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Abstract

Most anti-censorship Web access mechanisms rely on a limited set of proxy nodes
whose information is publicly available and, thus, communication with them may
easily be blocked. In this paper, we present an architecture that leverages the Web
to create an access mechanism that is highly-resilient to the blocking of its com-
ponents. Specifically, we present how existing Web services can be leveraged as
coordination and storage components to support a swarm of lightweight nodes that
serves Web access requests and is run by volunteers inside their Web browser. A
client of our system, who desires unobstructed access to a Web site, posts the re-
spective URL on a Web service acting as a coordination point, such as a blog or a
social network. Carefully crafted JavaScript code enables a continually changing
body of volunteers, who reside outside the restricted zone, to fetch the content of
the requested URL and store it on an uncensored user-content hosting service, from
which the client ultimately accesses it. As our approach is not tied to a specific ser-
vice but rather uses a plethora of existing Web services, we argue that a censorship
authority will be unwilling or unable to monitor and block them all without greatly
impairing user connectivity to the Internet. We explore the strengths, limitations,
performance and security of our system.
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PerÐlhyh

Oi perissìteroi, en�ntia sth logokrisÐa, mhqanismoÐ prìsbashc sto Web
basÐzontai se èna periorismèno sÔnolo apì kìmbouc - diamesolabhtèc twn
opoÐwn ta stoiqeÐa eÐnai dhmìsia diajèsima kai ètsi eÐnai polÔ eÔkolo k�poioc
na empodÐsei thn epikoinwnÐa mazÐ touc. Se aut  thn ergasÐa, parousi�zoume
mia arqitektonik  h opoÐa qrhsimopoieÐ to Web gia na dhmiourg sei ènan
mhqanismì prìsbashc o opoÐoc eÐnai idiaÐtera anjektikìc sthn frag  twn
mer¸n tou. Eidikìtera, parousi�zoume pwc up�rqousec uphresÐec tou Web
mporoÔn na qrhsimopoihjoÔn wc mèrh suntonismoÔ kai apoj keushc plhro-
forÐac ¸ste na uposthrÐxoun èna sm noc elafri¸n kìmbwn to opoÐo ex-
uphreteÐ ait mata prìsbashc sto Web kai leitourgeÐtai apì ejelontikèc mèsa
apì ton Web browser touc. Qr stec tou sust matìc mac, oi opoÐoi epi-
jumoÔn eleÔjerh prìsbash se èna Web site, anartoÔn to antÐstoiqo URL se
mia Web uphresÐa, ìpwc èna blog   selÐda koinwnik c diktÔwshc, h opoÐa
leitourgeÐ wc shmeÐo suntonismoÔ. Prosektik� kataskeuasmènoc k¸dikac
JavaScript epitrèpei se èna suneq¸c metaballìmeno s¸ma ejelont¸n, to opoÐo
brÐsketai èxw apì th z¸nh logokrisÐac, na fèrei to perieqìmeno tou URL
kai na to apojhkeÔsei se mia uphresÐa filoxenÐac perieqomènou qrhst¸n, h
opoÐa den upìkeintai se logokrisÐa, apì thn opoÐa telik� ja èqei prìsbash
sto perieqìmeno o qr sthc. Kaj¸c h prosèggis  mac den sqetÐzetai me mia
sugkekrimènh Web uphresÐa all� mporeÐ na leitourg sei me mia plhj¸ra up-
arqìntwn uphresi¸n, uposthrÐzoume ìti mia exousÐa logokrisÐac den ja epi-
jumeÐ   den ja mporeÐ na parakoloujeÐ kai na empodÐzei thn prìsbash se ìlec
qwrÐc na bl�yei shmantik� thn sundesimìthta twn qrhst¸n thc me to Inter-
net. ExereunoÔme ta dunat� shmeÐa, touc periorismoÔc, thn apìdosh kai thn
asf�leia tou sust matìc mac.
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1
Introduction

While unobstructed access to the World Wide Web was originally taken for granted,
it has lately been hindered in a plethora of networks and incidents around the world.
For example, China is known to block [5] sites belonging to activist groups and
South Korea [16] is seeking to filter anti-government blogs. However, it is not
only typically-considered “oppressive regimes” that censor the Web access of their
Internet users. As a matter of fact, very few countries around the world do not have
some, limited or more extended, form of censorship [10, 12].

Anti-censorship mechanisms operate outside such restricted zones and provide
a way for Web content to be fetched on behalf of their users. A number of such
mechanisms exists, with open HTTP proxies, Tor [24] and VPN solutions being
among the most popular choices. Existing anti-censorship mechanisms offer guar-
antees for unobstructed access to the Web but do not offer any guarantee for their
reachability. Their set of nodes is, by design, listed publicly for users to be able to
discover them. Thus, a censorship authority can easily block access to them at the
network level [19].

Our motivation for this paper is the need for a new design that is resilient to
black-listing attempts. We consider the World Wide Web, which is the most ac-
tive Internet platform. Millions of users use the Web daily to access thousands of
services. At the same time there exists a multitude of sites hosting user-generated
content, ranging from entries in forums and blogs (e.g., Blogspot) to social net-
works (e.g., Facebook, Twitter) and media sites (e.g., Youtube). The enormous
user base and number of available services provide the opportunity of using the
Web as a suitable platform for implementing a censorship-resistant access mecha-
nism that does not suffer from the black-listing problem.

Inspired by the concept of forming distributed systems using Web browsers
[26] and the notion [2] of employing social networks as coordination sites for such
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2 CHAPTER 1. INTRODUCTION

systems, we have designed and implemented a system that combines Web services
with a population of lightweight JavaScript nodes, run by volunteers inside their
Web browser, to enable unobstructed Web access. Web services are employed as
coordination and storage sites. Users of our system upload “access requests” for
Web pages to a coordination site, e.g. Twitter, and receive the corresponding con-
tent from a storage site. According to the simulations performed in [26] (2006),
popular sites can form populations ranging from 1,000 to more than 100,000 active
browsers at any given time. In our system we employ such firepower of potential
volunteers to serve Web access requests placed by users, and upload the respec-
tive payload in uncensored sites that host user-generated content. Thus, we enable
users to bypass censorship-oriented network restrictions and access Web informa-
tion indirectly.

The major advantages of our approach are twofold. First, it is hard to blacklist
its usage. There are thousands of services where a user can post contents. Social
networking sites, blogging and micro-blogging sites, collaborative tools, forums
are only a few of the places where users can post requests. To stop the operation of
our system, access to a great part of the Web would have to be blocked 1. We ac-
knowledge that major sites like Twitter could be prime candidates for blocking and
while we have used such sites for our proof-of-concept implementation, our design
is very flexible and can easily employ a variety of sites. Second, our system’s op-
eration exhibits unobservability; our network traffic patterns and application-level
behavior align with the profiles of everyday users interacting with such Web ser-
vices. Therefore, we argue that the actions of our system cannot be distinguished
from standard Web activities.

This paper presents the following contributions.

• We design and implement a censorship-resistant Web access mechanism. We
employ a plethora of existing Web services in a dynamic design to enable unob-
structed Web access, which renders our system highly resilient to black-listing.
The operation of our system is built on requests and responses that are identi-
cal to those of normal users both at the network and application level and, thus,
users of our system cannot be distinguished from other users.

• We provide a lightweight design where Web volunteers that serve requests are
not required to install any software; their functionality is achieved through the
execution of specially crafted JavaScript code.

• We evaluate the performance of our system and show that we obtain access
times comparable to those of current state-of-the-art anonymity and anti-censorship
systems.

• We evaluate the security of our system and show that we are able to hold the
necessary properties of availability, unobservability and correctness in a series
of censorship scenarios.

1For instance more than 60% of the Alexa top 500 sites can be employed by our system.
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• We present a novel technique for bypassing the same origin policy which allows
our system to achieve read-only access of foreign domains. Traditionally, Web
application code running on a user’s browser is not able to access content from
foreign domains. We provide a way to do so without relying on any bugs or
security vulnerabilities.
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2
Design

2.1 Threat Model

We consider the following while designing our system. Our adversary is a censor-
ship authority that filters outbound access of a network towards certain Web desti-
nations or inspects inbound content and alters or removes parts of it. We assume
that the censorship authority wishes to allow some Internet access to its clients,
that it can inspect and block traffic at the network level, and employ deep packet
inspection. Finally, we consider our system known to any adversary.

2.2 System Architecture

Our system relies on a swarm of lightweight nodes running inside the Web browsers
of volunteers. A client who desires uncensored Web access implicitly requests that
volunteers fetch Web pages on his behalf. To protect the volunteers, our design
gives them the ability to opt-out from serving sites that may host controversial
content (section 3.3). Coordination is achieved through a Web service, e.g. Face-
book or Twitter, which is employed as a “command and control” (C&C) module.
Our system operates and coordinates itself unattended. We require human admin-
istrative intervention to update the list of Web services for our system to use and
deploy the node-enabling code to more Web sites. Web content is stored in un-
censored user-content hosting services, such as Pastebin, serving as Object Stores.
Our design is displayed in Figure 2.1.

Assume there is a client who lives inside a restrictive network and wishes to
access Web information, otherwise censored or blocked entirely. Instead of access-
ing Web pages directly, he instructs his browser to use a local proxy of our system.

5
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FIGURE 2.1: Architecture of our system. The client puts requests for sites he wants
to access in a C&C service (step 1). Volunteering nodes poll the C&C service (step
2) and when a request is received they browse the requested sites and retrieve their
contents (step 3). Once content is retrieved, they store it in an Object Store (step
4a) and post a pointer to the hosted content back in the C&C service (step 4b).
Finally, the client gets the pointers from the C&C service (step 5a) and accesses
the Object Stores to get the content of the pages he has requested (step 5b).

The local proxy is a modified version of a standard HTTP proxy and translates all
URL requests, from the client’s Web browser, to posts (access request messages)
towards the C&C service. For example, if the client wishes to access the front
page of the CNN Web site, i.e. http://www.cnn.com/index.html, then
the following steps will take place:

1. The respective URLs from all HTTP access requests, that the client’s Web
browser will issue, will be intercepted by the local proxy on the client’s end
and uploaded to the C&C component of our system. 1 In the most naive
form, these posts will simply be the requested URLs. The amount of sites

1In our implementation, we have used a form of prefetching. The volunteering nodes parse
HTML content, recognize image files and other embedded content such as CSS files and scripts,
upload them to the Object Store, and rewrite their address in the served HTML code for the client’s
proxy to access directly. Thus, the proxy only issues a single request for the Web site rather than a
batch.
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that can be used as C&C is enormous, as a multitude of forums, blogs and
social networking sites are suitable.

Service nodes of our system are volunteering Web surfers that, during their
daily activity, visit sites carrying our specialized JavaScript code and, by executing
it, serve the Web access requests of clients. When a browser opens a Web site,
standard practice is to render the HTML in its window and execute any JavaScript
code, which usually adds functionality to the site. This is how our own code is also
executed. While this code takes advantage of JavaScript and HTML capabilities, it
does not depend on any kind of browser or page-specific vulnerability.

2. Volunteering nodes periodically access the C&C service to poll for new
posts. When a new access request appears on the C&C (in our case www.
cnn.com/index.html), nodes make an effort for providing an answer.

3. Volunteering nodes access the URL referenced by the access request and
retrieve its contents (HTML text, CSS styles, images, scripts).

4. After the content is retrieved, two tasks are performed.

(a) First, the nodes store the content in services that can host user-generated
content. We call these services “Object Stores”.

(b) Second, the nodes return pointers to the stored content back to the
C&C.

5. In the final step, the client’s local proxy periodically reads the C&C, waiting
for replies to his requests.

(a) Once such replies appear on the C&C, it retrieves them to receive point-
ers (URLs) to the content stored in the Object Stores.

(b) Once the pointers are known, the proxy contacts directly the Object
Stores in order to get the content of the requested page.

The way the client experiences the entire process is that he types a URL in his
Web browser, waits and then the content he has requested begins rendering in front
of him. This process bares no difference to accessing a URL without help from our
system except for an added delay, presented in section 4, and of course the fact that,
without our system, there is the possibility that the respective content is censored
or not received at all.

2.3 Advantages of our Approach

First, the use of existing Web services as the medium through which all requests are
propagated, provides a flexible infrastructure. Our design is not bound to a specific
Web service but can use any user-content hosting site. With a plethora of suitable
services being available and new ones continuously emerging, our system is highly
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resilient against black-listing, thereby available in hostile environments. Even if
adversaries blacklist certain services, our system can “hop” amongst a very large
number of sites, several of which are used by hundreds of millions of users around
the world. Therefore, to block our system one must block access to a great part of
the Web. We argue that a censorship authority will be unwilling or unable [4] to do
so.

Second, our design is lightweight. We employ existing Web infrastructure
rather than demand additional setup overhead. Also, our nodes operate within
the Web browser and require no additional software installation or configuration.
Therefore, our intuition (supported by experimental data [26]) is that the popu-
lation of volunteers joining our system will be at least comparable, if not much
larger, than current volunteer-based approaches. Moreover, as clients and volun-
teers never communicate directly, nor do they require any type of handshake be-
tween them, our design accounts for a high churn rate in terms of volunteering
nodes entering and leaving our system. At the same time, clients of our system
simply have to acquire a copy of the local proxy and set their browser to use it. No
other configuration is necessary and the internals of our system remain transparent
to them while using it. As far as they are concerned, our system is yet another Web
proxy.

Third, we consider the unobservability of our system. Communication in our
system is conducted through standard HTTP traffic. The use of Web sites oriented
towards hosting user-provided content creates enough noise for our operations to
blend-in. For instance, in Twitter, with desktop clients polling the service once
a minute and 25% of messages being uploaded containing URLs [14], we argue
that such environment is adequate for us to operate efficiently and at the same time
blend-in. Moreover, as clients post the URLs they want to access on popular sites
used as a C&C, these requests do not raise suspicion as they blend in with millions
of posts made by legitimate users towards these sites. As the general rule for such
URLs is to be short (the product of a URL shortening service such as bit.ly or
tinyURL) we comply with this trend and our proxy shortens its URLs too, prior
to posting. Similarly, all posts from volunteering nodes toward the Object Stores,
hosting arbitrary user-generated content, cannot be distinguished from other posts.

2.4 Limitations

Our system offers unobstructed access to Web sites but is unable to support Web
sessions (i.e. HTTP cookies and HTTP parameters). Although, we offer basic
(HTTP POST) Web write functionality, we consider that the ability to access in-
formation is the primary issue in cases of censorship (e.g. oppressive regimes) and
that read-only Web access is a fair trade-off for black-listing resilience.

Furthermore, our implementation does not currently offer a solution for embed-
ded objects such as Flash, Java and ActiveX. Objects like these cannot be encoded
in some way using in-browser JavaScript or be uploaded to a content-specific Ob-



2.5. USE CASE 9

ject Store. We measured the extent to which this limitation can break the user’s
access to information. We analyzed the top 1K sites from Alexa and recorded the
ratio of these three types of embedded objects against HTML and image elements.
89% of the sites do not contain any embedded object while in the worst, for us,
case one page had 1.5% of its elements embedded.

2.5 Use Case

In general, we consider that multiple instances of our system may be active, e.g.
operated by initiatives or individuals promoting unobstructed Internet access. An
instance is defined by a set of Web sites, employed as coordination and storage
components, and a set of volunteers. Although the latter set may be dynamic, its
population is defined by an instance-specific volunteer-enabling site. Volunteers
lie in censorship-free networks and wish to participate in our system so as to fetch
Web content on behalf of the clients behind restricted networks.

For a volunteer to join our system, he must locate a site carrying our node-
enabling JavaScript code and have his browser execute it. We consider the straight-
forward case where there is a public Web portal that the volunteer knows or can
trivially find out and through that discover which site to visit in order to join our
system.

The next step is for a client to join our system. The client has to acquire a copy
of our modified HTTP proxy (pre-configured to join our system), run it locally and
configure his Web browser to use it.



10 CHAPTER 2. DESIGN



3
Implementation

In this section we present the implementation of our proposed system. While our
design is flexible and can use a very large number of Web services, in our prototype
we build our platform around two popular sites; Twitter and Pastebin. Let it be
noted that, as we treat Web services as read/write stores, any service offering such
functionality can be seamlessly integrated in our system as long as an intermediate
function is implemented to translate our system’s put/get requests into service-
specific actions. In Section 3.1 we provide details on the components, outlined
in the previous section, that comprise our system. In Section 3.2 we elaborate
on several issues that have emerged during the implementation process and the
measures taken to resolve them.

3.1 System Components

Client’s local Proxy. It is a standard HTTP proxy modified to support the nec-
essary functionality for joining our system. It is responsible for translating the
client’s HTTP requests into access requests for our system, i.e., requests that are
to be served outside a censorship zone through our system’s infrastructure. Our
modification lies in the fact that the proxy does not directly contact the remote
server. Instead, it places the client’s request on a C&C queue where it will be
served by a volunteering node and fetch a reply once available. In our prototype
implementation, a modified instance of Privoxy 3 was employed.

The reply to an access request is assembled like so; a volunteering node, after
serving the request (steps 2, 3 in Figure 2.1), places the returned content in the
Object Store (step 4a) and adds a reference in the C&C queue (step 4b). The proxy

11
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uses that reference (step 5a) to download the content from the Object Store and
deliver it to the client (step 5b).

Command & Control. This component acts as a coordination point between
clients and volunteering nodes. Its primary function is that of a queue where clients
place, through their local proxies, requests for specific URLs. In turn, volunteers
respond with references to objects containing the requested content. For security
reasons, which are discussed in section 5, we require that the C&C queue is a
global append-only queue. This means that it is not possible to remove elements
from the queue.

For our implementation we considered many viable candidates for the role of
the C&C and decided to assign this role to Twitter, a popular message exchange
site, that organizes its content in a queue-like way. To achieve write permis-
sions for all volunteering nodes and clients and still maintain our requirement
for an append-only queue we employ the use of hashtags (#). Each volunteer
and client is equipped with a dedicated Twitter account for the purpose of par-
ticipating in our system. They upload messages (tweets) to their Twitter profile
so as to accommodate steps 1 and 4b of Figure 2.1. Each message includes a
hashtag identifier for the C&C queue, e.g. #1337 queue. A read-only view of
the queue is accomplished by searching in Twitter for the specific hashtag (e.g.
http://twitter.com/#!/search/%231337 queue). In that case, Twitter returns, in chrono-
logical order, all messages uploaded by any Twitter user containing that specific
hashtag. That way, although each volunteer and client writes in his own account,
all volunteers and clients of our system read from the global queue. Since each
volunteer has write permissions only to his own account, he is unable to delete
messages from the queue other that his own, hence the global append-only prop-
erty. 1

Although an existing infrastructure may operate and organize itself unattended,
we require human intervention to add more Web services to our system, for serving
as C&C and Object Stores if current ones are blocked or taken offline, and also
deploying our node-enabling code to more sites for volunteers to find. We consider
that multiple instances of our system may be active on the Internet at the same time,
run by individuals between different initiatives. These people will take up the role
of maintaining an instance if and when it is necessary.

Object Store. This component is used for the hosting of content objects, i.e.
the content of the pages the client requested. Several existing Web services are
eligible for this role. These services, and others of their kind, pose an exact match
to our needs. They are freely available tools for hosting that expect high loads of
traffic and provide a highly available point on the Internet that hosts user-generated
content for a short (or long) period of time while allowing direct reference links
towards it. We have employed Pastebin, offering a content-uploading API, as an
example Object Store.

1In sites where users comment, the C&C queue is a page and volunteers use individual accounts
to write.
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Volunteering node. The concept of a node is manifested as a volunteer’s Web
browser, executing our carefully crafted JavaScript code which polls the C&C for
page requests from clients, serves them and returns the corresponding content to the
Object Store. The code is hosted on a volunteer-enabling Web page and contains
hard-coded any configuration, including the addresses of Web sites used as C&C
points and Object Stores. For each such site a function is present following the
naming convention <site> read and <site> write. The diff between functions for
different sites is merely variable names and parameters in the HTTP GET/POST
(read/write) requests that need to take place. The code takes advantage of HTML
and JavaScript features but does not require any kind of browser or page-specific
vulnerability; using JavaScript we are able to dynamically manipulate the DOM
of an HTML page so that we may add or remove elements such as iframes. The
sequence of iframe (and other DOM objects) creation, manipulation and the asso-
ciation between them implements the functions of a node.

The first thing the code does, once loaded in the Web browser’s window, is to
poll the C&C site for URL requests to serve (step 2 in Figure 2.1). The polling
interval is customizable and has been set to one minute, which is consistent with
the polling rate of Twitter desktop and mobile software applications. The code
opens an HTML iframe to the C&C to read the request queue. We describe in
detail how it is able to access the iframe content from a different domain in section
3.2.

The volunteering node takes up the first available queue request and initiates the
serving procedure. As multiple idle nodes may exist, it is expected that more that
one of them will simultaneously serve a single request. This kind of redundancy
is a desired property to provide stronger security (correctness) and is discussed
in detail in section 5. A client’s local proxy is responsible for adding a “terminate
<request>” message to the queue so that nodes do not attempt to serve it any more.
If the client fails to do so, endless loops are avoided by having each volunteer not
serve twice the same access request from the C&C queue.

Once a client’s request is selected, depending on its type, either HTTP GET or
HTTP POST, the appropriate course of action is determined. Our main goal is to
support HTTP GET requests to facilitate Web access read requests, while POST
requests are usually for write requests.

• If it is an HTTP POST, a blank iframe is created where an HTML form is
populated with the appropriate target and data fields and submitted. All the
required information is either part of the user request in the C&C queue or, if
too long, stored in a content object and referenced by the request.

• If it is an HTTP GET towards a target URL, then the client expects some
content so it must be fetched, placed in the Object Store and referenced in
a reply back to the client. The code spawns an iframe in which the target
URL is loaded in such way that its elements are accessible to the volunteering
node. We provide more details on how this is possible in section 3.2. Once
the iframe has finished loading, its HTML text and any references or embed-
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ded content (e.g. images, CSS styles, scripts) are copied to local JavaScript
variables and later included in a content object.
The plain text elements of the resulting content are uploaded in ASCII-encoded
form to an appropriate Object Store hosting site. We selected Pastebin but any
user-content hosting site will do, including places such as comment replies in
articles and videos, in sites like YouTube. The volunteering node places an
HTTP GET request towards the service’s REST API and reads back the ad-
dress where the content is stored. Pastebin offers short hash-based addresses
but for other hosting services one may employ short URLs to acquire very
short URL pointers.
At this point, the client’s target URL has been fetched, its content inspected
and its elements transformed into content objects. Finally, a blank iframe
is set and an HTML form, containing the request reply with the necessary
references to the Object Store, is used to write the information to the C&C.

We assume that volunteers execute our node-enabling code in an isolated in-
stance of their browser (or different browser, e.g. Internet Explorer when they are
using Firefox) so as not to interfere with potential existing sessions with some of
the Web services employed by our system, e.g. already logged into Twitter. We
discuss in section 5 that even if that assumption does not hold, there will be no pri-
vacy risk for the volunteers and only a minor discomfort as they will be logged off
their current sessions with the Web services that our system has to employ. Nev-
ertheless, recent work from browser vendors [15] enables such isolated instances
(“profiles”) to be present concurrently and operate seamlessly in separate browser
tabs.

3.2 Technical challenges

Cross-Origin Bypass Mechanism. In the core of the volunteering node’s code
resides a primitive which supports the majority of actions taking place. The cross-
origin restriction policy, enforced with security in mind, prevents a page under
domain A to spawn an iframe to a page under domain B and then access its ele-
ments, like HTML code or images; exactly the operations our node has to perform.
Therefore, it became crucial to bypass this restriction. The idea is that a third-party
page under domain C, capable of echoing back the content of foreign pages, is used
to host both pages A and B under domain C. That way, a script (originally hosted
under domain A, now domain C) is allowed to access HTML content (originally
hosted under domain B, now domain C).

A plethora of Web-based proxies 2 exists and we have successfully employed
them to get our code and a target page under the same domain; a user inputs a
URL to the service and that URL’s content is echoed back from inside the service’s
domain and so is our code. The case of code running in volunteering nodes em-
ploying a proxy at some point during its operation is different from client using

2e.g. 40K proxies on http://proxy.org/
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FIGURE 3.1: The cross-origin bypass mechanism employed by volunteering
nodes. Code running at each step is highlighted with gray and the active frame
is painted in bold border. Initially, the JavaScript code from domain A is loaded.
At step (a) the code checks the domain, sees that it is not running inside the trans-
lation domain and spawns an iframe. This iframe asks from the translation engine
to translate the code itself. Once the translation is finished, the code starts running
again but now it resides in the Babelfish domain (step (b)). The code polls the C&C
until a request is received. It then spawns a new iframe, also belonging to Babelfish
domain, to translate the requested URL and retrieve the content from the translated
version (step (c)).

standard proxies to access the Web; volunteers reside outside the restricted zone
and are not affected by an adversary’s attempts to locate such public proxies and
block them.

Apart from such proxies, we explored the use of page translation services such
as Yahoo’s Babelfish or Google Translate. A translation service needs to fetch and
host the content on its own space since it is supposed to present a version where
elements from one language have been substituted by elements from another. We
took advantage of this tool to place our JavaScript code under the same domain as
a foreign page, by placing both under the domain of the translation service. At this
point, one could argue that the foreign page would be altered due to the translation
substitutions, an unwanted side effect of the same-origin bypass. This issue is
mitigated by instructing the service to translate from and to languages that are
not present in the remote page, for instance from simplified Chinese to traditional
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Chinese for an English page. This will effectively prevent any substitutions and
echo the original content.

The process of bypassing the cross-origin restriction is shown in Figure 3.1.
With this mechanism at hand we proceed as follows;

1. once the JavaScript code is loaded in a volunteering node under the code-
hosting domain (domain A), it spawns an iframe towards the Babelfish trans-
lation service, using the HTTP GET API to pass the necessary parameters to
effectively translate its own page and bring its location under the Babelfish
domain (phase a in Figure 3.1).

2. The translation service echoes back all HTML elements including our original
JavaScript code for the node in its entirety. In other words, our code runs in
the volunteer’s browser while the designated domain is the one of Babelfish
(phase b).

3. At any time the code wishes to poll the C&C or fetch the content for a request
or generally reach remote pages, it will spawn an iframe towards the transla-
tion service, supplying the remote URL (phase c). That iframe, once loaded
will contain the remote content and will also be located under the Babelfish
domain, essentially co-located with the JavaScript code attempting to access
its elements. In that case, the cross-origin restriction does not apply since our
code, originating from the Babelfish domain, attempts to access an element
located under the same domain.

Frame Busting. During the course of our experiments, we came across sites
that tried to make sure they were not being accessed from within an iframe. For
that matter, they check whether the top frame in the current browser window is
equal to their page’s address and if not, they reload themselves in the browser ef-
fectively shedding the iframe. Our JavaScript implementation relies on recursively
spawning iframes and, thus, had to employ a countermeasure. For that matter, the
onbeforeunload event of DOM element window was overwritten to call a
function of our own. This event occurs right after the remote site B has replaced
the window location and the window is about to reload. Our function, triggered
right before the reload, effectively aborts this attempt.

Avoiding Caching Effects. The volunteering node’s operation involves the
creation and removal of many document elements. Browsers usually attempt to
cache such elements when they appear to point to the same location or have identi-
cal properties. This is an undesirable effect, especially during the polling phase, as
a node may miss new requests. To resolve this issue, at the end of every URL we
include a random variable, an epoch number, making each URL unique while not
interfering in any way with the Web server’s response.

3.3 Exit Policies

Censorship resistant Web access is critical to enable unobstructed access to infor-
mation. While a noble mission statement, such system may be abused to cloak
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access to illegal or frowned upon content. To protect the volunteers from serv-
ing such cases, we have implemented exit policies; a pop-up HTML text box in
their Web browser gives the volunteers the option to define “allow-access” (and
drop everything by default) or “deny-access” (and serve everything by default) di-
rectives using regular expressions (e.g. allow-access http://*/foo* or deny-access
http://example.org/foo/bar.html). Their preferences are stored in the form of HTTP
cookies 3. The JavaScript code run by volunteers is clear-text and may be inspected
by simply selecting the “view source” browser action on the site serving the code.
Thereby, anyone can be sure that his preferences are being taken into consideration
and that the node-enabling code does not perform differently than advertised.

3We believe that a single HTTP cookie will have enough capacity to hold the preferences of most
users, as the maximum cookie size is 4KBytes. However, multiple cookies may be employed.
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4
Measurements

In this section we measure the performance of our system. Our goal was not to
build a low-latency system. Nevertheless, we compare the access time of our sys-
tem with a set of open HTTP proxies and the Tor network to get a feel of its ac-
cess times. We acknowledge that we are comparing two loaded systems with an
unloaded one, but we believe that even so we are able to demonstrate that our sys-
tem’s performance is comparable to the other two, most commonly used today for
similar purposes.

For the testbed, the role of a volunteering node was assumed by a PC at first in
our lab (1Gbps symmetric Internet connection) and later in a residential environ-
ment (2Mbit/384Kbit DSL connection). The PC’s browser visited a page, hosting
our JavaScript code, in a test Web server we had set up. Clients of our system
were simulated by 50 Planetlab nodes, scattered around the Internet. Each node
ran a local instance of our system’s local proxy and requested, through the wget
tool, the contents of Alexa’s top 10 pages. At any time a single volunteering node
was active (Gigabit or DSL instance) and a single client (Planetlab node) placed
requests towards the C&C in a serial way. For each request, we measured the time
elapsed from the moment the user executed the wget tool to the moment it returned
the content. Each client requested, ten times, the pages contained in Alexa’s top 10
list. Overall, for each of the top 10 pages, we had 50 puppets fetching it 10 times,
resulting in 500 measurements from which we calculated the average access time.
In Figure 4.1 it is clearly shown that the access times of our system are directly
comparable to those of Tor and open HTTP proxies. 1

1Regarding the performance of open HTTP proxies, we polled a popular site featuring rapidly-
updating proxy lists and tested more than 1500 proxies in a period of 5 days.
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FIGURE 4.1: Access time for visiting the top 10 sites of Alexa using nodes of
our system located in our lab and a residential connection and using Tor with and
without a pre-established path.
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Attacks

5.1 Security of the Clients

Considering our goal of highly-resilient to black-listing, censorship-resistant ac-
cess to Web content, we are interested in the availability, unobservability and cor-
rectness of our system. We discuss how these properties hold under different sce-
narios; when the censorship adversary is close to a client, close to the infrastructure
or close to both. In the first case, the adversary is in the same network as the client
and monitors his communication. This is the default scenario where users reside
inside a restricted zone which is controlled by a person or organization. In the
next case, the adversary has joined our system as a volunteer and is thereby able
to know the location of the C&C site and Object Stores. That way, he monitors
incoming requests from clients and outgoing replies. Finally, if these two cases are
combined, the adversary is able to monitor the network traffic of a client and gain
insider’s knowledge of our system at the same time.

5.1.1 Blocking our System

An adversary may try to black-list and, thereby, block our system from communi-
cating with his network. Such a ossibility comes in conflict with the requirement
of availability which states that our system should be able to serve clients despite
the efforts of a censorship authority to block it.

1. Adversary close to client. We employ non-censored Web services for the
purpose of coordination (C&C) and the purpose of storing (Object Stores)
the Web content to be accessed by the clients. At the same time, access-
request serving nodes reside outside the censored zone. As a result, our

21
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system remains available despite an adversary’s filter which blocks a set of
Web sites and perhaps known anti-censorship proxies.

2. Adversary close to our infrastructure. Although an adversary may be aware
of the Web sites that comprise the infrastructure of our system, we argue
that he is unable or unwilling to block them all from his network without
greatly impairing the Web browsing experience of his users, as he will have
disabled a great part of the Web. At the same time, our design is dynamic so
that it may incorporate a plethora of available Web sites and services for its
purposes. As a result, our system provides resiliency in the face of blocking
attempts by an adversary.

5.1.2 Observing and Identifying the Traffic of our System

An adversary may try to identify the communications of our system on the network
and associate a user or volunteer with it. However, we acknowledge the need for
unobservability so as to not exhibit any such distinguishable activity.

1. Adversary close to client.

• If the adversary does not perform deep packet inspection, our client’s
communication does not raise any red flags as it is directed towards a
non-censored site. Moreover, the traffic patterns of the communication
(e.g. polling rate) do not deviate from standard behavior. For instance,
Twitter desktop applications poll the service for new messages every
minute and read or write in bursts. As long as our client does the same
to read or write to the C&C queue, there is no reason why this would
differentiate him from other Twitter users in the same network.

• If the adversary does in fact perform deep packet inspection (one of our
assumptions in the threat model), we argue that there is a trend [13] for
more and more Web services to support HTTP over SSL. This practice is
justified by the fact that the overhead of a secure communication can be
optimized [7] and at the same time a series of attacks [11] target the un-
encrypted communication of users of popular Web services such as Face-
book and Twitter. Therefore, as our client communicates with the C&C
and Object Stores over a native encrypted channel (Facebook, Twitter
and other major sites already support that), the adversary is unable to
inspect the payload.

• If the adversary does perform deep packet inspection and no available
Web service supports secure HTTP, we consider the use of payload pack-
ing in a self-decrypting obfuscated JavaScript block that offers some pro-
tection so that it is very difficult for meaningful content to be recovered
by the adversary in real time. User requests and returned content are
both wrapped in a JavaScript echo function, which is then compressed
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and obfuscated. That way, any kind of static analysis is unable to re-
cover meaningful content. Furthermore, there are techniques that render
the use of content signatures inefficient [8], any attempts for lightweight
dynamic analysis ineffective [9] and any analysis in a virtualized envi-
ronment detectable [3]. Finally, (obfuscated) JavaScript in Web packets
is not suspicious but nowadays rather mainstream. Therefore, we argue
that even if the adversary is aware of our obfuscated format, it is very
hard to identify and uncover the actual message in real time. However,
an adversary can capture such packets and unwrap them offline which
could have future repercussions for the client. Preventing the adversary
from doing so at a later time is beyond the scope of our system.

2. Adversary close to our infrastructure. An adversary is not in a position to
identify individual clients by simply inspecting their communication as it
arrives in a Web service employed by our infrastructure. Client messages
to the C&C, asking for Web access, do not carry any identifying informa-
tion, unless for instance the client’s name or username is part of the URL he
wishes to request access to. Moreover, as volunteering nodes never contact a
client directly but indirectly respond to his access request, an adversary will
not be able to trace the network (e.g. IP) address of a client by pretending to
be a volunteer in our system.

3. Adversary close both to client and infrastructure. It is very hard for the
adversary to discover the content of a client’s communication, as already
discussed. The adversary may rely on correlating network activity from a
client towards a Web service and changes in the C&C queue or Object Stores
of our system. Such correlation relies on the timing of events and we argue
that there is too much noise from unrelated events on a Web service for an
adversary to do so. For instance, in Twitter the noise not only comes from
user access patterns but also from content patterns; considering that 25% of
all Twitter messages contain URLs, the URL-access requests being uploaded
as messages by our system are able to blend-in.

5.1.3 Poisoning Served Content

Theoretically, an adversary could join our system as a volunteer and serve censored
(poisoned) responses. It is important, in order to achieve correctness in such sys-
tem, that the information served is not tampered with or if tampered, such incidents
can be detected.

We deal with such a scenario and achieve correctness like so; by design, mul-
tiple volunteering nodes will post (redundant) replies to a client’s Web access
request. From these replicated replies, the client’s proxy selects N at random,
where N >= 3. Then their content is stripped from dynamic elements such as
cross-domain iframes and scripts and compared [20] to identify possible devia-
tions. If a majority of these replies agrees on the content, the situation is re-
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solved by rejecting the different views. If not possible, the client is notified by
including a warning frame in the content loading in his Web browser. Thus, the
probability that a majority of poisoned replies is selected by the client’s proxy is
poisoned replies

all replies−g ∗ {poisoned replies−b
all replies−g−b }(N/2) 1. However, as clients are not tied to

specific volunteers (and vise versa), even if an adversary manages to poison the
majority of replies for a specific access request, the next request from the same
or other clients is an independent event that may or not result in favor of the ad-
versary. We acknowledge that the security of this scheme holds only as long as
poisoned replies << all replies. For that matter, as volunteers subscribe to the
C&C Web service with individual accounts, so as to upload their replies, a client’s
proxy accepts a single reply from any account in the C&C and no account is se-
lected twice for the same reply. That way an adversary would have to create a large
number of accounts (must be larger than the average number of active volunteers)
so as to influence the majority vote on content with good probability. However,
such act is not trivial. The issue of automatic account creation is not new to Web
services. CAPTCHA mechanisms [?] are employed by roughly 100,000 Web ser-
vices [?] and that number if constantly increasing.

Overall, we assume a usage model where it is trivial for an adversary to join our
system as a volunteer through a public site. Under that model we have argued how
our system is able to withstand attacks against its availability, unobservability and
correctness. For increased security, we consider a reputation-based information
dissemination mechanism such as Proximax [27] for offering a more efficient way
for volunteers and clients to discover and join our system, instead of publishing the
information for anyone, including the adversaries, to see.

5.2 Security of the Volunteers

5.2.1 Drive-by Downloads

Drive-by downloads [30] [29] are a general form of attacking Web users through
their Web browser; an HTML page contains code, typically written in the JavaScript
language, that exploits vulnerabilities in the user’s browser or plugins. If success-
ful, the attack downloads malicious software (malware) on the victim’s machine.
When a volunteer attempts to serve a client’s Web access request, during the ren-
dering of the corresponding page, his browser also executes any JavaScript or other
code, potentially malicious, present in the page.

The problem of drive-by downloads is outside the scope of this paper but we
consider that volunteers have the option to specify exit policies, thereby white-
listing or black-listing domains and pages they may fetch on behalf of clients.
Therefore, they can protect themselves, e.g., by using an automated process to

1where g is the number of legitimate (correct) replies chosen so far for this access request and b
is the number of poisoned replies chosen so far. Also all replies > N and N >= 3.
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populate their “deny-access” exit policy through an existing black-list, such as
http://www.malwaredomains.com/, of domains known to serve malware.
An alternative approach is to employ a security plugin, such as NoScript 2, which
by default prevents the browser from executing arbitrary code.

5.2.2 Web Privacy

As mentioned earlier, volunteers are encouraged to use an isolated instance of their
Web browser or a separate browser when participating in our system. Such iso-
lated instance may be parallel to the volunteer’s regular browser, so he may simul-
taneously surf without problem. The reason behind this is that our system may
overwrite some of the user’s cookies or other browser state and subsequently cause
him to be logged out of a Web site, e.g. overwrite his Twitter credentials with the
Twitter account that has been set up for writting to Twitter as a C&C queue.

One could point out the case of a volunteer participating in our system through
his default Web browser and then serving client Web access requests using the
volunteer’s own Web credentials. A Web browser will send any (authenticating)
cookies to a site upon visit. Therefore, one could argue that a volunteer, fetching a
Web site to serve an access request, will use his own cookies to render and return
a private view of the site as available only to him.

However, this is not possible and the volunteer is safe. As already described
in section 3, the node-enabling code executed by the volunteer is bounded by the
same-origin policy and cannot access a Web page under domain B directly. We
employ our cross-origin bypass mechanism to bring the target page under the same
domain C as our code. As a result, the Web browser will never send the volunteer’s
original cookies for domain B and his privacy is preserved.

5.2.3 Laundering Web Access

There is the case of a client, malicious or not, requesting access to pages of illegal
or disputable content. As volunteers will try to serve that request, it will be their
Web browser and network address asking for that content. This could have legal or
other implications.

However, volunteers are protected through the use of exit policies, discussed
in section 3.3. Volunteers are able to specify, through regular expressions, access
request rules and thereby refrain from serving or serve only specific Web pages.

5.3 Security of the System

5.3.1 Preventing Abuse

We consider the scenario where an attacker leverages our system to carry out
Denial-Of-Service attacks against Web sites; he may flood the C&C with access-

2http://noscript.net
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requests that the volunteers will try to serve, resulting in excessive traffic towards
a particular target Web site.

While mitigating such attack is beyond the scope of this paper, we consider
approaches like Hashcach [?] where a CPU-intensive function, executed by the
client, computes a token which can be used as a proof-of-work. The server is in a
position to verify the validity of such token. In our system, client’s would calculate
such token and it would be verified by volunteering nodes prior to serving an access
request. To prevent an adversary from pre-computing a large amount of tokens, a
short-lived public seed is employed so as to automatically invalidate tokens pre-
computed in the past.
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Mix Networks [23–25, 31, 32] consist of an overlay of nodes that create hard-to-
trace anonymous communications. The client uses such system as a proxy to in-
directly reach Web servers and download information, therefore bypassing restric-
tions at the local network or at the server’s end. An other alternative are (open)
Web proxies [21].

However, such networks traditionally use a publicly listed directory of nodes
comprising its infrastructure (so that users may connect to them) and, as a result,
these nodes can easily be blocked at the network level [19]. Even unstructured
peer-to-peer networks rely on a bootstrapping phase with some hard-coded super-
nodes or known Web caches (which is the same problem as before) or employ
random peer discovery via flooding or network path walks at known ports that can
also be filtered out. Tor has introduced Tor Bridges [17], which are relays not
listed in the public directory and run on non Tor-standard ports, commonly over
TCP 80 or 443. To discover such relays, users may contact the address distribution
mechanism hosted on the Tor Web site or send an e-mail to the Tor project. The
mechanism is designed to prevent attackers from acquiring the entire list of bridges,
by serving three IP addresses per user’s network address, which is logged for a
period of time. We observed that all hosts that belong to the same /24 subnet and
query the site within a certain time window will receive the same list of bridges.
Apart from blocking access to the Tor Bridges site, an administrator, with a large
enough number of unique source IP addresses, could eventually acquire a great
portion of the list of bridges. As a matter of fact, by fetching the Tor Bridges site
through open HTTP proxies and a distributed system we have managed to acquire
all 30% of the alleged 700 [18] available bridges within the first hour and almost
all of them in the next couple of days.
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At the same time, in our approach, we leverage Web sites as coordination and
storage points and disseminate their location for volunteers to join and clients to
discover our system. However, unlike traditional proxy nodes, there is no way to
block volunteers as they reside outside the censored zone and do not contact our
clients directly. Furthermore, we argue that the vast number of Web services and
their popularity makes a censorship authority unwilling or unable to block them all
as that would greatly impair user connectivity to the Internet.

Feamster et al. in [28] propose Infranet, a system where cooperating Web
servers provide clients with access to censored sites while continuing to host nor-
mal uncensored content. Concurrently and independently from our work, Burnett
et al. in [22] have extended the concept of Infranet to a system where volun-
teers, running specialized software at their end, act as intermediaries in the com-
munication of users with Web servers. They coordinate and exchange content by
steganographically encoding information in images and videos and uploading them
to user-content hosting sites.

In both of these systems a dedicated distributed infrastructure is required in
which participating nodes (volunteers) need to explicitly run specialized software
that handles the steganography-based communication and serves the Web access
requests of clients. Moreover, such infrastructure must be relatively stable as a
non-trivial rendezvous protocol must take place between a volunteer and a client
for the latter to discover the first.

On the other hand, our approach is lightweight since nodes, serving access re-
quests, operate within Web browsers executing carefully crafted JavaScript code.
As a result, volunteers do not need to incur any software installation or config-
uration overhead and simply contribute during their every day surfing activities,
for instance by keeping an extra tab open in their Web browser. Moreover, since
a client using our system is not tied to a specific volunteer, nor is he required to
perform some form of protocol handshake, but his requests are processed indepen-
dently by the first available node, our system can cope with a high churn rate of
participating nodes.

Puppetnets [26] rely on websites that coerce Web browsers to (unknowingly)
participate in malicious activities. Puppetnets exploit the high degree of flexibility
granted to the mechanisms comprising the Web’s architecture, such as HTML and
JavaScript. A Web site under the control of an attacker can thereby transform a
collection of Web browsers into an impromptu distributed system that is effectively
controlled by the attacker.

Our work is based on the puppetnet concept, that is to run JavaScript code
snippets in a population of user Web browsers so as to form a distributed system.
However, there are three fundamental differences. First, our approach is used as a
system for unobstructed Web access and not to perform any kind of attacks or other
malicious activities. Second, we employ a body of volunteers who knowingly visit
the sites that contain our crafted code so as to contribute to the unobstructed Web
access of restricted users. And third, while puppetnets rely on a single piece of
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hidden code to perform their task, our approach is a more sophisticated architecture
that combines multiple Web services to achieve its goals.
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7
Future Work

The capabilities of Web browsers are increasing every day both in depth and breadth;
JavaScript engines are becoming faster and more efficient and the new HTML 5
specification [6] will bring new features in the hands of Web programmers. For
instance, one will be able to execute the hidden JavaScript code as a web worker,
a form of thread that runs in the background of the browser. Or, one will be able
to store Web application data in a contained local store in the user’s hard disk. Fi-
nally, emerging technologies [1] will soon allow applications in Web browsers to
communicate directly with each other in a peer-to-peer fashion. Our system could
benefit so as to have volunteers communicate directly with clients, a capability that
could facilitate end-to-end encryption. Moreover, faster JavaScript will mean bet-
ter performance for our system and the ability to store data outside HTTP cookies
will allow caching of content at the volunteers.
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8
Discussion

We acknowledge that we are short of providing the bi-directional browsing expe-
rience of an open HTTP proxy or Tor. However, we consider our system highly
resilient against blacklisting by an adversary. We argue that our proposal offers a
“good enough” censorship resistant Web access mechanism were there is no other
means available, i.e. solutions like Tor, open Proxies, VPNs have been blocked
or are not available. Moreover, since our design is highly flexible in terms of its
infrastructure, as it may employ a plethora and variety of Web services to oper-
ate, we feel that our system will last longer against an adversary than traditional
anti-censorship systems.
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9
Conclusion

In the traditional model, censorship-resistant Web access is based on a set of known
proxy hosts which can be easily black-listed. In this paper, we propose a new
paradigm where unobstructed access is based on a continuous supply of volunteer-
ing nodes and Web services, which cannot be censored using traditional filtering
approaches.

We employ popular Web services, such as social networks and user-content
hosting services, and utilize a swarm of lightweight nodes, operated by volunteers
executing our JavaScript code inside their Web browser. The basic idea behind our
approach is that clients place requests for URLs in Web services that are used as
command and control (C&C) sites and, subsequently, a set of Web volunteers that
act as nodes fetch the respective content and store it in an uncensored user-content
hosting service for the restricted client to download.

As clients never communicate directly with the volunteers, there is no point
for an adversary to try to discover and block the volunteers. At the same time,
the design of our system is dynamic so that is may integrate many popular and
diverse Web services as components. We argue that a censorship authority will
be unwilling or unable to monitor and block all of these services without greatly
impairing Internet access for users.

We’ve built a prototype using Twitter as the C&C mechanism and Pastebin as
the primary Object Store. We present the implementation details along with ways
to overcome technical challenges, such as bypassing the cross-origin policy. In
terms of performance, the time to access pages through our system is comparable
to that of Tor and other HTTP proxies.

Finally, we perform an extensive evaluation of the security of our approach
against a plethora of censorship scenarios and attacks and show that in any case we
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are able to hold the properties of availability, unobservability and correctness so as
to protect clients and volunteers of our system.
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