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Abstract

Numerical and holographic models for strongly coupled systems
indicated a rise in the vicinity of the confinement – deconfinement
phase transition of the quark gluon plasma. We investigate the
behaviour of bulk viscosity in holographic models that are 4+1 di-
mensional Einstein – dilaton gravity theories with potentials that
are asymptotically exponential in the IR. We find that in such
models where the phase transition is continuous, the bulk viscos-
ity / entropy density ratio has a maximum just above a critical
temperature and remains finite.
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Chapter 1

Introduction

The bulk / boundary correspondence [1] is a useful tool for doing calculations
in strongly coupled theories where one relates string theory in a higher dimen-
sional space to a quantum field theory defined on its boundary. The approaches
to the correspondence can be classified as bottom-up or top-down. Bottom-up
holographic models are approaches to the bulk / boundary correspondence
that employ an effective theory to represent the dynamics of the string theory
living in the bulk. While in the original top-down approach [1], and many
other models inspired by it, one starts building the model from the string the-
ory side constructing brane embeddings etc. such that the boundary theory
has the desired features, in bottom up models one does not worry about the
brane embeddings that are not necessarily simple for realistic models. Instead,
one chooses the dynamical bulk fields and their effective potentials suitably
so that the bulk theory captures the properties of the boundary theory. First
examples of such bottom-up models are intended for QCD and they are known
as AdS/QCD. These models [2–4], with the advantage of being phenomeno-
logically tunable, successfully match QCD experimental data.

Improved Holographic QCD (IHQCD) [5], is another application of the bottom-
up approach to QCD. It is a 5 dimensional Einstein - dilaton gravity theory
with the dilaton potential appropriately chosen to match the β function of the
boundary theory to QCD. Application of this type of models to other strongly
coupled systems such as condensed matter systems is also possible. For d di-
mensional strongly coupled systems a minimal bottom up model without any
gauge fields would be a d + 1 dimensional theory of gravity with a scalar that
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can be the dilaton or another scalar coming from the bulk string theory.

Holographic models of systems at finite temperature are typically constructed
with bulk geometries involving a black hole and their thermodynamics are
mainly determined by the near horizon asymptotics of the background. In
bottom-up models with an effective potential, the relevant asymptotics of the
scalar effective potential are therefore directly related to the thermodynamical
properties of the theory. This direct relation allows a classification of potentials
with respect to their thermodynamical properties.

For strongly coupled plasmas, especially for QGP, an interesting quantity is
the bulk viscosity. One can talk about two viscosities for a fluid, namely bulk
and shear viscosities. They are defined in the following way. The general
viscous stress tensor of a three dimensional fluid has the following form:

σij = η

(
∂vi

∂xj

+
∂vj

∂xi

− 2

3
δij∂ · v

)
+ ζδij∂ · v (1.0.1)

The coefficient η is the shear viscosity while ζ is the bulk viscosity. It has been
shown in [6] that the shear viscosity η in strongly coupled theories with black
hole - AdS gravity duals is universal and equal to 1

4π
. Note that the coefficient

of η in (1.0.1) is traceless. Bulk viscosity vanishes for incompressible fluids or in
a conformal field theory, which is approximately the case for high temperature
QCD. The gold collision experiments at RHIC showed that the QGP behaves
like very close to a perfect fluid [7–10]. However at lower temperatures, just
above the QCD phase transition, a rise in bulk viscosity is expected.

In QGP at temperatures T & Tc, and any other strongly coupled fluid, trans-
port coefficients as well as other quantities cannot be evaluated in perturbation
theory. Therefore one needs to consider non perturbative methods such as nu-
merical simulations or holography. The authors of [11] and [12] calculated
the bulk viscosity from the low energy theorems of QCD supported by lattice
data. In [12] it has been argued that the bulk viscosity should diverge at QCD
confinement – deconfinement phase transition.

On the other hand, an holographic method for the calculation of transport
coefficients has been developed in [13] and applied to theories with 4+1 di-
mensional Einstein - dilaton gravity duals. There, it has been shown that in a
QCD-like holographic model the bulk viscosity rises near the phase transition
but remains finite. Following the holographic method of [13], in [14] it was
found out that the bulk viscosity rises just above the critical temperature in
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IHQCD as well. In another holographic computations for the bulk viscosity
which is for the the N = 2∗ plasma [15] and the cascading plasma [16] the bulk
viscosity has been observed to rise near critical temperature and remain finite.
This was also the case in [13] for a QCD-like bottom-up model. However in
the gauge theory dual of exotic black holes the bulk viscosity diverges [17].

In this work we calculate the bulk viscosity in effective dilaton potentials
V (Φ) with exponential large Φ asymptotics: ∼ eaΦ. Such cases are generic in
supergravity and they allow power solutions that have simple scalings. Among
the theories we consider and have a phase transition, one can identify two types
according to the bulk geometry at the critical temperature.

In the first type that corresponds to the marginal a = 4
3

theories the relative
free energy becomes zero as the black hole size shrinks to zero. In the second
type (a > 5

3
), the geometry with zero relative free energy has finite black

hole size. This is similar to IHQCD where the potential is of the form ≈
e

4
3
Φ ×powers of Φ and the phase transition occurs at some finite T other than

the minimum temperature. For both types of theories, the bulk viscosity has
a maximum just above the critical temperature and does not diverge.

The organisation of the text is as follows. Firstly, we review 4+1 dimensional
Einstein - dilaton gravity and its equations of motion in section 2. We present
the technique of scalar variables that is used throughout the text. We conclude
this section by giving formulae for thermodynamical quantities expressed in
terms of the scalar variables.

In section 3 we state the class of potentials we are interested in. We give the
asymptotic behaviour of the geometry and thermodynamical quantities and
make a classification based on the asymptotics of the temperature as the black
hole horizon goes far away from the boundary. For a marginal subclass where
the temperature asymptotes to a constant, the thermodynamical quantities
depend on the subleading terms of the potential [18].

Finally, in chapter 4 we present results for bulk viscosity in the backgrounds
reviewed in section 3. We review the analytical computation of the bulk vis-
cosity in backgrounds where V (Φ) = eaΦ along with a numerical computation
for a possible AdS completion of it. We conclude by a study of bulk viscosity
concentrated on the marginal subclass of IR asymptotics.
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Chapter 2

Black hole and thermal gas
solutions in Einstein – dilaton
gravity

The 5d dimensional effective holographic models we consider are gravitational
theories with an action of the following form:

S = −M3
p N2

c

∫
d5x

√
g

[
R− 4

3
(∂Φ)2 + V (Φ).

]
+ SGH (2.0.1)

In our notation Mp is is the five dimensional Planck mass, Nc is the number of
colours of the gauge theory living on the boundary, R is the scalar curvature
of the bulk and Φ is the dilaton. SGH is the Gibbons-Hawking boundary term
given by

S = M3
p N2

c

∫
∂M

d4x
√

hK (2.0.2)

where h is the induced metric on the boundary of the 5d space-time and K is
its extrinsic curvature. In this section we will review the equations of motion
of this theory and the thermodynamics for a relatively a certain class of dilaton
potentials.
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2.1 Equations of motion and the bulk geome-

try

We will study two types of solutions with distinct metric ansatz. In a particular
coordinate system, called conformal coordinates as in [19], the first type of
solutions are of the form

BH : ds2 = e2A
[
e−gdr2 − egdt2 + dxmdxm

]
(2.1.1)

and they are referred to as BH solutions due to the (possible) existence of an
horizon where the function eg vanishes.

For the second type, we set g = 0 everywhere. Such solutions are called the
thermal gas (TG) solutions and their metric ansatz reads:

TG : ds2 = e2A
[
dr2 − dt2 + dxmdxm

]
(2.1.2)

The equations of motion for the BH metric functions are [5]

f̈

ḟ
+ 3

ḃ

b
= 0, 6

ḃ2

b2
+ 3

b̈

b
+ 3

ḃ

b

ḟ

f
=

b2

f
V (2.1.3)

where:
b = eA, f = eg. (2.1.4)

The dilaton equation of motion is:

Φ̈ + 4ȦΦ̇ +
3

8
e2A dV

dΦ
= 0 (2.1.5)

The dots represent derivation with respect to the radial coordinate r.

The coupled system of equations (2.1.3) and (2.1.5) can be translated into
equations for two scalar variables defined as:

X(Φ) =
1

3

Φ̇

Ȧ
Y (Φ) =

1

4

ġ

Ȧ
(2.1.6)
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and they obey the following first order differential equations:

dX

dΦ
= −4

3

(
1 − X2 + Y

)(
1 +

3

8X

d log V (Φ)

dΦ

)
(2.1.7a)

dY

dΦ
= −4

3

(
1 − X2 + Y

) Y

X
. (2.1.7b)

Specifying the value of Φ at the horizon

Φh := Φ(rh) (2.1.8)

and demanding regularity for X completely fixes X and Y . Once X and Y
are given as the solution to (2.1.7), the physical integration constants of equa-
tions (2.1.3)-(2.1.5) are fixed. When working with these variables it is more
transparent that one can use the value of the dilaton as the radial coordinate
itself, as long as it is a monotonic function of the radial coordinate.

One can then invert (2.1.6) and find the metric functions in terms of X and
Y :

A(Φ) =
1

3

∫ Φ dΦ̃

X(Φ̃)
, g(Φ) =

4

3

∫ Φ

dΦ̃
Y (Φ̃)

X(Φ̃)
(2.1.9)

The potentials we will deal with have an exponential large Φ leading term
making the logarithmic derivative of them asymptote to a positive constant a
in this region. Therefore a solution of (2.1.7) has X asymptoting to a negative
constant

X(Φ) ≈ −3a

8
, Φ � 1. (2.1.10)

with

a = lim
Φ→∞

d log V

dΦ
. (2.1.11)

Moreover, the aforementioned boundary conditions for X and Y lead to diver-
gent asymptotic behaviour for Y near the horizon Φh:

Y (Φ) =
9V ′

32V

1

Φh − Φ
+ O(1). (2.1.12)

With the assumption that X (Y ) is a negative (positive) definite monotonic
function of Φ asymptoting to zero as Φ → −∞, equations (2.1.9) tell that the
metric scaling factor e2A diverges monotonically with smaller Φ (UV limit)
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and the blackness function eg indeed vanishes at Φh. We will verify this for
the potentials we study in the following section.

TG solutions are in a sense a special case of BH solutions with f set to 1. It
can be seen from equation (2.1.6) that for these backgrounds Y = 0, ∀Φ.
The asymptotics (2.1.10) still satisfy (2.1.7).

2.2 Computation of thermodynamical quanti-

ties

Here we will only review the expressions for the thermodynamic quantities for
the solutions such as temperature, entropy free energy, etc. in terms of the
scalar variables. For their derivations see: [19].

The entropy of the BH solutions is given by the area of the horizon. In the
X − Y notation this is given by the following equation

S = 4πM3
p N2

c V3e
3A(Φh) = 4πσ exp

[∫ Φh

dΦ̃
1

X(Φ̃)

]
(2.2.1)

where we have used equation (2.1.9) and defined σ = M3
p N2

c V3. V3 is the
volume of the periodical spatial directions . The temperature is given by the
derivative of the blackness function f = eg evaluated at the horizon:

T =

∣∣∣ḟ(rh)
∣∣∣

4π
. (2.2.2)

Using equation (7.38) of [19] and the expression for the entropy, the tempera-
ture is given in terms of X as 1:

T =
`

12π
V (Φh) exp

[
1

3

∫ Φh

dΦ̃

(
1

X(Φ̃)
+ 4X(Φ̃)

)]
(2.2.3)

The free energy of a solution is the on shell action evaluated at it. This
quantity is divergent and it is regularised by taking the difference of the on
shell actions of two backgrounds. It can be represented as an integral using

1The author thanks Umut Gürsoy who pointed out this.
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the first law of thermodynamics.

F = FBH − FTG = −
∫

SdT =

∫ ∞

Φh

S(Φ̃h)
dT

dΦ̃h

dΦ̃h (2.2.4)

Other quantities can be computed using thermodynamical equations.

8



Chapter 3

Potentials with exponential
leading term in the IR

Effective holographic models of 4 dimensional strongly coupled plasmas ([5],
[20]) as well as lower dimensional effective holographic models of condensed
matter systems [21] have exponential IR asymptotics for the scalar potential.

V ∼ eaΦ, Φ � 1 (3.0.1)

Where and why is this a good approximation

3.1 Liouville potentials and AdS completion

For potentials that are given as an exponential everywhere 1

V = eaΦ, ∀Φ (3.1.1)

the solution of (2.1.7) can be found analytically as:

X = −3a

8
, Y =

9a2

64
− 1

1 − exp
[
−9a2−64

18a
(Φh − Φ)

] (3.1.2)

1Such backgrounds have been studied by Chamblin and Reall [22].
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a = 1

a =
4

3

a =
5

3

1 2 3 4 5
F
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5

3

a =
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3

a = 1

1 2 3 4 5
F

0.2

0.4

0.6

0.8

1.0

fHFL

Figure 3.1: Metric functions A (left), f (right) for Φh = 5 and a ∈
{
1, 4

3 , 5
3

}
.

Solid curves are the solutions for exponential potentials and the dotted curves are
numerical solutions for potentials with AdS completion.

Equation (3.1.2) implies via equation (2.1.9) the following solutions for the
metric functions:

A = A0 −
8

3a
(Φ − Φ0) g = log

[
1 − exp

[
9a2 − 64

18a
(Φh − Φ)

]]
(3.1.3)

where Φ0 is a UV cut-off value for the dilaton and Φh is its value at the horizon.

While the potential (3.1.1) is a good approximation in the IR, it needs com-
pletion in the UV to allow solutions with asymptotically AdS boundary. To
do so, one can include a term that asymptotes to a constant as Φ → −∞ and
is negligible as Φ → +∞. For instance

V (Φ) = 1 + eaΦ (3.1.4)

will give an asymptotically AdS background. For comparison we plot numeri-
cal solutions of the Einstein equations for the potential (3.1.4) along with the
analytical solutions for (3.1.1) in figure 3.1.
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3.2 Thermodynamics

The parameter a does not result in major qualitative changes in the bulk geom-
etry as long as a < 8

3
2. However this is not the case for the thermodynamics of

the solutions, in particular for the temperature. The behaviour of the temper-
ature for smaller black holes (that is Φh → ∞) has critical dependence on a.
This limit is of interest because there the free energy will go to zero implying
a transition between the BH and TG phases.

Temperature

From equation (2.2.3) we can see the large Φh behaviour of the temperature
depending on the IR asymptotics of the dilaton potential. It is determined
by which of the two exponential factors are dominant. There is a critical
parameter a where these factors cancel each other and the temperature goes
to a constant. Thus the possibilities can be classified as follows:

1. a = 4
3
: This is the critical value of a. In this case

X(Φ) ≈ −1

2
, for 1 � Φ (3.2.1)

and the two factors on the RHS of equation (2.2.3) become inversely
proportional to each other. The temperature asymptotes to a constant
as Φh → ∞.

2. a > 4
3
: In this case the potential dominates the second factor. The

potential goes like eaΦ while the integral depends on the asymptotic
value of X given in equation (2.1.10). Since

a >
1

3

(
8

3a
+

3a

2

)
, ∀a >

5

3
(3.2.2)

the temperature diverges as Φh → ∞.

3. a < 4
3
: As the opposite of case 2, the temperature goes to zero as the

black hole shrinks.

2As pointed out in [19], for a > 8
3 the singularity is not of a good type according to the

classification of [23].
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The temperature for potentials (3.1.1) along with the asymptotically AdS case
(3.1.4) is plotted in figure 3.2.

Entropy

The entropy vanishes in the limit Φh → ∞ independently of the choice of
a < 8

3
. This can be seen from equation (2.2.1) by noting that X asymptotes to

a negative constant. Figure 3.2 demonstrates the dependence of the entropy
on the temperature for three sample parameters a.

Free Energy

In the limit Φh → ∞ also the free energy goes to zero as equation (2.2.4)
suggests. The integrand in (2.2.4) is regular while the limits of integration
go to zero. As we claimed in the previous section, for solutions with a local
minimum of the temperature (a > 4

3
with AdS completion), there exists a

finite critical temperature where the free energy goes to zero. However this
temperature corresponds to a black hole with a finite value of Φh in contrast
to the critical a = 4

3
case where the only phase transition happens as Φh → ∞.

In critical backgrounds this only phase transition happens at a finite critical
temperature

Tc = lim
Φh→∞

T (Φh), for a =
4

3
(3.2.3)

In the marginal case a = 4
3

without any corrections to exponential potential,
the temperature is a constant and the free energy is zero for any Φh. However in
realistic cases there may be corrections to the potential that can be factorised
like:

V ≈ e
4
3
Φ
(
1 + e−kΦ

)
(3.2.4)

and the large Φh behaviour of the thermodynamical quantities will be deter-
mined by the subleading term in 3.2.4 [18]3. Let us begin by analysing the
temperature for a more precise demonstration of this claim. The temperature

3The potential (3.1.4) that we considered to demonstrate the AdS completion also has a
subleading IR term of the form of (3.2.4)
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a)Temperature:

∝
T

Φh

a=1

a=4/3

a=5/3

b)Entropy:

∝
S

∝ T

a=1

a=4/3

a=5/3

c)Free Energy:

0

∝
F

∝ T

a=1

a=4/3

a=5/3

Figure 3.2: Comparison of analytical results for an exponential potential V = eaΦ

with numerical computations for a potential like V = 1 + eaΦ.13



is given by equation (2.2.3) and for large Φh we can write

T ∝ e
4
3
Φh
(
1 + e−kΦh

)
e−

4
3
Φh = 1 + e−kΦh (3.2.5)

or
t ∼ e−kΦh (3.2.6)

with definition of the deviation t from the critical temperature as:

t =
T − Tc

Tc

(3.2.7)

From the large Φh behaviour of 2.2.1 and using (3.2.5) we calculate the scaling
of entropy near the critical temperature:

S ∼ tn−1, n =
2

k
+ 1 (3.2.8)

Similarly, from (2.2.4) we find that the free energy will scale as

F ∼ tn (3.2.9)

The above listed scalings of the temperature, entropy and free energy imply
an n’th order continuous phase transition at Tc..
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Chapter 4

The bulk viscosity

Bulk viscosity of strongly coupled systems can easily be obtained by holo-
graphic techniques. In linear response theory, transport coefficients are re-
lated to the imaginary part of the Fourier transform of the retarded energy
momentum tensor correlator by the Kubo’s formula

ζ = −1

9
lim
ω→0

1

ω
ImGR (ω, 0) . (4.0.1)

The retarded correlator of the energy-momentum tensor can be calculated
holographically from the fluctuations of the metric as they become a source
for the energy-momentum tensor of the boundary theory. As seen from their
definitions in the stress tensor (1.0.1), the bulk viscosity is related to the spatial
diagonal fluctuations while the off diagonal spatial compinents are related the
shear viscosities.

For the kinds of effective holographic theories we consider, a prescription for
the calculation of the bulk viscosity has been given in [13] which uses the
calculation of the Minkwoski space corelator of [24]. In the notation of [14]
the result for the bulk viscosity / entropy density ratio is:

ζ

s
=

3

32π

(
V ′ (Φh)

V (Φh)

)2

|cb|2 (4.0.2)
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where cb is the coefficient of the near horizon asymptotics of the fluctuations:

h11 ≈ cb (Φh − Φ)−iω̃ , ω̃ =
ω

4πT
. (4.0.3)

Again in the notation of [14], the equation that the fluctuations of the diagonal
metric component satisfy, is written like:

h′′
11 = c(Φ)h′

11 + d(Φ)h11 (4.0.4)

with

c(Φ) =
1 − X2 + Y

X

(
8

3
+

3

2X

V ′

V

)
(4.0.5a)

d(Φ) = − 16Y

9X2

(
1 − X2 + Y

)(
1 +

3

8X

V ′

V

)
−
(

ωY

3πTX

)2

e−2
R Φh
Φ

1
X . (4.0.5b)

In holographic calculations ([13], [14]) and in lattice simulations [25] there is
evidence for a rise in the bulk viscosity in the vicinity of a phase transition. In
section 4.2 we find similar behaviour also for backgrounds with marginal IR
asymptotics which exhibit a phase transition in the Φh → ∞ limit at a finite
temperature.

4.1 Analytic solution for exponential poten-

tial

For exponential potentials it is possible to compute the bulk viscosity analyti-
cally. This is most conveniently done by matching the low frequency expansion
of the fluctuations to the zero frequency solution of (4.0.4). A full solution can
be obtained in the ω = 0 case. Then, imposing regularity at the horizon and
unit normalisation at the boundary fixes h11:

h11 = 1 (4.1.1)

for all r. We leave the details of this calculation to appendix A

We remind that this result is compatible with the “adiabatic” approximation
of [19] which states that cb ≈ 1 where the logarithmic derivative can be approx-
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imated by a constant. For exponential potentials the logarithmic derivative is
constant everywhere.

4.2 Bulk viscosity in the presence of IR cor-

rections

In section 3 we mentioned how the backgrounds can be classified by the leading
IR behaviour of the dilaton potential and showed the existence of a marginal
type of asymptotics. We also have seen that some non-trivial information re-
garding thermodynamical quantities are determined by the subleading terms.
In this section we shall compute bulk viscosity for potentials with such correc-
tions and see the emergence of a non-trivial dependence on temperature.

As the subleading terms make the fluctuation equation complicated enough,
it is required to solve the fluctuation equation (4.0.4) numerically with the
following boundary conditions: in falling waves at the horizon and unit nor-
malisation of h11 at the boundary, as mentioned before. Firstly we solve the
fluctuation equation with the potential (3.1.4).

Again, we find three distinct behaviours depending on the parameter a as we
found for the temperature:

1. a = 4
3
: In this marginal case, the bulk viscosity has a maximum at a

temperature Tmax near the phase transition and for temperatures above
Tmax it decreases to zero monotonically as the temperature is increased.

2. a > 4
3
: In this case the bulk viscosity has a maximum near the confine-

ment - deconfinement phase transition. It goes to a constant with the
increasing temperature (on the big black hole branch which is thermo-
dynamically preferable)

3. a < 4
3
: In this case there is neither a phase transition, nor a maximum in

the bulk viscosity. The bulk viscosity goes to a constant with decreasing
temperatures and vanishes with increasing temperatures.

The three cases are plotted in figure 4.1. In every case the bulk viscosity is
finite.
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Figure 4.1: Behaviour of the bulk viscosity / entropy density ratio with respect to
temperature for three cases of a in potentials given like in equation (3.1.4). Tem-
peratures are scaled by the critical temperature of each theory, if there exists one.
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Figure 4.2: Bulk viscosity / entropy density ratio for marginal backgrounds with
continuous phase transitions. The solid, dashed, dotted lines represent n = 2, n = 3,
n = 4 respectively, where n is the order of the phase transition according to the
discussion at the end of section 3

Finally, let us concentrate on the marginal case with continuous phase tran-
sitions. Before giving results it is interesting to review an analysis made in
[18] which concludes that the value of bulk viscosity at the phase transition is

universal for the marginal subclass of potentials, i.e. potentials with ∝ e
4
3 IR

asymptotics.

To see this we note that near the horizon the adiabatic approximation of [14]
becomes valid as the potential asymptotes to an exponential. This implies
that the coefficient cb in (4.0.3) becomes 1. Then the bulk - viscosity / entropy
density ratio (4.0.2) simplifies to:

lim
Φh→∞

ζ

s
= lim

Φh→∞

3

32π

(
V ′ (Φh)

V (Φh)

)2

=
3a2

32π
(4.2.1)

independently from the constant prefactor of the potential, the subleading
terms and therefore the order of the phase transition.
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Chapter 5

Conclusion

We calculated bulk viscosity in theories with gravitational duals as described
in section 2 with asymptotically exponential dilaton potentials in the IR. We
observed that in backgrounds with first order phase transitions as well as
continuous phase transitions with vanishing entropy at the critical point, the
bulk viscosity / entropy ratio ζ

s
has a maximum at a temperature just above the

critical one. Moreover we have seen that ζ
s

is finite in all of the backgrounds
we examined. This justifies the discussion in the appendix B of [14] which
applies to our cases as well.

There are several models proposed for the behaviour of the bulk viscosity near
criticality, depending on the other critical exponents in the theory [12, 26, 27].
In [17] their compatibility with various theories including N = 2∗ gauge theory
plasma [28], the cascading gauge theory plasma [29] and the plasma dual to
“exotic black holes” [30], was examined by calculating the critical exponents
and comparing them with the behaviour of the bulk viscosity. It would be
interesting to do such an analysis for the theories of the type studied in this
paper.
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Appendix A

Bulk viscosity for exponential
dilaton potential

We will compute the coefficient cb by expanding the solution near the horizon
and for low frequencies and comparing them with the known zero frequency
solutions to match the boundary conditions.

The zero frequency solution for the exponential potential is found relatively
easy since d(Φ) in equation (4.0.5a) becomes zero.

h′′
11 =

(64 − 9a2)

18a

(
1 +

1

e
9a2−64

18a
(Φh−Φ) − 1

)
h′

11 = 0 (A.0.1)

which has the following analytical, complete solution:

h0
11 = C2 + C1 (Φ − Φh) − C1

18a

9a2 − 64
log

(
e
(9a2−64)(Φ−Φh)

18a − 1

)
. (A.0.2)

For a < 8
3

the boundary condition at the boundary fixes C2 = 1.

h0
11 = 1 + C1 (Φ − Φh) − C1

18a

9a2 − 64
log

(
e
(9a2−64)(Φ−Φh)

18a − 1

)
. (A.0.3)
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Near the horizon this solution is:

h0
11 = 1 +

18a

64 − 9a2
C1 log

[(
64 − 9a2

18a

)
(Φh − Φ)

]
+ O (Φh − Φ) . (A.0.4)

and we see that C1 = 0 if we demand regularity at the horizon for strict zero
frequency solutions. Therefore the full zero frequency solution is a constant

h0
11 = 1 (A.0.5)

Now we will match the asymptotic expansion of h11 with the zero frequency
solution. We factor out the asymptotic behaviour (4.0.3) at the horizon and
write a series expansion for the corrections:

h11 = cb (ω̃) (Φh − Φ)−iω̃ [1 + d(ω̃) (Φh − Φ) + O (Φh − Φ)2] (A.0.6)

Now we expand the coefficients in frequency around zero:

h11 = (Φh − Φ)−iω̃

[
cb(0)+cb(0)d(0) (Φh − Φ)+ω̃ [c′b(0) + cb(0)d′(0) (Φh − Φ)]

+ O
(
ω̃2
)

+ O (Φh − Φ)2

]
(A.0.7)

Therefore at zero frequency this solution is:

h11(ω = 0) = cb(0) + cb(d)d(0) (Φh − Φ) (A.0.8)

We know that in the strict zero frequency limit, h11 (ω = 0) = h0
11 = 1. There-

fore we find that
cb(0) = 1

and
d(0) = 0.
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