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3D Scene Generation and Editing using Foundational
Models and Geometric Algebra

Abstract

In the realm of Embodied AI, the creation of 3D simulated environments holds
paramount significance, yet it often demands specialized expertise and substantial
manual labor, consequently limiting their diversity and expansiveness.

In this thesis, we introduce a novel framework designed to address this limi-
tation by facilitating the fully automated generation of 3D environments tailored
to user-supplied prompts. Our framework automates scene generation and ex-
hibits versatility in crafting diverse scenes, adjusting designs to various styles, and
comprehending the semantics of intricate queries. Central to our approach is the
utilization of a large language model (LLM), which imbues the framework with
common-sense knowledge to envision plausible scene configurations. Additionally,
we harness a vast collection of 3D assets sourced from Objaverse to populate scenes
with a rich array of objects. We further enhance the framework by integrating a
sophisticated agent capable of providing feedback to the generation process. This
agent, powered by Multimodal Models like GPT-4 Vision, operates as a feedback
agent, guiding the generation towards desired outcomes. Furthermore, we harness
the capabilities of Retrieval Augmented Generation (RAG) to enrich the genera-
tion process, and incorporate the use of reference images, leveraging the advanced
visual understanding of GPT-4 Vision.

User evaluations indicate a strong preference for our approach, with 75% of
users favoring scenes generated using the feedback agent, 55.6% preferring scenes
generated using RAG, and 83.3% agreeing that there is a resemblance of the gen-
erated scene to the referenced image. In comparison with the state of the art, our
implementation is faster and more modular, enhancing user experience and system
efficiency.

Additionally, this thesis introduces a novel algorithm that integrates Large Lan-
guage Models (LLMs) with Conformal Geometric Algebra (CGA) to revolutionize
controllable 3D scene editing, particularly for object repositioning tasks. Conven-
tional methods typically suffer from reliance on large training datasets or lack a
formalized language for precise edits. Utilizing CGA as a robust formal language,
our framework precisely models spatial transformations necessary for accurate ob-
ject repositioning. Leveraging the zero-shot learning capabilities of pre-trained
LLMs, our framework translates natural language instructions into CGA opera-
tions, facilitating exact spatial transformations within 3D scenes without the need
for specialized pre-training.

To accurately assess the impact of CGA, we benchmark against robust Euclidean-
based baselines, evaluating both latency and accuracy. Comparative performance
evaluations indicate that our framework significantly reduces LLM response times
by 16% and boosts success rates by 9.6% on average compared to traditional meth-
ods.



These advancements underscore our framework’s potential to democratize 3D
scene generation and editing, enhancing accessibility and fostering innovation
across sectors such as education, entertainment, and virtual reality.



Δημιουργία και Επεξεργασία Τρισδιάστατων

Σκηνών χρησιμοποιώντας Μεγάλα Μοντέλα

΄Ορασης-Γλώσσας και Γεωμετρική ΄Αλγεβρα

Περίληψη

Στον κόσμο του Embodied AI, η δημιουργία 3D simulated environments κρατά
πρωτεύουσα σημασία, ωστόσο συχνά απαιτεί εξειδικευμένη εμπειρία και σημαντικό

χειρονακτικό έργο, περιορίζοντας συνεπώς την ποικιλία και την εκτεταμένη χρήση

τους.

Σε αυτήν τη διατριβή, πρώτον, παρουσιάζουμε ένα νέο σύστημα που σχεδιάστηκε

για να αντιμετωπίσει αυτό το περιορισμό. Το σύστημα αυτό διευκολύνει την πλήρως

αυτοματοποιημένη δημιουργία 3D περιβαλλόντων που προσαρμόζονται σε παραμέτρους
που καθορίζει ο χρήστης. Το σύστημά μας επιδεικνύει ευελιξία στη δημιουργία ποι-

κίλων σκηνών. Κεντρικό στην προσέγγισή μας είναι η χρήση ενός Μεγάλου Γλωσ-

σικού Μοντέλου (LLM), το οποίο εμπνέει το σύστημα με κοινή λογική γνώση για να
φανταστεί πιθανές διαμορφώσεις σκηνών. Επιπλέον, αξιοποιούμε μια τεράστια συλ-

λογή 3D μοντέλων για να γεμίσουμε τις σκηνές με μια πλούσια γκάμα αντικειμένων.
Επιπλέον, ενισχύουμε το σύστημα μας ενσωματώνοντας έναν πράκτορα ικανό να πα-

ρέχει αυτο-επιβλεπόμενα σχόλια στη διαδικασία δημιουργίας. Αυτός ο πράκτορας,

κινούμενος από το GPT-4V, λειτουργεί ως rewarding agent, καθοδηγώντας τη δη-
μιουργία προς τα επιθυμητά αποτελέσματα. Επίσης, εκμεταλλευόμαστε τις δυνατότη-

τες του RAG (Retrieval Augmented Generation) για να εμπλουτίσουμε περαιτέρω
τη διαδικασία δημιουργίας. Επιπρόσθετα, ενσωματώνουμε τη χρήση μιας εικόνας ανα-

φοράς στη συνολική διαδικασία, αξιοποιώντας την προηγμένη οπτική κατανόηση του

GPT-4V.
Επιπλέον, προτείνουμε εναν καινοτόμο αλγόριθμο που συνδιάζει Μεγάλα Γλωσ-

σικά Μοντέλα (LLMs) με την Σύμμορφη Γεωμετρική ΄Αλγεβρα (CGA) για την ε-
πεξεργασία 3D σκηνών, ιδίως για εργασίες αναδιάταξης αντικειμένων. Οι συμβατι-
κές μεθόδοι υποφέρουν συνήθως από την εξάρτηση από μεγάλα σύνολα δεδομένων

εκπαίδευσης ή την έλλειψη μιας τυποποιημένης γλώσσας για ακριβείς επεξεργασίες.

Χρησιμοποιώντας το (CGA) ως ένα τυποποιημένο γλωσσικό σύστημα, το σύστημά
μας μοντελοποιεί με ακρίβεια τις χωρικές μετατοπίσεις που απαιτούνται για ακριβή

αναδιάταξη αντικειμένων. Αξιοποιώντας τις ικανότητες μηδενικής εκπαίδευσης των

προεκπαιδευμένων LLMs, το σύστημά μας μεταφράζει φυσικές γλωσσικές οδηγίες σε
πράξεις (CGA) χωρίς την ανάγκη για εξειδικευμένη προεκπαίδευση. Για την ακριβή
αξιολόγηση της επίδρασης του (CGA), κάνουμε μια σύγκριση με υλοποιήσεις βασι-
σμένες στην ευκλείδια γεωμετρία, αξιολογώντας τόσο την καθυστέρηση όσο και την

ακρίβεια. Οι συγκρίσεις δείχνουν ότι το σύστημά μας μειώνει σημαντικά τους χρόνους

απόκρισης των LLM κατά 16% και αυξάνει τις επιτυχίες κατά 9,6% κατά μέσο όρο σε
σύγκριση με τις παραδοσιακές μεθόδους.
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Chapter 1

Introduction

The creation of 3D scenes holds profound importance in contemporary digital land-
scapes, transcending traditional 2D representations to offer immersive, interactive
environments across various domains. From entertainment and gaming to educa-
tion, simulation, and beyond, 3D scenes serve as powerful tools for storytelling,
communication, and exploration. Their ability to simulate real-world environ-
ments with high fidelity and interactivity opens up avenues for applications such
as architectural visualization, virtual reality experiences, and scientific data anal-
ysis. As technology advances, the role of 3D scenes continues to expand, shaping
the way we interact with digital content and enabling new possibilities for creative
expression and problem-solving.

Generating realistic, diverse, and interactive 3D environments is pivotal to the
success of various applications. However, existing environment creation methods,
including manual design, 3D scanning, and procedural generation with hard-coded
rules, are labor-intensive and limited in their scope. They require significant hu-
man effort to design complex layouts, select compatible assets, and ensure semantic
consistency among scene elements. Consequently, previous research has primarily
focused on generating specific types of environments. To overcome these limita-
tions, recent studies have leveraged 2D foundational models to generate 3D scenes
from text Zhang et al. [2023], Höllein et al. [2023], Fridman et al. [2023]. While
promising, these models often produce scenes with notable artifacts, such as mesh
distortions, and lack interactivity. Other models are tailored for specific tasks, like
floor plan generation Hu et al. [2020], Shabani et al. [2023] or object arrangement
Wei et al. [2023], Paschalidou et al. [2021]. Furthermore, language-guided scene
generation systems that utilize multiple large language models (LLMs) to create
scenes sequentially have been proposed Yang et al. [2023]. Nevertheless, these
systems lack essential features for more interactive scene creation, including self-
evaluation and improvement, integration of vision models to enhance generation,
and are restricted to specific frameworks and asset datasets.

Additionally, the editing of 3D scenes represents a crucial aspect of content
creation, allowing creators to refine, customize, and optimize virtual environments

1
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to meet specific requirements and objectives. Whether adjusting object place-
ments, fine-tuning lighting effects, or refining textures and materials, the editing
process empowers creators to craft scenes that accurately convey their vision and
narrative. Beyond aesthetic enhancements, 3D scene editing plays a vital role in
fields such as architectural design, where precise modifications are essential for
visualizing proposed structures and evaluating spatial relationships. Moreover,
in interactive applications such as video games and virtual simulations, real-time
editing capabilities enable dynamic storytelling and user engagement, fostering
immersive experiences that respond to user input and interactions.

Traditionally, 3D scene editing has required intensive manual effort and special-
ized knowledge, thereby restricting its efficiency and accessibility. Recent advance-
ments in Foundational Models Bommasani et al. [2021] signal a paradigm shift,
suggesting that complex scene editing could become more intuitive and accessible
through simple text-based instructions. However, existing machine learning-based
scene representation techniques, such as Neural Radiance Fields (NeRFs) Milden-
hall et al. [2020] and Gaussian Splatting Kerbl et al. [2023], present substantial
challenges for precise object repositioning due to their holistic nature, which often
obscures individual object details and limits model generalization due to scene
diversity Yu et al. [2020]. In contrast, using separate mesh scene representations
provides a viable solution by granting direct access to individual mesh components,
facilitating intuitive interactions and precise alignments tailored to specific editing
requirements Zhai et al. [2024]. The overarching question remains: How effectively
can machine learning interact with these separate mesh components for editing?

The advent of Large Language Models (LLMs) Ramesh et al. [2021], Touvron
et al. [2023], Jiang et al. [2023] has substantially advanced human-computer in-
teraction by utilizing linguistic proxies to facilitate instruction-based applications
Hong et al. [2023a], De La Torre et al. [2024], Gong et al. [2024], Durante et al.
[2024], Yang et al. [2023]. Furthermore, LLMs have significantly contributed to the
field of Neurosymbolic AI Sheth et al. [2023], Garcez and Lamb [2023], enhancing
our ability to transform linguistic instructions into precise symbolic representations
that bridge the gap between LLMs’ comprehensive understanding abilities and the
precision required for complex spatial transformations Dziri et al. [2023], Jignasu
et al. [2023], Hong et al. [2023b]. This integration prompts a critical inquiry into
the optimal symbolic notation that encapsulates geometric transformations in a
manner that LLMs can readily interpret. Geometric Algebra (GA), also known
as Clifford Algebra, provides a robust mathematical structure ideal for managing
transformations and interactions of geometric objects, which has been widely ap-
plied in Computer Graphics Papagiannakis [2013], Papaefthymiou et al. [2016],
Gunn and De Keninck [2019], Hildenbrand and Rockwood [2022].

We introduce a language-guided framework built upon ThreeDWorld (TDW)
framework Gan et al. [2021] to generate diverse, customized, and interactive 3D
environments from textual descriptions. Our framework selects from over 50,000
high-quality 3D assets from Objaverse Deitke et al. [2023] to satisfy a wide range of
environment descriptions. Using a Large Language Model (GPT-4), our framework
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designs floor plans, assigns suitable materials, installs doorways and windows, and
arranges 3D assets coherently in the scene using constraint-based optimization.
Leveraging the emergent abilities of Large Language Models (LLMs), our frame-
work exploits the commonsense priors and spatial knowledge inherently present in
LLMs. Beyond object selection and layout design, our framework demonstrates
its versatility in style customization by applying textures and designs to the scene
and its objects. Additionally, our framework showcases its proficiency in spatial
reasoning, such as devising floor plans and arranging objects regularly in scenes.
Furthermore, our framework features a self-improvement pipeline, where an agent
based on a Large Vision-Language Model (GPT-4V) provides feedback on gen-
erations and iteratively improves the scene. We also support visual guidance by
providing images of real-life examples of the desired scenes. Finally, we employ
RAG (Retrieval Augmented Generation) in our pipeline to help each module con-
sider high-quality scenes.

Additionally, we employ Conformal Geometric Algebra (CGA) to effectively in-
tegrate intuitive linguistic instructions with precise geometric operations, offering a
more accessible method for editing separate mesh 3D scenes. This method utilizes
the zero-shot learning capabilities of Large Language Models (LLMs), which allows
for adaptability to new 3D environments without the requirement for scene-specific
training. On top of that, we employ caching and RAG (Retrieval Augmented Gen-
eration) capabilities, to either use already existing equations for existing instruc-
tions or provide our agent with more examples that would help the generation of
the final equation. Our contribution is the development of a system tailored for
separate mesh scene editing, particularly designed for object repositioning through
textual descriptions. Integrated within the ThreeDWorld (TDW) framework Gan
et al. [2021], our framework supports the Unity3D Engine and enhances VR-ready
3D scene interaction capabilities. Through rigorously designed experiments, we
show that our framework markedly surpasses existing LLM-based alternatives, in-
cluding those used in NVIDIA’s Omniverse, in terms of object repositioning within
3D and interactive scenes. A critical aspect of our work is the detailed examination
of the limitations currently faced by LLM solutions in object repositioning tasks.
Furthermore, we illustrate that LLMs can proficiently execute and manipulate
CGA operations with minimal input.

Ultimately, our research marks a significant advancement, potentially democ-
ratizing the creation and manipulation of digital environments by simplifying the
complex technicalities traditionally involved in 3D scene editing.
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Chapter 2

State of the Art

2.1 Large Language Model for Scene Design

Numerous approaches to scene design have been proposed in literature, ranging
from learning spatial priors from existing 3D scene databases Chang et al. [2017],
Tan et al. [2019], Ma et al. [2018], Tang et al. [2023], Zhao et al. [2023], Wang
et al. [2021b], Wei et al. [2023] to leveraging user input for iterative refinement
of 3D scenes Chang et al. [2014], Cheng et al. [2019]. However, the reliance on
datasets with limited categories, such as 3D-FRONT Fu et al. [2021], constrains
the applicability of these methods. Recently, the integration of Large Language
Models (LLMs) has emerged as a promising avenue for generating 3D scene lay-
outs Feng et al. [2023], Lin et al. [2023b](as illustrated in Figure 2.1). Nevertheless,
existing approaches often suffer from limitations such as directly outputting nu-
merical values by LLMs, which can result in layouts that defy physical plausibility
(e.g., overlapping assets).A more comprehensive methodology was introduced by
Yang et al. [2023](as illustrated in Figure 2.1), which effectively leveraged LLMs
for 3D scene generation. However, this approach fell short in fully utilizing certain
features, such as RAG and the incorporation of vision modalities. In contrast, our
proposed framework utilizes LLMs to sample spatial relational constraints, subse-
quently optimized by a solver to ensure physically plausible scene arrangements.
Results from our human study demonstrate a preference for layouts generated by
our framework over those produced solely by LLMs in an end-to-end manner.

5
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Figure 2.1: Top: Scene generated using Holodeck. Bottom: Scene generated using
LayoutGPT.

2.2 Text-driven 3D Generation

Early efforts in 3D generation primarily revolved around learning the distribution
of 3D shapes and textures from datasets specific to certain categories Wu et al.
[2016], Yang et al. [2019], Zhou et al. [2021], Henzler et al. [2019], Nguyen-Phuoc
et al. [2019]. Subsequently, the emergence of large vision-language models like
CLIP Radford et al. [2021] facilitated zero-shot generation of 3D textures and
objects Huang et al. [2023], Mildenhall et al. [2021], Poole et al. [2022], Metzer
et al. [2023], Lin et al. [2023a], Gu et al. [2023]. While these advancements ex-
cel at generating individual 3D objects, they often struggle to produce complex
3D scenes. More recently, emerging approaches have attempted to generate 3D
scenes by integrating pre-trained text-to-image models with depth prediction al-
gorithms, yielding either textured meshes, Neural Radiance Fields (NeRFs) or
Gaussian Splatting Fridman et al. [2023], Höllein et al. [2023], Zhang et al. [2023],
Kerbl et al. [2023]. However, these methods often result in 3D representations
lacking modular composability and interactive affordances, thereby limiting their
suitability for embodied AI applications. In contrast, our framework leverages a
comprehensive 3D asset database to generate semantically precise, spatially effi-
cient, and interactive 3D environments.
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Figure 2.2: Scene generated using Text2Room and Neural Descriptor Fields.

2.3 Agent-Driven Object Rearrangement

In the domain of object rearrangement, the quest to comprehend reusable abstrac-
tions through geometric goal specifications spans from simple coordinate trans-
formations to intricate multi-object scenarios Batra et al. [2020]. Chang et al.
[2023] tackle rearrangement as an offline goal-conditioned reinforcement learning
problem, orchestrating actions to reposition objects from an initial setup in an
input image to align with criteria defined by a goal image. Kapelyukh and Johns
[2023] propose learning a cost function via an energy-based model to favor ob-
ject arrangements reminiscent of human behavior. Simeonov et al. [2023] address
rearrangement tasks employing Neural Descriptor Fields Simeonov et al. [2022],
assigning consistent local coordinate frames to task-relevant object parts, localiz-
ing these frames on unseen objects, and aligning them through executed actions.
Furthermore, Zhai et al. [2024] integrates scene graphs with diffusion processes for
editable generative models, albeit requiring extensive training and access to com-
plete scene graphs, contrasting with the efficiency of our localized transformation
approach.

Diverging from methods reliant on extensive scene-specific training, our ap-
proach harnesses the generalization capabilities of Large Language Models (LLMs)
to simplify object repositioning tasks. In contrast to Kwon et al. [2024], who con-
fine LLM applications to Euclidean spaces for predicting end-effector poses, and
Mavrogiannis et al. [2023](as illustrated in Figure 2.3), who necessitate numer-
ous and cumbersome predefined predicates for translating cooking instructions
into Linear Temporal Logic, our method exploits Conformal Geometric Algebra
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(CGA) and decomposes repositioning tasks into a minimal set of primitive trans-
formations. Unlike the LLMR approach De La Torre et al. [2024], which employs
specialized LLMs to generate C# Unity code for scene creation and editing (as
illustrated in Figure 2.3), our method circumvents direct code generation, ensuring
precise scene manipulation without the intricacies of code authoring and debug-
ging. Finally, building on exploration of natural language in virtual environment
creation Manesh et al. [2024], our work advances further by addressing complex,
multi-object repositioning tasks, thus significantly propelling the realm of future
VR scene manipulation.

Figure 2.3: Object Rearrangement throught code generation. Left: LLMR. Right:
Cook2LTL

2.4 Machine Learning Applications of Geometric Al-
gebra

The integration of Geometric Algebra (GA) into neural computation was first in-
troduced in Pearson and Bisset [1994], with subsequent developments introducing
multivector-valued neurons for radial basis function networks Corrochano et al.
[1996], multilayer perceptrons (MLPs) Buchholz [2000], Buchholz and Sommer
[2001], and various neural network architectures Buchholz and Le Bihan [2008],
Buchholz and Sommer [2008], Buchholz et al. [2007], Bayro-Corrochano [2001].
GA-based neural networks have found applications across diverse domains, includ-
ing signal processing Buchholz and Le Bihan [2008], robotics Bayro-Corrochano
et al. [2018], partial differential equation modeling Brandstetter et al. [2022], fluid
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dynamics Ruhe et al. [2023], and particle physics Ruhe et al. [2024]. Addition-
ally, novel GA-based architectures such as multivector-valued convolutional neural
networks (CNNs) Li et al. [2022], Wang et al. [2021a], recurrent neural networks
Kuroe [2011], Zhu and Sun [2016], and transformer networks Liu and Cao [2022],
Brehmer et al. [2024] have been introduced, showcasing the versatility and efficacy
of GA in enhancing neural network capabilities for geometrically oriented tasks.

Unlike these approaches, our work does not directly incorporate geometric alge-
braic components within deep learning architectures. Instead, we utilize geometric
algebra as a communicative mediator between the Large Language Model (LLM)
and our object rearrangement application. This approach underscores the use of
geometric algebra primarily as a tool to enhance the interaction and translation
of complex geometrical tasks into understandable formats for the LLM, thereby
fostering more effective problem-solving capabilities in practical applications. Re-
cently, Wang et al. [2023] fine-tuned ChatGPT with a large curated collection of
textual documents on Geometric Algebra, aimed at developing customized learning
plans for students in diverse fields. In contrast, our work diverges from the fine-
tuning approach of LLMs and instead investigates whether LLMs can effectively
utilize geometric algebra for object rearrangement tasks with minimal prompting.
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Relevant
Methods

Text-Guided
Scene Generation

Image-Guided
Scene Generation

Text-Guided
Scene Editing

RAG Caching
Automated
Feedback

Yang et al. [2023] x
Höllein et al. [2023] x
Feng et al. [2023] x x
De La Torre et al.
[2024]

x

Mavrogiannis et al.
[2023]

x x

Our Method x x x x x x

Table 2.1: Comparison of main features across relevant papers with our system.



Chapter 3

3D Scene Generation

In this chapter, we introduce the scene generation component of our framework,
a promptable system built upon the foundation of ThreeDWorld Gan et al. [2021]
and enriched with an extensive asset library from Objaverse Deitke et al. [2023].
This system is designed to produce diverse, customizable, and interactive environ-
ments guided by large language models.

Our framework is inspired by Yang et al. [2023] and adopts a systematic ap-
proach to scene construction, leveraging a series of specialized modules: (1) the
Floor & Wall Module which generates floor plans, constructs wall structures, and
selects appropriate materials for floors and walls; (2) the Doorway & Window
Module responsible for integrating doorways and windows into the environment;
(3) the Object Selection Module tasked with retrieving suitable 3D assets from
Objaverse; (4) the Constraint-based Layout Design Module which arranges assets
within the scene by employing spatial relational constraints to ensure realistic ob-
ject placement; and (5) the Feedback Module, providing iterative feedback based on
the design and layout of the generated scene to facilitate continuous improvement
in subsequent generations.

The main differences from Yang et al. [2023](as illustrated in Table 2.1) are the
addition of the Feedback Module, the inclusion of vision capabilities in the pipeline,
and the integration of RAG (Retrieval Augmented Generation). Furthermore,
our framework is built on top of ThreeDWorld Gan et al. [2021], offering greater
modularity in rendering capabilities and features. This foundation also facilitates
the expansion of the library of 3D assets and materials beyond Objaverse Deitke
et al. [2023].

3.1 Prompt Design

Each module retrieves information from a language model and translates it into
components incorporated into the final layout. For every module, a Large Lan-
guage Model (LLM) prompt is constructed, comprising three fundamental ele-
ments: (1) Task Description, outlining the context and goals of the task; (2)

11
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Output Format, defining the expected structure and format of outputs; and (3)
One-shot Example, presenting a specific instance to assist the LLM in compre-
hending the task. The text within the Figures of each module that are following,
provides simplified examples of prompts1. Responses from LLMs to these prompts
are processed at a high level and utilized as input parameters for modules to
generate detailed specifications of the scene.

3.2 Floor & Wall Module

Figure 3.1: Floor & Wall Module Overview

The Floor & Wall Module, depicted in Figure 3.1, is responsible for gen-
erating floor plans, constructing wall structures, and selecting materials for floors
and walls. Each room is represented as a rectangle, defined by four tuples that
specify the coordinates of its corners.

GPT-4 provides direct coordinates for room placement and suggests realistic
dimensions and connectivity for these rooms.

Furthermore, this module selects materials for the floors and walls, a critical
aspect in enhancing the realism of the environments. Our framework matches
LLM proposals to one of 538 materials, enabling semantic customization of scenes.
As illustrated in Figure 3.2, our framework can create scenes with appropriate
materials tailored to the specific scene type, thereby augmenting the authenticity
and immersion of the generated environments.

3.2.1 Output Format

In the LLM outputs for the Floor &Wall Module, the following details are provided
for each room:

• Room Type: The room’s name, e.g., kitchen, bedroom.

1Complete prompts (available in the appendices) include additional guidance to aid LLMs and
mitigate common errors
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Figure 3.2: Material Customizability. Our framework can select appropriate
floor and wall materials to make the scenes more realistic.

• Floor Material: A description of the floor’s appearance.

• Wall Material: A description of the wall’s appearance.

• Vertices: Four tuples {(xi, yi), i ∈ [1, 2, 3, 4]}, representing the coordinates
of the room’s corners.

3.2.2 Material Selection

We have an image representation for each of 538 materials. Using CLIP2 Radford
et al. [2021], we calculate the similarity between the material descriptions provided
by the Large Language Model (LLM) and these images. The material with the
highest similarity score is selected.

3.2.3 Wall Height

The LLM suggests a suitable wall height based on the user’s input. For example,
it may recommend a high ceiling for spaces like museums.

3.3 Doorway & Window Module

The Doorway & Window Module, depicted in Figure 3.3, oversees the sugges-
tion of room connections and windows within the scene. Each of these components
is independently queried from the LLM. The LLM is capable of suggesting door-
ways and windows, which can be adjusted based on various properties such as size,
height, and quantity. This module plays a crucial role in ensuring that the place-
ment and attributes of doorways and windows contribute to the overall coherence
and realism of the generated 3D environments.

2We employ OpenCLIP Ilharco et al. [2021] with ViT-L/14, trained on the LAION-2B dataset
Schuhmann et al. [2022], for all CLIP-related components in this thesis.
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Figure 3.3: Doorway & Window Module Overview

3.3.1 Door Selection

The LLM provides essential information to aid in the selection of doors:

• Room 1 & Room 2: The two rooms connected by the door, for example,
bedroom and kitchen.

• Connection Type: One of the three connection types: doorframe (frame
without a door), doorway (frame with a door), and open (no wall separating
the rooms).

• Size: The size of the door: single (one meter in width) or double (two meters
in width).

• Door Style: A description of the door’s appearance.

We have an image for each door, and we utilize CLIP to select the door that
most closely matches the description.

3.3.2 Window Selection

The LLM provides the following data about windows:

• Room Type: The room where the window will be installed.

• Direction: The wall’s direction (south, north, east, or west) where the win-
dow will be placed.

• Type: One of the three window types: fixed, slider, or hung.

• Size: The width and height of the window.

• Quantity: The number of windows installed on each wall.

• Height: The distance from the floor to the window’s base.
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3.4 Object Selection Module

3.4.1 Object Selection Module

Figure 3.4: Object Selection Module Overview

The Object Selection Module, illustrated in Figure 3.4, enables the LLM to
suggest objects for inclusion in the layout. Utilizing the extensive Objaverse asset
collection, our framework can source and place a diverse array of objects within
the scene. Queries are generated using descriptions and dimensions proposed by
the LLM, such as ”coffee table — large wood — (100, 100, 45),” allowing for the
retrieval of the most suitable asset from Objaverse.

The retrieval function3 considers both visual and textual similarities, as well
as dimensional aspects, to ensure the selected assets match the intended design.
Figure 3.5 demonstrates our framework’s ability to customize and position a wide
variety of objects, whether on the floor, walls, atop other items, or even on the
ceiling, ensuring the creation of cohesive and contextually relevant scenes.

3.4.2 Leveraging Objaverse Assets

Our framework supports the creation of diverse and tailored scenes. We source
assets from Objaverse 1.0 Deitke et al. [2023], annotated with details including
textual descriptions, scale, and canonical views as provided by Yang et al. [2023].

To integrate Objaverse assets into ThreeDWorld Gan et al. [2021], we use their
pipeline for mesh optimization and conversion into a compatible format.

In Objaverse, each 3D asset o ∈ O is associated with the following metadata:
a textual description of the asset t, the 3D bounding box size of the asset (w, d, h),
and a set of 2D images I captured from three different angles (0, 45, and −45).
For each object proposed by the LLM o′, we obtain a detailed description of the
object (t′) and its 3D bounding box size (w′, d′, h′) for retrieval purposes.

3We use CLIP Radford et al. [2021] for visual similarity, Sentence-BERT Reimers and Gurevych
[2019] for textual similarity, and 3D bounding box sizes for dimensionality considerations.
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Figure 3.5: Objects Customizability. Our framework can select and place
appropriate objects based on the input, such as “living room” and “wine cellar”.

To evaluate the similarity between a candidate 3D asset in the repository o =
(t, (w, d, h) , I) and the object proposed by the LLM o′ (t′, (w′, d′, h′)), we use three
metrics:

• Visual Similarity (V) measures the CLIP similarity between the 2D render-
ings of the candidate asset and the textual description of the LLM-proposed
object: V(o, o′) = maxi∈I CLIP(i, t

′).

• Textual Similarity (T ) measures the similarity between the textual de-
scription of the candidate 3D asset and the textual description of the LLM-
proposed object. This metric is crucial in improving retrieval accuracy, en-
suring that we select assets within the correct category. We use the sentence
transformer (SBERT) Reimers and Gurevych [2019] with all-mpnet-base-v2
checkpoint to calculate the scores: T = SBERT(t, t′).

• Size Discrepancy (S) measures the difference in the 3D bounding box size
between the candidate asset and the LLM-proposed object. Since the size of
objects is important in designing scenes, e.g., a larger sofa for a large living
room, the size matching score is computed as:

S(o, o′) = (|w − w′|+ |h− h′|+ |d− d′|) /3.
Two objects of similar size will have a smaller value of S.

The overall matching score M (o, o′) is a weighted sum of the above metrics:

M
(
o, o′

)
= α · V

(
o, o′

)
+ β · T (o, o′)− γ · S(o, o′) (3.1)

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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with weights α = 100, β = 1, and γ = 10. The asset with the highest matching
score is selected.

3.5 Constraint-based Layout Design Module

Figure 3.6: Constraint Layout Design Module Overview

The Constraint-based Layout Design Module, depicted in Figure 3.6, is
responsible for determining the positioning and orientation of objects within the
scene. While previous research Feng et al. [2023] has shown that LLMs can directly
provide absolute values for an object’s bounding box, this approach often leads
to errors such as out-of-boundary placements and object collisions, particularly
in complex environments with diverse assets. To overcome these challenges, we
adopt a constraint-based strategy inspired by Yang et al. [2023]. This approach
involves the LLM generating spatial relationships between objects, such as ”coffee
table, in front of, sofa,” and then optimizing the layout based on these constraints.
Leveraging the probabilistic nature of LLMs, our framework can generate multiple
valid layouts from the same prompt, enhancing the diversity and adaptability of
the resulting scenes.

3.5.1 Spatial Relational Constraints

In alignment with Yang et al. [2023], we define ten types of constraints, categorized
into five groups: (1) Global: edge, middle; (2) Distance: near, far ; (3) Position: in
front of, side of, above, on top of ; (4) Alignment: center aligned ; and (5) Rotation:
face to. The LLM selects a subset of these constraints for each object, forming
a scene graph for the room. These constraints are treated flexibly, allowing for
certain violations when finding a layout that satisfies all constraints is not possible.
Additionally, we enforce hard constraints to prevent object collisions and ensure
all objects remain within the room’s boundaries.
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3.5.2 Constraint Satisfaction

We begin by translating the spatial relational constraints into precise mathemati-
cal conditions. To generate layouts adhering to the selected constraints, we employ
an optimization algorithm that positions objects in an autoregressive manner. Ini-
tially, the algorithm identifies an anchor object and explores potential placements
based on LLM guidance. It then employs Depth-First Search (DFS) to find valid
positions for the remaining objects, ensuring adherence to hard constraints. Soft
constraints are considered with flexibility, allowing for some violations in pursuit
of a feasible layout.

For floor objects, constraints include global constraints (e.g., edge, middle),
distance constraints (e.g., near, far), position constraints (e.g., in front of, side of),
alignment constraints (e.g., center align with), and rotation constraints (e.g., face
to). The LLM combines these constraints to form a constraint list for each object,
guiding the DFS Solver in positioning objects within the scene. The DFS Solver
explores different placements while optimizing object positioning to meet the most
constraints.

Wall objects are placed based on attributes such as their relationship with floor
objects (e.g., above) and specified height. Small surface objects are positioned on
larger surfaces using the DFS Solver and constraining the 2D grid on the surface
of the larger objects.

3.6 Feedback Module

Figure 3.7: Feedback Module Overview

The Feedback Module is a crucial component of our framework, designed to
enhance the quality and realism of generated 3D scenes through iterative improve-
ment. This module leverages GPT-4 Vision to analyze various perspectives of the
scene and provide detailed feedback and scoring.
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3.6.1 Input Data

The Feedback Module takes as input:

• Top-down View: A comprehensive overhead view of the entire generated
scene.

• First-person Views: Four first-person perspective images for each room,
captured from the angles of 0°, 90°, 180°, and 270°.

These inputs ensure that the module has a thorough visual representation of the
scene, capturing both the overall layout and the detailed aspects from multiple
angles.

3.6.2 Processing and Analysis

Upon receiving the input images, the Feedback Module processes them through
the following steps:

3.6.2.1 Quality Assessment

• Aesthetic Evaluation: The module assesses the aesthetic aspects of the
scene, such as balance, symmetry, and overall visual appeal.

• Functionality Check: It evaluates the functionality and usability of the
scene, ensuring that the layout is practical and objects are placed in a manner
that supports intended interactions.

3.6.2.2 Scoring Mechanism

The module assigns a score to the scene based on several criteria, including but not
limited to spatial accuracy, object placement, aesthetic appeal, and functionality.
Each criterion is weighted to reflect its importance in the overall scene quality.

3.6.3 Feedback Generation

Based on the analysis, the Feedback Module generates detailed feedback that in-
cludes:

• Score: A numerical score that reflects the overall quality of the scene.

• Feedback:

– Highlights of the aspects that are well-executed in the scene.

– Object Placement: Suggestions on adjusting the placement of objects
to improve spatial relationships and enhance usability.
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– Layout Adjustments: Recommendations for modifying the layout to
better align with design constraints and improve the overall flow of the
scene.

– Aesthetic Enhancements: Advice on aesthetic improvements, such
as balancing object distribution, improving symmetry, and selecting
more suitable materials.

3.6.4 Iterative Improvement

The feedback is used to iteratively improve the scene generation process. The
iterative loop involves:

1. Feedback Integration: Incorporating the detailed feedback into the scene
generation pipeline. Adjustments are made to object placement, layout con-
figurations, and aesthetic choices based on the module’s recommendations.

2. Regeneration: The scene is regenerated with the incorporated feedback,
creating an improved version of the initial scene.

3. Re-evaluation: The updated scene is re-evaluated by the Feedback Mod-
ule to ensure that the suggested improvements have been effectively imple-
mented.

This iterative process continues until the generated scene meets the desired
quality standards, ensuring that each iteration progressively enhances the scene’s
realism, usability, and visual appeal.

By utilizing GPT-4 Vision in this feedback loop, our framework achieves a high
level of refinement in scene generation, producing environments that are not only
realistic and functional but also visually compelling and contextually appropriate.

3.7 Real-life Image Integration

The Real-life Image Integration feature enhances the realism and specificity
of generated 3D scenes by incorporating real-life images as input. This feature
is applied across all modules, leveraging GPT-4 Vision to analyze real-life photos
and textual guidance, providing a more structured and specific approach to scene
generation (as illustrated in Figure 3.8).

3.7.1 Input Data

The Real-life Image Integration feature takes as input:

• Real-life Images: Photos of actual rooms or environments that serve as
references for the generated scene. Thanks to GPT-4’s exceptional visual
capabilities, each module can process images ranging from low to very high
quality.
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• Text Guidance: Descriptive text providing context and specific details
about the desired elements and layout of the scene.

3.7.2 Feedback Generation

Based on the analysis, the feature generates detailed feedback that includes:

• Comparative Analysis: The feature compares the generated scene with
the real-life images to evaluate how well the scene matches the desired char-
acteristics and spatial configurations.

• Detailed Feedback: Specific suggestions on adjustments needed to more
closely align the generated scene with the real-life references, focusing on
aspects such as object placement, materials, and overall layout.

This process ensures that the generated scenes not only adhere to abstract
design principles but also closely mimic real-world environments, enhancing the
authenticity and practical relevance of the generated scenes.

Figure 3.8: Example of real-life images used as references for scene generation.

3.8 Retrieval Augmented Generation (RAG) Integra-
tion

The Retrieval Augmented Generation (RAG) feature enhances the scene
generation process by leveraging previous successful generations stored in a database.
This integration allows the framework to use the most relevant past examples as
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references for new queries, providing the Large Language Model (LLM) with valu-
able context and examples to improve the quality and coherence of the generated
scenes.

3.8.1 Database of Previous Generations

The RAG feature maintains a comprehensive database containing successful scene
generations from each module. This database includes:

• Scene Descriptions: Detailed textual descriptions of the generated scenes,
including context and specific design elements.

• Generated Outputs: The final outputs of each module, such as floor plans,
object placements, and material selections.

3.8.2 Query Handling

When a new query is received, the RAG feature processes it through the following
steps:

3.8.2.1 Query Analysis

The query is compared against the database of previous generations to identify
the most relevant examples. This comparison is based on textual similarity, design
elements, and overall scene context.

3.8.2.2 Reference Retrieval

The most relevant previous generations are retrieved from the database. These
references include previous generations that share similar design requirements or
contexts with the new query.

3.8.3 Incorporation into Scene Generation

The retrieved references are incorporated into the scene generation process as
follows:

3.8.3.1 Guided Generation

• Contextual Guidance: The LLM uses the retrieved references to under-
stand the context and design elements that led to successful previous gener-
ations.

• Example-Based Prompts: The references are used to construct example-
based prompts for the LLM, providing concrete instances of successful de-
signs to guide the generation process.
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3.8.4 Evaluation and Benefits

The integration of RAG offers several key benefits:

• Enhanced Coherence: By using successful past examples as references,
the RAG feature helps maintain consistency and coherence across different
scene generations.

• Improved Quality: The incorporation of high-quality references ensures
that new generations meet established design standards and exhibit refined
aesthetic qualities.

• Increased Efficiency: The RAG feature streamlines the generation process
by providing the LLM with concrete examples, reducing the time and effort
required to achieve desirable results.

The RAG integration significantly enhances the capability of our framework to
generate diverse, high-quality 3D scenes by leveraging the knowledge and success
of previous generations, thereby facilitating a more effective and efficient design
process.
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Chapter 4

3D Scene Editing

Figure 4.1: Scene editing component overview: It generates a CGA transformation
after templating the query and adds a δ upward translation for a hypothetical Z-
axis collision.

In this chapter, we introduce the scene editing component of our framework,
which facilitates dynamic and precise 3D scene manipulation. As depicted in
Figure 4.1, the system processes a user query, such as move the sofa to the right,
by first converting it into a standardized templated form, like move X1 to the right.

Our framework achieves this conversion by searching for exact matches within
the query and sequentially introducing variables for each identified match. This
templating process allows the Large Language Model (LLM) to perform symbolic
reasoning effectively. Once the query is templated, the system populates it with
the user’s input and generates the corresponding Conformal Geometric Algebra
(CGA) transformations to achieve the desired scene modifications.

It is important to note that our framework operates at a local level, focusing
on individual objects without a comprehensive understanding of other objects in
the scene. This localized approach enhances processing efficiency but may lead to
potential collisions with other objects in the environment.

To address the possibility of collisions, our framework leverages the inherent
flexibility of queries, such as move the sofa to the right, which often allow for
multiple valid solutions. Upon detecting a collision, the system explores alternative
perturbed transformations to resolve the issue. For instance, it may apply a small δ
upward translation along the Z-axis to avoid overlapping objects, ensuring minimal
deviation from the intended initial transformation.

As a final remark, the proposed scene editing system is integrated within the
ThreeDWorld (TDW) framework Gan et al. [2021]. This integration supports the
Unity3D Engine, facilitating the creation of VR-ready 3D scenes and enhancing
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Figure 4.2: Examples of conformal geometric algebra equations generated for the
queries Move X0 to the right and Move X0 on top of X1.

human interaction within virtual reality environments. By leveraging the power
of CGA and the flexibility of templated queries, our framework offers a robust
solution for precise and efficient 3D scene editing.

4.1 Conformal Geometric Algebra

In his seminal 1872 Erlangen Programme, Felix Klein introduced the revolutionary
idea that algebraic structures govern geometric shapes, asserting that geometry is
best understood through algebra Hawkins [1984]. This concept laid the founda-
tion for modern geometric algebra (GA), which unifies various algebraic systems,
including vector algebra, complex numbers, and quaternions, under the broader
framework of multivectors. Unlike traditional methods that treat scalars, vectors,
and higher-dimensional entities separately, GA provides a cohesive structure for
uniformly representing and manipulating these elements.

At the core of GA is the geometric product, which generalizes the dot prod-
uct and the cross product within Euclidean spaces. Since all other products can
be derived from the geometric product, it suffices to use the geometric product,
along with addition, scalar multiplication, and conjugation, for any multivector
operation.

In this work, we employ Conformal Geometric Algebra (CGA), a 32-dimensional
extension of quaternions and dual-quaternions Rooney [2007]. CGA enables the
uniform representation of various geometric entities such as vertices, spheres,
planes, as well as transformations including rotations, translations, and dilations,
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all expressed as multivectors Kamarianakis and Papagiannakis [2021].
For example, using the standard CGA basis elements {e1, e2, e3, e4, e5}, a CGA

basis comprises all 32 (25) combinations of these elements through the geometric
product, i.e., {1, ei, eiej , eiejek, eiejekel, e1e2e3e4e5 for 1 ≤ i < j < k < l ≤ 5}.
For convenience, we define the vectors eo = 0.5(e5 − e4) and e∞ = e4 + e5, and
use subscripts to denote products of basic elements, e.g., eijk := eiejek. Using this
notation, a sphere s centered at x = (x1, x2, x3) with radius r is represented by
the CGA multivector:

S = x1e1 + x2e2 + x3e3 +
1

2
(x21 + x22 + x23 − r2)e∞ + eo. (4.1)

Notably, setting r = 0 yields the respective multivector for the point x, and given
S, both x and r can be extracted.

In CGA, a translation by (t1, t2, t3) is represented as:

T = 1− 0.5(t1e1 + t2e2 + t3e3)e∞, (4.2)

with the inverse being:

T−1 = 1 + 0.5(t1e1 + t2e2 + t3e3)e∞. (4.3)

As noted in Kamarianakis and Papagiannakis [2021], a rotation typically expressed
by the unit quaternion:

q := a− di+ cj− bk, (4.4)

can be represented by the corresponding rotor :

R = a+ be12 + ce13 + de23. (4.5)

The inverse of R is given by:

R−1 = a− be12 − ce13 − de23. (4.6)

Additionally, the multivector:

D = 1 +
1− d

1 + d
e45, (4.7)

corresponds to a dilation with scale factor d > 0 with respect to the origin, and
its inverse is:

D−1 =
(1 + d)2

4d
+

d2 − 1

4d
e45. (4.8)

In the literature, e45 may be replaced by the equivalent e∞ ∧ eo, where ∧ denotes
the wedge (or outer) product.

To apply transformations M1,M2, . . . ,Mn to an object, we define the multi-
vector M := MnMn−1 · · ·M1, where all intermediate products are geometric. Our
framework can identify and generate the intermediate transformations Mi to be
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applied to an object, yielding M . As a composition of rigid body transformations
and dilations, the resulting multivector is equivalent to the product M = TRD
(translation T , rotation R, and dilation D). By extracting T , R, and D, we can
express M as a translation vector, unit quaternion, and scale factor, which can be
visualized in TDW and Unity.

Extracting T , R, and D from M = TRD is complex and undocumented in
current literature. To achieve this, we apply M to a sphere C centered at the
origin with radius 1. The transformed sphere’s multivector C ′ is evaluated using
the sandwich product C ′ = MCM−1. From C ′, we can extract its center x and
radius r. Since C ′ results from applying M = TRD to C, its radius is the scaling
factor of D, and its center is the translation vector of T . Knowing T and D, we
can evaluate R := T−1MD−1 and determine the corresponding unit quaternion
using (4.4) and (4.5).

4.2 LLM Processing & CGA Formulation

Our framework utilizes Conformal Geometric Algebra (CGA) to handle spatial
transformations within a 3D environment, leveraging the precision and rigor of
this mathematical framework. This approach allows us to accurately represent
and manipulate the spatial properties of objects.

To begin, our framework converts user queries into a templated format, which
is crucial for abstracting the user’s intent and preparing the data for algebraic
processing. Each object Xi in the scene is represented by an axis-aligned bounding
box, defined by two points, Xmax

i and Xmin
i , encapsulating the object’s spatial

extent. This bounding box model simplifies the calculation of movements and
rotations by providing clear, definable limits to each object’s position.

Through carefully designed prompts, we instruct the Language Model (LLM)
on the key concepts and operations of CGA (The complete prompt template is
provided in the Appendices Section). Below are some key remarks about the
prompt structure:

• Coordinate Extraction: We explain how to use the inner product | oper-
ation to precisely isolate spatial coordinates. For instance, (Xmax

1 |e2) corre-
sponds to the y coordinate of Xmax

1 .

• Outer (Wedge) Product: This operation is defined to establish planes
for rotational operations, detailing the mechanisms for both translation and
rotation rotors. These rotors are individually defined and can be combined
through rotor composition, enabling complex sequential transformations es-
sential for accurate scene manipulation.

To effectively guide the LLM in using the rotation and translation rotors, we
provided five illustrative examples:
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• Basic Examples: One example each of rotation and translation to demon-
strate fundamental movements.

• Compositional Example: An example that integrates both types of trans-
formations, illustrating how to combine rotors.

• Complex Queries: Two additional examples address more intricate queries,
such as move on top of and move next to another object.

This diverse set of examples ensures the LLM effectively understands and im-
plements the necessary algebraic operations for object repositioning. Despite the
limited number of examples, the LLM demonstrates the ability to generalize to
more complex queries.

Finally, the LLM responds by generating a JSON output, which includes the
specified rotors for composition to be applied to each object (as illustrated in
Figure 4.2). This JSON output details the necessary transformations, allowing for
precise and accurate adjustments within the 3D scene.

4.2.1 Implementation Details

The scene editing agent processes user queries like move sofa to the right, convert-
ing them into a templated format such as ”move X1 to the right.” This involves
matching specific phrases in the query and assigning variables accordingly. We
then make an API call to OpenAI’s gpt-4-1106-preview model via LangChain1.
The model’s JSON response maps edited object variables (e.g., ’X1’) to CGA
transformations (e.g., ’X1’: ’T(-1 * e1)’), where ’T’ stands for translation and ’R’
for rotation. Next, we transform this symbolic output into executable Python code
using the Clifford2 library, replacing variables like ’X’ with actual object names
and converting ’T’ and ’R’ into their respective functions. For example, the re-
sponse might be transformed to ’sofa’: ’generate translation rotor(-1 * e1)’. These
equations are then applied to the corresponding objects in the scene, implementing
the specified transformations.

4.3 Collision Detection Module

Our framework features a robust Collision Detection Module designed to manage
potential collisions following scene edits. This module leverages the bounding box
information of each object to ensure seamless integration and spatial coherence.

Upon receiving a scene editing query, the module first identifies the involved
target objects and checks them for potential collisions. It constructs an axis-aligned
3D grid around all objects, incorporating a fixed buffer zone to accommodate space
requirements during object placement. This buffer zone helps prevent objects from
being placed too closely together, reducing the likelihood of collisions.

1https://github.com/langchain-ai/langchain
2https://github.com/pygae/clifford

https://github.com/langchain-ai/langchain
https://github.com/pygae/clifford
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Drawing inspiration from Yang et al. [2023], our collision detection strategy
utilizes a Depth-First Search (DFS) solver. This solver systematically explores
various configurations to ensure that no objects overlap. Each object is described
by six parameters: (x, y, z) for the center coordinates, and w, d, h for the width,
depth, and height. The process begins with initial placements for the target ob-
jects, followed by systematic optimization for arranging the remaining objects.

The solver operates within a predefined time frame (e.g., 0.5 or 1 second) to
explore multiple configurations. It selects the optimal arrangement based on a
distance-based grading system, which prioritizes placements that keep objects as
close to their original positions as possible. This approach minimizes disruptions
and preserves the spatial integrity of the scene.

Once the optimal arrangement is determined, the module applies all neces-
sary transformations to the objects, ensuring that the final scene configuration is
collision-free and maintains the intended spatial relationships. This method en-
sures a dynamic yet coherent scene layout, enhancing the overall user experience.

4.4 Retrieval Augmented Generation & Caching Mech-
anism Integration

Our framework leverages Retrieval Augmented Generation (RAG) and a caching
mechanism to enhance the efficiency and accuracy of the Large Language Model
(LLM) in understanding and generating Conformal Geometric Algebra (CGA)
transformations for 3D scene editing.

4.4.1 Retrieval Augmented Generation

RAG is utilized to improve the LLM’s comprehension of CGA by providing rel-
evant editing queries as examples. When a new query is received, the system
retrieves similar past queries from a pre-existing database. These examples serve
as references to guide the LLM, allowing it to generate more accurate and contex-
tually appropriate transformations. By leveraging past knowledge, RAG helps the
LLM to better understand complex spatial relationships and transformation rules
inherent in CGA.

This approach not only enhances the LLM’s performance but also reduces the
computational overhead by narrowing down the search space to a set of pertinent
examples.

4.4.2 Caching Mechanism

To further optimize the query processing, our framework employs a caching mech-
anism. Given that the queries are templated, this mechanism allows the system
to fetch already existing queries and their corresponding transformations without
needing to invoke the LLM each time. This significantly speeds up the processing
time and reduces the computational resources required.
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The caching mechanism operates as follows:

1. Query Templating: Incoming queries are converted into a standardized
templated form.

2. Cache Lookup: The system checks if the templated query exists in the
cache.

3. Cache Retrieval: If a match is found, the corresponding CGA transforma-
tions are retrieved from the cache.

4. LLM Invocation: If no match is found, the LLM processes the query to
generate the required transformations, which are then stored in the cache for
future use.

By integrating RAG and the caching mechanism, our framework ensures that
the LLM is provided with high-quality examples, enhancing its understanding
and generation of CGA transformations. Simultaneously, the caching mechanism
streamlines query processing, making the system more efficient and responsive.

This dual approach not only improves the accuracy and efficiency of 3D scene
editing but also ensures that the system can handle a large volume of queries with
minimal latency, making it robust and scalable for real-time applications.

4.5 Universal Scene Description

In the construction of our 3D asset dataset, we made a strategic decision to leverage
the Universal Scene Description (USD) format as the backbone for organizing and
storing metadata associated with each asset. This integration of USD offers several
advantages in terms of data management, organization, and interoperability.

4.5.1 Benefits of Using USD for Dataset Management

1. Rich Metadata Representation:

• USD provides a robust framework for representing rich metadata as-
sociated with each 3D asset. This includes attributes such as object
descriptions, materials, textures, scale, orientation, and more. By en-
coding this metadata directly into the USD files, we ensure that all
relevant information is encapsulated within each asset, facilitating effi-
cient retrieval and manipulation.

2. Hierarchical Scene Composition:

• Leveraging USD’s hierarchical scene composition capabilities, we can
organize our dataset in a structured manner. Each USD file represents
a single asset, with the ability to nest objects within a scene hierar-
chy. This hierarchical structure allows for logical grouping of assets
and supports the organization of complex datasets.
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3. Layering and Versioning:

• USD’s support for layering and versioning enables us to manage differ-
ent versions of assets and apply edits or variations without modifying
the original files. This non-destructive workflow ensures data integrity
and provides flexibility in dataset maintenance and evolution over time.

4. Interoperability with 3D Software:

• One of the key strengths of USD is its interoperability with a wide range
of 3D software tools and pipelines. USD files can be seamlessly imported
and exported across different applications, ensuring compatibility and
facilitating collaboration among users with diverse workflows.

5. Efficient Data Compression:

• USD employs a highly efficient data compression scheme, resulting in
compact file sizes without compromising on data quality. This is par-
ticularly advantageous for large-scale datasets containing a significant
amount of metadata, textures, and geometric information.

4.5.2 Implementation Details

We leverage the Universal Scene Description (USD) format to store and organize
metadata for our dataset of 3D assets. USD is an open-source, interchange file
format developed by Pixar Animation Studios, designed for efficient and scalable
representation of complex 3D scenes and assets.

All metadata and information associated with our 3D assets are compressed
and stored within a database of USD files. These files contain structured data
representations of each asset, including attributes such as geometry, materials,
textures, animations, and other relevant properties. By utilizing the USD format,
we can efficiently organize and manage our dataset, enabling seamless retrieval
and manipulation of asset information.

USD provides significant value in our workflow, particularly during similarity
searches and retrieval operations. Its optimized file structure and data organization
facilitate fast and easy loading of specific attributes or metadata associated with
each asset. This enables swift comparisons and processing of large volumes of data,
enhancing the efficiency of our similarity search operations.

Moreover, USD’s hierarchical nature and layering capabilities offer a structured
framework for storing and organizing metadata, making it convenient to navigate
and locate specific information within the dataset.

By integrating USD into our 3D asset dataset management pipeline, we benefit
from a versatile and scalable framework for organizing, storing, and accessing meta-
data associated with each asset. The rich feature set provided by USD, combined
with its interoperability and efficient data compression, makes it an ideal choice
for managing large-scale 3D datasets across diverse domains and applications.
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Evaluation

5.1 System Configuration

We employed OpenAI’s GPT-4 model, specifically the gpt-4-1106-preview variant,
to process queries. The evaluation was done on a laptop with Ubuntu 22.04.4 LTS
and AMD Ryzen™ 9 4900HS Mobile Processor (8-core/16-thread, 12MB Cache,
4.3 GHz max boost), NVIDIA® GeForce RTX™ 2060 with Max-Q Design 6GB
GDDR6 and 16GB DDR4 RAM at 3200MHz. Rendering was performed using
Unity™ 2022.3.9f1.

5.2 System-based evaluation

Our system offers several key improvements over the Holodeck framework, particu-
larly in terms of execution speed, memory efficiency, modularity, and extendability.
Below, we discuss these enhancements in detail.

5.2.1 Execution Speed

Our system takes approximately 82 seconds to generate a single room while Holodeck
takes approximately 142 seconds (as illustrated in Table 5.1). Our implementation
demonstrates a significant advantage in the efficiency of the constraint solvers. Our
system generates approximately 10 times more solutions for object placements
compared to Holodeck, highlighting the superior efficiency of our constraint-solving
approach. Also, we optimized object retrieval speed by leveraging Huggingface
datasets and pyVespa for efficient and fast retrieval.

5.2.2 Memory Efficiency

Memory efficiency is a critical aspect of large-scale 3D scene generation. Holodeck
loads all the necessary metadata, including BERT and CLIP embeddings for all 3D
models in Objaverse, into memory. This approach can lead to substantial memory
consumption. In contrast, our system incorporates a Huggingface dataset within
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Modules Ours Holodeck

Room Module 5.12s 18s

Door Module 1.12s 5s

Wall Module 0.49s 0.52s

Window Module 1.12s 3.2s

Object Selector Module 25s 56s

Floor Constraint Module 27s1 26s

Wall Constraint Module 3s2 2.05s

Small Object Selector 19.8s 32s

Total 82.65s 142.77s

Table 5.1: Comparison of module average execution time between our system and
Holodeck

the pipeline, along with a dockerized pyVespa application. This setup limits RAM
usage and offloads a significant amount of information to disk, while maintaining
high performance.

To evaluate the memory usage, we employed the memory profiler3 library
in Python, collecting memory usage data at 0.1-second intervals. Throughout
the generation pipeline, our system consumes at most around 4.2 GBs of RAM,
whereas Holodeck consumes approximately 4.5 GBs. This gives us an edge of
about 6.7% decrease in terms of memory consumption.

5.2.3 Modularity and Extendability

One of the standout features of our system is its modularity. Unlike Holodeck,
which has a rigid architecture that complicates extensions, our system is designed
to be easily extendable. This is evidenced by the seamless integration of multiple
features such as Retrieval-Augmented Generation (RAG), feedback modules, and
reference image functionalities. Our modular architecture allows for the straight-
forward addition of new components and enhancements, making it a more versatile
and adaptable framework.

5.2.4 3D Models Dataset Enhancement

Our system is built on top of the ThreeDWorld (TDW) framework, which provides
a streamlined process for converting 3D models to a TDW-compatible format. This
ease of conversion facilitates the expansion of our 3D models dataset. In contrast,
Holodeck is built on AI2THOR Kolve et al. [2017], which lacks comprehensive
documentation or support for creating compatible assets. This limitation restricts
the flexibility and scalability of Holodeck in terms of incorporating new 3D models.

3https://github.com/pythonprofilers/memory_profiler

https://github.com/pythonprofilers/memory_profiler


5.3. 3D SCENE GENERATION 35

5.2.5 Advanced Features and Rendering Quality

TDW offers a broader range of features and superior rendering quality compared
to AI2THOR. This includes advanced physics simulations, higher fidelity visual
rendering, and more detailed environmental interactions. These enhancements
contribute to the creation of more realistic and visually appealing 3D scenes in our
system (as illustrated in Figure 5.1).

Figure 5.1: Comparison of scene snapshots: Our system (left) within TDW and
Holodeck (right) within AI2THOR.

5.2.6 Summary

In summary, our system provides a faster, more memory-efficient, modular, and ex-
tendable solution for 3D scene generation compared to Holodeck. The use of TDW
further enhances the capabilities of our framework, allowing for easy expansion of
the 3D models dataset and superior rendering quality. These improvements col-
lectively demonstrate the robust and adaptable nature of our system, positioning
it as a significant advancement in the field of 3D scene generation and editing.

5.3 3D Scene Generation

The 3D scene generation component of our framework closely follows the method-
ology presented in Yang et al. [2023], achieving comparable results. Therefore,
the evaluation focused primarily on the novel features introduced in our pipeline,
including Retrieval Augmented Generation (RAG), reference image and feedback
integration, as well as system implementation.
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5.3.1 Experimental Setup

This evaluation involved five participants who assessed unique 150 generated scenes—50
generated with feedback, 50 with a reference image, and 50 with Retrieval Aug-
mented Generation (RAG). Each scene was evaluated using top-down views and
a 360-degree display, comparing them to baseline scenes generated using the ap-
proach described in Yang et al. [2023]. The scenes were categorized into three
main types: living rooms, kitchens, and operating rooms. Additionally, iterative
generations based on feedback were limited to five iterations.

5.3.2 Performance Metrics

In evaluating the performance of our framework, we employed different metrics
tailored to the specific capabilities of the RAG, feedback module, and reference
image components. These metrics were designed to capture the effectiveness and
user satisfaction with the generated scenes.

5.3.2.1 RAG and Feedback Module

For both the Retrieval-Augmented Generation (RAG) and feedback module com-
ponents, the primary performance metric was participant preference. This metric
involved a comparative analysis where participants were presented with scenes gen-
erated by our framework and those generated by the baseline approach described
in Yang et al. [2023]. Participants assessed 150 generated scenes, divided into
three categories: living rooms, kitchens, and operating rooms. For each category,
50 scenes were generated using feedback, 50 using RAG, and 50 using the baseline
approach.

Participants were shown top-down views and 360-degree displays of each scene
and asked to choose their preferred scene.

5.3.2.2 Reference Image

For the reference image component, the performance metric focused on resem-
blance. Participants were provided with a reference image and the corresponding
scene generated by our framework. They were asked a simple yes or no question:
”Does the generated scene resemble the reference image?” This binary metric al-
lowed us to quantify the accuracy of our framework in replicating specific visual
characteristics and layouts from the reference images.

5.3.3 Results & Discussion

In this section, we present the results of our evaluation and discuss the findings
for the three components of our 3D scene generation framework: feedback module,
RAG, and reference image.
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5.3.3.1 Feedback Module

The feedback module was designed to enhance the scene generation process by
iteratively refining scenes based on a feedback agent. To evaluate its effectiveness,
participants were asked to choose between scenes generated using our feedback
module and those generated by the baseline approach from Yang et al. [2023]. As

Figure 5.2: Results from participants’ choice between Holodeck and our generated
scenes based on feedback.

depicted in Figure 5.2, the results showed a strong preference for our feedback-
generated scenes, with 75% of participants favoring them over the baseline scenes.
This significant preference indicates that the iterative refinement process enabled
by the feedback module successfully enhances the quality and desirability of the
generated scenes. The feedback mechanism allows the model to better align the
generated scenes with design expectations laid out by the Multimodal Feedback
agent, leading to more satisfying outcomes.

5.3.3.2 Retrieval-Augmented Generation (RAG)

The RAG component was evaluated by comparing scenes generated using RAG
with those from the baseline approach. Participants were presented with 50 scenes
generated by RAG and 50 baseline scenes across three categories: living rooms,
kitchens, and operating rooms. They were asked to select their preferred scene.
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Figure 5.3: Results from participants’ choice between Holodeck and our RAG-
generated scenes.

The results, illustrated in Figure 5.3, revealed that 55.6% of participants pre-
ferred the RAG-generated scenes over the baseline. Although the preference for
RAG-generated scenes is not as pronounced as for the feedback module, it still
indicates a notable enhancement in scene quality. The use of RAG allows the
generation process to incorporate a wider range of relevant information, leading
to more contextually rich and accurate scenes. However, the relatively lower pref-
erence compared to the feedback module suggests that while RAG improves scene
generation, there is still room for further refinement to better meet user expecta-
tions.

5.3.3.3 Reference Image

The reference image component was assessed based on the participants’ agree-
ment on whether the generated scenes resembled the provided reference images.
Participants were shown a reference image and the corresponding generated scene
and were asked to answer yes or no to whether the generated scene accurately
resembled the reference image.

As shown in Figure 5.4, 83.3% of participants agreed that the generated scenes
resembled the reference images. This high level of agreement underscores the
effectiveness of our framework in capturing and replicating the visual and spatial
characteristics of reference images. The ability to accurately generate scenes that
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Figure 5.4: Results of participants’ agreement on resemblance between reference
images and generated scenes.

closely match reference images is crucial for applications requiring precise visual
fidelity, such as interior design and virtual staging.

5.3.3.4 Discussion

The results from the evaluations provide several key insights into the performance
and user satisfaction with our framework:

1. Feedback Module: The significant preference for feedback-generated
scenes highlights the importance of iterative refinement in scene generation. By
continuously incorporating feedback, the framework can produce scenes that more
closely align with the expectations, resulting in higher satisfaction.

2. RAG: While the preference for RAG-generated scenes is positive, it is less
pronounced than for the feedback module. This suggests that while RAG enhances
the generation process by incorporating relevant information, it may not always
capture the nuanced preferences of users as effectively as iterative feedback.

3. Reference Image: The high agreement rate for the reference image com-
ponent demonstrates the framework’s capability to accurately replicate specific
visual inputs. This ability is particularly valuable for applications where visual
fidelity to a reference image is critical.

Overall, our framework demonstrates substantial improvements over the base-
line, with notable enhancements in user satisfaction and scene quality across all
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components. The combination of feedback, RAG, and reference image capabilities
allows for versatile and robust 3D scene generation, catering to a wide range of
user needs and preferences.

5.3.3.5 Examples of Generated Scenes

Figure 5.5: On the left the scene was generated using the query a living room while
on the right the prompt a wine cellar
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Figure 5.6: On the left the scene was generated using the query an operating room
while on the right the prompt a medieval dungeon

Figure 5.7: On the left the scene was generated using the query a library room
while on the right the prompt a warehouse
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Figure 5.8: On the left we can see the picture of a living room provided as reference
for the generation and on the right the final generated scene.
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Figure 5.9: Two scenes generated using RAG. On the left the query is A living
room and on the right A doctor’s office.

Figure 5.10: On the left we can see the picture of the initially generated living room
and on the right the final generated living room based on the feedback generated
from our Feedback Module.



44 CHAPTER 5. EVALUATION

In Figure 5.10 we can see the generation of a scene based on the following
feedback:

The overall design lacks cohesion and could benefit from a more thoughtful
arrangement. The sectional sofa is quite large but appears to be missing from the
images provided. The current sofa in the images does not facilitate conversation
and feels disconnected from the other elements. The coffee table placement does
not effectively complement the seating arrangement. The bookshelf and console
table are suitably placed, but the room could be better organized to create a more
inviting space. The wall art is appropriately placed, adding aesthetic value, but
could be better aligned with the furniture. The placement of floor lamps seems
arbitrary and could be positioned to better define different areas of the room. The
side table placement next to the accent chairs is not shown, but their purpose
should be to enhance function and aesthetics. The ottoman can be used as a
functional piece between seating to improve utility and design. To improve the
room, ensure the sofa is central to the layout, the coffee table is within easy reach of
all seating, and ambient lighting is thoughtfully positioned. The design elements
should reflect a warm and inviting atmosphere, similar to the reference image,
which shows a well-coordinated space with harmonious furniture placement, clear
walking paths, and a balanced look.
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5.4 3D Scene Editing

To evaluate our framework’s capability in object repositioning within 3D scenes,
we conducted comprehensive human evaluations involving 20 participants: 5 3D
designers, 5 game programmers, and 10 individuals from non-gaming and non-3D
design backgrounds. This study focused on our framework’s effectiveness in editing
a variety of scenes.

Our findings from these user studies demonstrate that our framework, leverag-
ing Conformal Geometric Algebra (CGA) in its prompting strategies, significantly
outperforms baseline alternatives, including those created with NVIDIA Omni-
verse (see Section 5.4.2.1).

5.4.1 Experimental Setup

For human evaluation, we generated ten diverse scenes, encompassing various set-
tings including living rooms, wine cellars, kitchens, and medical operating rooms.

For each scene, we created five variations of templated queries, populating
them with objects randomly selected from within the scene. This resulted in 50
distinct queries per scene, amounting to a total of 2,500 scenes (with corresponding
prompts) for human assessment. Each query was used to compare the initial scene
with the resulting scene after processing by the two baseline systems and our
framework.

For each edited scene, we displayed top-down view images and 360-degree video
views, asking annotators to assess the accuracy of the editing performed. Each ob-
ject repositioning query was evaluated by five annotators, with a result considered
valid only if all annotators unanimously agreed on the assessment. The evaluation
queries are displayed on the y-axis of Figure 5.12.

It is important to note that all preliminary experiments on dilation-related
queries with our framework and other baselines achieved a perfect success rate,
leading us to omit these queries. The queries are categorized into five groups, each
containing ten queries that evaluate the system’s performance across a progres-
sively increasing difficulty gradient. The group categories used in our analysis are
detailed below:

• Simple Queries: Basic actions such as rotations and movements along
specified axes or planes of a single object.

• Compositional Queries: Combinations of relative movements and rota-
tions among two or more objects.

• Fuzzy Queries: Interpretation and execution of spatial and orientation-
specific actions, such as proximity adjustments and directional alignments.

• Compositional Fuzzy Queries: Multiple elements combining aspects from
both compositional and fuzzy queries.
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• Hard Queries: The most challenging scenarios, testing the limits of each
system’s processing capabilities.

5.4.2 Benchmarking

In this section, we assess the performance of our system compared to established
baselines. In the following, we provide an overview of the baseline systems against
which our solution is measured, the performance metrics that form the criteria for
comparison, and a detailed discussion of the results.

5.4.2.1 Baseline Systems

For comparison, one of our baseline systems utilizes a publicly available prompt
from NVIDIA’s Omniverse4. This prompt generates a JSON output detailing
object placements within a 3D space, similar to our system. Unlike our framework,
the Omniverse prompt does not impose constraints on the reasoning scheme the
LLM should follow, requesting only the final positions of the objects. It accepts
input specifications for each object, including its name, dimensions along the X,
Y , and Z axes, and a centrally located origin point.

To ensure comparability with our system, we include only points of interest
relevant to the scene editing query, rather than the entire scene description as ini-
tially done. This refined input approach significantly impacts the LLM’s response
time. Our experiments demonstrate that providing only the relevant points of
interest leads to a substantial decrease in response time—specifically, an average
of 3.3 ± 0.1 times faster—without compromising overall accuracy. Due to these
findings, we report results exclusively from this optimized methodology. Finally,
we extended the prompt by incorporating Euler angles for object orientation.

Our second baseline model is inspired by recent work showing that LLMs can
predict a dense sequence of end-effector poses for manipulation tasks Kwon et al.
[2024]. We extend this concept to object repositioning in 3D scenes, treating it as
a form of zero-shot trajectory generation. In this context, we task the LLM with
constructing the necessary translation and rotation matrices to define the final tra-
jectory, adapting the underlying techniques to suit scene manipulation objectives.
This baseline model closely aligns with our approach, as it guides the LLM to oper-
ate using templated functions corresponding to translation and rotation functions
within the Euclidean space. This method parallels our use of structured prompts
that direct the LLM to generate specific geometric transformations necessary for
scene editing tasks.

To ensure a fair comparison, we appended five specific examples to both the
baseline prompts and the final guidelines (refer to Figure A.8). This inclusion is
based on findings that demonstrated significant benefits in enhancing the LLM’s

4https://github.com/NVIDIA-Omniverse/kit-extension-sample-airoomgenerator/blob/

main/exts/omni.example.airoomgenerator/omni/example/airoomgenerator/prompts.py

https://github.com/NVIDIA-Omniverse/kit-extension-sample-airoomgenerator/blob/main/exts/omni.example.airoomgenerator/omni/example/airoomgenerator/prompts.py
https://github.com/NVIDIA-Omniverse/kit-extension-sample-airoomgenerator/blob/main/exts/omni.example.airoomgenerator/omni/example/airoomgenerator/prompts.py
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effectiveness in performing scene editing tasks. The exact baseline prompts can be
found in the Appendices.

5.4.2.2 Performance Metrics

To evaluate the system’s performance, we calculated the success rate per query
across the ten different scenes, each with five templated variations. The success
rate S for each scene editing query is calculated as follows:

S =
1

M

M∑
i=1

χcorrect(i)

where χcorrect(i) is the characteristic function that equals 1 if the editing query
was performed correctly for the i-th query, and 0 otherwise. Here, M represents
the total number of queries, calculated as M = N × k, where N is the number of
different scenes considered (10 in our case), and k is the number of variations per
scene (5 in our case).

Similarly, we compared the average response time across the ten different scenes
and their respective variations. The average response time T is calculated by:

T =
1

M

M∑
i=1

ti

where ti represents the response time for the i-th query.

5.4.2.3 Results & Discussion

In this section, we present a comprehensive analysis that spans overall performance
metrics, detailed evaluations by query group, and granular analyses of individual
query performances. These discussions aim to highlight significant findings, in-
terpret the implications of the results, and explore potential areas for further
improvement.

In all reported figures, we refer to the modified baseline prompts for scene
editing as Omniverse and Euclidean, respectively derived from NVIDIA’s Omni-
verse usage examples and methods akin to zero-shot trajectory generation. We
name the latter Euclidean because it closely aligns with our method’s approach in
guiding the LLM to generate transformations such as rotations and translations
within Euclidean space, in contrast to our use of CGA. Finally, we refer to our
framework’s prompt as CGA.
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Figure 5.11: The left chart compares the average success rates, and the right chart
compares the average LLM response times for three different systems—Omniverse,
Euclidean, and CGA—across five categories of queries: Simple Queries, Compo-
sitional Queries, Fuzzy Queries, Compositional Fuzzy Queries, and Hard Queries.
Success rates are measured on a scale from 0.0 to 1.0. Horizontal dashed lines
indicate the overall mean recall and response times for each system.
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Figure 5.12: Query resolution performance for different prompts—Omniverse, Eu-
clidean, and CGA—across five query categories: Simple, Compositional, Fuzzy,
Compositional Fuzzy, and Hard. Success rate is assessed for each templated query
over ten different scenes, with five query variations per scene.
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Performance Analysis by Query Group Figure 5.11 presents a detailed eval-
uation of the prompts’ performance across different groups of queries. Each group’s
results are analyzed to highlight specific strengths and weaknesses of the system in
handling varying complexities. Specifically, the effectiveness and efficiency of the
CGA, Omniverse, and Euclidean prompts were evaluated across the five categories
of queries: Simple, Compositional, Fuzzy, Compositional Fuzzy, and Hard. We fo-
cused on two key performance metrics: average success rate and average response
time, providing insights into each system’s scene editing capabilities.

Overall, CGA achieves the highest average success rate of 0.80 and the lowest
average response time of 18 seconds (p < 0.05), with the results being statisti-
cally significant. Interestingly, all prompts exhibited the same overall standard
deviation, both in terms of success rate and response time, indicating consistent
variability across the different editors. To assess the differences between the sys-
tems, we performed t-tests. In comparison, the Omniverse and Euclidean prompts
achieve success rates of 0.74 and 0.72, and average response times of 21.5 seconds
and 24.5 seconds, respectively. While the differences in success rates among Om-
niverse and Euclidean prompts are not statistically significant, the variations in
average response times are.

We conjecture that the lack of statistical significance in terms of success rates
among the systems can be attributed to the nature of the reasoning methods
employed. Both the Omniverse and Euclidean prompts rely on classical geomet-
rical reasoning, which may lead to similar levels of performance. In contrast, our
framework utilizes a different approach to reasoning, which not only reflects in its
superior performance but also in its statistical significance. This suggests that the
distinct reasoning method employed by our system may contribute to its enhanced
effectiveness.

Focusing on the success rate metric, CGA consistently exhibits high success
rates across all query types, particularly excelling in complex scenarios such as
Compositional Fuzzy queries, indicating robust scene understanding. Given that
the success rates of the Euclidean and Omniverse systems are not statistically sig-
nificant, it is evident that CGA provides a relative boost of 9.6% over their average
performance. In contrast, Omniverse demonstrates variable performance, experi-
encing a drop in simpler queries but excelling in fuzzy queries. Conversely, the
Euclidean system performs well in simpler queries but shows significant weaknesses
in both simple and complex scenarios. CGA appears to integrate the advantages
of both systems, performing exceptionally well across simple, fuzzy, and composi-
tional queries. However, it is important to note that with all prompts, ChatGPT-4
shows average performance on hard queries, suggesting potential deficiencies in
spatial reasoning.

Regarding response time, Omniverse exhibits consistent average response times
across various query groups, regardless of query difficulty, with the notable excep-
tion of hard queries, which show the slowest response times. Importantly, CGA
demonstrates a 16% relative decrease in response time compared to Omniverse,
which is the fastest among the baseline systems. In contrast, the Euclidean prompt
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demonstrates an increasing trend in response times correlating with query diffi-
culty, peaking with fuzzy, compositional fuzzy, and hard queries. This trend is
noteworthy as it suggests that response times increase as query complexity rises.
The Euclidean prompt consistently records the longest response times across the
complex queries, posing challenges in time-sensitive applications. Meanwhile, the
CGA prompt also displays an increasing trend in response times with escalating
query difficulty. Notably, it presents slower response times for simple and sim-
ple compositional queries despite achieving a 100% success rate. Overall, CGA
maintains competitive response times suitable for practical applications, with its
response times scaling appropriately with the complexity of queries and achieving
the best overall response performance.

Detailed Performance by Individual Query Figure 5.12 delves into the per-
formance metrics for each individual query within the groups. This detailed break-
down provides insights into the prompts’ consistency, efficiency, and accuracy in
executing scene editing tasks with varying degrees of complexity, facilitating a
granular understanding of their operational effectiveness.

Regarding the Simple Queries, all systems generally exhibit high success rates
for straightforward tasks, even in geometrically nuanced rotations such as those
over specific planes, e.g., Rotate X1 over the e1 plane, with CGA consistently
achieving perfect scores. This highlights CGA’s superior handling of precise geo-
metric transformations.

For the Compositional Queries, which involve a combination of movements and
rotations, CGA and Euclidean perform robustly, indicating effective integration of
complex instructions. Omniverse, however, shows variability, particularly under-
performing in scenarios like Rotate over the e3 plane and move X1 to the right,
where it achieves a 0.7 success rate compared to 1.0 by CGA.

In dealing with spatially ambiguous commands, i.e., Fuzzy Queries, Omniverse
and CGA outperform Euclidean, especially notable in queries like Move X1 away
from X2 where Euclidean drops to 0 against Omniverse’s perfect score. Inter-
estingly, the Omniverse prompt struggles with the seemingly simple query, Move
X1 on the left of X2, displaying a stark contrast to the near-perfect performance
of the other systems. Although Omniverse is not presented with a specific move
below example (only on top is provided in their prompts), all systems show gener-
alization capabilities, with CGA achieving the highest success rate of 0.6. Similar
generalization is observed with the Swap X1 and X2 query, where all systems
are expected to perform well given their operational logic at the coordinate level;
however, Omniverse shows surprisingly lower performance. In contrast, while the
Euclidean and CGA systems perform less effectively on the Move X1 near X2
query, Omniverse excels with perfect success rates. Lastly, all prompts consis-
tently fail the Rotate X1 to face X2 query. Intriguingly, despite being equipped
with Euler angles, Omniverse also fails, suggesting a significant challenge area for
current scene editing technologies.
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The Compositional Fuzzy Queries category presents a notable challenge, com-
bining fuzzy directives with multiple actions. In this category, Omniverse and
CGA show comparable performances, indicating their effective handling of com-
bined directives. However, it is important to note discrepancies in the Euclidean
system’s performance. While it achieves good results on individual components of
these queries, it performs poorly when actions are combined, as seen in queries like
Move X1 next to X2 and rotate X3 by 90 degrees over the e2 plane and Swap X1
and X2 and move X3 on the left by 1 unit. This inconsistency highlights poten-
tial limitations in the Euclidean prompt’s ability to effectively integrate multiple
spatial manipulations within a single query.

All systems exhibit challenges with the most demanding Hard Queries, which
require intricate arrangements and precise manipulations. Notably, the Euclidean
prompt displays extremely inconsistent behavior: it achieves perfect success rates
on complex queries such as Place X1 on top of X2 and X3 below X2 and Align X1,
X2 and X3 in a straight line, where other systems face difficulties. Conversely,
it presents a zero success rate on tasks like Distribute X1, X2, X3 equally in a
circle around X4 or Arrange X1, X2, X3 in a vertical line, then rotate them by
45 degrees keeping X1 intact, where other systems manage average performances.
This variability suggests that while the Euclidean prompt excels in certain types
of spatial reasoning, it may lack robustness in scenarios requiring dynamic spatial
transformations or uniform object distribution.

These findings underscore the need for further optimization and testing of the
Euclidean system to enhance its consistency across a broader range of complex
scene editing tasks. In summary, while CGA emerges as the most capable across
a broad range of tasks, challenges remain, particularly in Hard and Compositional
Fuzzy queries, underscoring the need for further advancements in LLM reasoning
capabilities.

5.4.3 Scene Editing Examples

Table 5.2 and 5.3 present qualitative results that enhance understanding of the
user experience quality, illuminate the evaluation scheme, and clarify the advan-
tages and disadvantages of different prompts. As detailed in Section 5.4 of the
thesis, each object repositioning query is evaluated by five annotators. A result
is considered valid only if there is unanimous agreement among all annotators
on the assessment. The first column of Table 5.2 displays the performance of
different prompts—CGA, Euclidean, and Omniverse—respectively, for the query
move ‘chair 1’ away from the table. Our annotators unanimously agreed that the
Omniverse prompt accurately aligns with the requested query. The CGA prompt
correctly interprets the query but leaves the chair relatively close to the table,
which is not considered a correct result. In contrast, the Euclidean prompt does
not result in any transformation. In the second column, for the second prompt,
i.e., Rotate X1 over the e3 plane and move up, both CGA and Euclidean adeptly
rotate and elevate a book on the top right side of the bookcase, while Omniverse
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incorrectly rotates it along the wrong axis. Finally, in the third column of Table
5.2, both CGA and Omniverse successfully relocate the patient table, while Eu-
clidean fails to do so. It can be observed that the Euclidean prompt either fails to
alter object relations significantly or misinterprets the queries, even simple ones.

In the first query of Table 5.3, both CGA and Euclidean accurately position the
orange bottle and the vase. In contrast, Omniverse misinterprets the z-axis as the
y-axis, resulting in the vase being placed behind the table. In the second column
of Table 5.3, when examining a wine cellar scene, only CGA accurately repositions
a mask frame below a city frame. Conversely, the Euclidean approach incorrectly
places it adjacent to the other frame, while Omniverse incorrectly identifies the
correct axis for movement. Last but not least, we see that for the last query
on Table 5.3, i.e., move ‘barrel 1’ far from ‘barrel 2’ but close to ‘barrel 3’, both
Euclidean and Omniverse do not provide appropriate solutions. Importantly, CGA
provides a valid solution.
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Query Move ‘chair 1’ away from table
Rotate ‘book 1’ over e3 plane

and move up

Move ‘tools table’ away from
‘patient’ ensuring a distance of

at least 1 unit

Initial Scene

CGA

Euclidean

Omniverse

Table 5.2: Results across three different scenes for each prompt and for each
system.
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Query
Place ‘orange bottle’ on top of
‘tools table’ and ‘vase’ below

‘tools table’

Move ‘mask frame’ below ‘city
frame’

Move ‘barrel 1’ far from ‘barrel
2’ but close to ‘barrel 3’

Initial Scene

CGA

Euclidean

Omniverse

Table 5.3: Results across three different scenes for each prompt and for each
system.
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Chapter 6

Conclusion

6.1 Summary

The objectives of this thesis were to develop a comprehensive framework with the
following key features:

1. Modular and User-Friendly Text-to-3D Scene Generation: The frame-
work aims to provide a highly modular and user-friendly component for
generating 3D scenes from textual descriptions. This component includes
extensive features such as:

• Retrieval Augmented Generation (RAG): Enhancing the gener-
ation process by retrieving relevant examples to guide the LLM.

• Reference Image Integration: Allowing users to provide reference
images that the system can use to incorporate additional context and
detail into the generated scenes.

• Feedback-Based Iterative Generation: Enabling iterative improve-
ments to the generated scenes based on user feedback or self-evaluating
LLM agents, refining the results through multiple iterations.

2. Novel 3D Scene Editing Component: This component integrates Con-
formal Geometric Algebra (CGA) with Large Language Models (LLMs) to
facilitate advanced scene editing capabilities. The editing component is fur-
ther enhanced by:

• Retrieval Augmented Generation (RAG): Similar to the genera-
tion component, RAG is used to retrieve relevant editing queries, pro-
viding examples that improve the LLM’s understanding and execution
of scene edits.

• Caching Mechanism: To optimize performance, a caching mechanism
is implemented. This mechanism stores templated queries and their
corresponding results, allowing the system to quickly fetch and apply
pre-existing queries without requiring real-time processing by the LLM.

57
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6.2 Limitations & Future Work

6.2.1 3D Scene Generation

While the 3D scene generation component of our framework offers significant ad-
vancements and features, several limitations need to be acknowledged:

1. Dependency on Pre-Existing Data: The quality and variety of generated
scenes are inherently dependent on the pre-existing dataset of 3D assets.
Limitations in the dataset can directly affect the richness and accuracy of
the generated scenes. Future work will focus on creating a more diverse
dataset that includes a wide range of 3D models to cover a greater variety
of possible scenes.

2. Evaluation Metrics: The evaluation of generated scenes is inherently sub-
jective. While human evaluations provide valuable insights, they can be
influenced by individual biases and preferences. To address this, we plan to
develop more objective and standardized evaluation metrics. For instance,
we envision using CLIP to compare generated scenes against baseline scenes
or employing multimodal agents to assess the quality of generations.

3. Constraint Solver: Currently, constraints between objects are generated in
a templated format and solved using a depth-first search (DFS) solver. This
approach can be time-consuming, may not always produce the best results,
and can be complex. Future work will explore more efficient optimization
solvers and ”smarter” solutions, such as agent-based placement strategies.

Addressing these limitations will guide future research and development efforts
to enhance the capabilities and applicability of the 3D scene generation component.

6.2.2 3D Scene Editing

While the 3D scene editing component offers innovative features and significant
advancements, several limitations should be considered:

1. Object Representations: Currently, our system utilizes multiple interme-
diate representations of objects, including textual, templated, and bounding
box references, which require exact object names. To enhance this, we plan
to implement semantic similarity measures at the token level or more ad-
vanced similarity searches using distributed representations. Additionally,
enriching the system with further object information, such as orientation
details, will improve its ability to handle sophisticated queries involving rel-
ative rotations. By improving the system’s grasp of spatial relationships, we
expect better performance in complex scenarios.
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2. System Optimizations: We envision transforming the collision module
into a multi-modal agent, enabling nuanced handling of complex scenarios.
This agent could be provided with a top-down view of the scene to facilitate
finding better resolutions. Lastly, we plan to integrate speech interaction
capabilities into our system, making it more user-friendly and accessible.

3. Spatial Reasoning: Our work sheds light on the spatial reasoning capa-
bilities and limitations of LLMs. Although better and curated prompting
could improve performance on more challenging queries, we conjecture that
more specialized agents are needed. Future work will explore multimodal al-
ternatives that incorporate top-down views of the scene along with linguistic
queries or LLMs fine-tuned on geometric algebra (GA) Wang et al. [2023].
This approach aims to enhance the spatial reasoning and manipulation ca-
pabilities of the system.

Addressing these limitations and pursuing the outlined future work will sig-
nificantly advance the state-of-the-art in both 3D scene generation and editing,
making these systems more robust, efficient, and versatile.
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Guangyao Zhai, Evin Pinar Örnek, Dave Zhenyu Chen, Ruotong Liao, Yan Di,
Nassir Navab, Federico Tombari, and Benjamin Busam. Echoscene: Indoor
scene generation via information echo over scene graph diffusion. arXiv preprint
arXiv:, 2024.

Jingbo Zhang, Xiaoyu Li, Ziyu Wan, Can Wang, and Jing Liao. Text2nerf:
Text-driven 3d scene generation with neural radiance fields. arXiv preprint
arXiv:2305.11588, 2023.

Yiqun Zhao, Zibo Zhao, Jing Li, Sixun Dong, and Shenghua Gao. Roomdesigner:
Encoding anchor-latents for style-consistent and shape-compatible indoor scene
generation. arXiv preprint arXiv:2310.10027, 2023.

Linqi Zhou, Yilun Du, and JiajunWu. 3d shape generation and completion through
point-voxel diffusion. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5826–5835, 2021.



BIBLIOGRAPHY 71

Jingwen Zhu and Jitao Sun. Global exponential stability of clifford-valued recur-
rent neural networks. Neurocomputing, 173:685–689, 2016.

Paul Zikas, Antonis Protopsaltis, Nick Lydatakis, Mike Kentros, Stratos Geroniko-
lakis, Steve Kateros, Manos Kamarianakis, Giannis Evangelou, Achilleas Fil-
ippidis, Eleni Grigoriou, Dimitris Angelis, Michail Tamiolakis, Michael Dodis,
George Kokiadis, John Petropoulos, Maria Pateraki, and George Papagiannakis.
Mages 4.0: Accelerating the world’s transition to vr training and democratizing
the authoring of the medical metaverse, 2023.



72 BIBLIOGRAPHY



Appendix A

Appendices

A.1 Conformal Geometric Algebra

The Conformal Geometric Algebra (CGA) used in this paper can be seen as an-
other algebra containing dual-quaternions which allows round elements such as
spheres to be represented as objects of this algebra, i.e., as multivectors. To be
more precise, CGA is the lowest possible extension where this is possible. Being
able to represent round elements in conjunction with the ability to reflect on ob-
jects using the so-called sandwich operation presented in the following sections,
CGA is also able to represent dilators (uniform scaling) as multivectors. There-
fore, CGA is a geometric algebra where round elements (points, spheres, circles),
flat elements (lines, planes, point pairs) and all basic deformations (translations,
rotations, dilations) can be expressed explicitly in multivector form.

In order to create the model of 3D CGA, we extend the basis {e1, e2, e3} of
the original Euclidean space R3 by two elements e+ and e−. These elements have
positive and negative signature respectively, i.e., it holds that e2+ = −e2− = 1.
The resulting non-Euclidean space is usually denoted as R4,1 while the Clifford
(geometric) algebra of R4,1 is denoted as R4,1 or G(4, 1).

It is convenient to define a null basis given by the original basis vectors e1, e2, e3
of R3 and

eo =
1

2
(e− − e+), e∞ = e− + e+. (A.1)

The elements eo and e∞ are called null vectors because e2o = e2∞ = 0, where the
operation implied is the geometric product described in the following sections.

A.1.1 Vector Objects of R4,1

A generic vector Y of R4,1 is a linear combination of the basis elements {e1, e2, e3, e∞, eo},
i.e.,

Y = y1e1 + y2e2 + y3e3 + y∞e∞ + yoeo, yi ∈ R. (A.2)

Note that CGA is a projection space where the elements Y and Z are equivalent
if and only if there is a λ ∈ R such that Y = λZ. Due to this equivalence, we
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usually assume, without loss of generality, that the coordinate of eo is either 0 or 1.
In this algebra, points, spheres and planes are easily represented as vector objects
of the space, as described below.

Points A point x = (x1, x2, x3) = x1e1 + x2e2 + x3e3 of R3 is up-projected into
the conformal vector

X = x+
1

2
x2e∞ + eo

= x1e1 + x2e2 + x3e3 +
1

2
(x21 + x22 + x23)e∞ + eo. (A.3)

Spheres A sphere s of the R3, centered at x = (x1, x2, x3) with radius r is up-
projected into the conformal vector

S = X − 1

2
r2e∞

= x1e1 + x2e2 + x3e3 +
1

2
(x21 + x22 + x23 − r2)e∞ + eo, (A.4)

where X is the image of x in R4,1.

Planes A plane π of the original space, with Euclidean distance d from the origin,
perpendicular to the normal vector n⃗ = (n1, n2, n3) is up-projected into the
conformal vector

Π = n⃗+ de∞ = n1e1 + n2e2 + n3e3 + de∞. (A.5)

A.1.2 Products in R4,1

There are three major products in R4,1: the inner, the outer and the geometric.
Each of these products is initially defined among the vectors e1, e2, e3, e−, e+, eo,
e∞. The respective definition is then extended to any element (a multivector) of
the space. Below we present some of the basic properties of these products.

Inner The inner product (denoted by ·) of the basis elements is defined as follows:

• ei · ej := δij for i, j ∈ {1, 2, 3,+},

• e− · e− := −1,

• e− · ej := 0 for j ∈ {1, 2, 3,+},

• eo · eo := e∞ · e∞ = 0,

• eo · e∞ := −1,

• ei · ej := 0 for i ∈ {1, 2, 3,+} and j ∈ {o,∞}.



A.1. CONFORMAL GEOMETRIC ALGEBRA 75

Outer The outer product of the basis elements ei and ej is denoted as ei∧ej . The
outer product is an associative operation that can be applied to more than
two elements, e.g., ei∧ ej ∧ ek and ei∧ ej ∧ ek ∧ e∞ are properly defined. The
outer product of k basis vectors is called a k-blade and k is usually referred
to as the grade of this blade. A sum of k-blades is called a k-vector and the
addition of k-vectors of different grades is a multivector.

The importance of the outer product derives from the fact that it allows us, in
certain cases, to obtain the intersection of two objects by simply evaluating
their outer product. Specifically, a circle (resp. line) can be seen as the
intersection - outer product of two spheres (resp. planes). The outer product
of a circle with an intersecting sphere or equivalently, the outer product of
three intersecting spheres represent a set of two points, usually referred to
as a point pair.

Geometric The most important product in R4,1 is the so-called geometric prod-
uct. For the basis vectors ei and ej , their geometric product eiej is defined
as the addition of the outer and inner product of the elements, i.e.,

eiej := ei ∧ ej + ei · ej .

Note that, by the definition, eiej = ei ∧ ej for every i, j ∈ {1, 2, 3,∞, o} such
that i ̸= j and {i, j} ≠ {∞, o}.

A.1.3 Dual Objects

First, let us denote the pseudoscalar I of R4,1,

I := e1 ∧ e2 ∧ e3 ∧ e+ ∧ e− = e1 ∧ e2 ∧ e3 ∧ e∞ ∧ eo. (A.6)

Using I, we may define the dual object m⋆ of a multivector m is to be

m⋆ := −mI, (A.7)

where the operation between m and I is the geometric product. Notice that it
holds that (m⋆)⋆ = −m and therefore we can easily obtain the normal form m of
an object from it’s dual form m⋆ and vice versa.

The dual form of certain objects holds strong geometric meaning, as described
below.

• The outer product of 4 non-coplanar points yields the dual form of the sphere
defined by these points.

• The outer product of 3 non-collinear points and e∞ yields the dual form of
the plane defined by these points.

• The outer product of 3 non-coplanar points yields the dual form of the circle
defined by these points.

• The outer product of 2 points and e∞ yields the dual form of the line defined
by these points.
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A.1.4 Rotations, Translations and Dilations

So far we have shown that objects (or their duals) such as points, planes, circles,
spheres, lines and point pairs are represented as multivectors. However, the beauty
and versatility of this algebra comes from its ability to also represent rotations,
translations and dilations as multivectors as described below.

Rotation. A rotation in CGA is encapsulated in a multivector

R := exp

(
−b

ϕ

2

)
= exp

(
−I3u

ϕ

2

)
= cos

(
ϕ

2

)
− uI3 sin

(
ϕ

2

)
, (A.8)

where ϕ is the angle of the rotation, b is the normalized plane of the rotation, u is
the normalized axis of the rotation and I3 := e1e2e3. All products are geometric
products and exp(·) denotes the exponential function. The inverse multivector of
R is

R−1 := exp

(
b
ϕ

2

)
= exp

(
I3u

ϕ

2

)
= cos

(
ϕ

2

)
+ uI3 sin

(
ϕ

2

)
. (A.9)

Translation. The multivector

T := exp

(
−1

2
te∞

)
= 1− 1

2
te∞, (A.10)

where t = t1e1 + t2e2 + t3e3 is a euclidean vector, represents a translation by t in
CGA. The inverse multivector of T is

T−1 := exp

(
1

2
te∞

)
= 1 +

1

2
te∞. (A.11)

Dilation. The multivector

D = 1 +
1− d

1 + d
e∞ ∧ eo (A.12)

corresponds to a dilation of scale factor d > 0 with respect to the origin. The
inverse of D is given by the expression

D−1 =
(1 + d)2

4d
+

d2 − 1

4d
e∞ ∧ eo. (A.13)

An interesting remark is that, for d = 0, it holds that D = 1+ e∞∧ eo = 1+ e+e−,
which is clearly not invertible in R4,1 as (e+e−)

2 = 1.
The conformal space model allows us to apply any or multiple of the operations

above not only to a point but also to any object O that was previously defined.
Let Mi, for i = 1, . . . , n, be either a rotation, a translation or a dilation as defined
above. To apply the transformations M1,M2, . . .Mn (in this order), to an object
O, we first define the multivector M := MnMn−1 · · ·M1, where all in-between
products are geometric. The object

O′ := MOM−1 (A.14)

represents the final form of O after all transformations are applied.
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A.1.5 Interpolation of Multivectors

Interpolation of data is an essential part for Computer Graphics as it is needed
in every animation procedure of a rigged model. The poses of the model with
respect to time are not stored in a continuous manner but rather at discrete time-
steps. If additional intermediate frames are demanded, we have to interpolate the
animation data between two provided keyframes.

As in the case of matrix or (dual) quaternion quaternion interpolation, a blend-
ing of two multivectors can be accomplished in various ways, yielding different
results. Choosing a proper interpolation technique is not a simple task as it may
depend on the model or other factors. However, two methods remain dominant in
analogue with the quaternion case: the linear and the logarithmic blending.

Linear blending of the multivectors m1 and m2, which, in a model animation
context, may represent translations, rotations or dilations, is done by evaluating
(1−α)m1+αm2, for α ∈ [0, 1]. Another blending method is the so-called logarith-
mic interpolation where we evaluate m1 exp(α log(m−1

1 m2)), for α ∈ [0, 1], where
the exponential and logarithmic function of a multivector m are approximated in
our case using the respective Taylor series expansion. Notice that m1 is either a
rotator, a translator, a dilator with d > 0 or a geometric product of such multi-
vectors and therefore is invertible. Although not evident, one can prove that the
logarithmic interpolation method is symmetric if we interchange m1 and m2 as
well as α and 1− α, by using basic exponential and logarithmic properties.

A.2 3D Scene Generation

A.2.1 Prompts
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Figure A.1: Prompt used for the floor module.
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Figure A.2: Prompt used for the wall module.
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Figure A.3: Prompt used for the door module.
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Figure A.4: Prompt used for the window module.
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Figure A.5: Prompt used for the object selection module.
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Figure A.6: Prompt used for the object selection module if in the first try we
didn’t gather enough objects to fill the room.
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Figure A.7: Prompt used for the feedback module.
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A.3 3D Scene Editing

A.3.1 Ours, Euclidean & Omniverse Prompts

As discussed in Section 5.4 of the thesis, Figure A.10 displays the Euclidean
prompt. Additionally, Figures A.11 and A.12 showcase the prompts from NVIDIA’s
Omniverse1. For a fair comparison, both sets of prompts are presented with the
main guidelines and examples, similar to the CGA prompt.

1https://github.com/NVIDIA-Omniverse/kit-extension-sample-airoomgenerator/blob/

main/exts/omni.example.airoomgenerator/omni/example/airoomgenerator/prompts.py

https://github.com/NVIDIA-Omniverse/kit-extension-sample-airoomgenerator/blob/main/exts/omni.example.airoomgenerator/omni/example/airoomgenerator/prompts.py
https://github.com/NVIDIA-Omniverse/kit-extension-sample-airoomgenerator/blob/main/exts/omni.example.airoomgenerator/omni/example/airoomgenerator/prompts.py
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cga_prompt.md 2024-05-23

1 / 1

Objective:

You MUST calculate the appropriate transformation for objects in a 3D space using templated variables (X1,
X2, etc.). You MUST only use a valid combination of the defined algebraic operations.

Coordinate System:

X-axis (e1): Translates the object LEFT (-) or RIGHT (+).
Y-axis (e2): Translates the object BOTTOM (-) or TOP (+) height wise.
Z-axis (e3): Translates the object BACK (-) or FORWARD (+).

Defined Algebraic Operations:

1. Rotation The rotation rotor R(theta, u, v) rotates a vector by an angle theta in the plane defined by u ^
v.

2. Translation The translation rotor T(x * e1 + y * e2 + z * e3) translates an object along the vector x * e1
+ y * e2 + z * e3.

3. Coordinate Extraction Use the inner product (x1 | e3) * e3 to extract the coordinate along the Y-axis.
4. Outer Product For independent vectors, u ^ v is non-zero and represents an oriented plane.
5. Commutation: Translation operators commute, T(v) * T(w) = T(w) * T(v).
6. Rotor Composition: Rotors can be combined by multiplication, representing sequential rotations.

Task Instructions:

1. APPLY the specified T for translation and R for rotation operations, adhering to the defined algebraic
operations.

2. DO NOT introduce any variables or constants not explicitly mentioned in the input.
3. USE ONLY the variables names and e1, e2, e3 on the operations.
4. OUTPUT the transformations in JSON format, using key-value pairs for each object and its

transformation.
5. USE ONLY the max and min points of an object's bounding box (e.g., X1.max and X1.min) for all

calculations.
6. For coordinate extraction, employ the inner product operator |. For instance, use (X1.max | e2) * e2 to

extract the Y- axis coordinate.
7. CONSIDER the current position of objects when moving one in relation to another. Calculate

transformations using the initial locations derived from their bounding box points.

Example Inputs, Results in JSON format

1. Input: 'Translate X1 by 1 unit to the left.' Output: {'X1': 'T(-1 * e1)'} Explanation: The bounding box of
X1 is defined by the points X1.max and X1.min. To translate X1 by 1 unit to the left, we must subtract 1
from the X-axis coordinate of both points. Therefore, the transformation is T(-1 * e1).

2. Input: 'Rotate X1 by 90 degrees around the z-axis.' Output: {'X1': 'R(np.pi/2, e1, e2)'} Explanation: The
rotation rotor R(theta, u, v) rotates a vector by an angle theta in the plane defined by u ^ v. In this case,
the rotation is 90 degrees in the z-axis is defined as the rotation around e1, e2 plane. Therefore, the
transformation is R(np.pi/2, e1, e2).

Figure A.8: Template for Conformal Geometric Algebra Prompts Used by our
framework. (1/2)
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cga_prompt.md 2024-05-23

1 / 1

3. Input: 'Translate X2 by 1 unit to the right and rotate it by 90 degrees around the z-axis.' Output: {'X2':
'T(1 * e1) * R(np.pi/2, e1, e2)'} Explanation: The bounding box of X2 is defined by the points X2.max
and X2.min. To translate X2 by 1 unit to the right, we must add 1 to the X-axis coordinate of both
points. Therefore, the translation is T(1 * e1). The rotation rotor R(theta, u, v) rotates a vector by an
angle theta in the plane defined by u ^ v. In this case, the rotation is 90 degrees in the z-axis is defined
as the rotation around e1, e2 plane. Therefore, the rotation is R(np.pi/2, e1, e2). Since the rotation must
be applied after the translation, the transformation is T(1 * e1) * R(np.pi/2, e1, e2).

4. Input: 'Move X1 on top of X0.' Output: {'X1':'T((X0.max+X0.min)/2 - (X1.max+X1.min)/2 + ((X0.max -
X0.min) | e2) * e2)'} Explanation: The bounding box of X1 is defined by the points X1.max and X1.min.
The bounding box of X0 is defined by the points X0.max and X0.min. To move X1 on top of X0, we must
translate X1 by the difference between the center of X0 and X1 and the Y-axis coordinate of X0.
Therefore, the transformation is T((X0.max+X0.min)/2 - (X1.max+X1.min)/2 + ((X0.max - X0.min) | e2) *
e2).

5. Input: 'Move X1 next to X0.'' Output: {'X1':'T((X0.max+X0.min)/2 - (X1.max+X1.min)/2 + (X0.max +
(X0.max - X0.min) | e1) * e1)'} Explanation: The bounding box of X1 is defined by the points X1.max
and X1.min. The bounding box of X0 is defined by the points X0.max and X0.min. To move X1 next to
X0, we must translate X1 by the difference between the center of X0 and X1 and the X-axis coordinate
of X0 and then add an offset along the e1 plane in order for the objects to not collide with each other.
Therefore, the transformation is T((X0.max+X0.min)/2 - (X1.max+X1.min)/2 + ((X0.max - X0.min) | e1) *
e1).

Output Format:

The output MUST be formatted as a SINGLE JSON object containing all transformations for each object.

Additional Guidance for LLM:

ADHERE strictly to the defined algebraic operations.
DOCUMENT Each Step: For every action you perform, you MUST provide a clear and
numbered list of operations used during your reasoning.
REVISE any transformation that does not comply with these principles.
It's IMPORTANT to take into consideration all axis when performing relative transformations. Focus on
the X AND Z axis when moving objects around the room. Make changes in the Y axis when a vertical
movement is required. So, for example, when moving an object next to another, you should move it in
both the X and Z axis, and when moving an object on top of another, you should move it in the X and Z
axis, and also in the Y axis.
When no axis is defined for rotations, the default axis is the Y-axis which means a rotation in the e1, e3
planes.
When you want to move or rotate an object along an axis you must use the inner product operator |.
For example, to move an object along the Y-axis you must use (X1.max | e2) * e2.
When no unit is specified for the translation, the default unit is 1 and for the rotation, the default unit is
90 degrees.

Figure A.9: Template for Conformal Geometric Algebra Prompts Used by our
framework. (2/2)



88 APPENDIX A. APPENDICES

Figure A.10: Euclidean Prompt template for the Scene Editing Agent.
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Figure A.11: Omniverse Prompt template for the Scene Editing Agent Part 1.
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Figure A.12: Omniverse Prompt template for the Scene Editing Agent Part 2.
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Figure A.13: Omniverse Prompt template for the Scene Editing Agent Part 3.
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