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Optimization of recyclable materials collection on

conveyor belts

Abstract

With the need for recycling of used materials growing steadily in order to save valuable
resources of our planet, and given also that the rate at which recyclable materials reach
the recycling factories and consequently the flow at which they fall on the conveyor
belts in order to separate them is particularly large, the need for more efficient ways
of separating and collecting these materials becomes apparent. In real life industrial
set-ups, a large percentage of objects pass through the conveyor belts without being
collected, at least not immediately. In addition, the main concern of a recycling factory
is profit. Based on the above, the main focus of the present work is the optimization of
the collection of the materials via the use of a robotic arm. The named optimization
is based on the capabilities of the employed robotic arm and also on the market value
of recyclable materials.

Our approach is separated into two interrelated parts, the prediction of the material
of the objects we expect to pass through the belt and their collection. In the first part,
the materials are classified into three classes (paper, plastic and aluminum) using only
information from previous throws on the belt and the characteristics of the materials
(color and size). For this part, we employ Hidden Markov Models that are capable of
accomplishing the required prediction. In the second part, a Path Planner is imple-
mented targeting the optimization of the materials’ collection in terms of their cost.
This is implemented via a Reinforcement Learning algorithm, specifically a Q-learning
algorithm. Using a reward function the algorithm decides which is the next material
to be collected. Finally, our approach is evaluated via simulated and real results, and
its performance is also compared with that of a Proximity (Random) picker.





Beltistopo–hsh thc sullog†c anakukl∏simwn ulik∏n

se imàntec

Per–lhyh

Me thn anàgkh gia anak‘klwsh twn ulik∏n pou qrhsimopoio‘me na megal∏nei mËra me
th mËra me skopÏ na apofortiste– o plan†thc kai na swjo‘n pol‘timoi pÏroi kai Ëqo-
ntac san dedomËno pwc o rujmÏc me thon opo–o ta anakukl∏sima ulikà ftànoun sta
ergostàsia anak‘klwshc kai katËpËktash h ro† me thn opo–a pËftoun stouc imàntec me
skopÏ to diaqwrismÏ touc e–nai pol‘ megàlh, g–netai faner† h anàgkh gia pio apote-
lesmatiko‘c trÏpouc diaqwrismo‘ kai sullog†c twn ulik∏n. Se pragmatikËc sunj†kec
megàlo posostÏ twn antikeimËnwn pernà apo ton imànta qwr–c na sulleqje–, Ïqi àmesa
toulàqiston. EpiplËon, k‘rio mËlhma Ënoc ergostas–ou anak‘klwshc e–nai to kËrdoc.
Me k‘rio gn∏mona ta parapànw, o basikÏc àxonac thc paro‘sac ergas–ac e–nai h belti-
stopo–hsh thc sullog†c twn antikeimËnwn mËsw enÏc rompotiko‘ braq–ona. H parapànw
beltistopo–hsh pragmatopoie–tai me bàsh tic dunatÏthtec tou rompotiko‘ braq–ona pou
kànei to diaqwrismÏ, allà kai thn ax–a twn anakukl∏simwn ulik∏n.
H prosËggish mac qwr–zetai se d‘o epimËrouc allhlËndeta kommàtia, thn prÏbleyh

tou e–douc twn antikeimËnwn pou anamËnoume na peràsoun apo ton imànta kai thn aut† ka-
jaut† sullog† touc. Sto pr∏to kommàti g–netai ousiastikà mia probleptik† taxinÏmhsh
twn ulik∏n se treic klàsseic (qartÏni, plastikÏ kai aloum–nio) mÏno me th qr†sh plhro-
fori∏n apo tic prohgo‘menec r–yeic ston imànta kai kàpoiwn qarakthristik∏n twn ulik∏n
(qr∏ma kai mËgejoc). AutÏ to kommàti anapt‘qjhke me thn ulopo–sh Hidden Markov
Models gia th prÏbleyh. Sth sunËqeia ulopoi†jhke Ënac Path Planner me stÏqo th
beltistopo–hsh thc sullog†c wc proc thn ax–a twn ulik∏n pou sullËgontai. Se autÏ
to kommàti ulopoi†same Ënan Reinforcement Learning algÏrijmo kai pio sugkekrimËna
Q-learning. MËsw miac reward function o algÏrijmoc pa–rnei thn apÏfash gia to poio
ja e–nai to epÏmeno ulikÏ pou ja sulleqje–. TËloc, gia na g–nei apot–mhsh twn apote-
lesmàtwn mac, Ëgine mia s‘gkrish thc ulopo–hshc mac me Ënan Proximity (Random)
picker.
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Chapter 1

Introduction

Arm conveyors and Automated Storage and Retrieval Systems (AS/RS), in the form of
an endless belt or chain to which are attached projecting arms or shelves which carry
the materials [6], are used for a variety of applications, ranging from chemical and
food processing to mining or medical applications to state a few. One area, where arm
conveyor systems are critical to the success of the industry, is that of material recycling,
referring either to end-of-life products, post-consumer waste and industrial excess, or
otherwise collected materials for reuse. This thesis investigates the improvement of the
performance of arm conveyor recycling systems, through modeling of the materials’ flow
and optimization of the material collection procedure.

1.1 Motivation

In many industrialized nations, material consumption takes place at an unsustainable
rate with multiple negative e↵ects for both the environment -e.g. pollution or resources
depletion- and the economy -e.g. waste management or material and product price
fluctuations. Recycling is an e↵ective means of tackling with the negative impacts
of this over-consumption, by increasing the product’s and material’s re-usability and,
thus, reducing the excessive needs (and cost) of manufacturing systems. However, and
despite the constantly growing societal interest and demand, material recycling is far
from being considered as ”common practice”, both in the EU and worldwide, requiring
costly and, at times, inefficient equipment and facilities. This creates the necessity for
more efficient, optimized, recycling technologies, that will enhance the performance of
recycling installations, reduce recycling costs and, thus, make recycling a competitive
alternative against the usage of raw materials, bringing several societal, financial and
environmental benefits.

1.1.1 Recycling

The management of commercial and household waste is a highly challenging issue
of critical importance for modern societies. Poorly managed waste contaminates the
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2 CHAPTER 1. INTRODUCTION

world’s oceans, clogs drains and causes flooding, facilitates disease transmission, in-
creases respiratory problems through airborne particles from burning of waste and
harms animals that consume it unknowingly. Humans have created a harmful environ-
ment, both for ourselves and for all the animals that inhabit our planet, which a↵ects
various economic activities -such as tourism or agriculture- and suppresses economic
growth worldwide [1]. To better conceive the size of the problem and the negative im-
pact it has on the natural resources and the environment, some of the most indicative
facts and statistics are stated below:

• Plastic production between 1950 and 2015 was 7,8 billion tones.

• In 2015 only 20% of the plastic wastes was recycled.

• Americans use over 2 and a half million plastic bottles every thirty minutes, and
most of them are simply thrown away rather than recycled.

• Over 60% of the trash that ends in dustbin could be recycled.

• Every week half a million trees must be cut down for Sunday newspapers only.

• Due to the fact that people aren’t recycling as much as they should, the rain-
forests are actually be cut down by about 100 acres a minute [7].

• If we recycled all our paper 25.000.000 trees could be saved each year.

• For every tone of recycled glass 1,2 tones of raw material and 180-200 litres of
petroleum are saved.

• Recycling an aluminium can help to save a great deal of energy, in fact, enough
to run your home television for about three hours.

Figure 1.1: Total projected waste generation [1].
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Considering the constantly increasing rate of waste generation, as illustrated in
Figure 1.1, it becomes obvious that the situation is only going to be aggravated with
unpredictable consequences for the environment. A possible way to reverse, or at
least decelerate, this trend is by recycling old and used material to produce new items
and equipment, and thus not only reducing the generated waste but also reducing the
exploited natural resources.

Figure 1.2: Global waste treatment and disposal percentage [1].

The benefits from adopting recycling are numerous with respect to both social and
financial aspects as well for the environmental preservation, since it reduces the usage
of natural resources, such as water, while also decreasing the necessity for mining and
processing of raw materials. Moreover, the production based on recyclable materials
saves energy, causes less air pollution and less greenhouse gases. Nevertheless, and de-
spite its undisputed advantages, recycling represents only a small portion of worldwide
waste treatment, i.e. a 13.5% as illustrated in Figure 1.2. This is mostly due to the
cost of material recycling, which, at times, is higher to that of extracting new ones [8].
Thus, developing efficient and e↵ective methods and technologies, will make recycling
more approachable and, consequently, will reinforce our environmental education and
conscience and will improve our living.
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1.2 Problem Formulation

The most common procedure for recycling worldwide is firstly to collect all the recycling
materials pilled and mixed altogether somewhere. Subsequently, the materials are
thrown as they are –mixed– on a conveyor belt where their separation takes place. The
separation process is performed either manually by humans or is automated via robotic
separators. It is obvious that the robotic sorting is much more e↵ective, especially when
we have to deal with huge masses of recyclable materials. At this point is where the
use of an efficient separation system becomes vital. Separation systems perform a
core function in material recycling. They facilitate the fast and precise sorting of the
materials in their corresponding categories via fully automated processes.

The Computational Vision and Robotics Laboratory (CVRL) at FORTH-ICS par-
ticipates in the ANASA project, which aims at developing, integrating and commer-
cializing an autonomous robotic system for categorizing and separating recyclable ma-
terials. It comprises by a conveyor belt, where materials are unloaded in bulks, a visual
system which identifies them and a Delta Robot-based Waste Separator, which collects
and distributes them accordingly. Although existing work focuses on how to pick and
place materials after identifying, on the spot, the type of the material with recognition
and classification algorithms, we observed that predicting the materials’ flow/sequence
on the conveyor belt could possibly facilitate and enhance the robot’s sorting process.
The concept behind this is that past waste sequences could be used to predict the type
of the succeeding materials that will fall on the conveyor belt, and thus provide for
the optimum picking path for the Delta robot. This could enhance the performance of
the robotic sorter by means of (i) volume of processed materials, (ii) value of collected
materials and (iii) time of the sorting process.

In this thesis we aim at filling this necessity that emerges from the above. Using
Hidden Markov Models (HMM), as a first step we predict the next sequence of materials
on the conveyor belt based on the previous sequences and the materials’ probabilities
of appearance. Chapter 2 analyzes in detail the way these probabilities are formulated
and the employed HMM’s structure. Following that, our ultimate goal is to generate
a sequence of steps (path) for the Delta Robot to follow, in order to collect the most
valuable materials on the conveyor belt. This goal is achieved using a Reinforcement
Learning technique, more specifically Q-Learning, by applying the results of the HMM
to the Q-Learning Learning process. Overall, our framework can be considered as a
Decision Manager that regards the robot’s path.

1.3 Proposed Approach

Our approach consists of two parts. The main idea for the first part, is to use Hidden
Markov Models in order to successfully predict the materials that will next pass thought
the conveyor belt. In practise, to accurately predict the materials via the HMMs use,
we want to infer the spatial dependency of the materials’ flow on the conveyor belt. To
facilitate the prepossessing of the data and the implementation of the HMMs, the belt is
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e↵ectively divided into 5 virtual stripes (Figure 1.3). For each of the stripes, a separate
HMM is employed in order to predict the materials that are expected (on the said
stripe) given the material sequence of the previous throws. Each of the separate HMMs
operates with its own priors, transition matrix and observation matrix (⇡, A and B),
respectively. Accordingly, re-estimation of these matrices is performed separately. For
the latter we also use information about the materials that appeared on the neighboring
HMMs (practically the neighboring stripes) at t − 1. The input information for the
HMMs (observed features of the materials and re-estimated matrices) is di↵erent at
every moment t. The observed features are given to the HMMs as new input every
second and the matrices, as mentioned above, are re-estimated every second based on
the previous throws, which are now known. In this way time dependency is also part
of the system.

Figure 1.3: Conveyor Belt’s separation into stripes.

Figure 1.4: Flow Diagram of the proposed approach.

Given the extracted material predictions, in the second part of our work we process
the output matrix to acquire the position of each of the predicted materials on the
conveyor belt. In order to do so, we use k-means clustering to acquire the individual
items from each class and their centroids. Then, by taking into account the position of
each material on the belt, as well as the cost of the materials and the cost of the Delta
robot’s movement, our system will make a decision about the most lucrative path for
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the robot to follow.

Concluding in the final part of our framework, we import the labeled materials and
their positions on the conveyor belt into a decision manager. More specifically, the the
employed method is a Reinforcement learning algorithm (Q-Learning). Considering
the parts of the above described workflow, it is evident that a Global Path Planner for
the Arm - Conveyor system is e↵ectively formulated. The flow diagram of the entire
process is illustrated in Figure 1.4.

1.4 Related Work

The literature review is separated in three main sections. The first section includes
the literature regarding robotic sorters. In the second section we present works that
focus on prediction techniques. Finally, in the third section we review Reinforcement
Learning applications.

In the framework of the ANASA project extensive research has been made with
respect to the pick and place process. In [9] the vacuum griper’s grasp is optimized by
adding a custom suction. Application of a new transfer paradigm for recyclable sorting
is proposed in [10], by replacing the usual Pick-and-Place process with the much faster
Pick-and-Toss process.

There are numerous works in the literature focusing in waste separation, investi-
gating the problem from a variety of aspects. A review about the existing works in
the field is made in [11], covering matters as the collection and logistics in recycling,
machines and waste treatment plants, business models and data tools. They assess
tools and methods already applied in waste management, as well as methods that
could be applied successfully. Designing an algorithm that minimizes cycle duration
with focus on the kinematics as well as optimizing the picking process strategy and
the order of the picked object is the main goal in [12]. Another approach that uses
deep learning technology to detect and locate solid waste is proposed in[13]. Also in
this work the visual area on the conveyor belt is captured by the depth camera and
the information of the geometric center coordinates and the angle of the long side of
the target object are sent to the robot to complete the classification and grabbing of
the solid waste. Another system for automatically sorting garbage based on machine
vision is presented in [14], where a deep neural network model is used. Specifically,
Region Proposal Network (RPN) and the VGG-16 [15] model for object recognition
and pose estimation are optimized to the object detection.

In [16] the authors formulate an application in which objects of di↵erent types
arriving on a moving conveyor belt are first automatically identified, then grasped and
picked up by an industrial UR10 robot arm, and finally sorted into predisposed bins
based on the object type. For this task they use Gilbreth software architecture which
consists of multiple ROS (Robot Operating System) [17] nodes. As reported in [18],
an efficient algorithm that finds collision-free paths for a manipulator, which solves the
problem for four-degree-of-freedom pick-and-place operations by describing free space
in two ways: as freeways for the hand and payload ensemble and as freeways for the
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upper arm.
In the work reported in [19], an approach for a real time inspection and selection

of objects in continuous flow is proposed. They use color sorting system solution with
the application of image processing which senses the objects in an image captured in
real-time by a webcam and then identifies color and information out of it and process
them for pick-and-place mechanism. There are works in the literature that focus on
image processing to facilitate the pick and place process. For example, in [20] the
objects are detected with a feature extraction algorithm, then the extracted image
(parameters in compliance with the classifier) is sent to the classifier to recognize what
object it is and once this is finalized, the output would be the type of the object along
with it’s coordinates to be ready for the Robotic Arm to execute the pick and place
task. Another approach is analyzed in [21], where first the polygon models of both the
object and the environment are clustered, with each cluster being approximated by a
planar region, so position and orientation of an object can be determined by selecting
a pair of clusters: one from the object and the other from the environment.

Many di↵erent methods are used for prediction and classification of objects, mate-
rials or images. A common technique for such tasks regards Neural Networks. Convo-
lutional neural network (CNN) trained with deep-learning algorithms have been widely
applied in demanding computer vision applications [22]. In [23] the authors propose a
recurrent Convolutional Neural Network (RCNN) for object recognition by incorporat-
ing recurrent connections into each convolutional layer, with static input, the activities
of RCNN units evolve over time so that the activity of each unit is modulated by the
activities of its neighboring units. Interestingly, CNNs have been also used to perform
waste classification [24], being however applied in a relative small dataset with single-
item images and without any type of occlusion. In [25], Support Vector Machines are
employed. They propose a Gabor wavelets and support vector machine (SVM)-based
framework for object recognition. In [26], the authors propose Hidden Markov Models
for learning and classification of two-dimensional objects based on segmented grey-level
images.

Some works in contemporary literature focus exclusively on waste classification. In
[27] the goal is to develop a deep learning application which detects types of garbage
into trash in order to provide recyclability with vision system. They use two di↵erent
classifiers, specifically Softmax and Support Vector Machines in order to test perfor-
mance of fine-tuned models, Alexnet, VGG16, Googlenet and Resnet. Using Support
Vector Machines (SVM) with scale-invariant feature transform (SIFT) features and
a convolutional neural network (CNN) they attempt to classify between six classes a
recycling material in [28], with their experiments showing that the SVM performed
better than the CNN.

Hidden Markov Models are also widely used to determine a robot’s trajectory. For
instance in [29], the parameters of an HMM are determined by historical data. Sub-
sequently, using a Viterbi algorithm to find the double layers hidden states sequences
corresponding to the current trajectory and finally propose a new algorithm for vehi-
cle trajectory prediction based on the hidden Markov model of double layers hidden
states, and predict the nearest neighbor unit of location information of the next k
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stages. Markov models are used also for a variety of prediction tasks. In [30] they
use Markov Models in order to acquire a topological model of indoors environment by
means of visual sensing and subsequent localization given the model. A new learning
method based on HMM techniques estimations, to built a model for classification is
presented in [31]. Their approach consists of evaluation of the probability to belonging
in one group, given the observations by a linear classifier.The developed algorithm in
this work is based on discrete states and discrete observations cases of HMM. The
experimental results shown that the method has strong performance not only in su-
pervised, but also in unsupervised problems. As hidden Markov models are graphical
interpretable models they can be used as a first step towards 3D structure prediction
is stated in [32]. It was proven that HMM achieves valuable prediction results using
only a limited number of parameters. Which leads to an interpretable framework for
protein secondary structure architecture. Furthermore, it can be used as a tool for
generating protein sequences with a given secondary structure content.

Reinforcement learning use in robotics field is growing. To start with, the reward
shaping problem (rewards that guide the learning system quickly to success) was inves-
tigated by [33]. In [34], they combine motor primitives with the theory of stochastic
policy gradient learning, as a framework for reinforcement learning for humanoids.
They state that in real-world domains, the shortcomings of the discounted formulation
are often more critical than those of the average reward setting as stable behavior
is often more important than a good transient. As was investigated by [35] there
are numerous reinforcement learning algorithms for Markov Decision Processes with
performance guarantees are known [36] [37], [38].

Q-Learning techniques specifically have also gained increasing popularity in path
planning. As stated in [39] Q-Learning has the potential to reduce robot programming
e↵ort and increase the range of robot abilities. They introduce an algorithm that deals
with continuous state and action variables without discretising. In [40] the concept of
partially guided Q-learning is introduced and the flower pollination algorithm (FPA) is
used to improve the initialization of Q-learning, so that the convergence of Q-learning
is accelerated when Q-values are initialized appropriately using the FPA to optimize
the robot’s path selection. In [41] they introduce a reinforcement learning method for
exploring a corridor environment with the depth information from an RGB-D sensor.
Using this method the robot controller achieves obstacle avoidance ability by pre-
training of feature maps using the depth information. Also in [42] they present a
continuous-action Q-learning algorithm over the standard discrete-action version in
terms of both asymptotic performance and speed of learning.

1.5 Thesis contribution

This work aims at optimizing the recycling process in numerous aspects. The main
goal is to develop a fully automated recycling process using a robotic sorter. Such a
procedure allows for precise and fast sorting of the materials, eliminates human errors,
and gives rise to economic benefits due to the market value of the recycled materials.
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To achieve these goals, we initially formulate Hidden Markov Models (HMMs)
to facilitate the classification process. The employment of HMMs for unsupervised
classification provides robust predictions regarding the materials on the conveyor belt.
Accordingly, we end up with a prediction about the sequence of materials which will
appear next on the belt, which provides enhanced information to the main classification
method and helps avoiding wrong classifications. Moreover, we specify each material’s
centroid using k-means clustering, which is a simple and low complexity method. By
means of this step we provide the sorter with the optimum spot for the gripper to pick
an object.

After having established the above, our final step to complete the optimization is
to create a decision maker which will at any moment determine the most profitable
material to be picked. We achieve that by implementing a Reinforcement Learning
algorithm, more precisely a Q-Learning algorithm. Such learning methods are widely
used in the Robotics field for path planning with great success, which is also proved
in our work.

Experimental results obtained with our implementation demonstrate that our method
significantly outperforms existing approaches. Our method increased the picking ac-
curacy of the robotic sorter by better planning the picking of objects, achieving to
collect more items than previous methods, and finally selecting items of higher value.
Experimentally, we also showed that our method scales smoothly to larger number
of items of the conveyor belt. The latter constitutes a very desirable characteristic,
especially in real world applications, where the management of huge amounts of items
is required.

1.6 Thesis structure

In the next Chapters of this thesis we present in detail the tools and the developed
methodological framework. We explain the formulation of the proposed framework
and finally the experimental results are presented and discussed. More precisely, in
Chapter 2 all the methods that were implemented in this work are thoroughly analyzed
and the theoretical background is given. In Chapter 3 we explain the steps of the
formulated framework, with details regarding our implementation. In Chapter 4 we
illustrate the results of a qualitative analysis of our method and o↵er comparative
results with an existing method. Finally, we reach our conclusions in Chapter 5 and
propose further enhancements for the framework and other applications.
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Chapter 2

Employed tools and Theory

In this chapter we describe the background knowledge and infrastructure that is used
for the purposes of this thesis. As mentioned in the previous chapter, we initially
employ a set of HMMs to infer the state of the system and predict the future material
flow on the conveyor belt. Given the initial predictions a Q-Learning reinforcement
learning procedure is then employed, formulating a Decision manager, in order to come
up with a sequence of actions, which define the optimum path for the robotic separator.
Employed equipment, techniques and methodologies, along with the data processing
and generation procedures, are explained in detail below.

2.1 Background Infrastructure

This thesis is inspired by and capitalizes on the ongoing project ANASA[2], which
takes place in the Computational Vision and Robotics Laboratory (CVRL) at FORTH-
ICS and aims at optimizing the performance of conveyor belt-equipped robotic waste
separator systems. For the project’s purposes, CVRL is equipped with an arm conveyor
robotic system, consisting mainly of a conveyor belt, a visual detection system and a
robotic gripper, that is used for recyclable waste separation.

2.1.1 The ANASA project

Main objective of the project is the development and optimization of an automated
procedure for recyclable waste separation. The ANASA Robotic Waste Separator
(RWS) has significant advantages over the existing ordinary recycling systems, i.e.
high reliability in object recognition (material detection), short separation cycle (high
speed), significantly low installation volume, low cost and ease of application to both
old and new recycling industries. All the above aim to evolve and facilitate the recycling
process.

11
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Figure 2.1: ANASA Robotic Sorter[2]

Figure 2.2: ABB IRB 360 FlexPicker

Figure 2.1 shows the integrated mechanical system, installed in the robotics labo-
ratory of CVRL, which is composed by three main parts: (i) the ABB IRB360 DELTA
robot figure 2.2, (ii) an external vision camera system for object detection, (iii) a con-
veyor belt of 4.5x0.8m length and 135-277 mm/sec speed range, all jointly secured
by a steel cage, allowing for high speed movements with low vibrations. To facilitate
gripping, the DELTA robot is complemented by a vacuum gripper suction cup, de-
signed and made in-house [9] for the needs of the project’s application and a vacuum
generator with pressurized air supply of 10 bars which provides a low pressure to the



2.1. BACKGROUND INFRASTRUCTURE 13

suction cup.

As far as it concerns the visual system of the project a standard stereo full HD
ZED camera is used. The camera is placed 148cm before the robot (in the direction
recyclables are transferred towards the robot), at a height of 75cm above the conveyor
belt. To ensure constant light conditions during data acquisition and system operation,
the camera was placed inside a box with LED-lighting equipment installed. The camera
field of view covers the entire width of the conveyor belt providing information about
the shape and color of the transported waste. For the categorization of the recyclable
materials the well-known open source network Mask R-CNN [43] is employed.

2.1.2 Delta Robots

Figure 2.3: Parallel robot configuration

The parallel or Delta robot configuration, shown in figure 2.3, designed by Clavel[44], is
where all the state of the art parallel robot configurations were based their development.
It includes overhead mounted robotic arms with concurrent prismatic or rotary joints,
controlled by the motors within the base.

Typically, these types of robots have four degrees of freedom, the fourth being fixed
on the mobile platform and allowing the end-e↵ector to rotate around the vertical axis.
The moving platform always remains parallel to the base and is connected to it by three
identical kinematic chains having a R-(RR)-(RR) architecture (where each RR denotes
two parallel axis, the parenthesis indicates that the axes meet at one point) [45].

The parallel chains are actuated by the revolute joints, which are close to the
base, using DC motors fixed to the base. The benefit of this approach is that it
reduces the weight within the arms and therefore provides very high acceleration and
speed capabilities. However they do have a low payload capacity. Typically they can
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manipulate two pieces of 10g per second. These robots also have the advantage of
having a relatively large workspace. Therefore, they are mainly used in pick-and-place
applications, particularly on packing lines for the food industry, as well as assembly
applications[46][47].

2.1.3 Conveyor Belts

(a) DOBOT Conveyor belt (b) RADIX Conveyor belt

Figure 2.4: Typical examples of conveyor belts

Conveyor belt systems consist of two or more pulleys (a.k.a. drums) and an endless
loop of carrying medium —the conveyor belt— rotates about them. To move the belt
and the material that it carries, one or both pulleys are powered. The powered pulley
is called “drive pulley”, while the unpowered one is known as “idler pulley”. Conveyor
belts in general are handling materials. Depending on the materials they handle they
are separated into respective categories, for example a conveyor belt used to move
boxes inside a facility can not be used to transport large volumes of resources and
agricultural materials. Conveyors are used for packing, transporting, sorting, indus-
trial, manufacturing and agricultural processes, all of which are leading to diversities
in shape and material of the belts.

Based on the proposed use, conveyor belts are manufactured using either PVC or
rubber. The belt consists of one or more layers of material. Most belts in general
material handling consist of two layers: the bottom layer is called carcass and provides
linear strength and shape, while the top layer is called cover. Carcass is usually made
of polyester, nylon and cotton while the cover is made of a variety of rubber or plastic
compounds specified by the specific tasks where the belt will be used. Belts with regu-
larly spaced partitions are known as elevator belts and typically are used to transport
loose materials up steep inclines. Belt conveyors are also used in self-unloading bulk
freighters and in live-bottom trucks. In figure 2.4 conveyor belts from two di↵erent
manufactures are illustrated.
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2.1.4 Vacuum Gripper

Figure 2.5: Vacuum Gripper

A vacuum gripper is a robot component that uses a suction cup connected to a vacuum
source to lift and handle objects[6]. This type of grippers are most e↵ective and will
provide good handling if the objects are smooth, flat, and clean. Vacuum grippers
work when the di↵erence between atmospheric pressure and the vacuum, or negative
pressure, is enough to provide the ability to lift, hold or move items and more. This is
ideally achieved when one side of an item is large and flat enough for a vacuum gripper
to create enough di↵erence in pressure and achieve a firm grip. In non-ideal cases,
which are the most common in real world (permeable, rough or uneven materials)
high-flow vacuum generators are used. Generally, the vacuum cups (suction cups)
have round shape and are manufactured by rubber or other elastic material in order
to provide powerful and safe grips for collaborative robot applications with light, flat
parts[48]. A characteristic example of a vacuum gripper, similar to the one employed
on the ANASA waste sorter, is shown in figure 2.5.

2.2 Mathematical tools and methods

In this section we analyze all the tools employed in this work. We explain each of their
definitions and state their mathematical background.

2.2.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a statistical Markov model in which the system
being modeled is assumed to be a Markov chain with unobservable (”hidden”) states,
i.e. a stochastic model describing a sequence of possible events in which the probability
of each event depends only on the state attained in the previous one. An HMM assumes
that there is another, observable, process Y which can be used to infer the model’s
hidden states. A tangible example that can help us understand how HMMs function
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is weather prediction. Imagine we want to predict tomorrow’s weather, we are able
examine today’s weather but we are not allowed to look at yesterday’s weather[49].
In our implementation today’s weather corresponds to the materials on the conveyor
belt at the moment t − 1, yesterday’s weather the materials already passed through
the conveyor and we have indirect information about them through the probabilities
they formulated. Finally tomorrow’s weather corresponds to the materials we want to
predict at moment at the moment t. .

More formally, consider a sequence of state variables q1, q2, ..., qi. A Markov model
embodies the Markov assumption on the probabilities of this sequence that states that
when predicting the future, the past doesn’t matter, only the present:

MarkovAssumption : P (qi = a|q1...qi−1) = P (qi = a|qi−1) (2.1)

Additionally, the probability of an output observation oi depends only on the state
that produced the observation qi and not on any other states or any other observations:

OutputIndependence : P (oi|q1...qi, ..., qT , o1, ..., oi, ..., oT ) = P (oi|qi) (2.2)

To put it with respect to the task at hand, that of recyclable waste flow prediction,
the problem formulates as attempting to infer/predict the type qt (i.e. hidden state) of
the material at time t, based on the current observations (i.e. features of the material
such as color, size or shape) and the previous material type, i.e. state qt−1 at time
t− 1.

2.2.1.1 Terminology and Equations

Typically, an HMM is specified by the following components:
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N : number of hidden states, numbered {1, ..., N}
M : number of output symbols, numbered {1, ...,M}
T : length of the observation sequence
Q : distinct states of the Markov process, q = (q1, ...., qt, ..., qT )

where qt 2 {1, ..., N}
V : set of possible observations {0, 1, ...,M}
O : observation sequence o = (o1, ...., ot, ..., oT ) where ot 2 {1, ...,M}
A : state transition matrix, aij = P (qt+1 = j|qt = i)
B : per-state observation distributions, bi(k) = P (ot = k|qt = i)
⇡ : initial state distribution, ⇡i = P (q1 = i)
λ : all numeric parameters defining the HMM

considered together, λ = (A,B, ⇡)
indices : i, j index states, k indexes output symbols t indexes time

Table 2.1: HMM Components

A generic hidden Markov model is illustrated in figure 2.6 , where Xi represents the
hidden state sequence and all other notations are as given above. The Markov process,
which is hidden behind the dashed line, is determined by the current state and the A
matrix. We are only able to observe the Oi, which are related to the (hidden) states
of the Markov process by the matrix B.

Figure 2.6: Hidden Markov Model

Note that matrix A = aij is a NxN matrix, denoting the probability of the tran-
sition from one state to another (transition matrix),with

aij = P (Q(t+ 1) = qj |Q(t) = qi) (2.3)

This is calculated for all the possible combinations of states.
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Matrix B = bj(k) is a NxM matrix which correlates observations and states (emis-
sion matrix), with

bj(k) = P (O(t) = k|Q(t) = qj) (2.4)

Matrices ⇡, A and B are row stochastic, meaning that each element is a probability
and each row is a probability distribution (row elements sum to 1).

In order to have a better understanding of what aij and bj represent, we can
formulate the definitions as follows:

aij =
expected number of transitions from state i to state j

expected transitions from state i
(2.5)

bj(O) =
expected counts of observing O while at j

expected counts of going through state j
(2.6)

It is easier now to explain what each of the notations represents in our work and
how the Dataset is used to create matrices ⇡, A and B in Chapters 3 and 4. Beginning
with matrices ⇡, A and B as initial information and an observation sequence O the
HMM computes at, bt and re-estimates the priors (matrix ⇡) using Ot where t denotes
the time. In this context, the initial computations needed are listed below.

Our goal is to find an optimal state sequence for the given observations O with
respect to the given model λ. For that we need to determine a score for the sequence
given the model, this score is denoted P (O|λ).

To find P (O|λ), the so-called forward algorithm, or ↵−pass, is used. For t = 2, ..., T
and i = 1, ..., N , we define:

↵t(i) = P (O1, O2, ...Ot, xt = qi|λ) (2.7)

Then ↵t(i) is the probability of the partial observation sequence up to time t, where
the underlying Markov process is in state qi at time t. The crucial insight here is that
the ↵t(i) can be computed recursively as follows.

1. For i = 0, 1, ..., N let

↵1(i) = ⇡jbj(O1) (2.8)

2. For t = 2, ...T and i = 1, ..., N compute

↵t(i) =
NX

i=1

↵t−1(i)aijbj(Ot) (2.9)
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3. From equation 2.7 it is clear that

P (O|λ) =
NX

i=1

↵T−1(i) (2.10)

We define the backward algorithm, or β − pass. This is analogous to the ↵− pass
discussed above, except that it starts at the end and works back toward the beginning.

For t = 1, ..., T − 1 and i = 1, ..., N , we define:

βt(i) = P (Ot+1, Ot+2, ..., OT−1, xt = qi|λ) (2.11)

Then the βt(i) can be computed recursively (and efficiently) as follows.

1. For i = 0, 1, ..., N let
βT (i) = 1, (2.12)

2. For t = 2, ...T and i = 1, ..., N compute

βt(i) =

NX

j=1

aijbj(Ot+1)βt+1(j), (2.13)

Based on the above, the problem of waste type prediction can be formulated as
following: Given an observation sequence O and the dimensions N and M , find the
model λ = (A,B,⇡) that maximizes the probability of O. This can be viewed as
training a model to best fit the observed data. Alternatively, we can view this as a
(discrete) hill climb on the parameter space represented by A, B and ⇡.

The sizes of the matrices (N and M) are fixed but the elements of A, B and p are to
be determined, subject to the row stochastic condition. The fact that we can efficiently
re-estimate the model itself is one of the more amazing aspects of HMMs.

For t = 1, ..., t− 1 and i, j 2 1, ...N , we define ”di-gammas” as:

γt(i, j) =
↵t(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
(2.14)

For t = 1, ..., T − 1 the γt(i) and γt(i, j) are related by:

γt(i) =

N−1X

j=0

γt(i, j) (2.15)

Given γ and di-gamma, the model λ = (A,B,⇡) can be re-estimated as follows:

1. For i = 1, ..., N let
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2. For i = 0, 1, ..., N let

⇡i = γ0(i) (2.16)

3. For i = 1, ...N and j = 1, ..., N compute

aij (i) =

PT−2

t=0
γt(i, j)PT−2

t=0
γt(i)

(2.17)

4. For j = 1, ..., N and k = 1, ...M compute

bj(k) =

P
Ot=k,t21,...,T γt(j)
PT

t=0
γt(j)

(2.18)

The numerator of the re-estimated aij can be seen to give the expected number of
transitions from state q−i to state q−j, while the denominator is the expected number
of transitions from qi to any state. Then the ratio is the probability of transiting from
state qi to state qj , which is the desired value of aij . The numerator of the re-estimated
bj(k) is the expected number of times the model is in state qj with observation k, while
the denominator is the expected number of times the model is in state qj . The ratio
is the probability of observing symbol k, given that the model is in state qj , which is
the desired value of bj(k). Re-estimation is an iterative process. First, we initialize
λ = (A,B,⇡) with a best guess or, if no reasonable guess is available, we choose random
values such that ⇡i ⇡ 1/N and aij ⇡ 1/N and bj(k) ⇡ 1/M . It’s critical that A,B and
⇡ be randomized, since exactly uniform values will result in a local maximum from
which the model cannot climb. As always, ⇡, A and B must be row stochastic.

The solution to our problem can be summarized as follows.

1. Initialize λ = (A,B,⇡).

2. Compute ↵t(i), βt(i), γt(i, j) and γt(i).

3. Re-estimate the model λ = (A,B,⇡).

4. If P (O|λ) increases, go to 2.

It might be desirable to stop if P (O|λ) does not increase by at least some predeter-
mined threshold and/or to set a maximum number of iterations. In our work we set a
maximum number of iterations.

This method thought, require computations involving products of probabilities.
It is easy to see, for example, that ↵t(i) tends to 0 exponentially as T increases.
Therefore, any attempt to implement the formulae as given above will inevitably result
in underflow. The solution to this underflow problem is to scale the numbers. However,
care must be taken to insure that, for example, the re-estimation formulae remains
valid. First, consider the computation of ↵t(i). The basic recurrence is:
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↵t(i) =
NX

j=1

↵t−1(j)aijbi(Ot) (2.19)

It seems sensible to normalize each ↵t(i) by dividing by the sum (over j) of ↵t(j).
However, we must verify that the re-estimation formulae hold.

For t = 0, let ↵̃0(i) = ↵0(i) for i = 1, ..., N . Then let

c0 = 1/
X

j = 1N ↵̃0(j) (2.20)

and finally, ↵̂0(i) = c0↵̃0(i) for i = 1, ..., N . Then for each t = 1, 2, . . . , T − 1 do the
following.

1. For i = 1, ..., N compute

tilde↵t(i) =
NX

j=1

↵t−1(j)aijbi(Ot) (2.21)

2. Let

ct(i) =
1

PN
j=1

↵̃t(j)
(2.22)

3. For i = 1, ..., N compute

ât(i) = ct↵̃t(i) (2.23)

The same scale factor is used for βt(i) as was used for ↵t(i), namely ct, so that we
have β̂t(i) = ctβt(i). We then compute γt(i, j) and γt(i) using the formulae show in
equations (1.14) and (1.15) with ↵̂t(i) and β̂t(i) in place of ↵t(i) and βt(i), respectively.
The resulting gammas and ”di-gammas” are then used to re-estimate ⇡, A and B.

2.2.2 K-Means Clustering

K-means clustering is a popular unsupervised machine learning algorithm. A cluster
refers to a collection of data points aggregated together because of certain similarities.
So, what we give as input in such models is a set of observations or points (representing
positions in our case) on a 2D space and we want to unravel the relation between them
in teams. The clustering methods create these teams for us. The number of those
teams (clusters) is denoted by the K. We define that target number k, which also
coincides with the number of centroids we need in the dataset. In figure 2.7(a),(b) we
can see what is explained above and how clustering works by an indicative example.
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(a) Unclustered Data (b) Data after clustering (c) Centroids of the calculated Clusters
[50]

Figure 2.7: Typical examples of conveyor belts

A centroid is the imaginary or real location representing the center of each cluster.
Every data point is allocated to each of the clusters through reducing the in-cluster
sum of squares. In other words, the K-means algorithm identifies k number of clusters,
and then allocates every data point to the nearest cluster, while keeping the clusters as
small as possible. The ‘means’ in the K-means refers to averaging of the data, which
in this case is finding the centroid. In our work, each cluster refers to an item and
each centroid to the corresponding item’s center. In figure 2.7(c) we see the calculated
centoids for each of the clusters found from the algorithm on the indicative data we
show above in figure 2.7(b).

2.2.3 Reinforcement Learning and Q-Learning

Reinforcement learning (RL) [4] is a principled mathematical framework for experience-
driven, goal-directed learning and decision making. RL starts with interaction between
agent and environment, agent taking actions in the environment, which drives it to
next state and receives a rewards based on the goodness of that action. As shown in
figure 2.8 , at any time-step t, agent being in state st takes action at in its environment,
gets reward rt and observes next state st + 1. This notion is suitable for our problem
and how we have structured it so far. The time, states and actions are coherent with
our notions. Reinforcement learning algorithms, push up the probabilities of taking
good actions to achieve desired goals. In this work we solve a path problem using
Q-learning technique.
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Figure 2.8: Reinforcement Learning

Reinforcement learning can generally be sub-divided into model-free & model-based
as shown in figure 2.9. In model-based RL dynamical model of the environment is used
and in model-free RL, a policy or value function is learnt.

Figure 2.9: Subdivision in RL

Model-free RL is divided into two broad categories, o↵-policy and on-policy learn-
ing.In o↵-policy methods, which we use in this work, the policy used to generate
behaviour, called the behaviour policy, may be unrelated to the policy that is evalu-
ated and improved, called the estimation policy. An advantage of this separation is
that the estimation policy may be deterministic (e.g. greedy), while the behaviour
policy can continue to sample all possible actions. Our agent could even behave ran-
domly and despite this, o↵-policy methods can still find the optimal policy. Mainly,
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o↵-policy methods gather information from (partially) random moves,evaluate states
as if a greedy policy was used and finally, slowly reduce randomness.

Q-learning as shown in figure 2.9, a model-free, o↵-policy learning proposed by [51].
Specifically, Q-learning can be used to find an optimal action-selection policy for any
given (finite) Markov decision process (MDP),finds an optimal policy in the sense of
maximizing the expected value of the total reward over any and all successive steps,
starting from the current state. It works by identifying and learning an action-selection
policy for any MPD given infinite exploration time and a partly-random policy.

At this point to note that, by the term Markov decision process we refer to a
mathematical framework for modeling decision making in situations where outcomes
are partly random and partly under the control of a decision maker. More precisely,
a Markov Decision Process is a discrete time stochastic control process. At each time
step, the process is in some state s, and the decision maker may choose any action a
that is available in state s. The process responds at the next time step by randomly
moving into a new state s0, and giving the decision maker a corresponding reward
Ra(s, s

0). Markov decision processes are an extension of Markov chains, the di↵erence
is the addition of actions (allowing choice) and rewards (giving motivation). A Markov
process diagram example is show in figure 2.10. Markov processes are explained in
detail above in this Chapter without the reward part which is now added in our work.

Figure 2.10: Markov Process

To continue with the Q-Learning analysis, ”Q” names the function that the algo-
rithm computes with the maximum expected rewards for an action taken in a given
state figure 2.11. Ultimately this process gives the expected utility of taking a given
action in a given state and following the optimal policy thereafter.
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Figure 2.11: Block diagram: Q-learning

Q-value at state s and action a, defines the expected cumulative reward from taking
action a in state s and then following the policy. In other words,Q-Learning is o↵-policy
learning as one can choose the best action just by looking at Q(s0, a0), without worrying
about what happens next. In each iteration, Q-values of current state s are updated
using the Q-value of next state s0 and the greedy action a0 using Bellman Optimality
Equation which is given below.

Q ⇤ (s, a) = [r + γmaxQ ⇤ (s0, a0)|s, a] (2.24)

Bellman Equation for Q-value Function serves as a target (greedy) policy.

2.2.4 Global Path Planner

By the term Global Path Planner we mean a group of navigation algorithms for plan-
ning an optimal path that connects a point of origin to a given goal in a known
environment. Considering everything explained in this Chapter, we know can better
understand why the group of algorithms we use in this work consists a Global Path
Planner.

Global Path Planners are broadly used in Robotics field in many cases, from
Robotic Arms to Humanoid Robots to acquire the robot’s trajectory for a specific
task. In our work the environment is unknown at the beginning of our process. We
only have knowledge of our workspace dimensions (conveyor belt) and some features.
Using the HMMs, as described in detail, we acquire complete knowledge for our en-
vironment and based on that we plan, via a Q-Learning algorithm, the Delta robot’s
trajectory (our optimal path). Details about this planning are explained in detail in
Chapter 3.
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2.2.4.1 Path Planning

Path planning is a computational problem to find a sequence of valid configurations
that moves the object from the source to destination. it can only be applied when a
map of the environment is known. So, path-planning requires a map of the environment
and the robot to be aware of its location with respect to the map.

In figure 2.12 we see a characteristic example of path planning. An agent in a
well defined environment (map) and the goal position denoted by x on the left of each
image. In the case we have in figure 2.12 an optimum path planning. In such cases
the goal is to find the optimum path between the initial and goal point. If the space is
divided into a grid of cells (cell size depends on the robot dimensions), the goal of this
planning is to visit only the cells needed to reach the goal position once. This problem
is also known as the traveling salesman problem. Once the optimum path is found
the robot can systematically traverse the space and therefore be more time and energy
efficient (Given a list of cities and the distances between each pair of cities, what is
the shortest possible route that visits each city exactly once and returns to the origin
city?).

Figure 2.12: Path Planning [3]

In path planning problems we have the problem of complete coverage. In such
cases the goal is to find the optimum path so the robot covers the entire space. In
other words, the goal of optimum coverage is to visit every cell at least once [52].

Real-Time Path Planning is a term used in robotics that consists of motion plan-
ning methods that can adapt to real time changes in the environment. This includes
everything from primitive algorithms that stop a robot when it approaches an ob-
stacle to more complex algorithms that continuously takes in information from the
surroundings and creates a plan to avoid obstacles.

Our path planning approaches an optimum and real-time path planning. Optimum
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by the means of the reward in our case. So, the robot’s goal is not to pass through
the entire grid or only one cell, but from the cells that contain the most expensive
materials and are arranged conveniently for the agent. Another di↵erence is that there
is not a specific point as a goal location in our notions. We want the robot to move
based on materials on the belt. Also we study a static robot, which is not actually
moving, but its end e↵ector (the last link (or end) of the robot) does.

2.2.5 Image Preprocessing

(a) (b)

(c)

Figure 2.13: Image pre-processing steps. (a) Original, distorted, image. (b) Undis-
torted image. (c) Overlayed grid on undistorted image.

To acquire the datasets needed for this work, we initially recorded videos of re-
cyclable materials passing through the conveyor belt in real time speed. Specifically,
we recorded eight videos from which we created a training set and a test set. The
training set consists of the first six videos and the test set from the remaining two.
Both training and testing videos were separated in frames. Each of the videos lasted
approximately one minute with frame rate 30 frames/second. Consequently, the videos
where divided in frames, specifically we stored an image every 15 frames of the video.

Our first step for the preprocessing was to eliminate the camera distortion, as it
appears in figure 2.13(a). We used the camera specifications to accurately eliminate
the distortion from all the frames. The resulted image with no distortion is shown in
figure 2.13(b). It becomes obvious by comparing the two images, that the elimination
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of the camera distortion is necessary, as it could easily a↵ect our analysis.

Last, we added a grid on our images as seen in figure 2.13(c). The grid assists us to
visualize and understand the time and spatial aspect of our analysis. Namely, the ver-
tical stripes divide the conveyor in five smaller stripes which helps the spatial analysis
by importing the spatial dependency in our work (positioning of the materials on the
belt). The horizontal lines, depict the time factor, meaning that each horizontal stripe
represents a time snap of our materials’ sequence, so time dependency is imported as
well.

2.2.6 Simulation and Dataset Generation

In order to facilitate the performance analysis and to enhance the robustness of the
model, we developed a simulator which produces simple representations of the materi-
als’ flow on a conveyor belt. Figure 2.14 illustrates a snapshot of the simulated conveyor
belt, where the colored shapes represent the 3 material classes (AL: aluminium, PL:
plastic, PAP: paper) and the x mark represents the vacant space. As will be discussed
later, there is also a provision for the side bins, where each material should be placed
after picking.

Figure 2.14: Conveyor Visualization

Capitalizing on the findings of the ANASA project, we trained a Neural Network to
estimate the prior probabilities about the location -i.e. where is more likely a certain
material to fall on the belt- and the features -i.e. type, size or shape of each of the
materials. A simple random number generator, biased by the extracted probabilities,
was then employed in order to simulate the flow of the materials on the conveyor belt.

Based on the developed simulator, we extracted a series of sequences of various
complexities which were used for training and evaluation purposes. Specifically, we
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created in total 100 waste flow simulations of varying conveyor belt speed, sequence
duration, number of material classes and total number of materials.

The position of each material, in relation with the horizontal as well as the vertical
lines of the grid, denotes in which of the five HMMs this material (more correctly its
features) will be given as input.

A very important detail, at this point is that the observations i.e. size and possible
colors of each class- used in the generated dataset, di↵er from the ones on the real
dataset. Instead of having, for example only transparent plastic bottles, we inserted
in the dataset via the observations, blue or green plastic items. In this way we assure
our framework has efficient and unbiased performance under any circumstances.
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Chapter 3

Methodology

As discussed in the previous chapters, our framework formulates a Decision Manager
which consists of two main parts: prediction and selection (path planning). The first
part (prediction) consists of five independent HMMs and the second part (selection) is
a reinforcement learning algorithm. The HMMs predict the class of each material on
the conveyor belt and the reinforcement learning algorithm (Q-Learning) selects which
items are the most lucrative for the Delta robot to pick. In this chapter we go through
the steps of our methodology, analyzing and explaining each step.

3.1 Framework

Firstly our data were exported from videos of the recyclable materials passing through
the conveyor belt in a random way, which is di↵erent for each of the videos. The
videos were acquired from real time experiments conducted in Computational Vision
and Robotics Laboratory in ICS-FORTH using the conveyor belt and Delta Robot
from ANASA project [2].

We used the data (features of the materials) exported from the videos as input to the
HMMs in order to predict the class of each material. More specifically, the information
acquired from the real dataset processing were used for the HHM’s initialization and
consequently, information from both real and generated dataset were used for the
HMM’s training. Afterwards, by processing these outputs we acquired information
about the materials’ positions on the conveyor belt, specifically their centroids. Finally,
we gave the classes and positions of the materials as an input to the Q-Learning
algorithm in order to ultimately get the optimal picking path for the Delta Robot,
based on the values of the Q table. In figure 3.1 the framework is visualized for better
understanding of connection of the processes mentioned above.

31
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Figure 3.1: Flowchart

3.2 HMM Implementation

The choice of implementing Hidden Markov Models in our work is justified by the need
of a model that can accurately predict the upcoming state of the conveyor belt, only
by using knowledge of the exactly previous one. Applying HMMs allows us exactly
that, adding the use of some basic information (transitions and observations) about
our kind of data. Furthermore, it is an efficient, low cost and complexity model which
enables real time calculations.

3.2.1 HMM Design

In all datasets we use three types (classes) of recyclable materials: paper, plastic and
aluminum. We also added an extra ”void” class which indicates that in this position
of the belt we have no material present. The resulting four classes define the number
of model states, i.e. N = 4 as described in section 2.2.1.1. In the first column we have
the material that appears on the conveyor belt and in the second column the number
that each class is annotated with.

As explained in Chapter 1 Hidden Markov Models need as an input an observation
sequence which is necessary for the predictions. Each observation indicates one or
more of the classes we aim to be predicted by the HMM, meaning a material might
share a feature with another material. In our work, these observations refer to the
color of the materials (red, blue etc) and the space they occupy on the grid (Small,
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Material Class

Void 1

Paper 2

Plastic 3

Aluminum 4

Table 3.1: Classes

Observations (Features)
Corresponding
Numbers

Small and Transparent 1

Small and Brown 2

Small and White 3

Small and Blue 4

Small and Red 5

Small and Green 6

Medium and Transparent 7

Medium and Brown 8

Medium and White 9

Medium and Blue 10

Medium and Red 11

Medium and Green 12

Large and Transparent 13

Large and Brown 14

Large and White 15

Large and Blue 16

Large and Red 17

Large and Green 18

None and Black 19

Table 3.2: Observation Coding

Medium, Large), meaning the occupied space in each of the cells that are created by the
horizontal and vertical grid lines in figure 2.13(c), and are merged into a unified matrix
which will be used as input to the HMMs. In that basis, an object is characterized
small when it occupies a small part of the cell ( 1% to 25%), medium when it occupies
over the half of the cell (up to 65%) and large when it almost occupies the whole cell.
Each element of the resulting matrix contains a number, which corresponds to one of
the observations table 3.2. Note that the conveyor itself is characterized by a specific
unique observation. The horizontal position of each material denotes in which of the
five HMMs this material belong.
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In table 3.2 we have listed the observation as used in our work. On the fist column
we have all the possible combinations of the two separate observations (color and size).
On the second column we have the numbers with which we have noted each of these
observations throughout our work, i.e. M = 19 as described in 2.2.1.1.

Normally we would also have each color and each size alone as observations, mean-
ing having for example only medium or only green. But in our case, practically we will
never acquire such information separately. So we excluded these observations as they
will always have zero occurrence.

Regarding the output of the HMMs’, it is in the form of five 1-D matrices of dimen-
sionX, with being the number of predicted classes of the material on the corresponding
conveyor stripe. These matrices are afterwards put together and give us the full 2-D
predictions matrix of dimension Xx5, representing the class predictions for the whole
conveyor belt.

3.2.2 HMM Initialization

As discussed, we used five independent HMMs, one for each of the stripes we split the
conveyor belt into. As a first step, prior to that of the HMM training, we exploit the
recorded video sequences to initialize the parameters of each HMM, namely the initial
state distribution ⇡, the transition matrix A and the observation matrix B. Starting
with almost (with added noise) uniform distribution across the states to form the initial
⇡, we “train” each HMM using the training set from the real laboratory recordings,
by unifying the observations into a train-set matrix consisting of five columns, each
column corresponding to a vertical stripe of the conveyor as shown in figure 2.13(c).

The priors calculation is an easy process, we count the appearances of each class
in each column and we divide with the number of the total rows.

The transition matrix is, in our case a 4x4 matrix (because of the four classes we
have). It gives as the probability of transition from the present state (class) to each of
the other ones, and is formulated as:

aij = P (qt+1 = j|qt = i) (3.1)

To acquire the transition matrix A (as referred in section 2.2.1.1) we counted, for
each column separately, the transitions from one state (class) to each of the remaining
ones and we divided by total number of appearances of the corresponding material
each time. The transition matrix is a row stochastic matrix (the elements of each row
are summing to 1)

Finally, we calculated the observation matrix B (as referred in section 2.2.1.1). This
is a NxM , with N = 4 representing the four states (classes) of the model and M = 19
representing the observations (features of the materials) as stated in table 3.2. To
export this matrix from our data we needed to match each of the materials appearing
in our matrix with the observation that corresponds to them. To acquire this matrix
we counted the appearances, in our initial matrix, of a material from a specific class
with a specific feature (this was done for all the classes and all the observations) and
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we divided these appearances by the total number of appearances of the corresponding
material. The observation matrix is also a row stochastic matrix.

It is important to be said, that in case we include the ”single” observation in our
analysis (only small or only blue) the observation matrix would not be a row stochastic
matrix. As items counted for one of our present observations would be counted a second
time for their size alone and a third time for their color alone. In that case the row
summing could not possibly be one as the overall number of materials would still be
the same. It is not though mandatory from the HMM’s statement for the observation
matrix to be row stochastic. The observation matrix is an NxM matrix, with N=4,
M=19 and is formulated as:

bj(k) = P (O(t) = k|q(t) = j) (3.2)

3.2.3 HMM Training

Having an initial estimation about the HMMs’ parameters, we proceed with the models’
training using a mixture of both real and generated data. Datasets are shu✏ed and
split into two sets, the training set which will be used to update the models and the
test set that will be used to evaluate it. Similarly to the above, the input is given to
each HMM in the form of 1-D matrix representing the sequence of material classes on
the conveyor belt. To maintain the time dependency of material flow, each dataset is
processed one row at a time.

Figure 3.2: HMMs Framework
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After having all the states predicted we unified the outputs in a matrix in order to
extract relevant statistics and assess the models’ performance.

For the implementation of the HMMs, a MATLAB version, similar to the pseu-
docode provided in [53], has been developed.

3.3 Processing of HMMs Predictions

Our next step is to process the matrix we acquired from the HMMs. For visualization
purposes and calculation of the materials’ centroids, which is explained in detail below,
we turned the five columns of the prediction matrix into twenty five. Basically we
”expanded” the size of the conveyor and at the same time we expanded the size of
the recyclable materials, with respect to their volume (the volume of a can is di↵erent
than the one of a plastic bottle) and their position on the conveyor belt. Namely, each
of the five columns is now expanded in five more columns.

In this step we must note that we added two additional columns, one at the begin-
ning of the matrix (column 1) and one at the end of the matrix (column 27), which
indicate the positions of the bins the recyclable materials must be placed after they
are picked by the Delta Robot.

Figure 3.3: Conveyor Representation for our implementation

Being placed in one of the three bins, whose position is outside but next to the
conveyor, is the target for each and every item and closes the cycle of the sorting
process for each material. These two bin columns, have three bins virtually placed
on them, one on the first column and two on the last. We have chosen their position
based on the workspace of the Delta robot and they are indicated by a single cell, which
represents the centroid of the corresponding bin. The bins’ centroids are hardcoded
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in our algorithm and they remain always the same. The elements of the matrix on
these two columns are noted by the number -1 so that we avoid confusion with our
classes. The conveyor’s representation with the bins illustrated as a red dot is shown
in figure 3.3. The ”x” on the figure 3.3 denote the conveyor itself (class 1), meaning
that each cell with an ”x” is an empty position on the conveyor.

3.4 Decision Manager

In this step of our framework, our aim is to acquire the best picking path for our robot
to follow. As an input to the Q-Learning algorithm we have the matrix we acquired
from the HMMs and was processed to have 27 columns in total. To maintain the time
dependency of our method, we split the matrix in batches of 20 − by − 27 and give
them separately as input; i.e. we split it to smaller matrices of twenty rows each.

Following, we needed to acquire the exact position of every item. More specifically,
we need to know each item’s centroid, in order to be precise about the picking position
and maximize the force of the vacuum’s grip.

For this purpose we isolated in di↵erent matrices the members of each class. Namely
we created three matrices (there was no need for a matrix for class 1 as it corresponds
to the conveyor itself) with zeros in every element of the matrix except the ones that
the class corresponding to each of the matrices appears. In this way we have a list
of pointers for every item. Using these pointers as an input to a k-means clustering
algorithm with the appropriate k (where k is the number of clusters expected and is
di↵erent for every class) we have a list of centroids. Each centroid indicates the center
of an item on the conveyor belt along with its class. The calculation of these centroids
is done before the Q-Learning process itself begins, separately for each splitted matrix
of twenty rows. The matrix with the centroids and the class corresponding to each
centroid is used in the Q-Learning algorithm for two tasks. Firstly, to help in calculat-
ing the reward of each action of the Delta robot and secondly to specify the available
picking points of the recyclable materials and their class.

3.4.1 Q Calculation

In order to proceed to the calculation of q we have one final step, the reward calculation
via an objective function.The reward function is an integral part of the Q-Learning
formulation, as it is necessary for the calculation of the Q matrix which is the main
criterion for the algorithm’s selection of the final path. The first step is to assign a
weight to each of the materials on the belt by using a combination of their value and
the distance that the robot needs to cover for picking and placing. Specifically, the
weight assign to each item is formulated as:

wx =
vxi
dx

(3.3)

where x denotes the specific identified item, i = 2, 3, 4 is the identified material class,
vxi is the value of that item belonging to class i and dx is the total distance required
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for the robot to pick item x and place it in the respective bin. For simplicity purposes,
we assigned indicative values to each class, as shown in table 3.3.

Class 2 (Paper) 3 (Plastic) 4 (Aluminum)

Value (euros) 0.22 0.25 0.27

Table 3.3: Value of each class in euros

Given that processing of the dataset in batches of size 20, a cumulative weight
is calculated for each batch, taking into account both the selected and non-selected
items. The sum of all batch weights provides with the value of our reward function,
which is formulated as:

Ototal =
BX

b=1

(

XbX

xb=1

vxi
dx

−

YbX

yb=1

vyj
dy

) (3.4)

with b = 1, ..., B denoting each of the B batches, xb = 1, ..., Xb denoting the selected
items in batch b and yb = 1, ..., Yb denoting the rest of the items in batch b.

During experimentation, i.e. real-time decision making, the reward is iteratively
calculated and updated in each step of the algorithm, due to the continuous change of
the robot’s position which directly a↵ects it. Robot’s possible movements are selected
based on their reward. The q is calculated every time for the selected action (each
action corresponds to an item). The q matrix is randomly initialized and is iteratively
updated. The logic of q calculation is shown in figure 3.4.

Figure 3.4: Q-learning: An o↵-policy TD control algorithm [4]

The size of the matrix is the same as the reward matrix, which is 20x27. Equa-
tion 3.5 is used for the calculation of q.

q(x) = wx + γ ⇤ qmax (3.5)
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where γ is the discount factor and determines the importance of future rewards. A
factor of 0 will make the robot ”myopic” (or short-sighted) by only considering current
rewards, while a factor approaching 1 will make it strive for a long-term high reward.

The main steps for calculating q are shown in figure 3.5 below:

Figure 3.5: Basic steps for q calculation [5]

After q is estimated according to equation 3.5, the reward corresponding to this
q becomes zero. This is needed because in our problem it is not accepted for the
robot to pass thought the same position twice, as it happens in regular path planning
problems. In this problem once the material is picked it must disappear from our list
of materials, as it is no longer on the conveyor but inside one of the bins. To continue
with, after the picking action we automatically send the robot to one of the bins (to
the one corresponding to the class of the selected material). So, the current position
of the robot becomes the bin position.

This learning procedure stops when the sum of rewards of the remaining items
is smaller than the reward of the most ”precious” item, meaning that the remaining
items on the belt are no longer worthy enough or not many enough. The procedure
is repeated several times until it acquires the best q matrix possible or reaches the
maximum iterations. In our case the maximum iterations are experimentally set to 50
while the gamma (γ) used for the q calculation in equation 3.5 is 0.9. To note that
the main idea of the implementation for the main framework of the Q-Learning code
is from [54].

The complete flowchart for the Q-Learning part of our work is shown in figure 3.6.
The final q matrix is a 20x27 matrix referring to one of the splitted matrices each time.
For each of these matrices given the calculated q we now proceed in the last step of
our work, which is to estimate the optimum pick and place path of the robot.
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Figure 3.6: Flowchart for q calculation

3.4.2 Final Path

In the final part of our method the Decision manager selects which items the robotic
arm will pick and in which order. Thus, we achieve the main goal of this work, to
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acquire a final picking path for our robot which is the most efficient on both time and
cost aspects. For this reason we integrated the time counting. Meaning that from the
beginning of our calculation process we started counting the time till the moment we
got the final q matrix, for each of the splitted matrices. Given that time, we restrain
our simulation to be kept in real time bases and make the picking selection based on
how much time the robot would have in the real world. If this time was not part of our
simulation the algorithm would continue picking items, always based on their value,
starting from the most lucrative one, until there were no items left on the conveyor.
This is not a realistic scenario in real world applications, as the robot will eventually
lose items due to the movement of the conveyor belt. The response time of the Delta
robot was integrated in this part between the picking and placing process.

Based on the final q matrix the item that will be picked from the robot is selected.
More specifically, we find the maximum q that appears in the matrix and then we find
to which material it corresponds. This is the most ”precious” material on the conveyor
at the current moment, so it is the robot’s choice. Once the material is picked,, it is
deleted from the list of the potential picks, as it would have been in real world tasks.
After the selection the material is placed inside the bin corresponding to its class. So
in the robot’s path the bin’s position must be present. After each material on the list
of the robot’s movements we see the bin we collect this type of materials.

The path is calculated individually for each of the splitted matrices. The starting
point of the robot is selected to be at the beginning of the conveyor’s sequence only for
the first of the matrices. Afterwards it is the last position of the robot from the exact
previous sequence, as it is logical. Finally, the path sequence consists of the positions
the robot picked a recyclable material each time and consequently the position of the
corresponding bin.
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Chapter 4

Results

This chapter is divided in two main parts, the qualitative evaluations and the compara-
tive evaluation of the proposed method. In the first part, we begin with the HMM’s per-
formance assessment. Next we proceed with an evaluation of the Q-Learning method,
giving examples of the centroids calculation. We also explain in detail, via experimen-
tal results, how we chose our objective function. Finally, we analyze the experimental
process for the evaluation of the Decision maker. In the second part, we compare our
method with an existing one, developed in our laboratory, in numerous datasets for
di↵erent system configurations.

4.1 Qualitative Evaluation

4.1.1 HMM Assessment

In order to assess the HMMs’ performance, we first trained each HMM, as described
in Chapter 3 and compared the predictions of each model to the ground truth in order
to extract four, per class, performance statistics:

1. Accuracy: ACC = TPi+TNi

Pi+Ni
, i.e. the proportion of correct predictions (both

true positives and true negatives) among the total number of cases examined,

2. Sensitivity: TPR = TPi

Pi
, i.e. the proportion of positives that are correctly

identified,

3. Specificity: TNR = TNi

Ni
, i.e. the proportion of negatives that are correctly

identified, and

4. Precision: PPV = TPi

TPi+FPi
, i.e. the proportion of true positives w.r.t. the

total number of positive predictions.

with i = {1, 2, 3, 4} representing the corresponding class as described in table 3.1, pr
and gt denoting the predicted and ground truth class, respectively, Pi and Ni being the
total number of positives (occurrence) and negatives (non-occurrence), respectively, for
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class i and TPi, FPi, TNi, FNi representing the true positive, the false positive, the
true negative and the false negative detections, respectively, for class i.

An overview of the HMMs’ performance evaluation statistics is given in table 4.1,
as the per class average of all employed HMMs.

i Accuracy Sensitivity Specificity Precision

1 0.8988 0.917 0.9233 0.878
2 0.8433 0.92 0.938 0.8457
3 0.9056 0.84 0.9307 0.9211
4 0.8788 0.918 0.8947 0.8996

Average 0.8816 0.8987 0.9216 0.8861

Table 4.1: Analysis of HMM’s performance.

The above presented results are more than promising presenting high values for all
extracted statistics, implying that the derived models are robust, not only regarding
the successful class predictions (TPi) but also to the rejection of a class.

4.1.2 Predictions Processing

As analyzed in detail in Chapter 3, in order to continue to the Q-Learning and the
picking process we first needed to convert our prediction matrix intoX−by−27 matrix,
with X being the size of corresponding dataset stripe and 27 being the number total
columns counting also the two extreme columns indicating the bins where each material
will be placed after picking, with respect to its class.

The first and last (27th) column of the said matrix, whose elements is -1, represents
the bin. From the 2nd to 26th column we have the expansion of one of the original
prediction columns in five columns. The materials occupy a cell number which respects
the size of the class material (plastic bottles are bigger than aluminum cans). This
matrix was given as input to the Q-Learning algorithm in bulks of 20x27, firstly to
perform k-means clustering for acquiring the centroids of the materials and then to
predict the final picking path.

In order to perform k-means clustering on the prediction data, we first need to
determine the k, i.e. the number of clusters in our data. As already mentioned, class
1 refers to the conveyor, class 2 to paper, class 3 to plastic and finally class 4 refers to
aluminum. A per-class analysis on the examined data is employed in order to estimate
k, based on the expected size for each material (acquired after experimentation) ,
assuming that paper items are larger than plastic bottles which, in turn, are bigger
than the aluminium cans. As an example, consider the following: if in a 20 row part
of the dataset, class 2 appears 127 times we expect to have 5.08 items of class 2.
Obviously the results of these divisions were rounded every time, so we expect to have
5 papers on this part of the conveyor.

Figure 4.1 presents three di↵erent indicative examples of clustering and centroid
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Clusters of each class for a part of the conveyor and the centroids corre-
sponding to an item of each class

estimation. First we see the clusters for the class and then the corresponding centroids
whose positions we use for the reward and q calculation.



46 CHAPTER 4. RESULTS

4.1.3 Objective Function Evaluation

In order to assess the performance of the path planning module, we ran a series of
experiments of di↵erent objective/reward function variations. Specifically, we assessed
three variations of the objective function: (i) the first one takes into account exclusively
the values of the materials to increase the final profit and overlooks the distance,
i.e. dx = 1, (ii) the second one has as a goal to pick the most items in the given
time disregarding their value, i.e. vi = 1 and (iii) the third one is as described in
section 3.4.1.

(a) (b)

Figure 4.2: Accuracy and Profit comparison for the three objective functions

What is observed from the previous analysis is that in terms of accuracy, the second
variation of the objective performs better, which is natural due to elimination of the
value factor. On the other hand, in terms of profit, the second variation provides
for the best results, since the distance modifier is excluded. As expected, the third
variation (original reward formulation) lies somewhere in the middle of the other two,
providing with balanced results, w.r.t. both accuracy and profit made.

In order to perceive the impact of each objective on the system’s performance, we
also assessed the path planning module under the same three reward variations. An
illustrative example is shown in figure 4.3, with the three di↵erent paths for a specific
dataset batch (figure 4.3(a)).

In figure 4.3(b) we observe that the robot picked 5 items. By the numbers on the
figure we know in which order the pick and place actions where made. In this case all
aluminum items where picked, which was expected as aluminum is the most valuable
class and then all the plastic items where picked, which is the second most valuable
class. In this case the path planner decided to pick the most valuable items leaving
the less valuable class.

In figure 4.3(c) 6 items are picked, starting from the closer one and after placing
in the corresponding bin continues picking trying to pick as many as it can without
considering the value of the item.

Finally, in figure 4.3(d) we have again six picked items, in this case we observe again
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(a) Conveyor visualization
(b) Path planning using the 1st objective varia-
tion.

(c) Path planning using the 2nd objective varia-
tion.

(d) Path planning using the 3rd objective varia-
tion.

Figure 4.3: Di↵erent path plans depending on the reward function.

that the path is completely di↵erent than the previous two. It starts by picking the
closest (first on the conveyor) and most valuable item. The path formulation continues
in that way.

After thorough experimentation, we concluded that the third variation of the re-
ward function is most appropriate to our task, combining both profit and accuracy
optimization and providing for more balanced results.

4.1.4 Decision Making Evaluation

The ultimate goal of our work is to acquire the best picking path the robot should
follow. The final path is a matrix with 3 columns. The first two denote the position
of the centroid of the picked material and the third one the class of the material.

The first row of the matrix represents a random starting point, where the robot is
before the pick and place process begins, e.g. “homing” position. Every time we have
a position for an item to pick, the next position is the corresponding bin in order to
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place the material. We must note two things. It can be easily observed is that the
positions -and paths- tend to ”repeat” themselves, due the confined working space of
the robot.

Speed

Number of
items 50 100 120 150

x1 0.8988 0.847 0.809 0.783
x1.2 0.8125 0.7659 0.726 0.637
x1.5 0.719 0.687 0.653 0.534

Table 4.2: Pick and place accuracy.

We evaluated the behaviour of our system under di↵erent experimental setups.
Specifically, we tested the performance of our algorithm with varying conveyor belt
speeds (x1, x1.2 and x1.5) and total number of items on the belt (50, 100, 120, 150),
resulting into a total of 12 configurations. For each of the configurations, we generated
10 simulated datasets (as described in Chapter 2) of approximately 90 seconds of
duration and fed it to the system. An overview of the performance, by means of
average pick and place accuracy formulated as µSP

SI
, where SP denotes the “sum of

items picked” and SI the “sum of items on the belt”, is shown in table 4.2. However,
note that, no matter if it was correctly predicted, an item that passes outside of the
robot’s working space (i.e. the robot didn’t have enough time to pick) is discarded and
does not count towards the SP .

Class2 Picked Class3 Picked Class4 Picked

Normal Values 27 30 37

Weight in class 2 33 29 32

Weight in class 3 25 38 31

Weight in class 4 25 30 39

Sum of items per class 35 42 41

Table 4.3: Extreme Value cases

In order to assess the impact of the items’ value on the decision making we also
measured the efficiency of our picking algorithm on, we conducted a series of exper-
iments by altering the value of each material -namely vxi in eq. 3.4- circularly (one
at a time) to a value significantly larger than that of to the remaining two. Each of
the configurations is tested on 10 generated sequences with approximately 90 seconds
duration, x1 conveyor belt speed and 118 items. In our normal run of the algorithm
the values are in the same range as shown in table 3.3, while in the rest of the cases
we augmented the corresponding class value by 150. An average of the performance
of the decision manager, by means of per class items picked, is shown in table 4.3. In
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each of the cases, compared to the normal value run, we observe that the planner picks
more of the weighted class that it would. These results strengthen the efficiency of our
path planner and its ability to focus in the most valuable items on the conveyor belt.

Accuracy Time(min)

seq. 1 0.5685 22.3

seq. 2 0.5672 22.23

seq. 3 0.5721 22.9

seq. 4 0.5683 22.3

Average 0.569 22.4

Table 4.4: Long-term accuracy.

Finally, we assessed the long-term performance of the decision manager. Towards
this we created 4 long (approximately 25 minutes duration) videos with dense distri-
bution of items on the conveyor belt, summing to 3000 items per sequence, providing
with a better approximation of a real life problem. The evaluation results, by means
of accuracy and total time required, are given in table 4.4.

Considering the results, we can understand that our method can efficiently work
even under much more difficult conditions. The dataset that we generated was a much
ticker dataset with a large number of items. In this point it must be underlined that
in real conditions, for example in a factory where the flow of items falling on the belt
in huge, most of the times there are more than one robots in order to pick the items.
With that in mind, it becomes obvious that the efficiency of our method is more than
satisfactory. We achieve to pick more than half the items on the belt, provided the
employed balanced reward function.

4.2 Comparative Evaluation

In order to further assess the performance of our method, we compare it with that of a
proximity-based picker developed in CVRL for the purposes of the ANASA project[2].
The said picker, while also taking into account the time and the speed of the conveyor
belt, bases the choice of an item each time only on its distance from the robot. The
value of the items is not taken into account. In this way the picker manages to sort a
number of items a satisfactory time but the profit in the end of the process is not the
optimum that can be achieved.

For comparison purposes, we created a total of 50 simulated sequences, containing
varying number of items (i.e. 80, 100, 150, 300 and 400) at two di↵erent conveyor
belt speeds (x1 and x1.2). In all experiments, the parameters for our method were set
to: material values as in table 3.3, while the maximum iterations and the gamma (γ)
factor for the q calculation in equation 3.5 were set to 50 and 0.9, respectively. An
overview of the performance of the two methods, in terms of accuracy, required time
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and profit made is given in tables 4.5 and 4.6 for the two di↵erent speed configurations,
respectively.

Dataset Size Accuracy Time Profit

Proximity

Picker

Our

Method

Proximity

Picker

Our

Method

Proximity

Picker

Our

Method

80 73.45% 84.15% 60.8 64.02 14.63 16.96

100 71.26% 79.3% 69.3 73.9 16.78 19.75

150 69.5% 78.52% 88.7 87.5 25.55 28.73

300 62.83% 70.72% 147.9 153.85 47.07 52.61

400 61.7% 68.46% 187.3 195.42 60.92 67.2

Table 4.5: Performance analysis at conveyor belt speed x1.

Dataset Size Accuracy Time Profit

Proximity

Picker

Our

Method

Proximity

Picker

Our

Method

Proximity

Picker

Our

Method

80 62.03% 70.19% 43.02 46.69 12.4 14.15

100 59.67% 69.33% 51 57.1 14.66 17.27

150 54.8% 59.01% 71.5 69.98 20.15 21.63

300 53.74% 60.34% 131.74 137.95 40.29 44.92

400 52.43% 59.97% 169.79 178.87 51.76 58.87

Table 4.6: Performance analysis at conveyor belt speed x1.2.

The time di↵erence we see when we compare the two results is due to the di↵erent
implementations. To be more precise, the proximity picker was implemented in Python
and our method was implemented in MATLAB. Also the way time was embedded in
each system was di↵erent, which also had an e↵ect in the final result. As we can notice
though, even with this di↵erence when we observe the over time results in the random
picker are outperformed by our method, both in terms of profit and number of items
picked.

As we can see in all the above tables our method outperforms the random picker in
terms of overall accuracy and profit. We observe an average 10% optimization in overall
picking accuracy and in some of the experiments almost 20% rise in the accuracy of
class 4 (aluminum) which is the most profitable class. This was accomplished without
loses in the overall accuracy and by giving to the valuable class only a small rise in
weight compared to the other classes.

Additionally, we can observe that as the number of items on the conveyor grows,
the di↵erence between the profit, which was the main target of our method also grows.
We have a scalable optimization in profit which as we can understand gives us even
greater di↵erences as the number of items approaches the number of items in real world
applications.
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The accuracy optimization is mainly stable in all the sequences of the dataset,
which is expected, as the number of items the robotic arm can pick is restricted by the
capabilities of the arm and the speed of the conveyor.

The statistical findings on the performance of the two methods are also graphically
demonstrated in the following figures. The left graph in each of the figures depicts
the corresponding performance at normal conveyor belt speed, while the right graph
depicts the corresponding performance at speed x1.2. In each graph the x-axis depicts
the size of the dataset (how many items each dataset has) and the y-axis depicts the
corresponding metric (accuracy, time, profit).

(a) (b)

Figure 4.4: Accuracy comparison of the two methods at speeds x1 (a) and x1.2 (b)

Figure 4.4 illustrates the overall accuracy of the methods w.r.t. di↵erent dataset
sizes. We can see from the figures that in both cases, our method outperforms the
proximity picker. We can also observe a stability at the di↵erence between the methods,
which is expected as the robotic arm has a limit at performance, it needs some time
between each pick and place action, which in both implementations was simulated as
a pause of almost a second between them (half second pause after pick action and half
second pause after place action).
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(a) (b)

Figure 4.5: Time comparison of the two methods at speeds x1 (a) and x1.2 (b)

In figure 4.5 we demonstrate the time average results for the two methods. We can
observe that as explained before due to the di↵erent implementations and definition of
time in each of them we have a small rise in time in our method, in average a 5 second
rise. However, this is practically of minimal importance, given the increase in terms of
accuracy and profit.

(a) (b)

Figure 4.6: Time comparison of the two methods at speeds x1 (a) and x1.2 (b)

Moreover, on figure 4.6 we graphically demonstrate the profit comparison of the
two methods. It becomes obvious by the figures that despite the conveyor speed the
profit is always improved. We can also see the scalability of our method as the size of
the dataset increases.

We also have to note here that some of the datasets where sparse and some were
more desne than other. This parameter also does not a↵ect the e↵ectiveness of our
method neither in accuracy nor in profit. The results are consistent in all datasets in
spite any parameter changed when we conducted the experiments.
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Below we finally demonstrate the overall comparative results concerning the per-
class accuracy for the two methods in datasets of di↵erent size.

Figure 4.7: Average accuracy of the two methods for class 2 in di↵erent dataset sizes

Figure 4.8: Average accuracy of the two methods for class 3 in di↵erent dataset sizes
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Figure 4.9: Average accuracy of the two methods for class 4 in di↵erent dataset sizes

As it is obvious from figure 4.7 to figure 4.8 that with respect to classes 2 and 3,
there is no significant di↵erence in the accuracies of the two methods. However, when
it comes to class 4 in 4.9 our method outperforms the proximity picker no matter the
length of the dataset, the density or the speed of the conveyor, which ultimately shows
the success in our implementation as class 4 was in all datasets the most valuable class.



Chapter 5

Discussion

In this chapter we conclude with respect to the presented Path Planner framework.
The latter is deemed as successful since it met its intended design goals. That being
said, and as is the case with most robotics frameworks, there is still space for further
improvements and there is also great potential for its use in numerous other fields ex-
cept recycling. After completing the detailed description of the methodology, assessing
and comparing its results experimentally, we will propose a summary of incremental
upgrades and additions in the spirit of further improving it.

5.1 Our Contribution

The focus of this work has been to create an optimized Path Planner for pick and
place processes. Starting with the prediction of the materials than will next appear
on the conveyor belt, having only information about the previous throws and features
of the materials. For this task we successfully implemented Hidden Markov Model
and predicted the materials with great accuracy. The latter made available additional
information and greatly facilitated accurate material classification.

As far as it concerns the main part of our work, the Path Planner itself, we demon-
strated that it greatly contributes in terms of object selection accuracy and cost (value)
of the picked objects. We succeeded in enhancing accuracy by approximately 10%, and
the value of the selected objects also increased in all cases. We proved our optimized
planner works no matter how small the di↵erence in value is (we experimented in very
big di↵erences and very small as it is the case in real world scenarios). In every ex-
periment the Planner worked as expected and gave priority to the most valuable class,
always taking into account the limitations of the system, the distance of the materials
from the robotic arm and the overall accuracy. We also observed that our method
gives us a scalable di↵erence from existing methods, basically in terms of profit, the
bigger the number of items on the conveyor grows the bigger the di↵erence in profit
grows. This shows great potential of our method in real world applications where the
flow of items is very large and continuous.

55
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5.2 Future Work

In research and development endeavors, additions and improvements can always be
employed to enhance a work. In our case a straightforward enhancement, for the
prediction part of our work, would be a bigger dataset which will make the results
more robust than they already are, as the framework will be tested in real data in
large scale. When we refer to a bigger dataset, we mean in terms of the materials
that are predicted, the material’s features that are extracted and even the number of
samples, in the sense that more samples are always better.

For the Path Planner part, a future task could be to add more parameters in the
reward function of the Q-Learning algorithm, such as the energy consumption of the
picking robot and also the corrosion of the robot resulting from each pick-and-place
action taking into account the distance and the speed it has. In that way, the system
can be optimized not only in terms of profit, but also in terms of energy consumption
and corrosion. We can understand that such a multifaceted optimized system is highly
desirable for processes like the one we are investigating.

Another very interesting future direction is to use the Path Planer we created for
more than one picking robots. As it is generally the case, in a factory for sorting
processes more than one robots are used. Putting in use in such a complete sorting
system our optimized picking method, we could have a clear image about the actual real
world benefit that our method provides and its full potential for real-world employment.

5.3 Other Applications of the Framework

Our framework may also find applications in a wide variety of fields. As such, it can
be used in various industrial tasks that require selection and separation of items. For
example in factories that pack products to get them out for distribution or in units that
pack food products, for example selection between which of the tomatoes will be sold
and which are rotten or bad for the market. Making the appropriate adjustments each
time for the existing system (dimensions of the conveyor belt, robot’s specifications,
items’ classes, conveyor speed, materials’ value) this framework can basically be applied
in various relevant tasks, in any field that involves classification and simultaneous
separation of items on a conveyor belt.

5.4 Epilogue

After examining all aspects of the proposed method, making numerous experiments for
many di↵erent cases and comparing it with an existing method, we can conclude that
our method successfully fulfills its goal. The optimization in the collection of the ma-
terials was e↵ectively demonstrated. In the heart of our approach lies a reinforcement
learning formulation that proved appropriate for such industrial robotic applications.
Reinforcement learning in pertinent automation tasks, as shown in this work, caters for
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optimization, scalability and the capability of learning any specific application through
the direct use in the applications environment.
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Annex: Code

In this section we provide basic parts of the implemented code in three separate parts:
(1) Hidden Markov Models, (2) Reward function calculation, and (3) q matrix calcu-
lation.

PART ONE: HIDDEN MARKOV MODELS

T = length(O);% length of each of these sequences

N = 4; %number of states in Markov process

M = length(B); %number of discrete observations

ct(1) = 0;

for i=1:N

ttmp = prior(i)*B(i,O(1));

at(i,1) = ttmp;

ct(1) = ct(1) + ttmp;

end

%scale a0

ct(1) = 1/ct(1);

59
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for i=1:N

at(i,1) = at(i,1)*ct(1);

end

% compute at(i)

for t = 2:T

ct(t) = 0;

for i = 1:N

at(i,t)=0;

for j = 1:N

at(i,t)=at(i,t) + at(j,t-1)*A(j,i);

end

at(i,t) = at(i,t)*B(i,O(t));

ct(t) = ct(t)+at(i,t);

end

%scale at(i)

ct(t) = 1/ct(t);

for i = 1:N

at(i,t) = ct(t)*at(i,t);

end

end

%The b-pass
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for i=1:N

b(i,T) = ct(T);

end

%b-pass

for t=T-1: -1:1

for i=1:N

b(i,t)=0;

for j=1:N

b(i,t)=b(i,t)+A(i,j)*B(j,O(t+1))*b(j,t+1);

end

b(i,t)=ct(t)*b(i,t);

end

end

for t=1:T-1

tempgt = zeros(N,N);

for i=1:N

g(i,t) = 0;

for j=1:N

tempgt(i,j)=at(i,t)*A(i,j)*B(j,O(t+1))*b(j,t+1);

g(i,t) = tempgt(i,j)+g(i,t);

end

end
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gt(:,:,t) = tempgt;

end

for i=1:N

g(i,T) = at(i,T);

end

%Re -estimate A,B and prior

%re -estimate prior

for i=1:N

prior(i) = g(i,1);

end

%re -estimate A

for i=1:N

demon = 0;

for t=1:T-1

demon = demon + g(i,t);

end

for j=1:N

numer = 0;

for t=1:T-1

numer = numer + gt(i,j,t);

end

A(i,j) = numer/demon;
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end

end

%re -estimate B

for i=1:N

demon = 0;

for t=1:T

demon = demon + g(i,t);

end

for j=1:M

numer = 0;

for t=1:T

if(O(t) == j)

numer = numer + g(i,t);

end

end

B(i,j) = numer/demon;

end

end

MAX = -1;

W = -1;

G = -1;
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for t=1:T

for i=1:N

if(g(i,t) > MAX)

MAX = g(i,t);

G = i;

W = t;

end

end

state_in(t) = G;

MAX = -1;

end

PART TWO: THE REWARD wx CALCULATION

if (current_position (:) ~= previous_position (:))

for i=1:n

for j=1:m

if (reward(i,j)~=0)

if (STRIPES(i,j)==1)

reward(i,j) = -Inf;

elseif (STRIPES(i,j)== 2 || STRIPES(i,j)== 3 ||

STRIPES(i,j)== 4)

if (ismember ([i j], Cent_ordered , 'rows '))

dist = sqrt( (i-current_position (1,1))^2 + (j-

current_position (1,2))^2 );
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if (STRIPES(i,j)==2)

reward(i,j) = 0.22/ dist;

elseif (STRIPES(i,j)==3)

reward(i,j) = 0.25/ dist;

elseif (STRIPES(i,j)==4)

reward(i,j) = 0.27/ dist;

end

else

reward(i,j) = 0;

end

elseif(STRIPES(i,j)==-1)

reward(i,j) = 0;

end

end

end

end

current_position (:) = previous_position (:);

end

PART THREE: q MATRIX CALCULATION

[n_actions_r ,n_actions_c] = find(reward (:,:) >0);

T = [n_actions_r ,n_actions_c ];

if (isempty(T))

break;

end

% choose an action at random and set it as the next state

next_p (1,1) = n_actions_r(randi ([1 length(n_actions_r)]));

[t,~] =find(n_actions_r == next_p (1,1));%?
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next_p (1,2) = n_actions_c(t(1));

if (STRIPES_temp(next_p (1,1), next_p (1,2)) == 2)

bin_p (1,1) = 7;

bin_p (1,2) = 1;

elseif (STRIPES_temp(next_p (1,1), next_p (1,2)) == 3)

bin_p (1,1) = 7;

bin_p (1,2) = 27;

elseif (STRIPES_temp(next_p (1,1), next_p (1,2)) == 4)

bin_p (1,1) = 15;

bin_p (1,2) = 27;

end

current_p (:) = bin_p (:);

[n_actions_r ,n_actions_c] = find(reward (:,:) >0);

% find the maximum q-value i.e, next state with best action

max_q = 0;

for ar=1: length(n_actions_r)

for ac = 1: length(n_actions_c)

max_q = max(max_q ,q(n_actions_r(ar),n_actions_c(ac)));

end

end

% Update q-values as per Bellman 's equation

q(next_p (1,1),next_p (1,2)) = reward(next_p (1,1),next_p (1,2)

)+gamma*max_q;

reward(next_p (1,1),next_p (1,2)) = 0;
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