
Stream communication across RISC-V

Coherence Islands, with Read-Invalidate and

Write-through-Combine Cache Policies

Orestis Mousouros

Thesis submitted in partial fulfillment of the requirements for the

Master of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department

Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Prof. Manolis Katevenis

Thesis Co-Advisor: Dr. Nikolaos Chrysos

This work has been performed at and supported by the Computer Architecture and VLSI
Systems (CARV) Laboratory, Institute of Computer Science (ICS), Foundation for Research and
Technology - Hellas (FORTH).

University of Crete
Computer Science Department

Stream communication across RISC-V Coherence Islands, with
Read-Invalidate and Write-through-Combine Cache Policies

Thesis submitted by
Orestis Mousouros

in partial fulfillment of the requirements for the
Master of Science degree in Computer Science

THESIS APPROVAL

Author:
Orestis Mousouros

Committee approvals:
Prof. Manolis Katevenis
Professor, Thesis Supervisor

Prof. Polyvios Pratikakis
Associate Professor, Committee Member

Prof. Vassilis Papaefstathiou
Assistant Professor, Committee Member

Departmental approval:
Prof. Polyvios Pratikakis
Associate Professor, Director of Graduate Studies

Heraklion, April 2022

Stream communication across RISC-V Coherence
Islands, with Read-Invalidate and

Write-through-Combine Cache Policies

Abstract

In the last decades, technology has reached a point of slow scaling, mainly
due to limitations caused by the increasing amounts of power consumption. To
gain performance speedup, hardware architects have turned to energy efficient
processors, including some that are based on open-source RISC-V Instruction Set
Architecture (ISA), which promises energy efficiency and high performance on
multi-core chips.

This thesis contributes the design and implementation of a new approach for in-
terprocessor stream communication across RISC-V Coherence Islands. Tradition-
ally, the coherence islands use memory-to-memory communication over TCP/IP
or Remote Direct Memory Access (RDMA) interconnections. Writing and reading
data to and from memory at the endpoints heightens latency and depletes pro-
cessor cycles. Instead, in our work, the communication confines itself between a
core and another (remote) node that can either be a core or a memory. In par-
ticular, we propose a new Streaming Cache that resides next to Level 1 Cache
(L1 Cache) and uses the same fast interface for communication with the core. We
split the Streaming Cache into two logical parts: a) the producer, an outgoing
streaming cache that handles streaming data departing from the node; b) the con-
sumer, an incoming streaming cache that handles streaming data arriving to the
node. Effectively, in the proposed streaming framework, instead of moving data
across the main memory of the end-points, data of both the producer and the
consumer can be accessed with same latency as the L1 Cache. To improve per-
formance, we use the read-once/store-once cache policies in the Streaming Cache,
which immediately recycle the space of already accessed streaming data. Further-
more, a Prefetcher fetches data from the (remote) node before they are needed,
thus reducing the cost of read accesses, while the write accesses take advantage of
a Write-Combiner, which combines neighboring data and sends them to the (re-
mote) node. In our work, accesses to streaming data are recognized using virtual
addresses without the need of extending ISA.

We implemented the proposed system in SystemVerilog, as an extension of
the CVA6 (former ARIANE) single-core RISC-V CPU. We built the Incoming
and Outgoing schemes of Streaming Cache, each with four (4) contexts (hardware
streams), in order to support virtualization, and we tightly-coupled them with the
Load/Store Unit (LSU) of the ARIANE. We also built a communication logic at
the edges that sends/receives data over an AXI-4 interconnect.

We synthesized our design for Xilinx Zynq UltraScale+ MPSoC Field Pro-
grammable Gate Array (FPGA). The Incoming logic of our design utilizes 16839
Look-Up Tables (LUTs), 7506 Registers and 8 Block Random Access Memories

(BRAMs), and operates at 275 MHz, while the Outgoing logic utilizes 23606 LUTs,
8615 Registers and 8 BRAMs, and operates at 210 MHz.

We performed behavioral simulations to our RTL design in order 1) to verify the
streaming functionality when coupled with the RISC-V cores and 2) to evaluate
its performance. In our preliminary evaluations, we stream data from/to main
memory of the ARIANE core, first using the traditional memory hierarchy and
second using our optimized streaming cache. The promising results underline the
performance gains due to the stream-optimized cache policies of our design, by
managing to almost completely eliminate the latency of network’s interconnection
in our indicative hand-made bare metal benchmarking programs.

Επικοινωνία Ροών μεταξύ Νησιών Συνοχής

RISC-V, με Πολιτικές Κρυφής Μνήμης
Ανάγνωσης-Ακύρωσης και Εγγραφής-δια

μέσου-Συνδυασμού

Περίληψη

Τις τελευταίες δεκαετίες, η τεχνολογία έχει φτάσει ένα σημείο αργής κλιμάκω-
σης, κυρίως λόγω περιορισμών που οφείλονται στις αυξημένες ανάγκες κατανάλωσης
ενέργειας, με επιπτώσεις όπως τη δυσκολία αύξησης της ταχύτητας ενός πυρήνα ή
προσθήκης περισσότερων πυρήνων σε πολυπύρηνους επεξεργαστές. Επειδή υπάρχει
ακόμα ανάγκη για αύξηση της απόδοσης, οι αρχιτέκτονες υπολογιστών έχουν στραφεί
σε ενεργειακά αποδοτικούς επεξεργαστές, συμπεριλαμβανομένων ορισμένων που βασί-
ζονται στην ανοιχτού κώδικα Αρχιτεκτονική Συνόλου Εντολών (Instruction Set Ar-
chitecture - ISA) RISC-V, η οποία υπόσχεται ενεργειακή απόδοση, χαμηλό κόστος
υλοποίησης και βελτιωμένη απόδοση σε πολυπύρηνους επεξεργαστές.

Η παρούσα εργασία συμβάλλει στη σχεδίαση και υλοποίηση μιας νέας προσέγ-

γισης επικοινωνίας ροών μεταξύ επεξεργαστών που βρίσκονται σε διαφορετικά Νησιά

Συνοχής (Coherence Islands) RISV-V. Παραδοσιακά, τα νησιά συνοχής επικοινωνούν
μέσω δικτύων σε επίπεδο συστήματος, τα οποία βασίζονται σε διασυνδέσεις που χρησι-
μοποιούν είτε TCP/IP ή Απομακρυσμένες ΄Αμεσες Προσπελάσεις Μνήμης (Remote
Direct Memory Access - RDMA). Σε αυτές τις δομές, οι κόμβοι επικοινωνίας αν-
ταλλάσσουν δεδομένα που βρίσκονται αποκλειστικά στις μνήμες τους, κάτι που αυξάνει
τις χρονικές καθυστερήσεις και εξαντλεί κύκλους επεξεργασίας. Το RDMA βελτιώνει
την επικοινωνία μεταξύ μνημών, προσφέροντας μεταφορές δεδομένων οι οποίες εκκι-
νούνται σε επίπεδο χρήστη, με μηδενικές αντιγραφές και μηδενικές επεξεργαστικές
επιβαρύνσεις.

Σκοπός αυτής της εργασίας είναι να προσφέρει επικοινωνία μεταξύ ενός πυρήνα

κι ενός άλλου (απομακρυσμένου) κόμβου, ο οποίος μπορεί να είναι ένας πυρήνας ή
μια μνήμη. Συγκεκριμένα, προτείνουμε μια καινούρια Κρυφή Μνήμη αποκλειστικά για
την υποστήριξη επικοινωνίας ροών, η οποία βρίσκεται δίπλα από την Κρυφή Μνήμη
Επιπέδου 1 (L1 Cache) του πυρήνα και χρησιμοποιεί την ίδια γρήγορη διεπαφή για
επικοινωνία με αυτόν. Χωρίσαμε την Κρυφή Μνήμη Ροών σε δυο μέρη λογικής: α)
του παραγωγού, όπου το εξερχόμενο μέρος διαχειρίζεται δεδομένα που αναχωρούν
από τον κόμβο, και β) του καταναλωτή, όπου το εισερχόμενο μέρος διαχειρίζεται
δεδομένα που καταφθάνουν στον κόμβο. Ουσιαστικά, στην προτεινόμενη δομή δι-
αχείρισης ροών, αντί τα δεδομένα να μετακινούνται μεταξύ των κυρίων μνημών των
κόμβων, τα δεδομένα τόσο του παραγωγού, όσο και του καταναλωτή, μπορούν να
προσπελαστούν με καθυστέρηση όπως αυτής της L1 Cache. Για να βελτιώσουμε
την απόδοση, επιλέξαμε οι πολιτικές της Κρυφής Μνήμης Ροών να βασίζονται στην
αρχή μοναδικής-ανάγνωσης/μοναδικής-εγγραφής, ώστε να γίνεται άμεση ανακύκλ-
ωση του χώρου δεδομένων ροών στα οποία έχει υπάρξει ήδη πρόσβαση. Επιπλέον,
ένας Προανακτητής (Prefetcher) ανακτά δεδομένα από τον (απομακρυσμένο) κόμβο

πριν χρειαστούν, με αποτέλεσμα τη μείωση του κόστους στις προσβάσεις ανάγνωσης,
ενώ οι προσβάσεις εγγραφής επωφελούνται από έναν Συνδυαστή Εγγραφών (Write-
Combiner), ο οποίος συνδυάζει γειτονικά δεδομένα και τα στέλνει στον (απομακρυσ-
μένο) κόμβο. Στην εργασία μας, οι προσβάσεις σε δεδομένα ροών αναγνωρίζονται
από τις εικονικές διευθύνσεις των εντολών, χωρίς την ανάγκη επέκτασης του ISA.
Υλοποιήσαμε αυτό το σύστημα, με τη γλώσσα περιγραφής υλικού SystemVer-

ilog, και το προσθέσαμε ως επέκταση στον μονοπύρηνο RISC-V επεξεργαστή CVA6
(πρώην ARIANE). Σχεδιάσαμε τα Εισερχόμενα και Εξερχόμενα μέρη λογικής της
Κρυφής Μνήμης Ροών να χρησιμοποιούν το καθένα (4) πλαίσια εργασίας σε πραγ-
ματικό υλικό προκειμένου να υποστηρίξουμε εικονικοποίηση, και είναι άμεσα συνδ-
εδεμένα με τη Μονάδα Αναγνώσεων/Εγγραφών (Load/Store Unit - LSU) του ARI-
ANE. Επίσης, στα άκρα έχει υλοποιηθεί λογική επικοινωνίας, η οποία ζητά και στέλνει
δεδομένα μέσω μιας διασύνδεσης AXI-4.
Η εργασία μας έχει υλοποιηθεί για τη Συστοιχία Επιτόπια Προγραμματιζόμενων

Πυλών (Field Programmable Gate Array - FPGA) Zynq UltraScale+ MPSoC της
Xilinx. Για το Εισερχόμενο μέρος λογικής, από πλευράς χώρου χρησιμοποιήθηκαν
16839 Προγραμματιζόμενες Πύλες (LUTs), 7506 Καταχωρητές και 8Μνήμες Τυχαίας
Προσπέλασης (BRAMs), λειτουργώντας στα 275 MHz, ενώ για το Εξερχόμενο μέρος
λογικής, χρησιμοποιήθηκαν 23606 LUTs, 8615 Καταχωρητές και 8 BRAMs, λει-
τουργώντας στα 210 MHz.
Προσομοιώσαμε την υλοποίησή μας προκειμένου 1) να επαληθεύσουμε τη λει-

τουργικότητα των ροών σε συνδυασμό με πυρήνες RISC-V και 2) να αξιολογήσουμε
την απόδοσή της. Στις αξιολογήσεις μας, μεταφέρουμε δεδομένα ροών από και προς
την κυρίως μνήμη του πυρήνα ARIANE, χρησιμοποιώντας πρώτα την παραδοσιακή
ιεραρχία μνήμης και ύστερα την βελτιστοποιημένη Κρυφή Μνήμη Ροών. Τα αποτελέσ-
ματα παρουσιάζουν κέρδη απόδοσης χάρη στις πολιτικές βελτιστοποίησης ροών της

υλοποίησή μας, αφού επιτυγχάνεται η σχεδόν πλήρης εξάλειψη των χρονικών κα-
θυστερήσεων της διασύνδεσης του δικτύου στα ενδεικτικά προγράμματα συγκριτικής

αξιολόγησης, χωρίς την υποστήριξη λειτουργικού συστήματος.

Acknowledgments

I would like to express my gratitude to Advisor Dr. Nikolaos Chrysos for his
guidance and support during my studies and this work. Additionally, I would like
to thank my Supervisor, Prof. Manolis GH Katevenis for his overall assistance
and interesting discussions all these years. Furthermore, I would like to show
appreciation to Prof. Polyvios Pratikakis and Prof. Vassilis Papaefstathiou for
taking part in the examination committee for the evaluation of this work. Special
thanks to Evangelos Mageiropoulos that helped with the writing of my master
thesis.

Moreover, I would like to express my appreciation to Pantelis Xirouchakis for
training and introducing me to the world of hardware design. Also, I would like
to thank all the members of the CARV Laboratory team for their support and
collaboration.

Finally, I would like to thank the Foundation for Research and Technology -
Hellas (FORTH), Institute of Computer Science (ICS), for the funding of this work.
This work has been partially funded by the RED-SEA project, which has received
funding under grant agreement No 955776 from the European High-Performance
Computing Joint Undertaking (JU) and from France, Greece, Germany, Spain,
Italy, and Switzerland. The JU receives support from the European Union’s Hori-
zon 2020 research and innovation programme.

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Remainder of this thesis . 5

2 Streaming Cache 7

2.1 Cache Policies . 8

2.2 Tightly-coupling with ARIANE RISC-V core 9

2.2.1 Identifying Stream Accesses 12

2.2.2 Supported communication flows 13

2.3 Overall diagram of Streaming Caches 15

2.4 Internal organization of Stream Caches 17

2.4.1 State differentiation . 21

2.5 Comparison with Remote Direct Memory Access (RDMA) 23

3 Incoming Stream Cache 27

3.1 General Description . 27

3.2 Control Logic for communication with the core 30

3.3 Prefetching . 30

3.4 Bigger packets (AXI Burst) . 34

3.5 Operations on Addresses . 34

3.6 LSU and network interfaces . 35

4 Outgoing Stream Cache 37

4.1 General Description . 37

4.2 Control Logic for communication with the core 40

4.3 Write Combining . 40

4.3.1 Control Logic for communication with a Memory 40

i

4.3.2 Control Logic for communication with an Incoming Stream
Cache . 44

5 Load Store Unit Extensions 47
5.1 Load Unit . 47
5.2 Store Unit . 49

6 FPGA Implementation and Design Evaluation 53
6.1 Time and Space Overheads . 53
6.2 Preliminary Evaluation . 54

7 Related Work 59
7.1 Vivado High Level Synthesis Streams 59
7.2 Data Streaming in inter-process CNN engines 59
7.3 Maxeler Data Flow Engine . 59
7.4 Stream-based Memory Access accelerator 60

8 Conclusion – Future Work 61

Bibliography 63

ii

List of Tables

2.1 Incoming stream states for communication with either a memory or
an outgoing stream cache. 21

2.2 Outgoing stream states for communication with a memory. 22
2.3 Outgoing stream states for communication with an incoming stream

cache. 22

6.1 Space Utilization of Streaming Caches. 54

iii

iv

List of Figures

1.1 Diagram showing the different types of network communication. . 2

2.1 Comparison between the old and new RISC architecture 8

2.2 Overview of ARIANE with the Streaming Caches. 10

2.3 Incoming Stream Cache interface with Load Unit. 11

2.4 Outgoing Stream Cache interface with store Unit. 12

2.5 Different types of communications supported by our Streaming Caches 13

2.6 Timing diagram showing the active sliding window in an Incoming
or Outgoing Stream Cache. 14

2.7 General design of the Incoming Stream Cache, with four circular
buffers . 15

2.8 General design of the Outgoing Stream Cache, with four circular
buffers . 16

2.9 Incoming stream circular buffer for communication with either a
memory or an outgoing stream cache 18

2.10 Outgoing stream circular buffer for communication with a memory 19

2.11 Outgoing stream circular buffer for communication with an incom-
ing stream cache . 20

2.12 Basic idea for the Read and Write operations of RDMA engine. . . 24

2.13 Timing diagram comparison between RDMA Engine’s Read opera-
tion and Incoming Stream’s prefetching. 25

3.1 Load instruction diagram for Incoming Stream Channel. 28

3.2 Recycling diagram for Incoming Stream Channel. 29

3.3 Incoming Stream Channel Controller. 31

3.4 Data request diagram of Incoming Stream Channel. 32

3.5 Data response diagram of Incoming Stream Channel. 33

4.1 Store instruction diagram for Outgoing Stream Channel. 38

4.2 Recycling diagram for Outgoing Stream Channel. 39

4.3 Outgoing Stream Channel Controller. 41

4.4 Data write request diagram of Outgoing Stream Channel commu-
nicating with a memory. 42

v

4.5 Data write response diagram of Outgoing Stream Channel commu-
nicating with a memory. 43

4.6 Data request diagram of Outgoing Stream Channel communicating
with the prefetcher of an Incoming Stream Cache. 45

4.7 Data response diagram of Outgoing Stream Channel communicating
with an Incoming Stream Cache. 46

5.1 Load Unit Controller extensions for supporting stream data. 48
5.2 Store Unit Controller extensions for supporting stream data 50
5.3 Store Buffer extensions for supporting stream data. 51

6.1 Testbench Overview of ARIANE with the Streaming Caches. . . . 55
6.2 Incoming Stream Channel comparison with Main Data Cache for

back-to-back word load instructions. 56

vi

Chapter 1

Introduction

With the increasing need to analyze more data and the slow scaling of technology,
both industry and academia try to find ways to push the boundaries and improve
performance on processor chips. Initially, architects were trying to improve per-
formance by continuously increasing the clock frequency, which caused enormous
power consumption and heat dissipation. As the years passed and the chip man-
ufacturing technology improved, multi-core era arrived, where architects could fit
many cores in a single chip, by enabling work parallelization. Even though work
parallelization restored energy efficiency, lowered silicon costs and improved the
overall system performance, there was still need for performance speedup.

Last years, computer architects have turned their interest to energy efficient
designs, such as Reduced Instruction Set Computer (RISC) architectures. Based
on RISC principles, the arrival of open-source RISC-V Instruction Set Architecture
(ISA) [1] has opened the way, both in academia and industry, to push even further
the boundaries of designs, from micro-controllers to server-class processors. That
helped computer architects to turn their interest to the utilization of accelerating
designs, where exposing rich semantics and designing specialized hardware further
increases performance.

However, even with the wide range of available RISC-V implementations and
accelerating designs, there is a lack or poor support of features, which can be
found already implemented in different ISAs. This makes it difficult to decide
which design to choose and when to start from the ground up.

1.1 Motivation

In the wide variety of specialized designs on memory management, only a very
small part of the research community has focused on accelerating the memory ac-
cess patterns of data streaming and its communication between (remote) nodes.
Stream communication can be found in many academic and industry applications,
from High Performance Computing (HPC), to Internet of Things (IoT). In stream
communication, applications typically operate on sequential and possibly remote

1

2 CHAPTER 1. INTRODUCTION

kernel or lib kernel or lib

useruser

Sender Memory Sender NIC Receiver MemoryReceiver NIC

L1

core

L1

core

ideal (zero-copy) RDMA

cp cp

DMA DMA

our proposal

Network

TCP/IP

Figure 1.1: Diagram showing the different types of network communication.
TCP/IP interconnect moves data from the user space of first node’s memory to
the user space of second node’s memory through their kernel space, while RDMA
bypasses the Operating System. In our approach, we will try to bypass memory
accesses, by using them only if we want to fetch data from or backup data to the
memory of the (remote) node.

chunks of data, like the ones that can be found in big data analytics’ frameworks
or sensory networks. To enable further higher performance speedup, systems must
provide low latency and high throughput, and tightly couple stream communi-
cation with the processing core engines. In current RISC-V implementations,
processors communicate either through shared memory (e.g. Open-Piton [2]) in-
side the same Coherence Island (CI), or using RDMA for memory to memory
communication across CIs.

Traditionally, coherence islands communicate through system-level communi-
cation networks that are based on either TCP/IP or Remote Direct Memory Access
(RDMA) interconnects, as shown in Figure 1.1. In these frameworks, the com-
munication peers exchange data located in the main memory. RDMA advances
memory-to-memory communication by offering user-level initiation of zero-copy
and zero CPU overhead transfers.

Our goal is to design and implement a new hardware primitive for interpro-
cessor communication across RISC-V CIs. Our approach leverages on the sequen-
tial access pattern in stream communication to offer read and write latencies for
streaming data on the order of those of first-level caches. In our proof-of-concept
implementation based on the ARIANE RISC-V hardware, an application run-
ning in a core can read and write remote data with virtual constant latency of 2

1.2. CONTRIBUTIONS 3

processor cycles, similar to L1 cache hit access time, for any size of data in the
stream. Note that this is much faster than the local DRAM accesses, even more so
than state-of-the-art RDMA technology, which places remote data in the DRAM,
possibly invalidating or updating cached data in the destination coherence island
(node).

In order to achieve this performance, we design a tightly-coupled cache for
streaming data that sits next to the L1 cache of the ARIANE, with small tim-
ing overheads, but relatively big area (40445 LUTs and 16121 Registers) in our
early-stage prototype FPGA implementation. The block uses the existing system
interconnection to issue and prefetch remote data when needed, and adopts novel
read-once and write-once&combine cache policies. In order to decouple the pro-
ducer and consumer of the communication channel between them, called stream,
we allow the consumer (producer) to fetch (issue) data within a window’s distance
from the head, called sub-stream or sliding-window, where the head is the
oldest data available in the buffers of the stream.

1.2 Contributions

Throughout the duration of this thesis, the author dealt with a plethora of sub-
jects, ranging from designing the idea of stream communication between (remote)
nodes in cache-like manner, to implementing the Stream Cache for Incoming and
Outgoing communication to and from the processor, with minimal changes to the
Load/Store Units (LSUs) and interface of the processor, and evaluating it through
test-benching. In more detail, the author’s contributions to this thesis are the
following:

• He was given the design of a specific RV64GC core called CVA6 (former
ARIANE [2]) that the team in his laboratory is currently using, and for the
purpose of understanding a. how it works, b. how to make minimal changes
to it, so there will be no extra overheads, and c. how to test-bench the design
later, he 1. emulated the logic of the Load/Store Unit of the core and used
the exact same interface as the one used for the communication between the
core and the L1 Cache, 2. emulated the logic of the L1 Cache, so he can
make sure that his changes on the design will fit perfectly to the original
core, and 3. emulated the logic of the network adapter, for test-benching
later in his design.

• He designed his implementation based also on the knowledge gained from
the previous steps. For the network Incoming part, he designed a prefetcher
to fetch the data as soon as possible. For the network Outgoing part, he
designed a write-combiner for combining neighboring data and releasing them
to the network as soon as all neighboring data are available. For the processor
communication, because the original core was designed to communicate with
a Virtually Indexed, Physically Tagged L1 Cache, he made changes to the

4 CHAPTER 1. INTRODUCTION

emulated design of the core, to support his Virtually Indexed, Virtually
Tagged Stream Cache, for the purpose that as long as the data are on the
Stream Cache, there is no need to allocate space on the local address space.

• He created extra channels for the communication between the core and the
Stream Cache, for the purpose that the original L1 Cache should not be
enabled for processor requests that are intended only for Stream Cache, and
vice-versa.

• He split the logic for the incoming and outgoing part, because they were
not interfering in any way, and designed the Incoming and Outgoing Stream
Caches. Each Stream Cache consists of multiple buffers and their individual
control logic, where each one communicates with a specific (remote) node.
Each pair of buffer and its control logic for communication purpose, is iden-
tified in the remainder of the paper as incoming or outgoing stream.

• He implemented the hardware block for the Incoming Stream Cache,
which is responsible for transferring the incoming stream data from the net-
work to the processor, when requested. It consists of 1. multiple incoming
stream buffers, where each one has its own controller to handle the requests
and responses from either the network or the processor, 2. the network
handler, which is responsible for sending requests to the network in a round-
robin manner, based on the active streams, and can receive the responses
out-of-order, and 3. the load instruction handler, which is responsible for
forwarding the processor’s load instruction requests to the appropriate in-
coming stream, for the intended incoming stream to respond back to the
processor with the requested data.

• He test-benched the Incoming Stream Cache with the emulated Load Unit
and Network, to test both the in-order and out-of-order requests of the Load
Unit and responses of the Network, by setting an individual or all available
hardware streams active.

• He implemented the hardware block for the Outgoing Stream Cache,
which is responsible for transferring the outgoing stream data from the pro-
cessor to the network, when there are enough available to be combined. It
consists of 1. multiple outgoing stream buffers, where each one has its own
controller to handle the requests and responses from either the processor
or the network, 2. the store instruction handler, which is responsible for
receiving the processor’s store instruction requests and forwarding them to
the appropriate outgoing stream, for the outgoing stream to combine and
release them to the network, and 3. the network handler, which is responsi-
ble for sending the combined stream data to the network in an out-of-order
and round-robin manner, based on the active streams that have available
combined data.

1.3. REMAINDER OF THIS THESIS 5

• He test-benched the Outgoing Stream Cache with the emulated Store Unit
and Network, to test both the in-order and out-of-order requests of the Store
Unit and responses of the Network, by setting an individual or all available
hardware streams active.

• The original design was supporting communication to the network through
the Cache Subsystem, i.e. Bypass channel and L1 Cache, by setting specific
address ranges for non-cacheable and cacheable data requests. He made
minor extensions to the Load/Store Unit of the core, for the purpose of
supporting the extra channels created to communicate with the Streaming
Caches. For the core to enable the appropriate channel each time to send
data requests, a specific address range was set for the stream data inside the
cacheable address region. That way, it was managed fr the design to have
latency same to that of a L1 Cache, by making no ISA extensions.

• In order to evaluate the performance of the design, he test-benched the
Stream Caches after integrating them with the actual ARIANE core. The
test showed a latency of 2 clock cycles for individual load/store instruc-
tions and 1 clock cycle for back-to-back load/store instructions, same as
the hit access of the Main Data Cache. Additionally, by taking advantage of
the prefetcher (and write-combiner), the design yielded on our hand-made
microbenchmark for back-to-back word loads an average latency of 9 clock
cycles for each load instruction request, with packet size equal to 64 Bytes.
This shows an improvement compared to the average latency of 41 clock
cycles of using the Main Data Cache, which fetches one cacheline of 16
Bytes per cache miss, by having the core running at 1.5GHz with 150 cycles
memory access latency.

• He synthesized the project in Vivado 2020.1, with a Xilinx Zynq UltraScale+
MPSoC (xczu9eg-ffvc900-2-e) as a target FPGA. The design achieved clock
frequency of 275MHz for the Incoming Stream Cache and 210MHz for
the Outgoing Stream Cache. Furthermore, the design with both Stream-
ing Caches consumed an area of 40445 LUTs, 16121 Registers, and 16
BRAMs.

1.3 Remainder of this thesis

The remainder of the paper is organized as follows: Chapter 2 presents our design,
as we have tightly coupled it with ARIANE RISC-V core in hardware, Chapters 3
and 4 showcase the implementation details for a stream channel in the Streaming
Caches, Chapter 5 presents the extensions that were implemented on the Load and
Store Unit of the core to support our Streaming Caches, Chapter 6 demonstrates
the hardware requirements of the module for an FPGA implementation and shows
a rudimentary evaluation of its performance, Chapter 7 discusses related work
items, and finally, Chapter 8 concludes the paper with notes on future work items.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Streaming Cache

The main goal of our design is to achieve interprocessor stream communication
across RISC-V coherence islands with very low latency and high throughput. In
RISC architectures, the core accesses the memory by using load/store instructions,
and makes computations only through registers, as shown in Figure 2.1a.

In our proposal, we use the same paradigm of load/store instructions in or-
der to achieve stream communication, as shown in Figure 2.1b. The load/store
instructions that trigger stream communication actions target a dedicated virtual
address range (segment of a global address space).

Our work is based on the observation that accesses to stream data happen
almost-sequentially and are rarely read from or written to the memory more than
once. For that reason, our proposal supports read-once and write-once semantics
for that data. To elaborate more, the idea behind our work is that if a programmer
wants to load stream data, they have to be moved from the stream address space
to the local address space. From the moment that the stream data are in local
address space, they no longer allocate space in the incoming part of the streaming
cache, but only physical space in the local address space. That way, if the pro-
grammer wants to reuse those data, it has to either store them on local address
space, or to create a new stream flow for local usage, i.e. loopback. When the
computations on stream data complete, the programmer has to move the data
from local address space to stream address space, by storing them in the outgoing
part of the streaming cache, because stream data are ready to be sent elsewhere
and there are no more computations for them in the local address space.

To reduce the latency of reading and writing stream data, we have to use
some type of accelerating logic. In the case of reading data, we need to have
them available as soon as possible, before they get requested by the core. For
that reason, we utilize a prefetcher in the incoming part of the streaming cache to
hide the latency of the network. On the other hand, when we are writing stream
data to be sent through the network, from one hand we want to avoid having the
buffers filled and from the other we want to reduce the congestion in the network,
by avoiding sending many small write requests. The solution that we followed is

7

8 CHAPTER 2. STREAMING CACHE

ALU's

Lo
ad

St
or

e
Register File

compute

Memory / Caches

(a) Basic RISC architecture

Processor

Local Memory / Caches

O
ut

go
in

g
C

ac
he

(w

rit
e-

th
ro

ug
h

w
ith

 c
om

bi
ni

ng
)

In
co

m
in

g
C

ac
he

(re

ad
-in

va
lid

at
e)

Lo
ad

 o
nc

e

Load
(many)

St
or

e
on

ce

Store
(many)

co
m

pu
te

(b) Extended RISC architecture

Figure 2.1: A comparison between the old and the new RISC architecture, where
the latter showcases the new semantics for handling the stream data. The proposed
architecture reads once the stream data from the incoming part of the streaming
cache, by loading them in local variables, and after the core finishes with compu-
tation, it writes the data once in the outgoing part of the streaming cache.

to combine a bunch of neighboring data, which go to the same (remote) node,
and release them together as soon as possible. For that reason, we utilize a write
combining buffer in the outgoing part of the streaming cache, for the purpose of
reducing the congestion of the network, by sending bigger packets of data. Both
prefetcher and write-combiner work independently to the core’s read and write
requests of stream data.

2.1 Cache Policies

In our work, we followed a Read-once / Read-Invalidate andWrite-once & Combine
/ Write-through-Combine cache policy for stream data, which helps to automati-
cally flush old data from the streaming caches.

• Read-Invalidate means that after a word has been read by the core, it
becomes invalid in the incoming part of the Streaming Cache. In this way,
stream data occupy space of the incoming part of the Streaming Cache only
until they are loaded into registers. Of course, if stream data are read and
need to be used again later, they will need to be copied in local memory,
because of our read-once semantics.

• Write-through-Combine means that the outgoing part of the Streaming
Cache combines the data (core store instructions) into lines as they arrive,
and after the lines/packets have been sent successfully to memory or to re-
mote node, their entries in the outgoing part of the Streaming Cache become
invalid and the corresponding space becomes available for new data.

2.2. TIGHTLY-COUPLING WITH ARIANE RISC-V CORE 9

2.2 Tightly-coupling with ARIANE RISC-V core

In our first implementation, we use the RV64GC core called CVA6 (former ARI-
ANE [2]). To adapt ARIANE to our protocol, we modified the Load/Store Unit
(LSU) of the ARIANE’s Execution Stage, as well as the interface between the core
and the L1 Cache.

To reduce the latency of accessing stream data, we dedicate a new Streaming
Cache that is tightly coupled with the core, similar to the L1 Cache of ARIANE,
as outlined in Figure 2.2. The Streaming Cache is virtualized, offering multiple
channels (totally eight in our current implementation) that can be allocated for ex-
ample to different processes. Each channel for stream data has a separate physical
buffer dedicated to stream communication.

In our first implementation, the physical buffer has a size of 4 KBytes (para-
metric), however it supports data streams with an infinite number of words. The
reason that we choose a 4 KBytes buffer, is that we want enough space for the
producer to fill the buffers (i.e. the remote node that feeds the incoming part
of the streaming cache or the core that feeds the outgoing part of the streaming
cache). With a very small sized stream buffer, the core will stall trying to consume
or produce stream data, because buffers in streaming cache will not have enough
space to fetch or send stream data, while with a very big sized buffer, we will be
unnecessarily allocating a lot of resources, because the core will not be so fast to
consume or produce stream data.

The Streaming Cache communicates with the core via load/store instructions
in the global address space, same as the L1 Cache. To simplify the design of the
Streaming Cache, we split it into an incoming and an outgoing segment. Specifi-
cally:

• The Incoming Stream Cache prefetches data, to anticipate core’s read re-
quests.

• The Outgoing Stream Cache combines neighboring write-data into packets
and evicts them to the network as soon as possible to feed the (remote)
consumer.

As shown in Figure 2.2, the LSU consists of separate load and store sub-units,
where the first can issue a load and the latter a store (from the store buffer) request
to the data cache. Furthermore, the L1 cache of ARIANE is Virtually Indexed,
Physically Tagged. For that reason, together with the address request to the cache
for tag comparison, the LSU sends another request for address translation to the
Memory Management Unit (MMU), and expects the response in the same or the
following cycles. Therefore, in best case scenario, it takes two cycles to complete
the cache request, without necessarily stalling the core, i.e. the cache subsystem
can handle back-to-back cache hits.

In more detail, when there is a valid load instruction, the Load Unit issues a
load request to the Cache Subsystem, and an address translation request to the

10 CHAPTER 2. STREAMING CACHE

Ariane
Core

Main Data Cache
Incoming
Stream
Cache

Outgoing
Stream
Cache

EX Stage
LSU

Load Unit MMU Store Unit

Local DRAM/Remote Network

PTW

TLB St. Buffer

Figure 2.2: Overview of ARIANE with the Streaming Caches. Either of the Load
or Store Units can send data requests to either Main Data Cache or the corre-
sponding Streaming Cache, based on the virtual address of the instruction.

MMU. If there is no Translation Lookaside Buffer (TLB) hit on the same cycle,
the Load Unit aborts the load request to the Cache Subsystem, and issues a new
load request to the Cache Subsystem when there is a TLB hit. After, the Load
Unit waits a request grant from the Cache Subsystem. When Load Unit receives
the request grant, it forwards the translated address to the Cache Subsystem for
tag matching and loads the data, when available.

On the other hand, when there is a valid store instruction, the Store Unit
issues a store request to the Store Buffer, if it has available space, and an address
translation request to the MMU. If on the same cycle there is no TLB hit or no
available space on Store Buffer, the Store Unit aborts the store request to the
Store Buffer, and issues a new store request to the Store Buffer when there is
a TLB hit or available space on Store Buffer. When the Store Buffer has valid
store requests for the Cache Subsystem, it issues the first in order store request
to the Cache Subsystem with the translated address. When Store Unit receives
the request grant, it can issue the next in order valid store request to the Cache
Subsystem.

With the addition of our design, the Incoming and Outgoing Stream Caches

2.2. TIGHTLY-COUPLING WITH ARIANE RISC-V CORE 11

Load Unit

Main Data CacheIncoming Stream Cache

virt_indx r_valid r_data

phys tag

TLB

virt_tagrequest grant tag_valid

rdatarvalidtagindxgntreq indx tag rdatarvalidreq gnt tvalid

is_stream

Figure 2.3: Incoming Stream Cache interface with Load Unit. Request signal is
enabled when there is a valid load request, is stream signal is enabled when the
request is intended for the Incoming Stream Cache, grant signal is enabled when
the Cache has accepted the load request, tag valid signal is enabled when the
physical tag is valid, and read valid signal is enabled when the requested data
are valid.

are located next to the L1 Cache. The Incoming Stream Cache receives stream
requests from the Load Unit of the LSU and the Outgoing Stream Cache from the
Store Unit, respectively. The channels of these requests are almost identical with
the ones that go to the main data cache.

It is important to note that our Streaming Caches use untranslated virtual
addresses. The stream data belong to the virtual address of the process, as will
be discussed in more detail in the next section, because they do not correspond to
allocated physical space, other than the buffers of the Streaming Caches. So, the
Streaming Caches are Virtually Indexed, Virtually Tagged.

In Figure 2.3, we depict in more detail the format of this interface for the case
of the Load segment of the LSU. The requests either index the Incoming Stream
Cache or the Main Data Cache, as identified by the request signals selected by the
is stream control. is stream is active when the address of the Load instruction is
inside the stream data address region. As happens with the main data cache, the
incoming stream cache receives in the first cycle the index of the virtual address
and uses it to read all stream channels (stream buffers coupled with control logic).
In difference though to what happens in the main data cache, the incoming stream
cache receives also in the first cycle the tag of the untranslated virtual address, in
order to locate the channel of the stream request. A data miss will occur if the

12 CHAPTER 2. STREAMING CACHE

Store Buffer (Store Unit)

Main Data CacheOutgoing Stream Cache

virt_indx w_datavirt_tagrequest grantis_stream

wdata wdatatagindxgntreq indx tagreq gntwe

w_enable

we

phys_tag

Figure 2.4: Outgoing Stream Cache interface with store Unit. Request signal is
enabled when there is a valid store instruction, is stream signal is enabled when
the request is intended for the Outgoing Stream Cache, grant signal is enabled
when the Cache has accepted the store request, and write enable signal is enabled
when write data are valid.

requested stream channel does not yet have valid (fetched) data on the location of
the index.

In a similar manner, in Figure 2.4, we show the interface of the Store segment
of the LSU. When the data are ready to be stored, either Main Data Cache or
Outgoing Stream Cache will be requested to accept the data in the same cycle,
because the issue and the commit of a store instruction happen on different cy-
cles, and the translation, if needed, happens on the same cycle or one cycle (or
more) after the store instruction is issued. When the ARIANE core issues a store
request, it uses the store buffer to store the request on the speculative queue, if
the speculative queue has available space; otherwise the core stalls. After that,
if the commit queue has available space and the commit signal is enabled, Store
Buffer moves the request to the commit queue, for the purpose of the request to
be handled later by the Cache Subsystem.

More details about the extensions on the LSU will be given in Chapter 5.

2.2.1 Identifying Stream Accesses

In our design, cores fetch (or push) stream data through various stream channels
via load (or store) instructions. To split common from stream data, without ex-
tending the ISA, we reserve a region of the virtual address space for stream data,

2.2. TIGHTLY-COUPLING WITH ARIANE RISC-V CORE 13

Network

Remote
Processor

Remote
Processor

Host
Processor

store

load

Cache Levels / Local Memory

Cache Levels / Local Memory

store

store

load

load

Cache for
Outgoing

Cache for
Outgoing

Cache for
Outgoing

Cache for
Incoming

Cache for
Incoming

Cache for
Incoming

readCache Levels Memory

store

load

write

read

read

read

write

read

write

read

Figure 2.5: Different types of communications supported by our Streaming Caches.
In the Incoming Stream Cache, each stream is responsible to request data, either
from an Outgoing Stream Cache or a memory, while in Outgoing Stream Cache,
a stream can either send the data to a memory when it has them ready, or should
wait till they are ready and requested from an Incoming Stream Cache.

e.g. a few TBytes, and split that space for each active stream, e.g. 4 GBytes.
In this way, each stream can be recognised uniquely by the virtual address of the
request and has a unique Base Address. The software should issue requests only 4
GBytes past that Base Address to access the stream. In our current implementa-
tion, in case that the stream needs to be greater than the maximum allowed allo-
cated virtual space, like on infinite sized streams, instead of creating new streams,
the programmer can create programs, where the address can just wrap-around to
access the data after the allocated virtual space of the stream. Note that there
can be several streams established, however only a specific amount of them can be
concurrently active in one node, as many as the channels offered by the streaming
cache, e.g. 4 in our current implementation for each streaming cache.

2.2.2 Supported communication flows

As shown in Figure 2.5, our design supports communication: (a) from memory
to incoming Stream Cache, (b) from Outgoing Stream Cache to Incoming Stream
Cache, and (c) from Outgoing Stream Cache to memory.

Note that our design supports chaining, which means that two or more cores (or
accelerators) can communicate with each other in a producer-consumer way and
without the need of involving any memory in-between (i.e. Outgoing Stream Cache
to Incoming Stream Cache). In chaining, we decided that only the prefetcher of an
incoming stream channel can request data from an outgoing stream channel (i.e.

14 CHAPTER 2. STREAMING CACHE

increasing
addressescircular buffer

sliding window

time

(network arrivals, or processor store instructions)feeding process

(processor load instructions, or network departures)consuming process

not yet arrived

yet unallocated storage &

already departed

deallocated storage

past arrivals arrivals
current

departures
current

Figure 2.6: Timing diagram showing the active sliding window in an Incoming or
Outgoing Stream Cache. Both arrivals and departures can happen Out-of-Order,
but the sliding window moves steadily in a step-wise way, when the departure of
its head data finish successfully.

Read Channel), for the purpose of minimizing congestion and avoiding wasting
packets in the network, by having an outgoing stream channel sending data to an
incoming stream channel that either doesn’t need at the moment or doesn’t have
available space for.

In the scenario of a stream channel communicating with a memory, the network
channel needs to pass from an I/O MMU, for the purpose of the remote virtual
address to get translated to a physical address. Our design does not support any
type of address translation, other than pairing the stream base virtual address and
the remote base virtual address for each stream channel, which are responsible for
the core and network communication, respectively. Those base virtual addresses
are given by the core to the stream channel during its initialization, together with
the virtual space that each address can utilize, when the core wants to enable the
stream channel.

In the hardware, every active stream channel has a dedicated memory that we
implement using a circular buffer, as shown in Figure 2.6. The processing units
are expected to access stream data in almost-sequential manner, i.e. our design
tolerates out-of-order accesses (e.g. due to out-of-order production/consumption
or due to out-of-order network delivery) up to a certain window size. Effectively,
the buffer of the incoming or outgoing stream channel stores the currently active
portion of the stream, what we call sliding window.

For the needs of most software libraries and applications for parallel and dis-
tributed systems, the current version of our design can support workload sharing,
such as splitting and reduction operations for stream flows. For splitting, the
core has to allocate various outgoing stream channels to store the stream data
that should be sent to the (remote) nodes that will share the processing of the
produced workload, while for reduction, the core has to allocate various incoming
stream channels to load the stream data for consumption that will arrive from the
(remote) nodes.

2.3. OVERALL DIAGRAM OF STREAMING CACHES 15

Network

Incoming Stream Cache
Network handler

Channel 0

Channel 1

Channel 2

Channel 3

Round-Robin
Active Stream

Selection

R
eq

ue
st

s
Load
Instr.

Stream
Selection

Load
Unit

R
es

po
ns

es

ID-based
Stream

Selection

addr

data

addr

data

Figure 2.7: General design of the Incoming Stream Cache, with four hardware
stream channels (circular buffers). As with the main data cache and its ways, a
load instruction is processed by all stream channels in parallel, but only one will
handle the request and respond back. Each stream channel can be assigned for
only one type of communication, either with a memory or an outgoing stream
cache.

2.3 Overall diagram of Streaming Caches

Figure 2.7 shows the overall block design of the incoming stream cache. We use
one main controller for each stream channel and two request/response handlers for
all stream channels.

One part of the controller is responsible of handling the requests and responses
of the Load Unit of the core. The other part of the controller is responsible of
handling the network requests and responses that can either come from a memory
on an outgoing stream cache. Both cooperate to update correctly the stream data
and the per-word validity bits per stream channel.

About the request/response handlers, one resides between the core and the
stream channels, while the other one resides between the stream channels and the
network. The first handler is responsible for the stream channel selection and
simply multiplexes and de-multiplexes the signals, because there can be only one
load request per cycle, intended for one stream channel only. The other handler
has a round-robin mechanism to choose fairly a request from each active stream
channel, while it simply multiplexes and de-multiplexes the response signals to the
correct stream channel.

16 CHAPTER 2. STREAMING CACHE

Outgoing Stream Cache

Memory
Channel 0

Channel 1

Channel 2

Channel 3

Round-Robin
Active Stream

Selection

R
eq

ue
st

s

Store
Instr.

Stream
Selection

Store
Unit

R
es

po
ns

es

ID-based
Stream

Selection

addr
data

addr
data

Incoming
Stream
Cache

Network handler

Addr-based
Stream

Selection

R
eq

ue
st

s
R

es
po

ns
es

Round-Robin
Active Stream

Selection

addr

data

Figure 2.8: General design of the Outgoing Stream Cache, with four hardware
stream channels (circular buffers). As with the main data cache and its ways, a
store instruction is processed by all stream channels in parallel, but only one will
handle the request and respond back. Each stream channel can be assigned for
only one type of communication, either with a memory or an incoming stream
cache.

2.4. INTERNAL ORGANIZATION OF STREAM CACHES 17

In contrast to the incoming stream cache, outgoing stream cache has two modes
for each stream channel. When the first mode is enabled, it means that the stream
channel is set to communicate with a memory, while when the second mode is
enabled, it means that the stream channel is set to communicate with an incom-
ing stream cache, as shown in Figure 2.8. On the first case, the stream channel
controller is responsible to send the data when available and combined, while, on
the second case, the data are sent when requested and combined. For that reason,
in the outgoing stream cache, we use one main controller for each stream channel
and three request/response handlers.

One part of the controller is responsible of handling the requests and responses
of the Store Unit of the core. The other part of the controller is responsible of
handling the network requests and responses, but for each stream channel only
one mode can be enabled. Both cooperate to update correctly the stream data
and the per-word validity bits per stream channel.

Regarding the request/response handlers, one resides between the core and
the stream channels, while the other two reside between the stream channels and
the network. The first handler is responsible for the stream channel selection
and simply multiplexes and de-multiplexes the signals, because there can be only
one store request per cycle, intended for one stream channel only. The second
handler, i.e. for communication with a memory, has a round-robin mechanism
to choose fairly a request from each active stream channel and multiplexes and
de-multiplexes the response signals to the correct stream. The third handler, i.e.
for communication with an incoming stream cache, simply multiplexes and de-
multiplexes the signals for the correct active stream channel to update its state,
while it has a round-robin mechanism to choose fairly a response from each active
stream channel.

For both Streaming Caches, all network handlers work simultaneously to trans-
form the requests or responses to a format that either the controller of the stream
channels or the network can understand. The network is shared among the dif-
ferent stream channels on a per-packet basis. Currently, for remote requests in
our design, we use the AXI4 interface [3]. For the incoming stream cache, the
network handler uses an AXI4 Read Master Adapter. For the outgoing stream
cache, the first network handler uses an AXI4 Write Master Adapter, while the
second network handler uses AXI Read Slave Adapter.

2.4 Internal organization of Stream Caches

Figure 2.9 depicts the pointers deployed in each stream channel of the Incoming
Stream Cache and the states of stream entries. Each position in the stream channel
can be in one of the following states:

• Unallocated: Data currently outside the sliding window that will get re-
quested and read by core in the future.

18 CHAPTER 2. STREAMING CACHE

localBase

lastRequested

localBase

lastRequested

localBase

lastRequested

Unallocated

Free

Allocated

Deallocated

Read

Fetched

full

empty

remoteBase

remoteBase

remoteBase

space made available /
sliding window moved

request data

data arrival

read data

make space available /
move sliding window

increasing
addresses

increasing
addresses

time

increasing
addresses

stream

stream

stream

sliding window
circular buffer

sliding window
circular buffer

sliding window
circular buffer

Figure 2.9: Incoming stream circular buffer for communication with either a mem-
ory or an outgoing stream cache, showing three different timestamps and the states
of the data for a relatively small buffer.

• Free: Data inside the sliding window, but not requested (i.e. prefetched)
yet.

• Allocated: Data requested but not yet present in the cache.

• Fetched: Data present in the incoming cache but not yet read from the
core.

• Read: Data present in the cache and read from the core.

• Deallocated: Data outside the sliding window that have been read from
the core in the past.

The localBase points to the oldest word inside the sliding window that has
not yet been processed (i.e. read from the core). The lastRequested points to
the last data that have been requested for the incoming stream. The remoteBase
pointer stores the (possibly remote) address of the word that needs to be prefetched
next, and in a way points to the data after where the lastRequested points. In
the policy that we have implemented, the lastRequested and remoteBase pointers
move incrementally as long as there is free space in the incoming stream circular
buffer, by requesting data to fill the circular buffer.

Figure 2.10 depicts the corresponding states and pointers for the outgoing
stream channels that send data to a memory. Each position in the stream channel
can be in one of the following states:

• Unallocated: Data outside the sliding window that will get stored and sent
to memory in the future.

• Allocated: Space available in the cache for data to get stored.

2.4. INTERNAL ORGANIZATION OF STREAM CACHES 19

localBase

localBase

localBase

Unallocated

Allocated

Deallocated

Sent

Written
remoteBase

remoteBase

remoteBase

full

empty

Accepted

space made available /
sliding window moved

write data

send data

response arrival

make space available /
move sliding window

increasing
addresses

time

increasing
addresses

increasing
addresses

stream

stream

stream

sliding window
circular buffer

sliding window
circular buffer

sliding window
circular buffer

Figure 2.10: Outgoing stream circular buffer for communication with a memory,
showing three different timestamps and the states of the data for a relatively small
buffer.

• Written: Data present in the outgoing cache but not sent yet to memory.

• Sent: Data sent to network.

• Accepted: Data sent and accepted by memory.

• Deallocated: Data outside the sliding window that were written from the
core and sent to the network in the past.

Figure 2.11 depicts the corresponding states and pointers for the outgoing
stream channels that send data to an incoming stream cache. Each position in the
stream channel can be in one of the following states:

• Unallocated: Data out of the sliding window, i.e. future data to get stored
and sent to an incoming stream cache.

• Allocated: Space available in the cache for data to get stored.

• Requested: Data requested by the prefetcher of an incoming stream cache,
but not written yet by the core.

• Written: Data written by the core, but not requested yet by the prefetcher
of an incoming stream cache.

• Ready: Data requested and ready to be sent in incoming stream cache.

• Sent: Data sent to network.

• Deallocated: Data out of the sliding window, i.e. written from the core
and sent to the network in the past.

20 CHAPTER 2. STREAMING CACHE

stream

localBase

stream

localBase

stream

localBase

Unallocated

Allocated

Deallocated

Sent

WrittenlastRequested

lastRequested

lastRequested
full

empty

Requested
remoteBase

remoteBase

remoteBase

Ready

space made available /
sliding window moved

request
arrival

write data

send data

make space available /
move sliding window

request
arrival

write data

increasing
addresses

increasing
addresses

time

increasing
addresses

sliding window
circular buffer

sliding window
circular buffer

sliding window
circular buffer

Figure 2.11: Outgoing stream circular buffer for communication with an incoming
stream cache, showing three different timestamps and the states of the data for a
relatively small buffer.

The localBase points to the oldest word inside the sliding window that has not
yet been sent to network (or not even written by core). The remoteBase pointer
stores the (possibly remote) address of the first word in the sliding window that can
be sent to the network. In the policy that we have implemented, the remoteBase
pointer moves together with the localBase pointer, because we can easily index the
remaining data that are stored in the sliding window of outgoing stream cache.

In all stream channels, localBase pointer is used to flush old data from the
stream channels, which enables that pointer to (incrementally) move ahead, there-
fore the sliding window too. Furthermore, there are two more pointers that can
issue read/write requests or responses on the stream channels. One is used to
handle the core’s requests, while the other is used to handle the network arrivals
or departures of data. Both of them can point anywhere at any time inside the
sliding window, or more specifically between the area of the localBase and lastRe-
quested pointers, due to the out-of-order production/consumption or out-of-order
network delivery. For that reason, per cycle, each stream channel controller is re-
sponsible to handle simultaneously (with the help of the aforementioned pointers)
the following four scenarios: 1. requests/responses of the core, 2. flushing of old
data, 3. network requests, and 4. network responses.

Another important thing to mention is that each one of these pointers is used
in only one of the four scenarios/cases. The control logic of these pointers expects
the area that each one is pointing in the circular buffer to reach a specific state, if
not already there, and when the operation on that area finishes, the state of that
area changes and the corresponding pointer either moves ahead incrementally, or
lets the stream channel’s control logic (based on the requests/responses of the core
or the remote node) to point it to a new area.

2.4. INTERNAL ORGANIZATION OF STREAM CACHES 21

2.4.1 State differentiation

To differentiate the states for each of the three communication flows, we have to
uniquely identify them. That way, we decided to use three identifiers for stream
data, which are based on the requests/responses of the core or the (remote) node.

For an Incoming Stream Channel, as shown in Table 2.1, and based on the
state description that was given earlier, we have:

• valid not read: a per-word validity identifier to describe if the core has
read or not the specific word.

• outstanding enabled: a per-packet validity identifier to describe if a net-
work request has been issued to the (remote) node for the specific data.

• valid fetched: a per-cacheline (i.e. data burst / network width) validity
identifier to describe if the specific data have been fetched from the (remote)
node.

State Validity Bits

Fetched Not Read Outstanding

Free Disabled Disabled Disabled
Allocated Disabled Disabled Enabled
Fetched Enabled Enabled Disabled
Read Enabled Disabled Disabled

Table 2.1: Incoming stream states for communication with either a memory or
an outgoing stream cache. Free state means that no data have been requested.
Allocated state means that data have been requested, but not fetched yet. Fetched
state means that the requested data have been arrived and are ready for the core
to read. Read state means that the data have been read by the core and the space
is ready to be recycled.

For an Outgoing Stream Channel, as shown in Tables 2.2 and 2.3, and based
on the state descriptions that were given earlier, we have:

• valid written: a per-word validity identifier to describe if the core has
written or not the specific word.

• outstanding enabled: a per-packet validity identifier to describe if a net-
work request has been issued to or by the (remote) node for the specific
data.

• valid sent: a per-cacheline (i.e. data burst / network width) validity identi-
fier to describe if the specific data have been sent successfully to the (remote)
node.

22 CHAPTER 2. STREAMING CACHE

State Validity Bits

Sent Written Outstanding

Allocated Disabled Disabled Disabled
Written Disabled Enabled Disabled
Sent Disabled Enabled Enabled

Accepted Enabled Enabled Disabled

Table 2.2: Outgoing stream states for communication with a memory. Allocated
state means that no data have been written on the available space. Written state
means that data have been written by the core on the available space. Sent state
means that the written data have been sent to the network. Accepted state means
that the data have been sent successfully and the space is ready to be recycled.

State Validity Bits

Sent Written Outstanding

Allocated Disabled Disabled Disabled
Requested Disabled Disabled Enabled
Written Disabled Enabled Disabled
Ready Disabled Enabled Enabled
Sent Enabled Enabled Disabled

Table 2.3: Outgoing stream states for communication with an incoming stream
cache. Allocated state means that no data have been written on the available
space. Requested state means that the data have been requested, but not written
by the core yet. Written state means that data have been written by the core on
the available space, but not requested yet. Ready state means that the written
data are ready to be sent to the network. Sent state means that the written data
have been sent successfully and the space is ready to be recycled.

It is important to note that the reason we decided to use three sub-identifiers
for only four states inside the stream buffers has to do with the following point.
When we started designing the main idea of this work, we were intending to
support packets that may include invalid words. Adding this feature would not
increase the design complexity by much, compared to what we have already pre-
sented. However, we saw that such implementation would most likely increase the
packets in the network, which would result to high congestion if there is no proper
congestion management. For that reason, we decided to go with a simpler design,
where we only send packets when all of the words are valid.

2.5. COMPARISONWITH REMOTE DIRECT MEMORY ACCESS (RDMA)23

2.5 Comparison with Remote Direct Memory Access
(RDMA)

RDMA is a widely known protocol in High Performance Computing (HPC) that is
used in computer clusters to access directly the memory of one node from another.
Its leverage is that there is no need to involve either node’s Operating System
(OS), by reducing the copies needed, and allowing high throughput and low la-
tency networking. That concept is called zero-copy networking, which means that
no data need to get copied between the application memory and the data buffers
of either OS when the transfer happens between the memories. The main issue
that this protocol has, is that the target node doesn’t know when the request gets
finished, because the communication is single-sided. On the next paragraphs, we
will describe briefly the Read and Write operations of an RDMA engine and com-
pare them to our design, by describing further the advantages and disadvantages
of each design.

Figure 2.12a presents the read operation between two nodes, where the core
of the target node wants to read data from the memory of the remote node. At
the start, the target core initiates a Read RDMA request to the local RDMA
engine. That request is received by the Receiver part of the local RDMA engine
and forwarded to the Sender part of the remote RDMA engine. When the latter
receives the read request, it triggers its DMA engine to read data from the local
memory of the remote node, and sends the data to the target RDMA engine, so it
can save them to the local memory of the target node. When the remote data are
saved successfully on the target memory, the target core can request them from
there, such as any other local data.

Figure 2.12b presents the write operation between two nodes, where the core
of the target node wants to write data to the memory of the remote node. At
the start, the target core initiates a Write RDMA request to the local RDMA
engine. That request is received by the Sender part of the local RDMA engine
and forwarded to the Receiver part of the remote RDMA engine. Afterwards, the
Sender part of the local RDMA engine triggers its DMA engine to read data from
the local memory, and sends the data to the target RDMA engine, so it can save
them to the local memory of the target node.

As described briefly earlier, due to the communication being single-sided in
RDMA, the target node cannot know when the transaction finishes. One way that
is commonly used to solve that issue is for the target RDMA engine to set a register
as ready when the transaction finishes (i.e. completion notification), for the target
core to get notified (i.e. through polling) and be able to request that data from its
local memory. The same issue is observed in our design when a Streaming Cache
communicates with a memory. From the moment a stream channel is enabled,
it starts immediately to request or send data to the (remote) memory. For that
reason, the stream has to be initialized right after the (remote) memory is ready
to accept read or write requests, for the core to enable the stream channel. For

24 CHAPTER 2. STREAMING CACHE

Memory 1 Memory 2

3

SxRDMA
2

RxRDMA
4

Remote space

6

Remote space

Core 1

1

5

Core 2

zero
copy

(a) RDMA Read Operation.

Memory 1 Memory 2

3

SxRDMA
2

RxRDMA
4

Remote space

6

Remote space

1

Core 1

5

Core 2

zero
copy

(b) RDMA Write Operation.

Figure 2.12: Basic idea for the Read and Write operations of RDMA engine. On
Read operation, the core sends a read request on the Receiver of the local RDMA
engine, where the latter sends a read request on the Sender of the remote RDMA
engine. Conversely, on Write operation, the core sends a write request on the
Sender of the local RDMA engine, where the latter sends a write request on the
Receiver of the remote RDMA engine. Afterwards, in either operation, the DMA
engine of the Sender requests data to be sent from one memory to the other,
through the two RDMA engines, with zero copies in between.

streams bigger than a page, there is need for a mechanism near the memory of the
(remote) node, which should be responsible to handle correctly the requests to the
memory, for the purpose of avoiding the Stale Data problem of IO-coherence, like
the one that can be found in RDMA. By achieving to always have valid data or
available space in the requested area of the memory, the prefetcher of an incoming
stream channel won’t fetch again data that have already been read, and the write-
combiner of an outgoing stream channel won’t overwrite data that haven’t been
backed up or read yet. Generally, our protocol is designed mainly for core to core
communication, where the communication between a core and a memory is used
either for small transactions or for temporally storing versions of data (i.e. back
up of latest stored data). Otherwise, we consider that the page that is located in
a (remote) memory changes only when the sliding window moves, by requesting
data from a new page that has already valid data.

Figure 2.13 compares the Read operation of an RDMA engine with the ini-
tialization and data prefetching of an Incoming Stream Channel, by considering
that any type of acknowledgement messages are not causing extra time overheads.
Additionally, on the timing diagram of the RDMA engine, we consider a core with
a cache that supports a similar prefetcher to the one that we use for the Incoming

2.5. COMPARISONWITH REMOTE DIRECT MEMORY ACCESS (RDMA)25

256B
block

256B
block

256B
block

cache
with

prefether

local
memory

remote
SxRDMA
engine

remote
memory

local
RxRDMA

engine

core

RDMA read request

memory read request

memory read response

RDMA read response

completion notification

64B packet64B packet64B packet64B packet

(a) Timing diagram of RDMA initiation
and fetched data loading.

core

incoming
stream
cache

remote
node /

memory

stream initialization

stream enabling

first load request
prefetching requests

prefetching responses

first load response

64B packet
64B packet

64B packet
64B packet

(b) Timing diagram of Incoming Stream
initiation and fetched data loading.

Figure 2.13: Timing diagram comparison between RDMA Engine’s Read operation
and Incoming Stream’s prefetching. On RDMA Engine approach, we observe a
coarse-grain/block-sized arrival of remote data with per-block synchronization,
while on Incoming Stream Cache approach we observe a fine-grain/packet-sized
arrival of remote data, which allows per-word synchronization for lower latency.

Stream Cache, which can prefetch multiple cachelines in a single request.

In RDMA approach, the remote data arrive in a coarse-grain format (i.e. block-
sized), and can start get processed after whole block arrives and the core gets
notified (i.e. per-block synchronization). In difference, in an Incoming Stream
Cache, after a stream gets initialized, the prefetcher can request data in a fine-
grain format (i.e. packet-sized), where the core can read a word as soon as it
arrives (i.e. per-word synchronization), if not already there, like what happens on
the cache miss of the L1 Cache of the core.

A big issue on the RDMA engine of the target node is that there is need to
flush the caches in every RDMA transaction, to avoid the Stale Data problem of
IO-coherence. Comparing to our design, there is no need to invalidate any of the
data saved on the caches of the memory hierarchy, because the stream channels
will always have the correct version of the data. That is achieved by saving and
handling stream data on a specialized space, the stream buffers of the Streaming
Caches. So, even when the stream data are getting invalidated after they are read,
they can still be accessed from the local address space, if the programmer saves

26 CHAPTER 2. STREAMING CACHE

them there, like what happens on the RDMA, after a transaction finishes.
Another advantage of our design is that the core simply stalls till the data ar-

rive, like any load or store instruction of the common memory hierarchy, comparing
to the polling that needs to happen on the RDMA transaction, till it finishes, when
the target core receives the completion notification message. In addition, as de-
scribed earlier, another benefit of our design is that two or more cores of different
nodes can communicate with each other in a producer-consumer way and without
the need of involving any memory in-between, which reduces further the latency.

The only disadvantage of the current implementation of our design, compared
to RDMA, is that all the data have to be read, if requested, because of the stream
semantics that we have included. For that reason, it can currently support only
streams of infinite data (or finite, with few extensions on the design to correctly
terminate and reset the logic on the stream channels).

Chapter 3

Incoming Stream Cache

In this chapter, we present the hardware implementation of the Incoming Stream
Cache that is located next to the L1 Cache of ARIANE. The Incoming Stream
Cache consists of multiple incoming stream channels, where each of them can fetch
data from a (remote) node. It utilizes two interfaces for communication that all the
incoming stream channels share, one being the LSU inteface for communication
with the core, and the other being the AXI interface for network communication.
First, we will present the design of a single incoming stream channel, and then
we will describe how the incoming stream channels utilize the aforementioned
interfaces.

3.1 General Description

The incoming stream cache consists of multiple circular buffers that support mul-
tiple concurrent stream channel channels. This is similar to the multiple ways in
a typical data cache. One such circular buffer is depicted in Figure 3.1, where
we present how an incoming stream channel handles the load instruction request
from the processor and responds when it has the data available. Data words are
organized into lines, each consisting of four (4) 32-bit words in our design. How-
ever, instead of having a tag per cacheline (CL), in the streaming cache, we have
a tag per stream channel. Each circular buffer has space of 4KBytes (parametric)
dedicated to a single stream channel, i.e. 256 lines. This corresponds to the size
of the sliding window.

For each cache line, we have a Valid Fetched bit, to indicate whether the
corresponding words are present in the cache (either in Fetched or in Read state).
In addition, we maintain an additional state per word to indicate whether the words
have been already read by the processor (per-word validity bits). Furthermore,
there is an Outstanding Enabled bit per CL, to indicate whether a read request
has been issued and we wait for a response for the specific CL. As soon as all words
in a line have been read, the line can be recycled, i.e. can used for future data in
the stream. In that scenario, the basePointer and the sliding window move by one

27

28 CHAPTER 3. INCOMING STREAM CACHE

Valid
Fetched

Valid
Unread Data

0

1

255

254

Index

Load Unit Virtual Address

10

10 LS

8

IndexTag

52

RData RValid

32

Request Tag validByte
offset

01211 ...1263 ...

Grant

Stream
Controller

FSM

32323232

1

0

62 60 MS

62

2 LS8 MS

62 60 MS

Figure 3.1: Load instruction diagram for Incoming Stream Channel. The Address
is virtual (untranslated) and is issued by the LSU unit of the ARIANE. The tag
in the address field is compared with the stream channel tag of the four stream
channels. The signals at the bottom (Valid, Data and Grant signals) are awaited
by the ARIANE Load-Store-Unit.

3.1. GENERAL DESCRIPTION 29

Valid
Fetched

Valid
Unread Data

0

1

255

254

Index

localBase

8

+1

0 1

0 1

recycle_line

Figure 3.2: Recycling diagram for Incoming Stream Channel. localBase pointer
moves when all the data in the cacheline that it points have been fetched and read,
and become invalid.

30 CHAPTER 3. INCOMING STREAM CACHE

line, like in Figure 3.2.

Each circular buffer is implemented as a two-port BRAM, while we use a
256 × 4-bit array of registers to store the per-word validity bits and two 256 × 1-
bit array of registers to store the Valid Fetched bit and the Outstanding Enabled
bit of a whole line.

3.2 Control Logic for communication with the core

Each incoming stream channel has a controller that utilizes a FSM with two states,
as shown in Figure 3.3. On the IDLE state, the controller waits for a read request.
When it happens, the controller checks if the request is intended for that incoming
stream channel. In case of an incoming stream channel hit, the controller enables
grant signal, indexes to the requested CL, stores the virtual address, and changes
to ACTIVE REQ state. Otherwise, miss signal is enabled and the state remains
on IDLE. If there is no incoming stream channel match for any of the active stream
channels, a miss-error signal is enabled. On ACTIVE REQ state, the controller
checks if the virtual address of the read request is inside the sliding window, and
the word is fetched and not read. In case of no error, the controller responds with
that word to the processor and sets the validity bit of the word as read. Otherwise,
the controller waits till the word gets prefetched. When the word is sent to the
processor, if there is another request, i.e. back to back reads, the controller stays
at the same state and does the same actions as on IDLE state, otherwise it returns
to IDLE state. In case that we are on ACTIVE REQ state and the word is either
positioned outside the sliding window, or fetched and read, the controller returns
to IDLE state and a word-error signal is enabled. Currently, the design does not
support error handling for any of the cases mentioned previously.

3.3 Prefetching

The prefetcher of an incoming stream channel brings data from the remote peer
(end-point) of the stream whenever there is space available in the circular buffer.
We consider as available space the state of a CL when its words are not fetched,
and there is no active outstanding request for that CL (Free state). The prefetcher
essentially issues remote read operations. As shown in Figure 3.4 and Figure 3.5,
in our current implementation, the prefetcher issues AXI read requests for the local
DRAM or an outgoing stream cache. In future implementations, these requests
could be transported over another network.

On Address Read request channel, the prefetcher issues a read request when the
next CL pointed after the lastRequested pointer is empty. The identifier (ID) of
the read request is the unique ID of the incoming stream channel, for the network
handler to forward correctly the response, and the index of the next CL pointed
after the lastRequested pointer. The address of the read request is the one saved at
remoteBase pointer. When the request gets acknowledged by the remote peer, the

3.3. PREFETCHING 31

&

St
re

am
 M

as
k

==

52

52

St
re

am
 T

ag
St

re
am

 In
de

x

LS
U

 p
re

v
Ta

g
LS

U
 p

re
v

In
de

x

&

52

52 52

52

1
0

+1

re
cy

cl
e_

lin
e

52
 M

S
8

LS

8

60

-
60

8
<4K

G
ra

nt

FS
M

id
le

_s
ta

te

ac
tiv

e_
re

q_
st

at
e

Va
lid

 U
nr

ea
d

R
Va

lid

ID
LE

AC
TI

VE
 R

EQ

((~
re

qu
es

t |
m

is
s)

 &
rv

al
id

))
|

er
ro

r

re
qu

es
t &

~m
is

s

R
eq

ue
st

(re
qu

es
t &

 rv
al

id
 &

~m

is
s)

 |
~r

va
lid

Va
lid

 F
et

ch
ed

Va
lid

 U
nr

ea
d

er
ro

r

m
is

s

0
4

LS
U

 T
ag

52

(re
qu

es
t &

 m
is

s)
 |

~r
eq

ue
st

LS
U

 In
de

x
bu

ffe
r a

dd
r

8

8

0 1

0 1

F
ig
u
re

3.
3:

In
co
m
in
g
S
tr
ea
m

C
h
an

n
el

C
on

tr
ol
le
r.

32 CHAPTER 3. INCOMING STREAM CACHE

Valid
Fetched

Valid
Unread Data

0

1

255

254

Index

64

lastRequested remoteBase

Stream ID

8

ARVALID ARADDRARREADYARID

+1 +16

2

10

+1

8

Outstand.
Enabled

0 1

Figure 3.4: Data request diagram of Incoming Stream Channel. At the bottom
of the figure we depict the AXI4 Master Read request channel signals that are
issued to the memory subsystem of the ARIANE, by checking if the line after
lastRequested has no unread words and no outstanding request. ARID stores
both incoming stream channel ID and the index of the cacheline.

3.3. PREFETCHING 33

Valid
Fetched

Valid
Unread Data

0

1

255

254

Index

Stream ID

RVALID RDATARREADYRID

2

10

8 LS

Outstand.
Enabled

==

128

32 32 32 32

2 MS

0 1 0 11 0 11

WE

Figure 3.5: Data response diagram of Incoming Stream Channel. At the bottom
of the figure we depict the AXI4 Master Read response channel signals coming
from the memory subsystem of ARIANE. The controller therefore sets all validity
bits to 1, closes the outstanding request and stores the data, when stream channel
hit.

34 CHAPTER 3. INCOMING STREAM CACHE

Outstanding Enabled bit gets enabled, and both lastRequested and remoteBase
pointers increase.

On Read response channel, the prefetcher waits for a read response from the re-
mote peer. When a response arrives and the response is intended for that incoming
stream channel (i.e. the 2 MS-bits of the response ID are same as the unique ID of
the incoming stream channel), the incoming stream channel a) indexes the correct
CL based on the 8 LS-bits of the response ID, b) enables all the validity bits of
that CL, c) stores the incoming data, d) deactivates the Outstanding Enabled bit,
and e) sends an acknowledgement to the remote peer that it has received the read
response. Also, it forwards the index and the incoming data for one cycle, in case
the processor requests them on next cycle, where the validity bits would have been
correctly updated.

3.4 Bigger packets (AXI Burst)

For the purpose of supporting bigger network packets than the size of a CL (where
the size of a CL is equal to the network’s data width), our design also supports
multiple outstanding AXI data burst requests. Each data burst request is for
64Bytes (parametric), i.e. packet size of four cache lines. To support that feature,
the controller has to handle quadruplet consecutive CLs’ validity bits, update the
pointers with quadruplet step, and has to include a 2-bit Outstanding Counter
every 4 CLs, together with the Outstanding Enabled bit that those lines share,
to know exactly for which CL the upcoming responses are intended to, because
the base address of the requested data packet points to the first CL only. On
AXI burst, the data responses arrive in order, but not necessary back to back.
Other than that, the control logic remains almost the same. There is another
difference on the response channel, where the new index is the 6 MS-bits of the
8 LS-bits of the response ID, together with the value of the Outstanding Counter
that the new index points to. Furthermore, when a valid response arrives for a
specific stream channel, in addition to what described earlier, the stream channel
has also to increase the indexed Outstanding Counter of the intended CLs, while
the Outstanding Enabled bit for those CLs gets disabled only when the last data
burst response arrives.

3.5 Operations on Addresses

On address operations, like on additions for remoteBase pointer and stream chan-
nel address, some of the MS-bits have to remain static to uniquely identify the
stream channel, e.g. if the virtual space for a stream channel is 4GBytes (para-
metric), the 32 MS-bits bits of the address have to remain static and only the 32
LS-bits change, to support wrap-around every 4GBytes.

3.6. LSU AND NETWORK INTERFACES 35

3.6 LSU and network interfaces

The LSU of the core and the network communicate with the stream channels of
a Stream Cache (either Incoming or Outgoing) through a single interface each.
When a data request arrives from either interface, all the stream channels receive
it, but only one handles it and responds back.

A unique case for only the Incoming Stream Cache is that the Load Unit of
ARIANE can issue outstanding read requests. That can happen because the Load
Unit can request new data before it gets the previous data response. So, with the
addition of an Incoming Stream Cache with four incoming streams, a maximum of
six read requests can be issued, one to the main data cache, four to the incoming
stream cache, and one pending. For that reason, other than the Load Unit, the
Incoming Stream Cache has to include logic to respond back to Load Unit with the
order that the read requests arrived. To support that, a small queue is included,
which has size equal to the number of the incoming stream channels that the
Incoming Stream Cache is supporting, and only the IDs of the incoming stream
channels need to be pushed there. When a data request arrives and an incoming
stream channel grants the request, we push in the queue the ID of the stream
channel. That way, we accomplish to allow only the incoming stream channel
that is pointed by the head of the queue to respond back to the core. When that
incoming stream channel responds with the data to the core, we pop its ID from
the queue and the next incoming stream channel can respond back to the core,
in case there were not back-to-back data requests from that same stream channel,
otherwise its ID gets pushed again.

36 CHAPTER 3. INCOMING STREAM CACHE

Chapter 4

Outgoing Stream Cache

In this chapter, we present the hardware implementation of the Outgoing Stream
Cache that is located next to the L1 Cache of ARIANE. The Outgoing Stream
Cache consists of multiple outgoing stream channels, where each of them can send
data to a (remote) node. It utilizes three interfaces for communication that all the
outgoing stream channels share, one being the LSU inteface for communication
with the core, and the other two being the AXI interfaces for network communica-
tion, one Write Master for sending write requests to a (remote) memory and one
Read Slave for seding read responses to an Incoming Stream Cache. Below, we will
present the design of a single outgoing stream channel. As with Incoming Stream
Cache, Outgoing Stream Cache supports also AXI Burst, and it works exactly as
we described in Section 3.4. Furthermore, the operations on addresses are exactly
the same as described in Section 3.5, while the three interfaces of the Outgoing
Stream Cache share the same utilization as the interfaces of the Incoming Stream
Cache that is described in Section 3.6.

4.1 General Description

Similar to incoming stream cache, the outgoing stream cache consists of multiple
circular buffers that support multiple concurrent stream channels. In Figure 4.1,
we present how an outgoing stream channel handles the store instruction request
from the processor and responds when all the necessary signals are valid to store
the data.

For each cache line, we have a Valid Sent bit, to indicate whether the corre-
sponding words have been sent successfully to the network (either in Sent or in
Accepted state). In addition, we maintain additional state per word to indicate
whether the words have been already written by the processor (per-word valid-
ity bits). Furthermore, there is an Outstanding Enabled bit per CL, to indicate
whether a write request has been issued and we wait for a response for the specific
CL. As soon as all words in a line have been written, the stream channel is able to
send that line to the network. When the packet has been sent successfully, the line

37

38 CHAPTER 4. OUTGOING STREAM CACHE

Valid
Sent

Valid
Written Data

0

1

255

254

Index

Store Unit Virtual Address

10

2 LS8 MS

IndexTag

52

WDataWEnable

32

RequestGrant

Byte
offset

01211 ...1263 ...

Stream
Controller

52 8

60

WE

one-hot
converter

4 2

enable

Figure 4.1: Store instruction diagram for Outgoing Stream Channel. The Address
is virtual (untranslated) and is issued by the LSU unit of the ARIANE. The tag
in the address field is compared with the stream channel tag of the four stream
channels. The Grant signal at the bottom is awaited by the ARIANE Load-Store-
Unit.

4.1. GENERAL DESCRIPTION 39

recycle_line

Valid
Sent

Valid
Written Data

0

1

255

254

Index

localBase

8

+1

0 1

0 1 remoteBase

64

+16

0 1

Figure 4.2: Recycling diagram for Outgoing Stream Channel. localBase pointer
moves when all the data in the cacheline that it points have been written sent
successfully. Also, the remoteBase pointer moves together with localBase pointer.

40 CHAPTER 4. OUTGOING STREAM CACHE

can be recycled, i.e. can be used for future data in the stream. In that scenario,
the basePointer (with remoteBase pointer) and the sliding window move by one
line, like in Figure 4.2.

4.2 Control Logic for communication with the core

Each outgoing stream channel has a controller, as shown in Figure 4.3. When the
controller receives a write request, it checks if the request is for that stream channel
based on the virtual address that came with the request. If the virtual address
of the write request is inside the sliding window and there is no written word
there, the controller enables grant signal to inform the processor that the store
was successful and sets the validity bit of the word as written. Also, we save the
index for one cycle, in case that the outgoing logic (i.e. Write-Combiner) needs to
send the specific cache line to the remote peer if whole cacheline has valid written
words. In case that the write request is intended for that stream channel and
it is either outside the sliding window, or already written, the controller enables
word-error signal. In case that the write request is intended for another stream
channel, miss signal is enabled. If there is no outgoing stream channel match for
any of the active stream channels, a miss-error signal is enabled. Currently, the
design does not support error handling for any of the cases mentioned previously.

4.3 Write Combining

The write combiner of an outgoing stream channel sends data to the remote peer
(end-point) of the stream whenever there are available words in the circular buffer.
The write combiner essentially issues remote write operations. There are two
modes for the controller of write combiner, based on the type of the remote peer.
One is intended for the outgoing stream channel to communicate with a memory,
as shown in Figure 4.4 and Figure 4.5, while the other is intended for the out-
going stream channel to communicate with an incoming stream cache, as shown
in Figure 4.6 and Figure 4.7. In our current implementation, the write combiner
issues AXI write requests for the local DRAM, while it issues AXI read responses
for an incoming stream cache. In future implementations, these requests could be
transported over another network.

4.3.1 Control Logic for communication with a Memory

On Write request channel, the write combiner issues a write request, based on the
first CL that has all words ready to be sent. To find the index of that CL, we use
a Queue that has the index of a CL pushed when a write request from the core
has written the last word and made the CL ready to be sent. A CL is considered
ready for its words to be sent when all words are Valid Written, and there is no
pending or finished outstanding request for that CL, i.e. Outstanding Enabled

4.3. WRITE COMBINING 41

&

St
re

am
 M

as
k

==

52

52

St
re

am
 T

ag
St

re
am

 In
de

x

LS
U

 T
ag

LS
U

 In
de

x

&

52

52 52

52

1
0

+1

re
cy

cl
e_

lin
e

52
 M

S
8

LS

8

60

-
60

8

G
ra

nt

W
En

ab
le

R
eq

ue
st

<4K

Va
lid

 W
rit

te
n

er
ro

r

Va
lid

 W
rit

te
n

m
is

s

0
4

w
rIn

de
x

Va
lid

0 1

8

w
rit

e
In

de
x

F
ig
u
re

4.
3:

O
u
tg
oi
n
g
S
tr
ea
m

C
h
an

n
el

C
on

tr
ol
le
r.

42 CHAPTER 4. OUTGOING STREAM CACHE

Valid
Sent

Valid
Written Data

0

1

255

254

Index

WVALID, AWVALID WDATAAWREADY AWADDR

Outstand.
Enable

32 32 32 32

128

headQueue Index

8

stream ID

AWID

2

10

8

WREADY

-

remoteBaselocalBase

8

+

64

8

64

0 11

0
4

12

0 11

headQueue Pop

Figure 4.4: Data write request diagram of Outgoing Stream Channel communicat-
ing with a memory. At the bottom of the figure we depict the AXI4 Master Write
request channel signals that are issued to the memory subsystem of the ARIANE.
The controller uses a Queue to find the first available line that is ready to be sent
to the network. When packet is sent successfully, opens the outstanding enable
request. AWID stores both stream channel ID and the index of the cacheline.

4.3. WRITE COMBINING 43

Valid
Sent

Valid
Written Data

0

1

255

254

Index

stream ID

BVALID BREADYBID

2

10

8

Outstand.
Enable

==

2

0 10 1

Figure 4.5: Data write response diagram of Outgoing Stream Channel communi-
cating with a memory. At the bottom of the figure we depict the AXI4 Master
Write response channel signals coming from the memory subsystem of ARIANE.
When response arrives, closes the outstanding enable request.

44 CHAPTER 4. OUTGOING STREAM CACHE

and Valid Sent bits are not active. The ID of the write request is the unique ID
of the outgoing stream channel, for the network handler to forward correctly the
response, and the index of the CL. The address of the write request is the difference
of localBase minus the index saved in the head of the Queue, shifted left by four,
and added at remoteBase pointer. When the request gets validated by the remote
peer, the Outstanding Enabled bit gets active and we pop the head of the Queue
to fetch a new index for a new write request.

On Write response channel, the write combiner waits a write response from
the remote peer. When a response arrives and the response is intended for that
outgoing stream channel (i.e. 2 MS-bits of the response ID are same as the unique
ID of the outgoing stream channel), the outgoing stream channel a) indexes the
correct CL based on the 8 LS-bits of the response ID, b) enables the Valid Sent bit,
c) deactivates the Outstanding Enabled bit, and d) sends an acknowledgement to
the remote peer that it has received the write response.

4.3.2 Control Logic for communication with an Incoming Stream
Cache

On Address Read request channel, the write combiner waits a write request from
the remote peer. When the request arrives, the controller checks if that request
is intended for that outgoing stream channel. It does that by checking if the
difference of the requested address minus the remoteBase pointer is smaller than
the sliding window. If the request is intended for that stream channel, it indexes
the correct CL based on the 8 LS-bits of the request ID, i.e. the incoming and
outgoing stream channels are aligned, activates the Outstanding Enabled bit, and
saves the 2 MS-bits of the request ID as long as the outgoing stream channel
is enabled, i.e. for the remote peer to identify later if the incoming response is
intended for it. Also, we save the index for one cycle, in case that the outgoing
logic (i.e. Write-Combiner) needs to send the specific cache line to the remote peer
if whole cacheline has valid written words.

On Read response channel, the write combiner issues a read response, based
on the first CL that has all words ready to be sent and is requested by the remote
peer. To find the index of that CL, we use a Queue that has the index of a CL
pushed when either a write request from the core has written the last word in an
already requested CL and made the CL ready to be sent, or the CL has already all
its words written and a read request for that CL arrived. A CL is considered ready
for its words to be sent when all words are Valid Written, and there is pending
outstanding response for that CL, i.e. Outstanding Enabled bit is active. The
ID of the read response is the 2 MS bits that were saved on remote ID register
and the 8 LS bits that the head of the Queue is currently indexing. When the
response gets validated by the remote peer, a) the Outstanding Enabled bit gets
deactivated, b) the Valid Sent bit gets enabled, and c) we pop the head of the
Queue to fetch a new index for a new read response.

4.3. WRITE COMBINING 45

Valid
Sent

Valid
Written Data

255

254

ARVALIDARADDR ARREADY

Outstand.
Enable

0 1

remote stream ID

ARID

1

0

64

0 1

10

Index

<

4K

64

remoteBase

-

8 LS2

2 MS
reqIndex Valid

request Index

8

Figure 4.6: Data request diagram of Outgoing Stream Channel communicating
with the prefetcher of an Incoming Stream Cache. At the bottom middle and
right of the figure we depict the AXI4 Slave Read request channel signals that are
issued to the memory subsystem of the ARIANE, by storing the request info, the
remote stream channel ID as long as the outgoing stream channel is active, and
the requested index for one cycle. Request has to be inside the sliding window of
the stream, otherwise the request is intended for another outgoing stream channel
(or an error).

46 CHAPTER 4. OUTGOING STREAM CACHE

Valid
Sent

Valid
Written Data

0

1

255

254

Index

RDATA RREADY RID

Outstand.
Enable

32 32 32 32

128 10

0 11 0 11

8

82

0 11

RVALID

headQueue IndexheadQueue Pop

remote stream ID

Figure 4.7: Data response diagram of Outgoing Stream Channel communicating
with an Incoming Stream Cache. At the bottom of the figure we depict the AXI4
Slave Read response channel signals coming from the memory subsystem of ARI-
ANE. The controller uses a Queue to find the first available line that is ready to
be sent to the network. When packet is sent successfully, closes the outstanding
enable request and sets the validity bit of the line as sent.

Chapter 5

Load Store Unit Extensions

In this chapter, we present the extensions that we included on the Load/Store Unit
of ARIANE, to support our protocol. Below, we will describe the changes that we
made on each of the control logic of Load and Store Units of ARIANE, first on
their FSMs and their state transitions, and second on the two new interfaces that
we included for our Streaming Caches to communicate with the core and their
signal handling.

5.1 Load Unit

Load Unit controller on ARIANE core utilizes a FSM to control the load re-
quest/response flow. For the controller to support also our Incoming Stream Cache,
we didn’t include any new states, but only changed the flow logic on how to move
from one state to another, as shown in Figure 5.1.

On IDLE state, if there is a valid load instruction, the controller recognizes if
it is a load request for common or stream data, by checking if the virtual address
is inside the stream address region or not. In case that the virtual address of the
load request is not inside the stream address region, the flow continues as it was
originally implemented. Otherwise, the controller disables the address translation
request for the MMU and sends a cache request to incoming stream cache. In case
that the incoming stream cache doesn’t respond with grant signal enabled, the
controller changes to WAIT GRANT state, i.e. previous load request is still active
in the cache subsystem. Otherwise, the controller enables the load queue to fetch
the next load instruction and changes to SEND TAG state.

On WAIT TAG state, the controller waits a grant from the cache subsystem. In
case that the virtual address of the load request is not inside the stream region, the
flow continues as it was originally implemented. Otherwise, the controller continues
to disable the address translation request for the MMU and keeps enabled the
cache request signal for the incoming stream cache. When the cache subsystem’s
grand signal arrives, the controller enables the load queue to fetch the next load
instruction and changes to SEND TAG state.

47

48 CHAPTER 5. LOAD STORE UNIT EXTENSIONS

IDLE

WAIT
GRANT

SEND TAG

OTHER
STATES

load_valid &
is_stream &

~cache_grant
load_valid &
is_stream &
cache_grant

is_stream &
cache_grant

load_valid &
is_stream &

~cache_grant

~load_valid

load_valid &
is_stream &
cache_grant

~load_valid

~cache_grant

(a) Load Unit FSM extensions.

FSM
idle_state

wait_grant_state

load_valid

cache_request

send_tag_state

tag_valid

is_stream

translation_req

pop_load

(disable MMU)

(next load)

cache_grant

(b) Load Unit datapath extensions.

Figure 5.1: Load Unit Controller extensions for supporting stream data. This
diagram shows the extensions that we implemented on the existing design of the
Load Unit Controller to support our Incoming Stream Cache. On IDLE we wait
for a new load instruction, on WAIT GRANT we wait the last load instruction
request to get granted, and on SEND TAG we can receive a new load instruction.

5.2. STORE UNIT 49

On SEND TAG state, the controller enables the tag valid signal and checks if
there is another valid load instruction. In case that there isn’t another valid load
instruction, it changes to IDLE state. Otherwise, it does exactly the same things
as on IDLE state.

In case that there are back to back loads intended for different Caches (either
the Main Data Cache or the Incoming Stream Cache), the Load Unit waits the last
data response to arrive before enabling the new data request. We implemented it
that way, because the Load Unit can issue outstanding data requests. The issue
with the multiple outstanding data requests is that as long as the data request
for a common load is active, it can be killed at any time before the data grant
is received, in case that the page offset matches with the one found in a store
instruction that is currently active in the Store Buffer of the Store Unit. For
that reason, each controller of either of the Caches can accept maximum one data
request from the Load Unit.

5.2 Store Unit

Store Unit controller on ARIANE core utilizes a FSM and a Store Buffer to control
the store request/response flow. For the controller to support also our Outgoing
Stream Cache, we didn’t include any new states, but only changed the flow logic on
how to move from one state to another, as shown in Figure 5.2. Furthermore, we
included more elements on each line of the speculative and commit queue buffers,
to save also the virtual address of the store instruction, as shown in Figure 5.3.

On IDLE state, if there is a valid store instruction, the controller recognizes if
it is a store request for common or stream data, by checking if the virtual address
is inside the stream address region or not. In case that the virtual address of the
store request is not inside the stream address region, the flow continues as it was
originally implemented. Otherwise, the controller disables the address translation
request for the MMU and checks if the speculative queue has space. In case that
it hasn’t space, the controller changes to WAIT STORE BUFFER READY state,
i.e. wait till store buffer ready signal is enabled. Otherwise, the controller enables
the store queue to fetch the next store instruction and changes to VALID STORE
state.

On WAIT STORE BUFFER READY state, the controller waits the specula-
tive queue to have available space. In case that the virtual address of the store
request is not inside the stream address region, the flow continues as it was orig-
inally implemented. Otherwise, the controller continues to disable the address
translation request for the MMU. When the speculative queue has available space,
the controller returns to IDLE state.

On VALID STORE state, the controller enables the store buffer valid signal,
i.e. store on speculative queue the store instruction, and checks if there is another
valid store instruction. In case that there isn’t another valid store instruction or
it is an Atomic Memory Operation, it changes to IDLE state. Otherwise, it does

50 CHAPTER 5. LOAD STORE UNIT EXTENSIONS

IDLE

WAIT ST.
READY

VALID
STORE

OTHER
STATES

store_valid &
is_stream &

~st_buf_ready
store_valid &
is_stream &
st_buf_ready

~store_valid

store_valid &
is_stream &
st_buf_ready

is_stream &
st_buf_ready

store_valid &
is_stream &

~st_buf_ready

~store_valid

~st_buf_ready

(a) Store Unit FSM extensions.

FSM
idle_state

wait_st_buf_ready_state

store_valid

valid_store_state

is_stream

translation_req

pop_store

(disable MMU)

(next store)

st_buf_ready

instr_is_amo

st_buf_valid

vaddr_valid

(save virt addr)

(b) Store Unit datapath extensions.

Figure 5.2: Store Unit Controller extensions for supporting stream data. This
diagram shows the extension that we implemented on the existing design of the
Store Unit Controller to support our Outgoing Stream Cache. On IDLE we wait
for a new store instruction, on WAIT STORE BUFFER READY we wait till the
store buffer has available space, and on VALID STORE we can push the last store
instruction request to the store buffer and receive a new store instruction.

5.2. STORE UNIT 51

Speculative
Queue

Commit
Queue

sp
ec

ul
_w

rit
e_

po
in

te
r

sp
ec

ul
_r

ea
d_

po
in

te
r

co
m

m
it_

w
rit

e_
po

in
te

r

co
m

m
it_

re
ad

_p
oi

nt
er

be
ph

ys
_a

dd
r

vi
rt_

ad
dr

da
ta

_s
iz

e

va
lid

da
ta

vi
rt_

ad
dr

ca
ch

e_
re

q
w

da
ta

ph
ys

_a
dd

r
be

da
ta

_s
iz

e

co
m

m
it

64

2

64
64

64
64

st
_b

uf
_v

al
id

is
_s

tre
am

is
_s

tre
am

2 2 2

64

F
ig
u
re

5.
3:

S
to
re

B
u
ff
er

ex
te
n
si
on

s
fo
r
su
p
p
or
ti
n
g
st
re
am

d
at
a.

In
ca
se

of
a
st
or
e
in
st
ru
ct
io
n
in
te
n
d
ed

fo
r
O
u
tg
o
in
g
S
tr
ea
m

C
ac
h
e,

w
e
h
av
e
to

al
so

st
o
re

th
e
v
ir
tu
al

ad
d
re
ss

of
th
e
st
or
e
in
st
ru
ct
io
n
to

se
n
d
it
to
g
et
h
er

w
it
h
th
e
d
a
ta
.

52 CHAPTER 5. LOAD STORE UNIT EXTENSIONS

exactly the same things as on IDLE state.
The store buffer works as following. When there is space in speculative queue

and a store buffer valid signal arrives, the store buffer stores the store instruction
in the line that is pointed by the speculative write pointer. When the ARIANE
core issues a store commit, the store buffer moves the store instruction, which is
pointed by the speculative read pointer, from the speculative queue to the line
that is pointed by the commit write pointer on commit queue, and invalidates the
store instruction on speculative queue. As long as the commit read pointer of the
commit queue points to a valid store instruction, it issues a store data request to
the cache subsystem. When the cache subsystem responds with the data grant
signal enabled, the store buffer invalidates the store instruction on commit queue
that is pointed by the commit read pointer.

Chapter 6

FPGA Implementation and
Design Evaluation

In this chapter, we synthesize the RISC-V core with the extensions that we included
to support our Streaming Caches. We present and evaluate the utilization and
timing overheads of our implementation for a Zynq UltraScale+ MPSoC FPGA,
and lastly we evaluate our design with some bare metal programs.

6.1 Time and Space Overheads

We have compiled our design, including the Incoming Stream Cache, with four (4)
incoming stream channels (i.e. circular buffers), and the Outgoing Stream Cache,
again for four (4) stream channels, using Vivado 2020.1. The target FPGA was
the Xilinx Zynq UltraScale+ MPSoC (xczu9eg-ffvc900-2-e) [4].

As shown in Table 6.1, our design required two 16 two-ported BRAMs (two
blocks per incoming or outgoing stream channel), 40445 LUTs, and 16121 CLB
registers in total for the two Streaming Caches, while the changes on LSU were
minimal. The reason for the big area utilization is that we use a lot of registers
for the validity bits, where their control logic has created a very big Net List. In
our future implementation, we will replace those registers with BRAMs. The issue
that we will have to overcome is that our design can simultaneously read and write
the validity bit arrays a maximum of four times for each operation per cycle, to
support the control logic of the four registers that make changes in specific areas of
each stream channel. One solution for that is to create four copies of the validity
bits to support the four concurrent reads per cycle, but for the writes, we have to
encode the validity bit buffers in a way that we can make more than one operation
per cycle to all the copies. That needs careful redesigning of our logic to avoid
deadlocks and unnecessary delays.

Furthermore, we accomplished to run on Synthesis the Incoming Stream Cache
at 275MHz and the Outgoing Stream Cache at 210MHz.

53

54 CHAPTER 6. FPGA IMPLEMENTATION AND DESIGN EVALUATION

Name Utilization

CLB LUTs CLB
Registers

Block RAM
Tile

xczu9eg-ffvc900-2-e 274080 548160 912

Original ARIANE 24350 17088 37
Load/Store Unit 3387 5120 0

Load Unit 162 22 0
Store Unit 786 1804 0
Store Buffer 629 1593 0

Cache Subsystem 5848 1184 37
L1 Cache 5010 1018 25

Extended ARIANE 66401 33445 53
Load/Store Unit 4119 5356 0

Load Unit 373 87 0
Store Unit 981 1975 0
Store Buffer 718 1700 0

Cache Subsystem 46380 17360 53
Incoming Stream Cache 16839 7506 8
Outgoing Stream Cache 23606 8615 8

Table 6.1: Space Utilization of Streaming Caches. The big area that our Streaming
Caches take is because of the many registers and their control logic that we use
for the validity bits.

6.2 Preliminary Evaluation

We have conducted a small number of micro-tests using the ARIANE core with
our Streaming Caches in behavioral simulation. In our experiments, both Main
Data Cache and Streaming Caches are connected to a local Memory through an
AXI interconnect, as shown in Figure 6.1. The Main Data Cache communicates
only with the Memory through its AXI Master Adapter that has 64-bit data width,
by requesting one cacheline of 16 Bytes per cache miss (i.e. packet size equal to 2
AXI Bursts of 64-bit). The Incoming Stream Cache communicates with both the
Memory and the Outgoing Stream Cache through its AXI Read Master Adapter
that has 128-bit data width. The Outgoing Stream Cache communicates with the
Memory through its AXI Write Master Adapter and with the Incoming Stream
Cache through its AXI Read Slave Adapter, where both of them have 128-bit data
width. All stream channels of Streaming Caches request or receive packets equal
to 64 Bytes (i.e. 4 cachelines/AXI Bursts of 128-bit).

In our testbench, we consider that the core has a clock speed of 1.5GHz. Fur-
thermore, each memory access bears a latency of 100ns (150 cycles), as the miss

6.2. PRELIMINARY EVALUATION 55

Ariane

Core

Main Data Cache
Incoming
Stream
Cache

Outgoing
Stream
Cache

EX Stage
LSU

Load Unit MMU Store Unit

PTW

TLB St. Buffer

Instruction Memory

Main Memory

Interconnect

128

128
64

128

Figure 6.1: Testbench Overview of ARIANE with the Streaming Caches. Either of
the Load or Store Units can send data requests to either Main Data Cache or the
corresponding Streaming Cache, based on the virtual address of the instruction.
All the Caches are connected to an AXI Interconnect that communicates with a
Main Memory. The Main Data Cache has an AXI Master Adapter with 64-bit
data width for communication the AXI Slave Adapter of the Main Memory, while
Streaming Caches use an AXI Master and an AXI Slave Adapter with 128-bit data
width for communication with each other or the Main Memory.

56 CHAPTER 6. FPGA IMPLEMENTATION AND DESIGN EVALUATION

41

9
0

20

40

60

80

100

120

140

160

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

la
te

n
cy

 t
o

 is
su

e
 n

ex
t

lo
ad

 in
st

ru
ct

io
n

 (
in

 c
yc

le
s)

of back to back word load instructions

Incoming Stream Cache vs Main Data Cache

main data cache incoming stream cache

main data cache (average) incoming stream cache (average)

(a) Latency to issue next back-to-back word load instruction.

0

1

2

3

4

5

6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

sp
e

e
d

u
p

to
ta

l c
yc

le
s

to
 is

su
e

 lo
ad

 in
st

ru
ct

io
n

s

of back to back word load instructions

Incoming Stream Cache vs Main Data Cache

main data cache (sum) incoming stream cache (sum) speedup

(b) Total latency for specific amount of back-to-back word load instructions.

Figure 6.2: Incoming Stream Channel comparison with Main Data Cache for back-
to-back word load instructions. Main Data Cache accesses the memory every four
words to fetch one cacheline, while Incoming Stream Channel fetches the words
before they are requested by the core, except on the first load that the incoming
stream was just initialized.

6.2. PRELIMINARY EVALUATION 57

unit (of the main data cache), the data prefetcher (of the incoming stream cache)
and the data write-combiner (of the outgoing stream cache) try to access the Main
Memory.

On the incoming communication, we enable only one of the four incoming
stream channels (where each one has 4 KBytes stream buffer size) to fetch 16
KBytes of data for the core to consume. As shown in Figure 6.2, most of the
remaining bytes of the incoming stream channel are ready to be read by the core
after just 1 core cycle (i.e. back-to-back loads, otherwise it would take 2 core
cycles), as the prefetcher of the incoming stream cache manages to have them
continuously present in the incoming stream buffer before the core issues a load
instruction.

For comparison, if the data were loaded through the main memory hierarchy
(i.e. the L1 cache connected to Main Memory), every cacheline access would incur
a cache miss and thus a memory access latency, i.e. approximately 100 ns. For
that reason, by using the incoming stream cache, the core manages to issue a 32-
bit word load instruction every 9 core cycles on average, while with the main
data cache, the core manages to issue a 32-bit word load instruction every 41
core cycles on average, because there is a cache miss every four 32-bit words (one
cacheline).

Another observation in the results of using the incoming stream channel is
that every 16 back-to-back word load instructions, there is a spike in latency, due
to the network’s delivering of words being slower than core’s consumption. To
hide such latency, we have to set the prefetcher to request bigger packets of data
from the Main Memory than the 64 Bytes. So, as result, we can conclude that an
incoming stream channel of 4 KBytes is too big for the parameters that we set in
the testbench, especially for such demanding pattern of data consumption. From
the other side, in more common patterns of consumption from the core, where
there is at least one computational cycle for each word, a big sliding window could
be more helpful, in case that the user program wants to read words that are way
after the Base pointer (i.e. oldest data in the stream channel).

Lastly, it is important to mention that if the main data cache was support-
ing a prefetcher similar to the one that we utilize in Incoming Stream Cache, the
results will be almost the same. But the advantage of our design is that it can
communicate with a remote DRAM or another coherence island, similar to com-
municating with the local DRAM, without extra overheads, other than a small
increase in latency due to the possible longer distance and the complexity in the
interconnection.

On the outgoing communication, the results of the Outgoing Stream are almost
the same with the ones of the Main Data Cache, where each individual store
instruction takes 2 core cycles to be written to either of the caches (otherwise 1
core cycle for back-to-back stores). The advantage of the Outgoing Stream Cache,
over the Main Data Cache, is that it utilizes a write-combiner, which releases
neighboring words to the network as soon as they are written (with the exception
of releasing them after they have been also requested, when communicating with

58 CHAPTER 6. FPGA IMPLEMENTATION AND DESIGN EVALUATION

an incoming stream cache). That way, in our micro-tests for back-to-back stores,
we manage to avoid stalling the core comparing to the Main Data Cache, which
has to write back to the Main Memory a cacheline, when there is no available
space. For that reason, in an infinite stream of storing back-to-back data, when
we use the Outgoing Stream Cache, the average latency to issue a store instruction
is 1 core cycle, while when we use the Main Data Cache, the average latency to
issue a store instruction is equal to the memory access latency divided by four (i.e.
the words that can fit in a cacheline), which is a bit less than 40 core cycles.

Chapter 7

Related Work

7.1 Vivado High Level Synthesis Streams

Vivado High Level Synthesis (HLS) encourages hardware developers to create pro-
cesses that follow the dataflow (producer-consumer) paradigm, i.e. one process
only generates (produces) a set of data that another process reads (consumes).
Furthermore, if the data are produced and consumed with the same access pat-
tern, the communication channel can be declared as a stream and implemented
as a FIFO. This method allows for the consumer to begin its operation without
waiting for the producer to complete theirs. It also helps minimize the hardware
requirements as no addressing logic is required and only a FIFO needs to be im-
plemented, in contrast to large ping-pong buffers.

7.2 Data Streaming in inter-process CNN engines

Data between consecutive layers in Convolutional Neural Networks travel uni-
directionally, following the producer-consumer paradigm and hence benefit from
improved stream communication proposed in this paper. Hardware implementa-
tions focus on distributing CNN computational layers across multiple computing
nodes to increase inference throughput by taking advantage of the larger hardware
real estate, as shown in [5, 6, 7, 8]. Providing a reliable streaming interface for
data transactions between computing nodes for such applications is important in
order to avoid additional latency caused by intermittent large data transfers and
minimize idle node time while waiting for data input.

7.3 Maxeler Data Flow Engine

Maxeler Technologies build upon the dataflow paradigm for Big Data applications,
accelerating application data flows and loops up to 1000× compared to approaches
that follow the control flow paradigm [9]. The Maxeler DataFlow Engine (DFE)
contains chains of functional units that pass data to each other in a streaming

59

60 CHAPTER 7. RELATED WORK

manner; data also streams between the host and the DFEs for input/output [10].
Voss et al. implemented the VGG-16 convolutional neural network on a MAX-
5 DFE. Their work used high-precision (18-27 bit) fixed-point data types and
achieved an average throughput of 84.5 images per second and 2450 GOPS at 250
MHz clock frequency [11].

7.4 Stream-based Memory Access accelerator

This stream-specialized accelerator [12] proposes ISA extensions to take advantage
on stream structure and semantics, by looking memory operations from a fine-grain
view. Like our design, it focuses on the unnecessary latency of memory accesses
and utilizes a prefetcher to take advantage of both latency and throughput in a
localized area, from processor pipeline to cache subsystem.

Chapter 8

Conclusion – Future Work

In this thesis, we presented the design of a new approach for inter-processor stream
communication across RISC-V Coherence Islands, with read-once/store-once cache
policies to improve performance. We described that our design has many ad-
vantages in stream communication over other communication frameworks, like
TCP/IP and RDMA interconnects, which support only memory-to-memory com-
munication. Furthermore, we coupled our design with the ARIANE RISC-V core,
next to the L1 cache, and achieved very low access time in stream communication
(2 core cycles for individual load/store instructions and 1 clock cycle for back-to-
back load/store instructions). Additionally, we extensively evaluated our Stream-
ing Caches and compared them after with the Main Data Cache of ARIANE, by
connecting all Caches to the Main Memory. By using hand-made microbenchmarks
in behavioral simulation, our experiments showed that we accomplished great re-
duction in the average latency, when the core wants to access data from/to the
main memory, because of the utilization of a data prefetcher in Incoming Stream
Cache and a data write-combiner in Outgoing Stream Cache. Lastly, we synthe-
sized our design on Vivado 2020.1 for a Xilinx Zynq UltraScale+ MPSoC as a
target FPGA, and we achieved above 200MHz clock frequency for our Streaming
Caches, but consumed a relatively big area (40445 LUTs and 16121 Registers).

This work can be continued in many different ways, so we list the most notable
of them below:

1. One weakness of our Streaming Caches is the big area that they utilize on a
FPGA. In a cycle, each stream channel needs multiple ports for reading and
writing on validity bit arrays. Because of that, we currently implemented
those arrays using registers to support the concurrent operations. One way to
solve that issue is to replace the array of registers with multiple BRAMs (i.e.
as many as the amount of concurrent operations) to support the concurrent
reads, but another issue that arises is that we are limited to one write per
cycle. For that reason, we need to either organise the priority of writes, to
avoid unnecessary latency in our Streaming Caches, or split and encode the
validity bit arrays in a way to support concurrent writes too.

61

62 CHAPTER 8. CONCLUSION – FUTURE WORK

2. Current version of the design does not support error handling, neither for
programming errors (i.e. incorrect word accesses based on our policies), nor
for network delays and errors, like network disconnections or noise. For that
reason, timeouts need to be implemented for not stalling the network, like
in cases that a response gets delayed.

3. Another thing that needs to be carefully designed and implemented is the
termination of streaming channels. While the finite streams can be termi-
nated easier by setting a counter for example, on infinite streams there is
the issue of not knowing what to do with the remaining valid data on the
stream buffers. Furthermore, timeouts will be needed here too, to terminate
any unnecessary outstanding requests.

4. Last but not least, our design needs to be further evaluated and tested under
real conditions, like on a FPGA, where ARIANE core runs with an Operating
System, to fully evaluate our Streaming Caches and compare their perfor-
mance with other networking frameworks, like the RDMA interconnection.
Even if parametric, both the size of the stream circular buffers (i.e. sliding
window) and the amount of stream channels need to be evaluated. The first
based on the core’s frequency and network’s throughput and latency, and the
latter based on the needs of distributed applications that will be executed
on the nodes.

Bibliography

[1] Andrew Waterman, Yunsup Lee, David Patterson, and Krste Asanovic. The
risc-v instruction set manual, volume i: user-level isa, version 2.0, eecs de-
partment. University of California, Berkeley, 10, 2014.

[2] Florian Zaruba and Luca Benini. The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in
22-nm fdsoi technology. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 27(11):2629–2640, 2019.

[3] S Guruprasad and K Sudharshan. Design and analysis of master module for
amba axi-4. NCECS-2011) at Siliguri Institute for technology, 2011.

[4] Xilinx. Zynq UltraScale+ MPSoC Technical Reference Manual UG1085. 1.3
edition, 2016.

[5] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason Cong.
Energy-efficient cnn implementation on a deeply pipelined fpga cluster. In
Proceedings of the 2016 International Symposium on Low Power Electronics
and Design, ISLPED ’16, page 326–331, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[6] Stylianos I. Venieris and Christos-Savvas Bouganis. fpgaconvnet: A frame-
work for mapping convolutional neural networks on fpgas. In 2016 IEEE 24th
Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 40–47, 2016.

[7] E. Mageiropoulos, N. Chrysos, N. Dimou, and M. Katevenis. Using hls4ml to
map convolutional neural networks on interconnected fpga devices. In 2021
IEEE 29th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 277–277, Los Alamitos, CA, USA, may
2021. IEEE Computer Society.

[8] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill,
Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams,
Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa
Woods, Sitaram Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S.

63

64 BIBLIOGRAPHY

Chung, and Doug Burger. A configurable cloud-scale dnn processor for real-
time ai. In 2018 ACM/IEEE 45th Annual International Symposium on Com-
puter Architecture (ISCA), pages 1–14, 2018.

[9] Nemanja Trifunovic, Veljko Milutinovic, Jakob Salom, and Anton Kos.
Paradigm shift in big data supercomputing: dataflow vs. controlflow. Journal
of Big Data, 2(1):1–9, 2015.

[10] Exa2Pro Deliverable D4.4 – Initial report on implementation of StarPU on
heterogeneous architectures p.7.

[11] Nils Voss, Marco Bacis, Oskar Mencer, Georgi Gaydadjiev, and Wayne Luk.
Convolutional neural networks on dataflow engines. In 2017 IEEE Interna-
tional Conference on Computer Design (ICCD), pages 435–438, 2017.

[12] Zhengrong Wang and Tony Nowatzki. Stream-based memory access special-
ization for general purpose processors. In Proceedings of the 46th International
Symposium on Computer Architecture, ISCA ’19, page 736–749, New York,
NY, USA, 2019. Association for Computing Machinery.

	Introduction
	Motivation
	Contributions
	Remainder of this thesis

	Streaming Cache
	Cache Policies
	Tightly-coupling with ARIANE RISC-V core
	Identifying Stream Accesses
	Supported communication flows

	Overall diagram of Streaming Caches
	Internal organization of Stream Caches
	State differentiation

	Comparison with Remote Direct Memory Access (RDMA)

	Incoming Stream Cache
	General Description
	Control Logic for communication with the core
	Prefetching
	Bigger packets (AXI Burst)
	Operations on Addresses
	LSU and network interfaces

	Outgoing Stream Cache
	General Description
	Control Logic for communication with the core
	Write Combining
	Control Logic for communication with a Memory
	Control Logic for communication with an Incoming Stream Cache

	Load Store Unit Extensions
	Load Unit
	Store Unit

	FPGA Implementation and Design Evaluation
	Time and Space Overheads
	Preliminary Evaluation

	Related Work
	Vivado High Level Synthesis Streams
	Data Streaming in inter-process CNN engines
	Maxeler Data Flow Engine
	Stream-based Memory Access accelerator

	Conclusion – Future Work
	Bibliography

