç äñáóôçñéïôÞôùí áðü âßíôåï, ç ïðôéêÞ

åðüðôåõóç ÷þñùí, ç áëëçëåðßäñáóç áíèñþðïõ ìå õðïëïãéóôÞ Þ ñïìðïôéêü óýóôçìá ê.á.

Óôçí åñãáóßá áõôÞ ðåñéãñÜöåôáé ìéá íÝá ìÝèïäïò óõíäõáóìÝíçò ïðôéêÞò ðáñáêïëïý-

èçóçò êáé ôìçìáôïðïßçóçò åíüò áíôéêåéìÝíïõ óå áêïëïõèßá åéêüíùí ðïõ Ý÷ïõí ëçöèåß áðü

ìéá åíäå÷ïìÝíùò êéíïýìåíç âéíôåïêÜìåñá. Èåùñåßôáé ðùò ç ìïíáäéêÞ ãíþóç ãéá ôï ðñïò

ðáñáêïëïýèçóç áíôéêåßìåíï åßíáé ìéá äõáäéêÞ åéêüíá-ìÜóêá ðïõ ðáñÝ÷åé ìéá ðåñéãñáöÞ ôïõ

ðåñéãñÜììáôüò ôïõ óôçí ðñþôç åéêüíá ôçò áêïëïõèßáò. Ðñïôåßíåôáé ìéá ìåèïäïëïãßá âáóé-

óìÝíç óôçí áëëçëåðßäñáóç ìåôáîý åíüò áëãïñßèìïõ Ìåãéóôïðïßçóçò Ðñïóäïêßáò (Expec-

tation Maximization - ÅÌ) ãéá ôçí ðáñáêïëïýèçóç áíôéêåéìÝíïõ ìå âÜóç ôçí ÷ñùìáôéêÞ

ðëçñïöïñßá êáé ìéáò ìåèüäïõ ãéá ôìçìáôïðïßçóç âáóéóìÝíç óôç èåùñßá ôùí Ôõ÷áßùí Ðåñé-

ðÜôùí óå ãñÜöïõò (Random Walks). Ôï áðïôÝëåóìá ôçò ôìçìáôïðïßçóçò ôçò åéêüíáò ôçí

ðñïçãïýìåíç ÷ñïíéêÞ óôéãìÞ ïäçãåß óôïí ïñéóìü ìßáò Ýëëåéøçò ðïõ ðåñéãñÜöåé ôçí èÝóç

êáé ôçí Ýêôáóç ôïõ áíôéêåéìÝíïõ. Ï áëãüñéèìïò ðáñáêïëïýèçóçò áñ÷éêïðïéåßôáé ìå áõôÞ

ôçí Ýëëåéøç êáé ìå ôçí åöáñìïãÞ ìéáò åðáíáëçðôéêÞò äéáäéêáóßáò Ìåãéóôïðïßçóçò Ðñïó-

äïêßáò (ÅÌ) ðáñÜãåé ìéá íÝá Ýëëåéøç ðïõ áðïôåëåß ðñüâëåøç ãéá ôç èÝóç êáé Ýêôáóç ôïõ

áíôéêåéìÝíïõ ôçí ðáñïýóá ÷ñïíéêÞ óôéãìÞ. Ìå âÜóç ôéò äýï áõôÝò åëëåßøåéò õðïëïãßæåôáé

Ýíáò äéóäéÜóôáôïò áöéíéêüò ìåôáó÷çìáôéóìüò ðïõ åðéôñÝðåé ôçí ðñüâëåøç ôïõ ó÷Þìáôïò

ôïõ áíôéêåéìÝíïõ óôçí ôñÝ÷ïõóá åéêüíá. Ãýñù áðï áõôÞ ôçí ðñüâëåøç ó÷Þìáôïò, ïñßæåôáé

ìéá ðåñéï÷Þ áâåâáéüôçôáò åíôüò ôçò ïðïßáò ìðïñåß íá ðñïóäéïñéóôåß ôï áêñéâÝò ðåñßãñáììá

ôïõ áíôéêåéìÝíïõ ãéá ôçí ôñÝ÷ïõóá ÷ñïíéêÞ óôéãìÞ. Áõôü åðéôõã÷Üíåôáé ìå ôçí åöáñìïãÞ

ôïõ áëãïñßèìïõ ôìçìáôïðïßçóçò óôçí ðåñéï÷Þ áâåâáéüôçôáò, ðïõ âáóßæåôáé óôçí Ìðåû-

æéáíÞ óýíèåóç ÷áñáêôçñéóôéêþí, üðùò ç èÝóç êáé ôï ÷ñþìá êÜèå óçìåßïõ ôçò åéêüíáò

óôçí ðåñéï÷Þ áâåâáéüôçôáò.

Ç ðñïôåéíüìåíç ìÝèïäïò óõíäõÜæåé ôçí ðáñáêïëïýèçóç êáé ôçí ôìçìáôïðïßçóç åíüò

áíôéêåéìÝíïõ ÷ùñßò íá áðáéôåß åêðáßäåõóç Þ ðñïçãïýìåíç ãíþóç ãéá ôï áíôéêåßìåíï åí-

äéáöÝñïíôïò êáé ôï ðåñéå÷üìåíï ôçò óêçíÞò óôçí ïðïßá áõôü åìðåñéÝ÷åôáé. ¼ðùò åðéâå-

âáéþíåôáé áðü ôçí ðïéïôéêÞ êáé ôçí ðïóïôéêÞ ðåéñáìáôéêÞ áîéïëüãçóÞ ôçò, ç ðñïôåéíüìåíç



ìåèïäïëïãßá ìåéþíåé ôï óöÜëìá ðáñáêïëïýèçóçò åíüò áíôéêåéìÝíïõ êáé âåëôéþíåé ôçí áêñß-

âåéá ôçò ôìçìáôïðïßçóÞò ôïõ. Åðéðñüóèåôá, ç ìåèïäïëïãßá ëåéôïõñãåß áðïôåëåóìáôéêÜ ãéá

áíôéêåßìåíá ôùí ïðïßùí ôï ó÷Þìá êáé ç åìöÜíéóç ìåôáâÜëëåôáé óçìáíôéêÜ êáôÜ ôç äéÜñêåéá

ôçò ðéèáíüí ðïëýðëïêçò êßíçóÞò ôïõò óå óõíèÞêåò ìåôáâáëëüìåíïõ öùôéóìïý.



Åõ÷áñéóôßåò

Èá Þèåëá íá åêöñÜóù ôéò èåñìÝò åõ÷áñéóôßåò ìïõ óå áíèñþðïõò ðïõ Þôáí êáé åßíáé äßðëá

ìïõ, óôçñßæïíôáò Ýììåóá Þ Üìåóá ôçí ðñïóðÜèåéá ìïõ êáôá ôç äéÜñêåéá ôùí ìåôáðôõ÷éáêþí
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áäåñöü ìïõ Ãéþñãï, ãéá ôçí áãÜðç êáé ôç óôÞñéîç ðïõ ìïõ ðñïóöÝñïõí ìå êÜèå ôñüðï óå

êÜèå ìïõ åðéëïãÞ êáé ðñïóðÜèåéá. ÐÜíôá ìïõ ðáñÝ÷ïõí ôçí áðáñáßôçôç åìðéóôïóýíç êáé

ôéò óõíèÞêåò ãéá íá ðñï÷ùñÞóù ðñïò ôïõò óôü÷ïõò ìïõ óôç æùÞ.
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Chapter 1

Introduction

The vision-based tracking and the segmentation of an object of interest in an image

sequence are two challenging problems in computer vision. Each of them has its own

importance and challenges. The two problems are highly interrelated and can be con-

sidered as \chicken-and-egg" problems. By solving the segmentation problem, a solution

to the tracking problem can be obtained, while tracking may provide important input to

segmentation. Moreover, the robustness and the accuracy of the tracking object repre-

sentation a�ects the quality of the information provided to the segmentation throughout

an image sequence. The coupling between these two main problems in computer vision

is an actively researched topic because of the large number of important applications in-

cluding but not limited to automated surveillance, visual attention, video analysis, object

pose estimation and recognition, activity recognition, human-computer interaction, robot

navigation,etc.

In this work, a new methodology is proposed considering the e�cient combination of

tracking and explicit �ne segmentation towards an online, robust 2D object tracking and

segmentation framework.

Both qualitative and quantitative experimental evaluation had been carried out in

order to assess the tracking and segmentation performance of the proposed method.

A large variety of image sequences is selected as test datasets, containing previously

unseen objects of varying appearance and shape, performing in presence of challenging

environmental conditions. The proposed method is compared to the stand-alone EM-shift

color-based tracking method [77] utilized in the proposed framework in order to assess the

improvement on the localization accuracy and the prevention of tracking drifts. Moreover,

a quantitative assessment is carried out based on ground truth tracking and segmentation

data on two image sequences. The Recall, Precision and F-score statistic metrics are
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calculated to validate the segmentation performance of the proposed framework. An

overview of the proposed method is presented in [54].

This report is organized as follows. In Chapter 2, an introduction to the algorithmic

tools of EM-shift object tracking [77] and Random Walker based image segmentation

[30], that have been utilized in the proposed framework, is provided. Chapter 3 describes

each part of the proposed methodology in detail. In Chapter 4, the qualitative and the

quantitative evaluation of the proposed method is presented. Finally, in Chapter 5, a

discussion regarding the e�ectiveness and the contributions of the proposed methodology

is accorded, whereas future work is discussed in order to extent its capabilities and to

eliminate the reported weaknesses.

This chapter is organized as follows. An extended introduction to the problem of

visual object tracking is provided in Section 1.1. A short categorization of the visual

object tracking methods is provided in Section 1.1.1, whereas Section 1.1.2 specializes to

methods that perform joint tracking and segmentation.

1.1 Visual Object Tracking

Visual object tracking can be de�ned as the problem of estimating the trajectory of a

moving object throughout the frames of a video. Additionally, depending on the tracking

domain and the application, a tracker can also provide object-centric information, such

as orientation, size of its area, accurate or coarse representation of the its shape, etc.

Object tracking is a challenging problem due to the:

• loss of information caused by projection of the 3D world on a 2D image,

• complex and/or abrupt object motion,

• nonrigid and/or articulated object shape,

• complex appearance of the object,

• dynamic changes of the object's appearance and shape,

• scene context/background clutter,

• object occlusions,

• real-time processing requirements.
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Being one of the most important and actively researched �elds of computer vision,

visual tracking is the main research topic in numerous publications trying to deal with

a variety of applications concerning tracking of a single or multiple objects of interest

throughout an image sequence. Human tracking, vehicle tracking, face tracking, hand

tracking are only some of the main applications of visual object tracking. Most of the

existing tracking methods are trying to impose constraints (i.e rigidity of object shape,

smooth object motion etc.) or use prior information (i.e appearance models, shape prior

information) regarding any of the aforementioned challenges towards an e�cient solution

of the tracking problem. There is a number of crucial decisions that need to be made

throughout the development of any tracking algorithm regarding its functionality. These

decisions can also be considered as keypoints, regarding its tracking performance and

applicability, including:

• object shape and appearance representation

• image feature selection

• object detection

• object propagation/prediction

Each of the �rst three issues is brie
y outlined in the following paragraphs, whereas a

short categorization of the visual object tracking methods arises based on the last issue

and is described in Section 1.1.1.

Object Representation

In a tracking scenario, an object can be de�ned as anything that is of interest for further

analysis. An object can be represented by its shape and its appearance. Object shape

representations commonly employed for tracking include: the object centroid point, points

of interest in object area, primitive geometric shapes, object silhouette and contour,

articulated shapes and skeletal models, as illustrated in Fig.1.1.

There are multiple ways to represent the appearance features of objects. There are

many tracking approaches [19], where the shape representation of the target object is

combined with its appearance representation. Some common appearance representations

in the context of object tracking are:

• Probability densities of object appearances, which are divided in:

{ Parametric (Gaussian [76], mixture of Gaussians [56])
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Figure 1.1: Object shape representations. (a) Object centroid, (b) multiple points

of interest, (c) rectangle bounding box, (d) ellipsoid region of interest, (e) part-

based (articulated) multiple shape patches, (f) object skeleton, (g) selected con-

trol points on object contour, (h) object contour, (i) object silhouette (Figure

originally appeared in [72]).

{ Non-parametric (Parzen windows [25], histograms [18])

The probability densities of object appearance features (color,texture) can be com-

puted from the image regions speci�ed by the shape models (interior region of an

ellipse, a contour or a bounding box).

• Shape templates using geometric shapes or silhouettes [26], carrying both spatial

and appearance information. Templates, however, only encode the object appear-

ance generated from a limited number of views. Thus, they are only suitable for

tracking objects whose poses do not vary considerably during the course of tracking.

• Active appearance models by simultaneously modeling the object shape and

appearance [19]. Active appearance models are based on shape landmarks for which

a model is computed capturing single or multiple appearance image features. They
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require a training phase where both the shape and its associated appearance is

learned from a set of samples.

• Multi-view appearance models encoding di�erent views of the appearance and

the shape of the object usually by generating a subspace from given multiple views

of the object using Principal Component Analysis [10], Independent Component

Analysis, trained Bayesian Networks[57], trained support vector machines [3], etc.

There is a strong relationship between the chosen object representations and the

tracking algorithms, according to the application domain. For tracking objects with

complex shapes, for example humans, a contour or a silhouette-based representation is

appropriate [9], whereas an ellipsoid region is commonly utilized as a shape representation

in combination with a color histogram in to track non-rigid objects [18].

Image Feature Selection

Image feature selection is crucial in object tracking. The image features should be se-

lected so that the objects of interest can be easily distinguished in the feature space.

Feature selection is closely related to the object appearance representation. For example,

a color-based histogram of the object area encodes the appearance of the object combin-

ing the image feature of color within the object area with a non-parametric appearance

representation. Common primary visual features are the color, edges, spatial pixel coor-

dinates, optical 
ow and texture image cues. In the majority of the proposed methods,

visual features are chosen manually by the user depending on the application domain.

However, there are many recently proposed techniques [14, 70] enabling automatic feature

selection based on application-driven criteria that facilitate the discrimination between

the object and the rest of the scene in the feature space. Moreover, combinations of image

features are widely utilized to improve tracking performance.

Object Detection

The object detection mechanism is an indispensable part of every tracking method that is

applied to every video frame. There are numerous stand-alone object detection methods

that can be exploited in an integrated visual tracking framework.

Object detection can be based on information of a single frame or on temporal infor-

mation provided by the outcome of the tracking process in the previous frame. Here, the

most popular methods in the context of object tracking are brie
y outlined.
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• Interest points detectors have been long used in object detection towards visual
tracking, motion estimation and stereo. Point detectors are used to �nd interest

points in images which have an expressive texture in their respective localities.

Desirable features of an interest point is its invariance to changes in illumination

and camera viewpoint. Commonly used interest point detectors are Harris [33],

SIFT [44], KLT [45] and SURF [7], which exhibit signi�cant invariances towards

illumination changes, camera viewpoints, object scaling and rotation etc. A concise

review followed by a thorough benchmarking of various interest point detectors is

presented by Mikolajczyk and Schmid in [49, 48].

• Background subtraction is a well-known and widely used method for detect-

ing moving objects in an image sequence captured by a stationary camera. Object

detection can be achieved by building a pixel-wise representation of the scene (back-

ground model) and then �nding deviations between the model and the next frame.

Any signi�cant change in an image region from the background model signi�es a de-

tected moving object, indicated by a binary mask. Usually, a connected components

algorithm is applied to obtain connected regions corresponding to objects. E�cient

background subtraction is performed by several methods, using multi-modal sta-

tistical models to describe per-pixel background color. The method in [67] utilizes

a mixture of Gaussians to model the pixel color. A pixel in the current frame is

checked against the background model by comparing it with every Gaussian in the

model until a matching Gaussian is found. Each pixel is classi�ed based on whether

the matched distribution represents the background process. Another e�cient ap-

proach incorporates region-based (spatial) scene information instead of only using

color-based information, using non-parametric kernel density estimation to model

the per-pixel background [25].

• Segmentation is also widely utilized to perform object detection in visual track-

ing tasks. Image segmentation is an important research �eld in computer vision,

including a variety of methods to perform e�cient image partitioning. Each seg-

mentation algorithm addresses two main problems, the de�nition of criteria for a

good partition and the algorithmic method for performing e�cient partitioning [65].

Some of the most widely-used methods in image segmentation are the Mean-Shift

clustering [15], Graph-Cuts [11], Active Contours[61, 55, 19, 9], Random Walks[31],

Bayesian classi�cation etc.

• Finally, supervised learning can be used for object detection by learning di�erent
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views of the objects of interest from a set of example views. Common techniques

of supervised learning are Support Vector Machines [3, 53], Adaptive Boosting [70],

Neural Networks [63], Decision Trees etc.

1.1.1 A Short Categorization of Visual Object Tracking Methods

The aim of an object tracking algorithm is to establish correspondences between the

object instances among video frames and to generate the trajectory of the object's position

over time [72]. Object tracking is mainly dependent on the selected shape representation,

appearance representation and the object detection mechanisms in order to establish

the correspondences of the detected object instances among video frames. The object

detection and tracking can be performed separately or jointly. In both cases, the objects

are represented using the shape and/or appearance models described in Section 1.1. In

the �rst case, possible object regions in every frame are obtained by means of an object

detection algorithm, and then the tracker corresponds objects across frames. In the latter

case, the object region and correspondence is jointly estimated by iteratively updating

object location and region information obtained from previous frames. The selected

shape and appearance representations control the type of motion or deformation and the

appearance changes that the tracked object can undergo, respectively. The suitability of

a particular tracking algorithm depends on object appearances, object shapes, number

of objects, object and camera motions, and illumination conditions.

A short categorization of the state-of-art object tracking methods is provided by the

recent and thorough review in [72].

The categorization of object tracking methods concerns three main categories namely,

point tracking, kernel tracking and shape tracking and it is graphically illustrated in

Fig. 1.2.

• Point Tracking. Objects are represented by points. Correspondences between

objects in consecutive frames can be established based on deterministic or prob-

abilistic methods [40, 5]. One of the most popular among deterministic method

is the Hungarian algorithm [41]. Greedy search methods also belong to this cate-

gory. The most popular subcategory consists of the probabilistic methods including

Kalman �lters [6] based and particle �lters [36] based algorithms, HMMs [58], as

well as the Multiple Hypothesis Tracking (MHT) [59] and Joint Probability Data

Association Filter (JPDAF) techniques [20].

• Kernel Tracking. In kernel tracking methods [18, 68, 38, 37] a simple geometric
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Figure 1.2: Categorization of visual tracking methods

shape is utilized to represent the region of the object of interest. Based on this, a

parametric model for the object motion from frame to frame is computed. Thus,

kernel-based methods provide a coarse representation of the object shape. Based

on the utilized appearance representation, these tracking methods can be divided in

two subcategories, including the template matching and density-based appearance

models and the multi-view appearance-based models. The most popular and widely-

used method of the �rst subcategory is the mean-shift object tracking algorithm

[18, 15]. Moreover, Jepson et al. [38] proposed a novel method that tracks an

object as a three-component mixture, consisting of the stable appearance features,

transient features and a noise process. The object shape is represented by an ellipse,

whereas an online version of the popular Expectation Maximization algorithm is

used to learn the parameters of the three-component mixture.

Tracking methods based on the multi-view appearance models requires o�-line

learning of multiple views of an object. They mostly use Principal Component

Analysis (PCA) to generate subspace-based representations as appearance models.

They are able to track an object the appearance of which may undergo consider-

able changes over time [62]. Other methods use Support Vector Machines to classify

on-line test views of the tracked object between positive and negative examples.

• Shape Tracking. The goal of the shape tracking methods is to track complex (non-
rigid or articulated) shapes, providing an accurate shape description of the whole

object area that evolves from frame to frame. They are able to capture potential
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deformations and transformations of the object shape and to provide an accurate

object mask in each frame. There are two main subcategories, concerning the

contour tracking approaches and the shape matching approaches. On the one hand,

contour tracking methods iteratively evolve the initial object contour to capture the

contour of the shape instance of the object in the current frame. Various energy

minimization techniques (variational approaches) have been used to develop e�cient

contour tracking algorithms, such as level sets [55, 73, 9, 8], utilizing static image

cues, optical 
ow information and region statistics. Moreover, state space models

(Kalman �ltering, Particle �ltering) have been used to develop contour tracking

methods [69],[36]. On the other hand, shape matching [66, 35] is closely related to

tracking by template matching. An object silhouette supported by its associated

appearance model is searched to capture the shape instance of the tracked object in

the current frame. The appearance model as well as the object silhouette instance

may have been incrementally updated exploiting the tracking result of the previous

frame, thus handling appearance changes and shape deformations of the object from

frame to frame.

1.1.2 Visual Object Tracking by Segmentation

This section provides a literature review on visual object tracking methods that explic-

itly or implicitly provide an accurate shape representation, enabling combined tracking

and segmentation of the object area throughout an image sequence. The references on

the research publications presented in this section are grouped toward the top-level cat-

egorization of tracking methods provided in Section 1.1.1, concerning the three main

categories, namely the point, kernel and shape based tracking methods.

Shape-based tracking methods [69, 36, 55, 73, 9] provide an accurate representation of

the tracked object, therefore they capture the entire object shape in each video frame,

inherently providing combined tracking and segmentation. In [69], the object state is

de�ned by the dynamics of the control points, which are modeled in terms of a spring

model. This model moves the control points based on de�ned spring sti�ness parameters.

The new state (spring parameters) of the contour is predicted using the Kalman �lter.

The correction step uses the image observations which are de�ned in terms of the image

gradients. The method presented in [36] de�nes the object state in terms of spline shape

and a�ne motion parameters. The measurements consist of image edges computed in the

normal direction to the contour. During the testing phase, the current state variables are
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estimated through particle �ltering based on the edge observations along normal lines at

the control points on the contour.

The direct minimization methods evolves the contour by minimizing the contour en-

ergy using direct minimization techniques (i.e gradient descent), variational methods (i.e

level-sets) or heuristic approaches [61]. In [55], a variational framework is introduced

for detecting and tracking multiple moving objects in image sequences using the front

propagation theory and the level-set methodology. The motion detection boundaries are

determined using a probabilistic edge detection on analysis of the inter-frame di�erence.

The tracking boundaries are determined by performing edge detection on the input image.

Then, a partial di�erential equation (PDE) is de�ned, as an objective function, to trans-

form the detection and tracking into a geodesic computation problem. The equation is

implemented using the level-set theory, whereas the obtained function is minimized using

gradient descent.

A contour-based nonrigid object tracking method is proposed in [73]. The method

is able to perform robust object tracking in the presence of occlusions in video acquired

from moving cameras. Along with color and texture models generated for the object

and the background regions, the method maintains an shape prior, which is generated

on-line, for recovering occluded object parts. The energy functional, evolving the contour

from frame to frame, is derived using a Bayesian framework and is evaluated within a

band area around the estimated object contour. The energy function is minimized using

gradient descent.

More recently, in [9], a probabilistic, level-set framework for robust visual tracking is

introduced. The method handles the tracking problem using a bag-of-pixels representa-

tion, in terms of pixel-wise posteriors, as opposed to a product over pixel-wise likelihoods.

On-line appearance learning provides continual re�nement of both the object and back-

ground appearance models. The object shape is based on a level-set representation of

its contour that is propagated by performing a rigid registration between frames. The

proposed method is able to track previously unseen objects from a moving camera in

real-time.

Point-tracking algorithms, either deterministic or statistics-based, can also combine track-

ing and object segmentation using multiple image cues. The two following tracking meth-

ods can be considered as a hybrid of point and shape-based tracking methods. In [60],

�gure/ground segmentation operates sequentially in each frame by utilizing both static

image cues and temporal coherence cues. The method generates an appearance model
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of brightness (or color) and a spatial model propagating �gure/ground masks through

low-level region correspondence. A super-pixel-based Conditional Random Field (CRF)

linearly combines cues and loopy belief propagation is used to estimate marginal pos-

teriors of �gure versus background, thus providing an accurate segmented object mask

throughout an image sequence. A similar but more elaborate work is presented in [75].

This work provides a shape constrained �gure-ground segmentation in a CRF graph

model and proposes a new method to embed global shape probability and region-based

probability of object boundary into graph link terms. Simulated annealing and local vot-

ing align the on-line obtained deformable shape template with the image to yield a global

shape probability map. Moreover, multiple low-level image cues are fused to provide a

region-based probability of the object boundary map. The obtained global shape prob-

ability is combined with the region-based probability of object boundary map and the

pixel-level intensity gradient to determine each link cost in the graph formulation. The

CRF energy is minimized by min-cut, followed by Random Walker-based segmentation

on the uncertain boundary region to get a soft segmentation result. This method is able

to handle partial occlusions of the object. The method described in [1], is mainly based

on the e�cient method proposed in [51], presenting a probabilistic framework that jointly

considers both tracking and �ne segmentation of multiple objects in videos captured by

a stationary camera. The proposed method jointly formulates the pixel color and lo-

cation in a Maximum a Posteriori (MAP) estimator to perform pixel-wise classi�cation

toward the target objects list and the background image. A Probabilistic PCA method

(PPCA) is utilized to construct and on-line update a robust appearance model for each

target object throughout the image sequence. Another multiple object tracking approach

is introduced in [5] supporting hand and face tracking in videos captured by a possibly

moving camera. A pixel-wise representation is utilized. The location and the speed of

each object is modeled as a discrete time, linear dynamical system which is tracked using

Kalman �ltering. The spatial distribution of the pixels of each tracked object is passed on

from frame to frame by propagating a set of pixel hypotheses, estimated by the Kalman

�lter.

The majority of the kernel-based tracking algorithms provide a coarse representation

of each tracked object based on a bounding box or an ellipsoid region. The research work

presented in [74], introduces a kernel-based tracking method that enables combined track-

ing and �ne segmentation of non-rigid foreground objects in videos captured by a possibly

moving camera. The foreground and background objects are modeled using spatial-color
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Gaussian mixture models (SCGMM). These two models jointly capture the shape and the

appearance, in terms of pixel-wise colors, of the foreground objects in the scene. Com-

bining the two SCGMMs into a generative model of the whole image, the maximization

of the joint data likelihood is computed using a constrained Expectation-Maximization

(EM) algorithm [21]. The segmentation of the foreground objects is �nally computed

using the Graph-Cut algorithm, which minimizes a Markov Random Field (MRF) energy

function modeled by the information encoded by the SCGMM models. Moreover, in [27]

a novel method is presented for illumination invariant kernel tracking that is based on

computing an illumination-invariant optical 
ow �eld in conjunction with a graph cuts

formulation.

Another kernel-based method concerning foreground/background modeling, thus track-

ing foreground objects, is presented in [25]. A nonparametric kernel density estimation

technique is presented, as a tool for constructing statistical representations for the scene

background and foreground regions in video surveillance (stationary videos). A back-

ground modeling and background subtraction technique is also introduced. The statis-

tical representations of the foreground regions (moving objects) support their tracking

and occlusion reasoning throughout an image sequence. In [40] a Maximum a Posteriori

(MAP) probabilistic framework for segmentation is presented , using multiple cues, such

as spatial location, color and motion. A weighting scheme is introduced to weight pixel-

wise color and motion terms, based on a con�dence measure of each feature. The correct

modeling of the spatial pdf imposes temporal and color consistency among the resulting

image segments in consecutive frames. The segmentation and tracking of a speci�c object

in the scene, could be a post-product of this work.

Finally, one of the most popular and e�cient kernel-based tracking method of non-

rigid objects is the mean-shift algorithm [18], which is not mentioned in this section be-

cause of its coarse representation of the tracking object area with an ellipse. One of the

main drawbacks of the original work of mean-shift tracking is the lack of scale adaptation

of the tracking kernel towards the object shape changes throughout an image sequence,

which gradually diminishes the tracking performance. Numerous research works have

been published trying to deal with the scale adaptation of the tracking kernel in order to

get a more re�ned object representation. An extension of the original mean-shift tracking

method is presented in [17], enabling a variable bandwidth of the mean shift search win-

dow. Another extension is presented in [13] exploiting the Lindeberg theory [42]. It refers

to the feature scale selection based on local maxima of di�erential scale-space �lters, pro-

viding a solution to the problem of selecting kernel scale for mean-shift blob tracking. A
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new formulation of the original mean-shift object tracking method is presented in [77],

simultaneously estimating the position and the covariance matrix of the tracking kernel

that describes the shape of tracking object based on a color-histogram and an EM-like

procedure for scale selection. More recently, the proposed method in [71] presents an

object tracking method based on the asymmetric kernel mean shift, in which the scale

and orientation of the kernel adaptively change depending on the observations at each

iteration. The afore-mentioned extensions of the original mean-shift method produce a

better object representation than the original method capturing the shape/scale changes

to some extend. However, this result is still characterized as a coarse representation of

the tracked object area.

Despite the many important research e�orts devoted to the problem, the development

of algorithms for tracking objects in unconstrained videos constitutes an open research

problem. Moving cameras, appearance and shape variability of the tracked objects, vary-

ing illumination conditions and clutter backgrounds constitute some of the challenges

that a robust tracking algorithm needs to cope with. To this end, in this work we con-

sider a novel framework that explicitly combines tracking and segmentation of previously

unseen objects in monocular videos captured by a possibly moving camera. No strong

constraints are imposed regarding the appearance and the texture of the target object or

the rigidity of its shape. All of the above may dynamically vary over time under chal-

lenging illumination conditions and changing background appearance. The basic aim of

this work is to preclude tracking failures by enhancing its target localization performance

through explicit �ne object segmentation that is appropriately integrated with tracking

in a closed-loop algorithmic scheme. A kernel-based object tracking algorithm [77], a

natural extension of the popular mean-shift tracker [16, 18], is e�ciently combined with

Random Walker-based image segmentation [29, 30]. Explicit segmentation of the target

region of interest in an image sequence enables reliable tracking and reduces drifting by

exploiting static image cues and temporal coherence. The �nal goal of the proposed

methodology is to simultaneously enhance the performance of the kernel-based tracking

and provide a �ne segmentation result of the tracked object, as illustrated in Fig.1.3.

The key bene�ts of the proposed method are (i) the close-loop interaction between

tracking and segmentation (ii) enhanced tracking performance under challenging con-

ditions (iii) �ne object segmentation (iv) the capability to track objects regardless of

camera motion (v) increased tolerance to extensive changes of object's appearance and

shape and, (vi) continual re�nement of both the object and the background appearance
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(a) (b) (c)

Figure 1.3: (a) Two ellipses representing a human hand while tracking. Red el-

lipse corresponds to the performance of the stand-alone EM-shift object tracking

algorithm [77], whereas the blue ellipse corresponds to the tracking result obtained

by the proposed methodology providing enhanced localization performance. (b)

Precise object shape representation provided by the Random Walker-based seg-

mentation procedure [31] of the proposed framework following the object tracking.

(c) The desired result of the proposed methodology. A �nely segmented object

mask.

models. Last but not least, the proposed scheme can easily be extended to incorporate

more image cues.
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Chapter 2

Algorithmic Tools

The purpose of this chapter is to provide an introduction to previously presented al-

gorithms that have been utilized in the proposed methodology, concerning EM-shift

kernel-based object tracking [77] and Random Walker-based image segmentation [31],

respectively.

2.1 Kernel-based Object Tracking

In this section, an kernel-based object tracking algorithm is presented, that is further

utilized in the proposed joint tracking and segmentation methodology. The EM-shift

algorithm for color-histogram based object tracking, that has previously appeared in

[77], is a natural extension of the popular mean-shift tracking method [18, 16]. There are

two main advantages regarding this previously introduced method. Firstly, its robustness

in tracking performance keeps up with the performance of the popular Mean-Shift object

tracking method. Secondly, the EM-shift algoritm simultaneously estimates the position

of the local mode and the covariance matrix that describes the approximate shape of

the local mode, thus adapting the position and the scale of the tracking kernel. Both

object tracking methods can be seen as special versions of closely-related robust statistics

procedures [47, 34] toward the extreme outlier model, described in [77]. Both methods

perform kernel-based tracking and rely on image color. In the following, a brief description

and derivation of the color-histogram based tracking algorithm is provided.

Given an image It of size m × n, the data set of the N independent samples-pixels

are denoted by X =
{→
x1; : : : ;

→
xN

}
, where xi denotes the location (spatial coordinates)

of pixel i. Moreover, a Gaussian probability density function p
(→
x
)

= N
(→
x;
→
� ;Σ

)
is

considered, as a generative model to e�ciently represent the data samples. The
→
� and
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Σ parameters correspond to the position mean vector and the covariance matrix of a

Gaussian distribution, respectively, which approximates the shape of the tracked object.

A projection of the Gaussian distribution on the image plane consists of an ellipsoid

region that represents the object shape while tracking. The spatial covariance Σ is based

on the second order moment that approximates the shape of the object:

Σ =
∑
xi∈Xo

(
~xi − ~�0

)(
~xi − ~�0

)T
; (2.1)

where Xo ⊆ X is the subset of pixels that belong to the object area.

The appearance of the ellipsoid region is modeled by an M-bins color histogram. Let
~b(xi) : R2 → 1; : : : : ;M be the function that assigns a color value of the pixel at location

~xi to its bin. The color histogram model of the object consists of the values of the M bins

of the histogram ~o = [o1; : : : ; oM ]T . The value of the m-th bin is calculated by:

om =

Nv0∑
i=1

N

(
~xi; ~�0;Σ0

)
�[b (~xi)−m]; (2.2)

where � is the Kronecker delta function. The e�ect of the utilized Gaussian kernel N is

to rely more on the pixels in the center of the object and to assign smaller weights to

the less reliable pixels near the borders of the object. Moreover, the pixels from a �nite

neighborhood NΣ0 of the kernel N are used to populate the color histogram, whereas the

pixels further than 2.5-sigma are disregarded.

The goal of object detection in each frame based on its appearance model can be

achieved by computing a Maximum Likelihood (ML) estimation of the Gaussian pdf

p(
→
x i) that maximizes the likelihood function

∏N
i=1 p(

→
x i). Based on the notion of the

extreme outlier model and the Taylor expansion, a new pixel-wise weighted objective

function to be maximized is derived:

f
(
~�;Σ

)
=

N∑
i=1

!iN
(
~xi; ~�;Σ

)
: (2.3)

The pixel-wise weight factors !i of the objective function are estimated iteratively by

computing the Bhattacharrya coe�cient based similarity measure between the color his-

tograms of the target and the candidate regions of a new frame, where the object is to

be detected/tracked. Let Nv ⊆ N be the subset of pixels that belong to a candidate sub-

region of the new image frame It+1, with position ~�c and covariance Σc, where the target

object may be localized. Using Eq. (2.2) to model the color information of pixels in Nv,

an appearance model of the candidate region is generated, denoted as rm(~�c;Σc). The
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goal is now to compare these two color histograms by using the Bhattacharrya coe�cient

�, as a measure of similarity between two histograms:

�[~r
(
~�c;Σc

)
; ~o] =

M∑
m=1

√
rm

(
~�c;Σc

)√
om: (2.4)

The �rst Taylor approximation of the current estimate ~r(~�c;Σc) is given by:

~r(~�c;Σc) ≈ c1 + c2

Nv∑
i=1

!iN
(
~xi; ~�;Σ

)
; (2.5)

where the c1 and c2 are constant factors. Since the last term of Eq. (2.5) has the same form

as the object function in Eq. (2.3), an EM-shift algorithm can be utilized to search for the

local maximum of the current similarity function Eq. (2.5), as will be described below. In

other words, an EM-like procedure will search for the candidate image subregions, where

the candidate appearance model maximizes the similarity with the target appearance

model. The !i values in Eq. (2.5) are computed as:

!i =
M∑
m=1

√
om

~r
(
~�c;Σc

)�[b (~xi)−m]: (2.6)

The key point of the described method is the multiplication of the estimated den-

sity function (2.5) by |Σ|
. The objective function to be maximized now is called `
-

normalized':

f


(
~�;Σ

)
= |Σ|
=2f

(
~�;Σ

)
: (2.7)

Note that 
 ∈ (0; 1). The `
-normalization' introduces an informative prior for Σ to

regularize the solution and get non-biased estimates. An interesting connection of this

technique is with some image �ltering algorithms. For example, in [42], 
-normalized

image convolution was studied for selecting the scale of the �ltering operator.

To bring up again the main computational core of the described tracking method,

parameter ~� and Σ for which the maximum value of Eq. (2.7) is achieved. Based on the

Jensen's inequality of the '
-normalized' density function, we get:

logf
(~�;Σ) ≥ G(~�;Σ
=2; q1; : : : ; qN) =
N∑
i=1

log|Σ
=2|

!iN
(
~xi; ~�;Σ

)
qi

qi

; (2.8)

where qi-s are non-negative arbitrary constants and
∑N

i=1 qi = 1. Jensen's inequality

relates the value of a convex function of an integral to the integral of the convex function.
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Given its generality, the inequality appears in many forms depending on the context,

especially in probability theory, generalizing the statement that the secant line of a convex

function lies above the graph of the function (see [64] for details).

The idea is to involve the qi-s parameters that are contained in (2.8) and the de-

sired spatial parameters of the tracking kernel ~� and Σ from the '
-normalized' objective

function (2.7) in an iterative Expectation Maximization procedure to obtain the de-

sired Maximum Likelihood solution. At the same time, the obtained parameters ~� and

Σ will provide an accurate representation of the object area in the new image, position

and covariance respectively, enabling the automatic scale selection of the tracking region,

through the estimated covariance parameter Σ.

The EM algorithm is performed in the following E and M steps that are repeated

until convergence. Denote by ~�(k) and Σ(k) the estimates of the parameters at iteration

k.

• E step: Find qi-s to maximize G in (2.8) while keeping ~�(k) and Σ(k) �xed, by

using:

qi =
!iN

(
~xi; ~�;Σ

)
∑N

i=1 !iN
(
~xi; ~�;Σ

) : (2.9)

• M step: Maximize G in (2.8) with respect to ~�(k) and Σ(k) while keeping qi-s

constant. To achieve this, the part of G that depends on the parameters need to

be minimized. This part is g(~�) =
∑N

i=1 qilog|Σ|
=2N
(
~x; ~�;Σ

)
.

From @
@�
g(~�;Σ) = 0, the position and the covariance parameters are updated by:

~�k+1 =
N∑
i=1

qi~xi; (2.10)

~Σk+1 = �track

N∑
i=1

qi

(
~xi − ~�(k)

)(
~xi − ~�(k)

)T
; (2.11)

where �track = 1=(1 − 
). An outline of the EM-shift color histogram based tracking

method follows is provided in Algorithm.1.

In Fig. 2.1 an example is shown to illustrating the performance of the presented EM-

shift object tracking algorithm. The simulated data consists of 600 samples generated

using a mixture of three Gaussian distributions. The three modes are clearly visible

(horizontally aligned). The evolution of the tracking kernel, computed through mean-

shift iterations is illustrated in Fig. 2.1(a). In Fig. 2.1(b), the kernels computed during
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Algorithm 1 EM-shift color-based object tracking algorithm

Input: Image It+1, object model ~om;t, its initial location ~�
0
t+1 and shape covariance Σ0

t+1

for frame It+1.

1. Set k=0 (iterations)

2. Compute the candidate color histogram rm

(
~�

(k)
t+1;Σ

(k)
t+1

)
of the current region

de�ned by ~�kt+1 and Σ
(k)
t+1.

3. Calculate weights !i using (2.6).

4. Perform E step of EM algorithm. Compute qi-s using (2.9).

5. Perform M step of EM algorithm.

• Compute new position estimate ~�(k+1)
t+1 using (2.10).

• Compute new covariance estimate Σ
(k+1)
t+1 using (2.11).

6. If no new pixels are included in the new elliptical region de�ned by the new

estimates ~�(k+1)
t+1 , Σ

(k+1)
t+1 stop.

Otherwise, set k=k+1 and go to 1.

Output: An ellipse that contains the tracked object in frame It+1, de�ned by ~�
(k+1)
t+1 ,

Σ
(k+1)
t+1 .
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Figure 2.1: Qualitative performance of (a)mean-shift and (b) EM-shift tracking

algorithms on synthetic data representing a mixture of 3 Gaussians. Note the

scale adaptation of the Gaussian kernel to covariance of the middle local mode

of the mixture, achieved by the EM-shift algorithm, as opposed to the one of the

Mean-shift algorithm where no scale adaptation is performed.(Figure originally

appeared in [77]).

the iterations of the EM-shift algorithm with 
 = 1=2 (�track = 2) are illustrated. The

algorithm simultaneously estimates both the position of the local mode and the covariance

matrix that describes the shape of the mode.

As described in [77], �track = 2 is appropriate in case of a Gaussian distribution. If

some other distribution is approximated by a Gaussian some other value for �track might

be needed in order to avoid biased solutions.
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2.2 Random Walks for Image Segmentation

The aim of image segmentation is the partition of the image pixels into a set of re-

gions, which are visually distinct and uniform with respect to some property, such as

gray level, texture, color, etc. Another natural bottom-up view of segmentation is the

grouping of image sub-regions, or pixels, attempting to determine visually distinct and

uniform regions from image parts that naturally \belong together", based on a given

property/criterion.

Both partitioning and grouping can be considered as categories of the clustering prob-

lem, often referred in the literature as divisive and agglomerative clustering, respectively.

The general intuitive goal of clustering is to divide the data points into several groups

such that points in the same group are similar and points in di�erent groups are dissimilar

to each other.

A large number of segmentation methods have been proposed in the literature and

a review or a taxonomy of the methods is beyond the scope of this report. A brief

introduction to the segmentation based on the graph partitioning approach of spectral

clustering will be �rstly presented, enabling a smooth transition to the description of

the Random Walker-based image segmentation method, which is the main point of the

current section.

2.2.1 Mathematical Background

Spectral clustering goes back to Donath and Ho�man in 1973 [23], who �rst suggested to

compute graph partitions based on eigenvectors of the adjacency matrix of an available

dataset.

Let a set of data points x1; : : : ; xn and some notion of similarity sij ≥ 0 between all

pairs of data points xi and xj. Consider G = (V;E) to be an undirected weighted graph

with vertices (nodes) u ∈ V and edges e ∈ E ⊆ V ×V , with n = |V | and m = |E|, where
| · | denotes cardinality. Each vertex vi in this graph represents a data point xi. An edge

e, spanning two vertices, ui and uj, is denoted as eij, weighted with a non negative value

denoted as wij. The weighted adjacency matrix of the graph G is the W = (wij)i;j=1;:::;n:

The degree of a vertex ui ∈ V is de�ned as

di =
∑
eij

w(eij); ∀eij ∈ E: (2.12)

The degree matrix D is de�ned as the diagonal matrix with the degrees d1; : : : ; dn on

the diagonal.
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De�ne the m× n edge-vertex incidence matrix as

Aeijuk =


+1 if i = k

−1 if j = k

0 otherwise;

(2.13)

for every vertex uk and edge eij. The notation Aeijuk is used to indicate that the rows

of A are indexed by edge eij and the columns by node uk. Moreover, de�ne the m ×m

constitutive matrix, C, as the diagonal matrix with the weights wij of each edge eij along

the diagonal.

For any two subsets of vertices A;B ⊂ V , the weight matrix W is de�ned as

W (A;B) =
∑

i∈A;j∈B

wij: (2.14)

There are several popular constructions to transform a given set x1: : : : ; xn of data

points with pairwise similarities sij or pairwise distances dij into a graph. When con-

structing a weighted graph the goal is to model the local neighborhood relationships

between the data points. Thus, the most common used types of graphs, concerning the

neighboring connectivity are:

• � - neighborhood graph: All vertices whose pairwise distances are smaller than

e are connected.

• k - nearest neighbor graphs: Any vertex vi is connected with vertex vj if the

latter is among the k-nearest neighbors of vi.

• Fully connected graph: connect all vertices with positive weights with each other

based on the evaluation of the de�ned similarity function over the corresponding

data points.

The main tools for spectral clustering are graph Laplacian matrices. There exists a

whole �eld dedicated to the study of those matrices, called spectral graph theory [46],

however there is no unique convention which matrix exactly is called \graph Laplacian"

[22]. As an operator, A may be interpreted as a combinatorial gradient operator and

AT as a combinatorial divergence [12]. The isotropic combinatorial Laplacian is the

composition of the combinatorial divergence operator with the combinatorial gradient

operator, L = ATA. There are numerous approaches to the construction of a graph

Laplacian matrix of a graph-based representation of a given dataset. The unnormalized

graph Laplacian is de�ned as
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L = D −W: (2.15)

The unnormalized Laplacian matrix is symmetric and positive-de�nite. The smallest

eigenvalue of L is 0, the corresponding eigenvector is the constant one vector. Moreover,

L has n non-negative, real-valued eigenvalues �i ≥ 0.

There are two matrices called normalized graph Laplacians, de�ned as

Lsym = I −D−1=2WD−1=2; (2.16)

Lrw = I −D−1W: (2.17)

Lsym and Lrw have n non-negative, real-valued eigenvalues �i ≥ 0. The Laplacian

operator matrix can be de�ned as L = ATA. As a matrix, the Laplacian may be derived

directly from knowledge of V and E as:

Luiuj =


di if i = j

−weij if eij ∈ E
0 otherwise;

(2.18)

The notation Luiuj is used to indicate that the matrix L is being indexed by vertices

vi and vj. To give an intuitive implementation of a supervised spectral clustering, two

general algorithmic templates are presented below, based on the unnormalized and the

normalized Laplacian, respectively.

In all spectral clustering algorithms, the main idea is to change the representation of

the abstract data points xi to points yi in <k. It is due to the properties of the graph

Laplacians that this change of representation is useful, so that clusters can be trivially

detected in the new representation. The wide variety of spectral clustering algorithms

is up to the number of choices concerning the type of similarity graph, the weighting

function and the type of the Laplacian matrix that will be chosen to obtain the resulting

clusters.

Graph-Cuts and Random Walks are two special cases of spectral clustering toward the

graph-based partitioning problem. A random walk on a given similarity graph is a sto-

chastic process which randomly jumps from vertex to vertex, according to [43]. A spectral

clustering algorithm based on random walks can be interpreted as trying to �nd a parti-

tion of the graph such that a random walk that begins from a given cluster, stays long

within that cluster and seldom jumps between clusters.
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Algorithm 2 Unnormalized spectral clustering

Input: Similarity matrix S ∈ <n×n, number of k clusters to construct

• Construct a similarity graph based on the desired graph connectivity scheme.

Generate W, the weighted adjacency matrix, based on the chosen weighting

function.

• Compute the unnormalized Laplacian L of (2.15).

• Compute the �rst k eigenvectors u1; : : : ; uk of L.

• Let U ∈ <n×k be the matrix containing the vectors u1; : : : ; uk as columns.

• Consider the vector yi ∈ <k fori = 1; : : : ; n to be the i− th row of U.

• Cluster the points yi in <k with the k -means algorithm into clusters C1; : : : ; Ck.

Output: Clusters A1; : : : ; Ak with Ai = j|yj ∈ Ci.

Algorithm 3 Normalized spectral clustering according to [65]

Input: Similarity matrix S ∈ <n×n, number of k clusters to construct

• Construct a similarity graph based on the desired graph connectivity scheme.

Generate W, the weighted adjacency matrix, based on the chosen weighting

function.

• Compute the unnormalized Laplacian L of (2.15).

• Compute the �rst k generalized eigenvectors u1; : : : ; uk of L of the gen-

eralized eigenproblem Lu = �Du.

• Let U ∈ <n×k be the matrix containing the vectors u1; : : : ; uk as columns.

• Consider the vector yi ∈ <k fori = 1; : : : ; n to be the i− th row of U.

• Cluster the points yi in <k with the k -means algorithm into clusters C1; : : : ; Ck.

Output: Clusters A1; : : : ; Ak with Ai = j|yj ∈ Ci.
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The transition probability of a random walker jumping in one step from vertex vi

to vertex vj is proportional to the edge weight wij and is given by pij = wij=di. The

transition matrix P = (pij)i;j=1;:::;n of the random walk is thus de�ned by P = D−1W .

If the graph is connected and non-bipartite, then the random walker always possesses

a unique stationary distribution � = (�1; : : : ; �n), where �i = di=vol(V ) and vol(V ) =

Σi∈V di. It stands that � is an eigenvalue of Lrw with eigenvector u if and only if 1−� is an
eigenvalue of P with eigenvector u. It is well known that many properties of a graph can

be expressed in terms of the corresponding random walk transition matrix P , see [43] for

an overview. Therefore, the largest eigenvectors of P and the smallest eigenvectors of Lrw

can be used to describe cluster properties of the graph, thus to further develop a spectral

clustering algorithm based on random walks on a graph by utilizing the Laplacian Lrw.

An application of a graph partitioning algorithm based on Random Walks to the

image segmentation problem [30, 29] will be presented in Section 2.2.2.

2.2.2 Random Walker-based Image Segmentation

In [31, 30] a novel approach to the K -way image segmentation problem is presented,

based on the formulation of Random Walks on a graph-based representation of an image.

Given user-de�ned seeds (each seed is a single or a set of image pixels) indicating regions

of the image belonging to K objects, consider that each seed speci�es a location with a

user-de�ned label. The introduced algorithm labels an unseeded pixel by answering the

question: Given a random walker starting at this location, what is the probability that it

�rst reaches each of the K seed points?

By performing the algorithmic computation, a K -tuple vector is assigned to each

unseeded pixel that speci�es the probability that a random walker starting from that

pixel will �rst reach each of the K seed points (soft segmentation-the values in each tuple

sum up to unity). A �nal segmentation may be derived from these K -tuples by selecting

for each pixel the most probable seed destination for its random walker. By biasing

the random walker to avoid crossing sharp intensity gradients, a quality segmentation is

obtained that respects object boundaries (including weak boundaries), as opposed to the

popular graph-cut algorithm that is guaranteed to give the minimum-cut between two

groups of labeled nodes. The above statement is validated by the segmentation of the

synthetic-image-example illustrated in Fig. 2.2.

This calculation can be performed without the actual simulation of a random walk,

which is infeasible for segmentation problems. To obtain the K -tuple vector of prob-

abilities for each unseeded graph vertices, a sparse, symmetric positive-de�nite system
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of K − 1 linear equations must be solved. An analytic mathematical formulation of the

problem is presented in [30].

The advantage of formulating the problem on a graph is that purely combinatorial

operators may be used that require no discretization and therefore incur no discretization

errors or ambiguities. It has been previously established [39, 24] that the probability a

random walker �rst reaches a seed point exactly equals the solution to the Dirichlet

problem [39] with boundary conditions at the locations of the seed points and the seed

point in question �xed to unity while the others are set to zero.

To begin with the review of the main algorithmic parts, an image should be treated

as a purely discrete object, thus the undirected similarity graph G = (V;E), as de�ned

in Section 2.2.1. Each vertex of the graph now represents an image pixel, whereas an

undirected edge between any two vertices represents the interaction between the corre-

sponding image pixels or a set of pixels within a local neighborhood. Each edge is assigned

a real-valued weight corresponding to the likelihood that a random walker will cross that

edge (e.g., a weight of zero means that the walker may not move along that edge). The

likelihood value is computed based on the weighting function W that evaluates a single

or multiple combined properties of the interacting pixels.

Let n = |V | the number of image pixels andm = |E| the number of edges that connect
interacting vertices (pixels) in the constructed graph. Given the seeds, the set of graph

vertices V is divided into two disjoint subsets, the set of labeled (marked) vertices Vm

and the set of unlabeled (unmarked) vertices VU , such that Vm∪VU = V . The goal of the

K -way graph-based segmentation is to label each free vertex ui ∈ VU with a label from

the set G = {g1; : : : ; gk}. The marked vertices are assigned with a label yi ∈ G.
The random walker approach to this problem is to assign to each free vertex ui ∈ VU ,

the probability xs that a random walker starting from that vertex �rst reaches a marked

vertex vj ∈ Vm assigned to label gs (set xsj = 1), as opposed to reaching a vertex vj ∈ Vm
with label gq 6=s (set ti sj = 0), obtaining a soft segmentation. The solution to this problem

is given by the minimization of the following energy equation:

Espatial = xsTLxs; (2.19)

where xs is a real-valued n× 1 vector. L represents the combinatorial Laplacian matrix

of size n×n de�ned in Eq. (2.18) of Section 2.2.1. By partitioning the Laplacian matrix

into labeled Lx and free blocks B, we obtain:

L =

[
LM B

BT LU

]
(2.20)
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and de�ning the indicator vector f s of size |VM | × 1, as

f sj =

{
1 if yj = gs

0 if yj 6= gs;
(2.21)

the minimization of the energy in (2.19) with respect to xsU can be obtained by solving

the following sparse, symmetric, positive-de�nite system of K linear equations

LUx
s
U = −Bf s: (2.22)

For the resulting probabilities, it holds that
∑

s x
s
i = 1;∀i. Therefore, each graph

vertex is soft-assigned to each of the K labels. The �nal segmentation is completed by

assigning each free vertex to the label for which it has the highest probability, i.e., yi =

maxi(x
s
i ). The above derivation reveal a property of the RandomWalker-based algorithm:

In the absence of labeled points (i.e., VM = �), the probabilities are unde�ned. Therefore,
this algorithm is presented as a strictly semi-automated segmentation algorithm.

An extension of this algorithm is introduced in [29], presenting a new mechanism that

enables the incorporation of label priors into the above framework and resulting in a seg-

mentation algorithm that need not have any user interaction or an explicit determination

of seeds. Given a set of real-valued vertex-wise priors �si that represent the probability

density that a feature (i.e pixel color intensity) at vertex ui belongs to the distribution of

label gs, the diagonal square matrix Λs is de�ned having the values of �s on the diagonal.

A new functional is considered based on the label prior values. The so called aspatial

functional may be combined into a single functional weighted by the free parameter 
:

Es
total = Es

spatial + 
Es
aspatial: (2.23)

The minimum energy of (2.23) is obtained by solving the following modi�ed system

with respect to xs (
L + 


k∑
r=1

Λr

)
xs = 
�s: (2.24)

The modi�ed system of linear equations is guaranteed to be positive de�nite (and

therefore nonsingular), since L is positive semi-de�nite and the diagonal matrices (see Λ)

are strictly positive de�nite. If desired, the seeds may also be incorporated by solving a

new system (
LU + 


k∑
r=1

Λr

)
xsU = 
�sU −Bf s: (2.25)
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Figure 2.2: Comparison of Random Walker-based algorithm to graph cuts for a

weak boundary using seeds. (a) Original synthetic image. (b) Graph cuts solu-

tion. (c) Random walker-based solution. (d) Pixel-wise probabilities computed

by the Random Walker-based algorithm (Figure originally appeared in [30]).

Figure 2.3: Graph construction of Random Walker-based graph partitioning tech-

nique using label priors (Figure originally appeared in [29]).

The introduced parameter 
 controls the weighting of the prior values over the ob-

servations encoded by the edge weights of the graph and the seeds in case they are

considered. Thus, the tuning of parameter 
 is crucial to the behavior and the e�ciency

of the random walks based image segmentation technique presented. A new graph repre-

sentation is required to enforce the incorporation of the prior values to the problem. The

graph representation illustrated in Fig. 2.3, as well as the development of the algorithm

bears a close resemblance to the construction of the graph cuts problem with the inclu-

sion of vertex-wise priors. In the terminology of graph-cuts the weights wij of an edge

eji between vertices ui and uj corresponds to the N-links (or pairwise energy potentials)

and the weights 
�si to the T-links (or unary energy potentials).

To summarize, three di�erent closely related algorithms may be obtained based on

the development in this subsection and the provided equation regarding the systems of
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linear equations that simulate the random walks of a similarity graph. A �rst algorithm

is based only on the de�ned seed points, utilizing the Eq. (2.22). In that case, the user

interaction or a automatic mechanism that will determine the seed points is necessary,

based on speci�ed image cues (i.e color, texture etc) depending on the application. A

second algorithm is based only on label prior values. In that case, a mechanism that will

provide the prior values is necessary, based also on speci�ed image cues depending on

the application and Eq. (2.24) is utilized. The third case refers to a combined algorithm,

where both seeds and priors are combined in Eq. (2.25). A single algorithmic template

of the three aforementioned algorithms is provided in Algorithm 4.

It is important to note that the main computational hurdle regarding the described

random walks based image segmentation is the numerical solution of each of the large,

sparse, symmetric positive-de�nite systems of linear equations i.e Eq. (2.22). Iterative

methods, such as preconditioned conjugate gradient, exhibit a more acceptable memory

consumption, as well as easy parallelization, as opposed to the direct methods (e.g LU

decomposition), see [28] for an excellent treatment on matrix computations.

Algorithm 4 Random Walker based image segmentation algorithm [29, 30]

Input: Image I, weighting function W, optional:Seeds

1. Construct an undirected graph to model pixels Iij. Decide on their connectivity.

2. Use the weighting function W to generate edge weights wij, between any two

connected vertices of the graph, ui and uj. Function W may model the distance

of color intensities between connected vertices.

3. Construct the graph Laplacian L.

4. Use the seed vertices to generate vector f from (2.21), if available.

5. OPTIONAL: Compute prior values �si for each vertex ui for all potential labels

gs based on application-speci�c image cues.

6. Use an e�cient numerical method to solve the appropriate system of linear equa-

tions ((2.22),(2.24),(2.25)).

Output: A probability vector xsU for each unlabeled graph vertex(pixel) to belong to

each of the potential labels gs (class regions).

Figure 2.4, illustrates the qualitative segmentation performance of the potential Ran-

dom Walker-based algorithms against a simple density estimation based segmentation.
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(a) (b) (c) (d)

Figure 2.4: (a) input image of cells. (b) Density estimation-based segmentation

result. (c) Random Walker-based segmentation result by using seeds only. (d)

Random Walker-based segmentation result using seeds and priors (Figure origi-

nally appeared in [29]).

The simple density estimation of the two groups (cells, background) �nds pieces of the

cells and background, but ultimately yields a fractured segmentation that lacks spatial

cohesion. Applying the Random Walker-based algorithm yields a correct segmentation

of the cell within which the seeds were placed, but incorrectly identi�es the other cells.

In that case, additional seed points are required within each cell that is to be segmented,

which leads to an undesired situation. The extended RandomWalker-based segmentation

formulations based on equations (2.24), (2.25) e�ciently combine the intensity pro�ling

and long-range aspects of the density estimation approach with the spatial cohesion of the

Random Walker-based algorithm in a principled way that produces the correct result, de-

spite variability of the intensity values present in the image, according to [29]. Moreover,

their novelty is to extend the success of the basic Random Walker approach (Eq. (2.22))

by employing image priors to �nd disconnected pieces of an object and to remove the

necessity of user interaction, which set these algorithmic procedures suitable and highly

e�cient to be used in the proposed framework of joint tracking and segmentation.
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Chapter 3

Methodology

3.1 Method Preface

For each input video frame, the proposed framework encompasses a number of algorithmic

steps, tightly interconnected in a closed-loop, which is illustrated schematically in Fig.3.2.

To further ease understanding, Fig. 3.3 provides sample intermediate results of the most

important algorithmic steps.

The method assumes that at a certain moment t in time, a new image frame It be-

comes available and that a �ne object segmentation mask Mt−1 is available, as a result

of the previous time step t − 1 (see Fig. 3.1). For time t = 0, Mt−1 should be provided

for initialization purposes. Essentially, Mt−1 is a binary image, where foreground ob-

ject pixels have a value of 1 and background pixels that of 0. The goal of the method

is to produce the current object segmentation mask Mt. Towards this end, the spatial

mean and covariance matrix of the foreground region of Mt−1 is computed, thus de�n-

(a) (b) (c)

Figure 3.1: (a) Previous image frame at time t-1. (b) Segmented object mask

Mt−1 of frame It−1. (c) New image frame It at current time t, where the object

is to be tracked and segmented.
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Figure 3.2: Outline of the proposed method.

ing a spatial Gaussian distribution, practically an ellipsoid region on image plane that

coarsely representing the location and the shape of the object at time t − 1. Addition-

ally, a color-histogram-based appearance model of the segmented object (i.e., the one

corresponding to the foreground of Mt−1) is computed using a Gaussian weighting kernel

function. The iterative (EM-shift) tracking algorithm in [77] is initialized based on the

computed Gaussian distribution (ellipsoid) and the object appearance model. The track-

ing thus performed, results in a prediction of the position and covariance of the ellipsoid

representing the tracked object. Based on the transformation parameters of the ellipsoid

between t − 1 and t, a 2D spatial a�ne transformation of the foreground object mask

Mt−1 is performed. The propagated object mask M
′
t indicates the predicted position

and shape of the object in the new frame It. The Hausdor� distance [50] between the

contour points of Mt−1 and M
′
t masks is then computed and a shape band [4] around the

M
′
t contour points is determined, denoted as Bt. The width of Bt is equal to the com-

puted Hausdor� distance of the two contour point sets. This is performed to guarantee

that the shape band contains the actual contour pixels of the tracked object in the new

frame. Additionally, the pixel-wise Distance Transform likelihoods for the object and

background areas are computed together with the pixel-wise color likelihoods based on

region-speci�c color histograms. Pixel-wise Bayesian inference is applied to fuse spatial
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Figure 3.3: Sample intermediate results of the proposed tracking and segmenta-

tion algorithm. To avoid clutter, results related to the processing of the scene

background are omitted.

and color image cues, in order to compute two probability distributions for the object

and the background regions, respectively. Given the estimated pdfs for each region, a

Random Walker-based segmentation algorithm is �nally employed to obtain Mt in It.

The proposed methodology is divided in two distinct parts, one for object tracking

and one for object segmentation. The following two sections of this chapter are dedicated

to these parts.

3.2 Visual Object Tracking

This section presents the visual object tracking part of the proposed methodology (see

the bottom-left part of Fig. 3.2). It is further divided in two subsections describing the

functionality of the EM-shift color-based tracking algorithm and the a�ne propagation

of the prior object shape.

3.2.1 EM-shift Color Based Object Tracking

The tracking method presented in [77], is closely related to the widely-used and robust

mean-shift tracking method [18, 16]. More speci�cally, this algorithm coarsely represents
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the objects' shape by a 2D ellipsoid region, modeled by its center ~� that is a mean vector

of spatial coordinates on the image plane and the covariance matrix V that approximates

the shape of the tracked object, as can be seen in Fig. 3.4.

The spatial covariance Σ is based on the second order moment of the spatial coordi-

nates of the pixels ~xi ∈ Xo, which are assigned to the object O of spatial mean ~� and

can be computed as follows:

Σ =
∑
xi∈Xo

(
~xi − ~�

)(
~xi − ~�

)T
(3.1)

Thus, a Gaussian probability density function p
(→
x
)

= N
(→
x;
→
� ;Σ

)
is utilized, as a

generative model, to represent the image data samples of the tracked object area. The

covariance of the Gaussian kernel is the crucial parameter towards the scale adaptation of

the tracking region to the size/shape changes of the tracked object, that is presented by

this algorithmic extension. A Maximum Likelihood (ML) estimation for the mean vector ~�

and the covariance V is a solution toward the tracking task localizing the tracked object

in a new frame based on its color appearance. A detailed derivation of the tracking

algorithm is presented in Section 2.1.

The tracking task is performed based on color information only, thus the appearance

model of the tracked object is represented by an M-bins color histogram of the image

pixels under the 2D ellipsoid region corresponding to ~� and Σ, is computed using a

Gaussian weighting kernel function.

GivenMt−1 and It−1, ~�t−1, Σt−1 the target appearance model om of the tracked object

can easily be computed by Eq. (2.2), utilizing the color information of the pixels in It−1

which are indicated to belong to the object area according to Mt−1 at time t − 1 of an

image sequence. Given a new image frame It, where the tracked object is to be local-

ized, the tracking algorithm evolves the initial ellipsoid region of previously computed

covariance Σt−1 and position ~�t−1 based on the Expectation-Maximization iterative pro-

cedure described in Algorithm 1, in order to determine the image area in It that best

matches the appearance model om;t−1 of the tracked object in terms of a Bhattacharrya

coe�cient-based color similarity measure.

This gives rise to the parameters ~�t and Σt that represent the predicted object position

and covariance in It. The updated position indicates the localization of the object in the

new frame, whereas the evolved covariance of the ellipsoid region indicates the scale

adaptation of the tracking kernel towards the object shape/size. The latter is one of the

main contributions of the utilized tracking method and is crucial regarding the e�ciency

of the proposed methodology, as will become more clear later in this chapter.
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Figure 3.4 shows representative examples regarding the evolution of the tracking

Gaussian kernel, computed by the iterative EM procedure of the Algorithm 1. Notice the

adaptation of the Gaussian kernel covariance between the initial and the �nal estimation

regarding the object shape and size changes.

Finally, Fig. 3.5 illustrates the output of the described EM-shift color-based track-

ing procedure described in this section, consisting of a new Gaussian kernel estimation

tracking the object in the new frame It, represented by the position ~�t and covariance Σt

estimations/predictions.

Figure 3.4: Representative examples of the Gaussian kernel evolution during the

EM-shift tracking procedure. Red-dotted ellipses in each image correspond to

intermediate estimations of the Gaussian kernel parameters (position and covari-

ance), one for each EM iteration performed by the EM-shift tracking procedure.

The green-dotted ellipse in each image represents the �nal estimation on the pa-

rameters of the Gaussian kernel, after EM convergence is achieved, giving rise to

new estimated parameters regarding the location and spatial covariance of the

Gaussian kernel, that is tracking the object in the new frame.
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(a) (b)

Figure 3.5: In (a) the Gaussian kernel of position ~�t−1 and covariance Σt−1, as

well as the prior object shape mask Mt−1 from previous It−1 are illustrated, both

superimposed on image frame It and colorized in red. Image in (b) illustrates

the previous Gaussian kernel in red and the newly estimated Gaussian kernel in

blue. The latter is computed by the tracking method for It, providing an updated

position ~�t and covariance Σt) of the tracked object.

3.2.2 A�ne Propagation of Object Shape

The EM-shift tracking algorithm presented above assumes that the shape of an object

can be accurately represented as an ellipse. In the general case, this is a quite limiting

assumption. In the cases where this assumption does not hold, the objects' appearance

model is forced to include background pixels, causing tracking to drift. The goal of this

work is to prevent tracking drifts by integrating tracking with �ne object segmentation.

To accomplish that, the contour Ct−1 of the object mask in Mt−1 is propagated to

the current frame It based on the transformation suggested by the parameters ~�t−1, ~�t,

Σt−1 and Σt. A 2D spatial, a�ne transformation is de�ned between the corresponding

ellipses. Exploiting the obtained Σt−1 and Σt covariance matrices, a linear 2 × 2 a�ne

transformation matrix At can be computed based on Σ1=2. It is known that a covariance

matrix is a square, symmetric and positive semide�nite matrix. The square root of the

matrix Σ can be calculated by diagonalization as:

Σ1=2 = QΛ1=2Q−1; (3.2)

where Q is the square 2×2 matrix whose ith column is the eigenvector qi of Σ and Λ1=2 is

the diagonal matrix whose diagonal elements are the square values of the corresponding

eigenvalues. Since Σ is a covariance matrix, the inverse of its Q matrix is equal to

the transposed matrix QT , therefore Σ1=2 = QΛ1=2QT . Accordingly, we compute the
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transformation matrix At by:

At = QtΛ
1=2
t Λ

−1=2
t−1 QT

t−1: (3.3)

Finally, C ′t is derived from Ct based on the following transformation

C ′t = At(Ct − ~�t−1) + ~�t: (3.4)

The result indicates a propagated contour C ′t, practically a propagated object mask M
′
t

that serves as a prediction of the position and the shape of the tracked object in the new

frame It, It attains temporal coherence of the implicitly tracked object contour, between

consecutive object movements and appearance changes. Finally, Fig. 3.7 illustrates the

procedure of object shape propagation, based on the estimated position and covariance

parameters, computed by the EM-shift method closing the object tracking part of the

proposed framework.

(a) (b) (c)

Figure 3.6: A�ne propagation of the prior object shape. Image (a) illustrates

the prior object contour Ct−1 and the covariance estimation Σt−1 for the previ-

ous frame It−1 superimposed on the current frame It, in red color. In (b), the

tracking task is initialized by the parameters ~�t−1 (red dot) and Σt−1 (red el-

lipse) superimposed in the current frame It, and after convergence it results the

updated parameters ~�t (blue dot) and Σt (blue ellipse) representing the object's

current position and shape/scale. These parameters suggest an a�ne transfor-

mation of the prior object contour Ct−1 (red contour) to the C
′
t (blue contour)

(see Eq. (3.4)), which are illustrated in (c), approximating the current real object

contour Ct.

3.3 Visual Object Segmentation

This section presents the segmentation part of the proposed methodology (see the right

part of Fig. 3.2). First, the idea of creating a shape band area, based the a�ne-propagated
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(a) (b) (c) (d)

Figure 3.7: A�ne propagation of the prior object shape. Image (a) illustrates

the prior object mask Mt−1 and the covariance estimation Σt−1 (ellipse in red

color) for the previous frame It−1. In (b), the tracking task is initialized by the

parameters ~�t−1 and Σt−1 (red ellipse) and after convergence it results the updated

parameters ~�t and Σt (green ellipse) representing the object's new position and

shape/scale. The a�ne transformation computed by Eq. (3.4) is illustrated in

two parts. In (c) the linear transformation part of the Eq. (3.4) is applied to the

object maskMt−1, whereas in (d) the translation part of the a�ne transformation

is applied to result the object mask Mt.

prior object shape is described. The following two subsections outline the extraction of

pixel-wise spatial and color static image cues. Then, the probabilistic fusion of these cues

using Bayesian Inference is presented. The probabilistic fusion results pixel-wise posterior

values for the segmentation classes, which are �nally utilized to guide the RandomWalker-

based segmentation method, resulting in the desired �ne foreground object mask, as will

be described in the last section.

3.3.1 Object Shape Band

The propagated object contour C
′
t approximates the actual but unknown object bound-

aries, noted as contour Ct, in the current frame It. Thus, a direct segmentation based on

the C
′
t will not provide an accurate mask of the tracked object. However, it is assumed

that the actual object boundaries can be precisely localized around the predicted object

contour C
′
t . To this end, the object shape band Bt is determined. Our notion of shape

band is similar to the ones used in [4, 75]. Bt can be regarded as an area of uncertainty,

where the true object contour may be detected in image It. An illustration of the shape-

band area is provided in Fig. 3.8. The width of Bt is determined by the Euclidean 2D

Hausdor� distance [50] between the contours Ct−1 and C
′
t , that is given by:

dH(C ′t; Ct−1) = max{supx∈C′tinfy∈Ct−1d(x; y); supy∈Ct−1infx∈C′td(x; y)} (3.5)
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where sup represents the supermum and inf represents the in�mum. Given a subset S of

a partially ordered set T, the supremum (sup) of S, if it exists, is the least element of T

that is greater than or equal to each element of S. The in�mum of a subset S of some set

T is the greatest element (not necessarily in the subset) that is less than or equal to all

elements of the subset S. Thus, the Hausdor� distance calculates the greatest of all the

minimum distances of each point of each of the point sets to each point of the other set.

The width of Bt is limited by the spatial properties of C ′t, in order to retain a non-

compact annotated area. In other words, that the shape band area should never cover the

entire inner object area. The automatically identi�ed area can be seen as a symmetrically

dilated object contour, de�ning an area of uncertainty, a search area in other words, where

the object boundaries may be localized in the new frame It. The usability of the object

shape band will become more clear in the following subsection.

(a) (b)

Figure 3.8: (a) Given the previous object contour Ct−1 (red outline) and the

propagated object contour C ′t (blue outline), the Hausdor� distance between them

determine the width of the shape band area. (b) The shape band is created sym-

metrically around the C ′t in the right image, de�ning an local area of uncertainty,

where the true object boundaries may be detected.

3.3.2 Spatial Prior Image Cue

The �rst of the image cues that is computed to discriminate between the foreground

object and the background classes refers to the pixel-wise spatial cue based on the known

propagated object contour C
′
t . The Euclidean 2D Distance Transform is used to compute

the probability of a pixel ~xi in image It to belong to either the object Lo or the background

Lb region/class, based on its 2D location ~xi = (x; y) on the image plane. As a �rst step,
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the shape band Bt of the propagated object contour C ′t is considered and its inner and

outer contours are extracted. The Distance Transform is then computed starting from the

outer contour of Bt towards the inner part of the object. The probability P (Lo|xi) of a
pixel to belong to the object given its image location is set proportional to its normalized

distance from the outer contour of the shape band. For pixels that lie outside the outer

contour of Bt, it holds that P (Lo|xi) = �, where � is a small constant.

Similarly for the background, the Euclidean Distance Transform measure starting

from the inner contour of Bt towards the exterior part of the object is computed. The

probability P (Lb|xi) of a pixel to belong to the background given its image location is set
proportional to its normalized distance from the inner contour of the shape band. For

pixels that lie inside the inner contour of Bt, it holds that P (Lb|xi) = �. Both probability

maps are illustrated in Fig. 3.9.

3.3.3 Color Prior Image Cue

The second of the image cues that is computed to discriminate between the foreground

object and the background classes is color, represented by a histogram that is updated

after each segmentation step.

Based on the segmentation mask Mt−1 of the image frame It−1 that is available from

the previous segmentation step, a partition of image pixels Ω into sets Ωo and Ωb is de-

�ned, indicating the object and background image pixels, respectively. The appearance

model of the tracked object is represented by a color histogram de�ned as Ho computed

on the Ωo set of pixels. The normalized value in a histogram bin c encodes the condi-

tional probability P (c|Lo). Similarly, the appearance model of the background region

is represented by the color histogram Hb, computed over pixels in Ωb and encoding the

conditional probability P (c|Lb). Fig. 3.10 illustrates some examples of foreground color

probability maps, representing the pixel-wise values for P (c|Lo).

3.3.4 Probabilistic Fusion of Prior Image Cues

Image segmentation can be considered as a pixel-wise classi�cation problem for a number

of classes/labels. Neither the color, nor the spatial image cue individually provide an

accurate representation of the desired foreground object class. Our goal is to e�ciently

combine the computed pixel-wise spatial and color probabilities to generate the posterior

probability distribution for each of the classes Lo and Lb, which will be further utilized

to guide the Random Walker-based image segmentation.
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(a) (b)

(c) (d)

Figure 3.9: The Distance Transform based spatial cue computed for both fore-

ground object and background classes. (a) The input image frame It and (b)

the shape band computed. (c) The map indicating the probability of each pixel

to belong to the foreground object P (Lo|xi), based on the normalized Distance

Transform metric which starts from the outer contour of the shape band to the

inner area of the object. (d) The map indicating the probability of each pixel to

belong to the background P (Lb|xi) based on the normalized Distance Transform

metric which starts from the inner contour of the shape band to the outer of the

object.
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(a) (b) (c) (d)

Figure 3.10: Examples of input images and obtained foreground maps, mod-

eling the pixel-wise probability P (c|Lo) of the pixel's color to belong to the

foreground object based regarding the updated foreground color histogram Ho.

Notice the ambiguities that arise based on the color cue based on the natural

foreground/background boundaries of the real images. (a) & (b) A human hand

in action in a cluttered background. (c) A green caterpillar in an image of low

resolution. (d) A green book of complex texture in a homogeneous background.

Using Bayesian inference, we formulate a probabilistic framework to fuse the available

prior image cues, based on the pixel color and position information, as described earlier.

Considering the pixel color c as the evidence and conditioning on pixel position xi in

image frame It, the posterior probability distribution for class Ll is given by

P (Ll | c; xi) =
P (c | Ll; xi)P (Ll | xi)∑N
l=0 P (c | Ll; xi)P (Ll | xi)

; (3.6)

where N = 2 in our case. The probability distribution P (c | Ll; xi) encodes the condi-

tional probability of color c taking the pixel class Ll as the evidence and conditioning

on its location xi. We assume that knowing the pixel position xi, does not a�ect our

belief about its color c. Thus, the probability of color c is only conditioned on the prior

knowledge of its class Ll following that P (c | Ll; xi) = P (c | Ll). Given this, Eq. (3.6)

transforms to

P (Ll | c; xi) =
P (c | Ll)P (Ll | xi)∑N
l=0 P (c | Ll)P (Ll | xi)

: (3.7)

The conditional color probability P (c | Ll) for the class Ll is obtained by the color

histogram Hl, as described in Section 3.3.3. The conditional spatial probability P (Ll |
xi) is obtained by the Distance-Transform measure calculation, as described in Section

3.3.2. Figure 3.11 illustrates the fusion procedure of the proposed probabilistic framework

and highlights the advantages of combining two static class-speci�c image cues. Notice
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the results in Figs. 3.11(e) and 3.11(f). In the hand sequence, the background patches

with similar color with the hand presented in (a) have been suppressed in (e) under the

in
uence of the certainty provided by the foreground spatial cue in the corresponding

image areas. In the book sequence the patches within the book area of similar color with

the background illustrated in (b) have been �lled in (f) for the same reason.

There are many cases in object tracking where the foreground object consists of colors

that also appear to be dominant in the background, see for example Fig. 3.10(a,b). In

such cases, the probabilistic fusion of the color cue with the spatial cue may not avert

the probability P (Lo | c; xi) to be higher than the corresponding P (Lb | c; xi) for the

foreground class for a pixel xi. Such information will lead the following algorithmic step

of the Random Walker-based segmentation to produce background seeds or priors to the

foreground object region and vice versa. Thus, to prevent such behavior, the prior object

shape information is exploited. Given the computed shape band of the propagated object

contour C
′
t for the current frame It, the image region of the interior of the inner contour

of the shape band is assumed to belong to the foreground object. This conservative

assumption enables us to discard posterior probabilities P (Ll | c; xi) of pixels within that
region for which it holds that P (Lo | c; xi) ≤ P (Lb | c; xi) setting both to 0.5. Moreover,

the posterior probabilities of pixels within the region of the image that is outside of the

outer contour of the shape band for which it holds that P (Lo | c; xi) ≥ P (Lb | c; xi)
are discarded and set equal to 0.5. By setting the posterior probabilities of pixels that

exhibit such behavior to 0.5, we let their labeling to be \decided" by their neighboring

pixels. This simple technique will prevent inexistent foreground object to be generated

by the segmentation procedure in the background and background regions to be created

within the true foreground object area, because of similar color appearance. To conclude,

a more elaborate technique would be more e�ective in case of more complex appearance

of the foreground object, where a large region within it will contain similar colors with

those of the background.

3.3.5 Random Walker Based Object Segmentation

The resulting posterior distribution P (Ll | c; xi) for each of the two labels Lo and Lb

(segmentation classes) on pixels xi guides the Random Walker-based image segmentation

towards an explicit and �ne segmentation of the tracked object in It.

In order to represent the image structure by random walker biases, we map the edge

weights to positive weighting scores computed by the Gaussian weighting function on the

normalized Euclidean distance of the color intensities between two adjacent pixels, thus
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(a) (c) (e)

(b) (d) (f)

Figure 3.11: Images in (a),(b) represent the pixel-wise color probabilities P (c|Lo).

Images in (c),(d) refer to the pixel-wise spatial probabilities P (Lo|xi). Finally,

performing the probabilistic fusion of the two image cues, images in (e),(f) repre-

sent the fusion maps, which e�ciently indicates the foreground object after the

posterior probabilities computed by Eq. (3.7).

the image brightness. The Gaussian weighting function is

wi;j = e−
�
�

(‖ci−cj‖)2 + �; (3.8)

where ci stands for the vector containing the color channel values of pixel/node i, � is a

small constant (i.e � = 10−6) and � is a normalizing scalar � = max(‖ci − cj‖);∀i; j ∈ E.
The parameter � is user-de�ned and modulates the spatial random walker biases, in

terms of image color contrast (brightness). Figure 3.12 illustrates the Gaussian weighting

function in Eq. (3.8) for di�erent values of �. Moreover, Fig. 3.13 illustrates the graph

Laplacian matrix, as a color contrast map. For di�erent values of � in the weighting

function of Eq. (3.8), the Laplacian matrix of size equal to the number of image pixels

per dimension is populated. For a �xed �, we compute the column-wise summation and

obtain a measure of brightness for each image pixel based on the edge weights of all its

direct connected neighbors. For example, a pixel in a 4-connected graph, which models

the image, with very low color contrast against all its direct connected pixels will obtain

a mean value of 1 in the visualized color-contrast map, indicating that it is very likely

for a random walker to cross any of its edges (weak bias).

Lower values of �, implies that even a high value of color residual, which indicates high

color contrast (Euclidean distance of color vectors), thus strong edge, will be weighted
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with high probability of being crossed by a random walker, meaning relaxed random

walker biases. See for example the function graph for � = 10 and the corresponding

image from Fig. 3.13. Red color for an image pixel stands for high probability (near

to 1) of a random walker to cross each of its adjacent edges. Blue color stands for low

probability of a random walker to cross each of the adjacent edges of that pixel. Higher

values of the � parameter implies for a strict scheme of weighting. Only edges that

connect pixels of very low contrast will be weighted with a high probability to be crossed

by a random walker (see Fig. 3.13(b-c)).
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Figure 3.12: Illustration of the Gaussian weighting function, de�ned by Eq. (3.8)

and utilized to measure color contrast between neighboring pixels and populate

the combinatorial Laplacian graph of the image using Eq. (2.18). Multiple graphs

of the function are superimposed in the �gure for di�erent values of � parameter.

Many good sources exist on the solution to large, sparse, symmetric, linear systems

of equations [28]. A direct method, such as LU decomposition with partial pivoting

is a fair option, although it is impractical for large systems because of high memory

and computational requirements. The standard alternative to the class of direct solvers

for large, sparse systems is the class of iterative solvers [32]. These solvers have the

advantages of a small memory requirement and the ability to represent the matrix-vector
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(a) � = 10 (b) � = 25 (c) � = 50

(d) (e) (f)

Figure 3.13: Visualization of Laplacian matrix for di�erent values of � parameter.

In (a) a low value of � equal to 10 is used in Eq. (3.8) to populate the Lapla-

cian matrix. The resulting color contrast map (image brightness) indicates weak

random walker biases even for natural strong edges in the image. In (b) � is set

equal to 25. Random walker biases are now stronger and only edges of low color

contrast are valued with higher Gaussian weighting values. In (c), � is set to 50.

The random walker biases are now too strong, thus only edge with very low color

contrast are valued with higher weights. Images in (d-f) illustrates the resulting

probabilities for the foreground object label corresponding to the (a-c) Laplacian

matrices.
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multiplication as a function. Solving the linear system of equations, the obtained posterior

probability distribution P (Ll | c; xi) computed over the pixels xi of the current image It

suggest the probability of the pixels to be assigned to the label Ll. Therefore, we consider

the pixels of highest posterior probability values for the label Ll as pre-labeled/seeds nodes

of that label in the formulated graph (see Fig. 3.14 for an intuitive example).

(a) P (Lo | c; xi) probability map (b) Brightness map for � = 25

(c)xsU : Foreground probabilities (d) Segmentation outline

Figure 3.14: (a) Fusion probability map is illustrated. Pixels of probability higher

than 0.9 are selected to act as seeds in the Random Walker-based segmentation

formulation. (b) The color contrast map computed by the Laplacian matrix of

the graph with � = 25. (c) The soft segmentation result for the object label,

xoU , obtained by solving the system in Eq. (2.22) and illustrated as a probability

image/map. (d) The segmented foreground object indicating the outline of the

binary mask which is computed by considering the pixels of highest posterior

probability values between the labels Lo and Lb.

To further comprehend the in
uence of � regarding the resulting probabilities xoU ,

we compute the solution of Eq. (2.22) of Random Walker formulation for each of the

Laplacian matrices visualized in (a-c) of Fig. 3.13. The resulting real-valued probability

maps in (d-f) for the foreground object label gradually vary regarding the accuracy of
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the soft segmentation they provide. For the lowest value of �, the (a) contrast map is

obtained, where the Random Walker biases are more relaxed, meaning that the natural

image edges are easier to be crossed by a Random Walker. The resulting probabilities

illustrated in (d) indicate high uncertainty regarding the object boundaries. For higher

values of �, as in (b) and (c), more accurate probability maps are obtained regarding the

object boundaries and the quality of the object segmentation. However, using a higher

value of �, a high number of seed points within the foreground object area should be

feasible in order to get an accurate real-valued, therefore an accurate binary segmentation.

An alternative formulation of the Random Walker-based image segmentation method

is presented in [29]. This method incorporates non-parametric probability models, that

is prior beliefs on label assignments. In [29], the sparse linear systems of equations that

is to be solved to obtain a real-valued density-based multi-label image segmentation are

also presented. The two modalities of this alternative formulation suggest for using only

prior knowledge on the belief of a graph node toward each of the potential labels, or

using prior knowledge in conjunction with pre-labeled/seed graph nodes, also presented

in Section 2.2 of Chapter 2.

The prior probabilities P (Ll | c; xi) obtained using the probabilistic framework for

the fusion of color and spatial image cues for both labels are illustrated as an image in

Fig. (3.14)(a). In case of using only seeds solving the Eq. (2.22), user-de�ned thresholding

was applied on these probabilities in order to get the most probable points belonging

to the foreground object label (i.e up to 0.9) the whole information provided by these

probabilities will be utilized with no thresholding, denoted as �s, in order to solve the

following modi�ed linear system of Eq. (2.24).

Regarding the second modi�ed formulation, the seeds may also be incorporated in

conjunction with the prior values. The modi�ed system of equation to be solved is

provided in Eq. (2.25).

The 
 scalar weighting parameter is introduced in these formulations, controlling the

degree of authority of the prior belief values towards the belief information obtained by

the random walks per potential segmentation label. This extended formulation of using

both seeds and prior beliefs on graph nodes is compatible with our approach considering

the obtained posterior probability distributions P (Ll | c; xi) for the two segmentation

labels. Considering the formulation utilizing both seeds and prior information, a low

value of the 
 parameter will set the system to behave like the seeds only formulation,

whereas a high value of it will bias the results towards the input information, meaning that

random walks and the contrast map will have minor contribution to the �nal real-valued
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segmentation result.

Regardless of the utilized formulation, the primary output of the algorithm consists

of K probability maps, that is a soft image segmentation per label. By assigning each

pixel to the label for which the greatest probability is calculated, a K-way segmentation

is obtained. This process gives rise to object mask Mt for image frame It.
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Chapter 4

Results

Experimental results, implementation issues and discussion on the e�ectiveness of the

proposed methodology are presented in this chapter. The proposed method was exten-

sively tested to simultaneously track and segment an object of interest on a variety of

image sequences under challenging conditions. A description of each of these sequences

is provided in the �rst section of this chapter. The second section is dedicated to some

implementation issues regarding the proposed method. The third section is dedicated

to a qualitative assessment of the proposed method, regarding the tracking and the seg-

mentation results individually. Finally, a quantitative assessment is provided in the last

section.

4.1 Test Image Sequences

A variety of test image sequences is chosen, illustrating a single object to validate the per-

formance and the e�ciency of the proposed joint tracking and segmentation framework.

The represented objects in these image sequences go through persistent and extensive

changes regarding their appearance, shape and pose. Additionally, these sequences di�er

with respect to the camera motion and the surrounding illumination changes, a�ecting

the appearance of the tracked objects. Figure 4.1 provides a single frame for each of the

15 test image sequences.

In the �rst three sequences, illustrated in Fig. 4.1(a-c), a human hand undergoes

complex articulations in a simple static background. The varying illumination condi-

tions signi�cantly a�ect its skin color tone, thus the object also undergoes noticeable ap-

pearance changes throughout each image sequence consisting of 340; 420 and 630 frames

respectively, of size 640× 480 pixels each.
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The sequence represented by the frame in Fig. 4.1(d) also contains a human hand

acting in a static but rather complex background. Moreover, the surrounding illumination

conditions vary over time. The sequence consists of 100 frames of resolution 640 × 480

pixels.

In each of the sequences shown in Fig. 4.1(e-f), a textured book is illustrated under-

going signi�cant changes regarding its pose and shape, whereas light re
ections on its

glossy surface signi�cantly a�ect its appearance over time. The image sequence of (e)

consists of 420 frames and that of (f) consists of 360 frames. The size of each frame is

640× 480 pixels.

The image sequences represented in Fig. 4.1(g-i) illustrate human faces. The goal here

is to track the face skin color despite of the non-uniform colored face area. The human

head in (g) undergoes abrupt scale changes and signi�cant variations of the lighting

conditions in a static background. The length of this sequence is 470 frames of resolution

equal to 320 × 240 pixels. The video of the human head, illustrated in (h), is of lower

quality and resolution and presents the same challenges, as the previous ones, but in a

changing background. Its length is 380 frames, each one of size 174 × 144 pixels. The

sequence illustrated in (i) goes through extended pose variations in front of a static but

rather complex background. This image sequence consists of 400 frames of size 640×480

pixels.

Following, the image sequences of Fig. 4.1(j-l) also represent human hands. In the

challenging sequences of (j) and (k), the articulations of a human hand are observed by a

moving camera in the context of a continuously varying cluttered background. Moreover,

the illumination conditions undergo extensive variations throughout the video. The image

sequence represented in (l) include a static complex background. All these sequences

consist of 550 frames each. The size of each frame is 640× 480 pixels.

The last three image sequences shown in Fig. 4.1(m-o) are of low quality. The sequence

in (m) is captured by a moving camera, illustrating the body deformations of a moving

green caterpillar. The number of frames is 280 of size 320× 240 pixels. The sequence in

(n) illustrates a polar bear moving in a low-contrast background. The sequence consists

of 160 frames of 320×240 pixels each. Finally, the low resolution sequence depicted in (o)

has been acquired by a medical endoscope. A target white colored object is moving within

a low-contrast background performing large position displacements between consecutive

frames. It consists of 15 frames of size 256× 256 pixels.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.1: Single frames representing the 15 test image sequences used to validate

the performance of the proposed joint tracking and segmentation framework.
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4.2 Implementation Issues

The foreground object and background appearance models used to capture the appear-

ance of the two regions consist of two three-dimensional histograms of 32 bins per dimen-

sion, based on RGB colorspace.

The original parameter con�guration of the EM-shift color tracking algorithm is pre-

served, as described in [77], throughout the whole experimental evaluation carried out for

the current work. The appearance model of the tracked object utilized in the EM-shift

color tracking algorithm is based on the RGB color space. It is a three-dimensional color

histogram of 8 bins per dimension. The convergence criterion of the EM procedure of

the tracking method is a combination of maximum number of iterations, set to 20, and

a stopping threshold value that refers to the number of new pixels added to the ellip-

soid tracking region between consecutive iterations with respect to the image size. The

threshold is set to 5% of the total number of pixels. The mean value of EM iterations

throughout the test image sequences was 10. The crucial parameter �track of the tracking

method, in order to work properly for a Gaussian kernel is set to 1:2, as described in [77].

The Random Walker segmentation method involves three variant formulations to

obtain the probabilities of each pixel to belong to each of the segmentation labels, as

described in Section 3.3. The three formulations refer to the usage of seeds (pre-labeled

graph nodes), prior values (probabilities/beliefs on label assignments for some graph

nodes), or a combination of them. The edge weights of the graph are computed by

Eq. (3.8), where the parameter � controls the scale of the color contrast (brightness) be-

tween adjacent graph nodes (pixels). The pixel-wise posterior values are computed using

Bayesian Inference as described in Section 3.3 and are exploited to guide the segmenta-

tion. Each pixel xi with posterior value P (Ll | xi) greater or equal to 0:9 is considered

as a seed pixel for the label Ll. Any other pixel with posterior value P (Ll | xi) less than
0:9 is considered as a prior value for label Ll. In the case of prior values, the 
 parameter

is introduced to adjust the degree of authority of the prior beliefs towards the de�nite

label-assignments expressed by the seed pixels of the image. In the experiments carried

out toward the qualitative assessment of the proposed method presented in the following

section, the � parameter was selected within the interval of [10−50], whereas the 
 ranges

within [0:05− 0:5].

The reported experiments were generated based on a Matlab implementation, running

on a PC equipped with an Intel i7 CPU and 4 GB of RAM memory. The Random

Walker-based image segmentation method developed is based on the Graph Analysis

54



Toolbox of Matlab [30] and is available online 1. The EM-shift tracking method performs

in real-time on a conventional PC of 1Gz. The computational bottleneck of the proposed

method is the solution of the large system of the sparse linear equations of the Random

Walker formulation regarding the image segmentation part of the proposed method. The

runtime performance of the current unoptimized Matlab implementation varies between

4 to 6 seconds per frame for 640 × 480 images on a PC with the aforementioned setup.

However, a near real-time runtime performance is feasible by optimizing both the EM-

shift part of the tracking method and the solution of the large sparse linear system of

equations of the Random Walker-based image segmentation method.

4.3 Qualitative Assessment

A two-phase qualitative assessment has been carried out in order to validate the individual

tracking and segmentation performance of the proposed method. First, we compare

the proposed joint tracking and segmentation method with the stand alone EM-shift

color tracking method, that is originally presented in [77] and utilized in our proposed

framework, in order to present the e�ectiveness and the key role of the �ne segmentation

part of the method towards a more robust and drift-free tracking performance. In the

following, a qualitative assessment of the proposed method with the state-of-art skin color

detection and tracking algorithm, that is presented in [2], is carried out. The tracking

and the detection results obtained by the skin color tracker are qualitatively compared

with the corresponding result of the proposed method, in two test image sequences,

representing human hands in action. Video containing the qualitative results are available

online2.

Proposed Method Vs. Stand-alone EM-shift Object Tracking

First, we compare the proposed joint tracking and segmentation method with the stand-

alone EM-shift color tracking method presented in [77] and utilized in our proposed

framework. The parameters of this algorithm were kept identical in the stand-alone

run and in the run within the proposed framework. It is important to note that the

stand-alone tracking method is initialized with the appearance model extracted in the

�rst frame of the sequence. Moreover, its appearance model is not updated over time,

because in the challenging sequences we used as the basis of our experimental evaluation,

1http://cns.bu.edu/∼lgrady/software.html
2http://www.ics.forth.gr/∼argyros/research/trackingsegmentation.html
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updating the appearance model based on the results of tracking, soon causes tracking

drifts and total loss of the tracked object.

Figure 4.2 illustrates representative snapshots of the tracking results (i.e., �ve frames

for each of the eight sequences). Each frame shown in Fig. 4.2 is annotated with the

results of the proposed algorithm and the results of the stand-alone tracking method.

Figure 4.3 illustrates representative snapshots of the tracking results on the rest of the

test image sequences. Each frame shown in Fig. 4.3 is annotated with the tracking only

results of the proposed algorithm and the results of the stand-alone tracking method.

Finally, Fig. 4.4 illustrates the segmentation results computed by the proposed method

on the same test image sequences of Fig. 4.3.

The performance of the stand-alone EM-shift tracking method drifts out in cases

where the appearance and shape of the object undergoes extensive changes, whereas the

proposed method provides stable tracking and adaptation of the tracking kernel size to

the shape changes exploiting the information provided by the incorporated segmentation

procedure.

Proposed Method Vs. State-of-art Skin-Color Detection & Tracking

The e�cient skin color detection and tracking method presented in [2] provides near-

optimal results for the image sequences presenting human hands and/or head in action.

In brief, the skin color tracking method adopts a non-parametric model of skin color. Skin-

colored objects are detected with a Bayesian classi�er that is bootstrapped with a small

set of training data. By using on-line adaptation of skin-color probabilities the classi�er

is able to cope with considerable illumination changes. Moreover, the tracking over time

is achieved by a novel technique that can handle multiple objects simultaneously, which

may move in complex trajectories, occlude each other in the �eld of view of a possibly

moving camera and vary in number over time.

We compare the tracking results of the proposed method to those of the skin color

detection and tracking method in two image sequences to obtain a qualitative evaluation

on the tracking performance. The object representation is based on a tracking ellipse

in both methods. The �rst test image sequence illustrates a human hand performing

complex articulations in a simple static background. It is the one represented by the

single frame Fig. 4.1(a). Figure 4.5 presents results on selected frames of that sequence.

In the left column, the tracking ellipse computed by the proposed method is superimposed

to each frame. The tracking ellipses computed by the skin color tracking method are

superimposed to each frame in the right column.
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Figure 4.2: Experimental results and qualitative comparison between the pro-

posed framework providing tracking and segmentation results (blue solid ellipse

and green solid object contour, respectively) and the tracking algorithm of [77]

(red dotted ellipse).

57



Figure 4.3: Experimental results and qualitative comparison between the pro-

posed framework providing tracking only results (green solid ellipse) and the

tracking algorithm of [77] (red solid ellipse).
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Figure 4.4: Experimental results on the segmentation performance of the the pro-

posed framework providing the object outline in snapshots of the test sequences

(green solid object contour).
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The second image sequence that is utilized to obtain qualitative results is similar

to the one presented in Fig. 4.1(c). The image sequence consists of 860 frames of size

640×480 pixels each. Figure 4.6 illustrates results on selected frames of that test sequence,

organized in the same way as described above.

4.4 Quantitative Assessment

In this section, a quantitative assessment of the individual tracking and segmentation

performance of the proposed method is presented. Ground truth data have been obtained

for two test image sequences, representing human hands in action. The ground truth data

consist of binary masks indicating the full area of the tracked hand throughout each of

the image sequences. Moreover, an ellipse that includes the segmented hand is computed

for each frame. The ground truth object masks have been obtained by visual inspection

on the results of the the state-of-art skin color detection and tracking algorithm presented

in [2].

The �rst test image sequence, represents a human hand performing articulations in a

simple background. It is the one represented by the frame in Fig. 4.1(a) and is denoted

as Hand-1. The second test image sequence is similar to the one presented in Fig. 4.1(c).

This image sequence consists of 860 frames of size 640 × 480 pixels and is denoted as

Hand-2.

A two phase analysis of the performance of the proposed methodology is carried out,

regarding the tracking and the segmentation results, individually.

Quantitative Assessment on Tracking

A quantitative assessment regarding the tracking performance of the proposed method

is provided for the Hand-1 and Hand-2 test image sequences. The performance of the

EM-shift color tracking method [77] that is utilized in the proposed framework rely on a

set of options regarding:

• the �track parameter that controls the adaptation of the tracking Gaussian kernel

• the colorspace (or a subspace) that is utilized to represent color information

• the number of bins of the color histogram (appearance model)

• the convergence criterion of the EM algorithm (�xed number of EM iterations,

minimum error of convergence or a combination of them)
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Figure 4.5: Selected frames from the image sequence of Fig. 4.1(a), representing

a human hand in action are provided in this �gure. Each row shows the same

frame, whereas the left column illustrates the tracking green ellipse computed by

the proposed frame and the right column illustrates the corresponding results, in

cyan color, computed by the state-of-art skin color tracking method [2].
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Figure 4.6: Selected frames from an image sequence representing a human hand

in action are provided in this �gure. Each row shows the same frame, whereas

the left column illustrates the tracking green ellipse computed by the proposed

frame and the right column illustrates the corresponding results, in cyan color,

computed by the state-of-art skin color tracking method [2].
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An e�cient con�guration of the �track parameter depends on prior knowledge of the

underlying distribution of the color that is to be tracked and the level of the noise that

is present in the image sequence, according to the authors of the method in [77]. The

parameter �track practically controls the iso-contour of the Gaussian parametric kernel

that will be considered to represent the foreground object and to build its appearance

model.

An important decision regards the colorspace that is chosen to represent the color

information of an image. For example, skin colored objects are e�ciently represented in

HSV or YCbCr colorspace. Discarding the V (value) or Y (luminance) component that

stands for illumination-brightness, the skin-color objects representation is inherently more

robust to illumination changes. Moreover, the choice for the number of histogram bins

between 8; 16 or 32 is to be determined according to the image content, adding only a

insigni�cant in
uence to the performance of the tracking method.

Last but not least, the convergence criterion of the EM procedure of the tracking

method is a crucial option towards its performance. A �xed number of EM iterations or

a stopping threshold value can be determined to de�ned the convergence of the EM pro-

cedure. A combination of a maximum number of EM iterations and a stopping threshold

value is the best setup for e�cient tracking regardless the image content, the velocity of

the moving object and the frame rate of the video that is processed.

Based on the described parameter con�guration of the tracking part of the proposed

method, the tracking performance is evaluated based on the selected test image sequences.

Given the resulting binary object mask, produced by the proposed method for each frame

of a test image sequence, the area of the bounding box (the number of pixels within it)

containing the object mask is calculated, indicating its scale with respect to the total

image area.

Figure 4.7 graphically illustrates the measurements of the resulting bounding box area

throughout each of the test image sequences, approximating the true bounding box area.

However, this statistic metric is provided to partially assess the tracking performance of

the proposed method. To this end, two additional measures are computed based on the

resulting bounding box object representation. The �rst measure regards the overlapping

area between the bounding box produced by the proposed method and the true bound-

ing box for each frame. The second measure refers to the Euclidean distance in pixels

between the centers of these bounding boxes for each frame. More speci�cally, the ratio

of the true bounding box area to the resulting bounding box area, indicates a measure

of accuracy towards the tracking performance of the proposed method. Graphs (a) and
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(b) of Fig. 4.8 illustrate the results for the two test image sequences, showing the high

tracking performance of the proposed method. The overlapping area ratio approximates

the unity throughout each of the test image sequences. Figure 4.9 illustrates the mea-

surements regarding the Euclidean distance in pixels between the centers of the bounding

boxes for each of the test image sequences.

Moreover, the algebraic di�erences in pixels per dimension of the bounding boxes

are calculated. The algebraic di�erence for each dimension of the bounding boxes is

normalized with respect to the corresponding dimension of the image. Figure 4.10 graph-

ically illustrates the results for the two test sequences, Hand-1 in (a) and Hand-2 in (b).

These results provide an additional con�rmation of the high tracking performance of the

proposed method in both test image sequences.

Quantitative Assessment on Segmentation

The second part of the quantitative evaluation of the proposed method regards the object

segmentation performance, in each of the Hand-1 and Hand-1 test image sequences.

Based on the derivation of the Random Walker-based image segmentation method

and its integration within the proposed framework presented in Section 2.2.2 and in Sec-

tion 3.3.5, respectively, there are three customizable parts that control the segmentation

performance a�ecting the performance of the overall framework.

The �rst of these parts regards the graph construction options, that is the graph

connectivity policy and the weighting function that is chosen to weight the graph edges,

practically to populate the Laplacian matrix (Eq. (2.18)). The connectivity policy of

the graph controls the sparsity of the Laplacian matrix a�ecting the Random walker

segmentation performance. In our case, the connectivity of the graph is set to 4-closest-

neighbors of each graph node, that is an image pixel. Regarding the weighting function,

the ubiquitous Gaussian function of Eq. (3.8) is utilized, that despite its simplicity, serves

e�ciently in mapping nodal intensities between the image pixels to connecting weights of

the undirected graph representation. Moreover, a single parameter is introduced to the

system by using the Gaussian function, that is � parameter, keeping the tuning of the

procedure less complex. The parameter � controls the variance of the Gaussian function,

thus the severity of the random walks biases on the graph. See Fig. 3.12 and Fig. 3.13

in Section 3.3.5 for more details. A more elaborate function could easily be introduced

to the proposed method providing a di�erent type of mapping of the pixel intensities or

any other cue or combination of cues to the connecting weights of the Laplacian graph.

The second part of customizable options regards the choice between the three variants

64



0 100 200 300 400 500 600
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (frame No)

P
er

ce
nt

ag
e 

of
 a

re
a 

w
.r

.t 
to

ta
l i

m
ag

e 
ar

ea

 

 
Tracking Area
True Area

(a)

0 100 200 300 400 500 600 700 800 900
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (frame No)

P
er

ce
nt

ag
e 

of
 a

re
a 

w
.r

.t 
to

ta
l i

m
ag

e 
ar

ea

 

 
Tracking Area
True Area

(b)

Figure 4.7: The area of each of the tracking bounding boxes computed by the two

competing methods is measured and illustrated in this �gure. The area of each

bounding box is normalized with respect to the total image area. The green line

corresponds to the true bounding box area, whereas the blue line indicates the

results computed by the proposed method. Images (a) and (b) correspond to the

Hand-1 and Han-2 test image sequences utilized in the quantitative assessment.
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Figure 4.8: The ratio of the overlapping area between the bounding boxes com-

puted by the two competing methods is provided. The ratio of the true bounding

box area to the bounding box area computed by the proposed method, indicates

a measure of accuracy for the tracking performance of the proposed method. Im-

ages (a) and (b) illustrate the results for the two test image sequences utilized

in the quantitative assessment, showing the high tracking performance of the

proposed method (overlapping area ratio approximates the unity).
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Figure 4.9: The Euclidean distance in pixels between the centers of the two

bounding boxes is calculated throughout each frame of each of the test image

sequences. The results are illustrated in (a) and (b). The resulting distance of

the bounding box centers indicates the high tracking performance of the proposed

method.
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Figure 4.10: The algebraic di�erence in pixels per dimension of the resulting

bounding boxes is calculated throughout each of the test image sequence and

illustrated in (a) and (b), respectively. Red line corresponds to normalized al-

gebraic di�erence of the width dimension of the true bounding box to the one

computed by the proposed method. The blue line corresponds to the algebraic

di�erence of the height dimension between the two bounding boxes.

of the RandomWalker formulation for the image segmentation problem, presented in Sec-

tion 3.3.5. The three formulations regard the use of seeds (Eq. (2.22)), priors (Eq. (2.24))

or a combination of them (Eq. (2.25)) to form the system of linear equations that is to

be solved in order to obtain a real-valued solution for each label of the K-way segmen-

tation. We remind that in case where prior information is incorporated to the Random

Walker formulation, the 
 parameter is introduced, controlling the authority of the prior

information (probability) as opposed to the label information (probability) provided by

random walks carried out through the biases on the graph toward the potential labels.

These biases are in turn controlled by parameter �.

Finally, the third set of options, that control the segmentation performance of any

selected Random Walker-based formulation, regards the appearance models utilized to

model the region-speci�c color information after the segmentation of each frame. Two

color histograms are utilized for this purpose, serving the computation of the color prior

information, which is probabilistically fused with the spatial image cue to further be

utilized are seeds and/or priors for the segmentation of the current frame. The selected

number of bins in both color histograms is 16 per dimension.

The segmentation performance is assessed for the two selected test image sequences,

based on the ground-truth data. To this end, the statistic metrics of Recall, Precision and

F-measure, from the �eld of Information Retrieval, are utilized to evaluate the quality of
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the produced �ne segmented mask per frame by the proposed method.

A brief description of the utilized statistic metrics is provided, blending their meaning

in the context of the information retrieval and the image segmentation problem. Consider

the ground truth binary image provided by the skin-color detection and tracking method

for the foreground object class per frame, as the list of pixels that are known to belong

to (are relevant) to that class. A set of retrieved pixels per frame refers to the pixels that

are annotated to the foreground object class by the testing segmentation method in that

frame. Based on these descriptions, the Precision metric is the fraction of the retrieved

pixels by the testing method that are relevant to the foreground object class for a single

processed frame. The Recall metric is de�ned by the fraction of pixels that are relevant to

the foreground object class that are successfully retrieved. It is possible to interpret pre-

cision and recall as probabilities. Precision is the probability that a (randomly selected)

retrieved pixel is relevant to the foreground object class. Recall is the probability that a

(randomly selected) relevant pixel is retrieved through the segmentation procedure, thus

correctly annotated to the foreground object class. Finally, the F-measure (or balanced

F-score) combines precision and recall, yielding an harmonic mean of precision and recall

de�ned by:

Fmeasure = 2
Precision ·Recall
Precision + Recall

(4.1)

To start with the experimental evaluation, the in
uence of the parameters � and 


in the segmentation performance of the proposed method is explored, using each of the

three variants of the Random Walker formulation.

We initially assess the performance of the basic Random Walker formulation for image

segmentation, utilizing only seeds and solving the linear system of Eq. (2.22). The seg-

mentation performance is tested for a set of � values, that is [1; 20; 100; 200]. The scores

in Table 4.1 indicate the overall high performance of the proposed framework for each

tested value of the � that exceed 90%. The highest scores are noticed for the medium

values of � = 20 for Hand-1 and � = 35 for Hand-2 image sequence.

In the following, keeping the � value for which the highest score is exceeded using

only seeds, the incorporation of prior information to the system is assessed by setting

the 
 parameter to values of various scale. The formulation of linear system of equations

provided by Eq. (2.25) is utilized. We remind that the value of the 
 parameter expresses

the \degree of authority" of the provided prior information to the system as opposed to

the label-wise soft assignments, which are computed by the random walks on the graph.

Table 4.3 provides the resulting scores for medium values of the �, which are equal to
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20 and 35 for Hand-1 and Hand-2 test sequences, respectively, while the 
 ranges within

[0 − 0:5]. For the Hand-1 test sequence, the higher performance of 98:8% is achieved

for 
 = 0:05. The highest score for the Hand-2 sequence is (94%), that is achieved

for 
 = 0:005. The con�guration of 
 = 0 indicates the usage of the Random Walker

formulation, where only seeds are utilized. In that case, the linear system of equations is

constructed based on Eq. (2.22).

In order to overlook the random walker biases and explore the in
uence of the prior

information to the system, the � is set equal to 1 and the 
 parameter ranges within

[0−0:5]. The segmentation performance degrades in overall based on the resulting scores

in Table 4.2. Especially, for the Hand-1 sequence the attenuation of the previously highest

value is around 8%. There are slightly lower resulting scores for the Hand-2 sequence for

all the tested values of 
.

The second set of experiments assess the in
uence of � to the segmentation perfor-

mance for a �xed value of 
. Table 4.4 provides the obtained statistic scores for 
 = 0:05

for both test image sequences. � ranges within [1−200]. The highest score for the Hand-1

sequence is validated for the con�guration with � = 20 and 
 = 0:05, whereas the scores

for the rest of the con�gurations are notably lower but over 90%.

Finally, the variations on the segmentation performance using each of the three vari-

ants of the Random Walker formulation is assessed. For each test image sequence, we

adopt the parameter con�gurations per test sequence, that resulted the highest scores

throughout the already provided experimental results. Thus, � is set to 20 and 
 to 0.05

for the Hand-1 sequence, whereas � = 35 and 
 = 0:05 for the Hand-2 sequence.

Table 4.5 summarizes the average Precision, Recall and F-measure performance of the

proposed algorithm compared to the ground truth data throughout each of the test image

sequences. Although all three options perform satisfactorily, the usage of both seeds and

priors together improves the segmentation performance in both test image sequences.
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(a-1) Input frame (b-1)Prior values map

(c-1) � = 1 (d-1) � = 20 (e-1) � = 50 (f-1) � = 100

(a-2) Input frame (b-2)Prior values map

(c-2) � = 1 (d-2) � = 35 (e-2) � = 50 (f-2) � = 100

Figure 4.11: Inputs toward the quantitative evaluation of the two test image

sequence. (a) Input frame (b) Prior pixel-wise likelihood values for the input

frame, computed by the probabilistic fusion of color and spatial image cues. (c-f)

The visualization of the Laplacian matrix, representing the graph weights or else

the Random Walker biases for various values of �, in Eq. (3.8).
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Hand-1 Precision Recall F-measure

� = 1 91.2% 91.0% 91.0%

� = 20 93.2% 92.8% 93.0%

� = 50 91.4% 90.6% 91.0%

� = 100 91.3% 90.5% 90.9%

� = 200 91.2% 90.7% 90.9%

Hand-2 Precision Recall F-measure

� = 1 92.4% 94.5% 93.3%

� = 35 94.0% 94.0% 94.0%

� = 50 94.1% 94.0% 94.0%

� = 100 94.0% 94.2% 94.0%

� = 200 93.5% 94.4% 94.0%

Table 4.1: Quantitative assessment of Random Walker based segmentation per-

formance using only seeds on the two hand image sequences. The segmentation

performance is assessed for various values of � within [1− 200].

Hand-1 � = 1 Precision Recall F-measure


 = 0:5 91.3% 90.9% 91.7%


 = 0:25 91.1% 91.0% 91.0%


 = 0:05 91.3% 90.9% 91.7%


 = 0:025 91.2% 91.0% 91.0%


 = 0:005 91.3% 90.9% 91.7%


 = 0 (seeds only) 91.2% 91.0% 91.0%

Hand-2 � = 1 Precision Recall F-measure


 = 0:5 96.7% 97.8% 97.2%


 = 0:25 96.7% 97.8% 97.2%


 = 0:05 96.4% 98.2% 97.3%


 = 0:025 96.4% 98.2% 97.3%


 = 0:005 96.2% 98.2% 97.2%


 = 0 (seeds only) 92.4% 94.5% 93.3%

Table 4.2: Quantitative assessment of Random Walker based segmentation per-

formance using seeds and priors on the two hand image sequences. � is set to 1,

whereas 
 ranges within [0− 0:5].
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Hand-1 � = 20 Precision Recall F-measure


 = 0:5 90.9% 90.6% 90.7%


 = 0:25 90.9% 90.3% 90.6%


 = 0:05 99.2% 98.4% 98.8%


 = 0:025 91.4% 90.7% 91.0%


 = 0:005 91.4% 90.7% 91.0%


 = 0:0005 94.2% 93.8% 94.2%


 = 0 (seeds only) 93.2% 92.8% 92.9%

Hand-2 � = 35 Precision Recall F-measure


 = 0:5 97.0% 96.5% 96.7%


 = 0:25 97.1% 97.3% 97.2%


 = 0:05 97.6% 97.4% 97.5%


 = 0:025 97.8% 97.4% 97.6%


 = 0:005 98.0% 98.0% 98.0%


 = 0:0005 98.1% 98.0% 98.0%


 = 0 (seeds only) 94.0% 94.0% 94.0%

Table 4.3: Quantitative assessment of Random Walker based segmentation per-

formance using seeds and priors on the two test image sequences Hand-1 and

Hand-2, where � is set to 20 and 35, respectively. 
 values range within [0− 0:5]

for di�erent numerical scales.
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Hand-1 
 = 0:05 Precision Recall F-measure

� = 1 91.2% 91.0% 91.0%

� = 5 91.3% 90.9% 91.0%

� = 20 99.2% 98.4% 98.8%

� = 50 90.9% 90.5% 90.7%

� = 100 90.9% 90.8% 90.8%

� = 200 90.6% 91.0% 90.8%

Hand-2 
 = 0:05 Precision Recall F-measure

� = 1 96.4% 98.2% 97.3%

� = 10 93.8% 94.1% 94.0%

� = 35 97.6% 97.4% 97.5%

� = 50 97.0% 97.3% 97.1%

� = 100 96.9% 95.6% 96.2%

� = 200 93.2% 91.7% 92.5%

Table 4.4: Quantitative assessment of Random Walker based segmentation per-

formance using seeds and priors on the two test image sequences. 
 parameter is

prede�ned equal to 0:05 and the segmentation performance is tested for various

values of � parameter.

Segmentation option Hand-1 Precision Recall F-measure

Priors (
 = 0:05) 91.3% 90.9% 91.7%

Seeds (� = 20) 93.2% 92.8% 93.0%

Seeds & Priors (� = 20,
 = 0:05) 99.2% 98.4% 98.8%

Segmentation option Hand-2 Precision Recall F-measure

Priors (
 = 0:05) 96.4% 98.2% 97.3%

Seeds (� = 35) 94.0% 94.0% 94.0%

Seeds & Priors (� = 35,
 = 0:05) 97.6% 97.4% 97.5%

Table 4.5: Quantitative assessment of segmentation performance for the three

variant formulations of the Random Walker image segmentation method. Results

for the Hand-1 and Hand-2 test image sequences are provided.
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Chapter 5

Discussion

In this work, we presented a novel method for on-line, joint tracking and segmenta-

tion of a non-rigid object in a monocular video, captured by a possibly moving camera.

The proposed approach aspires to relax several limiting assumptions regarding the ap-

pearance and shape of the tracking object, the motion of the camera and the lighting

conditions. The key contribution of the proposed framework is the e�cient combination

of an appearance-based tracking algorithm with a Random Walker-based segmentation

algorithm in a close-loop that jointly enables drift-free tracking and �ne segmentation of

the target object. A 2D a�ne transformation is computed to propagate the segmented

object shape of the previous frame to the new frame exploiting the information pro-

vided by the ellipse region (iso-contour of a spatial Gaussian distribution) capturing the

segmented object and the ellipse region predicted by the tracker in the new frame. A

shape-band area is computed indicating an area of uncertainty where the true object

boundaries lie in the new frame. Static image cues including pixel-wise color and spatial

likelihoods are fused using Bayesian inference to guide the Random Walker-based object

segmentation in conjunction with the brightness likelihoods between neighboring pixels.

The performance of the proposed method is qualitatively demonstrated, in a series

of challenging videos in comparison with the results of the EM-shift tracking method

presented in [77] and ground truth tracking and segmentation data. Moreover, the quan-

titative performance of the individual tracking and the segmentation parts of the proposed

framework is assessed. The tracking performance of the proposed method is compared

to both the stand-alone EM-shift color tracking method of [77] and ground truth data.

The segmentation performance of the proposed method is compared to the ground-truth

data. The experimental results validate the e�ectiveness of the the proposed framework

as opposed to the stand-alone EM-shift color tracking method. Moreover, high perfor-
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mance is achieved regarding the individual tracking and segmentation results compared

to ground-truth data.

The performance of the EM-shift color tracking method [77], relies on a set of options

regarding the colorspace (or a subspace) that is utilized to represent the color informa-

tion, the number of bins of the color histogram that act as an appearance model, the

convergence criterion of the EM algorithm (maximum number of iterations, stopping

threshold value or a combination or them) and �nally the �track parameter that controls

the adaptation of the tracking Gaussian kernel of the method. A correct con�guration

for the �track parameter depends on prior knowledge of the underlying distribution of

the color that is to be tracked and the level of the noise that is present in the image

sequence, according to [77]. The parameter �track practically controls the iso-contour of

the Gaussian parametric kernel that is determined to represent the foreground object and

to build its appearance model.

Moreover, the convergence criterion of the EM procedure of the tracking method is a

crucial option a�ecting its performance. A �xed number of EM iterations or a stopping

threshold value can be determined to de�ne the convergence of the EM procedure. A

combination of a maximum number of EM iterations and a stopping threshold value is the

best option for e�cient tracking. A stopping threshold value can be de�ned regarding the

number of new pixels added to the new estimated elliptical tracking region as compared

tho the previous estimation of that region between consecutive iterations with respect to

the image size. Many alternative heuristic functions can be utilized to implement a new

stopping criterion integrating additional information regarding the underlying tracked

distribution, the residual of the position of the Gaussian kernel between consecutive

frames on the image plane etc.

Based on the description of the Random Walker-based image segmentation technique

provided in Sections 3.3.5and 2.2.2, there are three main parts that are customizable and

control its segmentation performance within the proposed framework.

The �rst of these parts regards the graph construction options, that is the graph

connectivity policy and the weighting function that is utilized to weight the graph edges.

The connectivity of the graph controls the sparsity of the Laplacian matrix, thus it a�ects

the Random walker-based segmentation performance for �xed values of its parameters.

The ubiquitous Gaussian function of Eq. (3.8) is utilized, which despite its simplicity

serves e�ciently for mapping nodal intensities between the image pixels to connecting

weights of its undirected graph representation. Moreover, there is only the � parameter

which is introduced, keeping the tuning of the algorithm less complex. See Fig. 3.12 and
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Fig. 3.13 in Section 3.3.5 for more details regarding the key role of this parameter to the

image segmentation procedure. A more elaborate function could easily be introduced to

the system providing a alternative type of mapping of the pixel intensities or any other

cue or combination of cues, to connecting weights of the Laplacian graph.

The second part regards the choice between the three variants of the Random Walker

formulation for the image segmentation problem, as they presented in Section 3.3.5. The

usage of seeds (Eq. (2.22)), priors (Eq. (2.24)) or a combination of them (Eq. (2.25)) is

chosen to form the system of linear equations that is to be solved in order to obtain a real-

valued solution for each label of the K-way segmentation. We remind that in case that

prior information is incorporated to the Random Walker formulation, the 
 parameter is

introduced, controlling the authority of the prior information (probability) as opposed to

the label information (probability) provided by random walks carried out on the graph

toward the potential labels. These biases are in turn controlled by parameter �.

Finally, the third set of options a�ecting the segmentation performance of the Ran-

dom Walker-based method regards the two appearance models, which maintain the color

information of the resulting foreground object and background regions after the seg-

mentation of each frame. The role of these appearance models is crucial towards the

integration of the segmentation part with the tracking one in the proposed framework.

Two multi-dimensional histograms are used as appearance models. Based on them, the

color likelihoods per region are computed and are further utilized to compute the prob-

abilistic fusion of the the color and the spatial image cues. Thus, the color information

directly in
uence the resulting likelihoods of the fusion procedure, which in turn are used

to guide the automatic seed selection and/or act as prior information on the potential

labels of the segmentation. The number of dimensions of a histogram is controlled by

the number of channels of the colorspace that is selected to encode the color information

of each frame. The number of bins per dimension of a histogram is selected by the user.

Moreover, alternative appearance models could be utilized to capture the region-speci�c

color information, such as mixture of Gaussians.

To conclude the discussion, it is essential to present some limiting factors regarding

the performance of the proposed joint tracking and segmentation method. There are some

representative examples of image sequences shown in Fig. 5.1, where any of the following

issues or a combination of them causes failure of the proposed tracking methodology.

• Object natural boundaries are of low contrast with regard to the underlying back-

ground

• There is a big overlap among the object and the background color-based appear-
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ances

• non-rigid objects of very small surface

The segmentation part of the method fails to extract an accurate object mask result.

As a consequence, an invalid image partitioning of the foreground-object and background

image regions results an invalid feed-back of color information to the appearance models.

5.1 Future Work

In this last section, we outline a number of algorithmic issues that could be investigated

in more detail, as work of future interest. These issues could be incorporated to the

proposed method in order to alleviate the aforementioned limiting factors, regarding its

tracking and segmentation performance, and to extend its capabilities.

An immediate extension of the proposed work involves the incorporation of additional

image cues such as texture and low-level motion information as prior information towards

increased robustness of both tracking and segmentation components.

The performance of alternative weighting schemes regarding the construction of the

graph Laplacian matrix needs to be explored, except for the Gaussian weighting function

used in Eq. (3.8). Moreover, the idea of incorporating additional information to the

construction of the Laplacian, such as texture and low-level motion cues besides the

utilized image brightness information, provides an interesting �eld on investigation toward

an enhanced Random Walker based segmentation performance.

Another part of the proposed method that is to be optimized refers to the computation

of the shape-band area around the propagated prior object shape. The width of the shape-

band area is uniformly determined around the propagated object shape and is currently

de�ned equal to the Hausdor� distance between the previously segmented object contour

points and the propagated object contour points. A point-wise computation of the shape-

band width across the propagated object contour is an interesting modi�cation of the

proposed system that may lead to better and more robust segmentation performance.

In the following, a bootstrapping mechanism that will automatically determine an

optimal con�guration of the crucial parameters of the proposed method is an interesting

extension, that will set the proposed method fully automatic requiring no tuning of these

parameters by the user.

Last but not least, an interesting extension of the proposed method would be the

ability to track multiple objects with partial of full, instant or long-term occlusions by

unifying it with the e�cient and elaborate method presented in [52].
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Figure 5.1: Representative example image sequence where the proposed method-

ology failed to perform. The segmentation failures (green contour) are illustrated

in four image sequences on a variety objects that are to be tracked. From left to

right in each row, the provided frames preserve temporal coherency.
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