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Abstract  

 Gold is a well-known precious metal that has been used in jewelry and coins 

since ancient times. Being the noblest of all metals, it is resistant to oxidation 

and corrosion. Gold nanoparticles show several interesting properties, such as 

changing color depending their size and shape and good activity as chemical 

reaction catalysts. Both their size and shape have key role in the efficiency of 

Au as catalysts.  

 The present master thesis presents a theoretical study of the relationship 

between structure and properties for gold nanoparticles. Using several different 

interatomic potentials and a continuum model, we calculate the surface 

energies of (111), (100) and (110) surfaces in good agreement to other 

theoretical calculations found in the literature.  

 We then construct models of nanoparticles of high symmetry and more 

specifically cubic, octahedral and rhombic dodecahedral nanoparticles in 

several sizes. The purpose of this study is to understand the role of the 

nanoparticle’ s geometry on its properties and calculate the energies that 

determine the shape of these nanoparticles and provide for the first time 

calculations for edge and vertex energies of gold nanoparticles performed using 

a new atomistic model we developed.  
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Περίληψη  

 Ο χρυσός είναι ένα πολύ γνωστό πολύτιμο μέταλλο που χρησιμοποιούνταν σε 

κοσμήματα και νομίσματα κατά την αρχαιότητα. Όντας το πιο αδρανές από όλα 

τα μέταλλα, αντιστέκεται στην οξείδωση και την διάβρωση. Τα νανοσωματίδια 

χρυσού παρουσιάζουν αξιοσημείωτες ιδιότητες όπως η αλλαγή χρώματος 

ανάλογα το σχήμα και το μέγεθος τους και η δραστικότητα τους ως καταλύτες 

χημικών αντιδράσεων. Το σχήμα και το μέγεθος των νανοσωματιδίων έχουν 

ρόλο κλειδί στην αποδοτικότητα τους ως καταλύτες. 

 Στην παρούσα μεταπτυχιακή διατριβή παρουσιάζουμε μια θεωρητική μελέτη 

της σχέσης δομής και ιδιοτήτων για νανοσωματίδια χρυσού. Χρησιμοποιώντας 

διαφορετικά δυναμικά και ένα συνεχές μοντέλο, υπολογίζουμε τις επιφανειακές 

ενέργειες των επιφανειών (111), (100) και (110) που είναι σε καλή συμφωνία 

με αποτελέσματα από άλλες θεωριτικές μελέτης που υπάρχουν στην 

βιβλιογραφία.  

 Στη συνέχεια κατασκευάζουμε νανοσωματίδια με υψηλή συμμετρία και πιο 

συγκεκριμένα κυβικά, οκταεδρικά και ρομβικά δωδεκαεδρικά σε διάφορα 

μεγέθη. Ο σκοπός της μελέτης είναι η κατανόηση του ρόλου που έχει η 

γεωμετρία του νανοσωματιδίου στις ιδιότητες τους και η παρουσίαση για πρώτη 

φορά υπολογισμών για τις ενέργειες των ακμών και των κορυφών που έγιναν 

με τη χρήση ενός νέου ατομιστικού μοντέλου που αναπτύξαμε. 
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2 Introduction  
 

 Gold is the chemical element with symbol Au, atomic number 79 and face 

center cubic (fcc) crystal structure (is shown in Figure 1). It is dense, soft, ductile 

and malleable metal with a pure yellow color. The word gold is cognate with 

similar words in other languages such as the Proto-Indo-European ghel, from 

which the word yellow came, while the symbol Au came from the latin word 

“aurum” which means bright dawn. It is a transition metal and belongs to the 

11th group of the periodic table. Being the noblest of all metals, it is resistant to 

oxidation and corrosion. It is a precious metal that has been used in jewelry and 

coins since ancient times and it is a good conductor of heat and electricity. [1] 

 Gold nanoparticles present particular interest in nanotechnology. They are 

characterized by shape-related optoelectronic properties, large surface-to-

volume ratio, excellent biocompatibility and low toxicity [2]. They also show 

interesting properties such as changing color depending on their shape and 

size and good activity as chemical reactions catalysts [2]. They can be used in 

many applications such as dental restoration (in the form of alloys) [3], 

therapeutics [4,5], detection and diagnostics [6], drug delivery systems [7], 

chemical and biological sensing [8], imaging [9], photovoltaics [10], probes for 

TEM [11]. Figure 2 shows gold nanoparticles in different shapes and sizes [12]. 

 

 

Figure 1: Gold crystal structure. Image is taken by webelements.com. 

 Gold is used as catalyst in many chemical reactions. In homogeneous 

catalysis, salts of Au(I) and Au(III) are used [13]. The activity of gold in 

combination with its resistance to air and moisture give it an advantage over 

other catalysts. Bulk metallic gold presents surface reactivity at room 

temperature only towards a few substances such as formic acid and sulphur-
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containing-compounds (H2S, thiols) [14]. In heterogeneous catalysis, the 

adsorption of reactants is improved by using gold nanoparticles on solid 

polymeric or inorganic substrates (CeO2, Fe2O3, TiO2) [15].  

 Two well-known types of catalytic reactions that employ gold nanoparticles are 

a) the oxidation by O2 which include the oxidation of CO in mild temperatures, 

the alcohol oxidation the direct synthesis of hydrogen peroxide and alkene 

epoxidation and b) hydrogenation where gold nanoparticles supported on metal 

oxides such us SiO2, Al2O3, ZnO etc. are used for selective hydrogenation of 

organic molecules i.e. α,β-unsaturated aldehydes, unsaturated ketones and 

unsaturated hydrocarbons. [16] 

 

Figure 2: gold nanoparticles in several shapes and sizes. a) small and b) large 

nanospheres, c) nanorods, d) sharpened nanorods, e) nanoshells, f) 

nanocages, g) hollow nanospheres, h) 

tetrahedral/octahedra/cubes/icosahedra, i) rhombic dodecahedra, j) 

octahedral, k) concave nanocubes, l) tetrahexahedra, m) rhombic 

dodecahedra, n) obtuse triangular bipyramids, o) trisoctahedra and p) 

nanoprisms. [12] 
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 The efficiency of gold nanoparticles depends on their size and shapes. It is 

known that the reactivity of gold nanoparticles is due to the low coordinated 

atoms [17]. In the case of CO oxidation, the adsorption of CO takes place at the 

edges and the corners while the activation of oxygen occurs at peripheral sites. 

It has been proven that nanoclusters with size 1-5 nm have amazing properties 

but larger nanoclusters are catalytically inactive. The size of the nanoparticles 

also affects quantum phenomena due to the spatial confinement of valence 

electrons [14].  

 The present master thesis presents a theoretical study for gold nanoparticles 

and surfaces. In chapter 2 we investigate the connection between structure and 

properties for gold nanoparticles. In chapter 3, using a continuous model and 

several interatomic potentials we calculate the surface energies of (111), (100) 

and (110) surfaces in good agreement to other theoretical calculations found in 

the literature. Finally, in chapter 4, we construct models of nanoparticles high 

symmetry and more specifically cubic, octahedral and rhombic dodecahedral 

nanoparticles. The main purpose of this study is to understand the way that the 

nanoparticle’s shape connects to its properties. For the first time, we provide 

calculations for edge and vertex energies of gold nanoparticles performed using 

a new atomistic model we develop and several interatomic potentials.  
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3 Gold nanoparticles 
 

 Before we start talking about nanoparticles and their shapes, we need to 

explain what a nanoparticle is. A nanoparticle is a set of 𝑁  atoms with an 

external polyhedral shape. A typical size of a nanoparticle ranges from 1 to 100 

nm in at least one direction. This scale size differentiates their physical, 

chemical and biological properties in relation to the properties of atoms or 

molecules. Their consistent use is due to well-defined methods for their 

composition and handling.  

 The shape of the nanoparticles affects their functionality in applications such 

as photonics, plasmonics, sensing and biolabeling. The nanoparticles usually 

are found in their equilibrium shape which can be predicted by minimizing Gibbs 

energy: 

𝐺 = 𝐺𝑏𝑢𝑙𝑘 +∑𝐴ℎ𝑘𝑙𝛾ℎ𝑘𝑙
ℎ𝑘𝑙

 

where 𝐺𝑏𝑢𝑙𝑘 is the free energy of the bulk material, 𝛾ℎ𝑘𝑙  is the required energy 

to create a surface of unit area that is parallel to the (ℎ𝑘𝑙) plane of the crystal 

and 𝐴ℎ𝑘𝑙  is the surface. Under thermodynamic equilibrium and since 𝐺𝑏𝑢𝑙𝑘 is 

constant, the Gibbs energy is minimized when the total surface energy 

∑ 𝐴ℎ𝑘𝑙𝛾ℎ𝑘𝑙ℎ𝑘𝑙  gets its minimum value. [18, 19] 

 At the begging of the 20th century, G. Wulff found a simple way to predict the 

shape of the particles of crystal solids. Theoretical simulations based on Wulff 

construction has been developed and help us to predict the shape of the 

nanoparticles without using difficult mathematical expressions. Wulffman and 

VESTA are free for Wulff construction are two examples of free software that 

can be used to visualize for Wulff construction. [18-21] 

 Several decades after Gibbs, George Wulff proposed his theory. According to 

what is now called the Wulff theorem , the shape that minimizes the total surface 

energy from Gibbs formula is the shape which the distance of (ℎ𝑘𝑙) face from 

the center of the nanoparticle is proportional to its surface energy. Therefore, 

the distance of any (ℎ𝑘𝑙) face can be calculated as: 

𝑑ℎ𝑘𝑙 = 𝑑ℎ′𝑘′𝑙′
𝛾ℎ𝑘𝑙
𝛾ℎ′𝑘′𝑙′

 (1) 

where 𝛾ℎ𝑘𝑙  and 𝛾ℎ′𝑘′𝑙′  are the surface energies of (ℎ𝑘𝑙)  and (ℎ′𝑘′𝑙′)  faces 

respectively and 𝑑ℎ′𝑘′𝑙′  is the distance of (ℎ′𝑘′𝑙′) plane from the center and 

determines the size of the nanoparticle.  

 The resulting equilibrium shape is a closed polyhedron with the following 

properties: 
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i. The shape doesn’t depend on the absolute values of 

surface energies but it depends on their ratios. 

ii. High-index (ℎ𝑘𝑙)  surfaces usually have higher surface 

energy than low-index surfaces.  

iii. High-index (ℎ𝑘𝑙)  surfaces are steeper kai usually are 

hidden behind low-index surfaces and the tend to occupy 

smaller areas in the equilibrium shape even if  𝛾ℎ𝑘𝑙  is low. 

iv. The extra energy required to form edges and vertices are 

not taken into account. 

v. The polyhedral belongs to the same point group as the 

crystal structure of the material. 

 In order to find the equilibrium shape of the nanoparticle, we choose one plane 

i.e (111) and we draw it up at  a distance 𝑑111. Then, we draw up any plane 

(ℎ𝑘𝑙) at a distance  𝑑ℎ𝑘𝑙 = 𝑑111
𝛾ℎ𝑘𝑙

𝛾111
. [18-21] 

 The purpose of this chapter is to understand how the structure affects the 

properties of the nanoparticle. We construct models of nanoparticles with high 

symmetry and more specifically cubic, octahedral and rhombic dodecahedral 

nanoparticles and we calculate the number of the nearest neighbors of each 

atom (coordination number). We then find formulas for the number of atoms 

with the same coordination number as a function of the total number of atoms 

of the nanoparticle. We also explain the relationship between the coordination 

number of an atom with its position.  

 We used a home-made code for constructing nanoparticles for simulations, 

which uses extensively the Atomic Simulation Environment (ASE) library. Using 

this code, we constructed cubic, octahedral and rhombic dodecahedral 

nanoparticles. In these high-symmetry shapes, all faces of each nanoparticle 

have identical crystalline orientation: (100) for cube, (111) for octahedron and 

(110) for rhombic dodecahedron.   

 Several sizes of the nanoparticles were constructed using ASE; cubic 

nanoparticles ranged from 63 to 1342810 atoms, octahedral nanoparticles 

ranged from 85 to 646899 atoms and rhombic dodecahedral nanoparticles 

ranged from 93 to 447717 atoms. All nanoparticles have no imperfections and 

all the atoms are located in their ideal fcc positions. We calculated coordination 

numbers of gold atoms (number of nearest –neighbors of each atom) using a 

Python code and then we calculated the number of atoms of each nanoparticle 

with the same coordination number. Atoms with different coordination number 

were represented using different colors when visualizing.  
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3.1 Active sites 

 

 Atoms in each nanoparticle have different contributions depending on their 

type. For example, for each catalytic reaction only few atoms of the nanoparticle 

serve as binding sites for the reactants and the products. These are called 

active sites. The turnover frequency (TOF) of a catalyst, which is mass of 

reaction products per unit time per unit time per catalyst mass, is proportional 

to the active site density, n. In most cases, active sites of a nanoparticle are 

atoms at the facets, the edges or the vertices. The active sites density express 

the 𝜇𝑚𝑜𝑙 of the active sites of catalyst per 𝑔 of catalyst and it can be calculated 

as following 

𝑛 =
𝑁𝑖 ∗ 10

6

𝑁 ∗ 𝐴
 

where 𝑁𝑖 is the number of active sites, 𝑁 is the total number of sites or the total 

number of atoms and 𝐴 = 196.67 𝑔/𝑚𝑜𝑙. 

 We calculate the active sites density of all the sizes and shapes of 

nanoparticles and the results are shown in Tables 1 to 9 of the next section. 

We notice that as we increase the number of atoms of a nanoparticle, 

regardless the shape, active sites density decreases for all possible active 

sites. For example, the atoms at the edges of a cubic nanoparticle have 5 

nearest neighbors. As atoms are added to the nanoparticle, the number of 

atoms with 5 neighbors increases. On the other hand, the number of bulk 

atoms increases too, but at a higher rate. As a result, the percentage of atoms 

with 5 nearest neighbors decreases and thus active sites also decreases.  

 We conclude that increase in the size of the nanoparticle leads to decrease in 

active sites density and consequently to a reduction in the TOF. As a result, 

large nanoparticle are not effective catalysts. 

 

3.2 Cubic Nanoparticles 

 

 Cube is the polyhedral with 6 square facets of the (100) type, 12 edges and 8 

vertices. Let 𝑙 be the edge length, 𝐴 be the total nanoparticle’s surface and 𝑉 

the total volume. Then:  

𝑉 = 𝑙3, 𝐴 = 6𝑙2. 

 Tables 1 and 2 and 3 present the numbers of atoms with the same coordination 

number for three different cubic nanoparticles with 365, 7813 and 45563 atoms 

respectively. Figure 3 show a typical cubic nanoparticle with size of 7813 atoms. 
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We observe that atoms in the bulk have 12 neighbors, the atoms of the facets 

have 8 neighbors, the atoms of the edges have 5 neighbors and the atoms of 

the vertices have 3 neighbors.  

 From Τables 1 and 2 and Figure 3 we can clearly see that only the 8 atoms of 

the vertices have 3 neighbors so 

𝑁3 = 8 , 

where  𝑁3 is the number of atoms with 3 nearest neighbors, regardless the total 

number of atoms of the nanoparticle. Smaller nanoparticles (≤365 atoms) have 

fewer atoms with 12 neighbors (bulk) while there are more atoms with 5 and 8 

in total. However, as the size of the nanoparticle increases, the number of bulk 

atoms (𝑧 = 12) dramatically increases while the number of atoms on the facets 

(𝑧 = 8) or edges (𝑧 = 5) increases but not at the same rate. On the other hand, 

if we observe the corresponding percentages we will see that only the 

percentage of atoms with   𝑧 = 12  increases while the other percentages 

decrease. As the nanoparticle size increases, both its total surface and volume 

increase, but the surface to volume ratio decreases.  

 

  

 

Figure 3: A typical cubic nanoparticle with 7813 atoms. Different colors 

represent atoms with different coordination number; copper atoms have 𝑧 = 3, 

silver atoms have 𝑧 = 5 , gray atoms have 𝑧 = 8  and yellows have 𝑧 = 12 

where z is the coordination number. 
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Table 1: Types of atoms in a cubic nanoparticle with 365 atoms with different 

coordination numbers (z). Nz is the number of atoms with z neighbors, Ntot is 

the total number of atoms and nz is the active-site density (in μmol/g) for atoms 

with z neighbors. 

z Nz Nz/Ntot nz 

3 8 2.19 111.3 

5 36 9.86 501. 

8 150 41.1 2090. 

12 171 46.8 2379 

Ntot 365   

 

 

Table 2: Same as Table 1 for cubic nanoparticle with 7813. 

z Nz Nz/Ntot nz 

3 8 0.10 5.2 

5 132 1.69 85.8 

8 1590 20.4 1033. 

12 6083 77.9 3953 

Ntot 7813   

 

 

Table 3: Same as Table 1 for cubic nanoparticle with 45563. 

z Nz Nz/Ntot nz 

3 8 0.02 0.89 

5 252 0.55 28.1 

8 5550 12.2 519. 

12 39753 87.2 4430 

Ntot 45563   
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Figure 4: Figure 4: The number of atoms with 𝑧 = 5 as a function of 𝑁1 3⁄  for 

cubic nanoparticles. 

 

 

Figure 5: Same as Figure 4 for 𝑧 = 8 for cubic nanoparticles. 
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Figure 6: Same as Figure 4 for 𝑧 = 12 for cubic nanoparticles. 

 In the following, we will use these data to find mathematical formulas for the 

number of atoms with given number of nearest neighbors as a function of the 

total number of atoms. As mentioned before,  

𝑁3 = 8 

regardless the size of the nanoparticle. If we consider that 𝐷 is the diameter of 

the gold atom then each edge of the cubic nanoparticle has 
𝑙

𝐷
− 2  atoms 

because every edge is connected with 2 edges. So the total number of atoms 

with coordination number 𝑧 = 5 is  

𝑁5 = 12(
𝑙

𝐷
− 2). 

It is known that 𝑉 = 𝑁𝑉𝑎𝑡  where 𝑉𝑎𝑡  is volume per atom and 𝑁  is the total 

number of atoms, therefore  

 𝑁5 = 12(
𝑉𝑎𝑡

1
3

𝐷
 𝑁

1

3 − 2) (2). 

 Due to the difficulty in measuring the number of atoms at the facets we will use 

Table 2 and Figure 3 as an aid. The main idea here is to find how many atoms 

one face of the cube has and then try to convert this number as a function of  
𝑙

𝐷
. Let’s take as example the nanoparticle with 7813 atoms. In Figure 3 we count 
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the number of atoms which are on an edge and add the 2 atoms of the vertices 

and we find that 
𝑙

𝐷
=13. This nanoparticle has 1590 atoms at the faces so each 

face has 265 atoms. But 265 is written as 265 = 2 ∗ 11 ∗ 12 + 1 which means 

that each face has 2 (
𝑙

𝐷
− 2)(

𝑙

𝐷
− 1) + 1 atoms, so  

𝑁8 = 6 [2 (
𝑙

𝐷
− 2)(

𝑙

𝐷
− 1) + 1] ⇒ 

𝑁8 = 12
𝑉𝑎𝑡

2
3

𝐷2
 𝑁

2

3 − 36
𝑉𝑎𝑡

1
3

𝐷
 𝑁

1

3 + 30 (3). 

Finally, we know that  

𝑁12 = 𝑁 − 𝑁3 − 𝑁5 −𝑁8. 

Therefore,  

𝑁12 = 𝑁 − 12
𝑉𝑎𝑡

2
3

𝐷2
 𝑁

2
3 + 24

𝑉𝑎𝑡
1
3

𝐷
 𝑁

1
3 − 36 (4). 

 Figures 4, 5 and 6 represents the fittings of the number of neighbors with a 

specific coordination number (5, 8 or 12) as a function of 𝑁1/3. The red stars 

symbolize our data while the blue line is the curve fitting by Python. The 

mathematical formulas (2), (3)  and (4)  are in agreement with the 

thermodynamic limit 𝐿~𝑁1/3 , 𝐴~𝑁2/3  and 𝑉~𝑁.  In all cases, the proposed 

equations present excellent fitting of the results.  

 

3.3 Octahedral nanoparticles 

 

 The next shape we will focus on is octahedron. Octahedron consists of 8 facets 

of  (111) type, 12 edges and 6 vertices. Defining 𝑙 to be  the edge length, the 

total surface 𝐴 and the volume 𝑉 can be expressed as:  

𝐴 = 2√3𝑙2,             𝑉 =
√2

3
𝑙3 

 Tables 4, 5 and 6 show the results for the coordination number of three 

octahedral nanoparticles consisting of 231, 8119 and 45961 atoms and Figure 

7 presents a model of a nanoparticle of 8119 atoms.  We observe that the atoms 

at the vertices have 6 neighbors, the atoms at the edges have 7 neighbors, the 

atoms at the facets have 9 neighbors and the bulk atoms have 12 neighbors as 

in the cube. 
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Figure 7: A typical octahedral nanoparticle with 8119 atoms. Different colors 

represent atoms with different coordination number; atoms have 𝑧 = 4, silver 

atoms have 𝑧 = 7, gray atoms have 𝑧 = 9 and yellows have 𝑧 = 12 where z is 

the coordination number. 

Table 4: Same as Table 1 for octahedral nanoparticle with 231 atoms. 

z Nz Nz/Ntot nz 

4 6 2.6 132 

7 60 26 1320 

9 80 34.6 1760 

12 85 36.8 1870 

Ntot 231   

 

Table 5: Same as Table 1 for octahedral nanoparticle with 8119 atoms. 

z Nz Nz/Ntot nz 

4 6 0.07 3.75 

7 252 3.10 158 

9 1680 20.7 1050 

12 6181 76.1 3870 

Ntot 8119   
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Table 6: Same as Table 1 for octahedral nanoparticle with 45961 atoms. 

z Nz Nz/Ntot nz 

4 6 0.013 0.66 

7 468 1.02 51.7 

9 5928 12.8 655 

12 39559 86.1 4370 

Νtot 45961   
 

 Octahedral nanoparticles show similarities with cubic ones. Of course, bulk 

atoms have the same coordination number (𝑧 = 12). Atoms of the edges and 

facets don’t have the same coordination number with the atoms at the 

corresponding positions in cubic nanoparticles. As the size of the nanoparticle 

gets bigger the atoms at the edges and the facets increase but not too fast as 

bulk atoms. Also, the number of atoms with the lower coordination number is 

constant and these atoms are at the vertices of the nanoparticle. 

 Now we find formulas for the number of atoms with specific number of 

neighbors as a function of the total number of atoms. As it mentioned above, 

atoms with 4 neighbors are located at the vertices and the number of them 

remains constant, therefore 

𝑁4 = 6. 

Each edge of the nanoparticle has 
𝑙

𝐷
− 2  atoms because every edge is 

connected to 2 edges. Then, the total number of atoms which have 7 neighbors 

can be expressed by the formula:   

𝑁7 = 12(
𝑙

𝐷
− 2). 

Using the relationships 𝑉 = 𝑁𝑉𝑎𝑡 and 𝑉 =
√2

3
𝐿3, we end up in the formula: 

𝑁7 = 12 (
(
3

√2
𝑉𝑎𝑡)

1
3

𝐷
𝑁
1

3 − 2) (5). 

 We will count the number of atoms at the facets using the same procedure we 

followed for cubic nanoparticles. We will use as an example the octahedral 

nanoparticle with 8119 atoms which is shown in Figure 7 and we find that 
𝑙

𝐷
=

23. From Table 5 we know that this nanoparticle has 1680 atoms at the facets 

so each face has 210 atoms. Number 210 is written as 210 =
1

2
∗ 21 ∗ 20 which 
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means that each face has 
1

2
(
𝑙

𝐷
− 2)(

𝑙

𝐷
− 3) atoms so the total number of atoms 

with coordination number 𝑧 = 9 is given: 

                 𝑁9 = 8 [
1

2
(
𝑙

𝐷
− 2)(

𝑙

𝐷
− 3)] = 4 (

𝑙

𝐷
− 2)(

𝑙

𝐷
− 3) ⇒ 

𝑁9 = 4(
(
3

√2
𝑉𝑎𝑡)

1
3

𝐷
)

2

𝑁
2

3 − 20(
(
3

√2
𝑉𝑎𝑡)

1
3

𝐷
)𝑁

1

3 + 24 (6). 

 

The number of the bulk atoms can be easily calculated: 

𝑁12 = 𝑁 −𝑁4 −𝑁7 − 𝑁9 ⇒ 

𝑁12 = 𝑁 − 4

(

 
 
(
3

√2
𝑉𝑎𝑡)

1
3

𝐷

)

 
 

2

𝑁
2
3 + 8

(

 
 
(
3

√2
𝑉𝑎𝑡)

1
3

𝐷

)

 
 
𝑁
1
3 − 6 (7). 

 

 Equations (5), (6) and (7) are analogous to equations (2), (3) and (4) as we 

expected. In Figures 8, 9 and 10 we see the fittings of the number of neighbors 

with the same coordination number (7, 9 or 12) as a function of 𝑁1/3. The red 

stars symbolize our data while the blue line is the curve fitting by Python. 

 

Figure 8: Same as Figure 4 for 𝑧 = 7 for octahedral nanoparticles. 
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Figure 9: Same as Figure 4 for 𝑧 = 9 for octahedral nanoparticles. 

 

 

Figure 10: Same as Figure 4 for 𝑧 = 12 for octahedral nanoparticles. 
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Figure 11: A typical rhombic dodecahedral nanoparticle with 8621 atoms. 

Different colors represent atoms with different coordination number; copper and 

purple atoms have 𝑧 = 3 and 𝑧 = 4, silver and green atoms have 𝑧 = 5 and 𝑧 =

10, gray and blue atoms have 𝑧 = 7 and 𝑧 = 11 and yellow atoms have 𝑧 = 12. 

3.4            Rhombic dodecahedral nanoparticles 

 

 The final shape is rhombic dodecahedron that has 12 rhombic facets of  (110) 

type, 24 edges and 14 vertices of two types. The total area and volume of the 

rhombic dodecahedron of edge length 𝐿 are: 

𝐴 = 8√2𝑙2,            𝑉 =
16√3

9
𝑙3. 

 Tables 7, 8 and 9 presents a list for coordination number of three different 

nanoparticles with 617, 8621 and 48637 atoms while Figure 11 shows a 

rhombic dodecahedral nanoparticle with 8621 atoms.  

 Rhombic dodecahedral nanoparticles differ from cubic and octahedral ones 

and their differentiation is due to their polymorphism in the coordination number 

of atoms. Initially, rhombic dodecahedron has two types of vertices, 8 vertices 

of one type and 6 of the other, so in these positions we can find atoms with 3 

or 4 neighbors. Another difference is that there are two different types of atoms 

on the faces. If we look very carefully Figure 11 we will see that in the gaps 

between gray atoms (𝑧 = 7) there are blue atoms (𝑧 = 11) at a lower level. 
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Therefore, a lower surface level is created. A similar situation exists in edges 

where we have the so-called steps and the atoms have two possible 

coordination numbers. Silver atoms (𝑧 = 5) are higher than green atoms (𝑧 =

10).  

 Despite the complexity of these nanoparticles, the dependence of the number 

of atoms that have certain number of neighbors on their total number of atoms 

is similar to that of cubic and octahedral nanoparticles. As in the two other 

cases, when the increase the nanoparticle size, the bulk atoms increase at a 

much faster rate than those found on the facets, and those increase faster than 

those on the edges. The number of atoms at the vertices, as always, remains 

constant as the size increase, thus  

𝑁3 = 8 

and  

𝑁4 = 6. 

Table 7: Same as Table 1 for rhombic dodecahedral nanoparticle with 617 

atoms. 

z Nz Nz/Ntot nz 

3 8 1.30 65.8 

4 6 0.97 49.4 

5 24 3.89 197 

7 156 25.3 1280 

10 48 7.78 395 

11 96 15.6 790 

12 279 45.2 2300 

Ntot 617   
 

 

Table 8: Same as Table 1 for rhombic dodecahedral nanoparticle with 8621 

atoms. 

z Nz Nz/Ntot nz 

3 8 0.093 4.71 

4 6 0.07 3.53 

5 96 1.11 56.5 

7 1092 12.7 643. 

10 120 1.39 70.7 

11 960 11.1 565 

12 6339 73.5 3730 

Ntot 8621   
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Table 9: Same as Table 1 for rombic dodecahedral nanoparticle with 48637 

atoms. 

z Nz Nz/Ntot nz 

3 8 0.016 0.84 

4 6 0.012 0.63 

5 192 0.38 20. 

7 3684 7.56 385 

10 216 0.44 22.5 

11 3456 7.11 361 

12 41075 84.4 4290 

Ntot 48637   
 

 Each edge has 
𝑙

𝐷
− 2 atoms thus the total number of atoms at the edges is   

𝑁𝑒 = 24(
𝑙

𝐷
− 2). 

From Tables 7, 8 and 9 we notice that the number of atoms with  𝑧 = 10 is equal 

to the number of atoms with 𝑧 = 5 increased by 24. Thus, 

𝑁5 + 𝑁10 = 24(
𝑙

𝐷
− 2) 

and  

𝑁10 = 𝑁5 + 24. 

Based on the above, we end up in the relationships: 

𝑁5 = 12(
𝑙

𝐷
− 3) 

and  

𝑁10 = 12(
𝑙

𝐷
− 1). 

Using the relationships 𝑉 = 𝑁𝑉𝑎𝑡 and 𝑉 =
16

9
√3𝐿3, the final relationships are: 

𝛮5 = 12

(
9

16√3
𝑉𝑎𝑡)

1
3

𝐷
𝑁
1
3 − 36 (8) 

and  
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𝛮10 = 12
(
9

16√3
𝑉𝑎𝑡)

1/3

𝐷
𝑁1/3 − 12 (9). 

 It is more difficult to count the atoms with 7 or 11 neighbors which located at 

surfaces for rhombic dodecahedral nanoparticles. Here, we will use the 

nanoparticle with 8621 atoms. From Figure 11 we count that 
𝑙

𝐷
= 11. From 

Table 8 we know we have 1092 atoms with 𝑧 = 7 at the facets so each face 

has 91 atoms. But 91 is written as 91 = 10 ∗ 9 + 1. This means that each face 

has (
𝑙

𝐷
− 1)(

𝑙

𝐷
− 2) + 1 atoms with 7 neighbors. Thus  

                 𝑁7 = 12 [(
𝑙

𝐷
− 2) (

𝑙

𝐷
− 1) + 1] ⇒ 

𝑁7 = 12
(

9

16√3
𝑉𝑎𝑡)

2
3

𝐷2
𝑁
2

3 − 36
(

9

16√3
𝑉𝑎𝑡)

1
3

𝐷
𝑁
1

3 + 36 (10). 

On the other hand, the nanoparticle has 960 atoms at the facets with 𝑧 = 11 so 

each face has 80 atoms which is written as 80 = 8 ∗ 10. Thus each face has 

(
𝑙

𝐷
− 3) (

𝑙

𝐷
− 1)  atoms. We conclude that the number of atoms with 11 

neighbors are  

𝑁11 = 12(
𝑙

𝐷
− 3)(

𝑙

𝐷
− 1) ⇒ 

𝑁11 = 12

(
9

16√3
𝑉𝑎𝑡)

2
3

𝐷2
𝑁
2
3 − 48

(
9

16√3
𝑉𝑎𝑡)

1
3

𝐷
𝑁
1
3 + 36 (11). 

Finally, the number of bulk atoms is given by the formula 

𝑁12 = 𝑁 − 𝑁3 −𝑁4 − 𝑁5 − 𝑁7 −𝑁10 −𝑁11 ⇒ 

𝑁12 = 𝑁 − 24

(
9

16√3
𝑉𝑎𝑡)

2
3

𝐷2
𝑁
2
3 + 60

(
9

16√3
𝑉𝑎𝑡)

1
3

𝐷
𝑁
1
3 − 38 (12). 

 Despite the fact that at the edges and the surfaces of a rhombic dodecahedral 

nanoparticle there are atoms with two different coordination number, the 

predictions we made in the previous cases are confirmed again. The number 

of atoms with 𝑧 = 5 or 𝑧 = 10 is a function of 𝑁1/3 since being at the edges. On 

the other hand, the number of the atoms at the surfaces is a function of 𝑁2/3 

while the number of bulk atoms depends on 𝑁 . These observations are 

confirmed by Figures 12, 13, 14, 15 and 16 which presents the fittings. The red 

stars symbolize our data while the blue line is the curve fitting by Python. 
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Figure 12: Same as Figure 4 for   𝑧 = 5  for rhombic dodecahedral nanoparticles. 

 

 

Figure 13: Same as Figure 4 for  𝑧 = 10   for rhombic dodecahedral 

nanoparticles. 
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Figure 14: Same as  Figure 4 for  𝑧 = 7 for rhombic dodecahedral nanoparticles. 

 

 

Figure 15: Figure 6: Same as Figure 4 for 𝑧 = 11  for rhombic dodecahedral 

nanoparticles. 
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Figure 16: Same as Figure 4 for  𝑧 = 12  for rhombic dodecahedral 

nanoparticles. 
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4 Surface energy calculations 
 

 The basic idea of Wulff construction is that the shape of a nanoparticle doesn’t 

depend on the absolute values of surface energies but depends on the ratios 

between surface energies. In this chapter we present the formula we use in 

order to calculate the surface energy per unit area of Au(ℎ𝑘𝑙) surfaces. We 

compare our results to a continuous model which is based on the geometry of 

the crystal and number theory. This model depends on the type of the 

interatomic potential used to describe the interactions between gold atoms. 

4.1  Surface tension and surface energy 

 

 Surface tension is the property that liquid surfaces have in order to resist 

changes of their shape. Liquids have the tendency to take the shape that has 

the smallest possible surface. A typical example of this property of liquids is the 

shape of drops of water. In the absence of gravity, water drops have spherical 

shape as the sphere is the shape with the smallest surface-to-volume ratio. 

Surface tension symbolized by the Greek character 𝛾 and its dimensions is 

force per length.[22] 

 In solid-state physics, surface energy is the energy needed to form a surface 

of unit area parallel to (ℎ𝑘𝑙) plane of the crystal. Surface energy is analogous 

of the surface tension of liquids and it expressed as energy per unit area. 

Surface energy is positive since it is the energy of creating “dangling bonds” at 

the surface. Βulk atoms have 12 neighbors but the atoms at the surface have 

less than 12. This means that in order to create a surface, bonds have been 

broken, so surface atoms have higher energy than bulk atoms. [23] 

 We can calculate the surface energy of a solid surface using a thick slab of the 

material where its surfaces are parallel to (ℎ𝑘𝑙) plane. The thickness of the slab 

must be such that the atoms in the middle of the slab can be considered as bulk 

atoms. For such a slab, surface energy can be calculated as follows: 

𝛾 =
𝐸𝑠𝑙𝑎𝑏 − 𝑁𝐸𝑏𝑢𝑙𝑘

2𝐴
 (13) 

where 𝐸𝑠𝑙𝑎𝑏  is the energy of a slab composed of 𝑁 layers, 𝐸𝑏𝑢𝑙𝑘  is the energy 

of a bulk atom and 𝐴 is the surface area. Due to the face that a slab has 2 

surfaces, its total area is 2𝐴. 𝐸𝑏𝑢𝑙𝑘  can be calculated considering an atom in the 

unit cell of fcc crystal structure of the gold which is periodically repeated in three 

directions [19, 23-25]. In this work, we calculate the surface energy using the 

unit 𝑒𝑉
𝐴̇2
⁄ . 
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 Figure 17 shows three low-index gold surfaces, (100), (110) and (111). These 

surfaces can be easily constructed using ASE. The atoms of (100) surface 8 

nearest neighbors (𝑧 = 8) while the atoms of (110) and (111) surfaces have 7 

and 9 nearest neighbors (𝑧 = 7 and 𝑧 = 9) respectively. (111) surface has the 

highest coordination number thus the fewer “dangling bonds” and therefore we 

expect to have the lowest surface energy. On the other hand,  (110) has the 

lower coordination number so the most “dangling bonds” consequently the 

highest surface energy. So we conclude in following inequality: 

𝛾(111) < 𝛾(100) < 𝛾(110) (14). 

 The next step is the calculation of surface energies of these three low-index 

surfaces. In order to do this, we will use a Python code that simulates the slabs 

of (ℎ𝑘𝑙) surfaces. A slab is a thick piece of the material consisting of layers of 

atoms of the material, in our case is gold. Here, we used slabs with different 

number of layers (𝑁 = 2 − 10). We also need to use an interatomic potential 

that describes the interactions between gold atoms. For this purpose, we will 

use the following four potentials: 

1.  (EAM-G). Embedded-Atom-Method (EAM) potential of Grochola et al. 

[26]. 

2. (EAM-O). EAM of Olsson et al. [27]. 

3. (LJ) Lennard Jones potential with 𝜀 = 0.4415 𝑒𝑉, 𝜎 = 2.620 𝐴̇ [28,29]. 

4. (MORSE). Morse potential with 𝐷0 = 0.4826 𝑒𝑉, 𝑎 = 1.6166𝐴̇
−1, 𝑟0 =

3.004𝐴̇ [28, 29]. 

 

Figure 17: Top view of Au surfaces. Au(100) (left), Au(110) (center), Au(111) 

(right). Different colors indicate different types of atoms. [19] 
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Table 10: Surface energy of low-index gold surfaces using slabs with different 

number of layers and four different potentials. The unit of surface energy is 

𝑒𝑉/𝐴̇2.  

Potential N 𝜸(𝟏𝟏𝟏) 𝜸(𝟏𝟎𝟎) 𝜸(𝟏𝟏𝟎) 

 
 
 

 
LJ 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.18000451 
0.18296489 
0.18325796 
0.18325796 
0.18325796 
0.18325796 
0.18325796 
0.18325796 
0.18325796 

0.18512678 
0.19024102 
0.19111569 
0.19111569 
0.19111569 
0.19111569 
0.19111569 
0.19111569 
0.19111569 

0.18219288 
0.19515284 
0.19914188 
0.20037091 
0.20069423 
0.20069423 
0.20069423 
0.20069423 
0.20069423 

 
 
 
 

MORSE  
 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.17353083 
0.17394781 
0.17395585 
0.17395585 
0.17395585 
0.17395585 
0.17395585 
0.17395585 
0.17395585 

0.17825931 
0.17956393 
0.17962140 
0.17962140 
0.17962140 
0.17962140 
0.17962140 
0.17962140 
0.17962140 

0.18079784 
0.18949701 
0.19070258 
0.19083782 
0.19085142 
0.19085142 
0.19085142 
0.19085142 
0.19085142 

 
 
 
 

EAM-G 
 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.08275758 
0.07997601 
0.07993664 
0.07993664 
0.07993664 
0.07993664 
0.07993664 
0.07993664 
0.07993664 

0.10093474 
0.090100622 
0.08974705 
0.08974705 
0.08974705 
0.08974705 
0.08974705 
0.08974705 
0.08974705 

0.14237906 
0.11479495 
0.10867754 
0.10825963 
0.10821704 
0.10821704 
0.10821704 
0.10821704 
0.10821704 

 
 
 
 

EAM-O 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.05264005 
0.05258190 
0.05258183 
0.05258183 
0.05258183 
0.05258183 
0.05258183 
0.05258183 
0.05258183 

0.06060776 
0.06010701 
0.06010417 
0.06010417 
0.06010417 
0.06010417 
0.06010417 
0.06010417 
0.06010417 

0.07342469 
0.06653170 
0.06563779 
0.06562299 
0.06562292 
0.06562292 
0.06562292 
0.06562292 
0.06562292 

 

 Table 10 shows the results given by formula (13)  for surface energy of 

(111), (100) and (110) surfaces using different number of layers.  Firstly, the 

inequality  𝛾(111) < 𝛾(100) < 𝛾(110)  is confirmed regardless of the number of 

layers 𝑁  and the potential we used. As 𝑁  increases, the surface energy 

converges to a constant value that depends on the potential we used. 

Therefore, surface energy doesn’t depend on the thickness of the slab but we 
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need to use slabs that have thickness above a certain threshold so that atoms 

which are not in the surfaces are equivalent to bulk atoms. For example, if we 

used a slab with two layers, all the atoms are located at the surface and there 

are no bulk atoms. For slabs with (111) or (100) surfaces, we need at least 4 

layers while for slabs with (110) surface we need at least 6.  

 As mentioned in section 2, the shape of nanoparticles based on Wullf 

construnction, we noticed that the shape of a nanoparticle doesn’t depend on 

the absolute values of surface energies but their ratios. For this reason, we 

calculated the ratios of surface energy 
𝜸(𝟏𝟎𝟎)

𝜸(𝟏𝟏𝟏)
 and  

𝜸(𝟏𝟏𝟎)

𝜸(𝟏𝟏𝟏)
 . Due to the fact that 

(111) surface has the lowest surface energy, we used it as denominator. In the 

Table 11, we have collected the surface energies and the corresponding ratios. 

We observe that the absolute values of surface energy using the pair potentials 

Lennard Jones and Morse are much higher than the calculated values of EAM 

potentials and the values from other works. For example, Barmparis et al. [18, 

19] calculated the surface energies of (111), (100)  and (110)  surfaces are 

0.43, 0.53 and 0.56 that are very close to the values 0.45, 0.54 and 0.57 of 

Holec et al. [30]. ]. In both cases, Density Functional Theory was used for these 

calculations. For the ratios of surface energies, Barmparis et al. [18,19] found 

that the ratios 
𝛾(100)

𝛾(111)
 and 

𝛾(110)

𝛾(111)
 are equal to 1.23 and 1.29 while Holec et al.[30] 

found the values 1.21 and 1.26. Therefore, Lennard Jones and Morse are not 

suitable potentials to describe the interatomic interactions of gold while EAM 

potentials seems to give better results. 

Table 11: Surface energy (in 𝑒𝑉
𝐴̇2
⁄ ) of three low-index surfaces and their 

corresponding ratios for four different potentials. 

Potential  𝜸(𝟏𝟏𝟏) 𝜸(𝟏𝟎𝟎) 𝜸(𝟏𝟏𝟎) 𝜸(𝟏𝟎𝟎)

𝜸(𝟏𝟏𝟏)
 

𝜸(𝟏𝟏𝟎)

𝜸(𝟏𝟏𝟏)
 

LJ 0.183 0.191 0.201 1.04 1.10 

MORSE 0.174 0.180 0.191 1.03 1.10 

EAM-G 0.080 0.090 0.108 1.12 1.35 

EAM-O 0.053 0.060 0.066 1.14 1.25 
  

4.2  Continuum surface energy 

 

 In the previous paragraph, we described the atomistic method of calculating 

surface energy of a (ℎ𝑘𝑙) surface  and we used it to calculate the surface 

energy of three low-index surfaces. Here, we will refer to a continuous surface 

energy calculation model and we will use it to calculate the surface energies of 

the same surfaces.  
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 In 2014, Rosakis et al. developed a continuum model that can be used for the 

calculation of surface energy. Various interesting results of number theory for 

certain lattice problems were used to derive the model as well as the geometry 

of crystal had a key role in the model. According to this simple model, the 

surface energy density is given by the formula: 

𝛾(𝑛⃗ ) = −
1

4
∑ |𝑤⃗⃗ ∙ 𝑛⃗ |𝜑(|𝑤⃗⃗ |)𝑤⃗⃗ ∈𝐿\{0}  (15) 

where 𝐿 is the Bravais lattice, 𝑤⃗⃗  are the lattice vectors, 𝜑 is a pair interatomic 

potential that describes the interactions between the atoms of crystal, 𝑛⃗  is 

unitary and perpendicular to the surface vector. Pair potential 𝜑  may have 

unrestricted range but must decay fast enough. The Lennard Jones and Morse 

are such potentials. [31] 

 Α more complex formula gives the surface energy when interactions are 

described by Embedded Atom Method (EAM) potential. An EAM potential offers 

a much more realistic description of interaction in metals and is defined by three 

functions: the embedded energy, electron density and the pair potential. The 

total energy 𝐸𝑡𝑜𝑡  of an arbitraty arrangement of atoms is given by EAM as  

𝐸𝑡𝑜𝑡 = ∑ 𝐹(𝜌𝑖̅)𝑖 +
1

2
∑ 𝜑(𝑟𝑖𝑗)𝑖≠𝑗  and 𝜌𝑖̅ = ∑ 𝜌(𝑗 𝑟𝑖𝑗) (16) 

where 𝐹 is an embedding function, namely the energy to embed an atom 𝑖 in 

the combined electron density 𝜌𝑖̅  which is contributed from each of its 

neighboring atoms 𝑗  by an amount 𝜌(𝑟𝑖𝑗), 𝜑(𝑟𝑖𝑗) is the pair potential function 

representing the energy in bond 𝑖𝑗 which is due to the short-range electro-static 

interaction between atoms, and 𝑟𝑖𝑗  is the distance between an atom and its 

neighbor for that bond [32]. Equation (15) for EAM potential is written as [33] : 

𝛾(𝑛⃗ ) = −
1

2|𝑛⃗ |
∑𝑘[𝐹( ∑ 𝜌(|𝑤⃗⃗ |)

𝑤⃗⃗ ∈𝐿
𝑤⃗⃗ ∙𝑛⃗ ≤𝑘

+∞

𝑘=1

) − 𝐹( ∑ 𝜌(|𝑤⃗⃗ |)

𝑤⃗⃗ ∈𝐿
𝑤⃗⃗ ∙𝑛⃗ ≤𝑘−1

)]                      

−
1

4
∑ |𝑤⃗⃗ ∙ 𝑛⃗ |𝜑(|𝑤⃗⃗ |)

𝑤⃗⃗ ∈𝐿\{0}

 (17) 

 Formulas (15)  and (17)  are analogous to the well-known Cauchy-Born 

formula that calculates the bulk energy per atom: 

𝑊(𝐹) =
1

2
∑ 𝜑(|𝑤⃗⃗ |)𝑤⃗⃗ ∈𝐿\{0}  (18) . 

We will compare the  results of formulas (15) and (17) to the results of the 

atomistic simulation of the previous section which were presented in the Table 

11. The huge advantage of the continuous surface model is that we don’t need 

to simulate a slab but we can work with the well-known three-dimensional 

periodic bulk structure.  
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The next step is to check if these formulas give us reliable results for surface 

energies. We will use again the following potentials: 

1. (EAM-G). Embedded-Atom-Method (EAM) potential of Grochola et al. 

[26]. 

2. (EAM-O). EAM of Olsson et al. [27]. 

3. (LJ) Lennard Jones potential with 𝜀 = 0.4415 𝑒𝑉, 𝜎 = 2.620 𝐴̇ [28, 29]. 

4. (MORSE). Morse potential with 𝐷0 = 0.4826 𝑒𝑉, 𝑎 = 1.6166𝐴̇
−1, 𝑟0 =

3.004𝐴̇ [28, 29]. 

 We use the same interatomic potentials in order to have the ability to compare 

these results with the previous ones. Here, it is very important to notice that 

these formulas contain infinite sums. This problem can be easily solved by 

using a cut off, that is a distance at which the interactions between two atoms 

is zero. Also, we will calculate the bulk energy of gold using Cauchy-Born 

formula and we will compare the result with the corresponding result using an 

atom in the unit cell which is periodically repeated in three directions. 

 Table 12 presents the results of our calculations. As we expected, Cauchy-

Born formula gives the same results with the energy calculation of an atom in 

the unit cell and periodic boundary conditions. The basic idea of this chapter is 

to understand if this continuous model is a safe option for surface energy 

calculation. For this reason, we compare the results of Tables 11 and 12 for 

surface energy. The impressive accuracy of the eight decimal digit guarantees 

the accuracy of the model. We conclude that the model works quite well and 

give us reliable results for surface energy.  

 

Table 12: The bulk energy of gold (in 𝑒𝑉) calculated using either Cauchy-Born 

formula or an atom in the unit cell with periodic boundary conditions. The 

surface energy (in 𝑒𝑉/𝐴̇2) of three low-index surfaces was calculated using 

formulas (15) for pair potentials and (17) for EAM potentials. 

 W 𝑬𝒃𝒖𝒍𝒌 𝜸(𝟏𝟏𝟏)
𝑹𝒐𝒔  𝜸(𝟏𝟎𝟎)

𝑹𝒐𝒔  𝜸(𝟏𝟏𝟎)
𝑹𝒐𝒔  

LJ -2.72733014 -2.72733014 0.183257
96 

0.191115
69 

0.200694
23 

MOR
SE 

-2.81533626 -2.81533626 0.173955
85 

0.179621
40 

0.190851
42 

EAM-
G 

-3.92421786 -3.92421786 0.079936
64 

0.089747
05 

0.108217
04 

EAM-
O 

-3.80999990 -3.80999990 0.052581
83 

0.060104
17 

0.065622
92 
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5 An atomistic model for bulk, surface, edge and vertex 

energy of nanoparticles 
 

 In the previous chapter we focused on surface energy calculations on low-

index surfaces of gold using a classical atomistic calculation and a continuous 

model which proved to be quite effective.  

 The energies of forming an edge between two surfaces and a vertex between 

two edges is not taken into account in the Wulff construction. Unlike surface 

energy, there are no enough information in the literature for edge and vertex 

energies of gold. The main purpose of this work is the development of an 

atomistic model that, apart from bulk and surface energy, it will also calculate 

edge and vertex energy of a nanoparticle. This work comes to fil the gap in the 

theoretical studies of gold nanoparticles. 

 The model is based on simple assumptions and include parameters which 

depend on the shape of the nanoparticle. The energy per atom is calculated 

using 8 different potentials and the results are compared with results from other 

experimental and theoretical studies in order to select one or more potentials 

that fit better in our model.  

5.1 Total energy of the nanoparticle: From continuous to 

atomistic  

 

 In this section, we review the theory of P. Rosakis and I. Remediakis for the 

decomposition of nanoparticle total energies into terms for bulk-, surface-, 

edge- and vertex energy. This method allows for direct calculations of all these 

energies of a metal using total-energy calculations for few nanoparticles of 

identical shape but different sizes. This is the only method that can be used to 

systematically extract edge- and vertex energies for metals. [34] 

 The total energy of the nanoparticles can be described by the relationship 

𝐸 = 𝑉𝑏 + 𝐴𝛾 + 𝐿𝜏 + 𝑁𝜐𝜐 (19) 

where 𝑏:bulk-, 𝛾:surface-, 𝜏:edge-, 𝜐:vertex- energy, 𝑉:volume, 𝐴:area, 𝐿:total 

edge length and 𝑁𝜐:  number of vertexes. As we mentioned before, a 

nanoparticle contains different types of atoms, with different coordination 

number, therefore with different energy per atom. We also can express the total 

energy of the nanoparticle as 

𝐸 = 𝑁𝑏𝐸𝑏 +𝑁𝑓𝐸𝑓 +𝑁𝑒𝐸𝑒 + 𝑁𝜐𝐸𝜐 (20) 

where 𝑁𝑏, 𝑁𝑓 , 𝑁𝑒, 𝑁𝜐 are the total number of atoms at the bulk, facets, edges and 

vertices of the nanoparticle respectively. The total number of atoms is given by 

the expression 
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𝑁 = 𝑁𝑏 +𝑁𝑓 + 𝑁𝑒 +𝑁𝜐 (21). 

 For large nanoparticles equations (19) and (20) should give same results. 

Obviously 𝐸𝜐 = 𝜐. There is no obvious connection between the other terms and 

there is no unique way to connect them.  

 In order to relate the remaining terms of equations (19)  and (20)  we will 

assume that the volume per atom is the same  for all atoms of the nanoparticle, 

either they are located at the bulk or at the surface. In the fcc crystal structure, 

the unit cell has 4 atoms and the volume of the unit cell is 𝑎0
3. Consequently, 

the total volume of the nanoparticle can be calculated by the formula 

𝑉 = 𝑁
𝑎0
3

4
 (22) 

where 𝑎0 is the lattice constant of gold.  

 We introduce two new parameters to the problem so that we can connect the 

total area 𝐴 and the total edges length 𝐿 of the nanoparticle with the number of 

atoms. Quantities 𝐴 and 𝐿 can be described by the following equations 

𝐴 = 𝑎𝑎0
2𝑁

2

3 (23) , 𝐿 = 𝜆𝑎0𝑁
1

3 (24). 

Parameters 𝛼  and 𝜆  depend on the nanoparticle’s shape. It can be easily 

demonstrated using equations (22), (23) and (24) that 

𝑎 =
𝐴

24/3𝑉2/3
  ,  𝜆 =

𝐿

22/3𝑉1/3
 . 

Based on the above, we conclude that equation (19) can be written in the form 

𝐸 = 𝑁𝑏 + 𝑎𝑎0𝛾𝑁
2/3 + 𝜆𝛼0𝜏𝛮

1/3 +𝛮𝜐𝜐 ⇒ 

𝛦

𝛮
= 𝑏 + 𝑎𝑎0𝛾𝑁

−1/3 + 𝜆𝛼0𝜏𝛮
−2/3 +𝛮𝜐𝑁

−1𝜐 (25). 

For example, for a cubic nanoparticle, equation (7) becomes 

𝛦

𝛮
= 𝑏 + 39.6367𝛾𝑁−1/3 + 30.8428𝜏𝛮−2/3 + 8𝑁−1𝜐. 

 We use nanoparticles of the same shape (cube, octahedron and rhombic 

dodecahedron) and different sizes and we calculate for each nanoparticle the 

energy per atom 𝐸 𝑁⁄  and then, according to equation (25), we make a fit of 

these values as a function of 𝑥 = 𝑁−1/3. This fit will give us the coefficients 

𝑐1, 𝑐2, 𝑐3 and 𝑐4 of a polynomial of third degree which we can use to calculate 

the values of 𝑏, 𝛾, 𝜏  and 𝜐  of the particular atomistic arrangement in this 

nanoparticle, i.e. 𝛾111, 𝜏(111)/(111), 𝜐(111)/(111)/(111). The values 𝑏, 𝛾. 𝜏 and 𝜐 can 

be expressed ad function of polynomial coefficients as following  

𝜐 =  
𝑐1
𝛮𝜐
, 𝜏 =

𝑐2
𝜆𝛼0

, 𝛾 =
𝑐3
𝛼𝛼0

, 𝑏 = 𝑐4 (26). 

Obviously, all different shapes of nanoparticles should yield same values of 𝑏. 
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Table 13: Number of vertices (𝛮𝜐), number of faces (𝑁𝑓) and parameters 𝑎 and 

𝜆 (equation(27)) for typical polyhedral that can be found  as nanoparticle shape. 

 Cube Octahedron Rhombic 
dodecahedron 

Deltoidal ico-
sitetrahedron 

Truncated 
octahedron 

Faces (100) (111) (110) (211) (100), (111) 
𝜨𝝊 8 6 14 26 24 
𝜨𝒇 6 8 12 24 14 

𝑳 12𝑎 12𝑎 24𝑎 24(3 − 1/√2)𝑎 36𝑎 

𝑨 6𝑎2 2√3𝑎2 8√2𝑎2 
6√29 − 2√2𝑎2 

(6

+ 12√3) 𝑎2 
𝑽 𝑎3 1

3
√2𝑎3 

16

9
√3𝑎3 √122 + 71√2𝑎3 

8√2𝑎2 

𝒂 2.3811 2.296 2.1213 2.0105 2.1092 
𝝀 7.5595 9.7132 10.3923 14.0837 10.1022 

 

 

 

 

Figure 18: Typical polyhedra that can be found as nanoparticle shapes. a) 
Cube, b) Octahedron, c) Rhombic Dodecahedron, d) Deltoial icositetrahedron, 
e) Truncated octahedron. Pictures taken from Wikipedia. 

 

Figure 18 shows five typical shapes of nanoparticles, cube, octahedron, 

rhombic dodecahedron, deltoidal icositetrahedron and truncated octahedron. 

Most of them are nanoparticles containing one type of surfaces except one 

shape, truncated octahedron, that contains two types of surfaces. All useful 
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information and parameters for nanoparticles we need in this chapter are 

contained in the table 13. In this work, we focus on nanoparticles with high-

symmetry. 

5.2 Atomistic modeling of nanoparticles 

 

 We consider eight different interatomic potentials to describe the interactions 
between gold atoms. The LAMMPS program has been used to calculated the 
total energy of the nanoparticles. Apart from potentials supported by LAMMPS, 
we also used potentials from the Knowledgebase of Interatomic Models (KIM) 
project. We use models of nanoparticles with low index surfaces and then we 
will compare the results with other theoretical or experimental works. We used 
cubic nanoparticles ranging in size from 63 to 1073345 atoms, octahedral 
nanoparticles from 85 to 646899 atoms and rhombic dodecahedral 
nanoparticles from 93 to 447717 atoms and all of them created using ASE.  The 
interatomic potentials we used are:  
 

1. (EMT). The Jacobsen-Stoltze-Norskov Standard Effective Medium 

Theory (EMT) potential [36] as implemented in the ASAP code [37, 38].  

2. (EAM-G). Embedded-Atom-Method (EAM) potential of Grochola et al. 

[26]. 

3. (EAM-Z). EAM potential of Zhou et al. [39].  

4. (EAM-O). EAM of Olsson et al. [27]. 

5. (MORSE). Morse potential with 𝐷0 = 0.4826 𝑒𝑉, 𝑎 = 1.6166𝐴̇
−1, 𝑟0 =

3.004𝐴̇ [28,29]. 

6. (EAM-A) EAM of Ackland et al. [40]. 

7. (LJ) Lennard Jones potential with 𝜀 = 0.4415 𝑒𝑉, 𝜎 = 2.620 𝐴̇ [28,29]. 

8. (EAM-F) EAM potential of Foiles et al. [41]. 

 

5.3 Discussion of results 

 

 The bulk energy of gold nanoparticles is independent of the nanoparticle’s 

geometry. Both three shapes yield the same value of bulk energy shown in the 

first column of Table 14. Calculated bulk energies as given by different 

interatomic potentials don’t show large deviation between them. Lennard Jones 

yields the highest value while EAM-Z and EAM-F the lowest value of the bulk 

energy. Morse, EMT, EAM-A and EAM-O are in a perfect agreement with the 

experimental value −3.81𝑒𝑉. The calculated values of bulk energy are in a very 

good agreement with other DFT calculations of bulk energy such as the 

calculation of Souléde Bas et. Al [15] and Keith et al.[42] who calculated the 

values −3.95𝑒𝑉 and −3.85𝑒𝑉 respectively.  

 

Table 14: Results for bulk energy b (in eV ) and surface energy γ (in eV
Ȧ2
⁄ ) of 

(100), (110), (111) surfaces. The results were calculated using atomistic 
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simulation and fitting of eight different potentials. These results are compared 
with results of other computational methods and experimental works. 

 𝒃 𝜸(𝟏𝟏𝟏) 𝜸(𝟏𝟎𝟎) 𝜸(𝟏𝟏𝟎) 𝜸(𝟏𝟎𝟎)

𝜸(𝟏𝟏𝟏)
 

𝜸(𝟏𝟏𝟎)

𝜸(𝟏𝟏𝟏)
 

LJ -3.65 0.170 0.178 0.187 1.04 1.10 
MORSE -3.81 0.171 0.177 0.188 1.03 1.10 

 EMT   -3.80 0.035 0.042 0.047 1.19 1.32 
EAM-A -3.79 0.039 0.050 0.054 1.28 1.39 
EAM-Z -3.93 0.058 0.068 0.077 1.16 1.31 
EAM-F -3.93 0.052 0.061 0.068 1.18 1.32 
EAM-O -3.81 0.053 0.060 0.066 1.14 1.25 
EAM-G -3.92 0.081 0.091 0.110 1.12 1.34 

DFT -3.9515, 
-3.8542 

0.043 0.053 0.056 1.23 1.29 

DFT-PBE34  0.04619 0.05319 0.05619 1.15 1.22 
DFT-LDA  0.06535, 

0.07930 

0.08735, 
0.08430 

0.09735, 
0.08930 

1.34, 
1.06 

1.12, 
1.13 

DFT-GGA30  0.045 0.54 0.57 1.21 1.26 
FCD-GGA30  0.080 0.102 0.106 1.27 1.33 

Experimental  -3.8143 0.09430,35.      
 

 In Figure 19 we plot the energy per atom 𝐸 𝑁⁄  as a function of the total number 

of atoms of cubic nanoparticles using the interatomic potential EAM-G. We 

notice that as N increases, 𝐸 𝑁⁄  decreases and this reduction is quite sharp. For 

very large 𝑁, the value of the energy per atom converges to −3.92 𝑒𝑉 𝑎𝑡𝑜𝑚⁄  

which is the calculated bulk energy using EAM-G. Bulk energy is the energy 

pes atom we must give to each atom to remove it from the bulk of the 

nanoparticle and eventually decompose the nanoparticle. 

 Surface energy calculation of Au(ℎ𝑘𝑙) has been of great interest to the scientific 

community. There are plenty of theoretical calculations of the surface energy of 

gold surfaces using DFT method. On the other hand, experimental 

determination of surface energy has limited to Au(111) surface. The results of 

our method are shown in Table 14. Except from the absolute values of surface 

energies, we also calculated the corresponding ratios which determine the 

shape of the nanoparticle. 

 First, we confirm the inequality 𝛾(111) < 𝛾(100) < 𝛾(110) . We notice that pair 

potentials Lennard Jones and Morse calculate the highest absolute values of 

surface energy, regardless the type of surface, compared to the other potentials 

and the experimental value; the surface energy of (111) surface is almost two 

times higher than experimental data. On the other hand, these potentials have 

the lowest ratios of surface energy.  
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 ΕΜΤ and EAM-A calculate the lowest absolute values of surface energy and 

the highest ratio 
𝛾(110)

𝛾(111)
. Despite the fact that the surface energies which occur 

with the use of these two potentials are lower than experimental data, the 

results of EAM-A are very close to those of Barmparis et al. [18,19]. EAM- G 

calculate the values 0.081𝑒𝑉
𝐴̇2
⁄ , 0.091𝑒𝑉

𝐴̇2
⁄  and 0.110𝑒𝑉

𝐴̇2
⁄  for (111), (100) 

and (110) surfaces which are very close to the calculation of Holec et al.[30] 

and the experimental value 0.094 𝑒𝑉
𝐴̇2
⁄  [30,35].  

 

 

Figure 19: The energy per atom as a function of N for cubic nanoparticles using 

the interatomic potential EAM-G.  

  

 It is interesting how these values compare to surface energies obtained 

through slab models in the previous section. We will use the results are shown 

in the Tables 12 and 14. We notice that the values of bulk and surface energy 

of EAM-O are exactly the same. On the other hand, for Lennard Jones, Morse 

and EAM-G we observe small differences. For example, these potentials show 

a quite small deviation for surface energy. The calculated values of Cauchy-

Born formula for Lennard Jones and Morse are about 1𝑒𝑉 smaller than the 

corresponding bulk energy obtained by atomistic model. This maybe is due to 

the cut off of these potentials in ASE.  

 Looking at ratios of surface energies, we observe that the surface energy 
values of the continuous model are identical to the corresponding values of 
formula (13) thus will compare the two last columns of Tables 11 and 14. We 
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used 𝛾(111)  as dominator in both cases because the (111)  surface has the 

lowest surface energy. We don’ t except any deviations between the ratios of 
EAM-O as the calculated values for two models are equal. But even for the 
other potentials where we noticed small deviations, the ratios don’t present any 
significant difference. Thus, both methods can be used for surface energy 
calculations. The only difference is the required time for the calculation.: for the 
atomistic model, we need to calculate the energy per atom for several sizes of 
nanoparticles and in the case we use large nanoparticle this calculation can last 
from a few minutes to a few hours. On the other hand, the continuous model 
takes a few seconds but unfortunately it can only calculate the surface energy.   

Table 15: Results for edge energy τ (in eV
Ȧ
⁄  ) for (100)/(100), (110)/(110), 

(111)/(111) edges as calculated using atomistic simulation and fitting with eight 
different potentials. 

 𝝉(𝟏𝟏𝟏)/(𝟏𝟏𝟏) 𝝉(𝟏𝟎𝟎)/(𝟏𝟎𝟎) 𝝉(𝟏𝟏𝟎)/(𝟏𝟏𝟎) 

LJ -0.051 -0.126 -0.053 
MORSE -0.047 -0.111 -0.047 

EMT 0.022 0.026 0.011 
 EAM-A 0.049 0.018 0.013 
 EAM-Z 0.072 0.073 0.048 
EAM-F 0.040 0.046 0.021 
EAM-O 0.025 0.026 0.015 
EAM-G 0.132 0.144 0.065 

 

Table 16: Results for vertex energy υ  (in eV  ) for (100)/(100)/(100), 
(110)/(110)/(110), (111)/(111)/(111) vertexes as calculated using atomistic 
simulation and fitting with eight different potentials. 

 𝝊(𝟏𝟏𝟏)/(𝟏𝟏𝟏)/(𝟏𝟏𝟏) 𝝊(𝟏𝟎𝟎)/(𝟏𝟎𝟎)/(𝟏𝟎𝟎) 𝝊(𝟏𝟏𝟎)/(𝟏𝟏𝟎)/(𝟏𝟏𝟎) 

LJ -0.205 0.166 0.053 
MORSE -0.187 0.149 0.060 

EMT 0.031 0.111 0.119 
 EAM-A 0.026 0.507 0.299 
EAM-Z -0.095 0.246 0.152 
EAM-F -0.019 0.075 0.122 
EAM-O 0.002 0.105 0.118 
 EAM-G -0.657 -0.362 -0.019 

 

 Edge energy is the required energy to form an edge between two surfaces. As 

in the formation of surfaces, the formation of an edge requires the creation of 

“dangling bonds” and this leads to an increase in the energy of the atoms at the 

edges. We already know that the atoms at the edges have lower coordination 

number than bulk atoms and the atoms at the surfaces. Therefore, we expect 

edge energy to be positive value. In addition, the atoms at the edges of a cubic 

nanoparticle have less nearest neighbors than the corresponding atoms of 

octahedral nanoparticles so they have more “dangling bonds” per atom thus 
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𝜏(100)/(100) > 𝜏(111)/(111) (27). 

 Our prediction is reinforced by the fact that Lai et al. in his theoretical work 

calculate the energy of (100)/(100) and (111)/(111) using DFT method. For 

edges between (100)  surfaces, they constructed a square prism and they 

applied periodic boundary condition along the longitudinal direction. On the 

other hand, the energy of edges between (111) surfaces calculated using an 

octahedron consisting of corners in addition to edges, surfaces and bulk atoms. 

They found that the edge energies are 0.178𝑒𝑉/𝐴̇ and 0.176𝑒𝑉/𝐴̇ for (100)/

(100) and (111)/(111) edges respectively. [44] 

 Table 15 represents the results of our atomistic model for edge energy of cubic, 

octahedral and rhombic dodecahedral gold nanoparticles. Pair potentials 

Lennard Jones and Morse calculate negative edge energy. Therefore, these 

potentials don’ t describe quite well the interactions between atoms. On the 

other hand, the many body EAM and EMT calculate positive values for edge 

energies and regardless the potential, (110)/(110)  edges have the lowest 

edge. EAM of Grochola et al. presents the highest edge energies which are 

closer to Lai et al.[44] calculation while EAM-A doesn’ t confirm inequality (27). 

 In Table 16, we see the summarized results for vertex energy. Unfortunately, 

we have no information from the literature so we know nothing about the sign 

on this quantity and we can’t compare our results with other theoretical works. 

But the Table 16 can certainly give us some information about the potentials 

we can use in this atomistic model.  

 We mentioned earlier that pair potentials Lennard Jones and Morse calculated 

negative values for edge energy. In the case of vertex energy, Lennard Jones 

calculated the energies of the corner of the octahedral nanoparticle equal to 

−0.205 𝑒𝑉  while for cubic and rhombic dodecahedral nanoparticles the 

corresponding values are 0.166𝑒𝑉 and 0.053𝑒𝑉. Morse calculated the vertex 

energies of the nanoparticle equal to −0.187𝑒𝑉 , 0.149𝑒𝑉  and 0.060𝑒𝑉 , 

respectively. Therefore, the vertex energy of octahedron is negative while the 

vertex energy of the other two shapes is positive. This fact further reinforces 

our claim that pair potentials are unsuitable for describing the interactions 

between gold atoms. EAM Zhou et al. and EAM Foiles et al. show similar 

behavior.  

 We thus conclude that the most efficient potentials to describe the interactions 

between gold atoms are EMT, EAM-O and EAM-G. Although EAM-G calculates 

edge energy in a very good agreement with Lai et al., the calculated values of 

vertex energy are negative. We could argue that the energy of a vertex of a 

nanoparticle is positive as vertices have the lowest coordination number so they 

have additional ‘’dangling bonds’’. Unfortunately, we can’t support this claim 

due to the luck of scientific data. On the other hand, we notice that 

(100)/(100)/(100)  vertices have higher energy than (111)/(111)/(111) 

vertices using these four interatomic potentials. This can be easily explained 
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since the vertices of a cubic nanoparticle have lower coordination number than 

the vertices of an octahedral nanoparticle.   

 We understand that the coordination number of the atoms at the surfaces, the 

edges and the vertices of a nanoparticle play an important role in the energies 

of these positions. A rhombic dodecahedral nanoparticle is more complex than 

cubic and octahedral ones since the atoms of its outer shell has two possible 

coordination number depending their position. As a result, we can’t compare 

the edge or vertex energy of a rhombic dodecahedral nanoparticle with the 

corresponding energies of cubic and octahedral nanoparticle.  
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6 Conclusions 
 

 Despite the fact that gold is chemically inert, it has been found that gold 

nanoparticles with size 1-5 nm are effective as catalysts. Some of the factors 

that affect their efficiency as catalysts are the shape, the size, the quantum size 

effects and the coordination number of the atoms.  

 In this work we focused on gold nanoparticles with low-index surfaces. We 

used cubic, octahedral and rhombic dodecahedral nanoparticles with several 

sizes, from small to very large sizes, to study the connection between the 

position of an atom and its coordination number. Then, we found formulas that 

calculated the number of atoms having a specific coordination number as a 

function of the total number of atoms of the nanoparticle. The number of atoms 

at the vertices is constant. On the other hand, the numbers of atoms at the 

edges and surfaces are linear functions of 𝑁1/3 and 𝑁2/3 respectively while the 

number of bulk atoms is approximately proportional to 𝑁. The efficiency of a 

nanoparticle as catalyst depends on its active sites density. As a nanoparticle 

increases in size, the fraction of atoms at the surfaces or edges decreases and 

the nanoparticle ceases to be effective in catalysis. 

 We calculated the surface energy of (111), (100) and (110) using gold slabs 

and  four different potentials to describe the interactions between gold atoms. 

Surface energy is positive quantity because the atoms at the surfaces have 

lower coordination number than bulk atoms while  (111) and (110) have the 

lower and the higher surface energy respectively. Then, we calculated surface 

energies of gold with an alternative continuous model which proved to be valid 

for this purpose. The results of the two models coincide up to eight decimals 

digits.  

 We developed a new atomistic model that calculates the energy per atom of 

the bulk, the surface, edge and vertex energy of the nanoparticle for the first 

time. We used 8 different potentials and we ended up to the following: 

 As the total number of atoms increases, the energy pes atom decreases 

and converges to the calculated bulk energy. 

 This model calculates quite well the bulk energy of gold regardless the 

interatomic potential we used. 

 All potentials except Lennard Jones and Morse calculate quite well the 

ratios of surface energies but only EAM-G calculate well the absolute 

values of surface energies of gold according to experimental data we 

have.  

 The edge energy of (111)/(111), (100)/(100) and (110)/(110) edges 

calculated equal to 0.132𝑒𝑉
𝐴̇
⁄ , 0.144 𝑒𝑉

𝐴̇
⁄  and 0.065 𝑒𝑉

𝐴̇
⁄  using EAM-

G and this values are very close to other DFT calculations for gold.  
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 We have no information about the vertex energy of the nanoparticles. 

although EAM-G calculates quite well the bulk, surface and edge energy 

and it seems to be a very good interatomic potential to describe the 

interactions between atoms. On the other hand, we don’t know if it 

calculates well the vertex energy because its values are negative and 

there are no other theoretical studies in order to compare our results.  

This atomistic model gives us the ability to calculate in a very simple way two 

energies of the nanoparticle which we had not calculated until now, the edge 

and the vertex energy. Despite the simplicity of this model, it requires a lot of 

computing hours because of the very large nanoparticles required to have good 

fits.  
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8 Supplementary Material 
 

 Gold nanoparticles of different shapes and sizes were constructed using ASE for 

the purposes of this study. Nanoparticles do not show imperfections and we add 

atoms at the edges to adjust their size. In chapter 2, we presented a theoretical 

about the number of atoms with coordination number 𝑧, where z depends on the 

shape but not the size of the nanoparticle. In this supplementary, we present the 

calculation of 𝑧 and active sites density.  

 

A. Cube 

z Nz Nz/Ntot nz 

3 8 12.7 645 

5 12 19.05 967. 

8 30 47.6 2420 

12 13 20.6 1048 

Ntot 63   

 

z Nz Nz/Ntot nz 

3 8 2.19 111.3 

5 36 9.86 500.7 

8 150 41.1 2086. 

12 171 46.8 2379 

Ntot 365   

 

z Nz Nz/Ntot nz 

3 8 0.73 37. 

5 60 5.46 277. 

8 366 33.3 1690. 

12 665 60.5 3072. 

Ntot 1099   

 

z Nz Nz/Ntot nz 

3 8 0.33 16.5 

5 84 3.42 174 

8 678 27.6 1401 

12 1687 68.7 3485 

Ntot 2457   

 

 



47 
 

z Nz Nz/Ntot nz 

3 8 0.17 8.77 

5 108 2.33 118. 

8 1086 23.5 1190. 

12 3429 74.04 3759. 

Ntot 4631   

 

 

z Nz Nz/Ntot nz 

3 8 0.102 5.20 

5 132 1.69 85.8 

8 1590 20.4 1033. 

12 6083 77.9 3953 

Ntot 7813   

 

z Nz Nz/Ntot nz 

3 8 0.066 3.33 

5 156 1.28 64.9 

8 2190 18.0 912 

12 9841 80.7 4097 

Ntot 12195   

 

z Nz Nz/Ntot nz 

3 8 0.045 2.26 

5 180 1.00 50.86 

8 2866 15.9 815. 

12 14895 82.9 4208 

Ntot 17967   

 

z Nz Nz/Ntot nz 

3 8 0.03 1.60 

5 204 0.81 40.89 

8 3678 14.5 737. 

12 21437 84.6 4297 
Ntot 25327   

 

z Nz Nz/Ntot nz 

3 8 0.027 1.37 

5 216 0.73 37. 

8 4110 13.86 703.5 

12 25326 85.4 4335 

Ntot 29660   
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z Nz Nz/Ntot nz 

3 8 0.02 1.18 

5 228 0.66 33.6 

8 4566 13.3 673 

12 29659 86.07 4370 

Ntot 34461   

 

 

z Nz Nz/Ntot nz 

3 8 0.02 0.89 

5 252 0.55 28.1 

8 5550 12.2 618. 

12 39753 87.2 4430 

Ntot 45563   

 

 

z Nz Nz/Ntot nz 

3 8 0.01 0.690 

5 276 0.47 23.8 

8 6630 11.27 572. 

12 51911 88.2 4480 

Ntot 58825   

 

 

z Nz Nz/Ntot nz 

3 8 0.01 0.55 

5 300 0.40 20.5 

8 7806 10.5 532. 

12 66325 89.1 4520 

Ntot 74439   

 

 

z Nz Nz/Ntot nz 

3 8 0.009 0.44 

5 324 0.35 17.8 

8 9078 9.80 498 

12 83187 89.8 4560 

Ntot 92597   
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z Nz Nz/Ntot nz 

3 8 0.008 0.40 

5 336 0.33 16.6 

8 9750 9.5 482. 

12 92596 90.2 4580 

Ntot 102690   

 

z Nz Nz/Ntot nz 

3 8 0.007 0.36 

5 348 0.31 15.6 

8 10446 9.20 467. 

12 102689 90.5 4590. 

Ntot 113491   

 

z Nz Nz/Ntot nz 

3 8 0.006 0.30 

5 372 0.27 13.8 

8 11910 8.67 440.4 

12 12503 91.05 4620 

Ntot 137313   

 

z Nz Nz/Ntot nz 

3 8 0.005 0.25 

5 396 0.24 12.2 

8 13470 8.20 416. 

12 150381 91.6 4650 

Ntot 164255   

 

z Nz Nz/Ntot nz 

3 8 0.004 0.21 

5 420 0.22 11 

8 15126 7.78 395 

12 178955 92. 4670 

Ntot 194509   

 

z Nz Nz/Ntot nz 

3 8 0.004 0.18 

5 444 0.2 9.88 

8 16878 7.39 375. 

12 210937 92.4 4691. 

Ntot 228267   
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z Nz Nz/Ntot nz 

3 8 0.002 0.12 

5 516 0.15 7.43 

8 22710 6.44 327. 

12 329251 93.4 4740 

Ntot 352485   

 

z Nz Nz/Ntot nz 

3 8 0.002 0.084 

5 576 0.12 6.028 

8 28230 5.82 295. 

12 456336 94.06 4780 

Ntot 485150   

 

z Nz Nz/Ntot nz 

3 8 0.002 0.079 

5 588 0.11 5.79 

8 29406 5.71 290 

12 485149 94.2 4780 

Ntot 515151   

 

z Nz Nz/Ntot nz 

3 8 0.001 0.063 

5 636 0.098 5 

8 34350 5.30 269. 

12 612521 94.6 4803 

Ntot 647515   

 

z Nz Nz/Ntot nz 

3 8 0.001 0.048 

5 696 0.083 4.19 

8 41070 4.87 247. 

12 800806 95.04 4830 

Ntot 842580   

 

z Nz Nz/Ntot nz 

3 8 0.0008 0.042 

5 732 0.075 3.81 

8 45390 4.65 236 

12 930433 95.3 4840 

Ntot 976563   
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z Nz Nz/Ntot nz 

3 8 0.0008 0.038 

5 756 0.070 3.58 

8 48390 4.51 229 

12 1024191 95.41 4844 

Ntot 1073345   

 

z Nz Nz/Ntot nz 

3 8 0.0006 0.030 

5 816 0.061 3.09 

8 56310 4.19 213 

12 1285676 95.7 4860. 

Ntot 1342810   

 

 

 

B. Octahedron 

z Nz Nz/Ntot nz 

4 6 7.06 358. 

7 36 42.4 2150. 

9 24 28.2 1430 

12 19 22.3 1130 

Ntot 85   

 

z Nz Nz/Ntot nz 

4 6 2.6 132 

7 60 26 1320 

9 80 34.6 1760 

12 85 36.8 1870 

Ntot 231   

 

z Nz Nz/Ntot nz 

4 6 1.23 62.3 

7 84 17.2 872. 

9 168 34.4 1740 

12 231 47.2 2400 

Ntot 489   
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z Nz Nz/Ntot nz 

4 6 0.67 34.2 

7 108 12.1 615. 

9 288 32.3 1640 

12 489 54.9 2790 

Ntot 891   

 

 

z Nz Nz/Ntot nz 

4 6 0.41 20.74 

7 132 8.99 456. 

9 440 30 1520. 

12 891 60.6 3079. 

Ntot 1469   

 

 

z Nz Nz/Ntot nz 

4 6 0.27 13.5 

7 156 6.92 351. 

9 654 27.8 1405 

12 1469 65.1 3307. 

Ntot 2255   

 

 

z Nz Nz/Ntot nz 

4 6 0.18 9.28 

7 180 5.49 279 

9 840 25.6 1300 

12 2255 68.7 3490 

Ntot 3281   

 

z Nz Nz/Ntot nz 

4 6 0.13 6.65 

7 204 4.46 226. 

9 1088 23.7 1206. 

12 3281 71.7 3640 

Ntot 4579   
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z Nz Nz/Ntot nz 

4 6 0.1 4.93 

7 228 3.69 187. 

9 1368 22.1 1120 

12 4579 74.1 3760 

Ntot 6181   

 

z Nz Nz/Ntot nz 

4 6 0.07 3.75 

7 252 3.10 158 

9 1680 20.7 1050 

12 6181 76.1 3870 

Ntot 8119   

 

z Nz Nz/Ntot nz 

4 6 0.06 2.92 

7 276 2.64 134. 

9 2024 19.4 986 

12 8119 77.9 3950 

Ntot 10425   

 

z Nz Nz/Ntot nz 

4 6 0.046 2.32 

7 300 2.28 116 

9 2400 18.3 928 

12 10425 79.4 4030 

Ntot 13131   

 

z Nz Nz/Ntot nz 

4 6 0.037 1.87 

7 324 1.99 101.1 

9 2808 17.3 876. 

12 13131 80.7 4098 

Ntot 16269   

 

z Nz Nz/Ntot nz 

4 6 0.030 1.53 

7 348 1.75 88.9 

9 3248 16.3 830 

12 16269 81.9 4160 

Ntot 19871   
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z Nz Nz/Ntot nz 

4 6 0.025 1.27 

7 372 1.55 78.8 

9 3720 15.5 787 

12 19871 82.9 4209 

Ntot 23969   

 

z Nz Nz/Ntot nz 

4 6 0.021 1.07 

7 396 1.38 70.31 

9 4224 14.8 750 

12 23696 83.8 4260 

Ntot 28595   

 

z Nz Nz/Ntot nz 

4 6 0.018 0.90 

7 420 1.25 63.1 

9 4760 14.1 715.  

12 28595 84.6 4300 

Ntot 33781   

 

z Nz Nz/Ntot nz 

4 6 0.015 0.77 

7 444 1.1 57 

9 5328 13.5 684 

12 33781 85.4 4340 

Ntot 39559   

 

z Nz Nz/Ntot nz 

4 6 0.013 0.66 

7 468 1.02 51.7 

9 5928 12.8 655 

12 39559 86.1 4370 

Ntot 45961   

 

z Nz Nz/Ntot nz 

4 6 0.01 0.57 

7 492 0.93 47.1 

9 6560 12.4 628. 

12 45961 86.7 4401. 

Ntot 53019   

 



55 
 

z Nz Nz/Ntot nz 

4 6 0.0098 0.50 

7 516 0.85 43.1 

9 7224 11.9 603.6 

12 53019 87.3 4430 

Ntot 60765   

 

z Nz Nz/Ntot nz 

4 6 0.009 0.44 

7 540 0.78 35.6 

9 7920 11.4 580.8 

12 60765 87.8 4460. 

Ntot 69231   

 

z Nz Nz/Ntot nz 

4 6 0.008 0.39 

7 564 0.72 36.5 

9 8648 11.02 560 

12 69231 88.2 4480. 

Ntot 78449   

 

z Nz Nz/Ntot nz 

4 6 0.007 0.34 

7 588 0.66 33.8 

9 9408 10.6 540. 

12 78449 88.7 4503 

Ntot 88451   

 

z Nz Nz/Ntot nz 

4 6 0.006 0.31 

7 612 0.62 31.3 

9 10200 10.3 522 

12 88451 89.1 4520 

Ntot 99269   

 

z Nz Nz/Ntot nz 

4 6 0.005 0.27 

7 636 0.57 29.1 

9 11024 9.94 504.5 

12 99269 89.5 4540. 

Ntot 110935   

 



56 
 

z Nz Nz/Ntot nz 

4 6 0.0049 0.25 

7 660 0.53 27.1 

9 11880 9.62 488. 

12 110935 89.8 4560. 

Ntot 123481   

 

z Nz Nz/Ntot nz 

4 6 0.004 0.22 

7 684 0.50 25.4 

9 12768 9.32 473. 

12 123481 90.2 4580 

Ntot 136939   

 

z Nz Nz/Ntot nz 

4 6 0.004 0.20 

7 708 0.47 23.8 

9 13688 9.04 459. 

12 136939 90.5 4594 

Ntot 151341   

 

z Nz Nz/Ntot nz 

4 6 0.0036 0.18 

7 732 0.44 22.3 

9 14640 8.78 446 

12 151341 90.8 4609 

Ntot 166719   

 

z Nz Nz/Ntot nz 

4 6 0.0033 0.17 

7 756 0.41 21 

9 15624 8.53 433. 

12 166719 91.1 4620 

Ntot 183105   

 

z Nz Nz/Ntot nz 

4 6 0.003 0.15 

7 780 0.39 19.7 

9 16640 8.3 421. 

12 183105 91.3 4640 

Ntot 200531   
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z Nz Nz/Ntot nz 

4 6 0.0027 0.14 

7 804 0.37 18.6 

9 17688 8.08 410 

12 200531 91.5 4650 

Ntot 219029   

 

 

z Nz Nz/Ntot nz 

4 6 0.0025 0.13 

7 828 0.35 17.6 

9 18768 7.86 399. 

12 219029 91.7 4660 

Ntot 238631   

 

 

z Nz Nz/Ntot nz 

4 6 0.0023 0.12 

7 852 0.33 16.7 

9 19880 7.66 389. 

12 238631 92. 4670. 
Ntot 259369   

 

 

z Nz Nz/Ntot nz 

4 6 0.0021 0.11 

7 876 0.31 15.8 

9 21024 7.47 379. 

12 259369 92.2 4680 

Ntot 281275   

 

 

z Nz Nz/Ntot nz 

4 6 0.0019 0.10 

7 900 0.3 15.01 

9 22200 7.29 370.3 

12 281275 92.4 4690 

Ntot 304381   
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z Nz Nz/Ntot nz 

4 6 0.0018 0.093 

7 924 0.28 14.3 

9 23408 7.12 362 

12 304381 92.5 4701. 

Ntot 328719   

 

z Nz Nz/Ntot nz 

4 6 0.0017 0.086 

7 948 0.27 13.6 

9 24648 6.96 353. 

12 328719 92.7 4710. 

Ntot 354321   

 

z Nz Nz/Ntot nz 

4 6 0.0015 0.08 

7 972 0.25 12.9 

9 25920 6.80 345. 

12 354321 92.9 4720 

Ntot 409445   

 

z Nz Nz/Ntot nz 

4 6 0.0015 0.07 

7 996 0.24 12.3 

9 27224 6.6 338 

12 381219 93.1 4730 

Ntot 409445   

 

z Nz Nz/Ntot nz 

4 6 0.0014 0.069 

7 1020 0.23 11.8 

9 28560 6.51 330.3 

12 409445 93.2 4735 

Ntot 439031   

 

z Nz Nz/Ntot nz 

4 6 0.0013 0.065 

7 1044 0.22 11.3 

9 29928 6.37 323. 

12 439031 93.4 4740 

Ntot 470009   
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z Nz Nz/Ntot nz 

4 6 0.0012 0.061 

7 1068 0.21 10.8 

9 31328 6.24 317 

12 470009 93.6 4750 

Ntot 502411   

 

 

z Nz Nz/Ntot nz 

4 6 0.0011 0.057 

7 1092 0.20 10.34 

9 32760 6.11 310.1 

12 502411 93.6 4760 

Ntot 536269   

 

 

z Nz Nz/Ntot nz 

4 6 0.0011 0.053 

7 1116 0.20 9.91 

9 34224 5.99 304 

12 536269 93.8 4760 
Ntot 571615   

 

 

z Nz Nz/Ntot nz 

4 6 0.00099 0.050 

7 1140 0.20 9.51 

9 35720 5.87 298. 

12 571615 93.9 4770 

Ntot 608481   

 

 

z Nz Nz/Ntot nz 

4 6 0.00093 0.047 

7 1164 0.18 9.14 

9 37248 5.75 292. 

12 608481 94.1 4780 

Ntot 646899   
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C. Rhombic dodecahedron 

z Nz Nz/Ntot nz 

3 8 8.60 437 

4 6 6.45 325 

7 36 38.7 1965. 

10 24 25.8 1310. 

12 19 20.4 1037. 

Ntot 93   

 

 

z Nz Nz/Ntot nz 

3 8 1.30 65.8 

4 6 0.97 49.4 

5 24 3.89 197. 

7 156 25.3 1284 

10 48 7.78 395 

11 96 15.6 790 

12 279 45.2 2300 

Ntot 617   

 

 

z Nz Nz/Ntot nz 

3 8 0.41 20.8 

4 6 0.31 15.6 

5 48 2.45 125 

7 372 19.01 965. 

10 72 3.68 187 

11 288 14.7 747. 

12 1163 59.4 3017. 

Ntot 1957   

 

 

z Nz Nz/Ntot nz 

3 8 0.18 9.03 

4 6 0.13 6.77 

5 72 1.6 81.3 

7 684 15.2 772. 

10 96 2.13 108.4 

11 576 12.8 650.3 

12 3055 67.9 3450 

Ntot 4497   
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z Nz Nz/Ntot nz 

3 8 0.093 4.71 

4 6 0.070 3.53 

5 96 1.11 56.5 

7 1092 12.7 643. 

10 120 1.39 70.7 

11 960 11.1 565. 

12 6339 73.5 3730 

Ntot 8621   

 

 

z Nz Nz/Ntot nz 

3 8 0.054 2.76 

4 6 0.041 2.07 

5 120 0.82 41.4 

7 1596 10.8 551 

10 144 0.98 49.7 

11 1440 9.79 497 

12 11399 77.5 3930 

Ntot 14713   

 

 

z Nz Nz/Ntot nz 

3 8 0.035 1.75 

4 6 0.026 1.32 

5 144 0.62 31.6 

7 2196 9.48 481. 

10 168 0.73 36.8 

11 2016 8.71 442 

12 18619 80.4 4082. 

Ntot 23157   

 

 

z Nz Nz/Ntot nz 

3 8 0.023 1.18 

4 6 0.017 0.89 

5 168 0.49 24.8 

7 2892 8.42 428 

10 192 0.56 28.4 

11 2688 7.83 397. 

12 28383 82.7 4200 

Ntot 34337   
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z Nz Nz/Ntot nz 

3 8 0.016 0.84 

4 6 0.012 0.63 

5 192 0.38 20. 

7 3684 7.56 385 

10 216 0.44 22.5 

11 3456 7.11 361 

12 41075 84.4 4290 

Ntot 48637   

 

 

z Nz Nz/Ntot nz 

3 8 0.012 0.61 

4 6 0.009 0.46 

5 216 0.32 16.5 

7 4572 6.88 350 

10 240 0.36 18.3 

11 4320 6.50 330. 

12 57079 85.9 4360 

Ntot 66441   

 

 

z Nz Nz/Ntot nz 

3 8 0.009 0.46 

4 6 0.007 0.35 

5 240 0.27 13.8 

7 5556 6.3 320. 

10 264 0.3 15.2 

11 5280 5.99 304.1 

12 76779 87.1 4420 

Ntot 88133   

 

 

z Nz Nz/Ntot nz 

3 8 0.007 0.36 

4 6 0.005 0.27 

5 264 0.23 11.7 

7 6636 5.82 295. 

10 288 0.25 12.8 

11 6336 5.55 282 

12 100589 88.1 4480 

Ntot 114097   

 



63 
 

z Nz Nz/Ntot nz 

3 8 0.006 0.28 

4 6 0.004 0.21 

5 288 0.2 10.1 

7 7812 5.4 274. 

10 312 0.22 10.9 

11 7488 5.17 263 

12 128803 89. 4520 

Ntot 144714   

 

 

z Nz Nz/Ntot nz 

3 8 0.004 0.23 

4 6 0.003 0.17 

5 312 0.17 8.78 

7 9084 5.04 256 

10 336 0.18 9.46 

11 8736 4.84 246 

12 161895 89.8 4560 

Ntot 180377   

 

 

z Nz Nz/Ntot nz 

3 8 0.004 0.18 

4 6 0.003 0.14 

5 336 0.15 7.70 

7 10452 4.72 240 

10 360 0.16 8.25 

11 10080 4.55 231. 

12 200219 90.4 4590 

Ntot 221461   

 

 

z Nz Nz/Ntot nz 

3 8 0.003 0.15 

4 6 0.002 0.11 

5 360 0.13 6.81 

7 11916 4.44 225. 

10 384 0.14 7.26 

11 11520 4.29 218 

12 244159 91 4620 

Ntot 268353   

 



64 
 

z Nz Nz/Ntot nz 

3 8 0.002 0.13 

4 6 0.002 0.095 

5 384 0.12 6.07 

7 13476 4.19 213 

10 408 0.13 6.44 

11 13056 4.06 206 

12 294099 91.5 4650 

Ntot 321437   

 

z Nz Nz/Ntot nz 

3 8 0.002 0.11 

4 6 0.002 0.08 

5 408 0.10 5.44 

7 15132 3.97 201.6 

10 432 0.11 5.76 

11 14688 3.85 196 

12 350423 92 4470 

Ntot 

 
381097   

 

z Nz Nz/Ntot nz 

3 8 0.002 0.09 

4 6 0.001 0.07 

5 432 0.095 4.9 

7 16884 3.77 191. 

10 456 0.10 5.17 

11 16416 3.67 186. 

12 413515 92.4 4690 
Ntot 

 
447717   

 

 


