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I. INTRODUCTION 

1. Graphene 

Graphene has been a rapidly rising star on the horizon of materials science 

and condensed matter physics [1]. Since the extraction from graphite, the 

monatomic layer of carbon atoms arranged into a two-dimensional 

hexagonal lattice, called graphene, has become a hot topic in science 

because it is promising for many applications. The physical properties of 

graphene, such as thermal conductivity, optical conductivity, electron 

spectrum, phonon vibrations, elastic properties and sound velocities can be 

tuned in a controllable way by applying elastic strain. The stability range of 

flat graphene in the three-dimensional space of the plane strain components 

was reported in [2]. 

As a defect-free material, graphene is predicted to have an intrinsic tensile 

strength higher than any other known material and tensile stiffness similar to 

values measured for graphite [3]. Graphene is a nanosized carbon polymorph 

and has drawn a great 

deal of attention due to 

its unique physical 

properties, which can 

be used in electronics, 

optics, spintronics, 

hydrogen transportation 

and storage, composite 

materials and many 

other fields. The 

physical and 

mechanical properties 

of graphene change 

noticeably depending 

on the applied 

deformation, which 

makes it possible to 

improve its useful properties [4]. 

Graphene is the name given to a flat monolayer of carbon atoms tightly 

packed into a two-dimensional (2D) honeycomb lattice, and is a basic 

building block for graphitic materials of all other dimensionalities (Figure 

1). It can be wrapped up into 0D fullerenes, stacked into 3D graphite or 

rolled into 1D nanotubes [1, 3].  

Figure 1: Graphene is a 2D material. It can be wrapped 

up into 0D buckyballs, rolled into 1D nanotubes or 

stacked into 3D graphite [1]. 
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Theoretically, graphene has been studied for many years and widely used for 

describing properties of various carbon-based materials. Graphene was 

known as integral part of 3D materials and was presumed not to exist in the 

free state, being described as an “academic” material. Also they believed to 

be unstable with respect to the formation of curved structures, fullerenes and 

nanotubes [1]. Suddenly, free-standing graphene was found ten years ago [5]  

The following are a few words about the history of Graphene. More than 70 

years ago, Landau and Peierls [6, 7] argued that strictly two-dimensional 

(2D) crystals were thermodynamically unstable and could not exist. Their 

theory pointed out that a divergent contribution of thermal fluctuations in 

low-dimensional crystal lattices should lead to such displacements of atoms 

that they become comparable to interatomic distances at any finite 

temperature. The argument was later extended by Mermin [8] and is strongly 

supported by a whole omnibus of experimental observations. Indeed, the 

melting temperature of thin films rapidly decreases with decreasing 

thickness, and they become unstable (segregate into islands or decompose) 

at a thickness of, typically, dozens of atomic layers. For this reason, atomic 

monolayers have so far been known only as an integral part of larger 3D 

structures, usually grown epitaxially on top of monocrystals with matching 

crystal lattices [1]. Without such a 3D base, 2D materials were presumed not 

to exist until 2004, when the common wisdom was flaunted by the 

experimental discovery of graphene [5] and other free-standing 2D atomic 

crystals (for example, single-layer boron nitride). These crystals could be 

obtained on top of non-crystalline substrates, in liquid suspension and as 

suspended membranes.  

Importantly, the 2D crystals were found not only to be continuous but to 

exhibit high crystal quality [1, 5]. The latter is most obvious for the case of 

graphene, in which charge carriers can travel thousands interatomic 

distances without scattering [1, 5]. With the benefit of hindsight, the 

existence of such one-atom-thick crystals can be reconciled with theory. 

Indeed, it can be argued that the obtained 2D crystallites are quenched in a 

metastable state because they are extracted from 3D materials, whereas their 

small size (<<1mm) and strong interatomic bonds assure that thermal 

fluctuations cannot lead to the generation of dislocations or other crystal 

defects even at elevated temperature [1]. 
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2. Boron Nitride (BN) 

Boron nitride is a chemical compound with chemical formula BN, consisting 

of equal numbers of boron and nitrogen atoms [9]. BN is isoelectronic to a 

similarly structured carbon lattice and thus exists in various crystalline 

forms. The hexagonal form corresponding to graphite is the most stable and 

softest among BN polymorphs, and is therefore used as a lubricant and an 

additive to cosmetic products. The cubic (sphalerite structure) variety 

analogous to diamond is called c-BN. Its hardness is inferior only to 

diamond, but its thermal and chemical stability is superior. The 

rare wurtzite BN modification is similar to lonsdaleite and may even be 

harder than the cubic form [10]. 

Boron nitride has also potential use in nanotechnology. Nanotubes of BN 

can be produced that have a structure similar to that of carbon nanotubes, i.e. 

graphene (or BN) sheets rolled on themselves but the properties are very 

different. 

The most stable crystalline form is the hexagonal one, also called h-BN, α-

BN, or g-BN (graphitic BN). It has a layered structure similar to graphite. 

Within each layer, boron and nitrogen atoms are bound by strong covalent 

bonds, whereas the layers are held together by weak van der Waals forces. 

The interlayer "registry" of these sheets differs, however, from the pattern 

seen for graphite, because the atoms are eclipsed, with boron atoms lying 

over and above nitrogen atoms. This registry reflects the polarity of the B-N 

bonds. Still, h-BN and graphite are very close neighbors and even the BC6N 

hybrids have been synthesized where carbon substitutes for some B and N 

atoms [11]. 

 

Figure 2: The h-BN sheet. Yellow (Blue) circles refer to the B (N) atoms.  
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A single layer of hexagonal boron-nitride (h-BN) is a wide gap insulator that 

is very promising for optoelectronic technologies, tunnel devices, and field-

effect transistors.  

BN has excellent thermal and chemical stability. Because of this, boron 

nitride ceramics are used as parts of high-temperature equipment. h-BN can 

be included in ceramics, plastics, rubbers, alloys, resins, and other materials. 

Such materials are suitable for construction of e.g. bearings and in 

steelmaking [12]. Plastics filled with BN have less thermal expansion as 

well as higher thermal conductivity and electrical resistivity. Due to its 

excellent dielectric and thermal properties, BN is used in electronics e.g. as a 

substrate for semiconductors, microwave-transparent windows, and as a 

structural material for seals [13]. 

Hexagonal BN is used in laser printers as a charge leakage barrier layer of 

the photo drum [14]. In the automotive industry, h-BN mixed with a binder 

(boron oxide) is used for sealing oxygen sensors, which provide feedback 

for adjusting fuel flow. The binder utilizes the unique temperature stability 

and insulating properties of h-BN [12]. 

And now a few words about graphene, BN stability and mixtures of BN with 

carbon. According to the Mermin-Wagner [15] theorem, the stability of any 

two-dimensional crystal is only possible in the presence of atomic 

corrugations which distort the perfect honeycomb lattice and allow the 

atoms to explore the out-of plane direction. Experimental observations have 

found ripples in suspended sheets of graphene, and atomistic simulations 

suggest that the strong bonds between the carbon atoms determine the 

features of these ripples. Understanding the behavior of the ripples is 

important for many reasons. They affect the electronic transport properties, 

e.g., in GE the ripples are believed to be one of the dominant scattering 

sources which limits the electron mobility. h-BN ribbons doped by carbon 

have recently been proposed. 

In addition, BN based nanostructures are potential materials for thermal 

management applications because of their high thermal conductivity and 

sensitivity to isotopic substitution, etc [9]. 
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3. Breathers 

Discrete breathers (DB) which also called intrinsic localized modes (ILM) or 

discrete solitons appears in strongly nonlinear systems [16]. They have been 

identified as exact solutions to a number of model nonlinear systems 

possessing translational symmetry [17]. DB was reported for the first time in 

1988, is a time-periodic and spatially localized vibration mode that appears 

in a lattice system that consists of discrete elements under nonlinear 

interactions [18]. Since then the role of DBs has been extensively discussed 

in relation to many physical systems [2, 4, 16-18]. 

Diversity of physical systems supporting DBs suggests that they are very 

common in nonlinear lattices. Crystals are natural nonlinear lattices and 

many studies, both experimental and numerical, have been done to prove the 

existence of DBs and to use them for explanation of various physical effects 

in crystals [17]. According to computer simulations, DBs can also be excited 

in graphene [4, 18]. Linear and nonlinear vibrational modes can exist at the 

edges of graphene nanoribbons and in other carbon nanopolymorphs [2]. 

Both the discreteness and the nonlinearity of the system excite the ILM. 

First of all, waves with a frequency exceeding the upper bound of phonon 

band ωmax cannot disperse in the system that consists of discrete elements. 

Also some nonlinear waves can vibrate with a frequency higher than ωmax, 

although they cannot spread. Finally the nonlinearity in the interaction 

between the elements tends to excite waves with relatively large amplitude. 

Adding to this, the ILM is observed experimentally in real systems, such as 

Josephson junction arrays, optical lattices and micromechanical cantilever 

arrays [16, 18]. Although these are not atomic systems, the ILM is also 

expected in atomic systems because of the discreteness of their structures 

and the nonlinearity of interaction between atoms. As a result, the excitation 

of the ILM is expected in a crystal structure. Although, for the sake of 

simplicity, most studies on the ILM have dealt with one-dimensional lattice 

systems, a crystal consisting of regularly arranged discrete atoms with 

nonlinear interactions is one candidate in which the ILM may develop. One 

of the possible extensions is the consideration of higher-dimensional 

systems. In particular, the ILM has been observed theoretically in various 

two-dimensional systems as we will see later [18]. 
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4. Molecular Dynamics 

 

Molecular Dynamics (MD) simulation is a technique to compute the 

equilibrium and transport properties of a classical many-body system. In this 

context, the word classical means that the nuclear motion of the constituent 

particles obeys the laws of classical mechanics. This is an excellent 

approximation for a wide range of materials [19].  

In a MD simulation, the classical equations of motion governing the 

microscopic time evolution of a many-body system are solved numerically 

subject to boundary conditions appropriate for the geometry or symmetry of 

the system. Thus, MD methodology is founded upon the basic principles of 

classical mechanics and can provide a window into the microscopic 

dynamical behavior of the individual atoms that make up a given system. In 

order to provide a picture of the microscopic behavior of a system from the 

laws of classical mechanics, MD requires, as an input, a description of the 

interparticle interactions. The quality of the results of an MD simulation 

depends on the accuracy of this description [20]. 

Only when we consider translational or rotational motion of light atoms or 

molecules or vibrational motion with a frequency ν such that hν > kBT, 

should we worry about quantum effects. MD simulations are in many 

respects very similar to real experiments and can help to understand 

experimental results [19].  

The classical motion of the system is determined by Newton’s second law: 

                                                                                                               (1) 

Where:    are the masses  

                 are the velocities  

And          are the forces 

Now we need to recast the Newton’s second law to Hamiltonian form. The 

Hamiltonian for an N-particle system subject only to interparticle 

interactions is: 

                                     
  
 

   
           

 
                (2) 

Where         are the momenta of the particles defined by         and 

           is the interparticle potential, in terms of which the force are 

given by                                                 
  

   
                                           (3) 
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The (1) can be derived from (2) according to Hamiltonian’s equation 

                                                             
  

   
 

  

  
                                        (4) 

                                               
  

   
  

  

   
                                  (5) 

The conservation of the Hamiltonian is equivalent to the conservation of the 

total energy of the system and provides an important link between molecular 

dynamics and statistical mechanics. Statistical mechanics is based on the 

Gibbs’ ensemble concept. That is, many individual microscopic 

configurations of a very large system lead to the same macroscopic 

properties, implying that it is not necessary to know the precise detailed 

motion of every particle in a system in order to predict its properties. 

Statistical ensembles are usually characterized by fixed values of 

thermodynamic variables such as energy (E), temperature (T), pressure (P), 

volume (V), particle number (N) or chemical potential (μ). One fundamental 

ensemble is called the microcanonical ensemble and is characterized by 

constant particle number (N), constant volume (V), and constant total energy 

(E) and is denoted as the NVE ensemble. Other examples include the 

canonical or NVT ensemble, the isothermal-isobaric or NPT ensemble, and 

the grand canonical or μVT ensemble [20]. 

MD studies relay on the quality of interatomic potentials, which is always a 

question. In this study the molecular dynamics simulation of DBs in 

graphene was performed using the LAMMPS package. The name LAMMPS 

came from Large-scale Atomic/Molecular Massively Parallel Simulator. It is 

distributed as an open source code and also can be used in single and parallel 

processors.     
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5. Literature Review  

 

Four previous papers are being used as guide to our work. In chronological 

order they are:  First, “Excitation of localized modes in a graphene sheet” 

[18]. Secondly, “Discrete Breathers in Deformed Graphene” [4], “Discrete 

breather clusters in strained graphene” [2] and the most recent “Properties of 

discrete breathers in graphene from ab initio simulations” [17]. 

 

In the first paper they analyzed the two-dimensional vibration of a graphene 

sheet using MD simulations and discussed the possibility of ILM excitation 

in a real material. They used Brenner potential [25] and they made MD 

simulations with a sample containing 336 carbon atoms. Also they created 

DBs with the following method. An initial displacement is applied to six 

atoms as shown in the Figure 3. 

 

 
Figure 3. Schematic illustration of the initial condition to generate ILMs. (Yellow 

arrows are not a scale). 

 

 

They observed some characteristic features of the ILM. The size of the 

energy localization was two atoms and it was observed in a few regions. 

Also they observed fairly constant vibration modes, in which the two 

neighboring atoms vibrated in the opposite direction. Furthermore the 

frequency of the localized vibration exceeded the upper bound of the phonon 

band and the mode was similar to one of the linear eigenmodes. 
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 Finally the localized vibration continued for a fairly long time (26 cycles), 

which indicates the excitation of the ILM in the graphene sheet. 

 

In the second paper [4], the graphene dynamics was studied on the atomic 

level using again the many-body interatomic potential (Brenner potential) 

and they discovered new DBs, the frequency of which was located in the 

spectrum but they were not embedded. The simulations were carried out in 

samples with 32 x 35 unit cells which means 2048 carbon atoms. 

 

For the study of the DBs they used an external force. This force was applied 

to two atoms to increase the oscillation amplitude. The force acted on the 

atoms only when they moved to the equilibrium positions. The action of the 

external force was stopped when the desired amplitude of the DB was 

reached.  The frequency of the DB was varied between 27 and 32 THz and 

the lifetime was 900 oscillation periods. They found that the phonon density 

of states (PhDOS) of undeformed graphene, as well as the phonon spectrum 

of graphene under the action of the hydrostatic deformation, had no gap. The 

gap in the phonon spectrum appeared at the uniaxial deformation along the 

armchair or zigzag direction [4]. The importance of the gap in the PhDOS is 

also stressed in the [4].  

 

In the third paper [2] also by means of MD simulations, they studied the 

properties of DB clusters in a graphene sheet which was subjected to 

homogeneous elastic strain in order to introduce a gap into the phonon 

spectrum. Several DB clusters containing up to four DBs were investigated. 

They used their own (Tersoff-like) potential which described in [21] and 

they made simulations with 50 x 50 primitive cells which means 5000 

carbon atoms. The graphene lattice was elastically strained and the stability 

of the DB clusters was checked by introducing small perturbations. 

 

The frequency of the DB in this paper ranged from 25 to 30 THz. Also they 

noted that for the considered values of strain, the DB cannot have amplitude 

larger than 0.7 Å and smaller than 0.2 Å.  

So they show that the PhDOS of unstrained graphene does not have gaps 

and this precludes the existence of gap DBs. 

The effect of the energy exchange between DBs in DB clusters was 

observed. DB clusters are interesting because they can localized a larger 

amount of energy than a single DB [2]. 
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In the last paper [17] DB in graphane (two-dimensional polymer of carbon 

and hydrogen with the formula unit (CH)n) has been studied with the aid of 

ab initio calculations and they compared the results with those using the 

AIREBO interatomic potential. DB was used to explain basic physics behind 

the dehydrogenation kinetics of graphane at finite temperatures. 

The DB is created adding an out of plane displacement to one H atom but as 

we will see the same can not be done in pure graphene. 

DBs in graphane demonstrate the soft-type anharmonicity with frequency 

monotonously decreasing with increasing amplitude. On the other hand, MD 

simulations based on the AIREBO potential give an adequate description of 

the ωDB(A) curve only for small amplitudes and fail for large amplitudes. 

 

 

Table 1: Summary of the literature review about DBs. Potentials, parameters of the 

simulations and main results.  

 

Potential 

Simulation cell 

(N of atoms) 

Lifetime 

(ps) 

Frequency 

(THz) 

Y.Yamayose
[18] 

Brenner 336 1 ~50 

L. Z. Khadeeva
[4] 

Their own  

(Tersoff-like)  2048 29.7 27-32 

J. A. Baimova
[2] 

Their own 

(Tersoff-like) 5000 0.5 to 10 25-30 

G.M.Chechin
[17] 

AIREBO 

ab initio 

32 carbon and 

32 hydrogen 1.75 35-80 
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6. Interatomic potentials 

In this section we will refer to the potentials used in this work. For the 

simulations we use the following three potentials Tersoff, AIREBO and 

LCBOP. 

 

Tersoff  

 

First we will describe the Tersoff potential that as we will see is somewhere 

the basis of the other two. The form Tersoff [22, 23] used in this study can 

be written as: 

 

                                                                                               (1) 

Where: fC is a cutoff term to guarantee first nearest-neighbor interaction. 

                        

                                                         
 

 
 

 

 
    

 

 

   

 
           

                                                           

                 (2) 

 

 fR is a two-body term  

                                                                                      (3) 

fA includes three-body interactions 

                                (4) 

And bij is the bond angle term which depends on the local coordination of 

atoms around atom i and the angle between atoms i, j and k (θijk ). 

                      
  

 
 

                    (5) 

With 

                                                        
          

 
                  (6) 

And 

                                            
  

  
 

  

              
                             (7) 

 

The summation in the formula is over all neighbors j and k of atom i within a 

cutoff distance equal to R + D. 

 



 
15 

The energy computed as:  

                                                
 

 
                                                      (8) 

 

AIREBO 

We will start with the REBO potential. REBO uses a Tersoff-style potential 

to describe the covalent bonding interactions in carbon and hydrocarbon 

systems. The REBO potential had been extended to provide more accurate 

treatment of the energetic, elastic, and vibrational properties of solid carbon 

and small hydrocarbons. Also this potential had been used to model many 

different materials and processes, including fullerenes, carbon nanotubes and 

amorphous carbon. On the other hand REBO is not appropriate for studying 

energy hydrocarbon systems because of the absence of dispersion and 

nonbonded repulsion terms. Various attempts have been made previously to 

combine nonbonded interactions with the Tersoff or REBO potentials in a 

way that preserves the reactive capabilities of the model. The new potential 

is the adaptive intermolecular REBO potential (AIREBO) [24, 25]. 

AIREBO potential is given by the expression: 

                               
 

 
      

        
          

    
                             (9) 

Where:                                                
        

        
                          (10) 

And repulsive term is:                  
             

   

   
     

                 (11) 

 The bond- weighting factor is:                                                  (12) 

The switching function is:    

                                                   
 

 
                      (13) 

With scaling function:                               
       

   

   
       

                             (14) 

And the attractive term i               
               

   
 
    

   
    

            (15) 

 

 



 
16 

Bond order for the interaction between atoms i and j   

                                       
 

 
    

      
       

      
                              (16) 

   
    is not necessarily equal to    

   .  The    
   term depends on the bond 

angles      between the rji vector and the vectors rki to any other neighboring 

atoms. 

   
                           

              
                                (17) 

The penalty function    imposes a cost on bonds that are too close to one 

another. Its functional form is a fifth-order spline. The penalty function    is: 

              
   
                        

   
            

   
              (18) 

When the central atom is a carbon, the spline also depends on the local 

coordination number, defined as the sum of the carbon-only and hydrogen-

only coordination numbers 

                                                           
     

                                        (19) 

 And                           
                                                    (20) 

Also scaling function is:                          
       

   

   
       

                            (21) 

The two remaining terms,                are small correction factors. The 

      term is added to improve the potential energy surface for abstraction of 

hydrogen atoms from hydrocarbons with 

                                                              (22) 

And     is a two-dimensional cubic spline. 

   
   imposes a penalty for rotation around multiple bonds.  

   
   

               
    

                     
         

                            

                                                                                                      (23) 

    is another three-dimensional cubic spline. 

 



 
17 

Local measure of conjugation in the i-j bond equal to:  

   
    

 

                                   
 

 

                                 
 

                                                            (24) 

 

 

With          specifying the range of coordination numbers under 

                                                     
      

         
                                        (25) 

The torsion angle       is defined in the usual way as the angle between the 

plane defined by the vectors rik and ri j and that defined by ri j and rjl  

                                                  
       

         
 
       

         
                              (26) 

 The bond-weighting function is:               
           

                          (27) 

With scaling function:                            
       

       
   

   
       

                          (28) 

The Lennard-Jones (LJ) potential is: 

     
                     

         
                            

        (29) 

With    
        equal to:          

              
   

   
 
  

  
   

   
 
 

                   (30) 

And S(t) is an universal switching function, 

                                                                           (31) 

With scaling function:                           
       

      

   
      

    
                              (32) 

At intramolecular distances, the LJ interaction is included only if there is no 

significant bonding interaction between the two atoms, as specified by the    

switch: 

                                                    
       

   

   
       

                                       (33) 
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And if the atoms i and j are not connected by two or fewer intermediate 

atoms. This latter switch is controlled by bond weights 

                                                                       

                                                                                                                (34) 

The torsional potential is:       
                              

            (35) 

Where                           
   

   
        

   
     

    
 

  
                (36) 

 

LCBOP 

 

The long-range carbon bond order potential (LCBOP) is based on an 

alternative approach: they exclude long-range interactions only for nearest 

neighbors and parametrize the short-range part of the potential in such a way 

that the combined potential yields the correct properties. Instead of the LJ 

potential the long-range potential is a Morse like potential which is based on 

a best fit of the interlayer interaction energy in graphite for a range of 

interplanar distances [26]. 

According to the LCBOP the energy given by: 

                                  
 

 
    

    
 

 
          

         
    

   
 
                  (37) 

Where:                                                                                             (38) 

The short-range part is:                      
                                    (39) 

Where:                                                                                     (40) 

And                                                                          (41) 

The smooth cutoff function is:                                                           (42) 

                                                   
   

    
                     (43) 

The parameter γ used to optimize the shape of the energy barrier for the 

diamond to graphite transformation. 

Brenner function is:           
 

 
                          

    
           (44) 
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The angular dependent part is:  

                                                                    
  

        (45)               

Where      is the bond angle between the bonds ij and ik and       is the 

difference in bond distance between these two bonds. 

 The          optimize elastic properties, surface properties and the energy 

barrier for the diamond to graphite transformation. 

     

 
 
 

 
                  

 

            
 
 
   

       

            
 

 
  
       

     
         

                     

         (46) 

Where d is a fit parameter. 

 

The coordination of atom i,    is:                                                    (47) 

And                                                                       (48) 

And 

                                 
    

 
                  

      
                

                                     
                (49) 

Where   is a very small positive number and the    
   gives the contribution 

of electrons from atom I to the bond ij.  

                                                  
   

     

         
                                            (50) 

With                                                  
                                          (51) 

        
                                     (52)        

                                                                                                      (53) 

And  

                 
 

 
                 

                                                                    (54) 
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 So 

                 
    

        
    

   
    

          

                                         
    

  
    

                       (55) 

The long-range part is calculated from the interplanar interaction energy in 

hexagonal graphite  

                                                 
 

 
       

     
       

 
 

 
                            (56) 

And                                     
              

                  (57) 

Where                      
         

                                         (58) 

is the Morse function. 

 

As a conclusion of this short review the main difference between the 

potentials discussed before has to be stressed. Tersoff is a short range 

potential while AIREBO and LCBOP are long range potentials. The cutoff 

of Tersoff potential is 2 Å. while that of LCBOP and AIREBO is 6 and 10 Å 

respectively. Also there are some differences between AIREBO and 

LCBOP. AIREBO has a dihedral part which is not presented in LCBOP. 

Last but not least LCBOP has a Morse function instead of LJ. The advantage 

of the Morse function is that it contains more parameters so the long range 

part can fit better different properties in systems like graphite.  

However, as we will see, is not clear where these differences are important 

or not in the DB problem. For instance, since in our case MD simulations 

were carried out (for simplicity shake) in 2D, the dihedral part in AIREBO is 

neglected. Also the LJ part is known to be very small compared to the strong 

C-C covalent bonds between nearest neighbors. 
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II. RESULTS 

 

In this chapter the simulations and results will be discussed.  

 

First of all we have checked the implementation of the different potentials in 

our code. It has to be noted that there is a big number of different Tersoff 

potentials for C, Here, the new Tersoff [31], will be used along all this work. 

This new potential has been optimized for graphene simulations. 

Different samples have been created (a hexagonal lattice as described 

previously) with different lattice parameters for both BN and graphene. Our 

simulation cells had 576 atoms.  
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Figure 4: Energy per atom vs lattice constant (in Å) for 2D BN using Tersoff 

potential. 
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Figure 5: Energy per atom vs lattice constant (in Å) for 2D GE using three 

different potentials, AIREBO (black squares), LCBOP (red circles) and 

Tersoff (blue triangles) respectively. 

 

 

Next table (Table 2) summarizes the results for BN and GE obtained after 

analyzing Figures 4 and 5. 

Table 2: Shows the main results from Figures 4 and 5: cohesive energy, Ec , 

(eV/atom) and lattice constant a (Å) for BN and GE (with three different 

potentials). 

 

 

Εc (eV/atom) a (Ǻ) 

Tersoff BN -7,51 1,44 

Experiment -7.5
[9]

 1.44
 [29,30]

 

Tersoff GE -7,98 1,44 

AIREBO GE -7,43 1,40 

LCBOP GE -7,35 1,42 

Experiment -7.37
[28]

 1.42
[28]
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Also we have checked pressure (in Mbar) vs lattice constant (in Ǻ) for 2D 

BN using Tersoff potential (Figure 6) and GE using AIREBO, LCBOP and 

Tersoff potential (Figure 7).  
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Figure 6: Pressure (in Mbar) vs lattice constant (in Ǻ) for 2D BN using Tersoff 

potential. 
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Figure 7: Pressure (in Mbar) vs lattice constant (in Å) for 2D GE using three 

different potentials, AIREBO (black squares), LCBOP (red circles) and 

Tersoff (blue triangles) respectively 
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Looking at the figures 6 and 7 we can see how pressure changes from 

positive to negative values around the value for the lattice parameter that 

correspond to the equilibrium one. 

 

 

Now that samples and the potential implementation has been checked in our 

codes we can move to the discrete breather problem.  

 

As explained before it is possible to create a DB moving certain atoms in a 

particular way [18]. That way the DB is excited and the time evolution can 

be followed. The following figure shows the creation of a breather using 

Tersoff potential. Six atoms were moved three up and three down, (See Fig. 

3) with initial displacement 0.2 Ǻ. The image was generated using OVITO 

[27]. 

 

 
Figure 8: Breather simulation using Tersoff potential with initial displacement of 

six atoms equal to 0.2 Ǻ. 

 

 

Figure 8 shows the energy landscape of a DB. The two red and four dark 

blue atoms are the atoms initially displaced. The structure seems to be stable 

for a fairly long time (τ > 10 ps)  

 

The next example (Figure 9) presents the time evolution of a DB simulation. 

Here the simulation was carried out using LCBOP potential, the initial 

displacement equal to 0.2 Ǻ and the simulation cell contains ~5000 atoms. 
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As before the color correspond to the energy scale. Some energy seems still 

localized after 2 ps, however the difference of the atoms in the hot spot 

(green-yellow) is not very high (is less than 10%) compared to the atoms 

around (blue) so does not correspond to our definition of DB. 

 

 

 
 

Figure 9: Sequence of a breather simulation with LCBOP potential (NVE, 0 K). 

Initial displacement 0.2 Å, Number of atoms 5000. 

 

 

 

When MD simulations are carried out using AIREBO that aspect of the 

energy evolution with time is similar. Also the results depend on the initial 

displacement which is understandable. 

 

Clear differences are found using different potentials. However is not so 

easy to understand the reason of those differences, for example the 

dependence with the cutoff or long range part of the potential.  

 

To gain some insight of these differences we run some simulations moving 

only one atom in different directions (-y, +y, +x, +z) using different 

potentials as shown in next figure.  
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Figure 10: The different directions of the movement. 

 

 

Is clear from the previous figure that in our system –y and +y are two 

different movements, one approaching one C atom to another one, and the 

other moving it far away. Moving one atom in the +x direction is equivalent 

to do it in the –x for obvious symmetry reasons and the same occurs for +z 

and –z. 

 

Our simulation cell had 576 atoms and periodic boundary conditions are 

applied. Simulations are carried out in the microcanonical (NVE) ensemble, 

so NVE integration is used to update position and velocity for atoms in the 

group each timestep. The timestep, Δt, is 0.00001 ps. Also the numbers for 

the energy in the following graphs are only for the atom that we move. The 

initial displacement, d, is here 0.1 Å. 

 

Next figure shows the results for AIREBO MD simulations. As can be seen 

except for the displacement out of plane (+z), the energy decay of the 

displaced atom in the directions +x, -y and +y is very similar. 
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Figure 11: Energy of the displaced atom vs time (in ps) for 2D GE using AIREBO 

potential for the movement in four different directions, -y (black line), 

+y (red line), +x (blue line) and +z (green line). d = 0. 1Å.  

 

 

 

 

Next figure shows the results for LCBOP. Again can be seen that except for 

the displacement out of plane, the energy decays after the displacement in 

the directions +x, -y and +y are similar. However here there is something 

different. Now the energy oscillations remain for longer times and the 

amplitude remains constant for longer times. 
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Figure 12: Energy of the displaced atom vs time (in ps) for 2D GE using LCBOP 

potential for the movement in four different directions, -y (black line), 

+y (red line), +x (blue line) and +z (green line). d = 0. 1Å. 

 

 

Figure 13 shows the results for Tersoff. The energy decay is here similar to 

that observed using AIREBO (See Figure 11). The energy decays after the 

displacement in the directions +x, -y and +y are similar. 
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Figure 13: Energy of the displaced atom vs time (in ps) for 2D GE using Tersoff 

potential for the movement in four different directions, -y (black line), 

+y (red line), +x (blue line) and +z (green line). d = 0. 1Å. 
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Let us focus here in the very first steps of the simulation, up to 0.35 ps (See 

figure 14, 15 and 16). That way we can observe the differences for the 

different movements (or different direction) with the different potentials (see 

Table 3). Next figure shows the energy of the displaced atom as a function 

of time for 2D GE using AIREBO potential. As can be seen the differences 

are almost negligible (except regarding the +z displacement).  
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Figure 14: Energy of the displaced atom vs time (in ps) for 2D GE using AIREBO 

potential for the movement in four different directions, -y (black line), 

+y (red line), +x (blue line) and +z (green line). d = 0. 1Å. 

 

 

Figure 15 shows now the energy of the displaced atom as a function of time 

using the LCBOP potential. Here the oscillations in the energy decay are 

slightly different depending on the direction of the displacement. What is 

more important, these oscillations, even if the amplitude is small, remain for 

longer times compared to the same ones observed with other potentials. 



 
30 

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35
-7,40

-7,35

-7,30

-7,25

-7,20

-7,15

T
o

ta
l 

E
n

er
g

y
 (

eV
)

Time (ps)

 -y

 +y

 +x

 +z

 

Figure 15: Energy of the displaced atom vs time (in ps) for 2D GE using LCBOP 

potential for the movement in four different directions, -y (black line), 

+y (red line), +x (blue line) and +z (green line). d = 0. 1Å. 

 

Finally Figure 16 shows the same results as before now using Tersoff 

potential. As observed when using AIREBO (Fig 14) here, the oscillations in 

the energy decay are almost identical independently of the direction of the 

displacement. 
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Figure 16: Energy of the displaced atom vs time (in ps) for 2D GE using Tersoff 

potential for the movement in four different directions, -y (black line), 

+y (red line), +x (blue line) and +z (green line). d = 0. 1Å. 
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The DB lifetime is usually defined as the time necessary for the DB atoms to 

come back to 10 % the value of the difference with respect to the 

surrounding atoms. In the following table the energy decay time after an 

atom displacement is given. As can be seen is very small in all cases except 

in the case of LCBOP, but in that case the energy oscillations are very small, 

so we do not consider it to be a DB. 

 

 

Table 3:  The energy decay time (ps) for the displaced atom moved in the 

directions -y, +y, +x, +z with the use of different potentials (AIREBO, 

LCBOP, Tersoff). 

DIRECTION 

AIREBO 

Lifetime (ps) 

LCBOP 

Lifetime (ps) 

TERSOFF 

Lifetime (ps) 

-y 0.18 > 1 0.15 

+ y 0.18 > 1 0.15 

+ x 0.18 > 1 0.15 

+ z 0.20 0.05 0.03 

 

 

Also for graphene differences were observed between the energy decay 

after a specific movement (here 0.1 Å) with the use of different potentials 

as shown in next graphs. 

In order to compare properly the different results we subtract the initial 

energy of the displaced atom, E0, so we can better analyze the decay of the 

displaced atom.    
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Figure 17: Energy of the displaced atom minus Eo vs time (in ps) for 2D GE using 

three different potentials, AIREBO (black line), LCBOP (red line) and 

Tersoff (blue line) for the movement in directions –y. 
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Figure 18: Energy of the displaced atom minus Eo vs time (in ps) for 2D GE using 

three different potentials, AIREBO (black line), LCBOP (red line) and 

Tersoff (blue line) for the movement in directions +y. 
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Figure 19: Energy of the displaced atom minus Eo vs time (in ps) for 2D GE using 

three different potentials, AIREBO (black line), LCBOP (red line) and 

Tersoff (blue line) for the movement in directions +x. 
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Figure 20: Energy of the displaced atom minus Eo vs time (in ps) for 2D GE using 

three different potentials, AIREBO (black line), LCBOP (red line) and 

Tersoff (blue line) for the movement in directions +z. 
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Now the difference between the energy decay after a different 

displacement using the LCBOP potential are shown in next graphs. 
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Figure 21: Total energy of the displaced atom vs time (in ps) for 2D GE using 

LCBOP potential for the movement in three different directions, -y 

(black line), +y (red line) and +x (blue line) with initial distance 0.1 Å. 
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Figure 22: Energy of the displaced atom vs time (in ps) for 2D GE using LCBOP 

potential for the movement in three different directions, -y (black line), 

+y (red line) and +x (blue line) with initial distance 0.2 Å. 
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Figure 23: Energy of the displaced atom vs time (in ps) for 2D GE using LCBOP 

potential for the movement in three different directions, -y (black line), 

+y (red line) and +x (blue line) with initial distance 0.3Å. 

 

 

As can be seen in the previous graphs the amplitude of the energy 

oscillations increases with the initial displacement, ranging from 0.15 eV to 

0.3 eV when d changes from 0.1 to 0.3 Å. However, the amplitude of these 

energy oscillations after a displacement of 0.3 Å is more chaotic (the value is 

not constant with time) in all cases, i.e. after a displacement on ±y or x.  

 

 

Apart of the energy relaxation and the oscillations of this decay is obvious 

that the energy jump, ΔΕ, after the displacement will depend in the value of 

the displacement. In the following table the energy jump is given for the 

different directions. First thing to be noticed here is that the value of ΔΕ is 

almost direction independent.  
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Table 4: Energy jump for the different directions of the displacement using 

AIREBO interatomic potential. 

 

AIREBO 

 

ΔΕ (eV) (d=0,1 Å) ΔΕ (eV) (d=0,2 Å) ΔΕ (eV) (d=0,3 Å) 

-y 0,14 0,12 0,30 

+y 0,11 0,09 0,25 

+x 0,10 0,07 0,22 
 

 

 

Next table presents the ΔΕ values for different directions and displacements 

using LCBOP potential. The value of ΔΕ is almost direction independent (as 

with AIREBO) when the displacement is small but, clearly depends in this 

direction when the displacement is high (0.2 Å or bigger). As expected the value 

the bigger the displacement the bigger is ΔΕ. 

 

 

 

Table 5:  LCBOP was used for the computation of energy jump for different 

directions 

 

LCBOP 

 ΔΕ (eV) (d=0.1 Å) 

 

ΔΕ (eV) (d=0.2 Å) 

 

ΔΕ (eV) (d=0.3 Å) 

-y 0.13 

 

0.6 

 

1.4 

+y 0.11 

 

0.5 

 

0.9 

+x 0.11 

 

0.3 

 

0.5 
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Finally next table shows the ΔΕ values for different directions using Tersoff 

potential. The value of ΔΕ is almost direction independent (as with AIREBO). 

 

 

Table 6: Energy jump for the different directions of the displacement with 

the use of Tersoff potential. 

 

 

TERSOFF 

 

ΔΕ (eV) (d=0,1 Å) ΔΕ (eV) (d=0,2 Å) ΔΕ (eV) (d=0,3 Å) 

-y 

 

0,14 0,11 0,25 

+y 

 

0,13 0,09 0,15 

+x 

 

0,12 0,10 0,11 
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Next set of graphs represent the visual inspection of the time evolution of 

our system after different displacements (left column). The energy scale is 

given in the right column for GE using Tersoff potential. The images were 

created using OVITO [27]. 
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The following set of graphs represents the visual inspection of the time 

evolution of our system after different displacements (left column). The 

energy scale is given in the right column for GE using AIREBO potential. 
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As before next set of graphs represent the time evolution of GE using LCBOP 

potential after different displacements (left column). The energy scale is given 

in the right column. 
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As before, the time evolution of GE using LCBOP potential after different 

displacements (left column) is shown. Now the displacement is 0.2 Å. The 

energy scale is given in the right column. 
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In the last set of graphs the time evolution of GE using LCBOP potential after 

different displacements (left column) is shown. Now the displacement is 0.3 Å. 

The energy scale is given in the right column. 
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Let us move now to the differences regarding the displacement of the atoms 

when using the three different potentials. Next figures show the 

displacement respect the original position of the displaced atom in three 

different cases, namely -y, +y and +x, and figures 24, 25 and 26 

respectively.  

As can be seen the atom displacements using AIREBO and Tersoff are very 

similar while the atoms seems more free to move when using the LCBOP 

since they oscillate for longer periods around the original position.   
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Figure 24: Displacement of the displaced atom vs time (in ps) for 2D GE using 

three potential for the movement in direction, -y with initial distance 

0.1 Å. 
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Figure 25: Displacement of the displaced atom vs time (in ps) for 2D GE using 

three different potentials, Airebo, LCBOP and Tersoff for the 

movement in direction +y with initial distance 0.1 Å. 
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Figure 26: Displacement of the displaced atom vs time (in ps) for 2D GE using 

three different potentials, AIREBO, LCBOP and Tersoff for the 

movement in direction +x with initial distance 0.1 Å. 
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For BN we have the following graphs. 
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Figure 27: Energy of the displaced atom vs time (in ps) for 2D BN using Tersoff 

potential for the movement in four different directions, -y (black line), 

+y (red line), +x (blue line) and +z (green line). 

 

 

 

 

Next figure shows the lifetime for the movement to directions +y, -y and +x 

and the results are sawn in the Table 7. 
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Figure 28: Energy of the displaced atom vs time (in ps) for 2D BN using Tersoff 

potential for the movement in four different directions, -y (black line), 

+y (red line), +x (blue line) and +z (green line).. 

 

 

Table 7:  Disturbance lifetime (ps) for BN after different initial displacement in 

directions -y, +y and +x using of Tersoff potential. 

DIRECTION 

TERSOFF 

Lifetime (ps) 

0.1 

TERSOFF 

Lifetime (ps) 

0.2 

TERSOFF 

Lifetime (ps) 

0.3 

-y 0.06 0.06 0.06 

+ y 0.06 0.06 0.06 

+ x 0.06 0.06 0.06 
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Next set of graphs represent the visual inspection of the time evolution of our 

system after different displacements (left column). The energy scale is given in 

the right column for BN using Tersoff potential. 
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The perturbation created after displacing one atom (B in this case) 

in BN disappears fast in all the investigated cases. The last 

example (+z) reminds the work Chechin [17] where they created 

the DB moving one H atom out of plane in graphane. However 

here we can not see any DB. 

 

Clearly there are little differences between the different potentials 

regarding to the decay of the energy after the displacement of a 

single atom. Hence there is not much information we can obtain 

from that in order to understand the DBs properties depending on 

the potential. To conclude we have repeated the simulations 

moving two atoms towards each other (+y and –y, see Figure 29). 

Again the simulations are carried out in NVE ensemble with 

periodic boundary conditions. 

 

 

 
 

Figure 29: Schematic illustration of the initial condition to generate ILMs. 

(Yellow arrows are not a scale). 

 

 

This way we can observe breathers with lifetimes clearly longer 

than 1ps. Next table summarizes the results: The values between 

parenthesis indicates the estimated lifetime, τ, in ps. For AIREBO 

an initial displacement of 0.3 Å is too big and melting starts. 
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Table 8: Disturbance lifetime (ps) for GE and BN after different initial 

displacement using different potentials. 

Potentials 

d (Å) 

0,1 0,15 0,2 0,25 0,3 

TERSOFF GE No No Yes (>1) Yes (>1) Yes (>10) 

AIREBO No Yes  (>1) No Yes (>1) Melting 

LCBOP No No No No No 

TERSOFF BN No No No No No 

 

 

 

It has to be noted that moving 6 atoms in the way shown in Figure 

3 the DBs created with AIREBO or LCBOP (See Figure 9) were 

not stable, while now, just moving two atoms it is possible indeed 

to observe fairly stable DBs with AIREBO. 
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III. CONCLUSIONS 

 

We have investigated the differences in the relaxation process using 

different potentials. Just moving one atom these differences are small. 

The results using AIREBO and Tersoff are similar while LCBOP 

presents different features. The decay of the energy is faster in AIREBO 

and Tersoff, while with LCBOP the oscillations remains for longer 

times. However this oscillations are small in amplitude (±0.1 eV). 

The frequency of those oscillations is almost the same with all the three 

potentials, around 80 THz. 

 

We have found that moving two atoms (one towards the other) it is 

possible indeed to create a DB. For Tersoff potential there is a threshold 

in the displacement around 0.2 Ǻ, and then, if the displacement is 0.2 Ǻ 

or bigger the DB is stable (this corresponds to ΔE of value 0.18eV). 

 

Interestingly, something more complex is found for AIREBO. In this 

case the DB can be found with a displacement of only 0.15 Ǻ 

(ΔE=0.19eV) and then, if the displacement is 0.2 Ǻ the DB is not stable, 

but again, moving the atom a displacement of 0.25 Ǻ (ΔE=0.28 eV) the 

DB is created and is stable for at least 1 ps. 

 

Interestingly with LCBOP the oscillations of the energy after moving 

one atom seems to be more stable and hence a DB formation seemed 

easier.  

 

Also there is some important difference between LCBOP and AIREBO 

and Tersoff. In the first one is clear than the atoms are somewhere less 

bonded to the neighbors since they oscillate freely during longer times. 

 

However, moving two atoms we found DBs (depending on the 

displacement) in both AIREBO and Tersoff, but never with LCBOP. 

Interestingly, moving 6 atoms in the way shown in Figure 3 the DBs 

created with AIREBO or LCBOP were not stable, while just moving 

two atoms it was possible to observe very stable DBs, but only with 

AIREBO, not with LCBOP. 
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For BN we can not compare different potentials. Hence only the 

comparison of the behavior of a displaced atom is possible. In short 

what is observed is that the energy decay is almost the same in all the in-

plane directions. 

 

More important, in BN the energy added after the initial displacement 

disappears fast in all the investigated cases. When the atom is moved 

along the +z direction (out of plane) no DB is observed, in contrast to 

the work reported in [17], where they created DBs moving one H atom 

out of plane in graphane. 

 

Is also important to note that the differences observed between 

AIREBO, Tersoff and LCBOP are not clear since the PhDOS is very 

similar with all of them. 
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IV. MOST USED ABREVIATIONS 

 

2D: Two dimensions 

AIREBO: Adaptive Intermolecular REBO potential 

BN: Boron Nitride 

DB: Discrete breather 

GE: Graphene 

h-BN: hexagonal Boron Nitride 

ILM: Intrinsic Localized Modes 

LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator  

LCBOP: Long-range Carbon Bond Order Potential 

LJ: Lennard-Jones 

MD: Molecular Dynamics 

NVE: Constant particle Number, Volume, Energy (Microcanonical 

ensemble) 

NVT: Constant particle Number, Volume, Temperature (Canonical 

ensemble) 

PhDOS: Phonon Density of States 

SGE: Single Graphene 
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