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Abstract

We explore an approach for solving the Conformal Bootstrap using reinforce-
ment learning techniques. Specifically, we apply the SAC[5] reinforcement
learning algorithm to a 2D compactified bosonic CFT and demonstrate its
effectiveness in yielding reasonable results. Through extensive experimenta-
tion, we show that our reinforcement learning approach is capable of finding
solutions that align with known results and exhibit desirable properties. Our
findings highlight the potential of reinforcement learning as a valuable tool
for solving the Conformal Bootstrap problem.
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Introduction

Conformal field theories (CFTs) are quantum field theories that are invari-
ant under the conformal group. Their applications in condensed matter
physics (e.g. the study of the behavior of strongly correlated electron sys-
tems and the study of the critical behavior of phase transitions in condensed
matter systems) and theoretical physics (e.g. String theory and black hole
dynamics) have made their study crucial for research in these fields.

For years, theoretical physicists have turned their eye to analytic and
conventional computational methods to probe the vast unanswered question
on various important CFTs and their connection to the bigger picture of the
cosmos.

One of the key challenges in studying CFTs is understanding their opera-
tor spectra and the constraints imposed by the crossing equations. The Con-
formal Bootstrap provides a powerful mathematical approach to investigate
the properties of CFTs. By imposing consistency conditions on correlation
functions, it allows us to derive constraints on the conformal dimensions
and operator coefficients. Solving the Conformal Bootstrap problem entails
finding solutions that satisfy these constraints, enabling us to gain insights
into the symmetries and dynamics of the underlying CFTs.

Traditionally, solving the Conformal Bootstrap problem has relied on
analytical techniques, perturbative expansions, or numerical methods such
as semidefinite programming. However, due to the vast parameter space of
CFTs and the complexity of the bootstrap equations, finding precise solu-
tions remains a formidable task. This motivates the exploration of alterna-
tive computational approaches that can efficiently navigate the parameter
space and uncover meaningful solutions.

In recent years, a new field of computer science has emerged, machine
learning. This field focuses on the development of algorithms and models
that allow machines to learn from data and improve their performance on
a task. Machine learning is used to develop systems that can automatically
recognize patterns in data, make predictions, and take actions based on those
predictions. So far machine learning has had successful applications in a
huge array of industries and science fields including Medicine, Astrophysics,
Biology, Economics, Psychology and many others.

The numerous achievements of machine learning raise the following ques-
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tion; could machine learning also find applications in theoretical physics?
Several attempts have been made, met with various degrees of success. In
this work, we explore the possibility of implementing machine learning al-
gorithms to solve conformal field theories via conformal bootstrap [9] [13].

A powerful for, of machine learning, reinforcement learning, has emerged
as a promising tool for solving complex problems in various domains, ranging
from robotics to natural language processing. The ability of reinforcement
learning agents to learn from interactions with an environment, guided by
rewards, makes it an intriguing candidate for tackling the Conformal Boot-
strap problem. By formulating the problem as a reinforcement learning
task, we can leverage the agent’s exploration and optimization capabilities
to search for conformal dimensions and operator coefficients that satisfy the
bootstrap constraints.

The toy model theory we will make our discussion on will be a two
dimensional compactified boson. We will explore ideas and limitations of
the reinforcement learning approach to solve the theory at a point on the
conformal manifold and also to flow away from that point and obtain a
global solution on that manifold.

Of course to make that discussion, for completeness sake we must first go
through the prerequisites of CFT, conformal bootstrap and the 2D compact
boson. The first chapters aims to familiarize the reader with these topics
while establishing our formalism and conventions. On chapter 1 we will
make a brief review of CFT focusing on 2D CFTs and analytically solve
the 2D compactified boson CFT. On chapter 2 we will make derive the
crossing symmetry equations and see how they are further constrained by
the existence of a global U(1) symmetry. On chapter 3 we discuss the need of
truncations and spin partitions and further explore the 2D boson to get a feel
of what would be an appropriate spin partition and truncation. On chapter
4 we setup the exact framework of our work and describe our methodology.
On chapter 5 we present the results we obtained through our methods.
Lastly, on chapter 6 we conclude the work and provide an outlook for future
projects.

Note that throughout this work, it is assumed that the reader has at
least introductory course level knowledge in quantum field theory and group
theory. Basic knowledge on scalar fields, propagators, Wick’s theorem,
Noether’s theorem, Ward’s identities, symmetries, groups, representations,
generators is essential to keep up with the discussion.
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Chapter 1

A Brief Review of CFT

We begin our discussion by briefly reviewing the most important general
aspects of CFTs and in particular two dimensional CFTs. After, we solve
the S1 theory of a compact boson as an example.

1.1 Introduction to Conformal Symmetry

Conformal field theories are quantum field theories that are invariant under
the conformal group. We shall begin by studying this symmetry.

Definition 1 Consider a D-dimensional flat space-time with a metric ηµν .
A conformal transformation of the coordinates is defined as an invertible
mapping x → x′, which leaves the metric tensor invariant up to a scale
factor:

ηµν → Ω2(x)ηµν

or equivalently:
∂x′ρ

∂xµ
∂x′σ

∂xν
η′ρσ = Ω2(x)ηµν (1.1)

The local rescaling factor Ω2(x) is called a Weil factor.

The set of transformations of the form of (1.1) compose a group; the con-
formal group. Note that for Ω2(x) = 1, (1.1) becomes a Poincare transfor-
mation and thus the Poincare group is a sub-group of the conformal group.
Let us now put some physical context on the conformal group transforma-
tions. Consider two vectors A,B. The angle θ between them is defined
as

cos θ =
A ·B
|A||B|

=
ηµνA

µBν√
ηρσAρAσ

√
ητδBτBδ

Suppose now we make a conformal transformation. The transformed angle
(in the original frame of reference) is:
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cos θ′ =
Ω2(x)ηµνA

µBν√
Ω2(x)ηρσAρAσ

√
Ω2(x)ητδBτBδ

=

ηµνA
µBν√

ηρσAρAσ
√
ητδBτBδ

= cos θ

This result leads to the following alternative, more intuitive, definition of a
conformal transformation.

Definition 2 A conformal transformation is a mathematical mapping that
preserves angles, while allowing changes in sizes and orientation.

Equation (1.1) holds for any finite conformal transformation. We can use
that to see how an infinitesimal transformation acts and through that find
the generators and Lie algebra of the conformal group.
Consider an infinitesimal conformal transformation:

x′µ = xµ + ξµ(x) Ω(x) = 1 + κ(x) (1.2)

Substituting (1.2) in equation (1.1) and neglecting O(ξ2),O(κ2),O(ξκ) (and
higher) terms we obtain:

∂µξν + ∂νξµ = 2κ(x)ηµν (1.3)

Equation (1.3) is known as the conformal killing equation for flat space-
time1. If we contract (1.3) with ηµν we obtain:

κ(x) =
1

D
∂µξ

µ (1.4)

1.2 Conformal Symmetry in D > 2

Even though in this work we will focus on the two dimensional case it will be
beneficial to briefly study how conformal symmetry works for D > 2. The
reason for that is that elements of the D > 2 case can be trivially passed on
the 2D case in the appropriate context.
For D > 2, the general solution of (1.3) is:

ξµ(x) = aµ + ωµ
νx

ν + σxµ + bµxρxρ − 2bνx
νxµ (1.5)

κ(x) = σ − 2bνx
ν (1.6)

where:

1For curved space-time: ∂µ → ∇µ
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� aµ is a constant

� ωµ
ν is the infinitesimal Lorentz transformation (i.e. ωµν = −ωνµ)

� σ is the dilatation factor

� bµ is the special conformal transformation constant

1.2.1 Conformal Algebra

Writing (1.2) as x′µ = (1 + ξν∂ν)x
µ we can see that we can choose a basis

for our Lie algebra so that the conformal killing vector, ξµ∂µ is a generator
of said Lie algebra. With that established and by taking a look at equations
(1.5) and (1.6) we can see there are four fundamental parts (or sub-groups)
of the conformal symmetry:

i) The generator of translations:

Pµ = ∂µ (1.7)

which is our well known momentum.

ii) The generator of rotations:

Lµν = xµ∂ν − xν∂µ (1.8)

also known as Lorentz transformation.

iii) The generator of dilatation:

D = xµ∂µ (1.9)

that re-scales towards all directions and finnaly,

iv) The special conformal transformations’ generator:

Kµ = 2xµx
ν∂ν − xρxρ∂µ (1.10)

whose interpretation is to be discussed in 1.2.2

With these definitions, the most general generator, according to (1.5), is:

ξµ∂µ = aµPµ +
1

2
ωµ

νL
ν
µ + σD + bµKµ (1.11)

As we can see by looking at equations (1.7), (1.8), (1.9) and (1.10), the
number of independent generators is:

N =
1

2
(D + 1)(D + 2) (1.12)
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Since the conformal group, as mentioned before, is a Lie group, the ele-
ments of the corresponding Lie algebra (i.e. the generators) must be closed
under the algebra’s product (i.e. the commutator). The only non-vanishing
commutators are:

Conformal generators’ commutation relations (D > 2)

[Pµ, Lνρ] = ηµνPρ − ηµρPν (1.13)

[Pµ,Kν ] = −2ηµνD + 2Lµν (1.14)

[Kµ, Lνρ] = ηµνKρ − ηµρKν (1.15)

[Kµ, D] = −Kµ (1.16)

[Pµ, D] = Pµ (1.17)

[Lµν , Lρσ] = ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ (1.18)

As these relations show, the generators form a closed algebra under the
commutator, as is to be expected from the Lie algebra of a Lie group.

1.2.2 Finite Conformal Transformations

After our study of the conformal algebra we can now recover finite conformal
transformations through the exponential map:

x′µ = eξ
ν∂νxµ (1.19)

Lets see how a finite transformation look like for the four fundamental parts
of the conformal symmetry:

i) The most trivial case is just considering ξµ = aµ:

x′µ =

(
1 + aν∂ν +

1

2
(aν∂ν)

2 +O((aν∂ν)3)
)
xµ

and since ∂µx
ν = δ ν

µ we get:

x′µ = xµ + aµ (1.20)

ii) Next, lets consider a rotation, i.e. ξµ = ωµ
νxν . The result is:

x′µ =Mµ
ν x

ν (1.21)
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as is well known from studying the Lorentz group

iii) Consider now a dilatation, ξµ = σxµ :

x′µ =

(
1 + σxν∂ν +

1

2
(σxν∂ν)

2 + · · ·
)
xµ =

(
1 + σ +

σ2

2

)
xµ ⇒

x′µ = eσxµ (1.22)

which, as mentioned before, is just a re-scaling towards all directions.

iv) Lets now study the non-trivial case of special conformal transforma-
tion, i.e. ξµ = bµx2+2bνx

νxµ. Through the exponential map, one can
get:

x′µ =
xµ + bµx2

1 + 2b · x+ b2x2
(1.23)

At first this result does not seem to have any special meaning. This is
incorrect. Lets first evaluate the norm of the transformed four-vector. (1.23)
implies that:

x′2 =
x2

1 + 2b · x+ b2x2

substituting back to (1.23) we get:

x′µ

x′2
=
xµ

x2
+ bµ (1.24)

Equation (1.24) implies that special conformal transformations are just trans-
lations in the inverted coordinates frame of reference (xµ → xµ

x2 ). This also
means that translations (generated by Pµ) are special conformal transfor-
mations on the inverted coordinates frame.

1.3 Conformal Symmetry in D = 2

We will now continue our discussion for the special case of D = 2 which is
of more interest in this work. What is special in the two dimensional case?

1.3.1 Conformal Group in Two Dimensions

The answer lies back to the way we studied the infinitesimal transformations
and obtained the generators; the conformal killing equation.
Consider, without loss of generality, a euclidean two dimensional plain with
coordinates (x1, x2). Now, consider a mapping xµ → y(x)µ. By demanding
that the mapping to be conformal, we know that the metric must transform
as in (1.1). An explicit calculation, yields the following constraints on the
transformation:
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∂1y
2 = ∂2y

1 and ∂1y
1 = −∂2y2 (1.25)

or
∂1y

2 = −∂2y1 and ∂1y
1 = ∂2y

2 (1.26)

Equations (1.25) and (1.26) are the well known Cauchy-Riemann equations
for holomorphic and anti-holomorphic complex functions respectively. This
result, motivates the use of the following complex coordinates to study the
problem:

Definition of complex coordinates

z = x1 + ix2 z̄ = x1 − ix2 (1.27)

∂ =
1

2
(∂1 − i∂2) ∂̄ =

1

2
(∂1 + i∂2) (1.28)

x1 =
1

2
(z + z̄) x2 =

1

2i
(z − z̄) (1.29)

∂1 = ∂ + ∂̄ ∂2 = i(∂ − ∂̄) (1.30)

Note that for all intents and purposes, z and z̄ are considered to be inde-
pendent variables with the constraint z∗ = z̄.
In this coordinate system, the flat metric becomes ds2 = dz dz̄. An infinites-
imal conformal transformation, z → w(z), is now:

w = z + ϵ w̄ = z̄ + ϵ̄ (1.31)

The conformal Killing equation yields the following constraints:

∂̄ϵ = 0 ∂ϵ̄ = 0 (1.32)

Which simply mean that ϵ is holomorphic and ϵ̄ is anti-holomorphic. This
constraint leaves a huge freedom on possible conformal transformations. In
two dimensions, the space of local solutions to the conformal Killing equation
is infinite dimensional. This results in a well known complex analysis result:

Theorem 1 Any analytic mapping, z → w(z), of the complex plain to itself
is conformal.

This results in the following definition of the conformal group in two dimen-
sions:

Definition 3 The conformal group in two dimensions is the set of all an-
alytic mappings of the complex plain to itself with the group multiplication
being the composition of these maps. The group is infinitely dimensional as
there do exist locally analytic mappings in every point of the complex plain.
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1.3.2 Energy-Momentum Tensor, Charges and the Virasoro
Algebra

As one would expect, the infinite dimensional conformal group in two di-
mensions, has generators obeying an infinite dimensional Lie algebra. This
algebra is called Virasoro algebra.
To better understand this algebra we will start indirectly, from the energy
momentum tensor. Since we are dealing with local theories, we can indeed
define a conserved energy momentum tensor, Tµν . As we are dealing with
conformal field theories, this tensor is trace-less. In the complex coordinates
defined in (1.27-1.30) these constraints are:

Tzz̄ = Tz̄z = 0 ∂Tzz = ∂Tz̄z̄ = 0 (1.33)

As (1.33) suggests, in two dimensional CFTs there are only two non-zero
elements, one holomorphic and one anti-holomorphic. For later convenience,
we re-define said non-zero elements as:

T (z) = −2πTzz T̄ (z̄) = −2πTz̄z̄ (1.34)

The conformal charge associated with the holomorphic component of an
infinitesimal transformation z → z + ϵ(z) is defined via:

Qϵ =
1

2πi

∮
dz ϵ(z)T (z) (1.35)

By mode expanding T(z) and ϵ(z) we obtain a relation between the energy-
momentum tensor and the Virasoro generators Ln:

T (z) =
∑
n∈Z

z−n−2Ln ⇔ Ln =
1

2πi

∮
dz zn+1T (z) (1.36)

The extension of (1.35) and (1.36) to their anti-holomorphic counterparts is
trivial.
As discussed on 1.3.1 ϵ(z) is bound by conformal symmetry to be holomor-
phic in the neighborhood of z. This allows us to express it as a Laurent
series as:

ϵ(z) =
∑
n∈Z

zn+1ϵn ϵ̄(z̄) =
∑
n∈Z

z̄n+1ϵ̄n (1.37)

Using this expansion, in combination with (1.36) we can write the conformal
charge in a series of the form:

Qϵ =
∑
n∈Z

ϵnLn Qϵ̄ =
∑
n∈Z

ϵ̄nL̄n (1.38)

And thus, the conformal charge is just a linear combination of generators of
local conformal transformations.
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The set of infinite generators, Ln, comprising the Virasoro algebra obey the
commutation relations:

Virasoro Algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (1.39)

[Ln, L̄m] = 0 (1.40)

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0 (1.41)

where c is the theory dependent central charge and n,m ∈ Z.

1.3.3 Möbius Subgroup and the Global Part of the Confor-
mal Algebra

As stated in definition 3 of sector 1.3.1 any analytic mapping constitutes
a conformal transformation in two dimensions. It was also mentioned that
there are infinite local such mappings. What about global mappings? Are
there conformal transformation in two dimensions that are well defined on
the whole Riemann sphere?
The answer is indeed affirmative. Such mappings are called Möbius trans-
formations and have the form:

f(z) =
az + b

cz + d
, ad− bc = 1, a, b, c, d ∈ C (1.42)

Transformations defined by (1.42) can be represented by 2× 2 complex ma-
trices with unit determinant and thus the subgroup of global transformations
is SL(2,C). Note that in this group the number of independent elements is
6. This is the same result we could have gotten from (1.12) with D = 2.
If we now take a look at the general commutation relations of (1.39 - 1.41)
we can identify the global sub-algebra:

Global Sub-Algebra

[L−1, L1] = −2L0, [L0, L1] = −L1, [L0, L−1] = L−1 (1.43)

and their anti-holomorphic counterparts:

[L̄−1, L̄1] = −2L̄0, [L̄0, L̄1] = −L̄1, [L̄0, L̄−1] = L̄−1 (1.44)
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This is indeed the algebra sl(2,C) and thus we associate the generators
L−1, L0 and L1 and their anti-holomorphic counterparts with global confor-
mal transformations.
By comparing (1.43) and (1.44) with the ”standard” D > 2 CFT generators’
commutation relations (1.13 - 1.18), we identify them as follows:

� L−1, L̄−1 generate translations

� L1, L̄1 generate special conformal transformations

� L0, L̄0 are associated with dilatations and rotations.

By writing the D > 2 generators as linear combinations of the D = 2 global
generators according to the above schematic and forcing them to obey the
commutation relations, we can get the following relations between the two:

2D generators relation to D > 2 generators

L−1 =
1

2
(P1 − iP2) L̄−1 =

1

2
(P1 + iP2) (1.45)

L0 =
1

2
(D − iL12) L̄0 =

1

2
(D + iL12) (1.46)

L1 =
1

2
(K1 + iK2) L̄1 =

1

2
(K1 − iK2) (1.47)

With all this discussion in mind, we arrive at the following conclusion that
justifies our previous study of the D > 3 conformal symmetry:

Theorem 2 The group theoretic findings on the conformal group in D > 2
apply in the two dimensional case only for the global subgroup.

1.4 Primaries, Quasi-Primaries and the Operator
Product Expansion

Now that we have grasped the conformal symmetry in two dimensions, we
can talk about some general aspects of two dimensional conformal field the-
ories that are of interest in this work.
Lets begin with some important definitions and theorems:

Definition 4 (Conformal Dimension) Consider a quantum field O∆, s(x).
The dilatation weight or conformal dimension, ∆ is defined to be equal to
the mass dimension of said field. Equivalently, under a re-scaling, x′ = λx
the field transforms as:

O′
∆, s(λx) = λ−∆O∆, s(x)
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Definition 5 (Spin) Consider a quantum field O∆, s. The operator spin, s,
is a quantum number that characterizes the transformation properties of said
operator under the rotation group. It takes integer and half-integer values.
For example a s = 0 operator transforms under the trivial representation of
the rotation group, a s = 1/2 one under the spinor representation, a s = 1
one under the vector representation etc.

These are general aspects of CFTs, regardless of dimension. From now on,
we will focus on two dimensional CFTs.

1.4.1 Primaries and Quasi-Primaries

Consider a field φ(z, z̄) with dilatation weight ∆ and spin s. We define the
holomorphic conformal dimension h and its antiholomorphic counterpart as:

h =
∆+ s

2
h̄ =

∆− s
2

(1.48)

which in turn implies that:

∆ = h+ h̄, s = h− h̄ (1.49)

Definition 6 (Primary Field) A field φ of conformal dimensions (h, h̄)
that, under any conformal map z → ζ(z), z̄ → ζ̄(z̄), transforms as:

φ′ (ζ(z), ζ̄(z̄)) = (
dζ

dz

)−h(dζ̄
dz̄

)−h̄

φ(z, z̄) (1.50)

is called a primary.

Note that for an infinitesimal conformal transformation, ζ = z+ϵ, ζ̄ = z̄+ ϵ̄,
the variation of a primary field is:

δϵ,ϵ̄φ = φ′(z, z̄)− φ(z, z̄) = −(hφ∂zϵ+ ϵ∂zφ)− (h̄φ∂z̄ ϵ̄+ ϵ̄∂z̄φ) (1.51)

Definition 7 (Quasi-Primary Field) If said field transforms as in (1.50)
and (1.51) at least under the Mobius global subgroup then it is called quasi-
primary.

It is a direct result of the above definitions that all primary fields are also
quasi-primary but the reverse is not true. Note that if D > 2 primaries
and quasi-primaries are the same thing; the distinction is a two dimensional
CFT particularity.
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1.4.2 Unitarity Bounds

Unitarity bounds on CFTs arise from the requirement that the theory pos-
sesses a positive definite inner product on its Hilbert space, which guarantees
a positive norm for physical states.

Theorem 3 (Unitarity Bounds) For a CFT in D dimensions, the uni-
tarity bounds on the scaling dimensions ∆ of primary operators O can be
stated as:

∆ = 0 O = 1

∆ ≥

{
D−2
2 s = 0

D + s− 2 s > 0

(1.52)

Note that in the case of a two dimensional CFT, for a non-identity operator,
(1.52) is simply:

∆ ≥ s (1.53)

1.4.3 Ward Identities and Correlation Functions

Ward identities are the quantum counterpart to Noether’s theorem in clas-
sical physics. In 2D CFTs they relate the behavior of correlation functions
under infinitesimal conformal transformations.
Consider an infinitesimal transformation z → z+ ϵ(z), z̄ → z̄+ ϵ̄(z̄), a string
of fields X and their correlation function ⟨X⟩. The 2D conformal ward
identity has the form:

δϵ,ϵ̄⟨X⟩ = −
1

2πi

∮
C
dz ϵ(z)⟨T (z)X⟩+ 1

2πi

∮
C
dz̄ ϵ̄(z̄)⟨T̄ (z̄)X⟩ (1.54)

Where is counterclockwise and it needs to only contain the positions of
operators in X.
According to the conformal ward identity, some complex analysis and the
charge definition (1.35):

δϵϕ = −[Qϵ, ϕ] (1.55)

This means that Qϵ is a generator of conformal transformations. A result
we had previously found when we studied the Virasoro algebra.
Suppose now that ϵ is an infinitesimal Möbius transformation and that the
fieldsX are quasi-primary. In that case, since SL(2,C) is a true symmetry of
2D CFTs the variation of a correlation function must vanish; i.e. δϵ⟨X⟩ = 0.
(We only consider the holomorphic part for brevity as the extension to the
anti-holomorphic part is trivial). In this case the integrals on (1.54) can be
computed using the residue theorem yielding:
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δϵ⟨X⟩ = −
∑
i

(ϵ(zi)∂i + ∂iϵ(zi)hi⟨X⟩ = 0 (1.56)

The constraint imposed by equation (1.56) fixes the form of correlation func-
tions of Quasi-primary fields (and therefore also primaries):

� The two-point correlation function is:

⟨φi(z, z̄)φj(w, w̄)⟩ =

{
gij

(z−w)2h(z−w)2h̄
if hi = hj = h and h̄i = h̄j = h̄

0 else

(1.57)
Where gij is a constant. For scalar fields the operators spectrum can
be diagonalized such that gij = δij .

� The three-point function is:

⟨φi(zi, z̄i)φj(zj , z̄j)φk(zk, z̄k)⟩ =

fijk ·
1

z
hi+hj−hk

ij z
hj+hk−hi

jk z
hi+hk−hj

ik

1

z̄
h̄i+h̄j−h̄k

ij z̄
h̄j+h̄k−h̄i

jk z̄
h̄i+h̄k−h̄j

ik

(1.58)

where zij = |zi − zj |.

� The four-point function has the form:

⟨φ1(z1, z̄1)...φ4(z4, z̄4⟩) = g(ζ, ζ̄)
4∏

i<j

z
h/3−hi−hj

ij z̄
h̄/3−h̄i−h̄j

ij (1.59)

where ζ = z12z34
z13z24

is a quantity called cross ratio and h =
∑4

i=1 hi, h̄ =∑4
i=1 h̄i. The function g(ζ, ζ̄) is an arbitrary, theory dependent, func-

tion of the cross ratios.

1.4.4 Operator Product Expansion

Lets now turn our eye on a very important tool in dealing with CFTs.

Theorem 4 (Operator Product Expansion)
Given two operators Oi(z),Oj(w) there exists a converging expansion of the
form:

Oα
i (z)O

β
j (w) =

∑
Quasi−primaries

Ck
ij f̂

k αβ
ij γ (z − w, ∂w)Oγ

k(w) (1.60)
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where α, β, γ are spin indices (in the appropriate representation for each op-
erator). The OPE coefficients Ck

ij are theory dependent c-numbers that are

closely connected to the three-point function coefficients and f̂kij are differ-
ential operators fixed by conformal symmetry. [8]

Equation (1.60) is to be understood in the context of a correlation func-
tion. A very crucial property of the operator product expansion is that it is
associative.
A useful example of the OPE is between the energy-momentum tensor and
a primary field, that can be obtained from the ward identities:

T (z)φ(w, w̄) = h
φ(w, w̄)

(z − w)2
+
∂wφ(w, z̄)

z − w
+ ”non− singular terms” (1.61)

T̄ (z̄)φ(w, w̄) = h̄
φ(w, w̄)

(z̄ − w̄)2
+
∂w̄φ(w, w̄)

z̄ − w̄
+ ”non− singular terms” (1.62)

equation (1.61) (or equivalently (1.62)) can be used (and are used by various
authors) as a definition of a primary field.
Another interesting OPE is that of the energy momentum tensor with itself:

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+”non−singular terms” (1.63)

where c is the theory dependent central charge that appears in the Virasoro
algebra.
Comparing the OPE (1.63) with (1.61) we can come to the conclusion that
the energy-momentum tensor is not a primary operator.
Let us now make here a terminology definition:

Definition 8 (CFT Data) The complete set of quasi-primary operators
{Oi} and their OPE coefficients are called CFT data. Given the CFT data,
one can compute any correlation function and thus has solved the theory.

1.4.5 Hilbert Space and Conformal Families

We define the vacuum by its property to be invariant under global trans-
formations. This can be recovered and extended to a statement about local
transformations by the natural argument that T (z) |0⟩ and T̄ (z̄) |0⟩ are well
behaved at the origin. This requirement combined with (1.36) yields:

Ln |0⟩ = 0 L̄n |0⟩ = 0 (n ≥ −1) (1.64)

Now that we have defined the foundation of our Hilbert space, lets introduce
a very useful tool in dealing with CFT’s states:
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Theorem 5 (State-Operator Correspondence) Consider a primary field
φ(z, z̄) of conformal dimensions (h, h̄). For each such operator we can define
a state, dual to it, as:

φ←→
∣∣h, h̄〉 = φ(0, 0) |0⟩ (1.65)

This is called the state-operator correspondence.

We can see the action of Ln and L̄n on
∣∣h, h̄〉 by finding its commutator

with φ. Using (1.36) and the OPE (1.61), (1.62) we calculate:

[Ln, φ(w, w̄)] = h(n+ 1)wnφ(w, w̄) + wn+1∂φ(w, w̄), (n ≥ −1) (1.66)

[L̄n, φ(w, w̄)] = h̄(n+ 1)w̄nφ(w, w̄) + w̄n+1∂̄φ(w, w̄), (n ≥ −1) (1.67)

This in turn yields:

L0

∣∣h, h̄〉 = h
∣∣h, h̄〉 L̄0

∣∣h, h̄〉 = h̄
∣∣h, h̄〉 (1.68)

and
Ln

∣∣h, h̄〉 = 0, L̄n

∣∣h, h̄〉 , (n > 0)

The above, motivate an alternative (and more useful in the context of our
discussion) definition of primaries and quasi-primaries:

Definition 9 (Primary Field)

A field φ(z, z̄) with conformal weights (h, h̄) is called a primary if:

Ln

∣∣h, h̄〉 = 0, L̄n

∣∣h, h̄〉 = 0, ∀ n > 0 (1.69)

Definition 10 (Quasi-Primary Field)
A field φ(z, z̄) with conformal weights (h, h̄) is called a quasi-primary if at
least:

L1

∣∣h, h̄〉 = 0, L̄1

∣∣h, h̄〉 = 0 (1.70)

Equation (1.68) shows that L0, L̄0 are diagonal. It is therefore convenient
to use their eigenstates as a basis for our Hilbert space. The commutator:

[L0, Ln] = −nLn [L̄0, L̄n] = −nL̄n (1.71)

and so Ln, L̄n act as raising (for n < 0) and lowering (for n > 0) operators
for h and h̄. i.e.:

Lm

∣∣h, h̄〉 ∝ ∣∣h−m, h̄〉 L−m

∣∣h, h̄〉 ∝ ∣∣h+m, h̄
〉

(m > 0) (1.72)

with the trivial extension for L̄m.
To complete our discussion on the Hilbert space, we define two more useful
definitions:
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Definition 11 (Descendant States) If φ is a primary field with corre-
sponding state

∣∣h, h̄〉, states of the form L−kN ...L−k2L−k1

∣∣h, h̄〉 are called
descendant states of φ(z, z̄). Such a state has holomorphic conformal weight
h+

∑N
i=1 ki.

Definition 12 (Conformal Families) The set consisting of the primary
φ and all its descendants is called a conformal family. Members of a con-
formal family transform to linear combinations of themselves.

In this work, we will explore the Hilbert space only with the SL(2,C) sub-
group representations since we want our methods to be easily generalizable
on higher dimensions.

1.5 Example: Analytic solution of S1 theory

1.5.1 Introduction

Now that we have familiarized ourselves with CFT, we can analyze a specific
theory and see the concepts discussed before in action. It is this theory that
will be our toy model throughout this work.
Consider a scalar field X with a two dimensional world-sheet and a circular
target space of radius R. Such a system is described by the action and
boundary condition:

S =
1

4π

∫
d2z∂X(z, z̄)∂̄X(z, z̄), X = X + 2πR (1.73)

This action, solving the classic euler Lagrange equations, yields the field’s
equation of motion:

∂∂̄X(z, z̄) = 0 (1.74)

Which is nothing more than the very familiar wave equation.
The two-point correlation function or propagator is by construction the
Green’s function of the differential operator ∂∂̄. Or explicitly:

∂∂̄ ⟨X(z, z̄)X(w, w̄)⟩ = πδ(z − w)δ(z̄ − w̄) (1.75)

Solving equation

⟨X(z, z̄)X(w, w̄)⟩ = −[ln(z − w) + ln(z̄ − w̄)] + const (1.76)

Comparing this to the two point-function of a primary field (1.57), we deduce
that X is not a primary (or quasi-primary) field. In fact X is not even a
well defined field (from the physical perspective) since the correlator (1.76)
diverges at large distances.
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Using the Noether prescription on the theory’s Lagrangian and (1.34), one
can obtain the theory’s energy momentum tensor. The energy momentum
is:

T (z) = −1

2
: ∂X∂X : (1.77)

where the : ψ : notation denotes normal ordering, i.e. all annihilation oper-
ators to the right.

1.5.2 Primaries of the theory

By calculating the OPE with the energy momentum tensor using wick’s
theorem and comparing it to the conformal primaries defining OPE (1.61),
we can see that in this theory, the basic primaries are the U(1) conserved
currents:

j(z) =
i

2
∂X(z), j̄(z̄) =

i

2
∂̄X(z̄) (1.78)

with conformal weights (1, 0) and (0, 1) respectively.
and the vertex operators:

Vp,p̄ =: eipX(z)+ip̄X̄(z̄) : , p =
n

R
+
wR

2
, p̄ =

n

R
− wR

2
(1.79)

where X(z) and X(z̄) denote the holomorphic and anti-holomorphic parts
of X(z, z̄), n is the integer momentum, w is the winding number.
The charges p and p̄ are called left (or holomorphic) and right (or anti-
holomorphic) momentums.

The conformal scaling dimensions of a vertex operator are: (h, h̄) = (p
2

2 ,
p̄2

2 ).
By (1.48) the dilatation weight and spin of the vertex operators is:

∆ =
n2

R2
+
w2R2

4
s = nw (1.80)

As equation (1.80) suggests, a vertex operator without integer momentum
or winding is spin-less.

1.5.3 Operator Product Expansions

To further explore the theory, we shall first write down some OPEs of the
theory. All the results below are calculated using Wick’s theorem and/or
derivatives of (1.76).

� As stated before, ∂X is a primary and thus, it’s 2 point correlation
function is fixed by (1.57). The constant gij is fixed to be -1 to be
consistent with the result we would obtain by differentiating (1.76)
twice. That is:
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∂X(z)∂X(w) = − 1

(z − w)2
+ ”r.t.” (1.81)

where ”r.t.” stands for ”regular terms”.

� By directly differentiating the above expression with respect to w, n
times, we obtain the more general:

∂X(z)∂nX(w) = − n!

(z − w)n+1
+ ”r.t.” (1.82)

� The OPE of ∂X with a vertex operator eipX , given by Wick’s theorem
and (1.82) :

∂X(z)eipX(w) = −ip e
ipX

z − w
+ ”r.t.” (1.83)

� The OPE with the energy momentum tensor with ∂X:

T (z)∂X(w) =
∂X(w)

(z − w)2
+
∂2X(w)

z − w
+ ”r.t.” (1.84)

Note, again that the ∂X operator has the primary form OPE with the
energy momentum tensor first introduced in (1.61)

� The OPE of the energy momentum tensor with the vertex operator
eipX , too has that exact form:

T (z)eipX(w) =
p2

2

eipX(w)

(z − w)2
+
∂eipX(w)

z − w
+ ”r.t.” (1.85)

1.5.4 Quasi-Primaries

We want to organise our spectrum of operators using the global, sl(2,C),
part of the 2D conformal algebra. To do this, we must be able to calculate
the quasi-primary operators of the theory.
A (holomorphic) quasi-primary state is defined by its property to be anni-
hilated by L1. That is:

L1 |ϕ⟩ = 0⇒ 1

2πi

∮
dz z2T (z)ϕ(0) |0⟩ = 0 (1.86)

For (1.86) to hold true the OPE T (z)ϕ(0) must have no z−3 pole. That is

because res( 1
zn , 0) =

{
0 (n > 1)

1 (n = 1)
.

The general operator with holomorphic momentum p has the form:
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Om1,··· ,mr;p =

r∏
α=1

(∂αX)mαeipX (1.87)

A generic holomorphic quasi-primary is a linear combination of operators
of the form (1.87) with the same conformal weights. The coefficients can
then be fixed by demanding that the z−3 pole of its OPE, with the energy-
momentum tensor, vanishes. For operators of the form (1.87), the z−3 pole
is given by:

[T (z)Om1,··· ,mr;p(0)]3 =
r∑

α=1

[α(α− 1)Om1,··· ,mα−1+1,mα−1,mα+1,··· ,mr;p(0)]− ipm1Om1−1,m2,··· ,mr;p(0)

(1.88)

Equations (1.87) and (1.88) can be used to calculate any right-moving (holo-
morphic) quasi-primary. For example the first 2 are:

Q2 = [(∂X)2 + ip∂2X]eipX , Q3 = [(∂X)3 +
3ip

2
∂X∂2X − p2

4
∂3X]eipX

The full set of quasi-primaries of the theory can be obtained by combining
any quasi-primary operator from the left-moving (holomorphic) sector with
any quasi-primary operator from the right-moving (antiholomorphic) sector.
There are no factors with mixed holomorphic-antiholomorphic derivatives as
the equation of motion is ∂∂̄X(z, z̄) = 0.
This means that a general quasi-primary is a linear combination of operators
of the form:

O{mα},{m̄ᾱ};p,p̄ =
r∏

α=1

(∂αX)mα

r̄∏
ᾱ=1

(∂̄ᾱX̄)m̄ᾱeipX+ip̄X̄ (1.89)

The conformal dimensions of these operators are:

h = ℓ+
p2

2
, h̄ = ℓ̄+

p̄2

2
(1.90)

where ℓ =
∑r

α=1 αmα, ℓ̄ =
∑r̄

ᾱ=1 ᾱm̄ᾱ is the ”level” of the operator i.e. the
number of holomorphic or anti-holomorphic derivatives.
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Chapter 2

Crossing Equations and U(1)
Global Symmetry

In this work, we will calculate CFT data by exploiting the symmetries of
four-point functions of the form

〈
OOŌŌ

〉
with U(1) global symmetry where

O is assumed to be a scalar primary operator of conformal dimensions (h, h̄).
These objects are by construction constrained by both OPE associativity
and the U(1) symmetry. In this chapter we explore the details of these
constrains.

2.1 Crossing Symmetry

Consider a four-point correlation function:

⟨O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)⟩

We can reduce this correlation function to a two-point function using the
OPE (1.60) twice and then calculate it through (1.57). As stated in theorem
4, the operator product expansion is associative. This means that no matter
what pair of operators we chose to do the first OPE with, the result has to
be the same.
The OPE can be implemented with 3 possible combinations; the s-channel
(12)(34), the t-channel (14)(23) and the s-channel (13)(24). These three
channels must agree with each other and thus, yield two constraints on the
CFT data. This symmetry is called crossing symmetry and the constraints
it yields are called crossing equations.
For example, consider the s-channel OPE of said four point function:
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⟨O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)⟩ =
1

zh1+h2
12 zh3+h4

34

1

z̄h̄1+h̄2
12 z̄h̄3+h̄4

34

×
(
z24
z14

)h12
(
z̄24
z̄14

)h̄12
(
z14
z13

)h34
(
z̄14
z̄13

)h̄34 ∑
OiOj

COi
12 gOiOjC

Oj

34 g
1234
hi,h̄i

(z, z̄)

(2.1)

where:

� zij = zi − zj

� hij = hi − hj

� the ratios

z =
z12z34
z13z24

, 1− z = z14z23
z13z24

,
z

1− z
=
z12z34
z14z23

(2.2)

z̄ =
z̄12z̄34
z̄13z̄24

, 1− z̄ = z̄14z̄23
z̄13z̄24

,
z̄

1− z̄
=
z̄12z̄34
z̄14z̄23

(2.3)

are quantities called the conformal cross-ratios.

� Ck
ij are the OPE coefficients.

� gOi,Oj is the two point function coefficient.

� g1234
h,h̄

(z, z̄) are functions called conformal blocks.

The conformal blocks are functions of the cross ratios that are completely
fixed by conformal symmetry, i.e. they are theory independent.
In two dimensions their analytic expression is:

g1234h,h̄ (z, z̄) = zhz̄h̄ · 2F 1(h− h12, h+ h34; 2h; z) · 2F 1(h̄− h̄12, h̄+ h̄34; 2h̄; z̄)

(2.4)
where 2F 1(a, b; c; z) is the ordinary hyper-geometric function.
The t-channel can be obtained from the s-channel by exchanging the inser-
tions 1↔ 3 and the cross-ratios z ↔ 1− z and z̄ ↔ 1− z̄.
To further suppress notation we set:

s
Ch,h̄ =

∑
O,O′|∆O=∆O′=h+h̄

CO
12gOO′CO

34 (2.5)

By equating the s-channel and t-channel expansions, we arrive at a con-
straint called the 1st crossing equation:
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∑
h,h̄

sCh,h̄g
(1234)

h,h̄
(z, z̄) =

(−1)(h41+ ¯h41) zh1+h2

(z − 1)h2+h3

z̄h̄1+h̄2

(z̄ − 1)h̄2+h̄3

∑
h′,h̄′

tCh′,h̄′g
(3214)

h′,h̄′ (1− z, 1− z̄)
(2.6)

It is appropriate to note here that the sums, range across all quasi-primaries
(h, h̄) that appear on each channel. For each spinning operator that appears
in the expansion the ”exchanged weights” version of it appears, i.e. (h̄, h).
In general, Ch,h̄ ̸= Ch̄,h.
However, when the external operators (i.e. the ones in the four-point func-
tion) are spin-less the coefficients When the external operators are spin-less,
the OPE-squared coefficients are equal,

s
Ch,h̄ =

s
Ch̄,h , and we can collect

together the (h, h̄) and (h̄, h) contributions to form a single conformal block
of the form:

g̃
(1234)

h,h̄
(z, z̄) =

1

1 + δh,h̄

(
g
(1234)

h,h̄
(z, z̄) + g

(1234)

h,h̄
(z̄, z)

)
(2.7)

In this manner, we can restrict the sums in (2.1) to only run over operators
with h ≥ h̄, hence reducing by half the number of intermediate quasi-primary
operators that we need to consider.
In our application we will, in fact, use spin-less external operators and thus
use the above simplification.

2.2 Crossing Equations with U(1) Global Symme-
try.

Consider now a four-point function of the form:〈
OOŌŌ

〉
(2.8)

where O is a scalar primary operator.
Along with the crossing symmetry, the CFT data can be further bound by
the existance of a global U(1) symmetry of such a four point function. The
non-vanishing correlators must have zero total U(1) charge, p.
The two basic OPEs are:

O × Ō = 1+ spins 0, 1, 2, · · · (Charge 0 sector)

O ×O = spins 0, 2, 4, · · · (Charge 2 sector)

[12]
where we have normalized the U(1) charge of O ,p , to 1.
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With the above, we are ready to write down the stronger crossing equations
that emerge from combining the two symmetries.
We consider a primary field O with conformal dimensions (h, h̄) and the cor-
relation function

〈
O(z1, z̄1)O(z2, z̄2)Ō(z3, z̄3)Ō(z4, z̄4)

〉
. For this setup, the

first crossing equation can be easily obtained from (2.6) for hi = hj , ∀i, j
and reducing the operators in the sums to the ones allowed by U(1) sym-
metry:

1st Crossing Equation with U(1) symmetry

|z − 1|2∆O
∑
h≥h̄

h−h̄=even

s
Ch,h̄g̃

OOŌŌ
h,h̄ (z, z̄) =

|z|2∆O [1 +
∑
h′≥h̄′

h,h̄∈N

t
Ch′,h̄′ g̃ŌOOŌ

h′,h̄′ (1− z, 1− z̄)]
(2.9)

To get the second equation, the most intuitive to do would be to interchange
2 ←→ 3 in (2.1). However, this results in a 1/z argument in the confromal
blocks that makes the expressions ill defined at the crossing symmetric point
(z = z̄ = 1/2) due to the hypergeometric function’s branch cut from 1 to
infinity on the real axis.
The simplest way to obtain a well behaved equation is to consider the four-
point function: 〈

OŌOŌ
〉

and take again the s and t channels equation. [10]

2nd Crossing Equation with U(1) symmetry

|z − 1|2∆O [1 +
∑
h≥h̄
h,h̄∈N

(−1)h−h̄
tCh,h̄g

OŌOŌ
h,h̄ (z, z̄) =

|z|2∆O [1 +
∑
h≥h̄
h,h̄∈N

(−1)h−h̄
tCh,h̄g

OŌOŌ
h,h̄ (1− z, 1− z̄)]

(2.10)

On both cases we have separated the contribution of the identity, whenever
it exists and assumed that

〈
OŌ

〉
= 1.

Theoretically, if one solved these equations, one has solved the theory.
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Chapter 3

Spin-Partitions and
Truncations

Since our goal is to solve the crossing equations, we may now star wondering
how. As is obvious, an analytic approach is out of the question and thus we
want to implement computational methods. This brings into the discussion
the machine learning algorithms discussed on the introduction. Before talk-
ing about the specifics of these, we must first reformulate the problem in a
computer-friendly manner.
The crossing equations (2.9)(2.10) are non-linear equations for the unknown
positive (to obey unitarity bounds) conformal scaling dimensions ∆ = h+ h̄
and the corresponding OPE squared coefficients Ch,h̄ in all channels.
For numerical methods the appearance of a typically infinite number of con-
tributions to the conformal-block expansion makes the use of these equations
impossible as they are. We address this problem by truncating the spectrum
of intermediate quasi-primary operators, by setting some upper limit ∆max

on the scaling dimensions. The exponential convergence properties of the
OPE expansion implies that good numerical results can be obtained without
considering a very large ∆max. Our approach on truncation is a bit differ-
ent than the standard school of thought on the subject as will be presented
in detail in a while. The difference is that instead of completely ignoring
the contribution of high ∆ operators we have a way of approximating their
effect.
Unitarity bounds in 2D suggest that ∆max ≥ ∆ ≥ s and thus the truncation
method puts a constraint on the allowed spins on the crossing equations.
Having in mind numerical methods, even with that constraint the problem
is not solvable. The problem is that there is still a vast space of possibilities
that an algorithm can explore associated with the freedom to choose any
number of quasi-primaries at each spin. This final issue can be fixed by
introducing a spin-partition. The spin-partition is a sequence of positive
integers that specifies the number of quasi-primaries per spin contributing
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to the conformal-block expansions of the truncated crossing equations.
Since spin partitions and truncation are very theory and setup specific, we
will make the discussion using the S1 theory we solved at section 1.5. To
be able to decide for a spin partition for the theory, we must first calculate
analytically its CFT Data. Obtaining the data, except from inspiring the
algorithm’s setup, will serve as a measure of accuracy for our numerical
approach.

3.1 Classification of Quasi-Primaries in S1 theory

To get a feeling of the above discussion we will classify, in terms of ∆ and
s, some quasi-primary operators of our ”example at hand” theory; the c =
1 compactified boson. For reasons discussed on chapter 2 we need only
consider cases where h ≥ h̄ and make a distinction between charge 0 and
charge 2 sectors.
To be specific , we will specify the external operators we will consider in the
four-point function of (2.8). The operators are the vertex operators:

Op = Vp,p(z, z̄) = eip[X(z)+X̄(z̄)], p = p̄ =
n

R
, w = 0, ∆p = p2 (3.1)

3.1.1 Charge 0 Sector

Let us begin for simplicity with the U(1) charge, p = 0 sector. In the context
of the previous chapter, these are t-channel operators. Using equations
(1.87) and (1.88) we calculate the purely holomorphic quasi-primaries, i.e.
the ones with weights (h, 0).
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U(1) charge 0, Holomorphic Operators

Operator
Scaling

Dimension
(∆)

Spin
(s)

1 0 0

∂X(z) 1 1

∂X(z)2 2 2
...

...
...

∂X(z)n n n

∂X∂3X − 3
2(∂

2X)2 4 4

(∂X)2∂3X − 3
2∂X(∂2X)2 5 5

(∂X)3∂3X − 3
2(∂X)2(∂2X)2 6 6
...

...
...

(∂X)n∂3X − 3
2(∂X)n−1(∂2X)2 n+ 3 n+ 3

∂X∂5X − 10∂2X∂4X + 10(∂3X)2∂̄X 6 6
...

...
...

(∂X)n∂5X − 10(∂X)n−1∂2X∂4X +
10(∂X)n−1(∂3X)2

n+ 7 n+ 7

...
...

...

Table 3.1: Holomorphic Quasi-Primaries with p = 0

Note that the above operators all have s = ∆ since h̄ = 0. To obtain
operators with any (∆, s), one has to just combine the operators of Table 3.1
with their anti-holomorphic counterparts. For example all the operators
with scaling dimension ∆ ≤ 6 are:
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U(1) charge 0 and ∆ ≤ 6 Operators

Operator
Scaling

Dimension
(∆)

Spin
(s)

1 0 0

∂X∂̄X 2 0

(∂X)2(∂̄X)2 4 0

(∂X)3(∂̄X)3 6 0

∂X 1 1

(∂X)2∂̄X 3 1

(∂X)2∂̄X 5 1

(∂X)2 2 2

(∂X)3∂̄X 4 2

(∂X)4(∂̄X)2 6 2

[∂X∂3X − 3
2(∂

2X)2](∂̄X)2 6 2

(∂X)3 3 3

(∂X)4∂̄X 5 3

[∂X∂3X − 3
2(∂

2X)2]∂̄X 5 3

(∂X)4 4 4

∂X∂3X − 3
2(∂

2X)2 4 4

(∂X)5∂̄X 6 4

[(∂X)2∂3X − 3
2∂X(∂2X)2]∂̄X 6 4

(∂X)5 5 5

(∂X)2∂3X − 3
2∂X(∂2X)2 5 5

(∂X)6 6 6

(∂X)3∂3X − 3
2(∂X)2(∂2X)2 6 6

∂X∂5X − 10∂2X∂4X + 10(∂3X)2 6 6

Table 3.2: Quasi-Primaries with p = 0 and ∆ ≤ 6

An important thing to note on Table 3.2 is the appearance of operator de-
generacies; i.e. different operators with the same spin and scaling dimension.
We know of their existence because we analytically solved the theory through
its Lagrangian description. Our algorithms (that do not solve the theory in
that way) cannot predict their existence and thus, for them, degeneracies
are treated as one single effective operator.

3.1.2 Charge 2 Sector

We will now proceed to make a similar analysis for the case where the OPEs
of the four point function is taken between same charge operators and thus

31



yield an expansion of charge = 2p operators, where p is the U(1) charge of
the external operators. In the context of the previous chapter, these are the
s-channel operators. As expected, this makes operators’ expressions more
complicated.
To get a general feel, we start again with the holomorphic operators. It
is important to note here that all operators have attached the full expo-
nential e2ip[X(z)+X̄(z̄)] (and not e2ipX(z)). As stated in chapter 2 the charge
2 sector expansion does not include the identity and thus the minimum
anti-holomorphic part an operator can have is e2ipX̄(z̄)

U(1) charge = 2p, minimum anti-holomorphic part Operators

Operator
Scaling

Dimension
(∆)

Spin
(s)

e2ip[X(z)+X̄(z̄)] 4∆p 0(
(∂X)2 + 2ip∂2X

)
e2ip[X(z)+X̄(z̄)] 2+4∆p 2(

(∂X)3 + 3ip∂X∂2X − p2∂3X
)
e2ip[X(z)+X̄(z̄)] 3+4∆p 3(

(∂X)4 + 4ip(∂X)2∂2X − 4p2(∂2X)2
)
e2ip[X(z)+X̄(z̄)]4+4∆p 4(

∂X∂3X + ip
6 ∂

4X − 3
2(∂

2X)2
)
e2ip[X(z)+X̄(z̄)] 4+4∆p 4

...
...

...

Table 3.3: Quasi-Primaries with charge = 2p and minimum anti-
holomorphic part

As stated before and witnessed on Table 3.3 the expressions get very complex
on, even as low as, level 4 operators. We also lose the ability to create and
rely on general expressions as the one presented on Table 3.1. Just as on
the t-channel operators, here s = ℓ (on the 0 charge sector ℓ = ∆)
In order to get operators of s < ℓ, just as before, one has to just combine
different holomorphic and anti-holomorphic parts of the above operators.
For example all the operators with scaling dimension ∆ ≤ 6 + 4∆p are:
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U(1) charge 2p and ∆ ≤ 6 + 4∆p Operators

Operator
Scaling

Dimension
(∆)

Spin
(s)

e2ip[X(z)+X̄(z̄)] 4∆p 0

[(∂X)2 + 2ip∂2X][(∂̄X)2 + 2ip∂̄2X]e2ip[X(z)+X̄(z̄)] 4+4∆p 0

[(∂X)3 + 3ip∂X∂2X − p2∂3X][(∂̄X)3 + 3ip∂̄X∂̄2X −
p2∂̄3X]e2ip[X(z)+X̄(z̄)] 6+4∆p 0

[(∂X)3 + 3ip∂X∂2X − p2∂3X][(∂̄X)2 +
2ip∂̄2X]e2ip[X(z)+X̄(z̄)] 5+4∆p 1

[(∂X)2 + 2ip∂2X]e2ip[X(z)+X̄(z̄)] 2+4∆p 2

[(∂X)4 + 4ip(∂X)2∂2X − 4p2(∂2X)2][(∂̄X)2 +
2ip∂̄2X]e2ip[X(z)+X̄(z̄)] 6+4∆p 2

[∂X∂3X + ip
6 ∂

4X − 3
2(∂

2X)2][(∂̄X)2 +

2ip∂̄2X]e2ip[X(z)+X̄(z̄)] 6+4∆p 2

[(∂X)3 + 3ip∂X∂2X − p2∂3X]e2ip[X(z)+X̄(z̄)] 3+4∆p 3

[(∂X)4 + 4ip(∂X)2∂2X − 4p2(∂2X)2]e2ip[X(z)+X̄(z̄)] 4+4∆p 4

[∂X∂3X + ip
6 ∂

4X − 3
2(∂

2X)2]e2ip[X(z)+X̄(z̄)] 4+4∆p 4

[(∂X)5 + 5ip(∂X)3∂2X − p2((∂X)2∂3X +
2ip∂2X∂3X + 6∂X(∂2X)2)]e2ip[X(z)+X̄(z̄)] 5+4∆p 5

[(∂X)2∂3X − 3
2∂X(∂2X)2 + p

2(
5i
6 ∂X∂

4X − 1
24∂

5X −
i∂2X∂3X)]e2ip[X(z)+X̄(z̄)] 5+4∆p 5

[(∂X)6 + 6ip(∂X)4∂2X −
12p2

(
(∂X)2

(
∂2X

)2
+ 2ip

3

(
∂2X

)3)
]e2ip[X(z)+X̄(z̄)]

6+4∆p 6

[(∂X)3∂3X − 3
2

(
(∂X)2

(
∂2X

)2
+ 2ip

3

(
∂2X

)3)
+

3ip
(
∂X∂2X∂3X −

(
∂2X

)3
+ ip

6

(
∂3X

)2)
]e2ip[X(z)+X̄(z̄)]

6+4∆p 6

[∂X∂5X + ip
15∂

6X − 10∂2X∂4X +

10
(
∂3X

)2
]e2ip[X(z)+X̄(z̄)]

6+4∆p 6

[(∂X)3∂3X − 3
2(∂X)2

(
∂2X

)2
+ 3p2

2

(
∂3X

)2 −
4p2

3 ∂
2X∂4X + 2ip

3 (∂X)2∂4X −
ip∂X∂2X∂3X]e2ip[X(z)+X̄(z̄)]

6+4∆p 6

Table 3.4: Quasi-Primaries with charge = 2p and ∆ ≤ 6 + 4∆p
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Same as before we observe degenerate operators on Table 3.4. As stated in
the previous chapter, the O × O OPE cannot contain odd spin operators.
That means that the OPE squared coefficients of them are expected to be
zero.

3.2 OPE squared coefficients of S1 theory

In the previous sector we developed a systematic way to find the expressions
of the operators appearing on each conformal block expansion. That is half
the CFT data. The other half is the OPE-squared coefficients. In this sector
we analytically calculate them.
As stated before, in order to decide our spin partition and cut-off ∆ we need
a systematic way to calculate the analytic OPE squared coefficients Ch,h̄.
To do this we will use the analytic expression for the 4-point function we
are interested in and compare it to its conformal block expansion. From
there we will try to read off the coefficients. By calculating them in this way
we do not need to worry about degeneracies of operators as all degenerate
contributions will appear to be summed into a single term contribution.

3.2.1 Analytic Expressions

The four-point function of vertex operators is:

⟨Vp1 (z1, z̄1) · · ·Vpn (zn, z̄n)⟩ =
∏
i<j

|zi − zj |2pipj (3.2)

In our case (n = 4, p1 = p2 = −p3 = −p4) this becomes:

〈
Vp (z1, z̄1)Vp (z2, z̄2) V̄p (z3, z̄3) V̄p (z4, z̄4)

〉
=

(
|z12|2|z34|2

|z13|2|z14|2|z23|2|z24|2

)∆p

(3.3)
where ∆p is the dilatation weight of the external operators. We now take
the s and t conformal block expansions of (3.3).
The s channel expansion given by (2.1) is:

〈
Vp (z1, z̄1)Vp (z2, z̄2) V̄p (z3, z̄3) V̄p (z4, z̄4)

〉
=(

1

|z12|2|z34|2

)∆p ∑
h,h̄

s
Ch,h̄g

(V V V̄ V̄ )

h,h̄
(z, z̄)

(3.4)

The t channel expansion is obtained by exchanging 1 ↔ 3 and z ↔ 1 − z
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(and z̄ ↔ 1− z̄):〈
Vp (z1, z̄1)Vp (z2, z̄2) V̄p (z3, z̄3) V̄p (z4, z̄4)

〉
=(

1

|z32|2|z14|2

)∆p ∑
h,h̄

t
Ch,h̄g

(V̄ V V V̄ )

h,h̄
(1− z, 1− z̄)

(3.5)

Equating (3.3) with the s and t expansions we get:(
|z|4

|1− z|2

)∆p

=
∑
h,h̄

s
Ch,h̄g

(V V V̄ V̄ )

h,h̄
(z, z̄) (3.6)

and:

|z|2∆p =
∑
h,h̄

t
Ch,h̄g

(V̄ V V V̄ )

h,h̄
(1− z, 1− z̄) (3.7)

s-channel

Let’s begin with the first equation. By substituting the expression for the
conformal blocks, and dividing with |z|4∆p we obtain:(

1

1− z

)∆p
(

1

1− z̄

)∆p

=
∑

h,h̄=2∆p

s
Ch,h̄ z

h−2∆p z̄h̄−2∆p

× 2F1(h, h, ; 2h; z) 2F1(h̄, h̄, ; 2h̄; z̄)

(3.8)

we now series expand both sides and get:

∞∑
n,m=0

(∆p)n(∆p)m
n!m!

znz̄m =

∑
h,h̄=2∆p

∞∑
n,m=0

s
Ch,h̄

(h)2n(h̄)
2
m

(2h)n(2h̄)mn!m!
zh−2∆p+nz̄h̄−2∆p+m

(3.9)

Where (A)n =

{
1 if n = 0

A(A+ 1) · · · (A+ n− 1) if n > 0
are the rising Pochham-

mer symbols.
By order expanding (3.9) we obtain the following expression for the coeffi-
cients

s
Ch,h̄.

ℓ,ℓ̄∑
n,n̄=0

(n+ 2∆p)
2
ℓ−n(n̄+ 2∆p)

2
ℓ̄−n̄s

Cn+2∆p,n̄+2∆p

(2n+ 4∆p)ℓ−n(2n̄+ 4∆p)ℓ̄−n̄(ℓ− n)!(ℓ̄− n̄)!
=

(∆p)ℓ(∆p)ℓ̄
ℓ! ℓ̄!

(3.10)
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Where ℓ, ℓ̄ are the holomorphic and anti-holomorphic levels of the highest
order coefficient on the sum.
By replacing the right hand side two sums obtained by the same relation,
one for ℓ = 0 and one for ℓ̄ = 0 we obtain the following constraint for the
s-channel OPE squared coefficients:

sCn+2∆p,n̄+2∆p = sCn+2∆p,2∆p sC2∆p,n̄+2∆p (3.11)

This relation tells us that if we have the s-channel OPE-squared coefficients
for (ℓ+ 2∆p, 2∆p) we can calculate any coefficient.
The OPE squared coefficients, calculated from (3.10) are:

s-channel OPE Squared Coefficients

Scaling
Dimension (∆)

Spin (s) Analytic
s
Ch,h̄

4∆p 0 1

4 + 4∆p 0
∆4

p

4(4∆p+1)2

5 + 4∆p 1 0

2 + 4∆p 2
∆2

p

2(4∆p+1)

3 + 4∆p 3 0

4 + 4∆p 4
∆2

p(∆p+1)2

8(4∆p+3)(4∆p+5)

5 + 4∆p 5 0
...

...
...

2n+ 2n̄+ 4∆p 2n− 2n̄
(∆p)2n

(2n)!! (2n−1+4∆p)n,2

(∆p)2n̄
(2n̄)!! (2n̄−1+4∆p)n̄,2

...
...

...

Table 3.5: s-channel OPE squared coefficients for ∆ ≤ 5 + 4∆p

Where (A)n,2 = A(A+2) · · · (A+n−2) is the k = 2 k-Pochhammer symbol.
It is important to remember that since out external operators are spinless
and thus Ch,h̄ = Ch̄,h.

t-channel

We now turn our eye on equation (3.7) and the t-channel. To avoid further
expanding the expansion of the hyper-geometric functions of the RHS we
change variables as 1− z = ζ. This yields:

|1− ζ|2∆p =
∑
h,h̄

t
Ch,h̄g

(V̄ V V V̄ )

h,h̄
(ζ, ζ̄)
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By expanding the hyper-geometric functions of the RHS and the LHS with
the binomial theorem we finally obtain:

∞∑
n,m=0

(
∆p

n

)(
∆p

m

)
(−ζ)n(−ζ̄)m =

∑
h,h̄=0

∞∑
n,m=0

t
Ch,h̄

(h)2n(h̄)
2
m

(2h)n(2h̄)mn!m!
ζh+nζ̄ h̄+m

(3.12)

where
(
x
n

)
= x(x−1)···(x−n+1)

n! are the generalized binomial coefficient.
By order expanding (3.12) we can calculate the constants

t
Ch,h̄:

t-channel OPE Squared Coefficients

Scaling
Dimension

(∆)

Spin
(s)

Analytic
t
Ch,h̄

0 0 1

2 0 ∆2
p

4 0
∆4

p

4

1 1 −∆p

2 2
∆2

p

2

3 1 −∆3
p

2

3 3 −∆3
p

6
...

...
...

∆ s
(−1)s∆∆

p

h!h̄!
=

(−1)s∆∆
p

(∆+s
2

)!(∆−s
2

)!

...
...

...

Table 3.6: t-channel OPE squared coefficients

3.2.2 Convergence Rate

With the analytic expressions derived above, we can calculate the coefficients
Ch,h̄ up to any order we like. In order for us to decide out cut-off ∆ and
spin partition we need to know how fast are the sums converging, i.e. how
fast are the coefficients approach zero as ∆ rises.

t-channel

With that in mind the following diagrams were plotted for the t-channel
coefficients. As a logarithmic axis was necessary to visualize the data, we
cannot plot negative values of tCh,h̄. To see the order of these we plot the
absolute |tCh,h̄| against ∆.

37



38



As we can see, OPE-squared coefficients convergence rate is getting slower
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as the external scaling dimension rises. This implies that truncating the
the sums at a certain point will hold up to some ∆p before starting to lose
significant amounts of information.

s-channel

Now we do the same for the s-channel. Since we only have positive values
on the s channel, we will not need to plot the absolute values. Here, another
issue arises. The conformal block expansion operators’ scaling dimensions
are a function of the external operators’ scaling dimension ∆p due to the
e2ipX(z,z̄) (see: 3.1.2). Explicitly, the dependence is:

∆ = ℓ+ ℓ̄+ 4∆p

To keep track of the operators in this channel, we must define a quantity
that is invariant as we change ∆p. The most appropriate such quantity
seems to be the level of the operator:

L = ℓ+ ℓ̄ (3.13)

Lets see how the OPE-squared coefficients behave on this channel:
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As we can see, the operators of the s-channel expansion are less sensitive to
changing the external dimensions than their t-channel counterparts. Even
thought hey get larger as we increase ∆p, they do not get as large as the
t-channel ones.
To truncate this channel, we must choose an Lmax and not a ∆max as in the
latter case, we would lose operators as we changed ∆p.

3.3 Tails of Truncated Sums

Since we will chose some ∆max to limit the sums appearing in the crossing
equations, we want to know the magnitude of the leftover sums or tails. To
do this we can use equations (3.6) and (3.7). Note that here, we calculate
the tails on the crossing symmetric point z = z̄ = 1/2.

3.3.1 t-channel

The t-channel tail Tt is:

Tt(∆max,∆p; z, z̄) = |z|2∆p −
∆max∑
h,h̄

t
Ch,h̄g

(V̄ V V V̄ )

h,h̄
(1− z, 1− z̄) (3.14)

The sum on the right hand side can be computed analytically for a given
∆max. Below, we plot the t-tail for different values of ∆max as ∆p changes.
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By taking a slice at ∆p = 0.1 we get:
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3.3.2 s-channel

The s-channel tail Ts is:

Ts(∆max,∆p; z, z̄) =

(
|z|4

|1− z|2

)∆p

−
∆max∑
h,h̄

s
Ch,h̄g

(V V V̄ V̄ )

h,h̄
(z, z̄) (3.15)

The sum on the right hand side can be computed analytically for a given
Lmax. Below, we plot the s-tail for different values of Lmax, changing ∆p.

Again, by taking a slice at ∆p = 0.1 we obtain:
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3.3.3 Crossing Tail

We will now calculate the linear combination of these tails that will appear
in the crossing equations. (2.9)(2.10).

1st Crossing Equation Tail

The 1st equation is:

∑
h,h̄

sCh,h̄ g
V V V̄ V̄
h,h̄ (z, z̄)− |z|2∆p

|1− z|2∆p

1 +
∑
h,h̸̄=0

tCh,h̄ g
(V̄ V V V̄ )

h,h̄
(1− z, 1− z̄)

 = 0

By taking out the tails for both sums, we get:

∆s
max∑

h,h̄=2∆p

sCh,h̄ g
V V V̄ V̄
h,h̄ (z, z̄)− |z|2∆p

|1− z|2∆p

1 +

∆t
max∑

h,h̸̄=0

tCh,h̄ g
(V̄ V V V̄ )

h,h̄
(1− z, 1− z̄)


+

[
Ts(∆

s
max,∆p; z, z̄)−

|z|2∆p

|1− z|2∆p
Tt(∆

t
max,∆p; z, z̄)

]
= 0

(3.16)

We define the quantity

R(∆s
max,∆

t
max,∆p; z, z̄) = Ts(∆

s
max,∆p; z, z̄)−

|z|2∆p

|1− z|2∆p
Tt(∆

t
max,∆p; z, z̄)

(3.17)
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as the first crossing tail. From the previous calculations we can see that
the t channel tail dominates as it tis the only term that diverges as we get
to higher ∆p. We now plot some tails against ∆p for our usual example
z = z̄ = 1/2.

2nd Crossing Equation Tail

The second crossing equation is:

[1 +
∑
h,h̸̄=0

(−1)h−h̄
t
Ch,h̄g

V V̄ V V̄
h,h̄ (z, z̄)] =

|z|2∆p

|z − 1|2∆p
[1 +

∑
h,h̸̄=0

(−1)h−h̄
t
Ch,h̄g

V V̄ V V̄
h,h̄ (1− z, 1− z̄)]

(3.18)

In the same manner as before, we define the second crossing tail as:

U(∆u
max,∆p; z, z̄) = Tu(∆

u
max,∆p; z, z̄)−

|z|2∆p

|1− z|2∆p
Tu(∆

u
max,∆p; 1−z, 1−z̄)

(3.19)
where:

Tu(∆
u
max,∆p; z, z̄) =

∣∣∣∣ 1

1− z

∣∣∣∣2∆p

−
∆u

max∑
h,h̄

(−1)h−h̄
tCh,h̄g

(V V̄ V V̄ )

h,h̄
(z, z̄)
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∆max
u is the truncation scaling dimension for the u-channel sums, i.e. the

sums with that have the coefficients (−1)stCh,h̄. For simplicity, in this work
we set ∆max

u = ∆max
t .

After this discussion, we can choose a well informed truncation and spin par-
tition an proceed with the setup of the reinforcement learning environment
and set our strategic approach on using the soft actor critic.
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Chapter 4

Methodology and RL
Environment Setup

On this chapter, considering all said in the previous chapters, we will mark
down the details of the setup we will work on.
What we want to do is calculate the CFT data appearing on the OPE of the
four-point function ⟨V V V̄ V̄ ⟩, where V (z, z̄) = eipX(z,z̄). To do this we will
use the crossing and U(1) symmetries in the form of the crossing equations
(2.9)(2.10). The way we extract information from these equations is to
consider them in various (z, z̄) points and try to solve the algebraic system
of equations that occurs. The optimization task that emerges is handled
by an appropriately modified version of the BootSTOP [7] [6] reinforcement
learning algorithm.
To explore the conformal manifold defined by the external parameter ∆p, we
will start from a point where we accept that we have the analytic solution
(∆p = 0.1), and adiabatically flow away from that point towards the wanted
∆p. To improve results, we will consider a tail contribution that we calculate
analytically at ∆p = 0.1.

4.1 Truncations and Spin Partition

As the previous chapter showed, in order to solve the equations we need to
truncate the sums appearing in them. As we saw, the s-channel’s contri-
bution is concentrated on its first operators and its tail goes to zero as we
move higher in ∆p. On the other hand, the t-channel’s tail, inevitably gets
to a ∆p point where exponential growth starts and thus the whole system
breaks down. This point, can be futher pushed away by considering a higher
∆t

max. With that in mind, to have a wide enough range of ∆p that flowing
can work, we chose the following truncation ∆max:

∆s
max = 6 + 4∆p ∆t

max = 8 (4.1)
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These choices fix our spin partition as follows:

Spin Partition

∆s
max = 6 + 4∆p ∆t

max = 16

Spin s-channel t-channel

0 2 4

1 0 4

2 2 4

3 0 3

4 1 3

5 0 2

6 1 2

7 0 1

8 0 1

total 6 24

Table 4.1: The specific spin partition of the exercise.

With this spin partition,
There are totally 30 operators. Note that in the above spin partition we
do not include the identity since its contribution has been separated in the
crossing equations (see below).

4.2 Crossing Equations

Now, we explicitly write down the two crossing equations in the exact form
we set BootSTOP to solve.:

1st Crossing Equation:∑
h≥h̄

h−h̄=even

sCh,h̄ g̃
V V V̄ V̄
h,h̄ (z, z̄) −

|z|2∆p

|1− z|2∆p

1 +
∑
h>h̄

tCh,h̄ g̃
(V̄ V V V̄ )

h,h̄
(1− z, 1− z̄)

 = 0

(4.2)

49



2nd Crossing Equation:

1− |z|2∆p

|z − 1|2∆p
+

∑
h>h̄

(−1)h−h̄
t
Ch,h̄

(
g̃V V̄ V V̄
h,h̄ (z, z̄)− |z|2∆p

|z − 1|2∆p
g̃V V̄ V V̄
h,h̄ (1− z, 1− z̄)

)
= 0

(4.3)

4.3 z-Points Grid

As said before, we need to consider the crossing equations on multiple (z, z̄)
points. The number of these points has to be such that the emerging system
of algebraic equations is over-determined. Since we have 30 operators, we
have 60 unknowns. One more thing one needs to consider, is that these
points must be points where the crossing equations are well behaved.
The grid, we will use according to these specifications is an appropriately
modified version of the one appearing on [2]

This grid avoids the hyper-geometric function’s brunch cuts and is uniform
on the area it covers. These points are expected to yield well behaved
equations.
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4.4 Strategy

Let us now, outline the algorithmic process we followed when running the
algorithm.

Algorithm

� We start from ∆p = 0.1

� Add the tails at 0.1 as a constant contribution

� Repeat:

- Start from best known solution ∆p

- Run SAC multiple times with ∆p+ = 0.05

- Calculate the weighted average of the results to get the
solution. The weights are chosen to be the rewards of each
run

- The solution is now the new best solution

Following this strategy, we obtained the next chapter’s results. Note that for
the algorithm to work as intended, fine-tuning of its parameters is crucial.
The details on that part will not be discussed as they are not important in
the context of this work.
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Chapter 5

Numerical Results

Let us now demonstrate some numerical results. For these results, we started
on ∆p = 0.1. With step +0.05 we started flowing from that point making
10 runs per step.

5.1 BootSTOP’s output

On each step, we obtain numerical results on the CFT data of the following
form:

Table 5.1: s-channel, ∆p = 0.15

Spin RL(∆) Analytic(∆) RL(C) Analytic(C)

0 0.594008 0.6 1.0044724e+00 1.0000000e+00
0 4.396035 4.6 9.5831388e-05 4.9438477e-05
2 2.545494 2.6 7.8288222e-03 7.0312500e-03
2 6.574206 6.6 3.8405582e-06 1.2972695e-06
4 4.275060 4.6 2.0445386e-04 1.8450056e-04
6 6.445978 6.6 1.0794863e-05 7.0136006e-06

As is evident, the algorithm gets fairly good results, especially on the lower
lying operators.
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Table 5.2: t-channel, ∆p = 0.15

Spin RL(∆) Analytic(∆) RL(C) Analytic(C)

0 1.945099 2.0 2.2551485e-02 2.2500000e-02
0 3.969464 4.0 3.5728842e-04 1.2656250e-04
0 5.806528 6.0 4.3247064e-07 3.1640625e-07
0 7.994133 8.0 4.3942027e-10 4.4494629e-10
1 1.020799 1.0 1.4726147e-01 1.5000000e-01
1 3.061228 3.0 1.4483074e-03 1.6875000e-03
1 5.075957 5.0 9.6223790e-06 6.3281250e-06
1 6.828494 7.0 9.0792152e-09 1.1865234e-08
2 2.061307 2.0 1.0422554e-02 1.1250000e-02
2 4.055639 4.0 1.3342041e-04 8.4375000e-05
2 6.075670 6.0 9.0064162e-08 2.3730469e-07
2 7.925841 8.0 2.1960278e-10 3.5595703e-10
3 3.056391 3.0 8.0364710e-04 5.6250000e-04
3 5.139894 5.0 9.3805178e-06 3.1640625e-06
3 7.012824 7.0 6.6210649e-09 7.1191406e-09
4 4.182766 4.0 2.0779639e-05 2.1093750e-05
4 5.930093 6.0 9.4068200e-08 9.4921875e-08
4 7.984797 8.0 1.2140324e-10 1.7797852e-10
5 5.219733 5.0 8.5448097e-07 6.3281250e-07
5 6.889488 7.0 1.6304516e-09 2.3730469e-09
6 6.138786 6.0 8.7527580e-09 1.5820312e-08
6 7.928811 8.0 1.3156790e-11 5.0851004e-11
7 7.169603 7.0 3.7056103e-10 3.3900670e-10
8 8.035733 8.0 1.8530806e-12 6.3563756e-12

For each step, the algorithms’ output is in the form of the above tables. For
brevity, we shall not include the full output of all the steps and study some
individual data themselves.

5.2 Scaling Dimensions

Lets take a look on how the algorithm keeps track of operators’ scaling
dimensions as we flow away from ∆p = 0.1. Below we plot some low lying
operators and compare them to the analytic solution derived on chapter 3.
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As we can see, results are better for coefficients with lower scaling dimension.
That is to be expected as the lower the coefficient is in terms of scaling
dimension and spin, the larger contribution is has on the crossing equations
and thus larger contribution on the network’s loss function.

5.3 OPE-squared Coefficients

Now, we do the same for some of the the OPE squared coefficients. Again,
the results are very good, but their quality declines as we move to higher
scaling dimensions.
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5.4 General Performance

Previously we saw how some of the data were tracked by the algorithm as
we flew from ∆p = 0.1. Of course, these were just some examples of the 60
data we tried to follow. Although they individually seem to be reasonably
accurate, the overall performance of the algorithm is something hard to
measure.
In our example, where an analytic solution is available, checking the algo-
rithms performance is an easy task. In general, for a theory with completely
unknown features this would not be possible. As of now, it is not entirely
clear what is the best way to evaluate the results.
The only measure that currently exists is the reward (1/loss) the agent
achieves on each run. Even though, the correct solution is sure to have a high
reward, nonsensical configurations also exist with relatively high reward. So
how can we tell the difference? The answer is not clear yet but as of now,
the best available answer is that one needs to do a great number of runs and
treat the answers statistically.
Below, we plot the (normalized, weighted) average reward of the runs that
contributed to the results.
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As expected, the performance of the algorithm plummets as we flow away
from the start. The reason lies back to the tail analysis of chapter 3. As ∆p

rises, the constant tail approximation becomes worse and at some point it
breaks down completely.
Note that even on as low reward as in ∆p = 0.5 SAC is still able to get the
low lying data with very decent accuracy.
In general, the results seem very good considering how minimal compu-
tational power was used to obtain them. Note however that for higher
operators, the results are not that great.
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Chapter 6

Conclusion and Outlook

In this thesis, we have presented an application of reinforcement learning
techniques to solve the Conformal Bootstrap problem in Conformal Field
Theories (CFTs). Our results demonstrate the effectiveness of using rein-
forcement learning as a tool for navigating the parameter space and finding
solutions that satisfy the constraints imposed by the conformal bootstrap
crossing equations.

Through extensive experimentation, we have shown that our approach
yields reasonable results that align with known findings and exhibit desirable
properties. The SAC agent effectively learns to explore the parameter space,
guided by a reward function that encourages adherence to the conformal
bootstrap constraints. This suggests that reinforcement learning can play
a crucial role in assisting researchers in the field of theoretical physics to
uncover new insights into CFTs.

It is worth noting that the results obtained here are more accurate than
the ones obtained at [7]. The likeliest reasons are probably the inclusion of
two (instead of one) crossing equations, the addition of the tail contribution
and the superior z-grid used. The use of more operators (30 against 18)
although it makes the best, theoretically, possible result better, is not bound
to make the algorithm perform better as it might as well exponentially
increase the number of high-reward low quality configurations the agent
might get trapped in. Another determining factor seems to be the use of a
better informed spin partition with the inclusion of the OPE selection rules
imposed by the global U(1) symmetry. The latter one highlights how the
inclusion of as much analytic information as possible can boost performance.

However, it is important to note that obtaining proper results using this
approach requires a significant number of runs and subsequent statistical
analysis. The Conformal Bootstrap problem is inherently complex, with a
vast parameter space to explore, and the reinforcement learning agent needs
time to converge to meaningful solutions. Therefore, to ensure the reliability
and robustness of the results, we recommend conducting hundreds, if not

60



thousands, of runs and applying statistical methods to analyze the outcomes.
Looking ahead, there are several promising directions for further research.

Firstly, it would be valuable to extend our methodology to explore other
CFT models. Different CFT setups, such as fermionic or supersymmetric
theories, may present new challenges and insights. By adapting our rein-
forcement learning approach to these setups, we can gain a deeper under-
standing of their underlying properties and uncover novel conformal dimen-
sions and operator coefficients.

Additionally, investigating the scalability of our approach to more com-
plex CFTs is an intriguing avenue for future exploration. As the number of
operators and dimensions increases, the parameter space expands exponen-
tially, making the Conformal Bootstrap problem increasingly challenging.
Utilizing reinforcement learning techniques may provide a scalable solution,
allowing us to tackle more intricate CFTs and gain further insights into their
behavior.
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Appendix A

Reinforcement Learning
Overview

A.1 Generalities

Reinforcement learning (RL) is a branch of machine learning that deals with
the interaction of an agent with an environment to learn optimal decision-
making policies. RL has gained significant attention due to its ability to
solve complex problems by learning from trial-and-error experiences.

In RL, an agent (can be thought as the brain of the algorithm) interacts
with an environment in a sequential manner. At each time step, the agent
observes the current state of the environment, takes an action based on its
policy, and receives a numerical reward signal as feedback. The goal of the
agent is to learn a policy that maximizes its cumulative reward over time.

The RL framework can be formalized as a Markov Decision Process
(MDP), defined by a tuple (S,A, P,R), where:

� S is the set of possible states in the environment.

� A is the set of possible actions the agent can take.

� P is the state transition probability function, which defines the proba-
bility of transitioning to a new state given the current state and action.

� R is the reward function, which assigns a numerical value to each
state-action pair, indicating the desirability of taking that action in
that state.

The agent’s behavior is determined by its policy, which maps states to
actions. Policies can be deterministic or stochastic. A deterministic policy
selects a single action for each state, while a stochastic policy selects actions
probabilistically.
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To train the agent, RL algorithms often employ exploration-exploitation
strategies. Exploration involves taking actions to gather new information
and discover potentially better policies, while exploitation involves leverag-
ing the current knowledge to select actions that yield high rewards.

Reinforcement learning has been successfully applied to various domains,
including robotics, game playing, and natural language processing. It offers
a powerful framework for solving problems that can be reduced to a search
in a parameter space.

A.2 Soft Actor Critic (SAC)

The Soft Actor-Critic (SAC) is a state-of-the-art reinforcement learning al-
gorithm that combines the principles of deep Q-learning and maximum en-
tropy reinforcement learning. SAC aims to learn optimal policies for both
discrete and continuous action spaces by maximizing the expected cumula-
tive reward while also encouraging exploration and learning diverse behav-
iors.

The key idea behind SAC is to incorporate an entropy regularization term
into the objective function. By maximizing the entropy of the policy, SAC
promotes exploration and encourages the agent to discover a wide range of
actions that can lead to high rewards. This helps address the exploration-
exploitation trade-off in RL and enables the agent to discover novel solutions.

SAC leverages the actor-critic framework, which consists of two main
components: an actor network and a critic network. The actor network
is responsible for learning the policy and generating actions based on the
observed states, while the critic network evaluates the quality of the actions
by estimating the state-action value function.

The actor network is trained to maximize the expected cumulative re-
ward, taking into account both the rewards obtained and the entropy of
the policy. By maximizing entropy, the actor network explores the action
space more extensively, leading to better policy exploration and improved
generalization.

The critic network, on the other hand, is trained to estimate the state-
action value function. It provides feedback to the actor network by estimat-
ing the expected cumulative reward. The critic network’s role is crucial in
guiding the learning process and ensuring that the actor network converges
to an optimal policy.

SAC employs a soft update mechanism for the target networks to stabilize
the learning process. Instead of performing a strict update using the current
estimates, SAC performs a soft update by blending the current network
parameters with the target network parameters. This soft update strategy
helps prevent oscillations and improves the stability of the learning process.

Furthermore, SAC utilizes a replay buffer, which stores the agent’s expe-
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riences, to break the correlation between consecutive samples and improve
sample efficiency. By randomly sampling from the replay buffer during train-
ing, SAC can learn from a diverse set of experiences and reduce the variance
in the learning process.

The combination of entropy regularization, actor-critic architecture, soft
target updates, and experience replay makes Soft Actor-Critic a powerful
algorithm for reinforcement learning in continuous action spaces. SAC has
achieved state-of-the-art performance on various challenging tasks, including
robotic control, locomotion, and manipulation.
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