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Abstract

The X-ray emission from AGN is highly variable, on short (minutes/hours/day) and long (months/years)
time scales. A particular characteristic of the observed variations is that the higher energy band varia-
tions are delayed with respect to lower energy photons. I will use archival Rossi X-ray Timing Explorer
(RXTE) light curves and I will study the long term, frequency-dependent, X-ray time-lags of the Seyfert
galaxies MCG-6–30–15, Ark 564 and Mkn 766 in the 2–4, 4–7, and 7–10 keV bands. The main objective
of this project is to investigate how these delays compare with the results from the model fitting of the
time lags at higher frequencies.
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Chapter 1: Introduction

1.1 Active Galactic Nuclei

An Active Galactic Nucleus (AGN) is a region at the center of a galaxy, which emits an enor-
mous amount of energy (i.e. 109−15L�) in a tiny (astronomically speaking) volume (smaller than
∼ hours/days/weeks radii, as determined by variation changes). Continuum emission from AGN covers
the whole electromagnetic spectrum, from radiowaves all the way to X-rays and γ rays. Various charac-
teristics of the AGN spectra suggest that the emitted luminosity is not produced by stars. For example,
we see broad and narrow emission lines in the optical spectrum of an AGN (which are usually absent in
regular galaxies spectra). Additionally, the intense emission in radio-waves and X-rays is not observed
in normal galaxies. Apart from these spectral characteristics, hundreds of thousands of O-type stars
would be required to emit the enormous UV luminosity which is observed from such a small region of a
few light days (as determined by the UV observed variations). At such high stellar densities the system
will collapse to a BH due to frequent collisions (Rees, 1984).

The emission from an AGN is believed to be the result of accretion into a supermassive (typically
106–1010M�) black hole (BH) at the center of the host galaxy. Approximately 43% of the galaxies
in the nearby universe host an active nucleus (Ho et al., 1997). It is possible that every galaxy goes
through an active phase in its lifetime at least once. If all the the galaxies we observe host a BH, the
fact that we observe a percentage of galaxies in an active state could mean that galaxies become active
for a certain period of their lifetime.

Active galaxies come in a variety of types, including Seyfert galaxies, quasars, radio galaxies and
blazars. These types were discovered separately and at first seemed they were intrinsically different
objects. However, a unified model has been developed the last decades, classifying AGN in different
classes considering changes in only a small number of parameters such as orientation and the presence
of jets. “Radio-quiet” AGN, i.e. AGN without a relativistic jet, can be divided in two main classes
namely, “Type 1/Type 2” objects. The main observed difference, is the presence/absence of broad
emission lines in the optical band. According to the current unification schemes, the central engine
in “Type 1” AGN is observed directly with minimal obscuration, revealing the presence of gas clouds
orbiting the central engine at high angular frequency that produce broad emission lines, due to Doppler
broadening (velocities inferred by the broadening of the lines are up to 10000km/s). On the other hand,
“Type 2” AGN are observed at high inclination angles (≥40°). In this case, it is believed that a dusty
torus surrounding the cental engine, obscures the gas orbiting the central BH at high velocities. The
observed emission lines in “Type 2” AGN are narrow (velocities < 1000km/s), and originate mostly
from gas existing far away from the center where the orbital velocities are low. In this work, we deal
with three Type 1 radio-quiet Seyfert AGN.
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Figure 1.1: The broad band spectrum of Mkn 509 which is a typical AGN (figure taken from Petrucci
et al., 2013).

1.1.1 The emitted spectrum

AGN emit radiation over the whole spectrum of electromagnetic radiation. The emission in different
spectral bands is produced by different radiative mechanisms. For example, the optical/UV luminosity
is due to black-body emission from the accretion disc. The infrared luminosity is due to emission from
hot, dusty material, located far away from the center, which absorbs light emitted from the accession
disc. X-rays are produced in a hot plasma, via inverse Compton scattering of the optical/UV photons
emitted by the disc. Finally, γ-rays are detected from “radio-loud” AGN and are emitted from jets of
particles that move with relativistic speed.

Fig. (1.1) shows the spectrum from a galaxy called Mrk 509, which is a typical radio-quiet AGN.
The observed data are marked with the black crosses. Lines of various colors and the solid black line
show the emission of various model components and the overall best-fit theoretical model, respectively.
At energies lower than ∼ 10−2keV (i.e. in the optical/UV band) the flux increases with increasing
photon energy as, Fν ∝ ν0.7. This behavior is typical in AGN. It is called “big blue bump” and is
a defining characteristic of AGN as it is not observed in normal galaxies. We currently believe that
photons emitted by the disc are upscattered to higher energies (X-ray) via Inverse Compton scattering.
The spectrum in high energies has a power-law shape up to a cut-off energy, of the order of ∼ 200keV
in this object. This cut-off energy is though to be representative of the electron temperature in the hot
plasma that comptonizes the soft photons. The hot electrons are unable to transfer energy to the disc
soft photons, larger than their kinetic energy.

X-ray emission from AGN

In this work we deal with the X-ray emission of AGN. X-ray luminosity in the 2–10 keV band
corresponds to ∼ 10% of the bolometric luminosity of AGN (Lusso et al., 2012). According to the
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current paradigm, electrons are heated, by a yet unknown mechanism, in a region which is called
“corona”. Photons emitted by the disc, enter the corona and by interacting with the electrons in
the corona, are upscattered to higher energies by Inverse Compton scattering. As discussed before,
the primary X-ray emission is characterized by a power-law spectra shape extended up to energies
determined by the temperature of the corona. Akylas and Georgantopoulos (2021) studied hundreds of
AGN using NuSTAR observations and they found that the photon index1 varies between 1.2–2.4. The
median value of the photon index distribution is Γ = 1.77. They also measured the high energy cut-off
which is proportional to the electron temperature in the corona. The mean value in their sample is at
∼ 100keV.

Apart from the power law continuum, Fig. (1.1) reveals several other interesting observational
features in the X-ray spectra of AGN. One of these features is the characteristic excess on top of
the power-law emission at soft X-rays below ∼ 1–2keV. This is the so-called “soft excess” component
(Arnaud et al., 1985) which is observed in more than 50% of Type 1 AGN. “Soft excess” is modeled by
the blue dashed line in Fig. (1.1). Its origin is a matter of debate in the scientific literature. The most
commonly used models are blurred ionized reflection (e.g. Crummy et al., 2006) and Comptonization
of disc photons by a “warm” corona (e.g. Done et al., 2012). Another observational characteristic of
AGN is the presence of emission lines, the most prominent of which is the iron Kα emission at around
6.4keV. Additionally, the magenta dashed line represent the so-called Compton hump (or reflection
hump), which is observed at around 30 keV. This feature corresponds to Compton down-scattering of
the high energy power-law continuum emission by low energy electrons in the accretion disc.

The X-ray emission from AGN is highly variable. The X-ray flux in AGN shows the fastest, and
largest amplitude than any of the wavelength ranges. The sources vary both in flux and in spectral
shape. In many objects we observe variations over time scales as short as one hour. The short X-
ray variability time scales indicate that the X-ray emission originates from a very compact region
(∼ 1lh ' 10AU2). This has been confirmed by studies that used gravitational microlensing technics
in distant quasars to deduce that the X-ray emitting region can be as small as ∼ 10Rg (Chartas et
al., 2016). Where, Rg is the gravitational radius and for a compact object of mass M is defined as
Rg = GM/c2. For a typical BH mass of M = 108M�, Rg ' 1.5 × 1013cm ∼ 1AU . Thus, the emitting
region of 10Rg corresponds to ∼ 10AU . The physical mechanism behind the variability still remains
unknown. Nevertheless, X-ray variability studies can provide valuable information that can be used to
understand the nature and the physical characteristic of the X-ray emitting region.

1.2 Correlation between variations in different X-ray energy

bands

The study of correlation between light curves in different energy bands has been the subject of
active research in the past years. As an example, Papadakis and Lawrence (1995) performed one
of the first such variability study in AGN. They used observations of the Seyfert galaxy NGC 4051,
taken by the “European X-ray Observatory Satellite”, EXOSAT. The left panel of Fig. (1.2) shows light
curves of NGC 4051, normalized to their mean, in a low energy band of 0.05–2 keV and in 2–10 keV
band. The figure shows a good corelation between the variations detected in two bands. The 2–10 keV
energy band appears to be slightly delayed compared to 0.05–2 keV band. In order to investigate the
correlation between the two energy bands, the authors estimated their cross-corelation function (CCF;
see Chapter 3). The CCF is plotted at the right panel of Fig. (1.2). The observed CCF shows a steep
narrow peak at 0. This indicates that the variations in the two bands are well correlated with no delays.

1The photon index, Γ, is the slope of the spectrum in units of photons s−1cm−2keV −1.
2An astronomical unit (AU) is the mean distance from earth to the sun.
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Figure 1.2: (Left panel): Light curves of NGC 4051 in the 0.05–2keV band (thin line) and in the
2–10keV band (bold line). Light curves are normalized to their average value. (Right panel): The
cross-corelation coefficients between the two light curves (figures taken from Papadakis and Lawrence,
1995).

However, if we ignore the lags between ∼ −1000s and +1000s, the plot appear to be asymmetric at 0.
The center of the plot appears to be shifted to the positive lags, indicating that the variations in the
2–10 keV band are delayed compared to the variations in 0.05–2 keV band.

More recent studies of AGN utilize a different analysis technic for X-ray time-series. A rather
powerful variability analysis tool is the so-called “time-lags” of the temporal variations between different
energy bands. This kind of analysis is performed in the frequency domain rather than the time-domain.
In that way, it is easier to describe the underlining structure of a variable process by measuring the
time differences (time-lags) of the sinusoidal components at each Fourier frequency.

Figure 1.3: Time-lags as a function of the Fourier period (1/f) between the 2–4 keV and 4–10 keV
bands of NGC 7469. The dashed line indicates the best power law model fit. The slope of the fit is
1.2± 0.2 and the normalization 2.6× 10−3s (figure taken from Papadakis et al., 2001).
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The first of such studies were performed for BH X-ray binaries systems (BHXBs; e.g. Miyamoto
and Kitamoto, 1989; Nowak and Vaughan, 1996; Nowak et al., 1999; Pottschmidt et al., 2000). BHXBs
are accreting systems where the one of the companions is a BH with a MBH ∼ 10M� (in AGN,
MBH ∼ 106−10M�). According to those studies, variations in the hard energy bands are delayed with
respect to the variations in softer energy bands.

Similar results were later reported in AGN, which supports the arguments that the X-ray variability
mechanisms in AGN and BHXBs are similar. The first time-lag study in AGN were performed by
Papadakis et al. (2001). Fig. (1.3) shows their results. The figure shows time-lags in the X-ray emission
between the 4–10 keV and 2–4 keV bands of the Seyfert galaxy NGC 7469. The time-lags increase
with increasing Fourier period and are well fitted by a power law of slope ∼ 1 (indicated by the dashed
line). Later, many more studies were performed in AGN including McHardy et al. (2004), Arévalo et al.
(2006), Arévalo et al. (2008), Sriram et al. (2009).

Recently, Epitropakis and Papadakis (2016, hereafter EP16) developed, for the first time prescrip-
tions for reliable estimates of the time-lags. Later, they applied those technics to estimate the time-lags
between various bands from 0.3 to 10 keV and the 2–4 keV band of 10 bright and highly variable AGN
observed by the XMM-Newton (Epitropakis & Papadakis, 2017, hereafter EP17). Their main results are
the following: (i) Time-lags are well fitted by a power law slope of ∼ −1 between light curves at all
energy bands. This value is consistent with all AGN in EP17 sample except Mkn 766 in which the
best fitting plot is consistent with zero. (ii) The time-lags increases logarithmically with the ratio of
the mean energy of the used light curves energy bands. (iii) The normalization is positively correlated
with the X-ray Eddington ratio. Fig. (1.4) shows the time lag normalization as a function of the X-ray
Eddington ratio (λX = LX/LEdd), the ratio between the X-ray luminosity and Eddington’s luminosity3.

The data are well fitted by a power law of the form: A0 = (3.42± 0.13)λ
(0.55±0.07)
X i.e. the time-lags are

proportional to the square-root of the Eddington ratio.

Figure 1.4: The time-lag amplitude as a function of the Eddington ration. The red dashed line
represents the best fitting power law model to the data (figure taken from EP17).

3Eddington luminosity, LEdd, of a stellar object of mass M is the luminosity in which the gravitational pressure
(acting inwards) equals the radiation pressure (acting outwards) and is given by: LEdd = 4πGMmpc/σT , where, G is the
gravitational constant, mp is the proton’s mass, c is the speed of light and σT is the Thomson cross section.
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1.3 The main objective of this work

Recently, Papadakis et al. (2019) estimated the time-lags between the 2–4, 4–7 and 7–10keV bands
of the Seyfert galaxy NGC 4051 using data from the Rossi X-ray Timing Explorer (RXTE). They
measured time-lags between 10−7–10−6Hz which is the lowest frequency range that have ever been
measured in AGN. They combined their results with the results of EP17 for NGC 4051 at the same
energy bands but at higher frequencies. The open circles in Fig. (1.5) show their results. The black
line show the EP17 best fit and its extrapolation at low frequencies. The dashed lines show the 1σ
uncertainty of the slope and normalizations of the EP17 best fit. The continuum time-lags of NGC 4051
at low frequencies are consistent with the best power-law fit of EP17 with a slope of ∼ −1.

The main aim of this work is to compute the low frequency time-lags in three more Seyfert 1 AGN
and to further study the relation between the low and high frequency time-lags in AGN. To this end
we choose to study three more radio-quiet Seyfert 1 galaxies, namely MCG-6–30–15, Ark 564 and
Mkn 766. These are X-ray bright and highly variable objects that have been studies extensively by
RXTE. Therefore, we can use archival RXTE data, to compute the time-lags between 2–4keV (the
reference band) and the 4–7/7–10 keV bands. The RXTE light curves of the three sources are divined
into parts and the construction of equidistant light curve parts is discussed in detail in Chapter 2. In
Chapter 3, we present the statistical tools needed for the study of the temporal corelation between the
different light curves following EP16 prescriptions. In the same chapter, we present the results from the
time-lag analysis. In Chapter 4, we compare our results with the result of EP17 at higher frequencies
and finally, Chapter 5 summarizes the results and conclusion of this work.

Figure 1.5: Empty circles show the time-lag estimates of NGC 4051 at low frequencies and the filled
circle show their mean value. The solid continuous line shows the extrapolation of EP17 model to low
frequencies and the 1σ uncertainty (dashed lines) (figure taken from Papadakis et al., 2019).
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Chapter 2: Data analysis

We used 2–4, 4–7 and 7–10 keV light curves of 3 AGN observed with Rossi X-ray Timing Ex-
plorer (RXTE). The light curves were obtained from the RXTE AGN Timing & Spectral Database
(https://cass.ucsd.edu/∼ rxteagn/). We discuss briefly the data reduction details below. Our goal is
to estimate the 2–4 vs 4–7 keV (“Soft-vs-Hard1” or “S-vs-H1”, hereafter) and the 2–4 vs 7–10 keV
(“Soft-vs-Hard2” or “S-vs-H2”, hereafter) time-lags following the EP16 method.

The “RXTE AGN Timing & Spectral Database”: This database provides uniformly analyzed light
curves and spectra for all AGN observed by the Rossi X-ray Timing Explorer (RXTE) during its mission
from Dec. 1995 to Jan. 2012. For each object in our sample, the database provides light curves flux in
the sub-bands 2–4, 4–7 and 7–10 keV. We provide below some information regarding the data reduction
and analysis of the RXTE data in this database.

Proportional Counter Array (PCA) spectra were extracted for each observation using HEASOFT

version 6.7 and the “rex” perl script. PCA STANDARD-2 data were extracted from PCUs 0, 1 and 2
prior to 1998 December 23; PCUs 0 and 2 from 1998 December 23 until 2000 May 12; and PCU 2 only
after 2000 May 12. Events from the top Xe layer only were used in order to maximize signal-to-noise.
Standard screening was applied: data were rejected if taken within 20 minutes of the spacecraft’s passing
through the South Atlantic Anomaly (TIME SINCE SAA), if ELECTRON0 > 0.1 (ELECTRON2 for data after
2000 May 12), if the spacecraft was pointed within 10 degrees of the Earth, or if the source was > 0.02
degrees from the optical axis. All time-averaged spectral files were using the 2011 PCA background
models “pca bkgd cmvle eMv20111129.mdl” or “pca bkgd cmfaintl7 eMv20111129.mdl” for source
fluxes brighter/fainter than ∼ 5 mCrab, respectively.

Light curves are in flux units (i.e. ergs−1cm−2), with one data point per observation. The flux
in each band was generated via a simple power-law fit to the spectrum in that band only. Mkn 766
was modeled by Rivers et al. (2013) with ionised absorption. Uncertainties on each flux point were
obtained by dividing the standard deviation of the N 16-s binned count rate light curve points in that
observation by

√
N .

Since the cadence of RXTE observations of a source usually varies throughout its 16 years of
operation, the light curves are not evenly sampled. However, the EP16 method requires the use of
evenly sampled light curves. We describe below the procedure we followed to create evenly sampled
light curves for the three objects in our sample.

2.1 MCG-6–30–15

MCG-6–30–15 was observed by RXTE for almost 15 years, from March 1996 until December 2010
(50159.8–55559.8 MJD). However, the cadence of observations was highly inhomogeneous. Fig. (2.1)
shows the light curve of MCG-6–30–15 as it has been observed by RXTE. The time difference between
the observations ranges from a few hours to a month, while there are some even larger gaps without any
observations. The longest is a year long gap from February 28th, 2006 until March 2nd, 2007 (53795.0–
54161.9 MJD). Another long gap appears between 54525.536933–54797.672025 MJD (February 29th,
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Figure 2.1: From top to bottom: The RXTE 2–4, 4–7 and 7–10keV light curves of MCG-6–30–15.
Vertical lines indicate the start/stop time of the three parts of the light curve we consider as Group C.

2008–November 27th, 2008). Additionally, the source has only been observed 9 times over a period of
7.5 months, from early August 1999 until late March 2020. On the other hand, the source was observed
hundred times over sort periods of time. As an example, the source was observed 95 times for a period
of only 10 days before August 1999, once every 100 minutes, on average. Likewise, the source was
observed 263 times with an average of 4 observations daily, for a period of about 2 months after March
19th, 2000 until May 24th, 2000. For the most part after January 21th, 2001 (51931.1 MJD), the source
was observed every 2 or 4 days (excluding the two large gaps mentioned above).

In order to construct evenly sampled light curves first we identify light curve parts with similar time
difference, ∆tj−i, between the observations. For these parts we measure their duration (T ) and number
of observations (Nobs). The ratio T/Nobs gives an estimate of the average time difference between the
observations. We search for light curve parts where T/Nobs is roughly equal to ∆tj−i, median. The
segments which satisfy this criterion should not contain any major gaps.

We identify 30 parts (segments) for which T/Nobs ∼ ∆tj−i, median in the MCG-6–30–15 light curve.
These segments are listed on Table 2.1. The first column indicates the start/end time of each segments
in MJD. The following columns list Nobs, T , T/Nobs and ∆tj−i, median.

According to EP16, reliable estimates of the time-lags require the use of ∼ 20 segments to compute
the cross-periodogram, in order to bin the real and the imaginary part of the cross-periodograms. The
segments should have the same duration and bin size, ∆tbin. For example, many segments in Table 2.1
have a median ∆tj−i, median ' 2d, with no major gaps in them. We could use them to compute the
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Table 2.1: Segments in MCG-6–30–15 light curve

Time Nobs Duration (T) T/Nobs ∆tj−i, median
(MJD) (days) (days) (days)

1 50159.77–50316.25 18 156.48 8.69 6.94
2 50318.30–50355.56 60 37.26 0.62 0.58
3 50411.92–50661.22 19 249.30 13.12 14.14
4 50664.27–50672.51 40 8.24 0.21 0.23
5 50679.70–51378.13 41 698 17.02 14.21
6 51378.13–51388.22 95 10.09 0.11 0.07
7 51394.77–51622.68 9 227.91 25.32 29.11
8 51622.68–51688.55 263 65.87 0.25 0.25
9 51688.55–51735.14 8 46.59 5.82 6.63
10 51735.14–51737.64 10 2.50 0.25 0.19
11 51738.14–51930.88 23 192.74 8.38 7.06
12 51931.11–52188.79 127 257.68 2.03 1.99
13 52231.11–52554.75 150 323.64 2.16 2.00
14 52601.19–52915.46 166 314.28 1.89 1.97
15 52961.98–53055.06 48 93.08 1.94 2.03
16 53061.10–53283.06 53 221.96 4.19 4.27
17 53326.90–53649.68 75 322.79 4.30 4.28
18 53692.67–53759.57 17 66.90 3.94 4.30
19 53759.57–53760.67 5 1.10 0.22 0.15
20 53765.08–53765.81 5 0.73 0.15 0.18
21 53765.81–53794.96 8 29.15 3.64 3.76
22 54161.88–54225.98 16 64.10 4.01 4.26
23 54259.16–54329.13 65 69.97 1.08 0.98
24 54329.13–54380.98 14 51.85 3.99 4.03
25 54422.87–54485.84 17 62.96 3.70 3.94
26 54797.67–55109.53 74 311.85 4.21 3.99
27 55153.98–55249.73 24 95.74 3.99 3.99
28 55253.72–55423.25 83 169.53 2.04 1.97
29 55423.25–55475.94 14 52.69 3.76 4.02
30 55519.73–55559.80 11 40.07 3.64 4.11

time-lags at frequencies lower than 1/(2 · 2d) ' 3× 10−6Hz. However, they are unevenly sampled and
their number is considerably smaller than 20. We explain below how we can use them to calculate the
time-lags.

2.1.1 Light curve parts with ∆tbin ∼ 2d

The segments with ∆tj−i, median ' 2d are listed in Table 2.2, under the label “Group A”. First,
we divide them into parts with duration Ts ∼ 62d. In this way we ended up with 19 segments with
the same duration. We can use these segments to estimate the time-lags from 3 × 10−6Hz down to
1/Ts ' 2 × 10−7Hz. However, the data points in these segments are not equidistant. We used the
observed segments to create evenly sampled segments with a bin size of ∆tbin, as follows.

We started with the first point in each segment and we computed 2–4, 4–7 and 7–10 keV flux
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Figure 2.2: (Left panel): ∆tdif, median plotted as a function of ∆tbin for segments in Group A. (Right
panel): Histogram of ∆tdif for ∆tbin = 1.99d (indicated by the vertical line).

estimates, fi, at points i∆tbin with i = 1, 2, . . . , N s
obs

1 using linear interpolation between the observed
flux measurements, fobs, at time just before and just after i∆tbin. The linear interpolation procedure is
described in detail in Appendix A.

In order to choose the best ∆tbin, we created equidistant time points, i∆tbin, using different values of
∆tbin from ∆tbin = 1.1d up to ∆tbin = 2.3d, with a time step of 0.01d. For each time step we computed
the time difference, ∆tdif , between i∆tbin and the time of the closest observational data point. Then,
we compute the mean and the median ∆tdif for all ∆tbin. The median time difference, ∆tdif, median, for
each bin size is plotted in the left panel of Fig. (2.2). For most values of ∆tbin, ∆tdif, median ' 0.47d.
The smallest ∆tdif, median = 0.29d and appears for ∆tbin = 1.99. If we adopt this bin size we will be
able to produce evenly sampled light curves with data points closer to the time of actual observations.
The right panel of Fig. (2.2) shows a histogram of ∆tdif for ∆tbin = 1.99d. ∆tdif is smaller than a day
(half of the bin size) for 95% of the interpolated data points. The maximum ∆tdif is 5.76d and occurs
in a ∼ 11d gap inside segment 13. In this gap we have included 6 interpolated points. In the second
largest gap, 5 interpolated points have been added and the maximum ∆tdif of these points is 4.30d.
In the rest of the the light curve segments no more than three consecutive interpolated points appear.
Table 2.2 lists the mean and median value of ∆tdif along with other useful calculations for the accepted
bin size.
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Table 2.2: Groups of segments we used to compute the time-lags of MCG-6–30-15.

Segments N/Nobs ∆tdif σ∆tdif ∆tdif, median % ∆tbin/4 % ∆tbin/2
(days) (days) (days)

Group A (∆tbin = 1.99d, ns = 19, Ts = 61.69d, N obs
s = 32)

8 34/263
12 130/127
13 163/150
14 158/166 0.40 0.50 0.29 72.63 94.34
15 47/48
23 35/65
28 85/83

Group B (∆tbin = 3.98d, ns = 15, Ts = 119.4d, N obs
s = 31)

12 65/127
13 82/150
14 79/166

15 + 16 81/102
0.67 0.72 0.46 78.62 96.2

17 82/75
23 + 24 31/78

26 79/74
27 + 28 + 29 81/120

Group C (∆tbin = 12.8d, ns = 18, Ts = 243.2d, N obs
s = 20)

C.1 282/1236
C.2 29/113 3.07 4.80 0.90 75.20 84.91
C.3 60/204

2.1.2 Light curve parts with ∆tbin ∼ 4d

For the most part after February 25, 2004 (53061.1 MJD), the source was observed every ∼ 4
days (i.e. ∆tj−i, median ' 4d). We can use those segments to compute the time-lags at frequencies
< 1/(2 × 4d) ' 1.5 × 10−6Hz. However, the number of segments with a value of ∆tj−i, median ∼ 4d
is significantly smaller than 20. If we further divide the segments into smaller parts, those parts will
be short in duration and this will limit the lower frequency that we can estimate the time-lags. To
increase the number of segments and have a better range of frequencies, we will also use segments with
∆tj−i, median ∼ 1d and 2d in addition to those with ∆tj−i, median ∼ 4d. Those segments are labeled in
Table 2.2 as “Group B”.

We divide those segments into smaller parts with duration Ts = 120d. Segments (15 + 16), (23 +
24) and (27 + 28 + 29) are consecutive segments with different ∆tj−i, median and do not contain any
major gaps in between. We consider those segments as one, and then we divided them into smaller
segments with 120 days duration. We end up with 15 segments with N obs

s = 31 using the Group B light
curve parts.

Similarly with Group A, we search which bin size produces points closer to the actual observations.
We measure ∆tdif, median for ∆tbin = 3.5d–4.6d, with a time step of 0.02d as shown in the left panel in
Fig. (2.3). ∆tdif, median ' 0.66d for most ∆tbin values. But ∆tdif, median = 0.46d resulted as the lowest
value at ∆tbin = 3.98d.

We therefore chose ∆tbin = 3.98d. Starting from the first point in each segment, we linearly

1Ns
obs is the number of observation in each 62 days long segment.
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Figure 2.3: (Left panel): ∆tdif, median plotted as a function of ∆tbin for segments in Group B. (Right
panel): Histogram of ∆tdif for ∆tbin = 3.98d (indicated by the vertical line).

interpolate to produce evenly sampled segments. We used these segments and we computed the time-
lags at frequencies from 1/Ts = 9.6× 10−8Hz to 1/(2∆tbin) = 1.5× 10−6Hz. For ∆tdif = 3.98d, ∆tdif
is smaller than 2 days for 96% of the interpolated data points (see right panel of Fig. (2.3)). The
maximum ∆tdif is 7.13d and we have added no more than 4 continuous interpolated points between
two observational data points in any of the segments we used.

2.1.3 Light curve parts with ∆tbin > 10d

Finally, we tried to identify light curve parts which are long, so that we can estimate the time-lags
at the lowest possible frequencies. To avoid heavy interpolation, we require these segments not to be
separated by very large gaps. Segments C.1, C.2 and C.3, indicated by the the horizontal arrows in
Fig. (2.1), satisfy these criteria and consist “Group C”. C.1 is the first part of the light curve between
50160–53795 MJD, which include segments 1–21. It is the longest part in group C and includes 1236
observations in total, spread over a period of about 10 years. The median of the time difference
between observations in this light curve part is ∆tj−i, median = 1.80d. The second segment, C.2, begins
at 54162MJD and its duration is about 364 days, until 54526MJD. It contains 113 observations with
∆tj−i, median = 1.57d. C.3 starts at 54798MJD and is extended until the end at 55560MJD, containing
204 observations over a period of about 2 years (∆tj−i, median = 3.73d).

We compute ∆tdif, median for different values of ∆tbin between 11 and 15 days, with a time step of
0.1d. The left panel of Fig. (2.4) shows the median value of the time difference for each bin size, ∆tbin.
∆tdif, median ∼ 1.2d on average and the lowest value ∆tdif, median = 0.9d resulted for ∆tbin = 12.8d. We
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Figure 2.4: (Left panel): ∆tdif, median plotted as a function of ∆tbin for segments in Group C. (Right
panel): histogram of ∆tdif for ∆tbin = 12.8d (indicated by the vertical line).

therefore choose ∆tbin = 12.8d, and we created Ts = 243.2d long segments to measure the time-lag from
1/Ts = 4.8× 10−8Hz up to 1/(2∆tbin) = 4.5× 10−7Hz. We end up with 18 segments (ns = 18), with
20 points in each segment (N obs

s = 20) as shown in Table 2.2, under the label “Group C”.

In the right panel of Fig. (2.4) we show a histogram of the time difference, ∆tdif , for ∆tbin = 12.8d.
∆tdif is smaller than 6 days (i.e. half of the bin size) for 85% of the interpolated data points and 6
point have ∆tdif > 20d. Inside the largest gap we have 5 continuous interpolated points and no more
than 3 consecutive interpolated points appear in the rest of the light curve.

2.2 Ark 564

The RXTE observations of Ark 564 started on December 23, 1996. However there are only 5
observations between December 23–24, 1996, and a long (∼2 years) gap follows until January 1st, 1999.
Then, the source was observed once every 4–5 days for most of the time, without any major gaps, until
March 4th, 2003. During the 10 month period from January 1st 1999 to October 28th, 1999, the source
was observed 71 times, once every 4–4.5 days on average. Similarly, from November 12, 1999 until May
30th, 2000 Ark 564 was observed 44 times over a period of almost 200 days with the same cadence of
observation. The last and the longest part of the light curve begins on July 4th, 2000 and ends on
March 4th, 2003. It contains 211 observations over a period of 2 years and 8.5 months with an average
of 4.5 observations daily. The source was observed more frequently over two short periods of time. 19
times (i.e. twice a day) from October 28 to November 8, 1999, and 219 times from May 30 to June 30,
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2020 (i.e. once every 3–3.5 hours). The light curve of Ark 564 is plotted in Fig. (2.5).
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Figure 2.5: From top to bottom: The RXTE 2–4, 4–7 and 7–10keV light curves of Ark 564. Vertical
lines indicate the start/stop time of the light curve parts we identified in Table 2.3.

As we did for MCG-6–30–15, we search for segments with similar ∆tj−i between observations. The
light curve parts we discuss above have a ratio T/Nobs roughly equal to ∆tj−i, median and do not contain
any major gaps inside and in between the segments. We ignore the first few observations on December
23/24, 1996. The remaining 5 segments for which T/Nobs ∼ ∆tj−i, median are listed on Table 2.3. The
first column indicates the borders of the segments in MJD and the following columns list Nobs, T ,
T/Nobs and ∆tj−i, median.

Table 2.3: Segments in Ark 564 light curve

Time Nobs Duration (T) T/Nobs ∆tj−i, median
(MJD) (days) (days) (days)

1 51179.55–51479.78 71 300.23 4.23 4.265
2 51480.38–51491.03 19 10.65 0.56 0.543
3 51495.41–51694.83 44 199.42 4.53 4.26
4 51695.05–51726.46 219 31.412 0.14 0.137
5 51729.93–52702.85 211 972.923519 4.61 4.28
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2.2.1 Light curve parts in Ark 564 light curve

We will consider two groups of segments. The are listed in Table 2.4 under the label “Group A”
and “Group B” respectively. First group include all light curve parts listed in Table 2.3, while group B
consists of the 4th light curve part only, which we will use to estimate time-lags at high frequencies.

We divide the first group into segments with duration Ts ≈ 68d and we end up with 21 segments
to measure the time-lags at frequencies > 1/Ts = 1.7 × 10−7Hz. Like in MCG-6–30–15, we search
which bin size results in points closer to the actual observations, starting from ∆tbin = 4.2d up to
4.8d with a time step of 0.01 days. The left panel of Fig. (2.6) shows the median time difference of
the interpolated points and observations for the different values of ∆tbin. For the most ∆tbin values,
1d < ∆tdif, median < 1.2d. However, for ∆tbin = 4.27d the median time difference is significantly
lower (∆tdif, median = 0.66d). We therefore choose this value for the bin size to measure time-lags at
frequencies up to 1/(2 × 4.27d) = 1.4 × 10−6Hz. In the right panel of Fig. (2.6) we show a histogram
of the time difference for ∆tbin = 4.27d. ∆tdif is smaller than 2 days for 92% of the interpolated data
points. The largest gap is 7.87d long, and we have added 4 consecutive interpolated points. In the rest
of the light curve there are maximum 3 consecutive interpolated points between two observations.

During light curve part 4 in Table 2.3, the source was observed 219 times over a period of one
month from May 30 until June 30, 2000. We divide this light curve part into 17 segments, with
duration 1.703 days to measure time-lags at frequencies > 1/1.703d = 6.8 × 10−6Hz. We need to
produce equidistance light curve points thus, as before, we search which bin size produces points closer
to the actual observations. We measure ∆tdif, median for different values of ∆tbin from 0.08 days up to
0.2 days with a time step of 0.001d. In the right panel of Fig. (2.7) we show the results of the median
time difference for the different ∆tbin. In most cases, the median time difference is ∼ 0.036d. The
lowest value (∆tdif, median = 0.027d) appears for ∆tbin = 0.131d. We choose this value for the bin size
to measure time lags from frequencies 8× 10−6 up to 1/(2× 0.131d) = 4.4× 10−5Hz.

A histogram of the time difference, ∆tdif , for the bin size we choose is shown in the right panel of
Fig. (2.7). 88% of the interpolated data points have a value < 0.065d (approximately ∆tbin/2). Only
3 interpolated data point have a time difference greater than the bin size (i.e. > 0.131d). The longest
is 0.188d (i.e. 1.44∆tbin) followed by 0.165d. These appear on two short gaps of 0.406d and 0.402d.
In these gaps we have added 3 interpolated points between the observations. The third longest time
difference is 0.154d and is not much larger than the bin size. In this gap as well as in the rest of the
light curve no extra points have been added between the observations (i.e. there is one interpolated
point between two consecutive observations).

Table 2.4: Groups of segments we used to compute the time-lags of Ark 564.

Segments N/Nobs ∆tdif σ∆tdif ∆tdif, median % ∆tbin/4 % ∆tbin/2
(days) (days) (days)

Group A (∆tbin = 4.27d, ns = 21, Ts = 68.32d, N obs
s = 17)

1-5 357/564 0.87 1.04 0.66 82.63 91.88

Group B (∆tbin = 0.131d, ns = 17, Ts = 1.703d, N obs
s = 14)

4 240/219 0.036 0.031 0.027 56.67 87.92
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Figure 2.6: (Left panel): ∆tdif, median plotted as a function of ∆tbin for Group A segments of Ark 564.
(Right panel): Histogram of ∆tdif for ∆tbin = 4.27d (indicated by the vertical line).
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Figure 2.7: (Left panel): ∆tdif, median plotted as a function of ∆tbin for Group B segments of Ark 564.
(Right panel): Histogram of ∆tdif for ∆tbin = 0.131d (indicated by the vertical line).
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2.3 Mkn 766

Mkn 766 was first observed by RXTE for 5 days between May 4th and May 10th, 2001. Then, a
large 2 year and about 10 month gap follows and observations resumed on February 19th, 2004. The
source was then observed regularly, once every 4–4.5 days for the most part until December 28, 2011.
Fig. (2.8) shows the 2–4keV, 4–7keV and 7–10keV light curves of Mkn 766 as it has been observed by
RXTE. After February 19th, 2004, month-long gaps appear throughout the light curve. The longest
gap occurs after September 3rd until October 4, 2009. Additionally, there are 4 gaps which are ∼ 25–26
days long and 3 gaps which are ∼ 21.5 days long. Excluding those gaps, the rest of the light curve do
not contain any major gaps and the longest difference between two consecutive observation is less than
8.8 days.

For the most part of the light curve the cadence of observation is ∼ 4–4.5 days. In total the source
was observed 618 times between February 29, 2004 and December 28, 2011 (including gaps), once every
4–4.5 days. Additionally, there are two short period when the source was observed more frequently.
Between May 22 and June 4, 2005, the source was observed 10 times over a period of about 13 days (i.e.
once every 30 hours), and from November 28th, 2006 until January 1st, 2007 the source was observed
130 time in total, once every 6 hours, on average.
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Figure 2.8: From top to bottom: the RXTE 2–4keV, 4–7keV and 7–10keV band light curves of
Mkn 766. Vertical lines indicate the start/stop time of the light curve parts we identified in Table 2.5.
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Table 2.5: Segments in Mkn 766 light curve.

Time Nobs Duration (T) T/Nobs ∆tj−i, median
(MJD) (days) (days) (days)

1 53065.44–53248.80 44 183.37 4.17 4.262
2 53274.52–53514.44 56 238.92 4.27 4.267
3 53513.44–53526.22 10 12.78 1.278 1.234
4 53526.22–53615.63 22 89.41 4.06 4.279
5 53637.12–53978.40 81 341.28 4.21 4.266
6 54003.74–54068.06 16 64.32 4.02 4.190
7 54068.06–54102.49 130 34.42 0.26 0.262
8 54102.49–54345.68 57 243.20 4.27 4.230
9 54371.15–54712.37 81 341.22 4.21 4.268
10 54738.00–55078.37 80 340.37 4.25 4.251
11 55109.05–55441.76 77 332.71 4.32 4.238
12 55463.46–55808.96 81 345.50 4.27 4.249
13 55830.45–55924.11 23 93.66 4.07 4.250

As with the previous two sources, we search for light curve parts with ∆tj−i, median ≈ Ts/Nobs, that
do not include any major gaps in them. We ignore the first part between May 4th and May 10th, 2001.
We have identified 13 parts/segments, which are listed on Table 2.5. The first column presents the
start/stop time of each segment and the following columns list Nobs, T , T/Nobs and ∆tj−i, median. In
the following subsection we discuss how we used these segments to estimate the 2–4 vs 4–7 keV and
2–4 vs 7–10 keV time-lags for Mkn 766.

2.3.1 Light curve parts with ∆tbin ∼ 4d

We can use all light curve parts in the Mkn 766 light curves to estimate the time-lags at low and
high frequencies. Most of the light curve parts with ∆tdif, median ' 4–4.5d, are longer than 180 days,
except light curve parts 4, 6 and 13, which are less than ∼ 90d long. We can still use these light curve
parts together with neighboring parts as long as there not any major gaps in between. Thus, we will
use light curve part 3, which has a higher cadence of observation of ∼ 1d, together with segment light
curve parts 2 and 4. And light curve part 7, which has a cadence of about 6 hour, with light curve
parts 6 and 8. Light curve part 13, the last available part, has 23 observations over a period of about 3
months. There is a ∼ 20d long gap between the end of light curve part 12 and the start of part 13 and
for this reason, we did not keep light curve part 13. The usable observations we consider to measure
time-lags are listed in Table 2.6.

We end up with 8 light curve parts which are suitable for time-lag estimation. As before we need
to produce evenly sampled light curves for the time-lag estimation. To do that we linearly interpolate
and we test which value of ∆tbin produces points closer to observations. To choose the value of the bin
size, we test different values from 4 days up to 4.5 days with a time step of 0.01d. Fig. (2.9) (left panel)
shows a plot of the median time difference between interpolated points and observations as a function
of ∆tbin. The mean value of ∆tdif, median is 1d and drops to 0.19d when ∆tbin ∼ 4.27d. Therefore, we
choose this value for the bin size to measure time-lags at frequencies ≤ 1/(2× 4.27d) = 10−6Hz.

We “chop” the 8 light curve parts of Table 2.6 intro shorter segments with duration Ts ≈ 110d. In
this way, we have 22 available segments to measure time-lags at frequencies 10−6Hz ≥ ν ≥ 1/111.02d '
10−7Hz. 98.67% of the interpolated points differ less than a day from observations. Only one point have
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Table 2.6: Groups of segments we used to compute the time-lags of Mkn 766.

Segments N/Nobs ∆tdif σ∆tdif ∆tdif, median % ∆tbin/4 % ∆tbin/2
(days) (days) (days)

Group (∆tbin = 4.27d, ns = 22, Ts = 111.02d, N obs
s = 27)

1 43/44
2 + 3 + 4 80/86

5 80/81
6 + 7 + 8 81/201

0.26 0.42 0.19 98.88 98.88
9 80/81
10 80/80
11 78/77
12 81/81

a time difference > ∆tbin and no more than 3 consecutive points have been added between observations.
The right panel of Fig. (2.9) shows a histogram of the time difference between interpolated points and
observations. The bin size in indicated by the vertical line on the plot.
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Figure 2.9: (Left panel): ∆tdif, median plotted as a function of ∆tbin for the group of segments of
Mkn 766. (Right panel): Histogram of ∆tdif for ∆tbin = 4.27d (indicated by the vertical line).
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Chapter 3: Definitions and time-lag
estimation

3.1 Definitions

Our main objective is to study the correlation between the observed variations in different energy
bands of MCG–6-30-15, Ark 564 and Mkn 766. Study of the correlation between time variable quantities
can be done either in the time or in the frequency domain. A delay in the time domain maps to a phase
shift in the frequency domain. X-ray time series analysis to measure time-lags is done in the frequency
domain by measuring the shift between the sinusoidal components of light curves at different energy
bands. In this Chapter, first we will introduce the concept and tools we used to estimate the time-lags
spectrum in the frequency domain and then we present our results in Sections 3.3–3.5.

Let us consider two time series x(t), y(t) with mean value x̄ and ȳ, respectively. The function which
is often used to qualify the corelation between two time series is the cross-covariance function (CCF),
which is defined as follows

Rxy(τ) ≡ E[(x(t)− x̄)(y(t+ τ)− ȳ)], (3.1)

where E is the expectation operator, which gives the expected mean value or a random quantity, and
τ is the so-called lag. A positive/negative value of Rxy(τ) at τ shows that x(t) and y(t) are positively
correlated/anticorrelated with x(t) leading y(t). For stationary processes CCF depends only on τ and
does not vary over time. The Fourier transformation of the CCF defines the cross-spectrum (CS),

hxy(ν) =

∫ ∞
−∞

Rxy(τ)e−i2πντdτ. (3.2)

Since Rxy(τ) is not necessarily symmetric at τ = 0, the cross-spectrum is a complex number. Hence, it
can be written as

hxy(ν) = R[hxy(ν)]− iJ[hxy(ν)] = |hxy(ν)|e−iφxy(ν) (3.3)

where R[hxy(ν)] and J[hxy(ν)] are the real and imaginary parts of the cross-spectrum, φxy(ν) is the
phase lag and |hxy(ν)| is the amplitude of the cross-spectrum. The phase-lag, φxy(ν), can be defined as

φxy(ν) = arctan

[
− J[hxy(ν)]

R[hxy(ν)]

]
= arg[hxy(ν)], (3.4)

and it gives the average phase shift between the two Fourier components of the time-series at frequency
ν. The phase-lag can be transformed into the corresponding time-lag as follows,

τxy(ν) =
φxy(ν)

2πν
. (3.5)

τxy(ν) as a function of frequency, defines the time-lag spectrum and represents the average time delay
between sinusoidal components of the two time-series with frequency ν.
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Another statistical parameter that is often used to study correlations between two random processes
in Fourier space is the so-called coherence function

γ2
xy(ν) =

|hxy(ν)|2

hx(ν)hy(ν)
, (3.6)

where hx(ν) and hy(ν) denote the power spectral density (PSD) functions of the two time series and
hxy(ν) is the cross-spectrum (see eq. (3.2)). The coherence is a measurement of the linear corelation
between two light curves as a function of the Fourier frequency and takes values between 0 < γ2

xy ≤ 1.
A value of 1 it shows perfect coherence while zero indicates that x and y are uncorrelated processes.

In this Section, we have assumed continuous time series x(t) and y(t). This is indeed the case with
most processes in nature. But, in practice, we do not observe any object continuously but at regular
time intervals ∆tbin. EP16 studied the relation between the intrinsic, continuous time series {x(t), y(t)}
and the discrete version {X(tp), Y (tp)} resulted from observations at regular intervals tp = p∆tbin
with p = 1, 2, . . . , N (N is the total number of observations). They showed that {x(t), y(t)} and
{X(tp), Y (tp)} have the same mean value, but different CCFs and CS and thus, the measured phase or
time lags from observed light curves are not necessarily equal to the intrinsic phase or time lags of the
continuous process. In the following section, we describe how we estimated the time-lags of a discrete
light curves, introducing the so-called “cross-periodogram”.

3.2 Time-lags estimation

Let us consider two evenly sampled light curves x(tr) and y(tr) corresponding, for example to the
flux of an AGN at two different energy bands (i.e. 2–4keV and 4–7keV). Let us assume that the bin
size of the light curves is ∆tbin , and that there are N points in each light curve. Thus, the duration of
the light curves is N ∆tbin. The discrete Fourier transform (DFT) of the time series x(tr) is defined as
follows

X(νp) =

√
∆tbin
N

N∑
r=1

x(tr)e
−i2πνpr∆tbin . (3.7)

X(νp) is calculated at N/2 discrete frequencies νp = p/(N∆tbin), with p = 1, 2, 3 . . . N/2. The highest
frequency is the so-called Nyquist frequency, νNyq = 1/(2∆tbin). An identical relationship holds for
y(tr) and Y (νp):

Y (νp) =

√
∆tbin
N

N∑
r=1

y(tr)e
−i2πνpr∆tbin . (3.8)

The above eq. (3.7) and eq. (3.8) may also be written as

X(νp) =

√
∆tbin
N

[
N∑
r=1

x(tr) cos(2πνpr∆tbin)− i
N∑
r=1

x(tr) sin(2πνpr∆tbin)

]
, (3.9a)

Y (νp) =

√
∆tbin
N

[
N∑
r=1

y(tr) cos(2πνpr∆tbin)− i
N∑
r=1

y(tr) sin(2πνpr∆tbin)

]
. (3.9b)

We define the cross-periodogram Ixy(νp) of the two light curves x(tr), y(tr), as follows,

Ixy(νp) = X(νp)Y
∗(νp), (3.10)

where, the asterisk denotes the complex conjugate. The cross-periodogram (CP) can also be written
in the complex form Ixy(νp) = R[Ixy(νp)]− iJ[Ixy(νp)]. We may calculate the real and imaginary parts
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of the CP, by substituting eq. (3.9a) and eq. (3.9b) in eq. (3.10). Then, R[Ixy(νp)] and J[Ixy(νp)]
are given by

R[Ixy(νp)] =
∆tbin
N

∑
(r)

[x(tr) cos(2πνpr∆tbin)]
∑
(r)

[y(tr) cos(2πνpr∆tbin)]+

+
∆tbin
N

∑
(r)

[x(tr) sin(2πνpr∆tbin)]
∑
(r)

[y(tr) sin(2πνpr∆tbin)],

(3.11a)

and,

J[Ixy(νp)] =
∆tbin
N

∑
(r)

[x(tr) sin(2πνpr∆tbin)]
∑
(r)

[y(tr) cos(2πνpr∆tbin)]+

+
∆tbin
N

∑
(r)

[x(tr) cos(2πνpr∆tbin)]
∑
(r)

[y(tr) sin(2πνpr∆tbin)].

(3.11b)

The cross-periodogram is used in practice as an estimator of the CS. EP16 performed an extensive
number of simulations to quantify the statistical properties of the cross-periodogram. They found
that in the case of sampled light curves, time-lags should be estimated up to a maximum frequency
ν ≤ νNyq/3. At higher frequencies the cross-periodogram is a biased estimator of the cross-spectrum.
They also suggested that one should chop a light curve into smaller segments, estimate the cross-
periodogram of each one, and accept the mean of the individual cross-periodograms at each frequency
as the estimator of the cross-spectrum at that frequency.

Therefore, we break the light curve into ns segments of length Ts with N obs
s points for each segment

(Ts = N obs
s ∆tbin), and we average the ns individual cross-periodograms at each frequency to compute

the average cross-periodogram ĥxy as follows

ĥxy(νp) =
1

ns

ns∑
k=1

I(k)
xy (νp). (3.12)

Just like the CS, the average cross-periodogram is also a complex number, hence ĥxy(νp) = R[ĥxy(ν)]−
iJ[ĥxy(ν)] = [ĥxy(νp)]e

−iφ̂xy(ν), where |ĥxy(νp)| =
√
R[ĥxy(ν)]2 + J[ĥxy(ν)]2 and,

φ̂xy(νp) = arctan

[
− J[ĥxy(νp)]

R[ĥxy(νp)]

]
= arg[ĥxy(νp)], (3.13)

is the estimator of the intrinsic phase-lag. Then, the estimate of the time-lag at each frequency is
simply given by

τ̂xy(νp) =
arg[ĥxy(νp)]

2πνp
. (3.14)

According to EP16, when ns ≥ 20, the time-lag estimates defined by eq. (3.14) above are Gaussian
variables and their error is given by

σ̂τ̂ (νp) =
1

2πνp

1√
2ns

√
1− γ̂2

xy(νp)

γ̂2
xy(νp)

,where, (3.15)

γ̂2
xy(νp) =

|ĥxy(νp)|2

ĥx(νp)ĥy(νp)
, (3.16)
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γ̂xy(νp) is the estimator of the coherence function and ĥx(νp) and ĥy(νp) are the periodograms1 of the
light curves. The coherence estimate is a biased estimator of the intrinsic coherence of the measured
process, due to the Poisson noise in the light curves. Even if the intrinsic coherence is equal to unity,
the coherence estimate is decreasing exponentially as the Fourier frequency increases and converges to
1/ns. EP16 showed that the coherence estimate is well fitted by the following equation:

γ̂2
xy(ν) =

(
1− 1

ns

)
exp [−(ν/ν0)q] +

1

ns
. (3.17)

According to EP16, the time-lag estimates are unbiased up to a maximum frequency νcrit where νcrit
is the smallest value of either νNyq/3 (as we mentioned above) or the frequency at which γ̂2

xy(νcrit) =
1.2/(1+0.2ns). In the following sections we present the results for the time-lag and coherence estimates
of the three sources we discussed in the Chapter 2.

3.3 Time-lags of MCG-6–30–15

In Chapter 2, we examined the light curves of MCG-6–30–15. We created 3 groups of light curves
with similar cadence of observations, listed in Table 2.2. For all light curves in each group we linearly
interpolate to produce equidistance light curves with a ∆tbin that produces points with the least time
difference from the observations of the group. This process is discussed in detail in Section 2.1. We can
now use the resulting segments to estimate the time-lags between the 2–4 and 4–7 keV, as well as the
time-lags between 2–4 and 7–10 keV bands (i.e. the “S-vs-H1” and the “S-vs-H2” respectively).
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Figure 3.1: The “S-vs-H1” and “S-vs-H2” (left and right panel respectively) time-lags and coherence
estimates for “Group A” light curve segments of MCG-6–30–15.

1The periodograms are estimators of the PSD and are defined as the square modulus of the DFT of the light curve
(i.e. |X(tp)|2.
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We divide the light curves in Group A into ns = 19 smaller segments with duration Ts = 62d.
We used eqs. (3.10), (3.11a) and (3.11b) to compute the cross-spectrum of each segment. Then, we
average the cross-periodograms of all segments to estimate the CS, and using eq. (3.14) and eq. (3.16)
we estimate the time-lags and coherence at frequencies 2.9 × 10−6Hz ≤ ν ≤ 1.9 × 10−7Hz. The
results are plotted at Fig. (3.1). The top left and right panel shows the “S-vs-H1” and “S-vs-H2”
time-lags respectively, and the bottom panel shows the sample coherence. Since the sample coherence
is very large, we consider the sampled time-lags to be reliable estimates of the intrinsic time-lags up to
ν = νNyq/3. This frequency is indicated by the vertical line on the plots. The red dashed line in the
coherence plots indicate the value (1− 1/ns). According to eq. (3.17), this is the value of the sampled
coherence at low frequencies (ν � ν0) if the intrinsic coherence is one.

Just like above we computed the cross-periodogram, the averaged cross-periodogram, the time-lags
and the coherence for the light curves of Group B. We used a bin size of ∆tbin = 3.98d and we divided
the light curves into 15 segments with duration 119.4d. The use of Group B light curves allowed us to
estimate time-lags at even lower frequencies, from 9.7 × 10−8Hz up to 1.5 × 10−6Hz. The results are
plotted in Fig. (3.2).

Group C consists of the longest light curve parts. We divided them into 19 segments with duration
Ts = 243.2d to estimate time-lags at lower frequencies than the previous groups of light curves. Adopting
∆tbin = 12.8d, we estimated the time-lags at frequencies 4.8× 10−8Hz ≤ ν ≤ 4.5× 10−7Hz, as shown
in Fig. (3.3).

All time-lags in Fig. (3.1), (3.2) and (3.3) are consistent with zero (within one sigma). Additionally,
the “S-vs-H1” sampled coherence matches the dashed horizontal line, indicating that the intrinsic
coherence between the 2-4 and 4-7 keV bands is equal to unity. However, this is not true for the
“S-vs-H2” case. The sampled coherence is systematically lower than the value we would expect if the
intrinsic coherence is one.
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Figure 3.2: The “S-vs-H1” and “S-vs-H2” (left and right panel respectively) time-lags and coherence
estimates for “Group B” light curve segments of MCG-6–30–15.
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Figure 3.3: The “S-vs-H1” and “S-vs-H2” (left and right panel respectively) time-lags and coherence
estimates for “Group C” light curve segments of MCG-6–30–15.

We end up with 12 reliable time-lag estimates of MCG-6–30–15 when we use all segments in Groups
A, B and C. We plot them all in Fig. (3.4) (open, red circles). The time-lags cover a rather large
frequency range from ∼ 5 × 10−8Hz up to ∼ 10−6Hz. In order to reduce their error, we binned
them over groups of 4 frequencies. The black squares in Fig. (3.4) shows the resulting (weighted)
average time-lags. The vertical bars show the error of the mean, while the horizontal bar indicates the
frequency range over which we averages the original time-lags. We consider the binned time-lags as our
final estimate of the low frequency time-lags in MCG-6–30–15.
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Figure 3.4: The “S-vs-H1” and “S-vs-H2” (left and right panel respectively) time-lags of MCG-6–
30–15. The black filled squares show the mean time-lags and the horizontal error bars show the bin’s
width.
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3.4 Time-lags of Ark 564

We considered the two groups of segments listed in Table 2.4 under the label “Group A” and
“Group B” respectively. The first group contains all available light-curve segments, and the second
group contain segments with a high cadency of observation. They can be used to estimate time-lags at
high frequencies. Following the same method as we did for MCG-6–30–15, for the first group we used
∆tbin = 4.27d and divide the light curve into 21 segments with duration Ts = 68.32d. We computed
the cross-periodogram of each segment, the average cross-periodogram, the time-lags and the coherence
from 1.7×10−7Hz up to 1.4×10−6Hz. The light curves of the second group were divided into 17 short
segments with duration Ts = 1.703d and ∆tbin = 0.131d. Therefore, using the Group B segments, we
can estimate the time-lags and coherence at higher frequencies than Group A, from ν ≥ 6.8× 10−6Hz
up to 4.4× 10−5Hz.

The results are plotted in Figs. (3.5) and (3.6) for the Groups A and B respectively. The dashed
vertical line indicates νNyq/3.Time-lags estimates at frequencies lower than νNyq/3 are reliable estimates
of the intrinsic time-lags when the sampled coherence is higher than a critical value of 1.2/(1 + 0.2ns)
(see Section 3.2). In our case, 1.2/(1 + 0.2ns) = 0.23 for “S-vs-H1” and 0.27 for “S-vs-H2”. The “S-vs-
H1” sample coherence is higher than the critical value both for group A and B, thus, the time-lags at
frequencies lower than νNyq/3 should be unbiased. However, the 2–4 vs 7–10 keV sample coherence of
the second frequency point in Group A is lower than the critical value (see bottom plot, in right panel
if Fig. (3.5)). In this case, the true scatter of time-lags around the mean may not be a Gaussian and
eq. (3.15) may underestimates the time-lag error.

Similarly with MCG-6–30–15, the time-lags are consistent with zero for both groups and the “S-
vs-H2” sample coherence is lower than “S-vs-H1”. The dashed horizontal indicates the value we would
expect for the sample coherence if the intrinsic coherence is one. For both “S-vs-H1” and “S-vs-
H2” cases, the sample coherence is lower than the dashed horizontal line indicating that the instinct
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Figure 3.5: The “S-vs-H1” and “S-vs-H2” (left and right panel respectively) time-lags and coherence
estimates for “Group A” light curve segments of Ark 564.
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coherence is lower than one contrary to MCG-6–30–15 where the intrinsic coherence is one for the
“S-vs-H1” time-lags.
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Figure 3.6: The “S-vs-H1” and “S-vs-H2” (left and right panel respectively) time-lags and coherence
estimates for “Group B” light curve segments of Ark 564.

Fig. (3.7) shows the “S-vs-H1” and the “S-vs-H2” time-lags (left and right panel, respectively) at
frequencies lower than νNyq/3, using the Group A and Group B light curves. The figure shows clearly
the difference in the time-lags of the two Groups. To reduce the error of the time-lags, we binned the
Group A and Group B time-lags together and calculate their (weighted) average time-lag. The black
squares show the average time-lag and their error, while the horizontal error bar indicates the bin width.
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Figure 3.7: The “S-vs-H1” and “S-vs-H2” (left and right panel respectively) time-lags of Ark 564.
The black filled squares show the mean time-lags and the horizontal error bars show the bin’s width.
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3.5 Time-lags of Mkn 766

We used all available light curves of Mkn 766 to estimate time-lags at a wide range of frequencies.
First, we divided them into 22 segments with duration Ts = 111d. Using eqs. (3.10) and (3.11a), (3.11b)
we computed the cross-periodogram of each segment and then, we average the cross-periodograms of
all segments to estimate the cross-spectrum. By the use of eq. (3.14) and eq. (3.16) we estimate the
time-lags and coherence at frequencies 10−6Hz ≤ ν ≤ 10−7Hz.

Fig. (3.8) shows the results. The 2–4 vs 4–7 keV and 2–4 vs 7–10 keV time-lags and coherence are
given in the left and right panel of Fig. (3.8) respectively. For both cases the sample coherence is higher
than the critical value at all frequencies, therefore, the dashed vertical line at ν = νNyq/3 indicates
the frequency up to which we can reliably measure time-lags. The dashed horizontal line in the same
plot, shows the value 1 − 1/ns which is the value we would expect for the sampled coherence at low
frequencies, if the intrinsic coherence is one.

In the previous sources, the “S-vs-H1” sample coherence is higher than the “S-vs-H2”. This is also
true for Mkn 766 however, in this source the “S-vs-H1” and “S-vs-H2” coherence estimates differ only
slightly. Additionally, the sample coherence in both “S-vs-H1” and “S-vs-H2” plots is lower than the
dashed horizontal line hence, the intrinsic coherence is probably lower than one in both cases.

All the reliable estimates of the time-lags are plotted in Fig. (3.9) with red, open circles. To reduce
their errors, we binned them over groups of two (black filled squares) and all together (open squares).
The black filled and open squares show the resulting (weighted) mean. The vertical error bars indicate
the error of the mean and the horizontal bar indicates the bin width. The time-lags of Mkn 766 are
negative which imply that the variations in the hard band appear first with respect to the variations
of the 2–4 keV band (the soft band is delayed with respect to the hard band). The mean 2–4 vs 4–7
keV time-lag is −75000± 34000s and −71000± 35000s for the 2–4 vs 7–10 keV case.
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Figure 3.8: The “S-vs-H1” and “S-vs-H2” (left and right panel respectively) time-lags and coherence
estimates of Mkn 766 light curve segments.
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Figure 3.9: The “S-vs-H1” and “S-vs-H2” (left and right panel respectively) time-lags of Mkn 766.
The black filled and open squares show the mean time-lags and the horizontal error bars show the bin’s
width.

3.6 Bias of the time-lag estimates due to finite light curve

duration

In the previous section, we estimated the time-lag of MCG-6–30–15, Ark 564 and Mkn 766. As
suggested by EP16 (for sampled light curves), we considered reliable estimates of time-lags at frequencies
< νNyq/3. At higher frequencies time-lag bias noticeable increases due to aliasing effect. However, time-
lags are biased even at low frequencies due to the finite light curve segments duration.

To quantify the time-lag bias in terms of the intrinsic value EP16 introduced the following quantity:

δτ (νp) =
τint(νp)− 〈τ̂obs(νp)〉

τint(νp)
, (3.18)

where τint is the model intrinsic time-lag and 〈τ̂obs(νp)〉 is the measured time-lags2, so δτ (νp) shows the
relative difference between the model and the observed time-lags. EP16 conducted a series of numerical
experiments to find the dependence of light curve duration (Ts) on time-lag bias. They found that the
mean time-lag bias decreases with increasing Ts as 1/

√
Ts.

Then, for the same value of Ts, EP16 measured δτ at different frequencies. Fig. (4) of EP17 show
the time-lag bias as a function of frequency for light curves with different duration from 3.2ks to 512ks
≈ 6d. At low frequencies, time-lag bias has roughly the same slope. We measured from Fig. (4) of
EP17, δτ (ν) ∝ ν−0.7.

Based on the results of EP17, we can assume that the proportionality constant at a frequency ν will
follow the same relation with the mean time-lag bias (∝ 1/

√
T ). As follows, the relation of the time-lag

bias and frequency is

δτ (ν) =

√
Texp

Ts
Aexp

(
ν

ν0

)−0.7

(3.19)

where, Texp is the light curve duration of EP16 experiment and Aexp is the amplitude of the time-lag
bias at frequency ν0. At ν0 = 10−5Hz the amplitude of the relative time-lag bias for the light curves
with Texp = 512ks is Aexp = 0.08.

2In EP16 〈τ̂obs(νp)〉 is the sample mean at each frequency.
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Chapter 4: Comparison with the high
frequency time-lags

The low frequency time-lags estimates of MCG-6–30–15, Ark 564 and Mkn 766 can provide more
information regarding the physical processes in these sources, if we can combine them with time-lag
estimates at higher frequencies. EP17 used XMM-Newton data of 10 bright AGN sources (including
MCG-6–30–15, Ark 564 and Mkn 766), and they measured time-lags at frequencies from 5 × 10−5Hz
to ∼ 10−3Hz between various energy bands in the range 0.5–10 keV, and the 2–4 keV band, which
they choose as the reference band. In this chapter we will investigate if the time-lags at low (RXTE )
frequencies we estimated in Chapter 3 are consistent with the time-lag estimates at higher frequencies.

4.1 Extrapolation of the time-lag model at low frequencies

EP17 found that the time-lags between one energy band with mean energy E and the 2–4 keV band
(with a mean energy of 3keV) can be well approximated by a power law function of the form:

τ̂(ν, E) = A0 log(E/3keV )(ν/10−4Hz)
−s
, (4.1)

where A0 corresponds to the time-lag at ν = 10−4Hz. The equation above shows that the time-lags
have a power law dependence on frequency, with a slope which is ∼ −1 in all sources. The time-lags
amplitude increases with increasing difference between the energy of the bands. In this work we used
light curves in the 4–7 and 7–10 keV bands with mean energy E = 5.5keV and 8.5keV, respectively,
and as the reference band we also used 2–4 keV (with E = 3keV). EP17 measured the slope, s, and
the amplitude, A0, using XMM-Newton data and they found that s = 1.3 ± 0.3, A0 = 321 ± 26s for
MCG-6–30–15, s = 1.4± 0.1, A0 = 618± 81s for Ark 564, and s = −0.1± 0.3, A0 = 63± 37s for Mkn
766. Using those values we can extrapolate eq. (4.1) at low frequencies and compare it with our results
from Chapter 3.

4.1.1 MCG-6–30–15 & Ark 564

Figs. (4.1) and (4.2) present our results for MCG-6–30–15 and Ark 564. The black filled squares
indicate the (binned) time-lags estimates we measured in Chapter 3. The vertical error bars show the
time-lag error, while the horizontal error bars show the bin’s width. The continuous solid lines show the
extrapolation of eq. (4.1) at frequencies lower than 104Hz. The dashed lines show the 1σ uncertainty
of the EP17 time-lag model. We used eq. (4.1) to compute these lines with A0 ± 1σA0 and s ± 1σs,
as needed in order to identify the 1σ confidence area around the best fit line. The black arrow at the
highest frequency in the left panel of Fig. (4.1), indicates the 3σ upper limit of the respective time-lags
estimate, which is negative in this case.

In general, the low-frequency time-lags estimates are consistent with the extrapolation of the high
frequency best-fit model to lower frequencies. However all time-lags, both in MCG-6–30–15 and Ark 564
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Figure 4.1: The extrapolation of XMM-Newton time-lag fit (EP17) to low (RXTE ) frequencies for
MCG-6–30–15.

are below the extrapolated high frequency model. This could be the result of the low frequency bias in
the time-lag estimates. As we have discussed in Chapter 3, the main factors that contribute to the bias
of the time-lag estimates is the fact that light curves are observed at regular time intervals, and the
finite light curve duration. As EP16 suggested, to avoid the bias due to the former factor, we consider
time-lags only at frequencies ≤ νNyq/3. The finite duration of the light curves also contribute to bias at
low frequencies, as we discussed in Section 3.6. According to eq. (3.19) the bias due to the finite light
curve duration depends on the frequency. In principle, we can use eq. (3.19) to calculate the relative
time-lag bias at each frequency and then “correct” the estimated time-lags. We discuss the calculation
of the relative bias, and the subsequent correction at the observed time-lags in the next paragraphs.

The relative bias of MCG-6–30–15

In Chapter 3 we estimated MCG-6–30–15 time-lags at 12 frequencies and then we binned them into
groups of 4 frequencies. The resulting frequency of the MCG-6–30–15 time-lags (i.e. the average of the
logarithms of all the frequencies inside each bin) is ν = 8.5×10−8, 2.4×10−7 and 6×10−7Hz. The time-
lag estimate at the lowest frequency (at ν = 8.5 × 10−8), is the average of 3 time-lags computed with
Group C light curves with duration 240d and one time-lag from Group B light curves with Ts = 120d.
For an approximate estimate of the relative time-lag bias we accept Ts = 200d. Using eq. (3.19), we
measure a relative time-lag bias of δτ (ν = 8.5× 10−8Hz) = 0.4. For the other two frequencies, we used
light curves with Ts = 60d and 120d, or on average Ts = 90d and the relative time-lag bias in the case
is δτ (ν = 2.4× 10−7Hz) = 0.27 and δτ (ν = 6× 10−7Hz) = 0.14.

To calculate the unbiased time-lags, we solve eq. (3.18) for the intrinsic time-lags, and we get:

τint(νp) =
τ̂obs(νp)

1− δτ(νp)
(4.2)

Substituting the values we calculated above for δτ(νp), and the observed time-lags at each frequency,
we can use eq. (4.2) to compute the unbiased, time-lag estimates. Red open squares in Fig. (4.1)
indicate these estimates. For clarity reasons, the unbiased time-lags are slightly shifted to the right.
The new estimates are 1.1–1.2 times larger than the previous estimates. As a result, they are closer to
the extrapolated high frequency time-lags, although they are still lower than the extrapolation of the
high frequency model time-lags.

Equation 4.2 cannot work if the time-lag estimates are negative. For the negative time-lag values
we measured the deviation of the time-lag estimates from the extrapolation of the EP17 model at
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Figure 4.2: The extrapolation of XMM-Newton time-lag fit (EP17) to low (RXTE ) frequencies for
Ark 564.

low frequencies. In the case of the 2–4 vs 4–7 keV time-lags, we measured τ̂obs = −6500 ± 6000s at
ν = 6 × 10−7Hz. The EP17 model extrapolation at 6 × 10−7Hz gives τEP17 = (6.5 ± 5.3) × 104s.
Therefore, ∆τ = τEP17(6 × 10−7Hz) − τ̂obs(6 × 10−7Hz) = (7.1 ± 5.3) × 104s. In the case of the 2–4
vs 7–10 keV time-lags, we measured two negative time-lags: τ̂obs(2.4 × 10−7Hz) = (−1 ± 3) × 104s
and τ̂obs(6 × 10−7Hz) = −2500 ± 9500s. The extrapolation of the EP17 model at these frequencies
give τEP17(2.4× 10−7Hz) = (3.7± 3.0)× 105s and τEP17(6× 10−7Hz) = (1.0± 0.8)× 104s. Therefore
∆τ(ν = 2.4 × 10−7Hz) = (3.8 ± 3.0) × 105s and ∆τ(ν = 6 × 10−7Hz) = (1.0 ± 0.8) × 105s. Due to
the large uncertainty of the extrapolated high frequency model time-lags, all the differences between
the observed time-lags and he extrapolation of the τEP17 model are not significant (they are within
1.25–1.35σ).

The relative bias of Ark 564

Similarly with MCG-6–30–15 we will calculate the relative bias of Ark 564 using eq. (4.2). As we
described in Section 3.4 we ended up with 4 reliable estimates of time-lags for Ark 564, and we binned
the into groups of two. For the first frequency (ν1 = 2.25×10−7Hz) we used light curves with Ts = 68d,
thus δτ (ν1) = 0.34. For the second frequency bin we used light curves we used much sorter light curves
(Ts = 1.7d) and the relative bias in this case is δτ (ν = 9 × 10−6Hz) = 0.16. Then, solving eq. (3.18)
for the intrinsic time-lags we found the unbiased time-lags due to finite light curve duration. Fig. (4.2)
show the results.

For the negative time-lag estimate at ν = 9 × 10−6Hz, in the case of 2–4 vs 7–10 keV time-
lags, we measure the deviation of the time-lag estimate from the extrapolation at low frequencies.
τ̂obs(9×10−6Hz) = −870±3100s and τEP17(9×10−6Hz) = (8.2±2.3)×103s therefore, ∆τ = (9±4)×103s.
This result indicates that the difference between our measurements and the high frequency time-lags
when extrapolated at low frequencies is significant at the 2.4σ.

Even if we consider the bias of the measured time-lags due to the finite duration of the RXTE light
curves all the observed frequencies of the time-lags are still bellow the extrapolation of the EP17 model
at low frequencies both for MCG-6–30-15 and Ark 564. The results are consistent, within errors, with
the extrapolation of EP17 model to lower frequencies however, the uncertainty of the extrapolation is
very high at low frequencies.
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4.2 Mkn 766

The time-lag spectra of all AGN that were studied by EP17 are well fitted by a power law with a
slope of ∼ −1. The only exception was Mkn 766, in this case the time-lag spectrum of this source
remains almost constant at all frequencies estimated by EP17 (s = 0.1± 0.3). Our result reinforce the
EP17 results. The low frequency time-lags of Mrk 766 are negative at all frequencies both in the 2–4
vs 4–7 keV and the 2–4 vs 7–10 keV time-lags. They are fully consistent with the extrapolation of
the EP17 model time-lags to lower frequencies within 1σ. The fact that all the time-lag estimates are
negative, suggests that indeed, the true time-lags may also be negative.
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Figure 4.3: The extrapolation of XMM-Newton time-lag fit (EP17) to low (RXTE ) frequencies for
Mkn 766.
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Chapter 5: Summary & Conclusions

In this work, we studied the correlation between the observed variations in different energy bands
of three AGN namely, MCG-6–30–15, Ark 564 and Mkn 766, using all available data from the RXTE
database. We considered light curves in three energy bands (2–4, 4–7 and 7–10 keV) and we choose
2–4 keV as the reference band. We calculated the continuum time-lags following the EP16 method and
in this chapter we summarize our conclusions.

All three sources have been regularly observed by RXTE throughout its 16 years of operations. The
cadence of observations varies, and minor as well as some major (i.e. 1–2 year long) gaps appear in the
light curves. For a reliable estimation of the time-lags, we need evenly sampled light curves. For that
reason, we divide the light curves into parts that include light curve segments with similar cadence of
observations. We created three groups of segments in MCG-6–30–15 light curve, two groups for Ark 564
and we used all the available data of Mkn 766 in one group.

The first group in MCG-6–30–15 light curve includes 19 segments with a time difference between
the observations of about 2 days (∆tj−i, median ∼ 2d). The length of each segment in this group is
∼ 62d. For the light curve parts of the second group of segments, the source was observed about once
every 4 days, allowing us to create 15 segments with each segment being ∼ 120d long. Finally, for the
third group, we tried to identify the longest light curve parts that do not contain very large gaps.

To produce equidistant light curves from the various parts in each group, we followed a novel
technique. For each group of light curve parts we considered various ∆tbin values. For each ∆tbin, we
linearly interpolate to produce equidistant light curves, and we measured the median time difference
between the interpolated data points and the observation (∆tdif, median). We choose the bin size that
produces data points closer to the observations. For the first group we tested values from 1.1 to 2.3
days and found that ∆tbin = 1.99d minimizes ∆tdif, median. Similarly, for the second group of light curve
parts we measured ∆tdif, median for different bin size values between 3.5 and 4.6 days. We found that
∆tdif, median is minimal for ∆tbin = 3.98d. Finally, for the third group in MCG-6–30–15, ∆tbin = 12.8d
minimizes the time difference between the interpolated data points and observations among values of
the bin size from 11 to 15 days. The use of this ∆tbin resulted in light curves with a duration of ∼ 240d.

For the most of the parts in the Ark 564 light curve, ∆tj−i, median ∼ 4.3d. We used all of them as one
group and we consider light curve parts with ∆tj−i, median = 0.14 as the second group. Similarly with
MCG-6–30–15, we determined the bin size which minimizes ∆tdif, median. For the Group A, ∆tdif, median
is minimal at ∆tbin = 4.27d and for the second group at ∆tbin = 0.131d. Using those values, we were
able to create 21, evenly sampled segments in the first group and 17 segments for the second.

The cadence of observation in Mkn 766 light curve is ∼ 4–4.5d at almost all times. We used all the
available segments to estimate time-lags at a wide frequency range. We have tested different values for
the bin size from 4–4.5 days. ∆tbin = 4.27d minimizes the difference between the observations and the
interpolated data points and produces 22 segments with Ts = 111.02d.

We calculated the time-lags following the EP16 method to ensure that they follow a Gaussian
distribution with known errors. According to EP16, time-lags should be estimated using ns ≥ 20 pairs
of light curve segments. In our case, the number of segments varies between 15–19 in MCG-6–30–15.
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For Ark 564, we ended up with 21 segments in the first group and 17 for the second group. In the case
of Mkn 766 we used ns = 22 segments. Using these data, we estimated the time-lags at frequencies
from 10−8 to 10−5Hz. The high frequency limit is set by the fact that we considered time-lags estimates
only at ν ≤ νNyq/3, to avoid bias due to aliasing. The low frequency limit is set by the duration of the
segments.

For MCG-6–30–15 we ended with 12 reliable time-lag estimates from 4 × 10−8Hz to 10−6Hz. For
Ark 564 and Mkn 766 we were able to measure time-lags at 4 frequencies from 10−7Hz to 10−5Hz and
between 1–4 ×10−7Hz respectively. To reduce the uncertainty in the time-lags estimates, we binned
them together and calculate the average of the time-lags inside each bin. Figs. (3.4), (3.7), and (3.9)
present the final time-lag spectra for MCG-6–30–15, Ark 564 and Mkn 766. This is the lowest frequency
range at which X-ray time-lags have ever been estimated for these sources. We summarize our main
results below.

1. All estimated time-lags are consistent with zero within 1–2σ. In the case of the individual time-lags
of MCG-6–30–15, almost all of them are consistent with zero within 1σ. All the individual time-lags
of Ark 564 are also consistent with zero within 1σ. Regarding the average time-lags, they are also
consistent with zero within 1σ. The only exception is the lowest frequency time-lag in the 2–4 vs 4–7
keV case of MCG-6–30–15, which is consistent with zero at 2σ.

The agreement with zero could be due to the fact that the intrinsic time-lags are small and time-
lags errors are large. The coherence between the 2–4 vs 7–10 keV of MCG-6–30–15 and for all the
energy bands we examined in Ark 564 is low. The value of the coherence determines the time-lags
error and as a result, the errors are very large and the time-lags estimates are in agreement with zero.
Another indication which shows that the intrinsic time-lags could indeed be zero, is the number of
positive and negative time-lags. Four out of 12 and 5 out of 12 individual time-lags are positive in
the 2–4 vs 4–7 keV and in the 2–4 vs 7–10 keV time-lag spectra of MCG-6–30–15, respectively. If
the intrinsic time-lags were equal to zero at low frequencies and their distribution is Gaussian, the
probability (determined by the binomial distribution; p = 0.5) of measuring 4/12 or 5/12 positive time-
lags is 12% and 20% respectively. In the case of Ark 564, half of the individual time lags are positive,
which is again consistent with the hypothesis of zero intrinsic time-lags. These results show that the
intrinsic time-lags of MCG-6–30–15 and Ark 564 could be equal to zero.

On the other hand, we have evidence that the intrinsic time-lags at low frequencies are small, but
indeed, non-zero. EP17 observed a turn-over at the lowest sampled frequencies (< 10−4Hz) of MCG-6–
30–15, which indicate that the time-lags at frequencies below ∼ 10−5Hz could be ∼ 100–200s between
the same band we have used in this work. Also, McHardy et al. (2007) measured the time-lags of
Ark 564 and they observed a flattening in the time-lag spectrum at a value of 1000–1500s at frequencies
below 5 × 10−5Hz. Even if this is the case, we cannot discriminate between a value of zero or such a
small value, given the large errors of the time-lags.

2. EP17 measured the time-lag spectra of MCG-6–30–15, Ark 564 and Mkn 766 at high frequencies
using XMM-NEWTON data. They found that the X-ray continuum time-lags are well fitted by a power-law
model with a slope of ∼ −1. We examined if the extrapolation of EP17 results is consistent with the
time-lag estimates at low frequencies measured by RXTE. In the case of MCG-6–30–15 and Ark-564
our time-lag estimates are systematically bellow the extrapolation of EP17 model. Based on simulations
performed by EP17, we used eq. (3.19) to calculate the time-lag bias in our estimates. The bias is not
significant and our estimates are still below the extrapolation. Nevertheless, the time-lags we measured
in MCG-6–30–15 and Ark 564 are still consistent with the extrapolation of EP17 model if we consider
the uncertainty of the extrapolation of the high frequency time-lag model to low frequencies. However,
our results are consistent with the EP17 results because of the very high uncertainty of the EP17 model
extrapolation at low frequencies, so we cannot make any firm statement about the reality of this result.
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3. Mkn 766 is the only source studied by EP17 whose time-lags do not follow a power law with a slope
of ∼ −1. Instead, the slope is consistent with zero, and the time-lags are between 100–200s in the
same energy bands we considered in this work. In our case, the average time-lag of all 4 frequencies is
(−7.5± 3.5)× 104s and (−7.0± 3.5)× 104s in the 2–4 vs 4–7 keV and 2–4 vs 7–10 keV band time-lags
respectively. These results are in agreement with the results of EP17 at higher frequencies within 2σ.
Our time-lag estimates confirm the peculiar nature of this source. In fact, our results suggest that at
low frequencies the intrinsic time-lags may be zero, or even negative, at low frequencies.

4. We found that the coherence between the 2–4 vs 4–7 keV and 2–4 vs 7–10 keV bands is rather flat
for MCG-6–30–15. First, the coherence between the 2–4 vs 4–7 keV bands is > 0.9 at all frequencies
and for all groups. The coherence in this case matches the expected value of the sample coherence
when the intrinsic coherence is unity. Regarding the 2–4 vs 7–10 keV case, the coherence is between
0.83–0.90, i.e. lower than the 2–4 vs 4–7 keV case. It is smaller than the expected value, when the
intrinsic coherence was unity. This supports the hypothesis that the coherence decreases with increasing
energy separation, as it was found by EP17.

The 2–4 vs 7–10 keV coherence is smaller thar the 2–4 vs 4–7 keV band coherence in Ark 564 as
well. In addition, the sampled coherence is significantly smaller than the sample coherence in MCG-6–
30–15, which indicates the intrinsic coherence is smaller than one in this source. Finally, for Mkn 766
we found that the coherence is the same in the 2–4 vs 4–7 keV and the 2–4 vs 7–10 keV band. The
value of the coherence varies between 0.3 to 0.9 and it is smaller than the expected value if the intrinsic
coherence was one.

5. The presence of a warm absorber may contribute to the time-lags we measured in these objects.
Warm absorber is an ionized gas along the line of sight to the central engine in AGN, which absorbs
X-ray emission from the AGN. Warm absorbers are detected in about half of the Seyfert galaxies. The
gas in warm absorbers is ionized either by collisions or by photoionization from high energy photons
emitted by the source.

Silva et al. (2016) used XMM-NEWTON data of NGC 4051 and they found that time-lags measured at
longer timescales may carry a time delay associated with the gas response to changes in the ionizing
source. As a result, the warm absorber will introduce a time delay in the soft energy band with respect
to the variations observed at higher energies. These time delays are opposite to the hard continuum
lags which are generated by the X-ray source. Therefore, the measured time-lags will be smaller than
the intrinsic time-lags of the X-ray source.

This may be true in the case of MCG-6–30–15, Ark 564 and Mkn 766. If the warm absorber indeed
affects the low frequency spectra of these sources, it would explain the fact that our estimates are lower
than the extrapolation of EP17 model. In fact, EP17 already detected a low-frequency turn-over at
ν < 10−4Hz in the case of MCG-6–30–15 and they suggest that this could be due to the response of the
an ionized absorbing gas to the X-ray variations. However, there is no evidence in the RXTE spectra
that support the presence of warm absorbers that would affect the energy spectrum in MCG-6–30–15
and Ark 564 above 2keV. Regarding Mkn 766, Rivers et al. (2013) have shown evidence that confirm
the presence of a warm absorber in this source, so the peculiar time-lags in this object could be due to
the effects of warm absorbers.

6. Both the observed X-ray variations and the time-lags in X-ray binaries and AGN can be explained
by the “propagating fluctuations” model of Kotov et al. (2001) and Arévalo and Uttley (2006). The
model is based on the work of Lyubarskii (1997).

According to the model the X-ray source is plane parallel, and is located above and below the
accretion disc. The hot material in the corona is also accreting. The model assumes that mass accretions
rate fluctuations in the accreting corona are stirred up at each radius and propagate towards the center.
Accordingly, X-ray variations arise over a broad range of time-scales. The longer time-scale fluctuations
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are produced far away from the center. If the temperature of the corona increases inwards, then the
fluctuations will first appear in the softer band (2–4 keV) and then in the harder band (4–7 and 7–10
keV) as they propagate towards the central BH, producing time-lags. The delay between the variations
will depend on the diffusion time scale with which the perturbation is propagated.

NGC 4051 is the only other AGN with time-lags measured at such low frequencies between 10−7Hz
and 10−6Hz (Papadakis et al., 2019). If the low frequency X-ray time-lags in NGC 4051, MCG-6–30–
15 and Ark 564 were consistent with the extrapolation of the EP17 model to low frequencies, then the
size of the X-ray corona should be very large. For example, frequencies at ∼ 10−7Hz in these AGN
correspond to frequencies of ∼ 0.05Hz in Cyg X-1 (assuming that the BH mass of these AGN is ∼ 105

times larger than the mass of the BH in BHXBs). Recently, Rapisarda et al. (2017), studied the low
frequency time-lags (down to 0.05Hz) in Cyg X-1, assuming the propagation of the fluctuation model.
They showed that, if the model is correct, then the radius of the X-ray corona in Cyg X-1 should be
∼ 2500 gravitational radii. Assuming that the same model is also correct for AGN, we would expect a
similar result for AGN as well. However, results from gravitational microlensing suggest much smaller
X-ray corona sizes in AGN (see Chartas et al., 2016). Additionally, a physical heating mechanism would
be also required for the creations of this hot flow (with temperatures ∼ 108–109K) at such large radii.
This process remains unknown and it is difficult to be explained with the known heating processes in
AGN.
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Appendix A: Equation of a line

The linear equation in the case of 2 variables has the following form:

y = ax+ b (A.1)

Let us consider two sets of point (y1, x1) and (y2, x2). We need to find the linear equation which
passes through the previous points.

We put (y1, x1) in eq. (A.1):

y1 = ax1 + b. (A.2)

Similarly for (y2, x2):

y2 = ax2 + b. (A.3)

Now, we subtract eq. (A.2) from eq. (A.3):

y2 − y1 = a(x2 − x1) =⇒ a =
y2 − y1

x2 − x1

. (A.4)

Then,

y =
y2 − y1

x2 − x1

x+ b (A.5)

and for (y1, x1),

y1 =
y2 − y1

x2 − x1

x1 + b (A.6)

we subtract eq. (A.6) from eq. (A.5):

y − y1 =
y2 − y1

x2 − x1

(x− x1) (A.7)

We multiply with the term (x2 − x1) to cancel the denominator.

(x2 − x1)y = y1(x2 − x1) + (y2 − y1)(x− x1) =⇒ (A.8)

(x2 − x1)y = y1x2 −���y1x1 + y2x− y2x1 − y1x+���y1x1 =⇒ (A.9)

(x2 − x1)y = (x2 − x)y1 + (x− x1)y2 (A.10)
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Finally, dividing by x2 − x2, we obtain

y =
x2 − x
x2 − x1

y1 +
x− x1

x2 − x1

y2 =
x2 − x
x2 − x1

y1 +
x1 − x
x1 − x2

y2 (A.11)

and the error is given by the following equation.

δy2 =

(
x2 − x
x2 − x1

δy1

)2

+

(
x1 − x
x1 − x2

δy2

)2

(A.12)

43


	Introduction
	Active Galactic Nuclei
	The emitted spectrum
	X-ray emission from AGN


	Correlation between variations in different X-ray energy bands
	The main objective of this work

	Data analysis
	MCG-6–30–15
	Light curve parts with tbin 2d
	Light curve parts with tbin 4d
	Light curve parts with tbin > 10d

	Ark 564
	Light curve parts in Ark 564 light curve

	Mkn 766
	Light curve parts with tbin 4d


	Definitions and time-lag estimation
	Definitions
	Time-lags estimation
	Time-lags of MCG-6–30–15
	Time-lags of Ark 564
	Time-lags of Mkn 766
	Bias of the time-lag estimates due to finite light curve duration

	Comparison with the high frequency time-lags
	Extrapolation of the time-lag model at low frequencies
	MCG-6–30–15 & Ark 564
	The relative bias of MCG-6–30–15
	The relative bias of Ark 564


	Mkn 766

	Summary & Conclusions
	Equation of a line

