
DOMQuery: A large-scale Analysis of

Browser Extensions

Interactions with Websites

Alexander Shevtsov

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisors:
Prof. Evangelos Markatos,

Dr. Sotiris Ioannidis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

DOMQuery: A large-scale Analysis of Browser Extensions

Thesis submitted by
Alexander Shevtsov

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Alexander Shevtsov

Committee approvals:
Evangelos Markatos
Professor, Thesis Supervisor

Sotiris Ioannidis
Research Director, Thesis Advisor, Committee Member

Polyvios Pratikakis
Assistant Professor, Committee Member

Departmental approval:
Antonios Argyros
Professor, Director of Graduate Studies

Heraklion, February 2019

DOMQuery: A large-scale Analysis of Browser
Extensions

Abstract

Modern browsers increased and extended their functionality in order to become
more flexible and attract a plethora of users. Indeed many of the big players
such as Google Chrome, Mozilla Firefox and Microsoft Edge provide additional
enhanced features and privacy solutions through the form of browser extensions.
These extensions are available in the browser’s market (an online store), which
offers hundreds of thousands of extensions to the user; some of them being very
popular with millions of downloads.

In this master thesis, we present DOMQuery, a system that analyzes the in-
teractions between browser extensions and websites’ DOM1 elements. We selected
705,305 different versions out of 307,822 extensions and crawled the top one million
Alexa websites while creating an index of all the DOM elements found in these
websites. Our system identifies the webpages and the specific DOM elements that
extensions manipulate in order to identify cases of extension misuse. Moreover,
our system analyzes the extension’s permissions and the JavaScripts used in order
to cluster extensions based on their functionality. Using such an approach we can
identify quickly extensions that perform a suspicious activity.

Analyzing thousands of extensions is a problematic and (execution) time-
consuming task and requires tackling several challenges. We address these issues
with the use of Kubernetes and running multiple Docker containers in parallel.
Our analysis of 6.4 billions lines of HTML and 85 millions lines of JavaScript code
resulted in identifying extensions that target specific websites. Furthermore, by
analyzing the permissions from the extension’s manifest, we found 8,340 extensions
with wrong permission usage. To foster more research and shed more light on this
phenomenon, we will publicly release our dataset.

1The Document Object Model is a cross-platform and language-independent application pro-
gramming interface that treats an HTML, XHTML, or XML document as a tree structure wherein
each node is an object representing a part of the document.

DomQuery: Ανάλυση ευρείας κλίμακας των
επεκτάσεων προγραμμάτων περιήγησης

Περίληψη

Τα σύγχρονα προγράμματα περιήγησης αποκτούν έξτρα λειτουργικότητα, ώστε

να γίνουν πιο ευέλικτα και να προσελκύσουν πολλούς χρήστες. Πράγματι, πολλοί

από τους μεγάλους παίκτες όπως το Google Chrome, Mozilla Firefox και το Mi-
crosoft Edge παρέχουν πρόσθετες βελτιωμένες δυνατότητες και λύσεις απορρήτου
μεσώ της μορφής των επεκτάσεων. Αυτές οι επεκτάσεις είναι διαθέσιμες στην αγορά

του προγράμματος περιήγησης (ηλεκτρονικό κατάστημα), η οποία προσφέρει χιλιάδες

επεκτάσεις στον χρήστη. Μερικές από αυτές είναι πολύ δημοφιλής με εκατομμύρια

λήψεις.

Σε αυτή τη μεταπτυχιακή εργασία παρουσιάζουμε το DOMQuery, ένα σύστη-
μα που αναλύει τις αλληλεπιδράσεις μεταξύ των επεκτάσεων του προγράμματος πε-

ριήγησης και των στοιχείων DOM2
των ιστοτόπων. Επιλέξαμε 705,305 διαφορετι-

κές εκδόσεις από 307,822 επεκτάσεις και συλλέξαμε τα κορυφαία ένα εκατομμύριο

ιστότοπους της Αλέξα δημιουργώντας ένα ευρετήριο όλων των στοιχείων DOM που
βρίσκουνται σε αυτούς τους ιστότοπους. Το σύστημά μας, προσδιορίζει τις ιστοσε-

λίδες και τα συγκεκριμένα στοιχεία DOM που χειρίζονται οι επεκτάσεις, προκειμένου
να εντοπίσουν περιπτώσεις κακής χρήσης επέκτασης. Επιπλέον, το σύστημά μας α-

ναλύει τα δικαιώματα επεκτάσεών και τα JavaScripts που χρησιμοποιούνται από αυτά
για την ομαδοποίηση επεκτάσεων με βάση τη λειτουργικότητά τους. Χρησιμοποιώντας

μια τέτοια προσέγγιση, μπορούμε να εντοπίσουμε γρήγορα επεκτάσεις που εκτελούν

ύποπτη δραστηριότητα.

Η ανάλυση χιλιάδων επεκτάσεων είναι ένα δύσκολο και (εκτελεστικά) χρονοβόρο

έργο και απαιτεί την αντιμετώπιση αρκετών προκλήσεων. Αντιμετωπίζουμε αυτά τα

ζητήματα με τη χρήση των Kubernetes και τρέχοντας πολλαπλά Docker παράλληλα. Η
ανάλυση 6.4 δισεκατομμυρίων γραμμών HTML και 85 εκατομμυρίων γραμμών κώδικα
JavaScript οδήγησε στην αναγνώριση επεκτάσεων που στοχεύουν συγκεκριμένους
ιστότοπους. Επιπλέον, αναλύοντας τα δικαιώματα των επεκτάσεών βρήκαμε 8,340

περιπτώσεις με λάθος χρήση των δικαιωμάτων. Στην προσπάθειά μας να ερευνήσουμε

περισσότερο και να ρίξουμε φως στο φαινόμενο αυτό, θα δημοσιεύσουμε το σύνολο

δεδομένων μας.

2DOM (Το Μοντέλο Αντικειμένου του Εγγράφου) είναι μια διεπαφή προγραμματισμού εφαρ-

μογών ανεξαρτήτως πλατφόρμας και γλώσσας που αντιμετωπίζει ένα έγγραφο HTML, XHTML ή
XML ως δομή δέντρου όπου κάθε κόμβος είναι ένα αντικείμενο που αντιπροσωπεύει ένα μέρος του
εγγράφου.

Ευχαριστίες

First of all, I would like to thank my supervisor, Professor Evangelos Markatos,
for his valuable guidance. I also want to express my deepest gratitude to my advi-
sor, Dr. Sotiris Ioannidis, for giving me the opportunity to work on so many dif-
ferent, challenging and interesting projects, over the past three years. His support
and advice greatly contributed to my academic and technical growth. Moreover,
I feel thankful to Thanasis Petsas, for his guidance during my first steps of this
academic journey and for setting the foundations of this work. My warmest re-
gards to Michalis Diamantaris, Kostas Solomos, Giorgos Tsirantonakis, Dimitris
Deyannis, Evangelias Papadogiannaki, Panagiotis Papadopoulos, Thanasis Petsas,
Evangelos Ladakis, Giorgos Christou, Konstantinos Kleftogiorgos, Panagiotis Ilias
and all the other present and past members of the Distributed Computing System
Laboratory, for their friendship, advice and commitment. Finally, I want to thank
my family and friends for all their invaluable support and caring.

στους γονείς μου

Contents

List of Tables iii

List of Figures v

1 Introduction 1
1.1 Contributions . 2

2 Background 3

3 Methodology 5
3.1 Extension Analyzing . 5
3.2 DOM elements crawling . 7

4 Implementation 9
4.1 Extension parsing . 9

4.1.1 Master image . 9
4.1.2 Worker image . 9
4.1.3 Hook file . 11
4.1.4 Patching extension . 11
4.1.5 Url usage . 12

4.2 DOM element collection . 13
4.2.1 Master image . 13
4.2.2 Worker image . 13

5 Data analysis 17
5.1 Extension content scripts . 18
5.2 Extension permissions . 19

6 Results 23

7 Conclusion 27

Bibliography 29

i

ii

List of Tables

4.1 This table shows the number of registered DOM elements from
Alexa most popular one million websites. 13

4.2 Most popular domain names found in extensions JavaScript and
HTML source code. 14

5.1 Number of registered extension DOM query. 18
5.2 Top twenty common DOM query values based on the number of

extensions that are looking for it. 19
5.3 Extension with content script statistics of matching URLs list. . . 20
5.4 Most popular permissions found in extensions/crx files with DOM

query and number of them with same permission without any reg-
istered DOM query. 20

6.1 Top twenty values that extensions are looking for that not found in
popular one million Alexa websites. 25

iii

iv

List of Figures

3.1 Our master worker implementation scheme. Where the web inter-
face is the front end of the master image with access to the database,
that allows us to monitor execution flow. Master images are the
main component which creates a queue of job’s that should be exe-
cuted by worker image. Worker image pull jobs from the queue and
next extension crx file from crx collection. 6

4.1 This CDF figure shows the numbers of unique URLs that were found
in each extension crx JavaScript and HTML source code. 12

5.1 The figure shows an example of the manifest structure with permis-
sions list and content script fields. Url match can be defined for each
JavaScript in content script, or match pattern can be defined in the
permissions list. In the second case, this match will be applied for
all content scripts in a manifest file. 18

5.2 The uniqueness of the content script files that were defined in the
manifest file for each extension. We compute for each unique content
script three parameters: number of extensions that have registered
DOM query, number of extensions that do not have any registered
DOM query and summary of extension that generally uses this con-
tent script. 21

5.3 Figure present uniqueness of ”chrome.tabs.executeScript” source
code that we identify in all JavaScript in extension source. For
each unique source code, we compute the number of extensions that
have registered DOM query, number of extensions without regis-
tered DOM query and the overall number of extensions with this
source code. 22

6.1 We identify 290,310 unique URLs in extensions JavaScript and HTML
source code. Performing URL categorization with use of Symantec
Bluecoat and Cisco Talos systems we generate this categorization
figure, where a significant part of URLs are uncategorized. 24

v

vi

Chapter 1

Introduction

Internet browsers have become an integral part of computer systems, and most
of the popular web browsers are implemented for desktop and mobile use in dif-
ferent operating systems (Windows, Linux, Mac, iOS and Android). According
to gs.statcounter.com the most popular browser is Chrome, Safari, and UC
Browser. Google Chrome browser has a higher market share index of 59.69%
across all platforms and 67.6% of the desktop market. As the most popular
browser, Google Chrome allows to use different modules over the browser, and
these modules are called extensions; each extension adds additional functionality
to the browser. Using browser extensions allows developers to reduce the size and
complexity of browser source code. To facilitate this Google created an exten-
sion web store which allows developers across the world to publish extensions for
specific user needs.

Most of the extensions in the Chrome web store are distributed free and include
extensions such as shared document editing, forecast, news, ad-blockers, and other
privacy tools. Unfortunately, as mentioned in different studies [14] [3] free func-
tionality comes at a cost, where users are the product and pay with their personal
data. Moreover, there are multiple cases free functionality comes with suspicious
and even malicious functionality which is hidden from the user [7] [4]. Therefore
it is crucial to understand and analyze what type of web pages these extensions
are targeting. To this end, we created a web platform and uploaded all the data
we collected during our experiments. We also perform a correlation between the
data that is accessible to extensions when visiting the most popular websites.

Every web site is based on HTML basic DOM structure with some standard
elements like header, body, and footer. However, many developers/companies use
their own class/id/tags elements in their websites. Due to this fact an attacker
can search in a document for specific elements and identify what is the current
URL in a browser tab or even change different fields/frames on a web site such as
replacing advertisement frame with his frame). As mentioned in [2], this type of
attack can also be executed by extensions that don’t have permission for tab URL
location.

1

2 CHAPTER 1. INTRODUCTION

In this master thesis, we present a sophisticated technique that analyzes Chrome
browser extensions with use of docker images and Kubernetes. We use our novel
infrastructure to collect DOM elements for a significant amount of top-ranked web-
sites. Finally, we crosschecked the results for these two experiments and provided
access to our data through a web platform. The web platform allows users to
identify what DOM elements a specific extension is looking for, on which websites
these elements are located, or search for URLs that are known to be targeted by
different extensions.

We created our extension dataset by collecting the most popular Google Chrome
extension and different versions of them. Overall, our collections consist of more
than 700k crx files. Also, in order to collect a large amount of DOM elements
we crawled the top 1 million Alexa websites. In this thesis, first, we describe the
collection technique for the extensions’ parsing and the websites’ crawling, and
then we present the results from our analysis.

1.1 Contributions

To summarize, the main contributions of this master thesis are:

• a public framework to bridge the gap between extension analysis and visited
sites

• we developed the sophisticated technique for large scale extension analysis,
where we analyzed more than 700k of different extension crx files

• in-depth results we identify that 8,340 of the analyzed extensions have wrong
permissions and can be reduced to have access in the limited amount of
websites that they query.

Chapter 2

Background

As any Web application browser extension is third-party code. However, browser
extensions executed with permissions, they have access to APIs which grant access
to all content within the browser. Permission is the primary tool that allows devel-
opers to restrict execution, but extensions frequently over-request permissions. For
example, [13] showed that 71% of the top 500 Chrome extensions use permissions
that support leaking private information. As a solution, they have been proposed
mandatory access control design to protect browser privacy.

One of the first research publications [8] show that Chrome extensions security
model is not a panacea for the different type of attacks of extensions. Through
a series of practical bot-based attacks, they demonstrated that malicious Chrome
extensions pose serious thread even for browser them self. Authors propose new
policies to enforce micro-privilege management and differentiate DOM elements.

In Hulk [2] researchers present a system that was designed for first large scale
dynamic analysis of Chrome browser extensions with use of Honey pages. This
work generates web content in order to trigger the malicious behaviour of extension.
Some of the extensions, for raising the incomes, can maliciously add or even replace
websites advertisements with their own. This type of extension behaviour was
described in [6] work, where authors showed 249 Chrome web store extensions
with advertisement manipulations.

Ex-Ray [9] authors confirmed Chrome extensions privacy leakage and third-
party data processing. The Framework they create can automatically detect pri-
vacy leakage by dynamically analyzing Browser traffic generated during execution
time with 96.9% accuracy and no false positives.

Privacy diffusion [12], develop large scale Chrome extensions analysis frame-
work which analyzed 10k of most popular extensions. With this process, they
discover 6.3% of evaluated extensions have some information leakage, where the
majority of these cases being accidental.

Browser extension by them self can generate a fingerprint of the user. In [5]
authors show enumerating attack, where attacker collect browser installed exten-
sions and can use this information for fingerprinting a user on the web. Win use

3

4 CHAPTER 2. BACKGROUND

of other fingerprinting techniques this extra information increase the accuracy of
uniqueness score.

Another work [15] show that browser extensions that use ads as their mone-
tization strategy often facilitate the deployment of malvertising. Moreover, while
some extensions serve ads from ad networks that support malvertising, other exten-
sions maliciously alter the content of visited webpages to force users into installing
malware.

Some of the papers generate automated framework [11], where they monitor
extension web store for a new extension. While they identify new extension, frame-
work analyze the source of extension with a different technique that can identify
if extension has any malicious functionality. With this framework, they achieve to
remove 9,523 malicious extensions from the chrome web store.

Chapter 3

Methodology

Our methodology consists of two different experiments: analyzing extensions and
collecting DOM elements. This section will describe the purpose of Chrome ex-
tensions and how they are executed, and then we will discuss the methodology for
each of these experiments.

Google extensions are small software that customizes the browser. Using ex-
tensions the user can extend the Chrome functionality and behaviour to their
individual preferences. Extensions are built using HTML and JavaScript. Every
Chrome extension is composed of two types of scripts: content scripts and core
extensions script. The core type of scripts is executed with the Chrome Browser
process; they cannot directly communicate with websites, background jobs, etc.
Content scripts, on the contrary, can communicate with a web page directly and
they are able to read and write DOM elements of a web page. These two types of
scripts run as separate processes and communicate by sending clones over an au-
thenticated channel. For each web page Chrome creates a separated and isolated
instance of the content script in order to avoid privacy leakage from the extension
side.

In summary, content scripts have enough privileges to interact with the user
page, where they can look up and change elements in DOM structure and even
create new elements. Such interaction with the user page needs to be controlled
with more strict permissions. We describe permissions in Extension permissions
section with more details, where some of the extensions are used in wrong way
URL matching permissions.

3.1 Extension Analyzing

For our experiments, we utilize Google Chrome browser, but we have several lim-
itations:

• We cannot use multiple instances of Chrome browser in the same operating
system that will use separate user history

5

6 CHAPTER 3. METHODOLOGY

Master image
Slave image

Slave image
Worker image

Kubernetes

Crx
collection

DOM
Query DB

Web interface

Figure 3.1: Our master worker implementation scheme. Where the web interface
is the front end of the master image with access to the database, that allows us to
monitor execution flow. Master images are the main component which creates a
queue of job’s that should be executed by worker image. Worker image pull jobs
from the queue and next extension crx file from crx collection.

• Multiple instances of Chrome share the same installed extensions, and we
cannot separate them in different execution instances

These limitations obliged us to use operating system virtualisation. To solve this
problem we Docker containers that allow us to execute multiple instances with the
same shared OS. Also for this experiment, we use Kubernetes as the primary execu-
tion platform, because it supports Docker images for content creation. Kubernetes
is an open-source container-orchestration system for automating deployment. It
provides automating deployment, scaling, and operations of application containers
across clusters of hosts. Docker images are not architecture depended, and the
same environment can be used by merely using a docker image. By using Ku-
bernetes and Docker images, we can create a scalable execution which allows us
to reconstruct the same experiment no matter of the hardware and the library
dependencies.

We build our docker images on top of Ubuntu Linux 16.04 and installed the
following applications and libraries:

• rq-queue is a library that implements a job’s queue structure

• python3.5 (libraries: redis, flask, monogengine, mysql) these libraries imple-
ment the web interface and database communication

• Google Chrome browser

3.2. DOM ELEMENTS CRAWLING 7

• catapult project is a local web cache proxy tool that server preloaded pages
from the local store, in the way that it would be requested from the original
web server

• acornjs is a JavaScritp code parser tool that removes any comments from
source code

As can be seen in Figure 3.1, our implementation consists of two types of images:
Master and Worker images. Each one of these images has a particular task to
solve, which we describe more in the extensions parsing section. Another part
of this implementation is the data collection storage. We utilize MongoDB and
MySQL database platforms, which gives us the opportunity to create indexes over
collected DOM query key-values and store different elements (big log files, and
small indexed dom elements) in the more suitable database for each case.

3.2 DOM elements crawling

In order to get a complete picture of what extensions are targeting and correlate
extensions and specific URLs, we need the DOM structure/tree of the most popular
websites. To do this, we crawled the Alexa top one million websites. As with the
previous experiment, we have a significant amount of data, and we need a scalable
implementation to get the results fast for a large number of URLs. For this reason,
we use Docker containers with RQ python queue, that allows us to create a modular
framework that splits tasks in jobs that are processed by docker containers. We
run these containers in a Kubernetes cluster, which allowed us to scale up the
experiment with multiple parallel pods. Each pod contains a python script that
leverages the Chrome DevTool protocol and monitors the DOM elements during
their creation. In comparison with DOM screenshot, we can gather all the elements
of a webpage even if they are removed afterwards. Since we are able to gather all
the DOM elements of a webpage, we are also able to parse all the ids, tags, names
and classes.

8 CHAPTER 3. METHODOLOGY

Chapter 4

Implementation

4.1 Extension parsing

In this section, we describe in details the two steps of our experiment. As we
mentioned earlier, in the first step, we run two types of docker images (master and
worker) over Kubernetes platform.

4.1.1 Master image

This is the main image/container that is responsible for user-friendly interface
execution; this interface allows us to start the experiment, monitor work-flow ex-
ecution and present DOM query elements that were collected in execution time.
The second important part of this image/container is to push/create jobs into
queue and monitor execution for failing job’s and reschedule these jobs. For both
of this purpose, we use python3.5 with webflask and rq-queue in order to achieve
our goals.

4.1.2 Worker image

It’s an image that takes orders from the master image/container. In this case, a
worker is created in order to perform extensions analyzing phase which includes
these steps:

• Pull jobs from the queue, get an extension identifier that worker needs to
extract from the database

• Download extension crx file from the database and extract source code to a
local folder

• Parse source code of JavaScript and HTML file and identify hardcoded URLs

• Collect content scripts files that are declared in the manifest file and generate
the md5 hash for each of them

9

10 CHAPTER 4. IMPLEMENTATION

• Read all JavaScript files in extension folder and find matches in source code
with ”chrome.tabs.executeScript” function call

• For all of the matches generate an md5 hash for JavaScript code inside of
the function call

• Patch all JavaScript files found inside the extension folder with our hook file
(see Section 4.1.3 for details), where hook file is located at the beginning of
the file and followed by original JavaScript code

• Start the local cache library (catapult) for the web pages we statically use
in the experiment

• Run google-chrome for 20 sec. with static and extension hardcoded URLs
with patched extension loaded in the browser instance

• After chrome execution analyze chrome log stream in order to identify hook
logging stream with extension performed DOM queries

• Sort all elements by type (id/tag/name/class) and store unique values to our
database

• Remove all Chrome cache, history and catapult logs from local folders

After patching and collecting hardcoded URLs from the extensions source code,
we load them using an instance of the Chrome browser. From this point, we start
the Chrome browser with this specific extension in use. The next step is to open
several tabs in the same browser instance. Exploitation of multiple tabs with
different URLs, trigger more DOM query events in same execution time. That
occurs because of the extension matching technique where content script triggered
on specific URL and in the case when the extension has hidden functionality that
is triggered by URL. This method reduces computation time. We keep the browser
open for 20 seconds, and during this time our hook file prints all the DOM queries
in the Chrome log console. Each query has a key value, function type and tab
URL. We collect this information at the end of the execution. Before submitting
the data to the database, we sort all DOM query by call stack, to separate between
events which were initiated by extension JavaScript and events that were triggered
by injected JavaScript files. Here is very important to mention that extension can
inject they JavaScript directly to the user page, with our hook method, we will
collect DOM query generated by the page itself. For this purpose for each query
event, we collect call stack, that shows the origin of the query. When the execution
of the Chrome browser execution is over, we reverse the image to its original clear
state by clearing the browser cache, removing all the logs, and the browsing history.
We perform this procedure in order to keep the experiment environment consistent
during repetitions for different extensions.

4.1. EXTENSION PARSING 11

4.1.3 Hook file

Our hooks are inspired by HoneyPages [2]. In this experiment, we want to mon-
itor function calls over DOM elements. This type of functions returns elements
from DOM structure, when such elements are returned, different fields of these el-
ements can be read or even changed by extensions. We monitor the following such
function calls: getElementById, getElementsByClassName, getElementsByName,
getElementsByTagName, getElementsByTagNameNS, querySelector and queryS-
electorAll. In order to intercept DOM queries, we create hooks in the source code
that create a JavaScript function proxy [1] for all of these functions and before
redirecting the function call back to the origin. Our proxy collects the function
arguments (DOM query key value) and function name.

Such function calls also can be executed over ”chrome.tabs.executeScript” func-
tionality. This function call allows executing JavaScript directly on the user page.
For this type of execution, we create a proxy that performs regular expression check
over passing argument, in order to find our DOM query that we are interested in.

Google Chrome extensions also can perform this DOM query over extensions
background page and not the real user page, that why we check in run time which
chrome API call extension can make, and this information allows us to separate
background page and real user page DOM query. In the case when a query is
forwarded to the user page, our hook file prints this function key value, function
type and executed tab URL link into chrome log console.

4.1.4 Patching extension

As we described in the previous section, the hook file allows us to register and
separate function calls. The only problem with this type of implementation is that
these functions should appear in every extensions JavaScript file. In order to solve
this problem, we unpack the extension and patch every ”.js” file with our hook at
the beginning of a script. We place it in the begging of the script file, to catch any
DOM queries from JavaScript.

One of the problems that we identify while we execute the first round of the
experiment, some of the extensions copy their JavaScript code directly to the user
page. With our method, this code will contain the hook file. This kind of extension
develops a significant amount of noise (Dom query elements that legitimate website
JavaScript will ask). Such legitimate DOM elements request will be filtered. For
this reason, we use error elements, and we analyze the call stack for each call.
With this method, we reduce noise elements in our database and also can prove
that each element originates from JavaScript extensions and which line of code
triggered this event.

After this procedure, we have an extension on which every DOM query will
occur in the Chrome console log. In the execution the only thing needed is to
collect all these logs and sort them by type of function call, tab URL link and
make sure that every pair of (key, function type, URL) is unique, that will reduce

12 CHAPTER 4. IMPLEMENTATION

the size of our database.

Figure 4.1: This CDF figure shows the numbers of unique URLs that were found
in each extension crx JavaScript and HTML source code.

4.1.5 Url usage

Before we described patching of extension, and we mentioned that we use multiple
tabs in the same browser instance. We utilize multiple tabs in the same browser
session because different extension can have a hidden function, and this type of
functionality can be triggered only by a specific URL. With knowledge of that,
we use ten static web pages (some URLs that we choose before running the ex-
periments like Google, Wikipedia, eBay, etc.), and also we parse source code of
extension before execution, and with regular expressions, we collect URL links
that were hardcoded in the source code of extension.

With all these URLs we collect a large amount of data about the extension,
but also it reduces the stability of experiment because a web page can be change
over execution time and some extensions will be executed over a new version of
the web site. All that created a need for local cache catalogue for static web pages,
this where we use the catapult project with some minor changes. Catapult project
creates a cache of all browser requests and responses that were received from the
web server and with use of this traffic catapult create the local cache file. All that

4.2. DOM ELEMENT COLLECTION 13

ByName ByClassName ByTagName ById

14,046,495 157,433,375 25,428,878 63,331,199

Table 4.1: This table shows the number of registered DOM elements from Alexa
most popular one million websites.

allows us to reconstruct communication between browser and web server for each
extension.

4.2 DOM element collection

The second part of the experiment collects the DOM structure of the top one
million Alexa websites. That procedure also needs to implement with the use of
Kubernetes and docker image, also like the previous experiment, we use Ubuntu
16.04 as a base image. All that will allow us to get the results in a short amount of
time, and make that experiments reproducible in the future. Let’s describe each
critical component.

4.2.1 Master image

In this implementation, we also need a web platform, because it creates a straight-
forward way to interact with experiment creation, execution, work-flow and failed
jobs. For this purpose, we use python web-flask as in extension analyzing phase.
Also, this implementation uses a large number of URLs, and we choose Kubernetes
in order to run multiple containers/instances of workers images. In order to reduce
complexity and create manageable job flow python rq-queue is used. Where web
interface creates a list of jobs with one URL per job, and each of these jobs is
pushed in the queue, from which each worker will pull a job for execution. One of
the big pros of this implementation is managing failing jobs, in rq-queue, all jobs
that were failed in execution time are reallocated in a different queue, that allow
us to re-run this jobs again later.

As the master image of the previous experiment, this almost identical imple-
mentation with the use of python web-flask for the web platform that presents in
user-friendly form the execution workflow and lives time results. Also, this image
creates a job for each unique URL from Alexa CSV file, and the working queue
contains each of the jobs that should be executed by workers.

4.2.2 Worker image

This is most important part of implementation because it contains google-chrome
browser, and this image is responsible for experiment execution:

• pull jobs from queue

14 CHAPTER 4. IMPLEMENTATION

Domain names Number of extension

w3.org 155,771

google.com 104,003

github.com 98,914

facebook.com 89,456

twitter.com 82,619

chrome.google.com 80,146

youtube.com 61,134

fonts.googleapis.com 52,590

ssl.google-analytics.com 49,889

google-analytics.com 44,674

plus.google.com 37,807

mail.google.com 36,009

fb.me 32,684

googleapis.com 30,390

momentjs.com 29,261

errors.angularjs.org 27,408

linkedin.com 26,847

vk.com 24,179

pinterest.com 22,897

docs.google.com 19,182

Table 4.2: Most popular domain names found in extensions JavaScript and HTML
source code.

• start google-chrome with Dev Tools protocol

• create DOM event call-backs

• patch URL prefix

• open tab with one of the Alexa URLs

• register all DOM elements

• submit the data

• set google-chrome in clear stage

We use Google Chrome with Dev Tool’s protocol which allows to inspect, debug
and profile chrome browser. This instrumentation allows us to create interceptions
events over different events in the browser through debugging port in chrome
browser. This port should be defined in executions parameters.

In this experiment we use DOM.childNodeInserted, by this function, we in-
tercept creation new node in DOM structure, whenever new DOM node created

4.2. DOM ELEMENT COLLECTION 15

we collect each element of this node. Nevertheless, DOM structure or elements
inside the node can be changed in run time by js code execution, and new elements
can be inserted. For this type of dynamic changes in web page structure, we use
DOM.getDocument that retrieve all nodes from the DOM tree. Our implementa-
tion performs such calls frequently till now new elements not found for a couple
of time in the row, in order to collect as many elements as possible from DOM
structure. Whenever new elements are found, they would be sorted by there type
(class, id, tag, name).

One of the problems was URL patching, Alexa web ranks CSV file do not
contain a prefix of http/https is not a big problem while chrome can resolve URL
only by it postfix part, but running chrome with Dev Tools and feeding URL
through python into browser tab bypass this procedure. For this reason, we test
different prefixes before feeding the URL into a web browser.

After execution, at the moment when all elements are collected, data is sub-
mitted into the database.

16 CHAPTER 4. IMPLEMENTATION

Chapter 5

Data analysis

Our extension collection contains 705,305 different crx files where 307,822 is dif-
ferent extensions, and other crx files are just different versions of extensions. After
permission analysis, we identify that 439,222 of all extensions have permission,
that allows them to perform DOM query. With dynamic analysis, we found that
only 51,463 of these extensions perform DOM query. We managed to analyse all
these crx files, and our collection of DOM query consists of 810,768 entries (see
Table 5.1).

All registered DOM queries (Table: 5.2), reveals that the most popular elements
that extension was looking for are basic HTML-structure (body, head, html, a, img,
input, title, ..). Never less we identify a significant amount of extensions that was
looking for sizzle, script and sizcache elements, after our experiments we identify
that the JQuery library generated these elements. With the technique that we were
using in Patching section, where we patch any js file in the extension folder, we
also patch the JQuery local libraries that extension was using for their porpoises.
These DOM query created by JQuery for library purposes.

In the same experiment, we also parse the source code of each extension/crx
in order to match hardcoded URL links; as a result, we collect 290,310 unique
URLs (Figure: 6.1). From our data we also found that 512,502 of extensions/crx
file contain at least one URL in their source code (Table: 4.2), in Figure 4.1 we
present CDF over the number of URLs found in each extension/crx file.

While execution time, we identify that some elements/lib use timestamp/pseudo-
random number postfix of element key value(for example jquery sizzle.., sizcache..,
etc.), such type can be used in order to make more difficult to select the right DOM
element, but in our case is not necessary. Our implementation patches these el-
ements before sending them to the database, by removing number postfix of the
key value and replacing it with ”+timestamp” string. This method reduces com-
plexity in cross-checking data in two different collections because it is impossible
to run both experiments at the same time for this number of extension/crx files
and parallel for Alexa 1M web URLs.

Alexa web ranking creates a list of the most popular web, but some of these

17

18 CHAPTER 5. DATA ANALYSIS

ByName ByClass ByTag ById Total

312,669 27,559 278,698 191,842 810,768

Table 5.1: Number of registered extension DOM query.

URLs is offline or not available for public access. For this reason, Alexa 1m
collection consists of 961,540 web service that responds for a web request. In
this experiment, we generate four different tables which in sum have 260,239,947
entries, in more detail in Table 4.1.

"name": "Screen Shader",
"version": "1.7.230",
 "manifest_version": 2,
 "offline_enabled": true,
"description": "Some extension.",

 "content_scripts": [
 { "matches": ["http://*/"],
 "js": ["scripts/content.js"],
 "run_at": "document_start",
 "all_frames": true },],

"permissions": [
 "tabs", "storage", "cookies", "idle",

 "webRequest", "webRequestBlocking"],

...

Figure 5.1: The figure shows an example of the manifest structure with permissions
list and content script fields. Url match can be defined for each JavaScript in
content script, or match pattern can be defined in the permissions list. In the
second case, this match will be applied for all content scripts in a manifest file.

5.1 Extension content scripts

In the worker image part, we describe, that one of the jobs is to identify con-
tent scripts and ”chrome.tabs.executeScript” JavaScript files. We collect their
source code, in case of execute script we collect nested JavaScript code inside of
function call parameters, where we compute MD5 hash of them. These hashes are
used to identify usage of the same execution code across different extension.

After our experiment, we collect 397,182 unique content scripts and 54,145
unique execute scripts. In Figure: 5.2 we present for each of content script we
identify the number of extensions which use this certain JavaScript. Since we
compute uniqueness of each source code with a hash function, that means all of
them have the exact, byte to byte, same source code. The most popular of them

5.2. EXTENSION PERMISSIONS 19

Key value Number of seen

body 26,407

sizzle-+timestamp 19,484

sizzle+timestamp 14,538

head 5,643

script+timestamp 4,597

sizcache+timestamp 3,427

script 2,690

html 1,980

a 1,445

iframe 928

img 827

base 594

input 586

title 453

meta 403

gbqfq 314

video 297

div 235

form 223

object 221

Table 5.2: Top twenty common DOM query values based on the number of exten-
sions that are looking for it.

was JQuery library, in the plot big part of unique content scripts are JQuery library
where we identify different version/implementations. In same tame (Figure: 5.3)
executeScript are not widely used by extensions.

We identify 1277 different extension crx files (275 different extensions and mul-
tiple versions of them), which are using specific toolbar content script created by
MindSpark. Which is a marketing company, that focuses on the interactive ad-
vertisement, which receiving negative comment for their aggressive toolbar. One
of the weird finding we have, that 6,629 of extensions use zero byte content script
(file name in each of them are different), but for some reason this file is empty.
Maybe that file was in the folder by mistake of a developer.

5.2 Extension permissions

Chrome browser creates different methods that extensions can use, but for control
of what extensions is allowed to do and what extensions cannot do over browser

20 CHAPTER 5. DATA ANALYSIS

Category # of extensions

With content script 322,900

Specific match 118,340

General match 100,533

With both matches 103,983

Without URL match 44

Table 5.3: Extension with content script statistics of matching URLs list.

Permission # with query # without query

content scripts 51432 271468

tabs 37087 261692

storage 26466 261815

contextMenus 13465 85484

webRequest 13448 95717

notifications 13135 139263

cookies 12140 83092

webRequestBlocking 10514 77635

activeTab 9699 95232

webNavigation 7861 52749

unlimitedStorage 6764 83295

management 3910 43655

background 2830 25216

clipboardWrite 2599 18889

alarms 2527 42884

identity 1970 25676

history 1667 13797

downloads 1569 17169

bookmarks 1513 16334

idle 1421 11189

Table 5.4: Most popular permissions found in extensions/crx files with DOM query
and number of them with same permission without any registered DOM query.

and user page. For this reason, all extensions contain manifest file see Figure
5.1, that describe permissions of extensions and what script will be executed for
specific match URL pattern (content scripts). Also, manifest have been used for
the description of extension developer, version of the extension and specific update
features for example update url [10]. In our experiments, we more considered about
extensions permissions and matching URL patterns.

5.2. EXTENSION PERMISSIONS 21

Figure 5.2: The uniqueness of the content script files that were defined in the
manifest file for each extension. We compute for each unique content script three
parameters: number of extensions that have registered DOM query, number of
extensions that do not have any registered DOM query and summary of extension
that generally uses this content script.

In-depth analyzing of collected data, we collect all DOM queries from exten-
sions, and we measure for each of extension the number of Alexa 1 million websites
where all these elements exist. Here is very important to mention that some of
the extensions looking for elements that not exist in Alexa websites (Table: 6.1),
so we cannot measure the number of websites with these elements and we ignore
them. With all that said, we identify 9,883 of extensions/versions which per-
form DOM query for unique key values that we registered for not more than ten
websites. In this group we notice wrong permission usage by 8,340 of them, in
”content script” field, these extensions define matching URLs with generic form of
(’all urls”, ”http://*/*”, ”https://*/*” or ”*://*/*”). Such a URL matching tech-
nique is not necessary, [13] because they are targeting only a small amount of web
pages. Beside that, in some cases even with script execution over all pages, they
perform second matching over more strict URL list inside of JavaScript code. This
type of permissions over usage can be reduced by analyzing extensions behaviour

22 CHAPTER 5. DATA ANALYSIS

Figure 5.3: Figure present uniqueness of ”chrome.tabs.executeScript” source code
that we identify in all JavaScript in extension source. For each unique source code,
we compute the number of extensions that have registered DOM query, number
of extensions without registered DOM query and the overall number of extensions
with this source code.

and DOM query analysis.
In same time 2,960 of collected extensions/versions that perform at least one

DOM query are looking for key values that exist in more than 900k of Alexa
websites.

We present the most popular extensions permissions in table 5.4. In this table,
you can see that most popular field is content scripts and tabs permission, also
this field used by many extensions without registered DOM query, this shows us
that a large amount of extensions/versions is allowed to execute their code over
different matching URL patterns with permission to tab content.

Chapter 6

Results

During our analysis, we found extensions that contained in the source code long
list of the different URL links. That information triggered our interest, so we
manually analyzed the source code. One of the extension was very suspicious,
it has a list of 57,440 URLs, and it was matching this list with visited URLs,
and in the case when the user visited one of the websites from a list, the script
executes ”chrome.identity.getProfileUserInfo” that allows getting user e-mail and
ID token. This extension submits URL, timestamp and the user token to their
database by Ajax [14]. This extension is no longer available in Chrome Web
Store. Not all extensions have a malicious purpose of URL usage; for example, we
found one extension with multiple versions that contain a URL link to different
radio stations or another extension is some Dev tool. Also, we were interested in
identifying extensions that targeting specific unique IDs that only exist in a small
amount of web site. While we analyzed them, we identify that these particular
extensions were created to work only on a specific URL, for example, CancerTTV
which looking for unique elements of twitch.tv and twitch.com and description
justify that this extension is created specifically for a twitch web service. Another
example of interesting extensions behaviour is F.lux for Chrome which seems to
be matching tab URL and checking if the user already has this extension, and
in the case when such extension not found, an advertisement with this extension
will show off in Google search engine. We mentioned that we identify a group of
extensions that targeting particular DOM elements, which exist not in more than
ten websites.

Another finding from our experiments is that we collect a large amount of
DOM queries which are not located on Alexa one million websites. For example,
the most popular element is sizzle, this element as belonging to the Sizzle selector
library, which creates extra functionality for the selection of CSS elements over the
page. This library is used by the JQuery framework which allows to select DOM
elements and manipulate them. We have such result, because of our patching
method and we collect elements that any JavaScript in extension path use.

23

24 CHAPTER 6. RESULTS

Figure 6.1: We identify 290,310 unique URLs in extensions JavaScript and HTML
source code. Performing URL categorization with use of Symantec Bluecoat and
Cisco Talos systems we generate this categorization figure, where a significant part
of URLs are uncategorized.

From a security perspective, we identify extension, which interrupts the Face-
book connection form. This particular extension, develop event handler on log-in
action. Where user email and password values are collected by content script, and
then redirected to attacker web database via a web request. When user credentials
are stolen, the original Facebook log-in take place. While we analyzed permissions
(Table: 5.3), results show us that some of the extensions do not have any matching
URL in the content script field. As we mentioned before we collect every crx file
in chrome store, where some of the extensions are not unique, but they are only
old versions of the same extension. In this particular case when a URL match does
not exist, developer have a mistake in a specific version. In any case, this exten-
sion cannot be installed, because Chrome browser before loading the extension,
perform validation checking of extension manifest.

25

key value # of extensions

sizcache+timestamp 3427

add to chrome container 173

producttitle 142

sw html pool 135

restorelink 123

sw dashboard url 86

sw clb extension id 85

idadv 77

x-ng-app 69

gwdang has built 66

cherry-font 63

ra-querybar 61

repository id 59

telephone number 0 56

telephone number gv 0 52

telephone number gv 1 50

notification-install-extension 49

screenleapdiv 48

zbarholder 45

audio search 45

Table 6.1: Top twenty values that extensions are looking for that not found in
popular one million Alexa websites.

26 CHAPTER 6. RESULTS

Chapter 7

Conclusion

Nowadays browsers offer many additional functionalities through the use of exten-
sions and developers can share their extensions through the browsers’ market. We
implemented a sophisticated framework that can quickly crawl a vast amount of
websites and analyze different versions of multiple extensions. We used a novel
technique to cluster similar extensions based on the permissions they require and
the JavaScripts they use. Our large scale analysis showed that extensions are able
superstitiously to collect user data while some tend to advertise different products
even though only 7% of the extensions perform the suspicious activity.

Working with so many extensions and large scale data make it more difficult to
identify all type of techniques that malicious developer is possible to generate. The
most important part of this work is to develop a method that can manage such a
vast amount of extension where the first extension developed in March 2014 and
the last one in February 2019. We manage to analyze almost five years developed
extensions and version in less than a month. Also, it is essential to keep all data
(extension, log files, Alexa DOM tree, DOM query, content scripts and execute
scripts hash, manifest permissions) for future usage.

Interestingly we found cases were extensions have permission to download new
JavaScripts from the web and use them at run time or inject such JavaScript
directly into user page where it is challenging to separate if DOM query origin.
In an effort to shed more light on this phenomenon we made our dataset publicly
available.

For future work, we are interested in performing JavaScript clustering using
different features and calculate code similarity based on the source code tree. Also,
it is fascinating to identify the difference between similar executions and perform
deep interaction with a page in order to collect accurate data which can be triggered
by a specific page in the same domain.

27

28 CHAPTER 7. CONCLUSION

Bibliography

[1] . Proxy - javascript — mdn. 2018. https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global_Objects/Proxy.

[2] A. Kapravelos, C Grier, N. Chachra, C. Kruegel, G. Vigna and V. Paxson.
Hulk: Eliciting malicious behavior in browser extensions. In USENIX Security
Symposium, 2014. .

[3] D. Martin Jr., R. Smith, M. Brittain, I. Fetch and H. Wu. The privacy
practices of web browser extensions. In Magazine Communications of the
ACM, 2001. .

[4] G.Varshney, M. Misra and P. Atrey. Browshing a new way of phishing us-
ing a malicious browser extension. In Innovations in Power and Advanced
Computing Technologies (i-PACT), 2017. .

[5] I. Sanchez-Rola, I. Santos and D. Balzarotti. Extension breakdown: Security
analysis of browsers extension resources control policies. In USENIX Security
Symposium, 2017. .

[6] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D.
Mccoy, A. Nappa, V. Paxson, P. Pearce, N. Provos and M. Abu Rajab. Ad
injection at scale: Assessing deceptive advertisement modifications. In IEEE
Symposium on Security and Privacy, 2015. .

[7] L. DeKoven, S. Savage, and G. Voelker. Malicious browser extensions at
scale: Bridging the observability gap between web site and browser. In CSET
USENIX Workshop on Cyber Security Experimentation and Test, 2017. .

[8] L. Liu, X. Zhang, G. Yan and S. Chen. Chrome extensions: Threat analysis
and countermeasures. In Network and Distributed System Security Sympo-
sium, 2012. .

[9] M. Weissbacher, E. Mariconti, G. Suarez-Tangil, G. Stringhini, W. Robertson
and E. Kirda. Ex-ray: Detection of history-leaking browser extensions. In
ACSAC Computer Security Applications Conference, 2017. .

[10] N. Carlini, A. Porter Felt and D. Wagner. An evaluation of the google chrome
extensions security architecture. In USENIX Security Symposium, 2012. .

29

30 BIBLIOGRAPHY

[11] N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis, N. Provos, M. Abu Ra-
jab, and K. Thomas. Trends and lessons from three years fighting malicious
extensions. In USENIX Security Symposium, 2015. .

[12] O. Starov, N. Nikiforakis. Extended tracking powers: Measuring the privacy
diffusion enabled by browser extensions. In World Wide Web International
Conference, 2017. .

[13] S. Heule, D. Rifkin, A. Russo and D. Stefan. The most dangerous code in the
browser. In USENIX Security Symposium, 2015. .

[14] S. Van Acker, N. Nikiforakis, L. Desmet, F. Piessens and W. Joosen. Monkey-
in-the-browser: Malware and vulnerabilities in augmented browsing script
markets. In ASIA CSS, 2014. .

[15] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth, R. Perdisci and W.
Lee. Understanding malvertising through ad-injecting browser extensions. In
International Conference on World Wide Web, 2015. .

