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Chapter 1

THE SOLAR
ATMOSPHERE

1.1 General Properties of the Sun

The Sun is an ordinary star with an absolute stellar magnitude 4.8, and it is of spectral
type G2 V. But its short distance from the Earth makes it unique object. Thus its
study is of central importance for understanding the behavior of stars and of cosmical
plasmas in general. The overall properties of the Sun are summarized in Table 1.1.

In comparison to the Earth, the Sun has similar mean density but is 330,000 times
more massive. The solar radius is 109 times larger, while its surface gravity is 27 times
greater. The received solar radiation in Earth, is about 1 KW/m?. Furthermore the
Sun’s equator is inclined at about 7° to the plane of the Earth’s orbit and the solar
equatorial velocity is comparable to the terrestrial one.

In a first approximation, solar atmospheric phenomena can divided into two broad
classes, quiet and active. The qutet Sun is viewed as a static, spherically symmetric ball
of plasma, whose properties depend on a first approximation on the radial distance from
the center and whose magnetic field is negligible. The active Sun consists of transient
phenomena, such as sunspots, loops, prominences and flares, which are superimposed
on the quiet atmosphere and most of which owe their existence to the magnetic field.
But in many cases this division does not apply. For example the quiet atmosphere is
influenced markedly by the magnetic field; it is structured by the magnetic network
above and around evolving supergranule cells and the normal heating of the outer
atmosphere may well be due to the magnetic field.

In this chapter we shall present a general description of the Sun from the ob-

1



2 CHAPTER 1. THE SOLAR ATMOSPHERE

Age: 4.5 x 10° yr.
Mass: Mg = 1.99 x 10*3 g.
Radius: Rg = 696,000 km.
Mean density: 1.4 g/cm?.

Mean distance from Earth: 1 AU = 150,000,000 km = 215R,.
Surface gravity: g = 274 m/sec?.
Escape velocity at surface: 618 km/sec.
Luminosity: Lg = 3.86 x 10%¢ W,
Equatorial rotation period: 26 days.
Polar rotation period: 34 days.
Angular momentum: 1.7 x 10*! kgm?/sec.
Mass loss rate: 10° kg/sec.
Effective temperature: 5785 K.

1 arc sec(=1") = 726 km.

Table 1.1: Characteristic quantities in the Sun (Priest 1984).

servational point of view which is based on the first chapter of Priest’s book ”Solar
Magnetohydrodynamics”. At the end of this chapter, the emphasis will be given on
the presence of various types of systematic flows in the solar atmosphere, for which the
models in the following chapters refer.

1.2 Solar photosphere, chromosphere and corona

The solar atmosphere (Priest 1984) consists of three regions with different physical
properties. The lowest is an extremely thin layer of plasma, called photosphere, which
is relatively dense and opaque and emits most of the solar radiation. Above it lies the
rarer and most transparent chromosphere while the corona extends from the top of a
narrow transition region to the Earth and beyond. Hydrogen is almost totally ionized
in the upper chromosphere, but neutrals are important in the lower chromosphere and
photosphere. The density decrease rather rapidly with height above the solar surface,
starting from 102® m™3 at the photosphere, becoming 10'® m =2 at the transition region
and 10'2 m™3 at a height of 1 R,

Before 1940 it was thought, quite naturally, that the temperature decreases as one
goes away from the solar surface. But, since then, it has been realized that, after falling
from about 6600 K (at the bottom of the photosphere), to a minimum value of about
4400 K (at the top of the photosphere), the temperature rises slowly through the lower
chromosphere and then dramatically through the transition region to a few 108 K in the
corona (Fig.1.1). Thereafter, the temperature falls slowly in the outer corona, which
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Figure '1.1: The variation of the temperature with height in the solar atmosphere
(Athay 1976).

is expanding outwards as the solar wind, to a value of 10° K at 1 AU. The reason
for the temperature rise above the photosphere has been one of the major problems in
solar physics and is not yet fully answered; The low chromosphere is probably heated
by sound waves that are generated in the noisy convection zone, propagate outwards
and then dump their energy after steepening to form shocks; higher levels may well
be heated by several magnetic mechanisms. In coronal temperatures of order a few
million degrees the hydrogen and the lighter atoms are completely ionized.

Most of the solar radiation comes from the photosphere (its name comes from the
Greek word ”@oc¢” which means light), which emits a continuous spectrum with su-
perimposed dark absorption lines. These lines have to do with the absorption of the
light by the atoms in the overlying atmosphere. Most lines are formed in the upper
photosphere, but some, such as Ha, come from the chromosphere. Thus, when the
Sun is observed through filters of different wavelengths, pictures can be obtained of
the Sun’s structure at a variety of levels (Fig.1.2). For example, the lower chromo-
sphere is shown up by using an He filter, which is the most important for following
the evolution of active regions, and prominences and for observing the lower part of a
solar flare. In the beginning of an eclipse we can see light that has emitted from the
photosphere and is then scattered towards us at the chromospheric levels as well as
the intrinsic chromospheric emission. This colourful effect, led Young in 1870 to give
the chromosphere its name (from the Greek word "xpopa” which means colour). The
chromosphere has sometimes been modelled as a static plane-parallel region, but in
reality is highly non-uniform.

In more detail, the photosphere is the Sun’s extremely thin visible surface layer
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Figure 1.2: The appearance of the Sun at various wavelengths which reflect to different
levels in atmosphere. (a) photosphere at white light (BBSO), (b) chromosphere in Ha
(BBSO), and (c) corona in soft X-rays (AS&E).
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about 500 km thick from which most solar light escapes. It is not uniformly bright; in
high-resolution it appears covered with irregularly shaped bright granules of size of or-
der 1000 km which are in continual motion with speeds about 0.5 km/sec. This struc-
ture called granulation, covers the whole Sun (there are about 10° granules present)
and is an evidence of the presence of the convection zone (Fig.1.3). In addition to
the granular pattern, there are also mesogranulation and supergranulation which their
typical scale size and velocities are 5000 — 10000 km and 60 km/sec for mesogranules
(which their origin still unknown) and 20000 — 40000 km and about 0.3 km/sec for
supergranules which are the tops of large convection cells. These supergranules ap-
pears very clearly in chromosphere as a network of supergranulation boundaries with
an irregular bright pattern. This is the basic reason for the high non-uniformly of the
chromosphere (Fig.1.4) which at the limb one sees it as a mass of plasma jets, tem-
perature 10* K, known as spicules; they are ejected up from the high chromospheric
part of supergranule boundaries (probably along magnetic field lines) and reach speeds
of 20 to 30 km/sec and heights of about 11000 km before fading, although most show
no sings of falling (their typical lifetimes are 5 — 10 min). A surprising feature is that
after the initial acceleration, the velocity of a spicule remains fairly constant over a long
distance, despite the strong gravitational field. In polar regions, where the magnetic
field lines are open, there are larger jets of plasma, called macrospicules which reach
to heights 4000 to 40000 km, and their typical velocities are 10 to 150 km/sec.

The corona (from the Latin for "crown”) is known from many centuries and in white
light is observed at eclipses as a faint halo of very low density and high temperature
(Fig.1.5). Because the eclipses are rare Lyot in 1930 prompted to create artificial
eclipses by means of a coronograph. This is a telescope containing an occulting disc to
eliminate the glare of the photosphere, which is about a million times brighter than
the corona. Many weeks of observation have now been made as well from Earth and

from broad satellites.

In the quiet inner corona, the average electron density is several times 10 m™3,

but this is enhanced by factors of 5 to 20 in many of the structures seen in Fig.1.5. The
density rapidly falls off with the distance from the solar surface, it is about 102 m~=3
at 1 Ry above it, 10}! m~3 at 4Ry and less than 10'® m~2 at 10R2y. The overall
shape of the corona varies with the solar cycle, near sunspot maximum, bright features
called sireamers extend out in all directions; near sunspot minimum, streamers are
present only in the equator\i\al region and polar plumes are seen to fan out from the
poles. Coronal streamers are roughly radial structures extending from heights of 0.5
to 1 R up to 10 Ry, with a density enhancement of 3 to 10. In particular, helmet
streamers lie above prominences and active-region streamers above active regions. A
streamer consist of a round base (or arcade) of closed field lines surrounded with open
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Figure 1.3: A high resolution picture of the photosphere close to a spot (upper-left).

It is evident the granulation pattern while in some cases, dark structures called pores
are seen (J. P. Mehltretter; SPO).
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Figure 1.4: Spicujes as seen near the limb in the wing of Ha outlining the network
(SPO).

Figure 1.5: (a) White-light\\' eclipse (12 November 1966) photographs of the corona
showing (1) prominence, (2) streamer, (3) coronal hole (G. Newkirk; HAO). (b) Eclipse
photograph (7 March 1970) with superimposition of a soft X-ray photograph of the
inner corona from Skylab (A. S. Krieger; AS&E).
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Figure 1.6: A soft X-ray image of the corona from Skylab, showing (1) coronal hole,
(2) active region, and (3) X-ray bright point (A. S. Krieger; AS&E).

field lines; from the end it looks like a helmet and from the side like a fan. Polar
plumes are ray-like structures near the poles, especially noticeable at times of sunspot
minimum; they last for only about 15 h and presumably outline the local magnetic
field. Plumes are also seen in coronal holes.

In soft X-rays, the corona emits thermally and so may be viewed directly, since the
contribution from the lower atmosphere is negligible. The disadvantage of observing in
soft X-rays is that such wavelengths are normally absorbed by the Earth’s atmosphere.
But the resulting images from satellites such as Skylab and YOHKOH are truly spec-
tacular, and show the corona in a completely new guise (Fig.1.6). There are regions
of two distinct types. Those in which the magnetic field is predominantly open appear
relatively dark and are known as coronal holes; here the plasma is flowing outwards
to give the solar wind. Those in which the magnetic field is mainly closed consist of
myriads of coronal loops. Also, small intense features called X-ray bright points are
scattered over the whole disc.

In open field regions, the solar corona is not in hydrostatic equilibrium, but is
continuously expanding outwards as the solar wind. Most of it probably escapes along
open field lines from coronal holes, especially the two polar coronal holes that are
normally present, but small, open regions above active regions may also exist. The
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Figure 1.7: An illustration due to (Hoeksema) of the warped heliospheric current sheet,
drawn to scale with some planetary orbits. As the Sun rotates, an observer above
the solar equator sees a sequence of alternating polarities (typically four in number),
successively from one side or the other of the current sheet (Foukal 1990).

two polar holes with their oppositely directed magnetic fields are, at small distances
from the solar surface, separated by the closed magnetic configuration typical of active
regions. But beyond one or two solar radii above the solar surface they come into
contact at a neutral current sheet. In an idealized solar atmosphere, this current sheet
would lie along the magnetic equator, but the presence of large-scale photospheric fields
causes the sheet to be warped (Fig.1.7). _

The flow speed increases monotonically from very low values in the inner corona
and eventually becomes supersonic and superalfvénic. Close the Sun the magnetic field
dominates the plasma dynamics while the opposite far away. In the Earth distance the
average plasma wind velocity is 400 km/sec (from 200 to 900 km/sec), the density
6.5 x 10 m~2 (from 4 x 10° to 10® m~3), the temperature 10° K (from 4 x 10° K to
10° K) and the magnetic field 6 x 107° G (from 2 x 107° G to 8 x 10~* G). The large
variation of the above para.rr\let"e‘rs related directly to the solar cycle (the maximum of
solar activity the strongest solar wind). Also the solar wind plasma does not quite flow
radially from the Sun; its velocity is inclined at about 1.5° to the radius vector. This
means that angular momentum is being transferred from the Sun to the solar wind and
the Sun is being braked in the process; this effect is sufficient to slow the Sun down
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significantly over its lifetime. The solar wind is far from uniform. It consist of a series
of high speed streams related with the appearance of open field regions on the Sun. On
a small scale the solar wind is highly irregular as a result of propagation of various
magnetohydrodynamic waves and discontinuities on it.

1.3 Transient Features in the Solar Atmosphere

When viewed at low resolution in white light, the Sun appears rather simple, but a
closer look at the photosphere and the overlying atmosphere reveals a complex struc-
ture, which changes dynamically in a rich variety of ways. For example, an Ha photo-
graph such as Fig.1.7 shows up many features superimposed on the quiet atmosphere.
Active regions appear as bright plages of emission in the equatorial belt within 4-30° of
the equator; they represent moderate concentrations of magnetic flux with mean fields
of 100 G or so. Within an active region one finds dark regions of intense magnetic field
called sunspots, and near sunspots there is occasionally a brilliant region of intense
emission, called a solar flare, which represents the violent instability of part of an ac-
tive region magnetic field and the resulting energy release. Furthermore, around and
far away from active regions there are thin, dark ribbons called filaments (or proma-
nences). It is interesting to compare the appearance of all these features at different
levels in the atmosphere, as for instance in Fig.1.2; in white light, sunspots represent
the dominant departure from uniformity, whereas in soft X-rays the active regions as
a whole are most prominent (Fig.1.6). Furthermore, the eclipse photograph in Fig.1.5
shows clearly the streamers that lie above prominences and active regions, while a
magnetic field map shows intense magnetic flux concentrations in sunspots and, to a
lesser extent, in active regions (Priest 1984).

All the above forms of activity owe their existence to the magnetic field. Rather
than being distinct, they simply represent different ways in which the solar plasma is
responding to the underlying magnetic field development. They evolve on a variety of
time scales. The distribution of sunspots varies with an 11-year periodicity known as
the solar cycle. Prominences, the most stable of all surface features, may endure for
200 days, whereas a large sunspot group may last half that time and a solar flare is
usually over in an hour or so.

1.3.1 Active Regions

When new magnetic flux rise up from below at the photosphere as an emerging fluz
region, the atmosphere is heated and produces an X-ray bright point. The mean lifetime
of those is less than a day but sometimes magnetic flux near the equator continues to
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Figure 1.8: A composite photograph of the Sun, showing several forms of activity. It
includes the solar disc in Ho and the corona during an eclipse (S. Martin; LSO).

emerge and a bright point grows into an active region. Most active regions are bipolar
with the flux well-ordered into two islands of opposite polarity, but occasionally a
magnetically complex region forms as new flux emerges with a different orientation or
as a new region appears within an existing one. In the photosphere the most intense
concentrations of magnetic flux called sunspots which form during the emergence of
flux in one day or so. They decay away during the slow dispersal of the magnetic flux
which marks the decay of an-active region, but the region may remain active with
an enhanced magnetic field for weeks or months after the disappearance of sunspots.
Typical well-developed active regions (Fig.1.9) have a single sunspot; its preceding
flux is concentratzd there and its following flux is much more diffuse. The long, thin,
dark rope-like structure are called fibrils and probably follow magnetic field lines, some
connecting opposite polarities; They have widths 700 to 2200 km, an averaged length of
11000 km and life times of 10 to 20 man, although their overall pattern remains constant
for hours. During the emergence of new flux the active region typically consists of a
pair of sunspots joined by a system of dark loops calling an arch filament system which
subsequently replaced by fibrils called field transition arches, which continue to join
opposite polarity areas (Priest 1984).
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Figure 1.9: (a) A typical active region in Ha (K. Marsh & H. Zirin; BBO). (b) A new
growing active region (top right) together with an older one (bottom left) containing-
a single sunspot above which stretches a filament (S. Martin; LSO).
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Figure 1.10: A large sunspot (Muller 1973).

The density and the temperature are enhanced in the corona above an active region
(10%® m~3 and 3x10® K) which makes it visible in white light at the limb during eclipses
(Fig.1.5) and also in EUV, X-ray and radio wavelengths against the disc. Above an
active region is found an active region streamer (Fig.1.5) extending outwards for 3 to
4 R as a series of fans or rays; the most conspicuous ones narrow to a throat or neck
at 2 to 3 R above the base and then diverge slightly.

1.3.2 Sunspots

The most intense phase of an active region is characterized by the presence in the
photosphere of sunspots (Gurman 1992, Priest 1984, Thomas 1981), which are cooler -
than their surroundings and represent exceptionally strong concentrations of magnetic
flux. They form when the magnetic flux appears at the center of a supergranulation
cell, seeing in Ha as an arch filament system, forming eventually a pore in about 5-
6 hours. Pores (Fig.1.3) are darker than the surrounding photosphere and have no
penumbra; they have diameters of 700 to 4000 km, and magnetic field greater than
1500 G. Often they last for hours or days, but sometimes one develops into a small
sunspot. During the growth-phase of the sunspot, lasting between 3 and 10 days, more
and more magnetic flux is added to it. Most sunspots disappear within a few days
of forming, but some large ones last much longer, slowly decaying over a few months
(Fig.1.9).
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The central dark area of a sunspot (Fig.1.10) is known as the umbra, with a typical
diameter of 10000 to 20000 km, about 0.4 of the total spot diameter. The magnetic
field strength of about 2000 to 3000 G, and temperature of only 3700 K, in comparison
with the 5800 K temperature of the ambient photosphere, are fairly uniform and the
intensity in visible light is only 5 to 15% of the photospheric value. But at high
resolution one may find 20 or so umbral dots, with a diameter of only 150 to 200 km
and a normal photospheric brightness; they have depths of about 100 km and are
moving upwards at 0.5 km/sec with a lifetime of 1500 sec and a temperature of 5700
K. It appears that the magnetic field in umbral dots is the same as in umbra. At
lower resolution, umbral dots are described as umbral granulation. Umbral granules
resemble ordinary photospheric granules, but they are fainter, more closely packed and
have substantially longer lifetimes. |

Outside the umbra is found the penumbra, which consists of light and dark radial
filaments that are typically 5000 to 7000 km long and 300 to 400 km in width. Individ-
ual penumbral filaments endure typically 0.5 to 6 hours, by comparison with a lifetime
of days or months for the sunspot as a whole. The intensity of a bright filament is
typically 95% that of the photosphere, while that in a dark filament is only 60%. Run-
ning penumbral waves start at the umbral boundary of a regular spot and propagate
outwards at about 10 to 20 km/sec, with a velocity amplitude 1 km/sec and periods of
260 to 280 sec. Also continuous plasma outflow with speed of 6 to 7 km/sec is observed
along the dark penumbral filaments, called Evershed effect. It seems that the field lines
spread out as one moves outwards from the center of the spot, as indicated in Fig.(1.9).
Nearly all the magnetic flux from a sunspot probably returns to the photosphere.

The appearance of a sunspot changes as it passes from the east to the west imb
of the Sun, the east side of penumbra being thinner than the west side when the spot
is located near the west limb and vice versa, as shown in Fig.1.11. This is known as
the Wilson effect and implies that the sunspot is a saucer-like depression of about 500
to 700 km below the photosphere. The effect is caused by the fact that the sunspot is
more transparent than the surrounding photosphere (because of its lower temperature
and density) and so the observed light comes from a greater depth.

The 53% of the sunspots groups are bipolar, with the spots concentrated at the
preceding and following sides of a group and having opposite polarity. The 46% are
unipolar and only 1% are complex in their polarity.

Of course the most known about sunspots is their cycle which is remarkable in its
complexity and regularity. The major aspects of the cycle are, the 11-year period of
sunspot number and their spatial distribution (Fig.1.12), (ii) the Hale-Nicholson law
of sunspot polarity; the polarity of the leading spots in the northern hemisphere is the
same and reverses its sense at the start of a new cycle (also leading spots in the southern
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Figure 1.11: The Wilson effect in a sunspot, showing the changing appearance of the
spot as it passes from the east to the west limb of the Sun (Bray & Loughhead 1964).
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Figure 1.12: The butterfly diagram, with a single dot for each spot group. The new
cycle spots form at high latitudes before the old cycle spots disappear. The lower panel
shows the sunspot number in each cycle (B. Yallop; GO).

hemisphere have opposite polarity to those in the north), and, (iii) the reversal of the
general field.

1.3.3 Prominences

Prominences are the most impressive objects on the Sun because they are located in
the corona but possess temperatures a hundred times lower and densities a hundred
or a thousand times greater than the coronal values. In eclipses they appear bright at
the limb, but in Ha-photographs of the disc they show up as thin, dark, meandering
ribbons called filaments (Fig.1.13).

The observations suggested that prominences are supported against gravity by hor-
izontal magnetic fields. In fact the term prominence is used to describe a variety of
objects ranging from relatively stable structures with lifetimes of many months, to
transient phenomena that last a few hours or less. Prominences have been classified
morphologically in several ways, but there appear to be of two basic types.

(i) Quiescent prominences (Figs.1.13, 1.14) are exceedingly stable structures and
may last for many months. They are located outside active regions and they migrate
towards latitudes higher than 45°; then they are called polar prominences. Their
spatial dimensions are 60000-600000 km long, 15000-100000 km high and 4000-15000
km thick. They are anchored in the photosphere at footpoints periodically distant of
about 30000 km. Their densities and temperatures are of order 10'¢-10'7 m~3 and
5000-8000 K, respectively. The magnetic field is found to be 5-10 G. The average
angle between the direction of the magnetic field and the long axis of prominence is
about 15° (Demoulin 1991, Priest 1984, Zirker 1989).
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Figure 1.13: The migration of a quiescent prominence to the limb seen in Ha due to
solar rotation (S. Martin; LSO).

Figure 1.14: A prominence 70000 km high seen in Ha (H. Zirin; BBSO).
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Figure 1.15:" A small limb flare and surge, typical of what is seen as a modest active
region goes over the limb (H. Zirin; BBSO).

A quiescent prominence forms at a relatively small active region (or plage) filament,
which is located either along the magnetic inversion line of an active region or an active
region where it meets a surrounding region of opposite polarity. Sometimes it may enter
a sunspot from one side. As the active region disperses, the prominence grows thicker
and longer. Often continue growing for many months up to 10% km in length, and in
the process it moves slowly towards the nearest pole and becomes a polar prominence.

(i) Active prominences are located in active regions and are usually associated
with solar flares. They are dynamic structures with violent motions and have lifetimes
of only minutes or hours. There are various types, such as surges (Fig.1.15), sprays
(Fig.1.16) and loop prominences (Fig.1.17). They have magnetic fields of order 100
G and it appears that may be aligned approximately with the filament, whereas for
quiescent ones the field run across the filament. The spatial dimensions are typically
three or four time smaller compare to the quiescent one, but the temperature is much
higher. The density is rather larger (> 107 m=3). Although it seems that their support
may be hydrostatic or ballistic.

Often a prominence reaches downwards towards the chromosphere in a series of
regularly spaced feet, which resemble great tree trunks. These feet are located at
supergranule boundaries and are joined by huge arches (Fig.1.12). Within a prominence
there is much fine structure in the form of vertical threads of length 5000 km and
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Figure 1.16: A limb spay. These are associated with larger flares and less dominant
fields than surges (H. Zirin; BBSO).
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Figure 1.17: Loop prominences observed in Ha, (a) at imb (Bumba & Kleczek 1961)
and (b) at disc (Svestka 1976). These loops go higher and higher in the thermal cooling
of the flare.
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diameter about 300 km or less (Fig.1.12); material continually streams slowly down
these threads and down the arches into the chromosphere at speeds of only 1 km/sec,
which is much less than the free-fall speed. The resulting loss of mass is immense and
would drain the prominence in a day or so if it were not being replenished somehow.
Hardly any motion along the axis of a quit quiescent filament is observed, unless it
interacts with a sunspot, but active region filaments often show matter flowing along
the axis into a sunspot.

Activesregion and quiescent prominences can became activated and exhibit several
types of large scale motion, such as growing in size and varying their brightness. At
this time, there may be an increase in turbulent or helical motion or flow along the
filament. This type of activation sometimes fades away after an hour, but sometimes
leads to an eruption if the filament become completely unstable, especially for those
exceed about 50000 km in height. Thus we have an erupting prominence (Fig.1.18)
which eventually disappears; some of the material escapes from the Sun altogether
while some descends to the chromosphere along helical arches. Also at some cases the
prominence material may drain away from the summit along a curved arc at speeds of
100 km/sec.

Erupting prominences are related to the 70% of it coronal transients which have
been observed in the outer corona by Skylab (Fig.1.19). The rest are associated with
large flares. They represent outward-moving loops or clouds with speeds of 100-1200
km/sec; the material probably originates in the low corona above the prominence,
rather than from its interior. These loops had similar orientations to those of the
original filaments.

1.3.4 Loops

One of the most exciting realizations of the past 15 years is that the solar corona is
filled with myriads of loop structures. Today it is quite acceptable that the loops that

“we see is the solar corona. These loops relate with closed magnetic structures, on a
relatively large scale in quiet regions and a smaller scale inside active regions. The only
exception are the coronal holes where the field lines are open and are the source of the
solar wind. There is a wide range of different types of loops (Priest 1978):

(i) Interconnecting loops join-different active regions and seem to form either when
two loops stretch from separate active regions and recconect or when one loop rec-
conects with some newly emerging flux (Fig.1.20). They may be up to 700000 km long
and in soft X-rays have a temperature of typically 2 to 3 x 10® K and a density of
3 x 10'* m~3. Their ends are rooted in regions of strong magnetic field near the edges
of active regions. A single loop lasts about a day, but the whole system may endure for
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Figure 1.18: Examples of erupting prominences. The left photograph is in Ha (G.
Newkirk; HAO) and the right in Hell (R. Tousey; NRL).
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Figure 1.19: A coronal transient associated with a prominence eruption observed by

Skylab (R. MacQueen; HAO).

many rotations. Loops that connect fully developed active regions have an intermittent
visibility, but those that join an active region to an old remnant change little in shape
and brightness for up to 12 days. Interconnecting loops sometimes brighten suddenly
(exhibiting higher temperatures and densities by factor two), which may be associated
with a twisting of the foot points.

(i) Quit region loops do not connect active regions, and in soft X-rays are somewhat
cooler than interconnecting loops with a temperature of 1.5 to 2.1 x 10° K. This,
surprisingly, is independent of the density, which may range from 2 x 10** m 2 to 10!%

m-—3

(iil) Active region loops are found inside active regions. In soft X-rays, only a few
are distinguishable with temperatures 2.2 to 2.8 x 10® K for a wide range of density,
from 5 x 10'* m™3 to 5 x 10'® m =3 and their lengths lie typically between 10000 km
and 100000 km, the sorter loops appearing brighter in X-rays. But in 1975 Foukal
was found that exist also extremely cool loops, with temperatures at least an order
magnitude lower than the suri*oxinding corona. Usually these loops connect sunspots,
so may be called also sunspot loops. Most are about 100000 km long and 10000 km
wide and have cool cores with a temperature lower than 2 x 10° K (Fig.1.21) The core
density is lees certain but is probably the same as the surrounding density, so that the
core pressure is about a tenth of the coronal pressure. Also, there may be a sheath
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Figure 1.20: Comparison between a (negative) picture in the EUV line of FeXV (above)
and a photospheric magnetogram, showing several active regions and their intercon-
necting loops (Sheeley et al 1975).
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Figure 1.21: An active region sunspot loop about 60000 i high in the EUV lines of
CII (3 x 10* IV), Ly « (10* I), CIII (7 x 10* 1), OVI (1.8 x 10° I¥), MgX (1.5 x 10°
I\'). Hotter emission comes from progressively thicker co-axial shells (Foukal 1976).

around the core with a plasma density three or four times bigger than the ambient value.
The low core-temperature accounts for its visibility in EUV lines, whereas the sheath
density-enhancement shows up the loop in X-rays against the background emission.
The pressure and energy balance are steady over several hours, much larger than the
free-fall time, and their intensities are not directly related to umbral area; large loops
can be rooted in insignificant spots and some large spots may have no bright loops at
all.

(iv) Post-flare loops (Fig.1.22) relate with solar flares as it observed in EUV and
X-rays. These loops may be up to 100000 km high, have bright tops (as hot as 4 x 10°
K), densities 10*" m ™ and follow a filament eruption. They link the two Ha ribbons
and form an arcade (visiblc in both Ha and X-rays) that increases in height as the
main phase of the flare proceeds and the Ho ribbons move apart. Post-flare [Gops are
evolving in a manner that may-arise from the closing down of a magnetic field that
has previously blown open during the stages of a two-ribbon flare. Also an enormous
material downflow is observed in Ho.

(v) Simple-flare loops (Fig.1.23) are usually smaller than the post-flare loops, with
typical size between 5000 and 50000 km, and are extremely hot and dense, with tem-
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Figure 1.22: Post-flare loops ending in the flare ribbons inside the limb. The soft X-ray
emission comes from loop tops (H. Zirin; BBSO).

peratures as high as 4 x 107 I and densities up to 10'" or 10'® 7%, Simple flare
loops must contain some dramatic heat source and are far from steady; they may have
emerged from below the photosphere during the previous few hours (or a day) or they
may be pre-existing loops that have became unstable.

Finally we must note the existance of interplanetary magnetic loops (with dimen-
sions > 1 AU) which are connected bipolar active regions. They are dued to the flare
activity, and can be acted like magnetic bottles trapping energetic particles (Sarris &

Krimigis 1982).

1.3.5 Flares

The solar flare is the most violent event in the solar system. It varies from being a
simple, localized brightening to a very complex violent structure. A solar flare consists
of three phases. During thereflare phase a large flux tube %3 prominence) starts to
rise slowly, and there is a gradual brightening in soft X-rays, EUV and microwaves for
several minutes. In the flash phase which lasts typically 5 min the flux tube suddenly
starts to erupt much more rapidly and there is a steep increasing in Ha, EUV, and
soft X-rays, while they appear radio bursts in the form of electron beams. At the same
time nonthermal particles are evidenced by the appearance of hard X-rays spikes and
impulsive EUV and microwave bursts, with shock waves sometimes initiated. Also, Ha
knots of emission become joined up to form two ribbons in the chromosphere. During
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Figure 1.23: Two views of a flare pear the limb which ejects a loop (H. Zirin; BBSO).
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the main phase the intensity declines slowly over about an hour, while the ribbons
separate with velocities 2 to 10 km/sec and are joined by a rising arcade of post-flare
loops (Fig.1.24).

When a large flare occurs near a quiescent prominence, where the magnetic field
is weak, the flare tends to be slow, long-lived and thermal, sometimes with no Ha
brightening at all, thought the basic magnetic instability is probably the same. When
it occurs instead near an active-region prominence, where the magnetic field is strong
and complex, the flare is violent, short-lived and nonthermal (Priest 1984).

Near the polarity inversion line one often finds small pores and transient weak X-
ray sources. Many other precursors in the corona can be seen up to an hour preflare,
while prominence activation may sometimes begin even earlier. Soft X-ray and EUV
brightening occurs often around the prominence or in the form of loops or kernels
close to the subsequent flare site. In microwaves sometimes there is an increase in
intensity because of heating and a change in polarization due to changes in the coronal
magnetic field. Also radio bursts can occur before a large event, possibly because of
the preaccelaration of electrons (Priest 1988).

Since flares invariably occur in active regions and the other sources of energy seem
inadequate, it has usually assumed that it is the magnetic field which supplies the
energy of 10?2 to 3 x 10%® J for a flare (Priest 1984).

1.3.6 Modern view of solar corona

It is now known that the old magnetohydrodynamic, steady picture of an active region
and the background corona based on the previous low cadence images is not correct.
Instead, recent observations from YOHKOH (Ogawara et al 1992) revealed that steady
mass from below supply at least a certain fraction, if not all, of the mass and energy of
the active region corona which is almost continually expanding (Ushida 1992, Ushida
et al 1992). The injected mass itself is confined in flux tubes inside the active regions
(Klimchuk et al 1992). The mass injections may turn out to be the cause of desta-
bilization of such coronal active regions, and they may turn bring a new component
(magnetically driven mass loss) into the solar mass loss problem (Shibata et al 1992).

The background general corona turns out not to be an isolated quiet entity, but
is rather a system closely linked with the active region corona. Changes in the active
regions can affect the environment corona. In some cases propagating 'magnetic recon-
nection waves’, caused by changes in the magnetic field connectivity in the stronger
magnetic field regions, can propagate further away from an active region in cascade.
In some other cases magnetohydrodynamic disturbances may simply perturb distant
magnetic structures transiently in the form of simple waves, but in some other cases
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Figure 1.24: An excellent view of .a flare near the limb, showing the development of
loop prominences. The first frame is after the flare peak. Bright loops is seen two
sunspots. As they develop, the loops rotate, become darker, but the tops are always
brightest and densest. In all loops the material rains down in two branches (H. Zirin;

BBSO).
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they may influence distant structures permanently either stimulating some instabili-
ties, or through such magnetic reconnection waves (McAllister et al 1992, Ushida 1993,
Shimizu at al 1992).

Dynamical changes in the general background corona itself, either spontaneous or
by stimulation, often occur at the same time as disappearances of Ha dark filaments.
Coronal mass ejections may, in this way, either be related to a flare occurring at a
distance from the site of coronal mass ejections, or be unrelated to a flare but related
to a much less energetic phenomenon, an active region transient loop brightening that
can greatly affect the magnetic structure in the surroundings. The required energy
may come from the release of the magnetic buoyancy of the structure anchored by the
magnetic ties. It is possible that the dark filament disappearance itself in these events
is merely a passive feature, not a driver of the energy liberation, but one of the results
of an instability of the field structure as a whole, which can be triggered by a small
disturbance at a distance (Hara et al 1992, McAllister et al 1992).

An interesting point is that various phenomena in. the solar corona, such as ar-
cade formation in relation to the disappearing dark filament, seem to have examples
or analogues with scales ranging from very large in the polar region to small inside
active regions. These may correspond to the weak field case and the strong field case,
respectively, with similar field configurations. Thus the large and faint arcade above a
disappearing polar dark filament, the medium scale hotter arcade, and the relatively
quiet version of flares with Ha double-ribbon structures in active regions may all be-
long to the same physical class and occur in similar magnetic field configurations but
with different magnetic field strengths and different scales (Ushida 1993).

1.4 Coronal plasma loops

The discovery that a significant part of the energy emission from the solar corona
is concentrated along well-defined curved paths — called loops — represents a major
advance in our understanding of the Sun. Such plasma loops are the basic structural
elements of the corona, particularly in and over active regions. Moreover, they play a
decisive role in the origin and physics of solar flares. Our new insight is due largely
to the wealth of space observations of the Sun obtained, in particular, firstly from the
satellite Skylab (1973-1974) and the Solar Maximum Mission, Hinotory and YOHKOH
satellites which followed. Ground-based observations in the visible and microwave
regions of the electromagnetic spectrum have also play a vital role. The literature on
coronal plasma loops is vast and includes not only hundreds of research papers but also
the proceedings of numerous symposia and workshops. In this section we shall cover
briefly the observational part of coronal loops, while in chapter 3, we shall present a
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magnetohydrodynamical analysis of them. In the rest of this thesis they are described
in detail our proposed models for the structure of coronal loops and the solar corona
in general.

1.4.1 Introduction

Coronal loops are a phenomenon of active regions and there is significant evidence that
they are iI\l fact the dominant structures in higher levels (inner corona) of the whole
atmosphere of the Sun. Although that our knowledge of loops has greatly expanded
in recent years because of the space observations in the far ultraviolet and X-rays,
we must not ignore the fact that a considerable amount of quantitative jnformation
on the morphological, dynamical, and physical properties of coronal loops has been
derived from ground based observations in the visible and near-visible regions. in fact,
observations at these wavelengths have achieved significantly higher spatial resolution
(better than 1”) than almost all the space observations so far obtained.

Observations show that coronal loops, depending on their temperature, can be
divided into two distinct categories. The properties of the two types differ radically.
Loops formed at temperatures in excess of = 10° K are conventionally referred to as
hot loops, while those formed at lower temperatures are termed cool loops. We shall
consider the two types separately.

1.4.2 Cool loops

The range of temperature covered by the category of cool loops extends from =~ 10°
K down'to =~ 20000 K; the Fig.1.17 represents a temperature characteristic of loops
observed in Ha. Taken as a whole, the observations described in this section show that,
with the exception of temperature, all cool loops appear to have similar properties and,
in fact, can be regarded as manifestations of the same basic physical nature.

When cool loops observed in the limb in Ha and other visible region lines, appear
to be anchored to underlying sunspots. In Fig.1.17 is shown a particular fine example
of an active region loop system beyond the limb (Bumba & Kleczek 1961). In general,
photographs of active region loops (Lategan & Jarrett 1982, Foukal 1978) showing a
single neat loop and the characteristic condensations or knots often present in Ha loop
systems. The number of loops in a single system may range from just one up to perhaps
ten or so; an upper limit is hard to establish from limb observations because loops
overlap each other. The apparent, projected heights measured by various authors range
from 26400 km (Lategan & Jarrett, 1982), through 50000 km (Tandberg-Hanssen 1977,
Makhmudov et al 1980), to 57000 km (Kleczek 1963). However, true heights cannot be
determined from limb observations unless the loop geometry is known. Observations
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did not say anything about loop lifetimes, but Tandberg-Hanssen (1977) quotes a
typical value of 15 min. Active region cool loops are found to be in dynemical stage
with flows. It has long been known that there are three types of motion associated
with them (de Jager, 1959), (i) a downflow in both legs, starting at the top of the loop
(Kleczek 1963, Lategan & Jarrett 1982), (ii) a flow up one leg and down the other
(Martin 1973), and, (iii) a mainly horizontal back-and-forth oscillation of the whole
loop (Vrsnak 1984). Bodily upward motions of the whole loop have also observed
(Kleczek 1963, Vrsnak 1984). The majority of the velocities are inferrent either from
Doppler shifts (Foukal 1978, Lategan & Jarrett 1982) or from the proper motion of
knots (Kleczek 1963, Foukal 1978, Makhmudov et al 1980) lie in the range 20-150
km/sec. The upflow accelerations are sometimes greater than gg (absolute values),
while the downflow ones are always less. These values are also consistent with values
derived from measurements of loops observed on the disc. Finally, the magnetic field in
active region loops is found to be in the range 7-100 G (Bray et al 1991). Measurements
have been done using either the Zeeman effect (Tandberg-Hanssen 1974, Tandberg-
Hanssen & Malville 1974) in order to find the line of sight field component, or, the
Hanle effect (Bommier et al 1981, Athay et al 1983) in order to find all the field
components. It is possible that the typical value of ~ 50 G for the magnetic field in
active region loops, is probably represent lower limit to the true field along the axis of
loops. However, the limb measurements are valuable since no disc measurements have
yet been attempted. Not have any measurements so far been attempted in the EUV
spectral region.

On the disc an active region loop appears in the Ha line as a thin, curved, dark fea-
ture linking a sunspot with another spot or area of oppesite magnetic polarity (Ellison
1944, Tandberg-Hanssen 1974). The actual location of the footpoints with respect to
the associated sunspot or spots is seems to be the umbra/penumbra boundary. Also
according to Ellison (1944) single or double loops are quite common, but complex for-
mations of loops are rare. By contrast, post-flare loop systems commonly contain a
large number of loops in the form of an arcade (Fig.1.22). The lifetimes of Ha loops
observed in the disk are found to be less than 1 h (Bray et al 1991). Often, the planes
in which lie Ha loops are inclined at fairly large angles (30° to 40°) to the solar vertical;
this is also the case for cool loops observed in the EUV. The axes of symmetry, are
tilted at only small angles (—6° to 6°) to the perpendicular bisector of the line joining
the footpoints, while the highest points lie some 40000-50000 km above the solar sur-
face, in agreement with the estimates of the heights of cool Ha loops observed at the
limb (Loughhead et al 1984, Loughhead & Bray 1984). Note also that these heights are
comparable to those found for cool EUV loops. Finally, two types of flow are observed;
(i) a unidirectional flow along the axis of a loop, in other words an ascent in one leg
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and a descent in the other (Ellison 1944, Tandberg-Hanssen 1977, Bray & Loughhead
1983), and (ii) a downflow from from the top towards both footpoints (Martin 1973,
Chen & Loughhead 1983). The first type of flow is a commonly observed characteristic
of loops in new and complex active regions. Only few velocity measurements in Ha
loops on the disk are available (Loughhead & Bray 1984). In one studied case (Lough-
head & Bray 1984) they show high (supersonic) velocities almost throughout the loop
(Fig.1.25), with the material to be accelerated fastly as it rises and descends from and
in the solar surface. This means that upflow is driven by a strong accelareting mech-
anism (larger than gp at this particular case) despite the presence of gravity, while
downflow is subject to a retarding force since the acceleration which found is less than
the solar gravitational one. ; 5

Below 150 nm the contribution of the photospheric layers to the solar spectrum
vanishes and the radiation comes from overlying material at chromospheric or coronal
temperatures. When this wavelength is reached, the character of the emission has
changed from that of familiar dark line spectrum in the visible and near ultraviolet to
that of a bright-line spectrum (Fig.1.26). The far ultraviolet extends down to about
10 nm, below which it is customary to categorize the emission as soft X-ray radiation.
The solar EUV spectrum is dominated by emission from resonance lines of HI (Lyman
series), Hel, and Hell, of intermediate stages of ionization of C, N, O, Si, and S, and of
highly-ionized stages of Si, Ne, Mg, and Fe. Other distinctive features are the Lyman
continuum at A < 91.2 nm, and the Hel and Hell continua at A < 50.4 nm and A < 22.8
nm respectively. Under the conditions of formation normally assumed to apply, the
intensity of any given line is a sensitive function of the electron temperature, peaking
at some particular value and falling off sharply on either side. The presence of this line
in the spectrum of a feature under study thus indicates that the temperature in the
emitting region must be close to the resulting electron temperature. For this reason
this temperature is often termed the formation temperature of the line. EUV lines
characterized by electron temperature values of ~ 10® K or less are conventionally
reffered to as cool lines, whereas lines with electron temperatures greater that ~ 10°
K are described as hot lines. In the case of coronal loops this distinction is more than
a matter of convention, cool loops observed in EUV lines in temperatures << 10% K
differ in their properties from hot loops observed in lines with electron temperatures
> 10° K.

Usually, when an active regi“on' is observed in EUV lines it is found that the emission
is centered on two bright areas overlying the regions of opposite magnetic polarity in the
photosphere; not surprisingly, the outlines of the bright areas follow the contours of the
underlying Ho faculae (Cheng et al 1980, Schmahl et al 1982). With the best available
resolution the central bright areas are resolved into aggregates of small, very bright
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Figure 1.25: (a) Active region loop of 6 June 1980 photograph at Ha (Bray & Lough-
head 1983). The small white circles identify the points of the loop using for its geomet-
rical reconstruction seeing in (b). The arrows at these points represent the magnitudes
and directions of the true flow speed V along the central axis of the loop, which is
seen in (c), and is supersonic at all locations. Note that between L, and L3 the speed
of the rising material almost doubles, despite the retarding effect of gravity. On the
downward leg the material speeds up as it approaches Lg, and the footpoint P;, but it

does not attain the velocity of free-fall (=~ 150 km/sec) from the highest point above
the surface (39800 km).
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Figure 1.26: Prominent EUV emission lines at the center of the solar disc.

kernels, some of which are noticeably elogated. But, just outside, a number of bright
loop-like features are seen pointing more or less radially outwards. Limb observations
demonstrate that these features represents portions of coronal loops, which may extend
up to heights of tens of thousands of kilometers.

In common with all other solar features, cool EUV loops are always observed in
projection against the plane of the solar disk or of the sky beyond. Consequently, in
the absence of geometrical reconstructions of individual loops along the lines of those
accomplished for Ha loops, relatively little can be said about the true shapes and sizes
of cool EUV loops. Nevertheless, limb observations such that in Fig.(1.27) do show that
most loops are essentially planar. The inclination of the planes containing the loops
may vary from nearly vertical to nearly horizontal. Moreover, there is some indication
that the preferred inclination of a loop may become more vertical as the region grows
older (Levine 1976, Bray et al 1991). Limb observations also yield estimates of the
heights attained by the loops.‘ Usually there are found to be in the range 50000 to
60000 km (Cheng 1980, Chiuderi 1981) while sometimes reach 110000 km (Athay et
al 1983). The widths of cool EUV loops seem to increase only slowly with height by
a factor less than two (Foukal 1976, Cheng 1980), and lie in the region from <2000 to
5000 km (Foukal 1975). But Dere (1982) gives larger estimates, ranging from 6000 to
22000 km. For La loops observed at the limb, Tsiropoula et al (1986) have measured
diameters, constant with height, of 2000 to 3500 km. However, it is important to
say that the loop width increases with temperature (Foukal 1976, Sheeley 1980); an
example is seen in Fig.(1.21). The aspect ratio parameter, which sometimes arises in
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Figure 1.27: Anagtive region cool loop system in the EUV line OVI (3x10° K'). Despite
the obscuration at low heights caused by overlapping, the region consists basically of a
number of separate loops lying in planes inclined at widely differing angles to the solar
vertical. Individual loops may reach heights of tens of thousands of kilometers (Levine
1976). '

studies of loop stability, defined as the ratio of the cross-section loop radius to its
length, is found to be 0.006 (Cheng et al 1980), an order magnitude smaller than that
found in hot EUV loops. The footpoints of cool EUV loops are generally located on
the peripheries of the two areas of opposite magnetic polarity in a bipolar active region
(Cheng et al 1980). On the other hand, there is an important class of cool coronal
loops which have at least one end anchored in bright EUV emission over a sunspot
(Foukal 1976). The former ones possibly may be more stable than the others cool EUV
loops. Despite of this, there are no quantitative informations about the lifetimes and
the evolution of them, although that cool loops observed in the EUV regime are found
to have flows. The line of sight velocities in the CIV (Athay et al 1982, 1983) are found
to range from £5 to +10 km/sec near disk center and from +9 to +18 km/sec near
the limb, a negative (positive) sign denoting redshift (blueshift). In most cases the
flow was directed downwards in both legs of the loop, but there were others showing a
unidirectional flow from one end of the loop to the other. This pattern is analogous to
that observed in the Ha active region loops discussed previously.

To end this section, we give in Table 1.2 the known quantitative data concerning the
morphological, dynamical and physical properties of cool loops (Bray et al 1991). From
the data presented it is evident that, over the temperature characterizing cool coronal
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Quantity Value Wavelength Disk (D) or Limb (L

Height, true (km) 40000-53000 Ha D
Height, projected (km) 26000-57000 Ha L
50000~-67000 EUV L
Length (km) 130000 Ha D
22000-109000 EUV D
Separation of the footpoints(km) 71000-88000 Ha D
Diameter (km) 1600 ('normal’ loop) Ha D
< 2000-22000 ('normal’ loop) BUV D,L
1300-580 (’very thin’ loop) Hao D
Aspect ratio 0.006 EUV D
Inclination of loop plane to vertical 30°-40° Ha D
Tilt of axis of symmetry 4%-6° Ha D
Lifetime 3-6 hr (loop system) Ha D
< 15 min (single loop) Ho D
Axial flow speed (km/sec) 34-125 Ha D
\‘ 20-150 Ha L
95 EUV D
Mach number 1.6-6 Ha D
Temperature (K) 21000 Ha D
7000-25000 Visible L
6 x 10%-108 EUV . DL
Electron density (cm_a) 5.6 x 1010 Hoa { D 5
3-6000 x 10° Visible L v
Gas pressure (dync/cmz) 0.36 Ha D
' 0.14-0.58 Visible L
Gas density (g/cms) 1.3 x 10—13 He D
Degree of hydrogen ionization 0.996 Ha D
Sound speed (km/sec) 21 Ha D
Nonthermal velocity (km/sec) 26 Ha D
10-30 EUV D
Line-of-sight magnetic field (G) 7-100 Visible L
Total magnetic field (G) 445 Visible L

¥

Table 1.2: Properties of cool loops (Bray et al 1991).

loops (20000 — 10° K), both the heights and lengths of the loops are comparable.
On the other hand, there is a small but apparently real increase in diameter with
temperature. the inferred values of the electron density in cool loops observed in
both the visible and EUV regions of the spectrum extend over a wide range of several
orders of magnitude. despite this, the values of the gas pressure listed in Table 1.2
are restricted to a much smaller range of one order of magnitude. This may reflect
the circumstance that the stability of a loop, whatever its temperature, depends on
the maintenance of approximate pressure equilibrium with the surrounding coronal
medium. Taken as a whole, the presented data show that, with the exception of
temperature, all cool loops appear to have similar properties and can be regarded as
manifestations of the same basic physical structure.

1.4.3 Hot loops

As we have seen, observations made in cool visible and EUV lines have provided exten-
sive information on the large- scale systems of loops which dominate the structure of
the lower corona above active regions. The loops are believed to trace out closed field
lines of force of the magnetic field which protrude up from beneath the photosphere
and expand to fill the whole coronal volume above an active region. Hence a picture of
the loop systems gives us some insight into the three-dimensional configuration of the



38 CHAPTER 1. THE SOLAR ATMOSPHERE

magnetic field. But the picture obtained from observations of cool loops is far from
complete. For more detail we have to turn to observations of hot loops, filled with
material at coronal temperatures of a million degrees or more. Emission from material
at that temperatures dominates the EUV and the soft X-ray regions of the solar spec-
trum. The lack of any appreciable photospheric or chromospheric emission at these
wavelengths enables the corona to be viewed directly against the disk and, in fact, most
of the available information on hot loops has been obtained from such (space) observa-
tions. In addition, other important contributions to our knowledge have come from the
visible and the radio regions of the spectrum. The line and the continuum radiation
emitted by the corona in the visible region is many orders of magnitude too faint to
be detected on the disk against the glare of the underlying photosphere. Nevertheless,
it can be observed beyond the limb both during and, with the aid of coronograph, out
side of a solar eclipse.

Before we are reffered to EUV and X-ray observations of hot coronal loops, we shall
cover briefly the observation in visible and radio wavelengths. From many decades
ago, it is known that the solar corona emission in the visible (wavelengths in the
range 500-700 nm) consist of three components, conventionally denoted by the the
letters K, F and L. The K component originates from the Thomson scattering of the
photospheric light by free electrons and is thus proportional to their number density.
The F component is due to scattering by interplanetary dust. Finally, the L component
is due to the emission of spectral lines, and is termed the monochromatic corona; it is
visible only in the inner corona. Hot coronal loops usually observed in FeX, FeXIV,
FeXV, NiXV, CaXV visible lines, because they are very bright in the Sun and they
have high ionization potential, which is a direct indication of the temperature of hot
loops which must be of order of 1-2 x 10 K. Thus active regions observed in this
spectrum regime (Kleczek 1963, Dunn 1971) are seen to consist from a system of loops
with typical heights of up 50000 to 100000 km. The systems appear to be rooted in
sunspot groups or in plage areas. But the larger loops may connect two active regions
and extend up to heights of 200000 to 250000 km. Also the larger loops are generally
uniform in intensity and have diameter of 8000 to 12000 km, while the smaller loops
are less uniform, particularly in their earlier stages, and they have a diameter of 3000
to 8000 km. Hot loops are planar structures and they are more active when they are
small, they tend to grow in situ, then fade, in a couple of hours and others grow at a
higher elevation, while large loops are very stable lasting for days.

Centimeter and low decimetre observations of the Sun with a spatial resolution
comparable to that achieved for EUV and X-ray loops are a relatively recent devel-
opment. This advance has largely been brought about by construction of large array
type radio telescopes (i.e., Very Large Array, Westerbork Synthesis Radio Telescope)



1.4. CORONAL PLASMA LOOPS : 39

employing the method of aperture synthesis. As we have seen thermal radiation from
the Sun is detectable over a vast range of electromagnetic spectrum, from the soft
X-rays to metric radio waves. But two factors combine to make the thermal radio
radiation from the Sun observed at the Earth’s surface peak in the centimetric region.
One is the onset of strong tropospheric absorption at wavelengths below about one
centimetre, while the other is the intrinsic decrease in the density of the radiation
at longer wavelengths. The two processes which contribute to the thermal emission
from active regions are bremsstrahlung (free-free emission by electrons) and gyrores-
onance radiation by electrons spiraling around magnetic field lines. Until today the
more extensive radio observations are referred to active regions generally than of in-
dividual loops. These observations have studied the magnetic field distribution in the
low corona above active regions and the correlation between the distribution of the
radio emission and chromospheric features and the photospheric field pattern. Only
few observations existed for individual radio loops of temperature of order 10° K giving
lengths in the range 70000 to 100000 km and widths typically of 15000 km. As we will
see in the following the aspect radio (loop width over its length) which is around 0.075
is comparable to those found for active regions hot loops observed in the EUV and soft
X-rays (Bray et al 1991, and references therein).

Going now to the high temperature regime, the EUV emission from the Sun is
confined very largely to active regions and the loops emanating from them (Tousey et
al 1973, Sheeley at al 1975). This contracts strongly with the case of the cool EUV
emission, which comes from all parts of the disk. When photographed in hot EUV
lines well-developed bipolar active regions on the disk often present a characteristic
'butterfly’ appearance (Levine 1976), so called because most of the emission comes
from two extended lobes of rather diffuse bright material shaped like the wings of a
butterfly. In some cases any detail discernible within the lobes tends to be in the form
of blobs or streaks rather than loops. Recognizable loops are readily seen, however,
outside the lobes. These may be grouped together to form systems of loops curving
around the outside parts of the active region. Where individual hot EUV loops can
be distinguished they are found to be broad and irregular and, overall, appear less
loop-like than those visible in the cool EUV. Sheeley (1980) remarks that, unlike cool
EUYV loops, the hot loops are never observed to brighten progressively along lengths,
but appear to brighten and fade in situ. The exact location of the loops footpoints is
not known, since hot EUV loops, unlike the cool ones, tends to fade out towards the
footpoints; they appear to join regions of opposite magnetic polarity in the underlying
magnetic field.

However, not all of the loops extending outwards from an active region necessarily
return to the same vicinity. Frequently loops arch across the disk for distances of the
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order of 100000 km to link two or more active regions into a huge magnetic complex
(Tousey et al 1973, Sheeley et al 1975, Sakurai & Uchida 1977). Such linkages are not
confined to active regions located in the same hemisphere, i.e. north or south, but may
involve regions lying on both sides of the equator (Sheeley et al 1977). From the other
hand interconnecting loops are generally fainter than those with both ends terminating
in or on the outskirts of the same active region. Habbal et al (1985) have examined
the geometry of the hot and cool EUV loops in an active region near the limb. They
find that some of the cool loops appear to extend further out from the limb than the
hot loops, which may reflects differences in the heights of the hot and cool loops or
could imply that the hot loops tend to lie in planes making greater angles to the solar
vertical than those of the cool loops. Clearly a reconstruction of the true geometry
of individual loops is required to distinguish between the two possibilities. At that
time one information is available about the true shapes and sizes of hot EUV loops
(Berton & Sakurai 1985). They studied two long-lived interconnecting loops which
was asymmetrical and had inclinations 25° and 7° and heights 119000 and 131000
km respectively. However, loops associated with a single active region do not rise
to the great heights as the interconnecting ones. Typically they reach up to 5000 to
11000 km above the solar surface and their widths is in the range 11000 to 18000
km (Gerassimenko 1980), or according to Cheng (1980) and Foukal (1975) the widths
are range from 4800 to 6500 km and from 3000 to 12000 km respectively. Thus, hot
EUV loops may be significally thicker than the cool ones, and so the aspect ratio is
found to be typically 0.03 for loops at the outer parts of an active region (Cheng et
al 1980), which is an order of magnitude greater than that found for cool EUV loops,
while Cheng (1980) found even larger aspect ratios ranging from 0.09 to 0.18 for small
loops observed on the disk. About the spatial relationship between hot and cool EUV
loops we must note that these structures, which although obviously related, must be
regarded separately, since they form in quite separate locations (Dere et al 1982, Cheng
et al 1980). On the other hand, as Cheng (1980) has remarked, the existence of hot and
cool loops side by side in active regions without any obvious direct spatial relationship
to one another intriguing questions about the mechanism of formation and dynamical
stability of coronal loops. '

Below about 10 nm we leave what is conventionally termed the EUV portion of the
spectrum and enter the region of soft X-rays which terminates near to 0.1 nm; below
this we speak for hard X-rays observing only during and in aftermath of solar flares.
In appearance the solar X-ray spectrum resembles the EUV spectrum. It is dominated
by the presence of emission lines of highly ionized stages of the elements N, O, Si, S,
Ne, Mg and Fe, superimposed on a continuum background. Three processes contribute
significantly to the X-ray continuum, thermal bremsstrahlung (free-free emission by
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electrons), radiative recombinations of electrons and ions (free-bound emission), and
two-photon decay of certain metastable states of helium-like and hydrogen-like ions.
Their relative contributions depend on the temperature and density of the emitting
plasma. The region of the solar X-ray spectrum below 2.5 nm is of special interest
because it embraces the resonance transitions of many highly ionized ions formed at
temperatures truly representative of the conditions in the Sun’s inner corona in tem-
peratures of order 2 x 10° K or greater (Walker 1972, Culhane & Acton 1974).

As in the EUV, active regions seen in soft X-rays are believed to be composed
basically of bright coronal loops arching between areas of opposite magnetic polarity.
However, since the X-rays brightness of an active region may exceed that of ’quit’ parts
of the corona by some three orders of magnitude (Vaiana et al 1976),‘the actual appear-
ance of the region on a broad-band photograph depends very much on the exposure
time. It is also influenced by the spectral bandpass. While intermediate density expo-
sures, for example, serve to show details of the loop structures associated with active
regions, very short exposures are required to reveal the small cores of intense X-ray
emission to be found at the hearts of some of them. Thus, it is found that X-ray active
regions overlie regions of strong bipolar magnetic fields in the photosphere (Vaiana et al
1973, Poletto et al 1975, Zombeck et al 1978, Pallavicini et al 1979, Golub et al 1982).
The most intense X-ray emission from each active region comes from the vicinity of
the magnetic neutral line. Also, if the field gradient across the neutral line is large,
there is frequently a small bright core connecting the two areas of opposite polarity.
The spectrum of the core is harder than that of the rest of the active region, implying
that, if the emission is thermal in origin, the hot is hotter. Observations of high spa-
tial resolution resolve the core into a small cluster of densely packed, compact loops.
According to Howard & Svestka (1977) older active regions do not have compact cores.
the X-ray loops associated with an active region are similar in general appearance to
those seen in hot EUV lines (Kundu et al 1980, Pallavicini at al 1981). They have been
classified by Davis & Krieger (1982) on the basis of their location into three classes.
Class I loops which occurring in the core of the active region and joining the areas of
opposite polarity on either side of the neutral line. Class II loops which surrounding
the core and occupying an area somewhat large in size than the associated Ha faculae,
and class IIT loops which extending outwards from the active region and connecting
it to magnetic areas in the surrounding photosphere. Loops of class III sometimes
occur in arcades spanning active region Ha filaments or they may link adjacent active
regions, which together form a huge magnetic complex. When interconnecting loops
join active regions on opposite of the equator they are referred to as trans-equatorial
loops. Also many quit region loops seem to occur in association with the final type
of solar X-ray filament cavities. These appear as elogated patches of reduced emission
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directly overlying quit region Ha filaments. Filament cavities which are observed both
on the disk and at the limb cover a (projected) area much larger than that of the Ha
filament itself and may persist for some time after the filament disappears (Bray et al
1991).

As we have mentioned above, loops of class I are found in the bright central cores
of X-ray active regions. They are small, density packed features which connect areas of
opposite magnetic polarity on either side of the neutral line through the active region.
according to Davis & Krieger (1982) the widths of such loops range from 700 to 5000
km and their lengths from 7000 to 20000 km, implying an aspect ratio of the order
of 0.1. This accords with the estimate of 0.1 to 0.2 given by Cheng et al (1980) for
core loops observed in the EUV. On the other hand, the latter authors give the larger
values of 7300 to 11000 km and 29000 to 44000 km for the widths and lengths of such
loops respectively. The loops that they observed showed little change over a period of
about 10 hours. ’

Loops of class II are seen in the outer parts of an active region. At the limb they
appear as giant structures rising to heights of 100000 £m or more. In fact, Howard &
Svestka (1977) observed loops with heights exceeding 200000 km reaching in one case
260000 km (nearly 0.4 times the solar radius). Davis & Krieger (1982) quote a range
of 5000 to 15000 km for the widths of class II active region loops and a range of 10000
to 100000 km for their lengths, which correspond to an aspect ration of order of 0.1.
But Gerassimenko et al (1978) give the somewhat larger widths of 20000 km.

Class III loops extend outwards from an active region and terminate either in an-
other or in a surrounding magnetic area. The former case corresponds to intercon-
necting loops and they will discussed later. Frequently the loops form bright arcades
spanning Ha filaments associated with the active region. Measurements made by Davis
& Krieger (1982) indicate that this class of loops have widths in the range 10000 to
30000 km and lengths in the range 50000 to 500000 km, yielding an aspect ratio of
order of 0.04. Such loops therefore tend to be winder and longer than the class I and II
loops. Apart from occasional localized brightenings, individual loops show no evidence
of internal structure. Class III loops appear to be connected to localized areas on
the outskirts of an active region where the magnetic field and gradients are relatively
high. Their other ends are anchored to the bright chromospheric network outlining the
boundaries of supergranulation cells (Davis & Krieger 1982). Finally, the brightness
of individual loops seems to vary in a slow and continuous manner throughout their
lives, presumably in response to changes in the underlying photospheric magnetic field
(Krieger et al 1976). More sudden enhancements of the loop are observed, but they
are generally associated with Ho flares or filament eruptions (Rust & Webb 1977). .

Interconnecting loops appear when a new active region is born in the neighborhood
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Figure 1.28: (a) X-ray image, taken from the AS&E telescope on Skylab, showing
arcades of active region loops over filament cavities. (b) Simultaneous Ha photograph
showing the locations of chromospheric filaments and filament channels. (¢) Schematic
drawing depicting the arcade loops above active region Ha filaments and filament
channels. (d) Map of the underlymg longitunal photospheric magnetic field (Davis &

Krieger 1982).
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Figure 1.29: Soft X-ray loops linking the outer parts of an active region to points
in the surrounding bright chromospheric network (Davis & Krieger 1982). (a) X-ray
image of the active region and its surroundings. (b,c) Ha and Call k line photographs
respectively. (d) Schematic drawing showing the relationship between the loops and the
network. Note the localized brightenings in the network marking the outer footpoints
of the loops.

of an existing region. The birth of one short interconnecting loop took less than 12
hours, and seems to relate with the emergence of new magnetic flux which tends to
trigger the appearance of interconnecting loops or to make existing ones brighten. Once
magnetic field linkages have established between active regions these connections tent
to last at least as long as the interconnecting regions exist as distinct entities. At this
stage, the appearance of interconnecting loops against the disk is similar to that of
the loops associated with individual active regions but they have heights in the range
25000 to 110000, so they are smaller than the loops internal to active regions. Their
lifetimes are typically few days or even hours. During their lifetimes, the shapes of loops
changes and sometimes are related directly to variations in the photospheric magnetic
field. Also growth of brightening of X-ray interconnecting loops in the absence of flares
is observed quite often in old active regions (Howard & Svestka 1977, Chase et al 1976,
Bray et al 1991). |
Little information is available on quit region loops pertains to those associated with
filaments cavities. Ray & van Hoven (1982), and McIntosh et al (1976) demonstrated
that their heights can be reached at 500000 km, while Serio et al (1978) found that
filament cavities are enclosed by a series of loops with heights greater than 50000 km.
The emission from such loops is generally faint, so it is not surprising that their tops are -
not always visible when they are observed on the disk. Serio et al 1978 point out that
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the X-ray loops seen oven filament cavities appear to be related to the large-scale loop
systems observed above quiescent Ha prominences in white light and visible coronal
lines. Also, isolated loops sometimes accompany the transient X-ray enhancements in
the lower corona associated with the disappearance of Ha filaments (Webb et al 1976).
But not all neutral lines in the longitudinal magnetic field outside active regions are
associated with either existing or recently dissolved filaments. Most of the solar surface
is in fact covered with the dispersed remnant fields of long vanished active regions, in
which are embedded neutral lines spaced less than 30 heliographic degrees apart. Thus,
loops, when present, appear as isolated structures rather than as the components of
long arcades spanning the neutral lines. these loops are somewhat smaller than those
over filament cavities, having heights of 200000 to 350000 km (McIntosh et al 1976).
Finally, since the photospheric magnetic field is concentrated in the bright network
outlining the boundaries of the supergranulation cells, one might expect quit region
loops to be rooted in the network (Davis & Krieger 1982).

Thus we have described what at first sight might appear to be a bewildering variety
of X-ray loops distributed over the solar surface. Closer examination, however, reveals
that they all form part of an evolving pattern which begins with the appearance of an
active region. As we have seen in section 1.3.1, when first born, an X-ray active region
is relatively small ad compact and so must be the loops comprising it. Within hours
other loops appear which link the region to other active regions in its vicinity. These
inter-region links, but not the individual connecting loops, last at least as long as the
regions concerned survive as distinct entities. As the region grows older, it expands and
becomes more diffuse and large peripheral loops appear. Some of these are anchored
within the active region at both ends, while others terminate in magnetic areas outside.
Of particular interest are the peripheral loops which form arcades spanning channels in
the corona which represent extensions of dark Ho filaments associated with the active
region. Eventually the region dissolves but leaves behind the filaments, each with its
associated arcade of X-ray loops. During this final stage of their lives the filaments are
termed quiescent filaments. After some 100 to 250 days these filaments too disappear,
but still their associated arcades of loops linger on, spanning the neutral lines in the
longitudinal magnetic field over which the filaments had formally lain. With the further
passage of time the loops in the arcade increase in number and become fainter until,
the magnetic field of the original active is fragmented and dispersed and no apparent
X-ray trace of its presence remains (Bray et al 1991, Zhang et al 1992).

Little information is available about the detailed relationships between hot loops
observed in different regions of the spectrum. As we have seen X-ray loops associated
with an active region are similar in general appearance to those seen in hot EUV lines,
but systematic comparisons are lacking. More attention has been paid to the complex



46 CHAPTER 1. THE SOLAR ATMOSPHERE

relationship between radio and X-ray loops. Lang et al 1982, Lang & Wilson (1982),
Webb et al (1983), Dulk & Gary (1983) found that in general, the areas of microwave
emission on their maps were not associated with X-ray emission, although several of
them were found to coincide with the apparent bases of short coronal X-ray loops and
few of them with the tops of X-rays loops. Webb et al (1983) explain this apparent lack
of association as a consequence of the strong dependence of the gyroresonance opacity
on variations in the strength and direction of the magnetic field pervading the active
region. Thus, a radio loop and an X-ray loop could coincide in space but look very
different on maps depicting the emission which escapes.

We shall end this section, giving first in Table 1.3 the known quantitative data
concerning the morphological, dynamical and physical properties of hot loops and
second a comparison between cool and hot ones (Bray et al 1991). By contrast with
cool loops, where the data comes almost exclusively from Ha and various EUV lines,
here we are able to draw upon data from no less than four regions of the spectrum.
When we examine the tabulated figures for the various morphological and physical
quantities, we see that — despite the rather large of values in many cases — the picture is
a ¢onsistent one. In fact, all hot loops appear to be basically similar in their properties
regardless of the wavelength region in which they are observed. Also, by contrast
with cool loops, dynamical information is not available for hot loops. The inferred
temperatures and electron densities cover the ranges 10° to 3 x 10® K and 1.5 x 108
to 2 x 10'® ¢m ™3 respectively, whereas the gas pressures cover a range of, at most,
a single order of magnitude. This parallels a similar situation for cool loops and in
fact, the actual values for pressure appear to be much the same for cool and hot loops.
Once again, this suggest that, regardless of its temperature, a loop is in approximate
pressure equilibrium with its surroundings.

Comparing the two kinds of loops, it is found that hot loops, especially some of
those observed in X-rays, can attain much greater heights than cool ones. Both hot
and cool loops exhibit a wide range of lengths, but certain classes of X-ray loops
(interconnecting) are much longer than cool loops observed in Ha or the cool EUV
lines. Hot and cool EUV have much the same diameter, but cool Ha and Lo loops
appear to be much than any other class. measurements of the inclinations of the
loops planes to the vertical are sparse, but both hot and cool loops may be inclined at
significant angles. In general, hot loops last longer than cool ones, and there appear to
be no hot counterparts to the sorted-lived Ha loops, which last for only a few minutes.
from the other hand however, it is difficult to compare the electron densities in hot and
cool loops, since both cover a large range, with considerable overlap. The gas pressures
show a much smaller range, as pointed out above, and the values for hot and cool
loops are much the same. this also applies to the non-thermal velocity, but there are
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Quantity Value Wavelength Disk (D) or Limb (L)

Height, true (km) 110000-130000 (interconnecting) EUV D
45000 radiowave D
Height, projected (km) 50000-100000 visible L
200000-250000 (interconnecting) visible L
500070000 EUV D
100000-200000 (class II) X-ray L

50000100000 (class III) X-ray D,L

25000-110000 (interconnecting) X-ray D,L
200000600000 (quiet region) X-ray L
Length (km) 18000-29000 EUV D
7000-44000 (class I) X-ray D
10000-100000 (class II) X-ray D
50000500000 (class III) X-ray D
70000-100000 radiowave D
Separation of the footpoints{km) 250000-500000 (quiet region) X-ray L
Diameter (km) 3000-22000 visible L

3000-18000 EUV D,L
5000-11000 (class I) X-ray D
5000-20000 (class II) X-ray D
1000030000 (class III) X-ray D
15000 radiowave D

Aspect ratio 0.03-0.18 EUV ; D i

0.1 (class I,II) X-ray D
0.04 (class III) X-ray D
0.075 microwave D
Inclination of loop plane to vertical 79-25° EUV D
Lifetime hours (small loops) visible L
days (large loops) visible L
> 6 hr EUV D
> 31 hr (interconnecting) EUV D
> 10 hr (class I) X-ray D
hours-days (interconnecting) X-ray D
hours-days microwave D
Temperature (K) 1-2.6 x 10° Visible L
2-2.2 x 108 EUV D
2-3.2 x 10° X-ray D
1.7-3 x 108 radiowave D
Electron density (cm_s) 1.5-20 x 10% visible L
1.8-20 x 109 EUV D
8-60 x 108 X-ray D
5-25 x 10% radiowave D
Gas pressure (dyne/cmz) 0.5 (class I) Visible L
0.7-16.6 EUV D
2.4 (class II) X-ray D
2 radiowave D
Nonthermal velocity (km/sec) 6-16 Visible L
Total magnetic field (G) 130-200 radiowave D

Table 1.3: Properties of hot loops (Bray et al 1991).
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few measurements. Similarly, there are too few measurements of the total magnetic
field to permit meaningful comment. In summary, hot loops tend to be thicker, longer,

higher, and longer-lived than cool loops, with which they are not cospatial. however,

our present knowledge appears to indicate that their other morphological and physical
properties (except temperature) are similar.

1.4.4 Flare loops

In the two previous sections we have described in detail the morphological and physical

properties of coronal loops which have nothing to do with the solar flare phenomenon.

In this section we shall refer briefly in flare loops and their role in solar flares, since the
coronal loop models constructed in this thesis have small relation with those in flares.
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Flares appear to form two basic types, simple-loop flares and two-ribbon flares
(Priest, 1984, 1985, Svestka 1981). Two-ribbon flares, which are highly dynamic events,
are perhaps the more interesting since most large flares fall into this category so that
— with a given spatial resolution — the structure is more easily observed, and because
they contain numerous loops.

A simple-loop flare, also known as a compact flare or subflare, is a small flare
which consists of a single loop or collection of loops which simply brightens and fades,
without movement or change of shape (Priest 1984). It is observed both in Ha and
in soft X-rays. Compact flares comprise some of the best flare observations obtained
from Skylab. the main difference between compact and large two-ribbon flares is in
the relative absence of continued heating and of a loop system growth of a compact
flare during the decay phase.

Two-ribbon flares rank as the largest and most energetic of all solar flares. Photo-
spheric magnetograms show that the two characteristic ribbons of bright Ha: emission
lie on either side of a line of zero longitudinal field strength treading the active region.
Prior to the onset of the flare, this inversion line is usually occupied by a dark filament.
Sometimes the two bright ribbons are straight, parallel and very similar in appearance.
Often, however, the structure seen in Ha line is much more irregular. In such cases,
however, the true two-ribbon nature of the flare can be established with the aid of
maps of the longitudinal photospheric field, where the neutral line will be observed to
separate the ribbons of flare emission.

The process of the onset of a two-ribbon flare, starts quite some time before, with
changes in the photospheric magnetic field (Svestka 1981). On the occasions when the
line, defined where the longitudinal field strength is zero, is marked by a filament, the
rearrangement of the field is sigha]led by the activation and ultimately disruption of
the filament. The disruption marks the appearance of newly-formed loops visible in
Ha which form an arcade spanning the neutral line. The footpoints of the loops are
located in the ribbons which constitute the Ha flare. As the flare proceeds, the two
ribbons are often seen to move apart with a velocity of 2 to 10 km/sec. The number
of Ha loops that are visible at any time varies, and the duration of their ivisibility is
from 6 to 23 min (Heinzel et al 1992).

Early in the course of a flare a soft X-ray loop system is also observed; this system
can outlast the optical event by many hours. As time proceeds new, progressively
higher, Ha loops are formed, their footpoints remaining rooted to the ribbons. This
process can last for hours, which explains why the Ha are often called post-flare loops.
During the decay phase of the flare the X-ray loops are also formed as successively
greater heights, greater than those of the Ha loops; the height of X-ray loops can
extend to beyond 100000 km. The Ha and X-ray loop systems do not appear to consist
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of single loops rising upwards but rather of newly formed or activated stationary loops
appearing at successively higher levels. At heights similar to those of Ha and X-ray
loops, loops are also observed in the EUV lines (Pneuman 1981).

The physical connection between the footpoints of the Ha loops and the chromo-
spheric ribbons has been known for a long time. More recent observations show that
the Ha footpoints are located on the insides of the ribbons, while the X-ray footpoints
are rooted in the middle and outer portions of the ribbons. This is consistent with the
concept ofa system of hot loops (Pneuman 1981).

It is of considerable importance to out understanding of the role of loops in flares
to establish the site of the primary energy release. MacCombie & Rust (1979) found
that the tops of soft X-rays loops were considerably hotter and'brightet than the
legs, and that in each case the temperature difference was maintained for at least 8
hours, indicated a continual heating. Also, confidence for hard X-ray emission from
the footpoints of loops has been presented. Nevertheless, the convectional view at the
present time is that the primary energy release occurs at or near the tops of the flare
loops, i.e. in the inner corona (Bray et al 1991).

The morphological, dynamical and physical properties of flare loops observed in dif-
ferent regions of the spectrum are summarized in Table 1.4. For many of the quantities
there is a large range in values — due in part to real variations from flare to flare and
from loop to loop. However a satisfactory degree of consistency is apparent in most,
but not all, cases.

It is important to attempt a comparison between the Table 1.4 with the Tables 1.2
and 1.3 for cool and hot non-flare loops described in previous sections. Let us con-
sider, firstly, the morphological and dynamical properties. In the case of Ha loops, we
find that the properties of flare and non-flare loops are the same or nearly the same.
However, compared with non-flare loops, Ha loop systems appear to be slightly higher
and to last longer, as do individual flare loops. Ha loops must therefore be distin-
guished from non-flare loops by their other properties, including their other properties,
including their closer associatioy"with flares, brightness, direction of material flow, and
number of loops in a system.

The morphological and dynamical properties of EUV flare loops are also similar to
those of EUV non-flare loops. EUV flare loops appear to lie somewhat lower, but the
ranges of values overlap. The microwave data are inadequate to make a comparison
between flare and non-flare loops meaningful (Heinzel et al 1992).

Finally, in soft X-rays both flare and non-flare loops reach very great heights, but
the non-flare ones appear to reach greater heights. But again the ranges overlap. The
- footpoint separation for soft X-ray flare loops appears to be much smaller, but this
particular quantity is very dependent on the geometry, which is usually unknown.
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In general, therefore, we are led to the conclusion that the morphological properties
of flares and non-flare loops are remarkably similar, regardless of the wavelength region
in which they are observed.

The situation is very different when we compare physical conditions. For the hot
not-flare loops we find that independent of the wavelength region, flare loops are ap-
proximately an order magnitude hotter than non-flare loops. Also, except in the EUV,
the electron density is also an order of magnitude greater. Accordingly, we arrive at the
important conclusion that the gas pressure in flare loops is approximately two orders
of magnitude greater than in non-flare loops.

The value of the total magnetic field given by the microwave observations appears
somewhat bigger for flare than for non-flare loops, but in both cases the results are
sparse.

Finally, unlike hot flare loops, cool flare loops observed in Ha and other visible
region lines yield similar values for the electron temperature and also of the non-thermal
velocity to those of cool non-flare loops.

In summary, the extensive numerical data which has been derived for flare and
non-flare loops leads to the conclusion that hot flare loops are distinguished from hot
non-flare loops by their very different physical conditions rather than by morphologi-
cal differences. By contrast, cool flare loops can be distinguished from their non-flare
counterparts only by characteristics other than their morphological and physical prop-
erties.

1.5 Flows in solar atmosphere

Solar observations from Earth and satellites have established the fact that the solar
atmosphere is not a static one but it is in a continuous motion. Apart from the well-
known motions like granulation, spicules, Evershed effect e.t.c., many others have been
discovered in the recent years. In this chapter we shall review some of these recent
observations of systematic mass motions related with the subject of this thesis.

1.5.1 Supergranular flow

Supergranules are defined by photospheric horizontal flows diverging from the cell cen-
ter and converging at the network-bordering adjacent cell. Magnetic knots are located
at the foci of of converging flow and are associated with downflow of the order of 0.1
f W;@Nm/ sec. Upflow occurs near the cell centers, but unlike the downflow it is not
‘ na\}\ed in small tubes and it is lower in amplitude. There is a continuity in
granule circulation from the photosphere to the middle chromosphere span-

the su 2
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Quantity Value Wavelength Flare phase
Height, true (km) 45000-60000 Ha 3
4200-13000 EUV 1,2
< 200050000 hard X-ray 2
15000-50000 microwave 2
Height, projected (km) 60000-79000 Ha 3
R 33000-67000 EUV 3
¥ 15000 soft X-ray 1
35000-180000 soft X-ray 3
Length true (km) 60000-100000 Ha 3
23000-27000 EUV 1
30000-65000 microwave 2
Length projected or estimated (km) 10000-20000 EUV 0,2
15000 soft X-ray 1
7250-100000 soft X-ray 2
45000-250000 hard X-ray 2
Separation of the footpoints{km) 35000-55000 Ha 3
30000 soft X-ray 1
Diameter (km) < 1500-2200 Ha 3
2500-14000 BUV 1,2,3
3000 soft X-ray 1
5000-20000 soft X-ray 2,3
6000 hard X-ray 2
2200-9400 microwave 2
Inclination of loop plane to vertical 1°-45° visible 3
Tilt of axis of symmetry 59-14° visible 3
Lifetime 12 hr (loop system) Ha 3
0.25-1.5 hr (single loop) Ha 3
13 hr (single loop) EUV 3
< 72 hr(single loop) hard X-ray 3
Axial flow speed (km/sec) 45-110 visible 3
30 (downflow) EUV 1,2,3
200 (upflow) EUV 2
Temperature (K) 7600-21000 Visible -
5 x 108 Visible -
2-2000 x 10% BUV -
5-50 x 105 EUV 3
1.5 x 107 soft X-ray 2
6.8 x 108 soft X-ray 3
3 x 107 hard X-ray 2,3
3-7 % 107 microwave 2
Electron density (cm_s) 1-7 x 1010 Visible -
2-30 x 1011 EUV 0
8-2000 x 108 EUV 3
4.7 x 1010 soft X-ray 2
1.7 x 1010 soft X-ray 3
3-11 x 1010 hard X-ray -
1010 microwave 0
2-700 x 108 microwave 1,2
Gas pressure (dyne/cmz) - 55 Visible -
0.02-7 EUV 3
« 195 soft X-ray 2
138 microwave 2
Nonthermal velocity (km/sec) 3-16 Visible -
Total magnetic field (G) 21-500 microwave 1,2
120-176 microwave 3

Table 1.4: Properties of flare loops (Bray et al 1991). The last column refers to the
flare phase, 0 =preflare, 1 =rise, 2 =maximum, 3 =decay.

N,
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ning approximently 1500 km and 10 scale heights. Although the sense of the flow is
preserved over this extended height range, the detailed pattern changes markedly. At
photospheric levels, the horizontal flow velocity of about 0.8 km/sec greatly exceeds the
vertical flow velocity, whereas in the middle chromosphere the two are approximately
equal and are increased to at least 3 km/sec (Athay 1980).

1.5.2 Flows in sunspots

The most-well known example of plasma flow is of course the Evershed effect (Alis-
sandrakis et al 1988,1992, Dere et al 1990, Dialetis et al 1985, Kjeldseth-Moe et al
1993). It was J. Evershed in 1909 who showed that observations implied a mainly
radial outflow in the penumbra at about 2 km/sec, although some evidence has also
been given for substantial vertical and tangential components. The flow begins near
the umbra/penumbra border, achieves maximum speed in the penumbra and decays
within a spot diameter of the outer penumbral boundary.

The Evershed flow associated with large sunspots has both striking similarities and
differences from supergranular flow. Among the similarities are the predominance of
horizontal flow and the divergence from a well-defined center. Among the differences
are the concentration of vertical magnetic flux at the center of divergence of horizontal
flow (the sunspot umbra) rather than at the foci of convergence, and the reversal of
the sense of flow between the photosphere and chromosphere.

Early observations indicated that the Evershed outflow was largest in the weakest
photospheric lines, decreased progressively in stronger lines, and then reversed sing
to increase with line strength as an inflow in chromospheric lines. This dep~ndence
upon line strength suggested a height variation. But more recent spectral in imaging
observations at higher spatial resolution have shown that the interpretation is more
complex, and the line strength dependence does not yet seem to have a widely accepted
explanation.

One finding is that the photospheric outflow is observed only in the dark penumbral
filaments, where it may be reach velocities up to 6 km/sec (Fig.1.30). The inward
Evershed flow observed in Ha is clearly associated with rapid motions of chromospheric
penumbra and extend well beyond it. It is possible that this Ho inflow is just coronal
material falling into umbra along relatively much higher field lines and has little to do
with the photospheric Evershed effect. Both flows are usually subsonic, but supersonic
velocities also have observe in chromospheric altitutes near the the spot. In this area
the velocity fields often deviate considerably from circular symmetry. It must be note
that high spatial resolution observations are compatible with the fact that around
sunspots the plasma flows along the magnetic field lines.
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Figure 1.30: Components of the velocity vector as a function of distance from the
center of the spot. Positive radial component corresponds to inflow, positive vertical
component to upflow and positive azimouthal component to clockwise motion. (a)
photosphere (Fel 6173 A). (b) chromosphere (Ha + 0.3 A). (c) transition zone CIV
1548,1550 A(Dere et al 1990).

In transition-region lines the situation is less clear, because the flows appear more
complex. The velocity is, on average, directed into the sunspot with predominant
vertical directions. If averaged over all position angles in the sunspot, velocities are
modest and subsonic. In high spatial resolution observations are seen multiple velocity
structure with velocities up to 100 km/sec. One or two distinctly supersonic velocity
components may appear in addition to a component with subsonic speed. The regions
with supersonic speeds may cover a large part of the entire sunspot region. Smaller
areas of concentrated mass flux may occur within the regions. Also moderate upflows
are also present in the transition region. Finally the flow pattern persist for long period,
but show clear changes on time scales from minutes to days. Finally in active regions,
downflow speeds of 70-100 km/sec are commonly observed in the ”coronal rain” of
plasma cooling from 10° K to 10* K, draining along fieldlines into sunspots.

1.5.3 Flows in filaments and prominences

The presence or not of systematic flows in filaments is a controversial subject. Down-
flows observed in prominences seen in the limb, while upflows in filaments in the disc.
The concept of the existence of mean upward flow in a filament is generally accepted
with an amplitude of 0.5 km/sec in Ha and of 5 km/sec in CIV. But strong downflows
comparable in Ha and CIV are observed (< 10 km/sec) at footpoints at the end of a
filament, lasting 1 to 10 k. Up and down motions (+6 km/sec in Ha) are also observed
at footpoints suggesting the existance of loops. It should be noted that the detection
of Doppler speeds in Ha in filaments is difficult because of their transparency (Athay
1989, Chou & Zirin 1988, Georgakilas et al 1990, Schmieder 1987, Schmieder et al
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1985).

Analysis of mass motions from center to limb observations in prominences shows the
existance of an horizontal flow in and around the filament. Fast horizontal motions of 5
km/sec are inclined to the prominence axis with an angle of ~ 20°. The direction of the
velocity is the same as that of the magnetic field lines. Also observations in EUV lines
shows the presence of horizontal motions with small velocities (< 20 km/sec). Also in
some cases horizontal velocities are slightly less than the vertical one because of the
presence of different structures, like bushs of small loops, aligned along the filament
axis. ,

Finally, Athay et al (1983) studies CIV Doppler velocities in an active region, and
found a velocity neutral line coincident with the magnetic neutral ine. While their
results may not apply to quiescent prominences, they do suggest a large-scale systematic
flow (in loops perhaps), associated with a magnetic arcade.

1.5.4 Coronal rain

Coronal rain is a phenomenon observed over active regions at the limb. Bright con-
densations at coronal levels are observed to funnel into localized areas as trough the
matter were channeled along magnetic lines of force above one pole of a dipole. This is
different from the situation for post-flare loops in which matter is seen flowing in both
legs of a closed loop system, i.e., into both poles of a dipole. Also, the flow trajectories
for coronal rain typically have less curvature than in post-flare loops, and the focus of
the inflow is less well defined than in the case of post-flare loops. Material velocities for
the falling condensation in coronal rain are typically of the order of 100 to 200 km/sec.
The motion appears to be subsonic in nearly all cases. In general, coronal rain is not
identified with energetic phenomena related to flare activity (Athay 1980, Athay et al
1980, Bruner et al 1976, Withbroe & Noyes 1977).

1.5.5 Surges and sprays

Surge and spray prominences are associated with flare activity. Both consist of violent
upheavals of major proportions. Also, both are associated closely with flare-like events
at the seat of the ejection. It is possible that all true surges occur as expansions of
flare material (Athay et al 1980). A

Sprays, in general, are more violent events than surges and are more typically
associated with larger flares. The ejection velocity in sprays exceeds that in surges
criterion which used for the definition of sprays i.e., ejections for which the outward
velocity exceeds the escape velocity. Also sprays can be defined in terms of their frag-
mented appearance. In this definition, a spray consists of small, discrete condensation



1.5. FLOWS IN SOLAR ATMOSPHERE " 55

or droplets, whereas surges are more typically fibrous streams of ejected material which
appear follows the magnetic field lines.

Surges have have typical velocities of 100 to 200 km/sec. Their upward motion of
10 to 20 minutes duration, and often along a curved trajectory, is usually followed by
a retraction along more or less the same path. This is consistent with the conclusion
that the magnetic field pattern remains the intact. If one considers sprays as those
events for which the velocity exceeds the escape velocity, then spray ejecta are found
to typically.move in straight lines and never reverse direction. Spray velocities up to
1500 km/sec are observed (Athay 1980).

1.5.6 Flows in loops

In the recent years space observations shows the dominations of loop structures in the
appearance of the active corona. Apart from the classification of section 1.3.5 we can
distingouist in two district classes — a high-temperature one or hot loops, (' > 10° K)
for which equilibrium apparently prevails, and a low-temperature one or cold loops (T <
10% K) characterized by large plasma flows. The time behavior of these two classes,
even though not yet satisfactorily defined, seems to be qualitatively different, hot loops
have longer durations and appear to be more stable than cool loops. Gerassimenko et
al (1978) in examing the time behavior of three loops found less than a two percent
variation over a 25-min period. Sheeley (1980) on the bases of FeXV observations,
noted that a typical loop pattern lasts for several days, whereas the individual loops
within the pattern evolve on a time scale of about 6 h. Levine & Withbroe (1977)
reported a sizable decrease in NeVII emission from a loop observed by Skylab over
a 16-min period, as well as a total loop disruption in less than 2.5 h. Contrasting
evidence, however is shown by the cool loops studied by Foukal (1976), who found
only little variation in a NeVII loop observed with a time separation of 5 h. Also
temporal changes in loop morphology or emission pattern comprise indirect evidence
for motions. For cool loops such g,?ridence derives also from consideration of their overall
visibility pattern at any instant, loop structures extending up to 50000 km above the
limb are not uncommon, and observations show no evidence for density variation for
the factor 103 — 10* over this height range that would expect to characterize a plasma
in hydrostatic equilibrium at 10° K.

But also direct observations suggest the existance of a family of coronal loops char-
acterized by mass flow of the plasma inside the loop (Fig.1.31). Mass motions with
velocity up to 100 km/sec have been observed in the chromosphere-corona transition
region, particular in areas of intense vertical magnetic field (i.e., active regions), such
as those where coronal loops are likely to be rooted. These conclusions coming from the
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Figure 1.31: Line of sight velocity maps in CIV (1548 A) of a loop region observed at
two different times. Filled circles (inverted triangles) correspond to positive (negative)
velocities. i.e., to blueshifts (redshifts) and the size of the symbol plotted is proportional
to the observed line of sight velocity. The superimposed curves are the semicircles that
best represent the shape of the loop. Also is drawn the solar limb (Kopp et al 1985).

general observed redshift broading of transition region profiles. The redshift velocity
increase initially with temperature reaching a maximum at 10° K and after it decrease.
In general this broadening is larger than the thermal or the expect turbulence broad-
ening by an averaged excess velocity of 18 km/sec. The emission pattern appears to
be steady for days and to be confined to areas of closed magnetic field. Finally, large
flows along loop structures have been also observed in the corona (Athay 1981; Kopp
et al 1985, Withbroe & Noyes 1977).

This catholic redshift emission is one of the most fascinating and puzzling results
of the EUV observations of the Sun (Fig.1.32). The inferred mass flux at 10° K is
sufficient to empty the corona in only a few minutes, it seems highly unlikely that a
true net downward mass flux (which would also require plasma to cross closed mag-
netic fieldlines) is involved. More likely the apparent downflow results from a spatial
and/or temporal averaging of the motion of material which is more visible (at EUV
wavelengths) when descending than when ascending (i.e., motion along loop-like field-
lines). Although that the downflow mass flux rate is comparable to that of spicules,
it is unlikely that the two mass flux rates refer to the same phenomenon, because in
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Figure 1.32: Wavelength shifts in active region spectra and the corresponding Doppler
line of sight velocities as a function of solar longitude, for lines CIII (1175 A), SillI(1294,
1296 &), OIV (1401, 1407 A) SiIV(1394 A), NV (1239, 1243 A) and OV(1218 A). The
solar limb corresponds to sin§ = 1 (Feldman et al 1982).

active regions where the down flows are strongest, spicules appear to be suppressed.

There are also theoretical reasons for expecting such flows. Any pressure difference
between the footpoints would induce a plasma flow along the loop (Glenross 1980,
Loughhead et al 1984, Mariska 1984,1988). This should persist for a long time - if
not disturbed — without canceling the pressure difference itself, given the large mass
difference between coronal and chromospheric regions of a loop. It appears that loops
can exist which are not in hydrostatic equilibrium; however, there are likely to be in a
steady state since the free-fall time (10° sec for a loop of 10° km of height) and sound
travel time (102 sec) are much shorter than the lifetime. Loops often appear to be stable
for more than a day (Webb 1981). Finally Craig & McClymont (1986), McClymont
& Craig (1987), McClymont (1989) tried to explain theoretically the presence of the
redshift emission in transition region saying steady high-speed flows can exist only in
cool loops so it gets out that only the downflow leg of the loop is visible; if the hot loops
(with high densities) have flows ‘would be dominated both the blueshifted emission in
transition region temperatures and the Doppler-shift emission in coronal temperatures.

Thus we see that in many cases the plasma flows are present in solar structures.
Especially in active regions the plasma is not a static one. Following Priest (1984), is
now known that the active-region plasma is dynamic with continual activity in the form
of a wide range of flows along fieldlines, while the magnetic field of an active region
probably evolves through a series of essentially stationary states, mainly force-free.
In fig.(1.33) we see a typical situation of the various flows presented by Priest (1984)
discussed previously. In briefly, ground based observations reveal Evershed outflow (6
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to 7 km/sec), inflow (20 km/sec), network downflow (0.1 to 2 km/sec), surges (20 to
30 km/sec) spicules (20 to 30 km/sec) and coronal rain (50 to 100 km/sec). Space
observations show both transient, small scale, fast flows (0 to 150 km/sec), lasting for
minutes or less, and persistent, large scale slower flows (2 to 10 km/sec), lasting for an
hour or more (Priest 1984); also, in transition region lines (Doschek et al 1976, Feldman
1982), or X-ray coronal lines, systematic flows (50 - 100 km/sec) may be responsible
for the observed nonthermal X-ray line broadening. Furthermore, if these flows occur
along contorted magnetic field lines (Parker 1983), the derived excess velocities of 100
km/sec (Acton et al 1981), or 50 km/sec (Saba & Strong 1991), may represent a lower
limit since the actual velocities could be several times larger, perhaps even comparable
to the sound speed.
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Ground-based

Figure 1.33: Several types of active region flow from (a) ground-based observations.
The schematic active region has preceding magnetic flux (left) concentrated as a
sunspot and following flux (right) more diffuse. Heavy-headed arrows indicate the
flow directions and the numbers give the typical speeds in km/sec. In (b) transient

flows has dashed arrows, while large-scale steady flows are indicated by solid arrows
(Priest 1984).
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Chapter 2

THEORY OF SOLAR
PLASMAS

If the plasma moves in a magnetic field, electric fields are induced in it and electric
currents flow. The magnetic field exerts forces on these currents which may consider-
ably modify the flow. Conversely, the currents theirselves modify the magnetic field.
Thus we have a complex interaction between the magnetic and the fluid-dynamic phe-
nomena, and the flow must be examined by combining the field equations with those
of fluid dynamics. In this chapter we shall derive the basic equations discrubing this
interaction.

2.1 The reduction of Maxwell equations

Maxwell equations for an electric field E and magnetic field B in any inertial coordinate
system in the presence of a net charge density é and current density J are

V-E = 476, (2.1.1a)
0B
VxE= —E, (211b)
VB=0, (2.1.1c)
4 1 0E
\% =—J+ ==
xB=—J+ ==, (2.1.1d)

where c is the speed of light.
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In a frame of reference moving with velocity V relative to the coordinate system,
the electric field E' is (Jackon, 1975)

B
E = y(E ;¥ ) : (2.1.2a)
B = y(B _¥x E) , (2.1.2b)
C

where y= (1 — Vz/cz)—l/ ? is the Lorentz factor. We assume now that the charged
particles (electrons and ions) that produce these fields can be regarded as a neutral
continuum (because the free electrons quickly neutralize any separated charges, so the
charge densities of the electrons and ions are equal, 8 = 0), and the whole system can
be approximated as a fluid which means that all physical quantities that characterize
the fluid are averaged values of the real one. Such a description is possible in the case
of cosmic plasmas when the Debye length, the cyclotron radius and the mean free path
for Coulomb collisions are much smaller than a characteristic length of the plasma
(Tsinganos 1992a).

Assuming next that the background fluid is a classical fluid with a large scalar
electrical conductivity o, in the frame of reference of the fluid the electrical current
density J' is related to the electric field by Ohm’s law (Parker 1979)

J =0E. - (2.1.3)

Consider now the fact that most flows observing in the Sun and the most astrophys-
ical flows are extremely nonrelativistic, i.e., V/c << 1 where V is a characteristic bulk
flow speed. Then, in the view of the high conductivity, it follows that the displesment
current E /8t and the polarization current §V are both smaller by V2/c? times to the
electric current density J. Thus, in those circumstances the plasma is electrically neu-
tral and the only electrical fields that are present are the induced (Eq.2.1.1b). Thus,
we have the Ampére law

VxB= ég—r.l, (2.1.4)

Also, neglecting second order terms in V/c we found that the magnetic field in the
moving and fixed frames are equal, B’ = B, so the current densities in the moving and
fixed frames are equal, J' = J. This is easy to understood because the polarization
current §V is negligible. It follows from Egs.(2.1.3) and (2.1.4)

J=0<E+V:B).

- (2.1.5)
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Thus, using Egs.(2.1.1b), (2.1.4) and (2.1.5) to eliminate J and E we obtain the mag-
netohydrodynamic (MHD) induction equation

%:Vx(VxB)+Vx(anB), (2.1.6)

where for converience we have defined the resistive diffusion coefficient

02

R = — 2.1.7
il dro ( )

If 7 is independent of the position, as usually assumed, Eq.(2.1.6) reduces to

%]?- =V x(V xB)+17V?B. (2.1.8)
Writing Eq.(2.1.8) in dimmensijonless form we see that the first right term dominates
if
L.V.
n

R, = >1, (2.1.9)

where R, is the magnetic Reynolds number (L., Vi being characteristic length and
velocity scales of the plasma). Using the Spitzer electrical conductivity ¢ = 10773/2
one finds for the most solar structures R,, ~ 10'2 so the plasma is almost perfectly
conducting (¢ — 00) and Eq.(2.1.8) simplifies to

0B '

— =V x(V xB). (2.1.10)

ot .
This limit of MHD is called ideal MHD. Following from the ideal limit, the ’frozen-
in flux’ theorem of Alfvén holds; namely ”In a perfect conducting plasma, field lines
behave as if they move with the plasma”.

-

2.2 Plasma Equations

The behavior of the magnetic field, which is described by the induction equation, is
coupled to that of the plasma by the presence of the velocity term in this. The plasma
motion is in turn governed by the equations of mass continuity, momentum and energy.
When p and P are the plasma pressure and density,

= —pT 2.
P AT, (2.2.1)
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i.e. the perfect gas law holds for the plasma (where kp is the Boltzmann constant and
m is the mean particle mass; m = m,/2 for a fully ionized H), the mass continuity
equation can be written as

gf +V-(pV) =0, (2.2.2)

the equation of motion as

v | VxBxB
P‘ét~+P(V'V)V——VP+T

and the energy equation

25 () v V)(:%)} - ¢. (229

where 7 is the ratio of the specific heats of the plasma (For a fully-ionized hydrogen
plasma v = 5/3). In Eq.(2.2.3) U is the gravitational potential, usually known, because
in the most cases the self-gravitation of the plasma is negligible. Also in Eq.(2.2.3) we
have neglected viscous, and rotational forces because for the most solar applications
are very small compared to the other inertial terms. Also in Eq.(2.2. 4) L is the energy
function and may be written as

L=V.-q+L,—H, | (2.2.5)

- pVU, (2.2.3)

where q is the heat fluz due to particle conduction; L, is the net radiation, and H
represents the sum of all other heating sources (i.e. from nuclear reactions, from viscous
and wave heating, from ohmic dissipation heating etc).

Often, when the energetics of a process is not of prime consideration, the energy
equation is approximated by the polytropic approzimation which holds for each plasma
element following its motion,

P
— = const., (2.2.6)

p
where o is a constant. This approximation is simply meant to model temperature

variations in a rough manner, but it may be derived from the full energy equation
when the only contribution to L is the conduction term and the conductive flux ¢ is
proportional to the work done by the pressure. If o < v we have a heated plasma;
the opposite happens if @ > 4. Also the two extreme cases are important. When
a = v this means that £ = 0 and the plasma is thermally isolated and its variations
are adiabatic. This is the case when the time-scale for changes in P, p and T much
smaller than the time-scale for radiation, conduction and heating; this is often valid
for rapid changes associated with wave motions or instabilities. From the other hand
if @ = 1 this means that following the motion the temperature of each plasma element
T is constant (Priest 1984).
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2.3 Equations of ideal Magnetohydrodynamics

As discussed in the two previous sections, in the cases of a non-relativistic plasma
with very large conductivity (¢ — oo) and very low viscosity, in which a characteristic
scale of the system is much larger than all the microscopic characteristic lengths of the
plasma, the equations which governed the structure and the evolution of the plasma
are those of the ideal magnetohydrodynamics (MHD)

V-B=0, (2.3.1a)

Op :
5 T V- (pV)=0, ; (2.3.1b)
9B ¥ x(VxB). (2.3.1¢)

ot
av VxBxB
Par +p(V-V)V=-VP+ R Ea——— pVU, (2.3.1@)
Pt o(P Py __
2B wn(D)- s
p=t2 (2.3.1)
m

Thus, we have a system of nine partial differential equations with nine unknowns,
namely the B, V, P, p and T. The solenoidal equation (2.3.1a) is used for posing
conditions in the magnetic field configuration.

The properties and general behavior of the solutions of the set of Eq.(2.3.1) are not
known due to its mathematical complexity. Thus, the time-dependent problem posed
by Eqs.(2.3.1) is formidable and no progress has been made so far towards its solution.

To simplify the mathematical structure of MHD equations further, we make the
assumption that all timescales are much larger that the Alfvén and the sound travel
time. This is not an unreasonable assumption when modeling the solar atmosphere
(at least to first order) where structures evolve fairly slowly (ranging from hours to
months). Thus, all time-dependent terms are neglect and we have the following set of

steady equations,

V-B =0, (2.3.2a)

v. (pV) =0, (2.3.2b)

Vx(VxB)=0. (2.3.2¢)
VxBxB

- pVU, (2.3.2d)

PV VIV = VP + —
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Y P
7/’_.. (V- v)<;;) =_L. (2.3.2¢)
kg
P=-2,T, (2.3.2f)
m

Equilibrium states that satisfy Eqs.(2.3.2) may be used to study the macroscopic
behavior of astrophysical plasmas such as sunspots, solar coronal loops and promi-
nences, solar and stellar winds, jets, etc. But also and in this case there are not
known exact solutions, except from the trivial equipartition solution B = V/\/4mp,
p = const. and solutions for symmetric configurations. - At this point we must say
that there is a discussion (Grad 1967, Parker 1972,1976,1979, Yu 1973, Low 1975a,b,
1980, Edenstrasser 1980a,b, Rosner & Knobloch 1982, Tsinganos 1982a,b, Tsinganos
et al 1984) on the question of the existance of solutions of MHD equilibrium without
any symmetry. It seems that, except from the equipartition case, there are not other
non-symmetric solutions and non-equilibrium is the result. The need for some symme-
try arises from the mechanics of balancing the highly anisotropic Lorentz and inertial
forces with pressure gradients and gravity, which are forces involving scalar potentials.
The requirement of symmetry can be expressed mathematically in the form of a local
compatibilility relation. In the most simple case this compatibility relation is express
through the existance of one ignorable coordinate so the resulting solutions are 2-D.
Because the only 3-D known solutions are magnetostatic (Borgan & Low 1986, Low
1980,1985,1992) and force-free (Low 1988), in the following we will present a method
to generate families of symmetric solutions having an ignorable coordinate.

Starting our analysis from Eq.(2.3.2¢) we conclude that the requirement of equilib-
rium excludes space filling ergodic lines; this property may formally be seen from the
integral of this equation '

VxB=V8é, (2.3.3)

where ® is the induction potential. An arbitrary hydromagnetic system in equilibrium
should satisfy Eq.(2.3.2). However, this equation alone requires that magnetic lines
and streamlines cannot be ergodic in 3-D space, since they are constrained to lie on
2-D surfaces (Tsinganos 1992b). This follows immediately from Eq.(2.3.3)

V.V®=B-V&=0, (2.3.4)

so, magnetic fieldlines, together with streamlines are constrained to lie on the sur-
faces ® = const.. In the following, we shall derive a scalar differential equation that
will define these surfaces under the assumption that the hydromagnetic system has a
symmetry expressible through the existance of an ignorable coordinate.

The system of coordinates is (1,2, 23) with line elements hy(z1,z2), ha(z1,22),
hs(z1,z2), wherein coordinate 3 is ignorable. The general solution of Egs.(2.3.2a,b)
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can be written in terms of a vector potential z3-component A(z;,z;) and a stream
function ¥(z1,z2) (which, as noted, are functions of z; and z, alone)

0A 0A
h2h3B1 == 5‘;— h1h3B2 = —5]:—, (235)
2 1
1 ov 1 0¥
hghsp‘/l = 27—;5:1; h1h3p1/2 = —;;a—xl, (236)

Lines of constant A are field lines of the meridional field, while lines of constant ¥ are
stream lines of the meridional flow.

Following the formalism of Tsinganos (1982) we write the Egs.(2.3.2¢,d) in Jacobian
notation, !

af 0Jg af 0Jg
{f,g} - 6:121 6.7,'2 B 6.’1)2 6:131 '
When {f,g} = 0, this means that V f and Vg are parallel, f and ¢ are both constants
on the same lines in the z;-z5 plane.
The z; and z;-components of the induction equation (2.3.2¢), yield

o /1 1
Oz, (47rp Fihahs A}> =9 (2.38)

(2.3.7)

and 5 .
1

v A}l =0 2.3.9
8:1)1 (47Tp hlhghg{ ’ }) ’ ( )

and are equivalent to the single expression
{¥,4} =0, (2.3.10)

which its solution is

¥ =¥(A). : (2.3.11)

Thus the magnetic and stream syrfaces (magnetic and steam axes) coincide (Fig.2.1).
Notice, however, that the streamlines do not coincide everywhere with the magnetic
lines, since, in general, there is a nonuniform convection of the fields in the ignorable
direction arising from the difference of the field components V3 and Bs.

The z3-component of the induction equation (2.3.2¢) gives

Vs B
2 A48 = ¥l = 2.3.
{hs’ } {47fPh3’ } . (23.12)
or equivalently .
‘ Vs — —2 B = hs®4 = hyQ, (2.3.13)
Amp
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hydromagnetic surface

magnetic line stream line
A(xy,x,)=constant ¥(x,,%,) = constont
N\
¢3// \?3
magnetic axis A=A stream oxis Y=y,

Figure 2.1: Schematic drawing of a toroidal hydromagnetic surface. The fields are
independent of the coordinate z; (Tsinganos 1982).

where Q(A) is a function of A relating to the induction potential V x B = V® and the
subscript A in functions ¥ and ® denotes the derivative with respect to their argument
A.

v ‘From the z3-component of the momentum balance equation we get
{h3Bs — hsW Vs, A} =0, | (2.3.14)
which has the general solution
hsBs — h3¥ 4V = G(A), (2.3.15)

where G(A) is another function of A.
From the Eqs.(2.3.13) and (2.3.15) we have the following expressions for the field
and velocity components in the ignorable direction '

o2 G,

(1 - —47rp>V3 = hafl+ o, (2.3.16)
72 G

(1 - —47Tp>33 = heW s + 3= (2.3.17)

Notice the appearance of a ”critical” surface from these two relations with the equations
Ui =4arp G+ hRIOT, =0. (2.3.18)

It is easy to check that when the flow is field aligned, @ = 0. Then,
4npV = U4B. (2.3.19)

In the final step, integrate the remaining two components of momentum equation.
We must distinguish two cases according to use either (i) the polytropic approximation
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(Eq.2.2.6) or more general an equation of the form P = P(p), or (ii) the detail energy
equation (2.3.2e), together with the gas law (2.3.2f).

(1) In case when the pressure is a function of the density only the momentum balance
equation can be written as

(VxB)xB

VW =
w 47p

+VxVxV, (2.3.20)

where \

/— tU+ | (2.3.21)

: ;
and U = U(z;,z2) is the gravitational potential. The Lorentz force has no component
along the lines of magnetic force, so,

B- VW =B:-(VxVxV), (2.3.22)

which can be manipulated into the form
1
{W,A} = ﬂg{thf,A} h2 {hs 3,4}, (2.3.23)
Transforming Eq.(2.3.23) to z;-A coordinates after some algebra we find that,

“— + U+ — — ——h3Bs = E(A), (2.3.24)

/ dP v: o
p 2 Wy

where E(A) is a definite function of A and represents the energy flux density per unit of
mass flux density. It is the sum of the thermal [ dP/p, kinetic V?/2, potential U, and
Poynting B x (V x B)/47pV energy flux densities per unit of mass flux density. The
invariance of F on each streamline is simply the consequence of the time independence
of the equations. R

Now the remaining z; and zz-components of the momentum balance equation can
be written

1 8h26+6h16>6A
hlhzha 81111 h1h38$1 65172 hzh;;(?(l)z 8:1:,~

a2 (8 ha ‘I!A6A+ 0 h \IIA8A>6A
h1h2h3 a.’L'l h1h347rp8x1 6.’172 h2h347rp6x2 6:E,'

(2.3.25)

. ow 1 i A(hIVZE) B A(hiB2))
p@xi "~ 2h2 Oz; ox; ’
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where ¢ = 1,2. If we write these equations in (z;, A) coordinates respectively (j = 2,1)
and transform the partial derivatives with respect to A to derivatives of suitable func-
tions of A alone, they reduce to the following expression for A(z;,z;) called transfield
equation

1 0 hy OA + 0 hy 0OA

h1h2h3 6:1:1 h1h3 6:1:1 axz hgha 6:1:2

B ¥, 0 he \IIA8A+ 0 hy ¥4 04
h1h2h3 8.’121 h1h3 47l'p 6:c1 6.’1)2 h]-hs 47rp 6:::2

N 1 1 dG2+2 hzd 2+47r d (GO
102 janp | 2h2 daz TP TP g, )|t

1 G? RiQZ G dPE dE
2 Z +arp——r
(1 — W2 /4rp)” | 2mph] 2 dA dA

In the absence of flows, Eq.(2.3.26) is known as the Grad-Shafranov equation.
(i) In the second case where the pressure is function both of the density and tem-
perature, using the gas law (Eq.2.3.2f), the momentum balance equation can be written

along each fieldline

=0, (2.3.26)

alnP+ m OF
oz; kgT Ox;

=0, (2.3.27)

where (i = 1,2) and
V2 Q
F=U+—+ ——h3B3 (2.3.28)

The general solution of Eqgs.(2.3.27) is

B S

P(4,5) = Py(A)e 7o FoTaF (2.3.29)

where Py(A) is another arbitrary function of A and the integration with respect to F
is to be performed along each fieldline A(z;,z2) = const. This is an extension of the
simple barometric law including flows. The unknown temperature function must be
found from the energy equation (2.3.2¢). although that these two equations are coupled
each other together with the equation for the field lines which in this case is written

1 0 h; 6A+ 0 hy 0OA
h1h2h3 62171 h1h3 a.’II] 0:1,‘2 h2h3 61132

B U4 0 hy ¥, 0A 0 hy ¥4 0A
hlhzh;; 8:::1 h1h3 4.7I'p 31'1 axz h1h3 47l'p 6:112 +
1 1 dQ? o d§22
1—\1:34/47rp[2h§ qaz APl 4T pdA( ) +
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(2.3.30)

1 G>  mQ: GQ)d¥y . OP
2 z T +4m _’) =0,

(1 — W2, /4mp) 2mphs 2 V4| dA 0A

which, as expect, is the same as Eq.(2.3.26) except in the last term in which the partial

derivative is taken keeping F constant.

2.4 Dimmensionless parameters

The derivations of the ideal MHD equations has been done under the assumptions of
the very large conductivity, very low viscosity, and no rotating inertial effects. In the
following we shall define some dimensionless parameters to have a. ‘more quantlta.tlve
sense if these assumptions hold for the solar atmosphere.

As we seen in section 2.1, in terms of a typical plasma speed V, and length-scale
L, the magnitude of the convective term in Eq.(2.1.8) divided by that of the diffusive
term is a dimensionless parameter

Rm - ) 2.4.1
" (24.1)

called magnetic Reynolds number. It is a measure of the strength of the coupling
between the flow and the magnetic field. Typical in the solar atmosphere

L v T, \?
m 2 %107 * * * 2.4.2
R . (104 km) <1 km/sec) (104 K) ’ ( )

where T, is a typical plasma temperature. Thus, in all cases (except if the plasma
is in turbulent state, as for example in the central part of a solar flare, in which the
conductivity is small and a reconnection process takes place) we have R, >> 1 and
the diffusive term in the induction equation (2.1.8) can be ignored.

The Reynolds number

L* * ‘
R, = VV , (2.4.3)

known from the ordinary hydrodynamics gives the ratio of the size of the inertial forces
to the viscous forces. In the above equation v is the coefficient of kinimatic viscosity
which depends of both the density and the temperature. Numerically we have

(o) (Ter=s)
)5/2 ’

R, ~ 10'? (2.4.4)

(1014 cm—s)(lo

where n, is a characteristic density of the plasma. Note that even for the low density
and the high temperature of the corona, we still have R, >> 1 so the viscous forces
can be ignored.
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The Rossby number
Vi

L.
is the ratio of the inertial forces to the Coriolis forces in the case where the plasma
system rotates as a whole with angular velocity €. For the Sun we have O, = Qg = 108

R,

(2.4.5)

sec”!, and

(o)
R, ~ 102 1 km/sec ,
(%)
104 Km
so the influence from the rotation of the Sun is in general small and can be ignored in
a first approximation even for the largest structures observing in the Sun such as loops

(2.4.6)

or prominences.

Apart from these dimensionless numbers which its values are such to say that the
ideal MHD holds in the most parts of solar atmosphere there are also other three
important definitions about the significant of the various terms in the momentum
equation.

The Mach number
M= : 2.4.7
“78 ? ‘ ( )

measures the flow speed V, relative to the sound speed.

Vs = ’/'y-}—)i . (2.4.8)
Px

where P, is the plasma pressure. The sound speed is the propagation velocity of a
perturbation (acoustic wave) in a perfect gas. Also the Mach number is a measure of
the ratio of the inertial forces to pressure gradient forces in momentum equation.

The Alfvén number

Vi
Ma = 35 .
V. (2.4.9)
gives the size of the flow speed in term of the Alfvén speed
B.
Vo = (2.4.10)

a — F—_47Tp* )

which is the velocity of propagation of transverse waves (Alfvén waves) along the
magnetic field B, direction. Also is the ratio of the inertial forces to the Lorentz
forces. If M, << 1 the effects from the velocity terms can be ignored.

The plasma B
. 87 P,

IB'_ Bg ’

(2.4.11)
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is the ratio of the plasma pressure P, to the magnetic pressure BZ/8x. If 3 << 1 the
pressure gradients forces and the gravitational forces can be ignored.
It is easy to see that the above numbers satisfy the relation

2 _ BM?
M; = 5

(2.4.12)

To see the importance of these parameters we write the momentum equation in the
following symbolic form

inertial forces pressure forces Lorentz forces gravity forces
("5a) = (o o) (e )+ ()
- (2.4.13)
denoting the order of magnitude of each term with respect to the Lorentz term. In solar
atmosphere in cases where the gravitational field can be treated as uniform (U = gz)
the typical length-scale L, of the system is comparable to the vertical scale height V2/g
so the ratio U/V? is of order of 3. Thus for solar atmosphere we have the following
extreme cases,

(i) M, << 1. In this case the velocity terms are not important and the force balance

of the system is described from the magnetostatic equation

(VxB)xB

0=-VP
+ a7

pVU, (2.4.14)
(i) M, << 1, and B << 1. In this case the Lorentz force must be zero, so the
current density J must be parallel to the magnetic field B,

(VxB)xB=0, (2.4.15)

so we have the force-free case. In this case the presence of the plasma gas and the mass
flows they have not significant influence in the magnetic structure. The particular case
J = 0 is the well known potential-field.

-
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Chapter 3

CORONAL LOOP MODELS

As we saw in the first chapter, the solar atmosphere has no only vertical stratification
produced by the force of gravity, but it is also compressible in the horizontal direction,
and possesses a complex structure dominated by the magnetic field. As indicated
by X-ray and EUV observations, the corona consists largely of loop structures that
presumably outline the magnetic field. In this chapter we shall describe briefly some
theoretical models for these coronal loops.

3.1 General remarks

Because ideal MHD holds in most structures at the Sun, a fully theoretical description
would require appropriate solutions of the MHD equations. For the present time this
is impossible even numerically, and to make some progress people simplified the ideal
MHD system to one that is solvable either analytically or numerically. The term
analytical includes also numerical solutions from ordinary differential equations because
in this case it is easy to understand the behavior of the system (to check the boundary
conditions, the dependence of the solutions on the various free parameters etc.). In
fully numerical solutions this is very difficult and in most times impossible, so we have
not a clear physical picture of the system. Also, fully numerical studies require very
large computing power which is not available in most cases.

Until now people have tried to model coronal loops and other solar structures
(prominences, sunspots, etc.) following usually two different ways. The first refers to
the thermal structure and energy balance of them ignoring the effects of flows although
in many cases are important, while the second focus on the flows only, neglecting in most
cases the details of thermodynamics. In both approaches the magnetic configuration
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is predescribed, because in many solar structures we have 8 << 1 so the plasma
has negligible influence on the magnetic structure. For the magnetic configuration
problem, most efforts that have been made are on the force-free case and only a few in
the magnetostatic case.

3.2 Static energy-balance models

In the case of coronal loops, the construction of the static energy-balance models is
made solving the energy equation (2.14) putting V = 0. The heat flux term, is due
to electron conduction which occurs mainly along the magnetic field lines and can be

written .
V.q=V,-(xVyT) = (B V) [E(B : V)T] , (3.2.1)
or more simply, in terms of the distance s along a particular field line,
d ( kdT

where B is the magnetic field strength and B the unit vector along magnetic field-
lines. The thermal conduction coefficient x, for a fully ionized hydrogen plasma with
temperature greater than 10* K, is

w
=K, T = 1071752 — 2.3
- v (3:2:3)
The term L, which is the net radiation loss, for an optically thin plasma such in
the chromosphere and the corona, is due to bremsstrahlung, recombination and line

radiation, and can be written as
L, = p*Q(T), (3.2.4)

where p is the density assuming fully ionized hydrogen plasma. The temperature de-
pendence Q(T') has been evaluated by a number of authors (Cox & Tucker 1969, Tucker
& Koren 1971, McWhirter at al 1975, Raymond & Smith 1977) and is graphed in figure
3.2.1. It is accurate only to within about a factor of two, and so the detailed variations
should not be taken too seriously; the most important features are the presence of a
maximum around 10° K and a minimum around 10" K. An analytic approximation is

Q(T) = xT® Wm?, | (3.2.5)

with the temperature variation of the piecewise constants x(7T') and o(T) given in
Table (3.1). For temperature range 10° K < T < 107 K a good approximation is
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Range of T | « X S

103.64_103.94 117 10—29.30

104.00_104.30 6.15 10—-7.62 ;E~ N

10%-30_10%6° 0 101875 :; 0

104.60_104.90 2 109.60 ;’.},

104.90_105.40 0 1019.40 ; ol

105.40_105.75 -2 10392 3 F

105.75_106.30 0 1018.66

106.30_107.00 -0.66 1022.87 2 . :

Table 3.1: The variation with temperature T of « and x in Eq.3.2.5. giviég the loss
function (Rosner et al 1978, Serio et al 1981). Plot of the radiative loss function derived
by McWhirter at al (1975) [— — ——|, and Raymond & Smith (1977) | ], together
with the analytic fitting of Rosner et al (1978) [ - — — - .

Q(T) = 102157 ~1/2 Wm? with a departure from the accurate form less by a factor 1.4
(Priest 1984).

Thus for a loop in hydrostatic equilibrium and in thermal equilibrium between con-
duction, radiation and heating (of any kind), the temperature T and the density p, for
fully-ionized hydrogen (n. = n;), satisfy

1 dP

cosf ds = P9 (3.2.6a)
d [k, T%?dT '
B— =yp’T* - H 2.
ds( B ds) Xp ’ (3.2.6b)
where the pressure is,
2k
= ——BpT (3.2.6¢)

B3

For given forms of the ma.gnetie field strength B(s) of a symmetric loop length 2L at
a distance s along it from the base, and the inclination 6(s) of the loop to the vertical,
the above set of equations is to be solved given the temperature Ty and pressure Py at
the base (s = 0) and from the requirement that the temperature be symmetric about
the summit so the temperature gradient (and the conductive flux also) must vanish
at the loop summit (s = L). The first condition is entirely arbitrary. With Ty given,
the temperature profiles and, in particular the summit temperature Ty, are determined
by three parameters, namely the loop length 2L, the base pressure Py and the heating
rate H, so that Ty, = Ty (L, Py, H). If we replace the condition for the pressure by the
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condition that the temperature gradient vanishes at the loop base (s = 0) we have a
thermally isolated loop (there is no energy flow from its ends). Thus, in this case, the
summit temperature is a function of only two parameters T, = T(L, H) and of course
must be Py = Py(L, H) by the remaining boundary conditions. The former case can
be studied quite easily for the low-lying loops whose summits are much below a coronal
scale height of roughly 80000 km. In these loops the pressure is uniform (assuming
uniform cross-sectional area) so the summit temperature may be estimated in order
of magnitude, using the fact that, whereas the relative sizes of the three terms in
Eq.(3.2.6a) vary locally, their global (or integral) values are similar. Thus, equal each
term in order of magnitude in the energy equation (3.2.6b), using the approximate
form for the radiation loss, we get the following relations in mks units (Priest 1984,
Rosner et al 1978, Serio et al 1981)

Ty ~ 10*(PL)*/® ~ 10°H®/"[%/7 (3.2.7a)
P ~3.7x 102 H*/"[*7 (3.2.7b)

From the above scaling laws it follows that both the temperature and pressure are
increased by either stretching a thermally isolated loop or enhancing its heating.

The main features of the loop solutions can be seen in Fig.(3.1) which shows the re-
sult of the numerical integration of Eqs.(3.2.6) for a symmetric sercular loop of uniform
cross-section and half-length L = 3 x 107 m. The heating is assumed to be constant
throughout and is set equal to H = 2 x 107* W/m?®. As expected, the pressure, which
was set at 0.14 Pa at the footpoint where the temperature is 7000 K, drops only
20% up to the apex. Moreover, the temperature shows only a similar small variation
over the upper 90% of the loop. At high temperatures the radiative loss rate (~ 10~*
W/m?) is lower than the heating rate, but the conductivity is so high that conduction
can convey the excess heat input to the lower part of the loop by means of a very
shallow temperature gradient. This is the ’coronal’ part of the loop. However, when
the temperature drops below 10° K, the conductivity drops sharply and the tempera-
ture gradient steepens in order to maintain the conductive flux. This region of steep
temperature gradient is known as the transition region. It is very thin compared to
the pressure scale height and is therefore essentially isobaric.

Many authors (e.g. Antiohos 1984, Athay 1981, Brown 1991, Hood & Priest 1979,
Mariska & Boris 1983, Poland & Mariska 1986, Priest & Smith 1979, Steele & Priest
1989; see also Demoulin 1993, Bray et al 1991, Priest 1980 and references therein)
extend the above results solving Egs.(3.2.6) numerically, in cases where the loop is large
and not thermally isolated. They explain the observations for the active region loops
that the shorter loops often appear brighter, and that different loops exhibit a relatively
small variation in soft X-ray temperature but a much larger variation in pressure. From
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Figure 3.1: The one-dimensional structure of a for coronal loop of uniform cross section
and uniform heating of 2x10~* W/m?®. The full line shows the temperature, the dashed
line the pressure as a function of distance from the base in which the temperature is
7000 K (Bray et al 1991).

the other side, the fact that the quit region loops which have temperatures and pressures
lower than the active region ones, is attributed to a lower heating rate in them. But
the most important result from these studies is that, if the pressure or the length of the
loop increase, or the heating decrease, to a critical value, the loop becomes thermally
unstable, and it cools reaching a new equilibrium at temperatures below 10° K. This
may be an explanation for the observed cool cores in some coronal loops, although that
these contains too much plasma to be in hydrostatic equilibrium; so flows are present
and must taken to account. Also this cooling have been proposed as a mechanism for
the formation of the active-region filaments or prominences.

.

3.3 Dynamic flow models

As we discussed in chapters 1 and 2, the interest in flows in loop structures has been
stimulated by observations of various types of mass motions (up to 100 km/sec) over
spots, plages and network, and also from the absence of hydrostatic equilibrium in
some loops with cool cores.

There is a wide variety of possible cases for the flow patterns that are observed. The
most well studied is the siphon flow, driven by a pressure difference that is maintained
between the footpoints of a magnetic loop. Only for this mechanism, we shall give a
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brief review for the proposed models, because in this direction is the contribution of
this thesis.

The siphon flow was invoked by Meyer & Schmidt (1968) to explain Evershed mo-
tions along low-lying photospheric and chromospheric loops, but it may also occur
along coronal loops. If one starts with a static loop and switches on a pressure differ-
ence, an accelerated flow will be driven from the high-pressure footpoint. But, if one
starts with a loop containing a flow and then a small pressure difference is imposed
in the opposition to the flow, it is possible for a decelerated flow to be set up towards
the higher pressure. In general, this flow is unsteady, but if the footpoint pressures are
constant and one waits several sound travel times, a steady flow may be established.
There are several ways in which different footpoints pressures may be maintained. For
example, the constancy of total base pressure (plasma plus magnetic) would imply
that regions of high magnetic field strength possess a low plasma pressure. Also a
converging photospheric flow could compress both magnetic field and plasma, and so
enhance the pressure locally. Finally, the pressure at a loop footpoint may be increased
by enhancing the heating there.

Until now, siphon flows have been analyzed in a number of studies, all in the
slender flux tube approximation in which the loop is so narrow that its magnetic field
is approximately uniform across its width; this means its magnetic flux at a distance s
along the tube is simply the product of the area of the tube A, and the magnetic field
strength B there; also the field strength at the surface of the tube (which is used in
the surface boundary condition) does not therefore differ greatly from the value at the
center of the tube. In a few words the above approximation is mathematically identical
with the consideration of an individual field line by dropping out the details of the
effect of the environment or taken a simplified description for the force balance across
the field. Thus, in this case the steady MHD equations became ordinary differential
equations (one-dimensional flow) since all the quantities depends only from the abscissa
s along the loop.

The effects of the environment can be dropped out if the plasma 3 of the loop and
the Alfvén number of the flow are both much less than unity. Then the flow may be
regarded as taking place in a rigid tube of given shape and cross-section, because at that
circumstances the magnetic structure does not influed by the flow. Thus the problem is
the calculation of the flow in the context of ordinary hydrodynamics in a loop of given
cross-section and shape. Cargill & Priest (1980) and Noci (1981) did that, for semi-
secular loop in shape, in a uniform and in a spherically symmetric gravitational field
U respectively. Thus, the equations of continuity, momentum and state, for steady,
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inviscid flow of a fully-ionized plasma are
4 vs)=o0 (3.3.1a)
ds ¥ o o

v dP U

— = — e ) — 3.3.1b

PY s ds Pds (3.3.1b)
2k

, P = —BpT, (3.3.1¢)
v mp

and in both studies they simplified the energy equation in the form

d <£) —0. Jy? : (33.1d)

%p"

The boundary conditions in the above system is the value of the pressure P, and and
temperature Ty at the point where the fluid enters in the loop (at one footpoint) and
the value of the pressure P, at the other where the fluid leaves the loop. If we eliminate
P and p from Eq.(3.3.1b) we obtain

V2\dV V2dS dU
( “v‘)z;—?:f;*a? (3:3.2)

where V2 = aP/p is the sound speed. It should be noted that if V is replaced by —V
Eq.(3.3.2) in both two directions. For shocked flows, such a reversal is not possible
because the entropy must increase across the shock wave. The reversal is possible
if the position of the shock is in the other leg of the loop than previously. Another
characteristic of the above differential equation is that it possesses a critical point
(where dV/ds is undefined) where the speed is equal to the sound velocity (V' = V;)
in locations that are determined from the zeros of the right part of Eq.(3.3.2). For
simplicity let us suppose for the moment that gravity is absent, so we discuss about
de Laval nozzles in ordinary tubes. In this case the critical point occurs in locations
where the cross section has extreme, dS/ds = 0. Another differentiation of Eq.(3.3.2)

gives (U = 0) :

dv\? v: &S

so if the tube has a minimum (d%S/ds? > 0), two slopes for the fluid velocity dV/ds
when the fluid velocity equals to the sound velocity (V = V,) are possible (X-type
critical point), while if the cross-section of the tube has an maximum (d25/ds® < 0),
there no solutions with V' = V; at the maximum cross-section (O-type critical point).
For critical solutions, in the case of converging de Laval nozzles the velocity of fluid
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increases continuously before and after the nozzle, while for diverging de Laval nozzles
it decreases before the nozzle and increase after. Thus the main conclusion is that the
velocity reached the sound velocity in the minimum cross-section. For the non-critical
solutions, in tubes in which there is a minimum cross-section the velocity increases
before the nozzle and decrease after, while the opposite happens in tubes with a max-
imum cross-section. Both cases are discuss again in section 4.5.2 in which diagrams
of velocity versus distance are present (Fig.4.1). After the above small parenthesis
about de Laval nozzles, it is evident from Eq.(3.3.2) that we can define an effective
cross-section to include the influence of gravity, so the above discussion holds. Also, at
this stage it is important to say that in general the presence of critical points on MHD
equations is very important since they determine the topology of the solutions and the
various types of flows that are possible to occur according to the boundary conditions
(sections 6.2, 6.3).
Integrate Eq.(3.3.2) we obtain

Vso

a-—1

1 ) ) VO a—1 SO a—1
— - W -— — -1 = .3.
SV =Vo)+ <V> z +U =0, (3.3.4)
where the subscript zero denotes a value at the footpoint from which s is measured.
For a semi-circular loop in shape, length 2L, in uniform gravity g we have

2L . 7s

U(s) = g2(s) = g—sin_—, (3.3.5)

The simplest case, an isothermal loop (o = 1) with uniform area, illustrates the basic
ideas. The critical point is located at the loop summit (Fig.3.2) where the phase plane
of Eq.(3.3.4) is shown.

For initial speeds Vy < V;* the flow is subsonic and symmetric about the top of the
loop, so that the pressure ratio at the footpoints of the loop is unity. For Vy > V;* the
results are unphysical. For Vj = V* the flow becomes sonic at the loop summit. The
whole situation is identical with converging de laval nozzles.

When there is no pressure difference between the ends of the loop (P, = P), any
of the subsonic flows may occur. However, an imposed pressure difference forces the
flow to became supersonic beyond the loop summit and then to be decelerated (and
heated) at a shock wave, which is located at some position on the downflowing leg.
This must be the case because the fluid can not reach the other footpoint at supersonic
velocity; the value of the pressure there must determined the whole flow, and there is
only one value of the pressure that corresponds to that case. If we impose other values
of pressure, this information can not travel in the opposite direction of the flow since
this moves with supersonic velocity (perturbations travel with the sound velocity), and
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Figure 3.2: The flow speed V at a distance s along a loop of half-length L. The loop
has uniform cross-sectional area and the (unshocked) flow is isothermal with sound V;.
Subsonic flows (solid) have initial speeds Vy less than Vj. Flows (dashed) with initial
speed V;* become supersonic at the loop summit (s = L) and are slowed down from
V_ to V; by a shock wave. Beyond the shock the flow has enhanced temperature T
and slows to V, at the footpoint. Dotted lines indicate unphysical or totally supersonic
solutions (Cargill & Priest 1980).

also in a first view it seems that there is no solution at this case. In order to do this
a shock discontinuity appears at some position in the flow in which the fluid enders
with supersonic velocity and comes out with subsonic. In the shock the entropy of the
gas increased discontiniously and the comes out of the shock with greater temperature.
All the quantities (P, p, T' and V) in the shock are discontinuous but the flux mass,
momentum, and energy must be continuous at the two sides of the shock. Thus we
can write the shock conditions as follows (Rankine-Hugoniot relations)

[pV]=0, (3.3.62)
[P +pV3 =0, (3.3.6b)
[ % + K;] =0, (3.3.6¢)

where the brackets denote the difference between the values of the above expressions
in the brackets on the two sides of the surface of the shock. Thus the effect of imposing
different pressure differences is to change the location and the strength of the shock
and the value of the downstream speed V,. Of course the above discussion holds for
any cross-sectional profile of the loop, and also can be generalized in any type of flow
including also and magnetic effects.
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Figure 3.3: The velocity (a), temperature (b), and the pressure (c) profiles for adiabatic
flow in a loop with uniform cross-section. For the shocked solutions, the pre-shock Mach

number, M, is indicated (Cargill & Priest 1980).

. The density has the inverse profile of that of velocity; it decreases up to the summit
for subsonic flow and right up to the shock wave for a shocked flow. If the flow is
adiabatic (@ = 5/3) rather than isothermal, this rarefraction of the plasma causes a
fall in the summit temperature and pressure, too. This may possibly explain the cool
cores that are found in some coronal loops (Fig.3.3).

If the cross-section is not uniform but it is symmetric having a maximum in the
top of the loop, the sonic point still remains at the top, but the speed there is reduced.
If the area-increase or the loop length are too large, the subsonic solutions cease to
exist. Furthermore, for a moderate area-increase, several sonic critical points appear
and greatly complicate the topology. One effect of a large enough area-increase is to
make the flow speed decrease to a minimum before increasing and passing through the
sonic point (Fig.3.4).

When the cross-sectional area is not constant or symmetric about the loop summit,
the critical point no longer occurs at the loop summit. For a converging loop the sonic
point is situated on the downflowing leg (after the summit), whereas for a diverging
loop it is on the upflowing leg. At any case, for subsonic solutions, all the quantities
at the two foot points are now unequal, which means that there is a non-zero pressure
difference between them. Diverging loops give a phase plane for subsonic flows that
may be obtained from that of a converging loop by rotating the solutions about the
summit. Independent of the two above cases there are two possibilities; the flow can be
accelerated towards to the low pressure footpoint where the cross-section is minimum,
or to be decelerated as moving in the direction of increasing pressure where the cross-
section is maximum. It can be seen that when the footpoint pressures are equal the
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Figure 3.4: The phase plane for adiabatic flow along a symmetric loop whose cross-
sectional area varies as S = S¢(1 + 19sinws/2). Note that for physical subsonic or
transonic flows the initial velocity must be less than 0.615. If the area increases very
fast there are no solutions (Cargill & Priest 1980).

solution is static (no flows). For accelerated (decelerated) flows as the final pressure
at the minimum (maximum) cross-section decrease (increase) from the initial pressure
at the other footpoint, the solutions at first yield subsonic flow, and further decreasing
(increasing) has the result of a shocked flow. It must be noted that in the cases of
a decelerated flow there are two solutions with the same boundary conditions; one
subsonic and the other shocked. Also there is an accelerated shocked solution in loops
where the flow is to the direction of decreasing cross-section (Fig.3.5).

On the other hand Noci (1981) has studied the properties of the steady siphon flow
Egs.(3.3.4) in the spherically symmetric gravitational field of the Sun for a semi-circular
loop in shape, radius R, and constant cross-section for which

__GMs _ _GMg BB s
U(s) = — . _—@G {1+2R®[1 ( >} st . (3.3.7)

He also puts o = 1.1, since this value gives solar winds solutions in the inner corona
that agree quite well with solutions to the full energy equations. The phase plane of the
solutions are shown in Fig.(3.6a) and obviously are similar to that of the previous study
of Cargill & Priest (1980). Apart from this, he investigated also the distribution of the
brightness in some coronal UV lines along the loop, to see if the physical differences of
the various types of flows which can occur in a loop can be seen in the observations. He
found that the intensities for static and subsonic loops do not differ considerably, while
those for static and shocked loops do differ greatly in the downflowing leg, especially
when the shock is close to the footpoint. This suggests a definite observable signature
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Figure 3.5: (a) Phase plane V(s) for isothermal flow in a converging loop with S =
So(1 — s/4L) for accelerated flows. For decelerated flows (diverging loop) the phase
plane is found by rotation of the solutions about the summit. (b) The flow speeds
Vo, V2 at loop footpoint at a function of the imposed pressure ratio for an accelerated
(P2/Py < 1) and a decelerated flow (P2/Py > 1) (Cargill & Priest 1980).
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for supersonic flows. Indeed, it may well be that some loops (observed to extend from
one foot point and then disappear before reaching the second footpoint) possess this
feature because of a subsonic-supersonic siphon flow (Fig.3.6a).

In the plasma 8 of the loop is not much less than unity, the influences of the pressure
and weight of the gas, the flow, and the environment must be taken into account. Thus,
the cross-section and the shape of the loop are not given but must be found from the
requirement of the satisfying the force balance along and across the loop. Thomas and
Montesinos dit that in a series of articles (Thomas 1988, Thomas & Montesinos 1989,
1991, Montesinos &Thomas 1989) in the thin flux tube approximation. The equations
that describe the motion of the fluid inside the loop (force balance along the loop) in
a uniform gravitational field g are again Eqs.(3.3.1), where now the cross-section of
the loop S(s) is not given but relates with the magnetic field B(s) of the loop by the
magnetic conservation law

%(35) o, (3.3.82)

while from the requirement that the total pressure (gas plus magnetic) must be con-
tinuous at the surface of the loop we have

B2
P+=— =P,, 3.3.8b
+87r (3.3.8b)

where P, is the pressure of external gas atmosphere outside of the tube for which we
assume that is in planar-stratified equilibrium in vertical direction

dP,. '
& g =0, 3.3.9
P ( 2)
and of course the equation of state is assumed to be the perfect gas law.
2k
P.=28,T,. (3.3.9b)
mp

Thus for given temperature distribution 7.(z) we can determine the distributions of the
pressure P.(z) and the density p{z). For simplicity we can take a uniform temperature
distribution; a more detailed consideration requires a full solution of this problem. It
easy to see that Egs.(3.3.1) and (3.3.8) formed a closed set if we predescribed the shape
B,(s) of the loop. But if we want to solve the problem completely the shape of the
loop must be found from the lateral force balance

pV:  B?

_R_ _ _4_7ri + (Pe - p)gcosg = 01 (3.3.103-)

which express the fact that the centerfucal force plus the gradient of the pressure of
the external atmosphere in the vertical direction of the loop are equal to the magnetic
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Figure 3.6: (a) Phase plane of solutions for a symmetric loop in the Noci (1981) model
where gravity drops as 1/r. (b) Brightness variations (in c.g.s. units for two UV lines
for a hot loop for subsonic and shocked. The loop width is one tenth of the loop radius.
Dashed curves represent brightness variation for a static isothermal loop having the
same temperature as the dynamic loop in the first footpoint. For the sake of clearness
the dashed curve which is symmetric around the top is not completed.
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tension force plus the one component of the weight of the fluid in the tube. From
basic geometrical arguments we can write the following expressions for the radius of
curvature R at any point of the loop and its inclination angle 8 or for its height z and

horizontal distance z
dz

- = 3.3.10b
T tané, ( )
1 dé

= - 3.10
R cos0d$ (3.3.10¢)

We should point out that this decoupling of the problem is a direct consequence of the
thin flux tube approximation; in a thick flux tube, the flow will not be one dimensional
and the problem of determining the equilibrium path and the flow will be fully. coupled.

As in the work of Cargill & Priest (1980) we can derive differential equations relating
the area S(s), velocity V(s), and height z(s) that are useful in determining the character
of the flow independent of the shape of the loop is given or not. Thus from momentum
equation using the conservation mass law we find

V2\dv _ 459 |

which is the same as Eq.(3.3.2) and is known as the a.rea-velocity-height relation. From
this using the magnetic flux conservation and the lateral pressure balance we can
eliminate the cross-section and we get

V2i\ dv pe—p\V2] ¢
(1 - 1—/?) - = [1 ( > )V:] y7des (3.3.12)

and if we eliminate the velocity

<1- W) d; <1~¥1;) ("’e;”) 72l (3.3.13)

known as velocity-height and area-height relations respectively. In the above equations
V, = (aP/p)}/?, and V, = (B%/4np)'/? are the sound and Alfvén velocity respectively,

and : :
ViVi
V, = MW : (3.3.14)

is the tube speed which is the velocity of propagation of axisymmetric distortions to
the cross-sectional area of an isolated magnetic flux tube. In Eq.(3.3.13) V; is another
characteristic speed defined by

V2= (”ep" )Vz (3.3.15)
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We can deduce some qualitative properties of the steady flows by examing just the
velocity-height relation and the area-height relation. First, note that the tube speed V;
plays the role of the critical speed for the flow, replacing the role of the sound speed for
a rigid flux tube. Thus and in this case we have subcritical (V < V;), critical (V = V})
and supercritical flows (V' > V) instead of subsonic, sonic, and supersonic flows. For
simplicity we consider the case that the temperature inside the tube is everywhere
equal to the external temperature assuming uniform. The equality of temperatures
arises from the rapid radiative cooling of the flux tubes in the solar photosphere. At
this case we have always V; < V;, and Eqs.(3.3.14) and (3.3.15) are written

VI\dV  dz
<1 _ _Vt2>_V -z, (3.3.16)
VINdS /. V2\d:
(1 — W) - = (1 _ V_f) 57 (3.3.17)

where L = V2 /g is the scale height in the external atmosphere. From Eq.(3.3.16) we
see that the critical speed V' = V; occurs always in the top of the loop and the situation
is similar as in the rigid flux tube. But apart of this from Eq.(3.3.17) we see that at the
points where V = V; the cross-section obtains a maximum; these points called bulge
points. Thus for example, if the flow starts from the one foot point of the arc with
velocity which is less from both the two characteristic speeds V;, and V; we can have
the cases of Figs.(3.7). The rest of the cases can be found easily from the former ones.

Thomas and Montesinos integrated the systems of equations in two cases; with the
assumption that the shape of the loop is a parabolic arc (Thomas 1988, Montesinos &
Thomas 1989), and without this assumption where the shape is an unknown quantity
(Thomas & Montesinos 1990, 1991). Their results for the second case are seen in
Figs.(3.8) (Thomas and Montesinos 1990). The difference between the two approaches
are that in the second case the horizontal extension of the loop has a limited value (a
expected result because it is known many years ago for the static loops), but near the
top the two approaches coincide. Also, as it is expected, the effects of the increasing
the flow causes the loop to became more steeper.

For a adiabatic consideration for the gas into the tube (assuming now that the flow
speed is so great that there is no enough time for the internal gas to be heated by
thermal conduction or radiation from the surroundings) the above qualitative results
remains the same (Fig.3.9). The difference between the two considerations are that
in the adiabatic case the arcs are more wide that in the isothermal case, and in some
circumstances the path of the tube becomes periodic in the horizontal direction.

Apart from these elementary considerations many others generalized the above re-
sults. For example in the low § limit Cargill & Priest (1982a,b) and solved the hydro-
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Figure 3.7: Schematic diagrams of various types of steady flows in a symmetric, arched,
isolated magnetic flux tube, showing the changes in flow velocity V (arrows) and the
cross-sectional area S along the tube in each case. (a) Purely subsonic flow without
bulge points (Viop < Vi < V;). (b) Purely subcritical flow with upstream and down-
stream bulge points (Vi < Viop < V4). (c) Critical (Viop = Vi) undergoing a smooth
transition from subcritical flow (Viop < Vi) to supercritical flow (Viop > V;) at the
top of the arch. The flow velocity is decelerated to subcritical speed at a standing
“tube shock” somewhere in the downstream half of the arch. (d) Purely supercritical
(V > V;) flows, everywhere (Thomas 1988).
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Figure 3.8: Plots of (a) the equilibrium path z(z), (b) the velocity v(z), (c) the cross-
sectional area S(z), and (d) the plasma (3(z) for a thin tube with uniform temperature
inside equals to the external temperature. The integration have started from z = 0
with A =1 and V =V} (four values of 0 which corresponds to the static case 0.15 and
0.25 for subcritical flows and 0.303 for critical flows). The plasma 8 at the footpoints
is equal to 3 and the height of the arch is 1 (all the lengths are normalized with the
vertical scale height of the external atmosphere and the velocities are in units of V)
(Thomas & Montesinos 1990).
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Figure 3.9: The same as Fig.(3.8) but for adiabatic shock flows with the foot temper-
ature equals to the external temperature. The other parameters are as in Fig.(3.8)
except for the critical velocity which is now 0.316 (Thomas & Montesinos 1990).
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dynamic equations using the appropriate for the solar corona energy equation (2.17¢)
in order to produced more realistic models for coronal loops in order to compare with
observations. In a number of studies (Antiohos 1984, Peres et al 1992, Mariska &
Boris 1983, Mariska 1988, McClymont 1989, Craig & McClymont 1986, 1987) calcula-
tions of the intensities in the UV emission confirmed theoretically the presence of flows
in some come coronal loops. Also from the other side for low S loops Montesinos &
Thomas (1993) and Degenhardt (1989, 1991) present solutions for radiative flows using
an appropriate energy equation for photospheric conditions including also the energy
exchange between the tube and its environment which is a realistic external atmosphere
in order to model photospheric flux tubes and the Evershed effect. In well defined cases
a siphon flow is responsible for the normal Evershed effect (in these cases although that
the external atmosphere has been taken horizontally stratified the tube is asymmetrical
due to radiative exchange between the tube and the external atmosphere.

It is important to say that all the above discrubing approaches are one-dimensional
because of the difficulty of the solution of the two-dimensional MHD equations with
one ignorable coordinate (section 2.3). At this case the non-linear ordinary differential
equations becomes non-linear partial differential equations which is difficult to solve
even numerically. But except of the numerical approach there is an analytical approach
to the problem by searching special classes of solutions which can be treated analyti-
cally. This will be the subject of the next three chapters which describing briefly in the
next section. This approach started studied wind-type solutions in spherical geometry.
For a modeling of the solar atmosphere structures (arcades, sunspots, prominences,
open-field regions etc.) we must solve the MHD equations in cartesian or cylindrical
geometry. de Ville & Priest (1990, 1991a,b,c) found a class of solutions field-aligned
flows in cartesian and in cylindrical geometry assuming that the plasma is incompress-
ible in each fieldline. In more details they considered the case

p=p(4), (3.3.18)

so, the density is constant along each field line. In this particular case from the mo-
mentum balance equation it is easy to see that

P+ —;-sz + pU = 1I(A), (3.3.19)

where II(A) is a function of A only, playing similar role as E(A4). Of course making
similar analysis like in section(2.3) we found that there are also three other free integrals
¥(A), Q(A) and G(A). Note that for field aligned flows we must have again Q(A) = 0.

Now it easy to see that Eq.(2.3.25) is written now as (: = 1,2)

1 (6 ha 8+6 hy a)aA
h1h2h3 8x1 h1h36$1 ail)z h2h36$2 61‘,”
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Figure 3.10: Possible magnetic topologies in cartesian coordinates, modeling (a) sym-
metric and (b) asymmetric arcades, and in cylindrical coordinates modeling (c) the
sunspot field (closed fieldlines), (d) coronal streamers and (e) coronal holes (partially
open fieldlines) and (f) emerging flux regions (open fieldlines) (de Ville 1990, 1991a,b,c).
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W4 [0 hy WADA D h ¥y 6A>8A
hlhghs 6231 h1h3 471'p le ail)g h2h3 47I'p 8.'132 8:c,-
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and because the density is function of A only the transfield equation can be written as

(1_\Ilf4> 1 [6 hy OA 0 h BA}

(3.3.20)

h1h2h3 6:1:1 h]ha 0$1 awz h2h3 821)2

_L|1foaN 104\ d (¥
2h2 | 2\ Oz, hZ\ Oz, dA \ 47p
1 d G2 dp dIl
571-33—;(1—\1134/47rp>—(]ﬂ+47ma_

+ 0, (3.3.21)
It is easy to see that the following choice, neglecting gravity (U = 0),
P = p0A2 ‘I’A = ‘I’oA G = G()A H = H()A, (3.3.22)

reduces the above transfield equation to the linear elliptic equation

1 0 hy OA 0 h4 OA

kA = 3.
hihahs | 8z1 hyhs Oy~ Oz hohs Ox2 + c, (3.3.23)
where po, ¥ 4,, Go, and Il are constants, and
. 3 Go _ II, L \I’ﬁ
k—l—Mgo’ C_”l—Mg-o’ %~ dmp (3.3.24)

Eq.(3.3.23) is easy to solve by separation of variables. de Ville and Priest did that in
cartesian coordinates (de Ville & Priest 1990), modeling symmetric and asymmetric
arcades (Figs.9a,b), and in cylindrical coordinates (de Ville & Priest 1991), modeling
the magnetic structure of various features such as spots, plumes, coronal streamers
(Figs.3.9c,d,e,f). Thus in cartesian coordinates the basic result is that the presence of
a flow increases the summit height of the arcade compared with the static case. Increas-
ing the flow speed will eventually cause the arcade to erupt. In the case of asymmetric
arcades they can be model siphon flows driving by a non-zero footpoint pressure differ-
ence. In cylindrical geometry they found a wide range of possible magnetic topologies.
The magnetic field may be closed, open (converging or diverging) or partially open (an
arcade with an overlying field). The proportion of open fieldlines depends upon the
flow of the plasma at the base of the region. Increasing the flow increases the number
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of open fieldlines. Also increasing the twist component of the magnetic field imposed
at the base results in the arcade of closed fieldlines rising, before it eventually erupts.
From the other side the closed magnetic solutions could model the field above sunspot,
with Evershed flow along fieldlines. Totally open magnetic field configurations can
model emerging flux regions, while coronal streamers or coronal holes can be model
using solutions consist of both open and closed regions of magnetic fieldlines. All the
above solutions of course have the disavandange that the density is constant along
fieldlines and the gravity is absent. ‘Of course an obvious extension of this work is to
include these parameters which we will do in the next chapters. Note that at least in
cartesian coordinates, the influence of gravity can be taken into account leaving the
above particular problem still analytically solvable. i ;

We will close this chapter saying a few things about other causes of flows. For
example downflows or upflows in both legs of a loop can be occur for example if for
some reasons the heating or the length of the loop changed. From the scaling lows
(3.2.7) we see that the summit density scales as p;, o« H*/7L'/7 and if the heating or
the length of the loop increases, this implies that the new equilibrium possess a higher
density. To attain such equilibrium, extra material must be brought up or evaporated
from below along the loop. Also if the heating or length are reduced in value, there is
too much material in the loop for equilibrium, and some of it must drain down until the
pressure gradient offsets gravity and all energy terms balance. The above mechanism
has been invoked to describe the formation and the draining of some prominences.
Other mechanisms which can be driven flows are the presence of various types of MHD
waves and instabilities (Priest 1980,1984, Bray et al 1991).
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Chapter 4

2-D LOW-3 MHD
EQUILIBRIA IN UNIFORM
GRAVITY

4.1 Introduction

As we have discussed in the first chapter, it is known that the active region plasma is
dynamic, with continual activity in the form of a wide range of flows, with very small
Alfvén Mach numbers. At high temperatures solar active regions are seen to consist of
loops with almost constant temperature, for a wide range of density. The magnetic field
of an active region probably evolves slowly through a series of essentially stationary,
mainly force-free states. As far as movement normal to the magnetic field is concerned,
the plasma is completely dominated by the field, since the plasma § is usually much
less than unity (=~ 1073,107') and the flow is subalfvénic. But, along the field, the
plasma is observed to be in confinuous motion rather than in a static state. Many type
of flows are now observed, and are described in section 1.4.

However, as we saw in chapter 3, for the most part, the effect of the flow in the
solar atmosphere has been neglected in theoretical models. From a theoretical point of
view the flow in a loop can be regarded as a siphon flow which is driven by a pressure
difference between the foot points. This was originally suggested by Meyer & Schmidt
(1968) to explain Evershed motions, but it may also occur along coronal loops. If one
starts with a static loop and switches on a pressure difference, then after several sound
travel times a steady flow is established. In chapter 3 we discuss also how Cargill &
Priest (1980) and Noci (1981) studied in detail the siphon flow, modeling the loop as a

99



100 CHAPTER 4. 2-D LOW-3 MHD EQUILIBRIA IN UNIFORM GRAVITY

rigid arch with a cross-sectional area that varies in a predescribed way. In this approach,
which is valid in the limit 3 — 0, lateral force-balance is neglected (no deformation of
the field). Also, siphon flows in magnetic flux tubes has been investigated in the thin
flux tube approximation by Thomas (1988), Montesinos & Thomas (1989), Thomas &
Montesinos (1990,1991), and Degenhart (1991). Of course all these models are one-
dimensional (all quantities depend only on the abscissa s along the loop) and do not
take into account the lateral force balance between different streamlines. Finally, in
an initial attempt to understand the role played by plasma flows in the equilibrium
and stability properties of solar MHD structures, de Ville and Priest (de Ville 1990, de
Ville & Priest 1991a,b,c) have recently presented exact solutions to the steady MHD
equations in the absence of gravity. These solutions model incompressible flows along
symmetric and nonsymmetric arcades of magnetic fieldlines.

In this chapter we study siphon flows in an isothermal magnetized atmosphere,
taking into account the back reaction of the flow on the magnetic structure, and looking
for as wide a class of boundary conditions as possible (Surlantzis et al 1993,1994). Since
however, the solar situation is one of a small § plasma, we take advantage of the fact
that the flow is subalfvénic but not necessarily subsonic to simplify the search for such
solutions. In section 4.2 we present the equations of the model, and in sections 4.3 and
4.4 we discuss the properties of various solutions. Our main mathematical assumption
is that there is an ignorable coordinate.

4.2 Low-8 and low Alfvénic Mach number flows

In coronal loops and in chromospheric Evershed flow both the plasma 3, and the
Alfvén-Mach number M, are less than unity. In this case the field is to the lowest
order approximation force-free

(V x Bo) x Bg =0, (4.2.1a)

V-Bg=0. (4.2.1b)

The force-free structure is some sort of empty container which pressure, gravity and
inertial forces perturb weakly. We expand the perfect MHD equations in 3 and MZ.
The zeroth order gives Eq.(4.2.1a). Writing

B = BO + Bl R (4.2.2)

where By is meant to be small, of order 8 or M? as compared to Bg. In other words
we have split the magnetic field as a sum of a force-free component By, and a small
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B component which is due to the influence (or back reaction) of the plasma. Thus,
we get to first order, in these small plasma parameters

V-By =0, (4.2.32)
V- (V) =0, (4.2.3b)
V x(V xBg)=0, (4.2.3¢)
| B, (V B
PV -VV = _VP+ (in?r)x 1 XE:T)X 0 4 pg. (4.2.3d)

Thus, we have linearized the MHD equations with respect to the magnetic field, but
not with respect to the flow variables, since we want to allow the ‘field-aligned flow to
be even strongly non linear. Of course this is a valid approach for § << 1 and the
Alfvén number M? << 1. If the magnitude of the flow speed does not greatly exceed
the sound speed V,, # << 1 implies M2 << 1 (note that M? = SM?/2), so we shall
refer to these conditions simply as § << 1.

Finally, we adopt an energy equation of the form

P = P(p). (4.2.3€)

So, Eqs.(4.2.3) constitute a closed system for P, p, V and Bj. We stress again that
the velocities are not so small as to ignore the left hand side term in Eq.(4.2.3d). We
still have the plasma (3, and the Alfvénic Mach number much less than unity.

4.3 Cartesian coordinates

We start our study by considering configurations with translational symmetry. The
coordinate system is (z,y,2) wherein coordinate y is ignorable. The 2-axis points in
the opposite direction to the uniform acceleration of gravity g. The general solution
with translational symmetry of Eqgs.(4.2.3a,b) can be written in terms of a vector
potential y-component A;(z,z) and a stream function ¥(z,z) (which, as noted, are
functions of z and z alone)

0Ax oA
B =52 Bi=-7, (4.3.1)
1 0¥ 1 0¥
Visma T Tma (4.3.2)
The general solution of Eq.(4.2.1b) is
8A0 aAo :
= 7 Bo, = ———. 3.
Boz am ? 0, az (4 3)
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where the vector potential y-component A, is also assumed to be function of z and =
alone. Lines of constant (4 + A1) are field lines of the meridional field, while lines of
constant ¥ are stream lines of the meridional flow. It is well known that the force-free
condition (4.2.1a) can be written as
V24 —r— =0, 4.3.4
o+ 3 5 d A ( )

where By, (Aop) is the component of the magnetic field in the ignorable direction which
must be a function of A¢ only.

Following the formalism of Tsinganos (1982) we write the Eqs.(4.2.3¢,d) in Jacobian
notation,

0¥ 0A 0¥ oA
{¥, A} = 57 0s 02 92 (4.3.5)
{¥,A} = 0 means that V¥ and VA are parallel, ¥ and A being both constants on the
same lines in the z-z plane.
The z and z-components of the induction equation (4.2.3c), yield after simple al-

gebra '
{‘I’,Ao} =0 — ¥ = ‘I’(Ao) . (4.3.6)

Then the mass flux can be written as

pV = ( Yao aA" oV, LEY %> , (4.3.7)

ar 0z 7YV 4r oz

where ¥ 4, = d¥/dAg = ¥ 4,(A4o).

The y-component of the induction equation gives

{Vy, Ao} — {Bo, /47p, ¥} =0, (4.3.8)
or equivalently
¥4
Vy - 47{';)) Boy = q)Ao = Q(A()), (439)

where 2(Ag) is a function of Ay related to the induction potential V x Bg = V&
and the subscript Ay in functions ¥ and ® denotes the derivative with respect to
their argument Ag. In cylindrical geometry Eq.(4.3.9) is usually referred to as the
isorotation law (Ferraro, 1966). In translational symmetry it means that the motion
in the symmetry direction is made of a field-aligned flow plus a translation of each
magnetic surface in the invariant direction.

From the y-component of the momentum balance equation we get

YA, {Vy, 4o} = {Bo,, A1} + {B1,, Ao} . (4.3.10)
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Note that dB
{Bo,, A1} = °" > {41, 4o}, (4.3.11)
so Eq.(4.3.10) is written as
dB
By, — WagVy = — A"" A; + G1(4o). (4.3.12)

where G1(A4g) is a function of A¢ only. Eq.(4.3.12) expresses force balance in the

ignorable direction.
From Eqgs.(4.3.9) and (4.3.12) we have the following expressions for the field and
velocity components in the ignorable direction in terms of the perturbed potentlal

¥4,

Vo =0+ 228, (4.3.13)
T,y 2 dB
B, = 47*:‘/’) Bo, + W40 @+ — A°0” A+ G (4.3.14)

It is easy to see from Eqs.(4.3.7, 4.3.13) that when the flow is field aligned (with respect
to the By field), we have = 0. Then,

AnpV = \I’AoBO . (4.3.15)

Here we consider this case. Thus the function ¥ 4, is simply the ratio of the mass flux
to the magnetic flux. If {2 were not zero, magnetic surfaces would glide on each other
in the direction of invariance. _

The momentum balance equation can be written as

(VXBo)XB1+(VXB1)XB0

VE =
4rp 47p

—(VxV)xV, (4.3.16)

where .

dP v?
E = r tgz+ - (4.3.17)

Since the Lorentz force has no component along the lines of magnetic force and since

V is parallel to Bg we have,
By - VE =0, (4.3.18)

which can be written in Jacobian notation as {E, Ap} = 0 so,

dP V2
3 + g9z + — = E(4Ao), (4.3.19)
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where E(Ay) is another function of A denoting the energy flux density per unit of mass
flux density. Eq.(4.3.19) is the Bernoulli equation for each stream line. Physically it
expresses that the sum of the thermal (enthalpy per unit mass), kinetic and potential
energy flux densities per unit of mass flux density is constant along each streamline, a
result which is simply the consequence of the time independence of the equations.
Now the remaining z and z-components of the momentum balance equation can be

written

Q—A—O VzAl -+ Von - ‘I’A0<
0z

0 90040, 0 BauOhn)] 08

8z 4np Oz ' Oz 4np 0z 0z

oV} 9(Bo,B,)

2 _
"o T 92
together with a similar equation where z replaces z and vice-versa. Use is then made
of Eqgs.(4.3.4), (4.3.13), (4.3.14), (4.3.19). Writing these equations in (z,4¢) and (z,4,)
coordinates and transforming the partial derivatives with respect to Ay to derivatives
of suitable functions of Ay alone, they reduce to the following equation for A4;(z, z)

: (4.3.20)

, 1d*(B§,)
ud A, =
VA + 2 dAZ 1
v ¥ A d(Bo, G 1 d(B: ¥2 d
A _Q_ Ao 04, + 2 Ao6 ol ( 0y 1)_ ( 0y Ao)_47rp—E ) (4.3.21)
Ot 4np Oz Oz 4mp 0Oz dAy  8mp  dAp dAe

This is a linear equation in A; of Poisson type, the right hand-side is known from A4,
(initial force-free field) wherein p is obtained from Bernoulli equation (4.3.19) for the
zeroth order field. In other words Eqs.(4.3.19) and (4.3.21) describe respectively the
field-aligned flow and the perturbed magnetic structure. Eq.(4.3.21) could be derived
as well by performing a linearization in 8 and in M2 on the general transfield equation
which describes such flows. In appendix A we have done this in a general coordinate
system. A number of the original equations have been absorbed into the first integrals
represented by ¥ (which expresses mass conservation), Bo, and G (which stem from
the force balance equation in the ignorable coordinate), and E which expresses en-
ergy conservation. These functions must be defined by consideration of the boundary
conditions or criticality conditions as we shall see.

In summary the unperturbed magnetic field Bg is defined by the force-free equi-
librium, Eq.(4.3.4). With this, the perturbed magnetic field By is found from the
linearized transfield equation, Eq.(4.3.21), the velocity field from the mass flux conser-
vation, Eq.(4.3.15), and the density from the Bernoulli equation (4.3.19). In practice,
we solve first the Bernoulli equation (4.3.19) obtaining the density p(z,2) and then we
solve Eq.(4.3.21) which is linear in 4.
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4.4 Flows in Current free Fields

As an example we analyze flows in an initial potential field Bg wherein By, (4o) = 0.
In this case, the general form of A, (solution of V24y = 0 vanishing as z — o0) is

written as
gz GiT\] _uz
A=Y [ ( ) d; < )] T 4.4.1
0= 0 cicos { o+ + d; sin 5L ) )¢ ( )

where L is a typical scale height of the system.

We assume that each field line has a uniform temperature T(Aq). This is because
we want our assumptions to remain valid at large z. A consideratjon of the Bernoulli
equation under Eq.(4.2.3¢) shows that for the density to approach zero as z — co the
specific enthalpy must scale like In p which means that the gas should be isothermal at
large heights.

Let V,(Ao) and V,o be respectively the sound speed on the field line Ay and at
infinity, and let 7(A4¢) = T(A¢)/Ts be the dimensionless temperature. Then on each
field line we have an isothermal equation of state,

P=V2Zp=r(4)Vi. p. (4.4.2)

We define the scale height L = V2 _/g and the Mach number M = V/V,. The
Bernoulli equation (4.3.19) then writes,
z _]\4'—2 . E(Ao) '

mZ 2y

it Ty (4.4.3)

where p, is a characteristic density (see Eq.4.5.2).

We suppose that there is no electric field [if & = 0 then V is given by Eq.(4.3.15)]
which means that the flow is field aligned with respect to Bg. Because By, = 0,
Eq.(4.3.21) for A; simplifies to,

O Up 04y | 0 Wa,0A] _, dE

2
) =200 _ ==
VA=Y Oz 4mp Oz T 0z 4np 0z WpdAo ’

(4.4.4)

where the density is found from Eq.(4.4.3).

For Eq.(4.4.4) to have a well behaved solution for z > 0, the first-integrals ¥ 4,(Ao)
and E(Ap) cannot be arbitrary. We are restricted here to solutions wherein the density,
pressure, velocity and the plasma § tend to zero at very large heights (2 — oo0). Thus
the right hand side term of Eq.(4.4.4) should approach to zero at large 2 in order to
have asymptotically a potential field.
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Let £ = minlg], 1 = 1,2,3,.... For z — oo, where M — 0, the potential field
goes with height like Ay e"%, while the density from Eq.(4.4.3) goes like p e~ T,
Thus, the plasma 3 behaves at large heights as

8mpV2
B = ”52’ o eléD=/L (4.4.5)
0

Thus, we conclude that the stratification parameter for the magnetic field must be
£ < 1 for 3 to remain finite at large z, as assumed and as it seems to be the case in
the corona. For £ > 1, the magnetic field at large heights would not be strong enough
to confine the plasma and a wind would be present.

4.5 Flows in a simple arcade.

Let us take the simplest current-free field as the unperturbed configuration in Cartesian

coordinates zzy,

Aoz, 2) = A, cos (%)e‘L . | (4.5.1)

This is defined in the strip |z| < 7L/, z > 0, with £ < 1. The field strength By, which
depends in this special case only from the height z, is

A*é — £z
e 2L
2L

Bo(z,2) = (4.5.1b)

The temperature Ty, (or equivalently the sound speed at infinity height V) is taken
as reference and equal to 1.6 x10% K (typical for the quiet solar corona) and L = 80, 000
km.

4.5.1 Adimensionalization.

It is convenient to define the following dimensionless variables in terms of the charac-
teristic length L, temperature T, Alfvén velocity V, and the sound velocity V;,

{z £z P vV 2 W4 2
=7 = 7 _ M= 170 M3 = 2 9
T T e Px Vs A7 arp
A*f ‘I’A B* V* ‘I'A 2
B*: V*:___Q_t_, M*':-‘ 2.:—-——9—"i
L ] 47rp* Vsoo’ MA 47!',0* 9
: V4. (A 2 T(A
a(ag) = TI']_O_((Z%)T a0) = 73 E(4o),  7(a) = -;E;:—gl,



4.5. FLOWS IN A SIMPLE ARCADE. 107
Ao(:L‘,Z) BO(x’Z) 1 Al(:L',Z)
A B, MELTOA,

where the superscript * refers to fiducial values. Eqs.(4.4.3) and (4.4.4) can be written
in dimensionless form

ag(x,2) = bo(x,2) = ai(x,z) = (4.5.2)

z M2 M?
T 1ng+-€—+ 292 = 2 e(ao), (4.5.3)

“ Vig o] 220% 0 ada| ode
Oxp Ox Ozp Oz 2 day

This is a Poisson equation in the half strip |x] < 7, z > 0 with homogeneous Dirichlet
boundary conditions (because the magnetic flux distribution is supposed not to be
altered at the boundary). The appropriate Green function is given in Appendix B.
These two equations for p and a; contain three free functions a(ap), €(ag) and 7(ao)

which relate to the boundary conditions (section 4.5.3).

(4.5.4)

4.5.2 Topology of the solutions

Before solving Eqs.(4.5.3,4.5.4) it is useful to focus our attention to the Bernoulli equa-
tion which can be written for a given field line (ag = const.) in terms of the Mach
number M of the flow

M? 1 1

—InM + - + (f_'r — E)z = constant , (4.5.5)
By taking the differential of the above equation we find that we have a critical point
at M = 1 where dz/dx = 0 (at the top of the field line). The physical meaning of this
critical point can be seen better, if we write Eq.(4.5.5) as

M? 2 X
—InM + . (1 — 5_7'> In (cos 5) = constant . (4.5.6)

because to a first approximation the equation for each field line is z = 2 In [cos(x/2)/ao]
(the unperturbed magnetic field Bg). This equation is identical with the Bernoulli
equation in ordinary tubes if the effective cross-section of which would vary with x as

S(x) = 2cos' % (%) . (4.5.7)

The term 1 of the power is due to the actual flux tube geometry, while the term —2/¢7
is due to gravity. For £7 < 2 the critical point is of the X-type (the effective cross
section has a minimum) and for é7 > 2 it is of the O-type (the effective cross section
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Figure 4.1: (a) The variation of the effective cross section Eq.(4.5.7) with the horizontal
distance x for three values of {7 = 1,2 and 6. (b) Topology of the Bernoulli equation
(4.5.5) for &7 =1 and 6.

has a maximum). If {7 = 2 the effective cross section is constant along each field line
(Fig.4.1a).

Thus, the whole discussion for de Laval nozzles (chapter 3) is valid and we have
that for {7 > 2 (hot loops) only subsonic solutions are possible, if boundary conditions
forbid the flow to be supersonic at the base of the loop, which we assume. But for
1 < 2 (cool loops) either subsonic or transonic solutions with shocks are allowed.
When {7 = 2 obviously the velocity is constant throughout the field lines (Fig.4.1b).

Because of the symmetry of the problem, in the subsonic cases the pressures at
both foot points of the same field line are always equal. Only in the case of transonic
solutions are the pressures unequal because of the presence of a shock (the plasma flows
from the high pressure to the lower pressure foot point).

4.5.3 The integrals a(ag), €(ap) and T(ao);

In order to solve Eqs.(4.5.3,4.5.4) we must prescribe the functional forms of a(ap),
€(ap) and 7(ag). These functional forms correspond to the boundary conditions at the
photospheric level (z = 0) of the system of Egs.(2.3) for the mass flux, energy input
and the temperature distribution. A solution of the Bernoulli equation must exist at
all points of the strip for the chosen a(ap), €(ao) and 7(ag) functions. For {7 < 2
(X-type topology), this is not so, if the resulting initial velocities (at z = 0) correspond
to solutions having a turning point (the velocity has two possible values for a given
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position x). For é7 > 2 (O-type topology) the appropriate condition is that the velocity
at z = 0 be always subsonic for any x (Fig.4.1). Finally the choose of the function
7(ap) corresponds to the temperature distribution across field lines.

In the subsonic case, regarding Eq.(4.3.15) at z = 0 for given a(ag ), we see that if we
give the boundary distribution of the density (or pressure) for example, automatically
the velocity distribution is determined. In transonic cases, a shock is present and we
have another free function which is the post-shock temperature (see section 4.5.5), or
equivalently the distribution of the postshock pressure at z = 0.

4.5.4 Subsonic flows.

Having in mind that we want to construct solutions for coronal loops we split the
functions «(ap ), €(ao), 7(ap) in two components as follows

alag) = ai“(ag) + a®(ay), (4.5.8a)
e(ao) = €(ag) + €“*(ao), (4.5.8b)
7(ao) = 7(a) + 7°**(ao), (4.5.8¢)

The functions with superscripts ”in” refer to the region inside the loop (either with flows
or not), and the functions with superscripts "out” define the values of its environment.
(no flow). The choice of all functions must be such that the functions «a, €, 7 and their
first derivatives are continuous (because the first derivatives are present in Eq.4.5.4).
We can assume for the environment a uniform temperature T°%(aq) = Too =
1.6 x 10° K and magnetostatic equilibrium, a®*(ag) = 0. The functional form of
€°"t(a,) reflécts the distribution of the environmental density at z = 0, since from

Eq.(4.5.3) we have
M2
* _ou (]0)‘ | (4.5.9)

For the internal loop structure we have assumed the following profiles

Ing =

o'®(ag) = a®® + a™**sinNe (ww> , (4.5.10a)
Qg; —aof
€™ (ap) = €™ + e™*gin e (w 3"—"—a—°f—> : (4.5.10b)
Qo; — aof
Tin(ao) = 7Out 4 pmaxgn N, (W——————ao — s ) , (4.5.10c¢)
Qo; — aof

where ag; and aps are the field lines defining the boundary of the loop. The first
derivatives of the above functions are non singular only if N,, N, N, > 1.
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It is worth to compare the solution obtained with flow [a!"(ag) # 0] with a static
solution [a'*(ag) = 0] having the same boundary conditions (temperature, density,
pressure and vertical magnetic field component) at the base (z = 0). This implies that

ast*tie(x, 0) = all*¥(x,0), 7°t24¢(qg) = 78°%(qy) and that €**2%°(qy) is given as function
of €1°%(ag) as follows. From Eq.(4.3.4) we have,

z  M?  MZ2f%(ay)
In pfo% + = = —* 4.5.11
. MZ staticy:
In gotatic | 2 Mx(ao) (4.5.12)

Er 2
Then p%t2tic = pflow at 7z = 0 if €t24¢(qg) = €% (ag) — M2, /M2. At a given height 2,
the ratio between the densities becomes

flow M2.M2
LR (4.5.13)
Qstatxc

In Figs.(4.2a,b) we present two typical loop structures for ¢ = 0.9. In Fig.(4.2a) the
flows are absent. We have chosen the parameters for the functions in Egs.(4.5.10) such
as to have equal densities at the foot points in each case (Eq.4.5.13). The maximum
temperature inside the loop is 2.1 x 10 K (r™** = 0.3) and we see that because
throughout the loop {7 < 2 the variation of the density along the field lines is larger in
the loop with flows in Fig.(4.2b), so the density decrease is steeper than the classical
exponential density decrease e~9%/ V. The ratio of the densities of the two loops at
the same height is in the range 0.6 < e~(M *~M{o0)/2 < 1 because the gas accelerates
towards the top of the loop (M > Mjoot). Thus in cool loops, the flows: cause the
density to drop faster along fieldlines in comparison to the static case.

If the loop temperature is very high this effect is reversed. In Figs.(4.3a,b) where
the temperature is 7.2 x 10® K (r™2* = 3.5) the gas decelerates at the top (M < Mioot),
so the density falls off more slowly than in a static loop. The ratio of the densities
at the same height are in the range 1 < e~(M*~M{,)/2 < 165, There are cases, as
in Fig.(4.3b) when the effects of flows are so strong that the maximum density is not
at the foot points but at a certain height. There may exist sufficiently hot (or small)
loops where the flows are strong enough to bring the maximum of the density at the
loop top! Thus in hot loops with flows the density drops slower or increases with height
along fieldlines compare to the static case.

Also, from Fig.(4.1b) we may be explain why strong flows are present only in cool
loops (section 1.4). If we accept the extreme case that in the footpoints of the hot
and cool loops (of the same geometrical properties) the velocities are the same, then in
cool loops the flow speed increases with height reaching its maximum at the top (the
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Figure 4.2: Typical structure for a moderate hot loop (é7 < 2) with an unperturbed
magnetic field given by Eqs.(4.5.1). (a) static loop (a™** = 0.) and (b) loop with
flows (a™** = 1.1, €®** = 0.6). The profile of the functions a,¢,T are given by
Eqs.(4.5.8,4.4.10) with N, =.N, = N; = 1.1 and 7™ = 0.3. The vertical field
component, the temperature and the density are the same at the base (z = 0) in both
cases. Continuous lines represent the field lines of the initial current-free configuration,
while the doted lines the final magnetic structure. The grey levels are proportional to
the density. In these solutions, where {7 < 2 is satisfied everywhere, the density along
the loop drops faster with height in the presence of flows as compared to the static
case.
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left topology of the Fig.4.1), while in hot loops decreases (the right topology of the
Fig.4.1). Thus, in cool loops the flows will be appear stronger compare to the hot ones.

In the static case the shape of field lines depends on the gradient of pressure which
push either inwards or outwards. With flows, the centrifugal forces, which push out-
wards, are also present. Thus the field lines are pushed ”locally” in order to balance
the hydrodynamic and hydrostatic gas effects. These effects remain small when the
Alfvénic Mach number is low.

4.5.5 Transonic flows.

For £ < 2 a pressure difference imposed at the foot points of each field line, forces
the flow to become supersonic at the summit (where the effective cross section S(x),
Eq.(4.5.7), is minimum). In order to become subsonic again at the other foot point it
must be decelerated through a shock that is located at some position downflow. But
to first become supersonic, the flow must pass through a critical point on the field line
(ao), and the function a(ag) must then be related to the function e(ag). Putting the
partial derivative with respect to ¢ of the left hand side of Eq.(4.5.3) to zero, we see that
the requirement M =1 at the summit (x = 0,z = —2Inay where S(x) = Smin = 2) is
equivalent to the following relation (criticality condition)

1 . M. &
2o a}. (4.5.14)

e(a)—ﬁ__}_l —_—
Oz |2 T T ST

This condition imposed at the upstream foot point of a field line implies that the
solution is transonic on it. It is physical to suppose the existence of subsonic flows
in field lines around a ’transonic core’. In the transonic region, the temperature is
71(ao) before the shock front. After, it is 72(ag), a function determined by boundary
conditions on the downstream foot point, mainly by the value of the pressure there.
The boundary condition 73 = 7; must be also satisfied at those field lines that make
the boundary between the transonic and subsonic layer. In the following we shall for
simplicity prescribe the profile of the post-shock temperature 72(ap) and deduce the
associated pressure at the downstream footpoint.

The conditions at the shock front are that the mass flux, the energy flux, the normal
component of the magnetic field, and the momentum flux must be continuous (Landau
& Lifshitz 1960). Because we are in the ideal MHD context we must have also that the
tangential component of the electric field from induction equation must be continuous.
If we denote with indices n and ¢ the directions normal and tangential to the vector
which is perpendicular to the shock front we have

[pVa] =0, | (4.5.15a)
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Figure 4.3: Typical structure for a very hot loop ({7 > 2) with an unperturbed mag-
netic field By given by Egs.(4.4.1). (a) static loop (a™** = 0.) and (b) loop with flows
(a™a* = 2.7, &% = 1.83). The functions a,¢, T are almost constant inside the loop,
and its temperature is 7.2 x 10% K (r™** = 3.5). The vertical field component, the
temperature and the density are the same at the base (z = 0) in both cases. The
drawing conventions are the same as in Figs.(4.2). In these solutions, where {7 > 2
is satisfied in the region of strong flows, the density is larger in the presence of flows
(b) than without (a). Then the maximum density is not at the foot points but above
them.
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v\ V,B> B,V.B
[an <h+ —2-) T T ] =0, (4.5.15b)
[B.] =0, (4.5.15¢)
2 _ BZ

[P +pV2 + &————"] =0, (4.5.15d)

8w

B.B
[anVt - t] =0, (4.5.15¢)
[VaBy — ViB,] =0, (4.5.15f)

where £ is the enthalpy per unit mass and | | means the difference between the up- and
down-stream values at the shock position. The two first conditions are automatically
satisfied if the functions W 4,(A¢) and E(Ao) are identical before and after the shock
front (the second because we assume that V//Bg so the Poynting flux term is zero).
Obviously, the continuity of the tangential component of the electric field is satisfied.
The remaining three conditions yield to first order in 4 and M?

[B;,] =0, ' (4.5.16a)
[P+ pV2] + E—‘k[Bl ]=0, (4.5.16b)
n 47(' t ?
By
[PV Vi] — 47: [B1,] =0, (4.5.16¢)

because both By, are By, are continuous. Using the continuity of pV, and V//By,
Eq.(4.5.16c) becomes

By
VZ] - —%[By,] = 0. 4.5.
LAEES (4517)
Combining Eqs.(4.5.15b,d) we get
[P +pV?]=0. (4.5.18)

This equation gives the shape of the shock since it holds only at a single point on each
field line. The Bernoulli equation, valid on both sides implies
z Mfozzbﬁ M?

iln g + ¢ + 202 2* €(ao), (4.5.19)

which gives the density g;(x,z) before the shock (i = 1) and after (: = 2). Eq.(4.5.18)
then indicates where the jump must be situated. Eq.(4.5.16¢) can be written as

47

[Br] = 5—[pVaVi]. (4.5.20)

0,
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This gives the surface current density Js = [Bj,] along the shock. Note that, the flow
being subalfvénic, such a shock is necessarily of the slow type.

In order to find the resulting structure of the loop we can use the superposition
principle, adding the field created by distributed currents and by the surface current
at the shock. We first solve for a; the Poisson equation (see Eq.4.5.4),

0 @ Oagp 0 o 8(10 0; de

Via; = - 4.5.21
M=o 0; Ox * 5 Oz 0; Oz 2 day ( )

taking the density from the Bernoulli equation 4.5.19. The right-hand side of Eq.(4.5.21)

is the distributed current. The potential A;, created by the surface currer}t density J,
of the shock discontinuity is given by

47
By

Vi), =Js = AAE (4.5.22)

n

Making similar adimensionalization in A;¢ as in A; we can write Eq.(4.5.22) as

(4.5.23)

Via;, = jo = by [cos&}

e

where 6 is the angle between the shock front and the initial magnetic field line ag. The
whole potential a,,,,,, is
altotal = a']- + als b (4-5.24)

The conditions (4.5.16a) and (4.5.20) are satisfied by our way of constructing the
solution.

In some cases, the above described construction of the solution would place the
shock below the level z = 0. This is obviously because our model does not properly
describes the physics of the flow in the region of steep density gradient where the plasma
passes from low to high 3. The downwards supersonic flow is channeled in the low
region but not lower down. The situation is somewhat analogous to a flow exhausting
from a nozzle into an open medium (Landau & Lifshitz 1966). Here however the
open medium exhibits a steep gradient of pressure due to the stratification of the cold
atmosphere by gravity. The very high values of the pressure which are obtained at even
slightly negative altitutes are large enough to decelerate the supersonic downflow at
some point in this steep gradient layer. This is made through a three dimensional shock
of sonic nature. In practice then, when our construction fails to locate the decelerating
shock in the low (3 region, the latter locates itself very near the photosphere.

In Fig.(4.4) we show a typical loop structure with shock. Note that the gas density
in the pre-shocked area is almost constant because the flows are very strong (M > 1).
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Figure 4.4: Typical structure of a loop (£ = 0.9, a™** = 30, N, = 2) with shock for the
direction of the flow from left to right. The maximum temperature before (resp. after)
the shock is T{*** = 0.3 (resp. 73"** = 0.4) and their profiles are given by Eqs.(4.4.8¢c)
and (4.4.9c) with N,, = 2. The lines and the gray levels have the same meaning than
in Fig.(4.2). The dashed line shows the shock position.

In Fig.(4.5) we see another example applicable to cool loops. Cool loops are ob-
served to have sizes comparable to the coronal scale height but are not in hydrostatic
balance because their temperature is at least one order of magnitude lower than the
coronal one, while their density is similar to that of the corona. Cool loops are sur-
rounded by a hotter and denser medium. Foukal (1976) proposed that material enters
in the cool loops at their top and flows down to the lower atmosphere. We modeled
such a flow still keeping the isothermal assumption, although radiation losses may play
a role. The result is shown in Fig.(4.5). Material has been assumed to be injected at
the loop top with a sonic speed and its motion has then been calculated. The core
temperature was taken to be 8 x 10* K. It is seen that the density profile is quite flat
in the core before the material passes through the shock. The shape of the shock is
not transverse to the field lines but tends to wrap around the cool core. We propose
this as a possible explanation for the hot dense sheet observed around cool loops.



4.5. FLOWS IN A SIMPLE ARGADE. - 117

2.5 3

Figure 4.5: Typical structure of the half of a loop (£ = 0.5, a™** = 300, N, = 2) with
shock having a cool core tempefature of 8 x 10* K (r{*** = —0.95, %% = 0.4). The
fluid inject at the loop summit with a sonic speed and then it flows down from both
legs. In the pre-shock area the density is uniform because of the high Mach number
of the flow, while the shock tends to wrap around the cool core. The shocked plasma
forms a hot dense sheet around the cool core.
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4.6 Cylindrical geometry.

The most general magnetic current-free field in cylindrical coordinates r¢z is (Priest

1984)
Ag(r,z) = 252 [Y1 (272)31 <§Z) -J; (g;)Y (252)]6—% , (4.6.1)

which can describe loop-like solutions with asymmetrical cross section. It is defined in
the space between the two semi-open cylinders r; < r < rj, 2 > 0 where r;, is the first
zero of Eq.(4.6.1) larger than r; and of course r; # 0. In limited cases for large ¢(r/L
we can write approximently

Ao(r, 2) zA*;\/g sin [5(“2; T)] : (4.6.2)

where ry = r; + 27. The following simpler magnetic current-free configuration can be
used as a first approximation for the magnetic field of a spot at chromospheric and
coronal altitutes where the plasma 3 << 1,

T T £z
Ao(r,z) = 2£LJ1 (2§L)e . (4.6.3)
It is defined in 0 < r < 7.66341L/¢, z > 0 [7.66341 is the first zero of J;(z/2)]. In both
cases the magnetic field components are :

104, B _l%

By, = —= 222

, - , 4.6.4
" r Oz 0= = o ( )

We assume the same energy equation (4.4.2) and make the same adimensionaliza-
tion as in (4.5.3), except for the definition w = {r/L and by = A.£%/L%. Equations
analogous to Eqs.(4.5.3) and (4.5.4) can be obtained from the general form of the
transfield and Bernoulli equations presented in Appendix A. They can be written as

z  MZa2b: M 2

1 2
Tn9+£+ 202

e(ao), (4.6.5)

and

0 18a1 0 13(11]__ [6 1aday &8 1 adag o de

o |Pemow Tz 0z dwwedw Gzwedz) 2da 45

Thus, we have to solve Eq.(4.6.6) in the region w; < w < wy, z > 0 when Eq.(4.5.1)
holds and in 0 < w < 7.66341, z > 0 in the other case. Boundary conditions are
homogeneous Dirichlet ones. The appropriate Green function is given in Appendix B.
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Figure 4.6: The variation of the effective cross section Eq.(4.6.7) with the horizontal
distance w for five values of {7 = 0.6,1,2,3 and 10.

Writing the Bernoulli equation for a given field line in terms of the horizontal
coordinate @ we find that we can define the effective cross-section as

1 -2
_ g ¢ (wa 0)

S(@) = 2y (4.6.7)

which has an extremum which depends on £7. In Fig.(4.6) we plot the function S(w)
and we see that now the critical point of Eq.(4.4.3) is not at the top of the loop because
the loop is not symmetric anymore because of the cylindrical geometry.

But the previous results still hold. For hot loops, where {7 > 2, the critical point is
of O-type (the effective cross section has a maximum after the loop summit), and only
subsonic solutions are possible. For cold loops, where {7 < 2, the critical point is of
X-type (the effective cross section has a minimum before the loop summit) and both
subsonic and transonic solutions are allowed. In the particular case where {7 = 2 the
effective cross section increases continuously as we move outwards, and only subsonic
solutions are possible.

For subsonic flows the pressures at the two foot points of a same field line are now
different. The solution is such that the higher is the magnetic field, the lower is the
pressure; so the pressure at the outer foot point is higher than at the inner. This is a
more general result than the usual static condition P+B? /87 = const. which holds only
if the magnetic field is vertical. Note also that at the saine altitude force balance along
field lines requires equal densities and pressures in the absence of flows. Thus subsonic
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flows are driven by small pressure differences. So the flow is accelerated towards the
inner foot point. This siphon mechanism can explain naturally the reverse Evershed
flow and the flow in asymmetrical coronal loops. Flows in the reverse direction would
imply that the fluid move in the direction of increasing gas pressure, which calls for
an additional driving mechanism, for example by Alfvén or magnetosonic waves, or a
secular variation of the spot configuration.

For subsonic flows the ratio of the pressures at the two foot points of the same
field line has a specific value which depends on a(ag), 7(ao) and €(aq). If boundary
conditions happen to be different, the flow must be transonic and shocked solutions
must occur. The criticality condition is given again by Eq.(4.5.14). The calculation of
the structure with shocks proceeds in the same way as Cartesian coordinates.

In Fig.(4.7) we show a typical solution for the counter Evershed flow at chromo-
spheric and coronal altitutes (section 1.5.2).

In Fig.(4.8) we show two typical loop structures. We see that the effect of flows
causes the loop to become more asymmetrical than in the static case. We can imagine
that there may exist loop structures in which the innermost part of the loop may not
be visible.

In Fig.(4.9) we present two typical loop structures with shocks for the two possible
directions of the flow. '

4.7 Conclusion.

In this chapter we have constructed two-dimensional low-3, and subAlfvénic isother-
mal magnetic arcade solutions. Such stationary solutions are introduced in order to
model flows in coronal loops and the Evershed effect in sunspots. We solved the MHD
equations (in two coordinate systems) in the low-# and low Alfvén Mach number
limit assuming that the magnetic structure is approximently force-free. Both the field-
aligned dynamics and the cross-field force balance is solved. Our method of solution
can be used in the presence of any boundary conditions and could allow modeling of
other situations than the examples given in this paper. This is made possible because
of the reasonable low-3 assumption . _

We assumed that the flows are always subsonic at the base of the structure. In
cartesian coordinates, we analyzed the modifications brought about by flows in sym-
metrical magnetic configurations. When there is no pressure difference between the
two foot points the flow is subsonic (we neglect the viscosity force) and the magnetic
structure remains symmetric. When there is a pressure difference between the foot
points and the loop is cool the flow becomes supersonic at the field line summit and
after deceleration through a shock, the flow becomes subsonic again. In this case the
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Figure 4.7: Typical structure of a spot at chromospheric altitutes assuming isother-
mallity with a uniform temperature10° K showing the counter-Evershed flow for {7 = 4
and a(ag) = 0.8.
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Figure 4.8: Density structure of a static loop (¢m™*® = 0.55) in (a) and density structure

of a loop with flows in (b) (™% = 4.6, €™** = 0.7). Both have the same density at
the outer foot. In both cases we have § = 0.8 and Ny = Nc = N; =15 and T™%% = 1.

The flows decrease the density of the loop in the inner part and the loop becomes more
asymmetrical than in the static case.
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Figure 4.9: Typical structures of two loops (¢{ = 0.8, a™** = 70, N, = 2) with shocks
for the two possible directions of the flow; from right to left in (a) and the opposite in
(b).The pre-shock temperature is equal to the external coronal one and the the post-
shock temperature has a ”sinenosoidal” profile with N,, = 2 and its maximum is 1.1
times the external temperature.
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loop becomes asymmetrical. In extreme cases the shock may become very inclined to
the magnetic field and the shocked material seems to wrap around a cool core. This
might explain the situation observed sometimes in cool loops. In order for the density
contrast to be visible against the surrounding, the energy flux inside the loop must be
very different from its surrounding. In cool loops with temperature less than ~ 10% K,
the flows cause the density to drop faster along fieldlines compare to the static case,
while in hot loops with temperature greater that ~ 10 K the flows causes the density
drops slower and in some cases to increase with the height. Finally, in cool loops the
flows will be appear stronger compare to the hot ones.

We also analyzed flows in asymmetric magnetic configurations by using cylindrical
coordinates in order to apply both to asymmetrical loops and to sunspot configurations.
We find that the counter-Evershed flow, detected in chromospheric and transition re-
gion temperature range, may be driven by a pressure difference (it flows from the low to
the high field strength region). In the Evershed flow (observed at photospheric level)
the plasma flows in the direction of increasing gas pressure. This requires another
mechanism, may be time dependent, like the concentration of the sunspot magnetic
field or wave pressure, to drive such flows. In asymmetrical loops the presence of flows
increases the asymmetry of the density structure as compared to the static case. In
some cases one leg of the loop may become poorly visible.



Chapter 5

1-D MHD EQUILIBRIA IN
UNIFORM GRAVITY

5.1 Imntroduction

Until now, solar prominences (Priest 1989 and references therein) have been mod-
elled as one-dimensional (Kippenhahn & Schliiter 1957, Poland & Anzer 1971), two-
dimensional (Low 1975a, Low et al 1983, Hood & Anzer 1990), or, three-dimensional
(Low, 1982, 1984, Wu & Low 1987, Demoulin 1989) magnetic structures in magneto-
static equilibrium, but without flows. Yet, Ha film observations and direct measure-
ments of Doppler shifts indicate that even in quiescent prominences the plasma is not
static, but it is instead in a continuous motion, suggesting therefore the ubiquitous
presence of flows in almost all types of prominences (Mein 1977, Malherbe et al 1983;
Martres et al,1981; Schmieder et al, 1985; Engvold et al, 1986).

As we have seen in chapter 1, magnetic loops and arcades on the other hand, have
also been observed to have plasma flows. But from the previous chapters we see that
such plasma flows have either been neglected altogether by studying. the properties
of those magnetic flux ropes as magnetostatic structures without flows, or, flows are
allowed but the loops are described as rigid arches with a cross-sectional area that is
allowed to vary in a prescribed way in the low-beta limit, or, as one-dimensional flexible
loops, or, as incompresiple flows ignoring gravity (chapter 3).

The purpose of this and of next chapter is to proceed further by constructing a novel
classes of steady MHD equilibria in the uniform gravitational field, without the critical
approximation # << 1, that is approximated to exist in the low solar atmosphere. The
construction is facilitated by the general reduction of the complete set of the symmetric,
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but nonlinear and partial differential equations of ideal magnetohydrodynamics that we
assume to describe — to zeroth-order — the interaction of compressible magnetofluids
in the solar atmosphere. This is the crucial point that makes the difference in the
solutions discrubing in the two later chapters from the existing ones; to solve the MHD
equations for each field line. The only similar case to these solutions is the work of de
Ville & Priest (1991a,b,c).

The most simpler and analytical class of equilibrium, is of course the one-dimensional
MHD equilibria (Tsinganos 1992, Tsinganos & Surlantzis 1992). In sections 5.2 and
5.3 we review the 1-D static and hydrodynamic equilibria and in section 5.4 the one-
dimensional planar MHD solution for an isothermal atmosphere is presented. This
solution can be extended to the case that there exists a general polytropic relationship
between pressure and density (section 5.5) and may be also constructed by a systematic
method that generates analytically solutions of the full MHD equations with one ignor-
able coordinate (chapter 2). Finally, the main conclusions of the study are summarized
in section 5.6.

5.2 Magnetostatic equilibrium

The simplest set of the integrals of the MHD equations, putting V = 0 for the simple
case of an isothermal atmosphere with a constant sound speed V, is

\I'A(A) =0, Q(A) =0,
G(A) =0, E(A)=E,+(¢/B.)A, (5.2.1)

where B, and E, are constants. For this choice of the integrals, and an isothermal
atmosphere, Eqs.(2.3.24, 2.3.26) yield the following two coupled equations for the pair
of the two unknown variables p(z, z), A(z, 2),

VZA + 47rp% =0, (5.2.2a)
21n 2 — 9
Vi ln o +gz=E, + BOA. (5.2.2b)

By eliminating A, we obtain a single equation for the dimensionless density o = p/p,,
where p, is the density at the origin z = z = 0,

Ve + —g-g =0. (5.2.3)

The differentiation in the above Laplacian is with respect to the dimensionless coordi-
nates x = ¢/L and z = z/L (where L = V?/g is the scale height) while £ is the familiar
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plasma ratio at the origin, 8 = 87p,V2/BZ. Thus, instead of solving the set of the
coupled Eqgs.(5.2.2) we need to solve this single equation for the dimensionless density
o (Low et al 1983). However, a detailed study of the various solutions of this nonlinear
partial differential equation shall be postponed for the future. Here we shall confine
our attention to the simplest possible solutions of this equation which correspond to
1-D equilibria similar to the Kippenhahn-Schliiter model for a quiescent prominence
(Kippenhahn-Schliiter 1957) wherein the density is independent of z, p = p(x) only.
Indeed, the simplest such possible solution of Eq.(5.2.3) is

1

o= wi(E)

(5.2.4)

From Egs.(5.2.2) the resulting expression for the magnetic flux function A has the
following form

A(z,z) = —Boz + /Bz(a:)dx, (525)

such that the magnetic field in the orthogonal coordinate system ¢ — y — z where the
z-axis points toward the opposite direction of the uniform gravitational field g is,

dA 9A |
B;=-%"=B,, B.=% =B.(a) , . (5.2.6)

Finally, the z-component of the magnetic field, b,(x) = B,(z)/B,, may be obtained by
taking the derivative with respect to x of Eq.(5.2.2b),

b.(x) = \/Btanh(—‘/?) : (5.2.7)

Note that the following relations that hold between b,-p-x

db, Bo
. bz:~i\/ﬁ(1_9)7 dx 27’
. do

tdx = ———.
ev/B(1— o)
are also obtained from Eqs.(5.4.19) in the limit of zero flows, M=0.
The dimensionless density ¢ and magnetic field b, are expressed in terms of a single
parameter, the plasma ratio § at the origin x = 0 where the density is maximum and
the magnetic field lines are horizontal, b, = 0. Notice that for given maximum density
po the z-component of the magnetic field which supports the plasma weight against

b.(00) = £+/B = ++/87p,VZ/B2. (5.2.9)

(5.2.8)

gravity is
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The minimum radius of curvature R, of the field lines at the point of maximum density
is then

Ro = % (5.2.10
°=7 )

Notice also that in this solution the total pressure [P + B2 /8] is constant everywhere,
with the result that the plasma weight is supported against gravity by the tension of
the magnetic lines alone. The density is maximum at the origin where the field lines
have the greatest curvature and tension. The density tends asymptotically to zero at
infinity, where the field lines become straight lacking any curvature and tension. Note
that most of the plasma is confined horiiontally within a few scale heights; and the
extent of the volume containing most of the plasma is smaller the smaller is 3. The
solution (5.2.4), (5.2.7) forms the basis of the well known Kippenhahn-Schliiter model
for a quiescent prominence (Kippenhahn-Schliiter 1957, Poland and Anzer 1971) and all
we have done here is to show a novel way for deriving it from the Eqgs.(2.3.24,2.3.26).
This may be helpful in generating more solutions of Eq.(5.2.3) and also additional
classes of solutions for more general expressions of the integrals in Eq.(5.2.1).

- In the above Kippenhahn-Schliiter solution the atmosphere is compressible only in
the horizontal direction. It is an interesting fact that this solution can exist in a plane-
parallel stratified atmosphere as well (Low et al 1983). In that case the total density
p(x,z) is given by the expression,

Po -

cosh? (@) ,

p(x,2) = posel ™2 + (5.2.11)

where p| is the density at z = 0, x — +o0.

5.3 Hydrodynamic equilibrium

It is instructive to consider for a moment the equilibrium of the similar, one-dimensional
velocity field,
pV = [pV%,0,pV;] = [p(2)Vz(2), 0, p(z)V: (2)], (5.3.1)

in the same isothermal atmosphere where we have put B = 0. Then, the continuity
equation is satisfied identically if p(z)V;(z) = constant, while the remaining force
balance equations read,

d
EE[P-FPVIZ]:O, (5.3.23.)
Vv = - 5.3.2b
7g [PVaVel = —pg. (5.3.2b)
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Noting the analogy of Eqs.(5.3.2) to the corresponding equations of the previous case of
magnetostatic equilibrium, integrate Eq.(5.3.2a) to obtain p = const. Notice then that
this result is drastically different from that expressed by Eq.(5.2.3), the streamlines
of the flow are the familiar parabolic paths of a projectile fired against the uniform
gravitational field instead of the sagged, under the plasma weight, magnetic field lines.
None of the interesting features found in the one-dimensional magnetostatic equilibrium
is found in this case of the one-dimensional hydrostatic equilibrium. This physical
difference js better understood when we compare the Maxwell and Reynolds stress
tensors (Parker 1979),

B? B;B;
i = - —| & = i ; 3.
M [P+87r} ;+ . J (5.3.3a)
0ij = —Pb;i; — pViV;. (5.3.3b)

The non-uniform part of the Maxwell’s stress tensor represents tension along a magnetic
line while the non-uniform part of the Reynolds stress tensor represents compression
along a stream line. The inevitable result is that magnetic lines are stretched tight
whereas stream lines tend to buckle. It becomes of interest then to know which of the
two stresses dominates when we have flows along the magnetic field lines.

5.4 1-D Hydromagnetic and Isothermal Equilibrium

The simplest cases of pure magnetostatic and hydrostatic 1-D equilibria in uniform
gravity, respectively, was briefly discussed. In this section we proceed with a step by
step construction of an analytic solution for the composite case of dynamical equilib-
rium (V,B # 0). It will be seen that this general case of MHD equilibrium, although
it maintains the basic features of the simpler pure magnetostatic and hydrostatic equi-
libria to which it reduces.in the extreme cases V = 0 or B = 0, respectively, is much
more complex than each of them and reveals novel features.

5.4.1 Governing equations

Take the z-axis of the orthogonal system yzz to point in the opposite direction of the
uniform acceleration of gravity g. Search for solutions where the horizontal component
of the magnetic field is uniform, the vertical component depends only on the horizontal
distance z while the mass flux is parallel to the magnetic flux,

B = [B,,0,B,] = [B.,0,B,(z)] , pV =2AB. (5.4.1)
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The components of the momentum balance equations yield then,

d B? \p?

= [P+§7ri+ ] =0, (5.4.2a)
d | B,B, 47 )\?
= [ ;’W (1 - >] = pg. (5.4.2b)

Assuming for simplicity an isothermal atmosphere, P = V2p, Eq.(5.4.2b) can be inte-

grated to give,
B2 )\2 B2 /\232
PVE+ 2+ —2 = p V] + —2
87 P Po
where p, is the density at the valleys of the equilibrium where B, = 0 and p; is a

positive constant. Combining Eqs.(5.4.2b) and (5.4.3) we obtain

=p V2, (5.4.3)

81V 2
B.(p) = i\/—ﬂp—s(*pz + pp1 — 6%), (5.4.4a)
d [B,B.(p) 4r\? _dz A

where 6 = AB,/V,. Eq.(5.4.4b) — with B,(p) substituted from Eq.(5.4.4a) — is then
the final equation which gives the density p as a function of the horizontal distance z.

Finally, substituting Eq.(5.4.4a) in Eq.(5.4.4b) the following first order ordinary
differential equation is obtained,

+ 8”29 dz = Clp)dp , (5.4.5a)
B; p*/p(—p* + pp1 — 82)
while C(p) is the cubic,
C(p) = p* +4m)2p? — p(6% + 8wA\%p;) + 1272262, (5.4.5b)

The above expression can be readily integrated to give z(p) in terms of the incom-
plete elliptic integrals of the first and second kind, F(t,k) and E(t,k), respectively
(Appendix D). The solution z(p) depends on three constants, namely A, p; and §. For
any given set of these constants Eqs.(5.4.5) can be integrated to give z(p). In reversing
the function z(p) to obtain p(z) some caution is needed however, since, for a fixed sign
in Eq.(5.4.5) the function p(z) might not be single-valued if the cubic equation, C(p)
= 0 has roots p;, ¢ = 1,2, 3, which happen to be in the interval of the allowed density.
Keeping that in mind, in the following we shall examine the solutions of Eq.(5.4.5) for
all possible values of the constants )\, p;, and §.
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Note that the above solution can be constructed by using the formulation developed
in chapter 2 with the following choice of the free integrals ¥4(A4), Q(A), G(A4), and
E(4),

Ta(A) = 47X, QA)=0, G(A)=0, E(A)=E,+(9/B)A,  (5.4.6a)

where F, is constant and the magnetic flux function A is given by

A(z,z) = —Boz + /Bz(x)d:v. (5.4.6b)

5.4.2 Relations among the characteristic speeds )
In order to have a qualitative understanding of the solution, in this subsection we
investigate the relation of the magnitudes of the three characteristic speeds, the sound
speed V;, the Alfvén speed V¥ and the flow speed V' at the valleys (+) and the
summits (—) of the field and streamlines where the density is p* and the fieldlines are

horizontal.

Relations at the valleys. The z-component of momentum balance, Eq.(5.4.2b),
can be written,

(5.4.7)

| VAVe] d BB. BB d [ VHVi]_
(Vah)2] dz 4« 4w dx (Vah)? — P4

Noting that at the lowest point of each field line B, = 0, dB./dx > 0 and V, = VI,
Eq.(5.4.7b) yields
Vi <vf. ‘ (5.4.8)
This result can be simply understood by writing the equilibrium equations of force
balance at the lowest point of the field line
+(1+)2 2
P (Vz ) + B o
R+ TP 9T e

-

where 71 is the radius of curvature at this point. By multiplying by r* and dividing

(5.4.9a)

by p* we obtain
(V;F)? — (V;F)? =rty, (5.4.9b)
from which the inequality (5.4.8) follows.
On the other hand, consider the derivative of the z-component of the momentum
balance Eq.(5.4.2a),

&p [Vz _ (p+Vz+)2] Wrdp 1 [dB,r B, &*B,

'd—x—z— s 2 -_— dz —Zr— dz? . (5410)

p ot dx 4rx
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Substituting B, = 0, dp/dz = 0 at the position of maximum density where the field
and streamlines are horizontal we obtain,

2ot ., g 1 [dB,]?
— —_ . 4.11
17 [VE - (V") 47r[dx] <0 (5.4.11)
Since pt = pmax, wWe have that d?p/dz? < 0 and
V<V, (5.4.12)

It follows that the flow at the valleys of the field and stream lines where the density
is maximum, is subsonic and subalfvénic. This result should not be surprising, since
at these localities the equilibrium is dominated by the magnetic tension forces, and
therefore we have a Kippenhahn-Schliiter, prominence-like solution with a weak flow
along the sagging magnetic field lines.

Relations at the summits. Let p~, V7, V; the density, flow speed and Alfvén
speed at the summit of some loop-like, one-dimensional hydromagnetic equilibrium,
where the magnetic and stream lines are horizontal. At this point B, = 0, dB,/dz <0,
and the z-component of the momentum balance equation — similarly to Eq.(5.4.7b) -

yields the inequality,

Vo>V (5.4.13)
As before, this relation can be simply understood by writing the force-balance equation
P~ (Vo) _ - Bs
—z 7 = 5.4.14
- P9t e (5.4.14)

where 7~ is the cé)rresponding radius of curvature.
On the other hand, the z-component of momentum balance gives Eq.(5.4.11), as
before. Since p~ = pmin, we have d?p/dx? > 0 and the above inequality yields

Ve >Vs. (5.4.15)

The flow at the summits of the field and stream lines, where the density is minimum, is
supersonic and superalfvénic. As before, this result should not come as a surprise, since
the flow at these localities has to be strong enough such that the resulting centrifugal
force balances both the plasma weight and the magnetic tension force for equilibrium.
Note that there exists a simple relationship between the Mach numbers M, and
M~, at the valleys and summits of the MHD equilibrium. By combining relations
(5.4.1) and (5.4.3) applied to the valleys and summits,
A% p? A\ B?

PtV =0TV, PV = p VR

p (5.4.16)
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we obtain for the ratio of the densities and product of the Mach numbers at the summits
and valleys,
0" =p /ot =(MT)? , M M*t=1. (5.4.17)

5.4.3 The solution

Let
. Ve AB, 4700 Ve 87 p, V2
M=M+:V;:_po_V’ Ma:M‘j—:"—‘g—Z—, ,B=,8+——:-—£p;—2——, (5418)

denote the gas and magnetic Mach numbers and the plasma ratio, respectively, at
the valleys of the MHD equilibrium where the density is p = p,. Then, Eqs.(5.4.4a),
(5.4.5) for the dimensionless z-component of the magnetic field b, = B,/B,, and the
dimensionless density ¢ = p/p, can be written in terms of these constants M, M, and
B (which are reffered to the valleys and for simplicity we have dropped the index ’+),

b(0) = i\/ﬂ[l — Q]LQ - M’] : (5.4.19a)
+/Bdx = Cle)de , (5.4.19b)

o*/o[1 - oJlo — M?]

where
Clo) = 0® + M2o* — [M* + 2M? + 2M>*M?)o + 3M> M, (5.4.19¢)

while again we have defined x = z/L and L = V?/g is the scale height of the atmo-
sphere. It is obvious that the density must be in the interval I = [MZ2 1]. At the
valleys, o = 1, M = M* < 1 while at the summits, the density is equal to o~ = M?
and M~ = 1/M > 1. It is interesting to note that this result of a bound density
distribution is a novel feature of 1-D hydromagnetic equilibria in uniform gravitational
fields. Apparently it can be regarded as an extension of the known property of 1-D
magnetostatic equilibria in uniform gravity where the density is bounded above, p < p,,
(¢ < 1), but otherwise unbounded below, except, of course, to have positive values.
The additional restriction on the density seems to have a hydrodynamic origin, since it
can be seen that the lower bound disappears when V — 0, or M — 0 (or equivalently
A, 6 —0).

We may distinguish two cases of such equilibria. First, equilibria that contain
both valleys and summits. In this case, at the summits we have M = M, /M > 1
which requires the relation M < M, < 1, between the two Mach numbers M and
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M,. The cubic C(p) has two roots in I, as it may be also seen from Fig.(5.1) for
M, = 0.8 > M = 0.5. In the second case wherein M, < M < 1, the Alfvén Mach
number M, at the summits is not greater than one and the solution from a valley
cannot extend to a summit; only solutions with a valley, or, a summit are allowed
in this case. The cubic C(g) has one root in I, as it may be seen from Fig.(5.1) for
M, =0.16 < M = 0.5. |

In order that we obtain from Eq.(5.4.19b) a physical solution for o(z) for a given
set of the parameters M, and M, we need to examine if the function x(p) is one-to-one;
i.e., we need to check if the cubic C(p) has roots in the interval I. By checking the
determinant of C(p) we find that it is negative and therefore C'(p) has always three
real roots. To check if they fall in the interval I simply note that

C)=[1-M*1-M]>0, (5.4.20a)
C(M) = —2MM?[1 - M?] <0, (5.4.20b)
C(M?) = M?*[1 — M?|[M? — M?], (5.4.20c)

In the case of a continuous solution with both valleys and summits, M < M, < 1,
C(M?) > 0, and we have two roots in I, Fig.(5.1).

5.4.4 Plots and parametric dependence of the solutions

Plots of this dimensionless density p(x) are shown in Fig.(5.3b) for various values of .
Note that at the points p; where C(p;) = 0, we have that dx/dp = 0. However, since
the function g(x) must be single-valued, the solutions shown in Fig.(5.3b) have been
stopped at this root g; < 1 of C(g) which is closer to 1;-and after p; we have taken the
mirror symmetric of the curve x(g) with respect to the line x = x(p;). In doing so we
actually take advantage of the + signs in expressions (5.4.19).

Plots of the magnetic field lines for various values of the Mach number, from M = 0
(magnetostatic Kippenhahn-Schliiter solution) to M = 0.75 are shown in Fig.(5.2),
while for various values of the plasma 3, are shown in Fig.(5.3a). We see that by
increasing the Mach number M, or the plasma 3, the field lines become steeper and
steeper as a result of the increased centrifugal forces. Note that the Alfvén Mach num-
ber (M;)? = 8+ (M*)?/2 (which represents the ratio of the centrifugal and magnetic
tension forces) increases by increasing the flow speed or the plasma 37 at the valleys
and that is the reason why the fieldlines become steeper. Another qualitative way to
understand this result may be seen from Eq.(5.4.9) which can be written at the valleys
as
Rt 2

= (5.4.21)

(M+)2+ L 'ﬂ—_ra
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Figure 5.1: Plot of the cubic C(p), Eq.(5.4.19c), for M = 0.5 and three values of the
Alfvén Mach number M,, M, = 08 > M, M, = 0.5 = M and M, = 0.016 < M,
for the isothermal case, v = 1. In the same plot HZ(p), Eq.(5.4.19a, solid curve), is
shown for M, = 0.8 and M = 0.5. Note that there always exist at least one root in the
allowed interval of the density I = [0.25,1] (shaded area) and only in the case where
we have two roots of the cubic in I it is possible to construct a continuous solution
including both valleys and summits.

’*
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Figure 5.2: Shape of the field and streamlines shape on the z-y plane for v = 1,
B = 2.3 and four values of the Mach number M: M = 0, (thick line, magnetostatic
K-S solution), M = 0.5 (dotted line, magnetically dominated MHD solution), M =
0.63 (dashed line) and M = 0.75 (continuous line, hydrodynamically dominated MHD
solution). Note that by decreasing M the separation of the peaks together with the
height of the streamlines increases (converging toward the magnetostatic K-S case),
while the opposite happens when M increases (converging toward the pure hydro,
constant density and flow speed case).
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with L the scale height. For a constant 87, an increase of the Mach number implies
a decrease in the radius of curvature at the valleys which necessarily become steeper.
Similarly, by increasing the plasma 3 at the valleys — keeping constant the Mach number
— the radius of curvature there decreases. This is exactly the trend encountered in the
plots of Figs.(5.2) and (5.3a).

In a steep valley the density varies also very fast — Fig.(5.3b) — while the magnitude
of the z-component of the magnetic field and the total flow speed — Figs.(5.3c,d) are
also greater than in a flatter valley. In these plots (5.2), (5.3a), (5.3b) and (5.3c) we
also show by a thick line for comparison, the density, z-component of the magnetic
field and the shape of the fieldlines for the static Kippenhahn-Schliiter solution.

At the summits of the equilibrium, we have similarly to Eq.(5:4.21), *

., R 2

Substituting M~ = 1/M™* and 8~ = #t(M)?, this relation becomes,

(M*)2R~ 2
1=t (5.4.22b)
Thus, increasing the Mach number M ™, or the plasma ™ at the summits, is equivalent
to decreasing the Mach number M, or the plasma 3% at the valleys, and this in turn
leads to an increase of the radii of curvature R~ and R, Figs.(5.2), (5.3a). This happens
despite the fact that the Alfvén Mach number M, = S~ (M™)?/2, or, equivalently,
the centrifugal force increase at the summits by increasing the flow speed there. This
trend, is the opposite from what happens at the valleys and should be expected since
the flow at the summits is hydrodynamically dominated and the role of the magnetic
field is simply to reduce the height of the summit as compared to the pure hydrostatic
case. Thus, the width and height of the summit together with the radius of curvature
R™, increase by increasing M~ ‘and §~.

Altogether, the solution at the valleys is magnetically dominated and the density
is Kippenhahn-Schliiter type, while the solution is hydredynamically dominated at the
summits where the density is approximately constant.

5.5 1-D Hydromagnetic and Polytropic Equilibrium

In this section we briefly extend the previous results to the case of a polytropic atmo-
sphere, with a constant polytropic index 7.
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Figure 5.3: Plot of the fieldline and streamline shape on the z-z plane in (a), the
horizontal spatial dependence of the density in (b), the z-component of the magnetic
field in (c) and the total flow speed in units of the constant sound speed in (d) for
~ =1, M = 0.75 and three values of the plasma §3 at the valleys: § = 3.2 (continuous
line), B = 2.78 (dashed line) and 8 = 2.1 (dotted line). In the first three plots we have
indicated with a heavy line the magnetostatic K-S solution corresponding to 8 = 2.1.
Note that for 8 = 2.78 valleys and summits are almost symmetrical, by increasing
B the summits become flatter than the valleys converging toward a hydro dominated
case wherein density and flow speed are constant at the summits (8 — oc). The
opposite happens when we decrease 3 and the solution converges toward a K-S type
magnetostatic equilibrium (8 — 0).
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In an atmosphere where a polytropic relationship P = Kp” holds, Eq.(5.4.2a)
becomes B2 g
K p‘Y + =z + 9

8w

= Ko7, (5.5.1)

where K and p; are positive constants. Combining Eqs.(5.4.2b) and (5.5.1) we obtain

B.(p) = i\/K[fﬂ - P - B, : (5.5.2)

p

t

and equation (5.5.5b). )

Let again p,, M = MY = AB,/\/7p,P, and B = B = 8np,V2/vB% denote the
density, Mach number and plasma ratio, respectively, at the valleys where the field lines
are horizontal, (B, = 0). Then, Egs.(5.5.1) and (5.4.4b) give the following expressions
for the dimensionless density ¢ = p/p, and magnetic field b, = B,/B,,

b (o) = i\/ﬁ[—a"“ +(1 +97M2)9 - 7M2]., (5.5.3a)
++/Bdx = Dle)de (5.5.3b)

Vel~o T+ (1T + M%) — yM?]’

where
D(o) = 0" + (2/y — 1)MZp"* — [M? 4+ 2M? /v + M*M2)o + 3M?M?, (5.5.3¢)

As before, x denotes the dimensionless horizontal distance x = 2/L, with L the scale
height in the atmosphere, L = V?/g where V2 = vP,/p, is the square of the sound
speed at the valleys of the equilibrium.

The square of the z-component of the magnetic field, 52(p) = B[—o"™ + (1 +
yM?)p — vM?]/p has an obvious root at ¢ = 1 while other roots (Fig.5.4) can be found
numerically. Continuous solutions exist only in the intervals where H?(o) > 0, as in
the previous section. Also, in order that the density p is a single-valued function of
the horizontal distance x beyond the points p; where D(p;) = 0, the solution should
be appropriately extended such as g(x) remains a single-valued function, similarly to
the previous case examined in section 5.5.2. In Fig.(5.4), D(p) is plotted for v = 5/3,
M = M* = 0.46 and several values of the Alfvén number M, = M} = v8)\?/2. Note
that only those values of the Alfvén Mach number for which (M})?/o~ > 1, correspond
to periodic solutions with valleys (M} < 1) and summits (M, = M} /o™ > 1).

As in the previous case of an isothermal atmosphere, at the valleys the flow is
subsonic and subalfvénic, while at the summits it is supersonic and superalfvénic. The
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Figure 5.4: Plot of the polynomial D(p), Eq.(5.5.3c), and the square of the z-component
of the magnetic field H?, Eq.(5.5.3a), (solid line) for M = 0.46, and three values of the
Alfvén Mach number for the polytropic case with v = 5/3. The dashed line corresponds
to M, = 0.76, the dot-dashed to M, = 0.54 and the dot-dash-dotted line to M, = 0.26.
Note that always there exist at least one root in the allowed interval I of the density
(shaded area). Also, only in the cases where there exist two roots of the polynomial
D(e) in I it is possible to construct a continuous solution including both valleys and
sumimits.
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e

Figure 5.5: Shape of the field and streamlines on the z-z plane fory =5/3, 3 = 2.3 and
four values of the Mach number M, M = 0 (thick line, static K-S solution), M = 0.3
(dotted line, magnetically dominated MHD solution), M = 0.46 (dashed line) and
M = 0.7 (continuous line, hydrodynamically dominated MHD solution).

relation between the Mach numbers Mt and M~ at the valleys and summits is now,

2
i
s

o = [Miri_l AMPM* + MY [M—} , (5.5.4.)

M- SMHEM- + M- | M*

which has as special case Eqs.(5.4.17) for v = 1, as expected.

In Fig.(5.5) we plot the shape of the fieldlines on the plane z-z, for § = 2.3 and
various values of M while in Figs.(5.6) the fieldline shape, density o(x), z-component
of the magnetic field, b.(x) and total velocity V(x) for ¥ = 5/3, and M = 0.58 and
various values of 4 at the valleys. The solution has the same parametric dependence
on M and § with the previous isothermal case [cf. Figs.(5.2), (5.3)]. Regarding the
dependence on v, it can be seen from a comparison of Figs.(5.5), (5.6) with Figs.(5.2),
(5.3), that by increasing v the valleys become steeper. This result is not surprising
because for the same dependence of o(x), the gradient of the pressure is higher, the
higher is the polytropic index and therefore the field gradients should be steeper in
order to maintain force balance. Note also that by varying the polytropic index, the
scale height varies too and identical values of the Mach numbers for different v do not
mean identical velocities.
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Figure 5.6: Plots of the field and streamline’s shape on the z-y plane in (a), of the
horizontal spatial dependence of the density in (b), the z-component of the magnetic
field in (c) and the total Mach number in (d) for v = 5/3, M = 0.58 and three values
of the plasma f at the valleys: 8 = 3.2 (continuous line), 3 = 2.78 (dashed line) and
B = 2.1 (dotted line). In the first three plots we have plotted with a heavy line the
magnetostatic K-S solution for 3 = 2.1. Note that for § = 2.78 valleys and summits
are almost symmetric. On the other hand, by decreasing (3 the valleys become wider
than the summits while their separation increases. The opposite happens when we
increase 3. The velocities and the scale height are the same as in the isothermal case.
Comparing with the isothermal case (Fig.5.3), note that the valleys are steeper now
because the gradient of the pressure is greater. On the other hand, at the summits
density and velocity tend to be almost constant, as in pure hydrodynamic equilibrium.
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5.6 Summary and Conclusions

The purpose of this series of articles is twofold. First, to present some classes of
exact solutions of the full 2-D MHD equations pertinent to prominence- and loop-like
compressible MHD equilibria in a uniform gravitational field. And second, to examine
the effects introduced by flows along magnetic fieldlines of solar MHD equilibria.

Regarding the first purpose, this first article of the series simply illustrated the
possibilities that open by a systematic construction of symmetric compressible MHD
equilibria through the method presented in chapter 2. Further solutions of Eqgs.(5.2.2)
(Low et al 1983) and Eqs.(2.3.24) may reveal more interesting classes.

Regarding the second purpose, we fused the well known Kippenhahn-Schliiter so-
lution for magnetostatic equilibrium (V = 0), with the corresponding hydrostatic
equilibrium solution in a uniform gravitational field (B = 0) producing our hydromag-
netic solution; and this one-dimensional MHD solution was shown to have a periodic
structure with prominence-like density enhancements (valleys) and loop-like density
depletions (summits). ‘

With these two extremes as reference cases, we studied the parametric dependence
of the MHD solution by varying the only two parameters on which the solution de-
pends, namely the Mach number M and the plasma 3, both computed at the point
of maximum density of the configuration. In particular, we found that the more we
increase the magnitude of the flow speed at the valleys, M, or equivalently 5 by keeping
M, = constant, the more the solution departs from the characteristics of a K-S magne-
tostatic equilibrium solution and approaches the characteristics of a hydrodynamically
dominated equilibrium solution. Thus, as M increases,

(i). The density, which is always confined in the interval I = [M? 1] with (M < 1),
tends to beovcome more homogeneous, in particular around the summits of the field-
lines. This may be understood if we recall for comparison that in the K-S equilibrium
the density is quite inhomogeneous being in the larger interval I,, = [0,1], while in
the case of pure hydrostatic equilibrium it is homogeneous, everywhere. Thus, as M
grows toward 1, the difference between the density at the denser valleys and the lighter
summits reduces becoming asymptotically zero in the limit of a pure hydrodynamically
dominated equilibrium. Also, in the neighbor of the summits the density tends to be
more uniform with the horizontal distance, as M or, 3 increase, while in the neighbour
of the valleys it changes rapidly with the horizontal distance (Figs.5.3b,5.6b).

(). The wavelength £ and the height h of the periodic field and stream lines decrease
as M increases. For comparison, in the K-S equilibrium (¢, h) — oo, while in the case
of pure hydrostatic equilibrium (¢, h) — 0. At this point we are tempted to mention
that the recently discovered and striking fibril structure of solar prominences (Ruzdjak
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and Tandberg-Hanssen 1990), may be related to this feature of the solution. Noting
that the wavelength ¢ of the configuration is related to the strength of the flow Mach
number at the valleys, M, we obtain that for M sufficiently small, { may become a
very small fraction of the scale height L.

(iti). The radius of curvature of the magnetic fieldlines at the valleys decreases
as M increases, in order to balance the increased centrifugal force there through an
increased magnetic tension force. For the same reason by increasing M, the supporting
z-component of the magnetic field, B,, increases faster with the horizontal distance Y’
in comparison to the slower hyperbolic tangent increase of B,(z) in the K-S solution.

(iv). The flow speed, V tends to a constant value in a wide interval along the
horizontal distance ¥ around the summits (Figs.5.3d,5.6d). This may be understood,
if we recall for comparison, that in the case of pure hydrostatic equilibrium V,(z) is
constant.

(v). All the above trends and properties of the solution are enhanced as the poly-
tropic indez v increases from 1 to 5/3. For example, the valleys become steeper by
increasing M for larger v because with a higher polytropic index the pressure gradients
are steeper and therefore steeper field gradients are required for support.

Another result is that the flow speed is always subsonic and subalfvénic at the
denser and prominence-like magnetically dominated valleys, while it is always super-
sonic and superalfvénic at the depleted and loop-like summits. The regions of transi-
tion from magnetically dominated and subsonic/subalfvénic flows (valleys) to super-
sonic/superalfvénic and hydro dominated flows (summits), are separated by vertical
sheets where the density gradient obtains locally very large values. It is well known that
transonic solutions which emerge from nonlinear differential equations (see, Tsinganos
and Trussoni 1991, Tsinganos and Sauty, 1991, 1992, 1994) have their subsonic and
supersonic parts bordering at singular points. For example, in the classical solar wind
theory, Parker (1963), this singular point is an x-type critical point where the flow
speed becomes supersonic, while in MHD winds, Tsinganos and Trussoni, (1991) the
critical point where the flow speed becomes superalfvénic is a higher order singular-
ity. In our case, the two regimes are separated by two singular points, those wherein
C(o) = 0, where the density gradient becomes infinite, although the density remains
everywhere continuous and finite everywhere.



Chapter 6

2-D MHD EQUILIBRIA IN
UNIFORM GRAVITY

6.1 Introduction

High-resolution X-ray and EUV observations, describing in chapter 1, have revealed
that the solar transition region and corona are not only radially stratified but also hor-
izontally highly inhomogeneous, consisting of magnetized arcades and loops of various
sizes and properties (Reeves et al. 1977; Vaiana & Rosner 1978). One basic aspect of
the problem posed by the observation of these loops is the existence and role of plasma
flows in them (section 1.5). For example, from the fact that many transition region
loops extend over heights much larger than predicted by models without flows (Foukal
1976), indicate that flows play a role in determining their gross properties. Recently,
Peres et al. (1992) compared the fitting of the intensities of some EUV transition
region emission lines by.loops with steady siphon flows relative to those without flows
and concluded that siphon flow models of compact active-region loops are in better
agreement with the observations.

The purpose of this chapter is to investigate analytically the physical problem,
started in the previous chapter, posed by steady MHD flows along magnetic lines in
the uniform gravitational field of a vertically stratified and horizontally compressible
atmosphere in a somewhat general approach (Tsinagnos et al 1993a,b, Surlantzis &
Tsinganos 1993), unconstrained by crucial assumptions such that one-dimensionality
and B << 1. To that goal, we solve in section 6.2.1 by the method of separation
of variables the coupled set of the two partial differential equations for the density
and magnetic flux function that govern the equilibrium. Attention is focused on the

145
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critical points of this system of coupled equations in section 6.2.2. The topologies of
the corresponding solutions are then explored in some detail in section 6.3 in order
to isolate the physically interesting cases. The form of the exact solutions with flow
is briefly examined in the limit of the simpler similar configuration of magnetostatic
equilibrium without flows in section 6.4.1, and the limit of very weak flows in section
6.4.2. In section 6.5.1 we choose the parameters of the solution to be in the same ranges
as those inferred from observations of solar coronal loops and in section 6.5.2 explore
the change of curvature and footpoint separation of the arcade as the magnitude of
the flow at its summit changes. Finally, in section 6.6 the nature of the novel saddle
critical point that determines the topologies of the solutions is investigated and the
main results are summarized in section 6.7.

6.2 2-D MHD steady flows in uniform gravity

Consider a compressible plasma structure in magnetostatic equilibrium embedded in an
isothermal atmosphere with a uniform sound speed V. Assume that the plasma is com-
pressible in the horizontal and vertical directions, in a uniform external gravitational
field -¢gZ. In other words, assume that all physical variables depénd on the horizontal
distance x and the vertical height z in the orthogonal system zxy with z pointing up-
wards. In the following we write in a convenient form the basic equations governing
the equilibrium and examine their critical points, which control their topology.

6.2.1 Governing equations

For field-aligned flows, the equilibrium is governed by the familiar equations for the
conservation of mass, magnetic flux and momentum,

V.pV=0, (6.2.1a)
V-B=0, (6.2.1b)
V x B) x B
5V V)V = —V2Vj + (%)5—13 _ pot, (6.2.10)
™

where the gas pressure P(z,z) is written as
P=Vv?. (6.2.1d)

Assuming for simplicity that the field-aligned flow is in the zz—plane, define the
magnetic field in terms of a magnetic flux function fi(z, ),

B, = 0A(z,z) B = _0A(z,z) .
0z

52 (6.2.2a)
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A free parameter of the equilibrium is the mass flux density per unit of magnetic flux
density. This is formally described in terms of an arbitrary function of A, ¥ A(/i), such
that

475V = ;(A)B. (6.2.2b)

With Eqgs.(6.2.2), force balance across and along streamlines requires, respectively,

o [ ¥;04 o (¥; 04 _dE

| AZZ )+ (A== Arp— = 2.
pE (4@ az) T % (4@ m)] tampg =0 (6.2.32)

- 2 _ .
VZin (:p_) +gz+ KZ— = E(A), i v (6.2.3b)

[+}

VEA- ¥

where j, is a constant and F(A) an arbitrary function of A(z,z) (Tsinganos 1982).
The various possible functional forms of ¥ ;(4) and E(A) give all possible planar
MHD equilibria. It occurred to us that an interesting class of novel MHD equilibria is
obtained by choosing the two free functions ¥ A(fi) and E(A) as follows,

2¢-1)
3

U ;(A) =4rkA and E(A)=VZh j

, (6.2.4)

o

with k, A, and € constants. An interesting special subclass of the above equilibria
described by Eqs.(6.2.3-6.2.4) is the one where all physical quantities Q(z,z) can be
written as Q(z,z) = X(2)Z(z). In particular, it is physically interesting to search for
MHD equilibria where the plasma and magnetic pressures fall exponentially with the
vertical height z, i.e.,

pz,a) = p(a)e™ T, P(z,z) = P(a)e™ ¥, (6.2.52)
and ' -
A(z,z) = A(:t)e_%, Bi(z,2) = Bi(a:)e’%, =,z (6.2.5b)

where L is the constant scale height, L = V?/g and have introduced the positive
parameter £ > 0 which controls the decline of the density and magnetic field with the
height z. By substituting the above z-dependence of 5 and A in Egs.(6.2.3) we obtain
for the x-dependent parts of the density and flux function, p(z) and A(z), respectively,

RPN LA LA kA | (dANT AdAdp|  8mpVi(E-1) _ o
p dr? ' 4L? p de £|A| o
(6.2.6a)
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p k2A% | (dAN? €A% 2(¢-1) | A
5 <E’> taee &) Y |=~ ¢ 3, (6.2.6b)
Differentiating Eq.(6.2.6b) we obtain,
1_pa [(aay | ea]\dp
p Vip* |\dzr 4L? | [ de
E2A dA\ 2 d2A §2A2 2(6—1) V32p2 dA
V82p2 {(E) + Ad;pz + L2 - é’ k2A2 —(:l; = O, (627)

and substituting d?A/dz? from Eq.(6.2.6a) in the above equation, we find finally

2(6-1) A 2mk2A? 1 ne?ktAS
p _[ € IDXZ_IH(?»%)]+ 1T (6.2.8)
w Adp ~ J2e1y |4 (6-1) _ mgktas =
P[] ()] - 4 -

An integration of Eq.(6.2.8) gives the functional relation of A and p. However, to obtain
some physical insight into the solution, in the following we shall express Eq.(6.2.8) in
a more convenient form in terms of appropriate physical variables. Thus, define the
Mach numbers associated with V, and V, as

Vo _ kA% kA dA

.V,
M, === , M,=-2%= —, 6.2.9
V, 2LV, p V.  pV, de (6:2.92)
such that the square of the total Mach number is
2(6-1)
(4/4.) °
M?=M?+ M?=2h 7 (6.2.9b)
P/ Po

Note that the magnitude of the Mach number M measures the effect of the flows in
modifying magnetostatic equilibria. Thus, in the limit' M — 0, the above expression
should reduce to the corresponding relation between the density and magnetic flux
function in the case of magnetostatic equilibrium without flows, as we discuss in section
4,

Next, the square of the Alfvén number is

M} = = 4nk*— = \M,, (6.2.10)
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with A a dimensionless constant,

87rkV3L . VzVs _ 50Mo . Mzo
£ B Va,2 B.=0 - 2 - Mo ’

A (6.2.11)

where §,, M,, and M, represent the plasma 3, and the Alfvén and Mach numbers
at the valleys and summits of a fieldline configuration where B, = V, = 0 and the
field is horizontal. Note that since the Alfvén number represents the relative strength
of fluid and magnetic effects, small values of A correspond to magnetically dominated
states while large values of A\ give dynamically dominated states. On the other hand,
the plasma (3 gives for field-aligned flows the ratio of the Alfvén and Mach numbers,
M? = pM?/2. ' ‘

Using the variables M2 and M? we can write Eq.(6.2.6b) in terms of the angle § a

fieldline makes with the horizontal,
B.1? XM? - M:
2 — | D= a
tan 6(.’1’;) = [Bx:l = Mg . (6212)

Evidently solutions exist only when A\2M?2 — M? > 0. On the other hand, Eq.(6.2.8)
can be written as

pdA M4 M2— ME/N -1 (6213)
Adp ~ M? 2426 2ME/N -

or,
2 dM? E(M?)2+ MZ) -1
M2 dM? — [6(M?/2+ M2) - 1] = [M? + M7 — M2 /32 - 1]
Using Eq.(6.2.14), we can write Eq.(6.2.12) as,

(6.2.14)

M2 dM? 2 2\ _ 11 — [Af2 2 pAf6/32 _
LM, dM _ [E(M%)2+ M2)—1] — [M* + M7 — MZ/\ l]m’
2 dx (M? + M2 — MS8/A2 —1)
| (6.2.15)
where x = z/L and we have assumed that M2 A2 — M? > 0. Multiplying Egs.(6.2.14)-

(6.2.15) we may obtain a third equation,

dM? E(M%/2+ M2E) -1 — :
¢ — a VAZM? — M4 2.16
T T MEME M/ 1 A @ (6.2.16)

The above set of three equations (6.2.14)—(6.2.16) determines M,(x) and M(x) for
given values of the parameters £ and A. Two initial conditions are also needed, namely
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the values of the Mach number M and Alfvén number M, at a given horizontal position
x,. However, since x does not appear explicitly in equations (6.2.14)-(6.2.16), we are
free to choose the initial value of x where M, and M are prescribed, say, at xo = 0.
Note also that Eq.(6.2.14) may be solved independently of the other two Eqs.(6.2.15)-
(6.2.16) and its solution topology can be studied in the M, — M phase plane.

6.2.2 Critical Points

A topological analysis of Eqs.(6.2.14)—(6.2.16) shows that they have three critical points
where their numerator and denominator vanish simultaneously. In the following we
analyze in detail these critical points which control the topology of the solutions.

First, the vanishing of the numerator and denominator of Eq.(6.2.16) gives the
following two relations between the squares of the two Mach numbers,

M? 1
MZ 4 — == 6.2.17
a + 2 g I ( )
M2+M§—A/<IZ“ —1=0. , (6.2.18)

Note that, when Eqs.(6.2.17) and (6.2.18) hold, the numerator and denominator of
Eqs.(6.2.14) and (6.2.15) vanish simultaneously, since,

M;
\2

MZ
¢ [7 + Mf] - [MZ + M2 — =0. (6.2.19)
Therefore, the intersection of the two curves given by Eqs.(6.2.17) and (6.2.18) deter-

mines the square of the Alfvén number at the critical point, M2, through the following
cubic for M*?

M*2+M:6 2_—6
‘ 3

= , (6.2.20)

le.,

e - {259 el e 1 [ o |
a = 2 } + +m + - +27—(2—_T)2 .

Evidently, a critical point exists at finite M*? > 0 only when 0 < £ < 2, while for £ > 2
we have M*? < 0, i.e., the critical point is in a physically uninteresting part of the phase
plane (M2, M?). The nature of this critical point at (M} > 0, M* > 0) can be analyzed
by making the usual expansion in Eq.(6.2.14) M, = M}(1 + u), M = M*(1 + €) with
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i, € << 1. A second-order algebraic equation for y/e = s is obtained giving the slope
at this critical point as

*2 *4 » *2
2Ma[ 1 3Ma]32+[1_2 Mzz}S*M

e L E e - 5~ =0 (6.2.21)
and for 0 < ¢ < 2 the critical point is of X-type.

The location of the critical point (M}, M*) on the plane M? — M? is found as the
intersection of the two curves (6.2.17) and (6.2.18). For a given ¢ of the monoparametric
family of lines expressed by Eq.(6.2.17), the critical point is on the straight line which
intersects the two axes at M? = 2/¢ and M? = 1/£. The smallest possible value of
the Mach number on this line occurs at the largest allowed value of ¢, fe., M = 1
for £ = 2. On the other hand, the exact location of the critical point on this line
depends on the value of A, through the curves given by Eq.(6.2.18) which also form
a monoparametric family depending now solely on A. For a magnetically dominated
state (small \), M}? — 0, M*? — 2/¢; and, for a dynamically dominated state (high
values of )\ ), M}? — 1/¢, M*?2 — 0. For £ — 2, (M*, M*) — (0, 1) while as £ = 0,
M} and M* increase.

Second, the numerator of Egs.(6.2.15) and (6.2.16) vanishes also when A2 M? = M2,
which when combined with the simultaneous vanishing of the denominator, Eq.(6.2.18),
gives a second critical point at the sonic transition,

M=), M=1. (6.2.22)

a

The electric current density J = V x B and vorticity w = V xV have only y-components
for these planar and symmetric fields, J = J,¥, w = w,¥. In order to appreciate
better the physical implications of the existence of the two critical points (M}, M*)
and (M2 = A\, M = 1), it is instructive to consider for a moment the expressions for
Jy,

L _CAN | (M- MO(MP 2+ M7 —1/€)  (M?/2+ M} ~1/€) 1]
TR M (RO MDOC M- MR- (1) |
(6.2.23a)
and wy,
A2 M2 /2 + M?) —1)(M2 - X2
Yy = 8rkM?2 [(giz(]\/;z —_:-—M;Zl)— M;(/,\;_ 1) ) +1}. (6.2.23b)

Jy and w, diverge everywhere along the curve given by Eq.(6.2.18) with the exception
of two points; first, at the intersection of this curve with the curve (6.2.17), i.e., at
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the critical point (M*, M) and second, at the sonic point M = 1, MZ = X. In
addition, J, is finite at the second intersection of (6.2.18) with the curve determining
the summits/valleys of the equilibrium where M? = 1 and M = 1/}, but w, diverges
there. In other words, the sonic point (6.2.22) and the critical point at (M, M*) are the
only two positions where the electric current and the fluid vorticity are simultaneously
finite along the curve given by Eq.(6.2.18). These two points coincide in the case
A=(2-¢)/2¢.

A third singularity of Egs.(6.2.14) and (6.2.15) exists evidently at M, = M = 0,
i.e., at the origin of the (M2, M?)-plane. By writing again M2 = pu, M? = ¢ with
p,€ << 1 we find that for £ # 1 the corresponding critical point at this singularity is
of nodal-type where the two characteristic slopes are s = y/e = —1/2 and s = 0. On
the other hand, when £ = 1, the critical point at this singularity is of star-type and all
slopes are allowed.

6.3 Solution Topologies

In Figs.(6.1), (6.2), (6.3) we show some representative topologies of the solutions of
Eqs.(6.2.14)(6.2.16) in the planes (M2, M?) and (M, X) for some sets of values of the
two parameters £ and ) of our model. Several groups of curves appear in these planes
corresponding to different classes of physical solutions. However, the following analysis
makes it clear that, out of this large set of mathematical solutions to Eq.(6.2.14), only
a few are physically interesting. To that goal, and in order to analyze the properties
of all solutions encountered in the plane (M2, M?), we proceed as follows,

First, we distinguish the two critical branches (those passing through the critical
point My, M*) and classify the rest of the other branches which are adjacent to the
critical ones in four groups labeled as L (left), R (right), U (up) and D (down).

Second, we plot the two curves given by Eqs.(6.2.17) and (6.2.18), the intersection
of which determines the critical point. In Figs.(6.1a,6.1c,6.1d) Eq.(6.2.17) corresponds
to the straight dashed line while Eq.(6.2.18) to the parabolic dashed curve. As A — 0,
the critical point moves toward the lower right end of the line (6.2.17) while for large
) it moves towards its upper left end. On the other hand, as £ — 2 the critical point
moves towards the point (M = 1, M, = 0) (e.g., Fig.6.2) and away from it as { — 0.
To avoid having a solution where the electric current and the fluid vorticity diverge, we
shall select only those branches which do not intersect the curve given by Eq.(6.2.18).
Only branches intersecting (6.2.18) at the sonic and critical points will be accepted as
physically interesting solutions.

Third, we isolate the shaded area bounded by the curve M2\% —M?* = 0 which deter-
mines the allowed part of the plane (M2, M?) where M2)2 — M? > 0 [c.f. Eq.(6.2.12)].
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Note that this curve also determines the locations where the field lines are horizon-
tal. Thus, solutions which intersect this curve may have a valley, or a summit there.
Branches with only one such intersection may correspond to loop-like solutions with
one summit, or, prominence-like solutions with one valley only, while those with two
intersections may correspond to periodic solutions.

Fourth, in order to decide if a solution starting at a point where B, = 0 has a valley
or a summit there, we shall use Eq.(6.2.10), which requires that along a streamline
/i(:v,z) = constant the density is inversely proportional to the square of the Alfvén

Mach number M,
1

) x . ‘
A(z,z)=const. Mg i 5

oz, z) (6.3.1)
Therefore, if M, decreases as we move away from the curve M2 = AM, then the density
increases along a given fieldline and we have a loop-like solution (summit) which is
Rayleigh-Taylor stable in the gravitational field; conversely, the density should decrease
and M, should increase as we move away from a prominence-like solution (valley) for
stability.

Finally, upper and lower bounds can be easily placed on the Mach and Alfvén
numbers of the flow at the above locations where the magnetic field lines are horizontal,
B, = 0. For example from the z-component of the momentum equation by substltutmg
V. = V. B,/B, we obtain the following relation for M, at those points where B, = 0,

201-M2) B, (6.32)
NG B *
M? Ox
Thus, at the local minima of the fieldlines (valleys) where [B,0B,/0x] > 0, we have
MZ>1 if £>1, (6.3.3a)
and ‘._ \
(M? — 1)(M,‘;’ 2) (16 O) if ¢<1. (6.3.3b)

On the other hand, at the local maxima of the fieldlines (summits) where [B,0B./8x] <
0 we find instead

M? <1 if £>1, (6.3.4a)

and

(Mf—l)(Mf 2A2(1§ 9) if £€<1. (6.3.4b)
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It follows that the flow s elways subalfvénic at the summaits of the arcades and super-
alfvénic at the lower points of the valleys, of £ > 1.

On the other hand, by taking the derivative with respect to x in the z-component
of the momentum balance equation we find at the points where B, = 0 and dg/dz = 0,

2 ~ 5\ 2 » ~Y72
(v? v2>a”=—i<332> _¢5,%8: [—1—+PVI}; (6.35)

s o g2 4n \ Ox Ox |87 B2

It follows that at the locations where the field lines are horizontal and have a local
minimum (valley-type) such that B,0B./0x > 0 the flow is subsonic, V, < V;, and
M? < ) if the density is locally maximum, 8%5/9x? < 0. If the density is locally mini-
mum, 8?5/9x? > 0, the flow may or may not be supersonic. Note that in the absence
of vertical stratification (§ — 0), Eqs.(6.3.2) and (6.3.5) give subalfvénic/subsonic flow
at the valleys and superalfvénic flows at the summits, as discussed in the previous
chapter. In the following section we make use of the above limits in order to select the
physically interesting solutions of Eq.(6.2.14).

The analysis is simplified if we consider separately several cases, according to the
value of the parameter £. :

6.3.1 Arcades with scale height £ in the interval 1 < ¢ < 2

In this case, all intersections of the various solutions with the bounding curve M2 = A\M
correspond to valleys if this intersection is in the superalfvénic regime, because of
constraint in Eq.(6.3.3a), and to summits if it is in the subalfvénic regime, because
of constraint in Eq.(6.3.4a). Furthermore, note that for each value of £ there is a
2-¢

A= Acrit = —25— y (636)
for which the curve M? = AM (where B, = 0) crosses the critical point and the two
critical points are at the sonic transition. Therefore, we may distinguish three subcases

characteristic value of A

according to the value of A relative to Acpit-

The critical case, A\ = Ait, Figs.(6.1a,6.1b). Consider first the two critical lines
of positive and negative slope in the representative example of this class, namely
Fig.(6.1a) plotted for { = 1.7, A = 0.08. Since they are bounded by the curve
M? = AM in the subalfvénic regime they correspond to solutions with a summit
there [c.f. Eq.(6.3.4a)]. The critical point is at the sonic transition in this special
case, M* = 1, while at this summit of loop-like fieldlines the Alfvén number reaches
the value M) = VAait. In Fig.(6.1b) we have plotted with solid curves the Mach


file:///Acrit�

6.3. SOLUTION TOPOLOGIES ‘ 155

0.04

0.0t

" :
-3 -2

Figure 6.1: Topology of solutions in (M2 — M?) plane (left panels) and (M, x) plane
(right panels). In (a-b) £ = 1.7 and A = 0.088, in (c-d) £ = 1 and \ = 0.1, while
in (e-f) £ = 1.95, A\ = 0.03. The new critical point in (a), (c) and (e) is at the
intersection of the two dashed curves, while the shaded area corresponding to allowed
solutions is bounded by the curve where the field is horizontal (summits or valleys).
‘The classical sonic critical point at (M? = A\, M = 1) can be seen in the (M, x)-plane
of corresponding panels (b), (d), (f).
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number of the flow, M(x), for these two critical solutions by arbitrarily setting x = 0
at the positions where B, = 0. Note that along the critical line of positive slope the
flow is everywhere subsonic, while along the critical line of negative slope the flow is
everywhere supersonic.

Two other physically interesting classes of solution can be constructed from the L
and R-branches, and their Mach number M(x) is also plotted in Fig.(6.1b) with dotted
curves. These branches also correspond to loop-like solutions with the maximum flow
speed at their summits everywhere subsonic in L-group and everywhere supersonic in
R-group. Along those branches (L) and (R), as well as along the critical solutions,
the density increases as we move away from the summit along the loop and down the
gravitational field, because M, decreases and therefore p increases in view of (6.3.1).
This makes solutions (L) and (R) together with the two critical solutions Rayleigh-
Taylor stable in the gravitational field. Note that of all R-branches only those which
do not intersect the curve given by Eq.(6.2.18) where the electric current diverges (c.f.
Eq. 6.2.22a) are acceptable.

Solutions (U) are not interesting because they do not belong to the physical do-
main where A\2M? — M} > 0 [shaded area in Fig.(6.1a)]. Finally branches (D), which
have magnetic lines without any valley or summit, may be used only for shocked solu-
tions. For instance, in a loop with nonsymmetric physical conditions about the plane
x = 0, the flow following the critical line of negative slope, and after crossing the crit-
ical point and becoming supersonic following the critical line of negative slope, may
jump through a shock transition to one of the appropriate D-branches. Such shocked
solutions, however, are outside the scope of this paper and will be considered in the
future. Altogether then, we are left with the two critical branches as well as with L
and R-branches as the potentially physically interesting loop-like solutions.

The subcritical case, A < Agit, Figs.(6.1¢,6.1d). The picture changes slightly
in the subcritical case, A < Acrit. In the plots (6.1¢,d) we show such a representative
subcritical case with, say, £ = 1, A = 0.1, where the bounding curve M2 = AM passes
below the critical point in the (M2, M?) plane. The two critical curves are always
bounded at M,, < 1 and they correspond to loop-like solutions with a density minimum
at their summits - the intersection of these branches with the curve M2 = \M. As
may also be seen from Fig.(6.1d), the maximum speed is subsonic at the summit of
the critical solution with positive slope and supersonic at the summit of the solution
corresponding to a critical curve of negative slope (solid curves in Fig.6.2b).

Other physically interesting classes of solution correspond to L, R and D-branches,
are plotted with dotted curves in Figs.(6.1c,6.1d). The group of branches (R), the
supersonic curves of group (D) where J, is finite and the critical solution of negative
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slope, correspond to supersonic loop-like solutions. For group (L) and the subsonic
curves of (D) wherein J, is finite, together with the critical solution of positive slope,
the density increases as we move away from the summit along the loop and down in the
gravitational field. The electric current density J, is finite everywhere along all these
solutions. The last group of solutions (U) is not physically interesting because in the
domain of branches (U) A2M2 — M? < 0. Note that shocked solutions also exist in this
case through the only transonic branch of (D), i.e., the one tangent to the bounding
curve M2 = \M at M = 1.

The supercritical case, A > A, Figs.(6.1e,6.1f). Consider next a representa-
tive supercritical case, say, £ = 1.95, A = 0.033, where the boundlng curve M? = \M
passes above the critical point in the (MZ, M 2) plane. In this case the characteris-
tic (critical) speed is always subsonic. The two critical curves are again bounded at
M,, < 1, which means that they correspond to loop-like solutions with a density min-
imum at their summits (the intersection of these branches with the curve M2 = AM).
Contrary to the previous case of A < )¢t however, now the maximum speed is super-
critical at the summit of the solution corresponding to the critical curve of positive slope
and subcritical at the summit of the critical solution with negative slope, Fig.(6.1f)
(two solid curves).

On the other hand, two other physically interesting classes of solution correspond
again to the L and R-branches, also plotted with dotted curves in Fig.(6.1f). They
too correspond to loop-like solutions with the maximum flow speed at their summits
everywhere subcritical in L-group and everywhere supercritical in R-group. Along these
branches (L) and (R), the density increases as we move away from the summit along
the loop and down in the gravitational field, because M, decreases and therefore p
increases [c.f. Eq.(6.3.1)]. Similarly to the previous case A < Acpit, the electric current
density J, is finite along branches (L) and (R), as well as in the two critical ones.
Therefore, again the two_critical branches together with those of the group (L) and (R)
are physically acceptable. .

Note that for each A the family of subcritical solutions (L) exists up to a maximum
value of the Alfvén number at their summit, M5**. Above this limit which does not
exist if A < Acrit, physical solutions do not exist and the loop may be disrupted by
centrifugal forces. Thus, in the supercritical case, we are not completely free to choose
the initial conditions at the top of the loop. In this context note that it has been
shown that solar coronal mass ejections can be initiated by the dynamic evolution and
shearing of the footpoints of a coronal magnetic field (Low 1981; Mikic 1988; Priest
1988). Here we have also shown that if the magnitude of the flow speed along the field
in the arcade increases, the height of the arcade increases too and above a limit there
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Figure 6.2: Topology of solutions in (M? — M?) plane for the limiting value { = 2 and
\ — 0.32. The critical point is at (M, = 0, M = 1) while the shaded area corresponds
to. allowed solutions.

g
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isjﬁo equilibrium with the possibility that the arcade efupts.

Finally, the other two groups of solution (U) and (D) are not physically interesting
because branches (U) are bounded by the curve M 2 = AM at two successive summits,
while in (D) the magnetic lines do not have any valley or summit at all (there are no
intersections with the bounding curve M? = AM). Branches (D) may be used only for
shocked solutions, as in the critical case. ‘

6.3.2 The case { =2 and the strongly stratified case ¢ > 2

In Fig.(6.2) we plot the topology of the solutions in the phase plane (M2, M?) for the
limiting case £ = 2. This is a degenerate case where the critical point is at M, =
0, M = 1 while the two critical branches are joined and tangent to the axis M, = 0
(solid line). Only this critical solution together with adjacent solutions (L) and (R)
correspond to arcades with minimum density at their summits. However, note that
these solutions have the peculiar property that the velocity monotonically increases
along branches (L) — decreases along branches (U) — and at their footpoints M, = 0
but V, — oo.

On the other hand, for ¢ > 2, where the critical point has changed to a focus
and moved to the M2 < 0 subplane, acceptable solutions do not exist any longer.
Thus, loop-like solutions can be found only for the limited range of the stratification
parameter, { < 2.
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Figure 6.3: Topology of solutions in (M2 — M?) plane in (a) and (M, X) plane in (b),

‘as in Fig.(6.1) but now for ¢ = 0.85 and A = 0.77. Note that periodic solutions -
subsonic dotted L-branches in (b) and the critical branch of positive slope — have their
valleys in (b) separated by more than 2r.

6.3.3 The weakly stratified case { <1

In all previous stratified atmospheres corresponding to 1 < § < 2 we obtained loop-like
solutions with moderate speeds as the only physically interesting solutions in the plane
(M,,M). In the rather weakly stratified atmospheres where 0 < £ < 1 we found that
such low-speed loop solutions do not exist at all. In the place of arcades, only periodic
solutions were found instead. Similar to the case 1 < ¢ < 2, for each value of £ there
are now two characteristic values of A for which the curve M2 = AM (where B, = 0)

crosses the critical point,

=28 8= iy (637

As before, we may distinguish, several subcases according to the value of A relative to
/\gi)t and /\gfi)t. For 2/3 < £ < 1 we have that ’\E:i)t < ’\fzfi)t and obtain periodic solutions
which do not have points where the electric current density Jy diverges. Such a case is
illustrated in Figs.(6.3) where we show the topology of the solutions in the (M2, M?)
and (M, x) planes for £ = 0.85 and A = 0.77. Note that of all branches on this plane
only the group of branches labeled (L) are physically acceptable as periodic solutions
with a valley and a summit. Solutions labeled (R) are arcade-like solutions but the
flow is supersonic and reaches large speeds along these arcades.

On the other hand, for 0 < £ < 2/3 all periodic solutions have two points where

J, — oo. Thus, in the limit of { — 0 we recover the main features of the results
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obtained in the previous chapter.

6.4 Useful limits of the Present Analysis

As is well known, fully two-dimensional exact MHD solutions for compressible and
stratified plasmas with flows are not available in the literature to this day, because of the
intrinsic mathematical difficulty of solving the coupled nomnlinear equations governing
this problem. On the other hand, the special and simpler cases of magnetostatic
equilibrium without flows (A = 0), or full MHD equilibrium in the approximation of
low-M, flows (8 << 1), have received considerable attention because of their potential
application to observed hydromagnetic structures in the active corona of the Sun.

In this analysis, we did not make any approximation about the magnitude and
role of flows. Evidently, the results may apply to configurations of any § and M.
Thus, in order to establish the connection of the present general analysis to other
studies performed under mathematically simplifying assumptions, such as the above,
in this section we briefly examine for comparison two such limiting cases. In the first,
we set the magnitude of the flow equal to zero so that we have a situation of pure
magnetostatic equilibrium without flows. And in the second, we examine the form of
our solution when the plasma £ is small, § << 1.

6.4.1 Magnetostatic Equilibrium, M =0

For a planar magnetic field expressed in terms of a magnetic flux function A(z,z) asin
Eqs.(6.2.2) and an isothermal atmosphere with gas pressure P(z,z) = V2j(z, z), force
balance across the magnetic field lines is obtained from Eq.(6.2.3a) with ¥ ; =0,

- dE
V2A(z,z) + 41p—= =0, 6.4.1
(0,2) + 4 (6.4.1a)
while Eq.(6.2.3b) for force balance along the magnetic field lines reduces to
VZn (:p—) + gz = E(4), (6.4.1b)
Po

with 5, a constant and F(A) again an arbitrary function of A(z, z). The set of the cou-
pled equations (6.4.1) determines all possible planar magnetostatic equilibrium states
in a uniform gravity for the various functional forms of F(A), as is well known. In
our case, the form of F(A) is again given by Eq.(6.2.10). Then, with the z-dependence
of all physical quantities being exponential, as in Eqs.(6.2.5), force-balance along field
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lines is obtained from Eq.(6.2.9b) in the limit M — 0,

2(6-1
Ple) _ ’fﬂ“’—) ‘ (6.4.2)
o1 A ’
while force balance across field lines is obtained from Eqgs.(6.2.6a) for £k = 0 (A = 0) as
PA £A SmpVAE-1)|A|TE 0 (6.4.2b)
dz? T aL? £14] i = i

After multiplying Eq.(6.4.2b) by dA/dz and then integrating, we obtain a first-
order differential equation for the dimensionless flux function a = |A/A4,[ in terms of
the dimensionless horizontal distance x = z/L,

2

%[5‘;—:] :1—a2+3[1—a (6.4.3)
where 3 = 87V25,/(€2A2/4L?) is the familiar plasma ratio at the origin x = 0, where
the field lines are horizontal and B, = 0. For given values of £ and 8 we can in-
tegrate numerically the nonlinear Eq.(6.4.3) to obtain the magnetic field and density
distributions through Eqs.(6.2.2) and (6.4.2a). In the following we briefly review those
properties of the solutions of Eq.(6.4.3) which are relevant to our study of MHD equi-
librium with flows. The interested reader may find more details in Menzel (1951),
where the above Eq.(6.4.3) has been originally derived, and in Hood and Anzer (1990),
where Eq.(6.4.3) is discussed in the framework of modeling a solar prominence.

First, note that there exist three values of the parameter £, (1/2, 1, 2), where
Eq.(6.4.3) may be solved analytically, in addition to the limiting case £ — oo. Thus,

2(6—1
Hen ] ,

. 1¥B 1-F =x 1
A(x) -‘A,,\/ 5 + ) for £ = 5 (6.4.4a)
Ax) = 4, cosg for £ =1 (a potential field), (6.4.4a)
~ 2
A(x) = 4, ——g— + ﬂ-zi- cos X for ¢=2. (6.4.4a)

Since the angle §(x) that a field line makes with the horizontal is tan 6(x) = B, /B, =

[2L/€ A(x))dA(x)/dx, the field lines are horizontal at the positions x, where A(z) has
an extremum, dA(x)/dx|y_y = 0. The first case { = 1/2, has § = 0 at § = nn/2,
n =0,1,2,... On the other hand, there are no positions where § — 90° and the field is
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vertical; in this case the fieldlines have a wavy shape, being periodic in the horizontal
distance x. The second case £ =1, has § = 0 at x, = nm and § — 90° at xyax = n7/2.
This is the typical geometry encountered in magnetic arcades. Similarly, in the case
¢ = 2 we have horizontal fields at x, = n7 and § — 90° at the horizontal positions
Xmax Where cos Tmax = B/(8 + 2).

It is interesting to note that the general properties of these special analytical solu-
tions are indicative of the corresponding properties for any value of £. For example,
it is evident from Eq.(6.4.3) that it is not possible to have simultaneously A = 0 and
(dA/ dx)2 > 0 when £ < 1. In other words, for such values of the parameter £, locations
where B, = 0 and the field is vertical do not exist. We obtain then solutions with a
wavy and periodic fieldline shape in the horizontal coordinate x for all £ < 1. On the
other hand, when £ > 1, there exist values of A such that simultaneously A = 0 and
(d4/ dx)2 > 0. Then, at these locations B, = 0 and the field is vertical. These arcades
of infinite height and finite width have fieldlines confined in a finite horizontal interval.

Second, consider the above class of solutions in the framework of modeling a promi-
nence equilibrium. Inside the prominence the gas is cool and the scale height Ly om
relatively small, Lyrom = 180 km, such that the pressure drops relatively fast. On
the other hand, in the surrounding hotter corona the scale height Lo, is much larger,
say, Lcor ~ 60,000 km ~ 333 Lprom and the pressure dro'ps‘more slowly. Therefore,
in order to match the vertical variation of all physical quantities across the coronal
boundary of the prominence, we need to employ two different values of £, {prom for
the prominence equilibrium and £, for the adjacent corona. For example, selecting
£cor = 1 to have a potential equilibrium in the coronal environment, we need to have
éprom = €cor/333 = 0.003. Then the pressure, density and magnetic field fall off at the
same rate with vertical height both inside and outside the prominence. Hood & Anzer
(1990) have used essentially this reasoning to construct an interesting model of a solar
prominence.

Third, consider the equilibrium path of an isolated buoyant flux tube embedded in
the polytropic solar convective zone (Parker 1975, 1979; Browning & Priest 1984, 1986).
The curved flux tube may be held in equilibrium by its magnetic tension over horizontal
distances of the order of the scale height L. Thus, in an isothermal atmosphere any flux
tube needs to be anchored at points separated by no more than 27 L, if it is going to be
held in equilibrium by magnetic tension against the buoyancy forces. It is interesting
that the equilibrium paths of the flux tubes described by Egs.(6.4.4), although they
are not treated as slender ones, obey the same limit. Thus, the arcade-type potential
field (6.4.4b) has the footpoints of its fieldlines separated exactly by Parker’s limit,
27 scale heights. On the other hand, the footpoints of the similar, arcade-type but
non-potential fieldlines (6.4.4c) are separated by 2xpax = 2cos™1[B/(8+2)] < 2 scale



6.4. USEFUL LIMITS OF THE PRESEN T ANALYSIS 163
heights (with xmax — 0 for lai'ge B). Also, the periodic field lines (6.4.4a) have a
period 47 L > 2w L but they cannot be anchored. The curvature of the fieldlines (6.4.4)
behaves analogously. The value of their radius of curvature R, at their highest point

is,
B 2

Ro= ——— -
de/dX B,=0 €+ (é - l)ﬂo
in units of H. It is evident that for the potential case (6.4.4b) we have R, = 2, while

for all £ > 1, R, < 2 with R, — 0 for large 3,. In the following sections we shall see
that r.x and R, depend also on the magnitude of the flows in the system.

(6.4.5)

6.4.2 Low-( solutions ,v

In view of the usual practice to regard the solar corona as a rather low g plasma, it is
useful to examine the limit of the general MHD solutions of section 2 when § << 1.
Then, with M2 << M?, we can neglect terms of order M2, or higher, in Eqs.(6.2.14-
6.2.16). In this limit Eq.(6.2.14) simplifies considerably,

2 dMZ  £M?/2-1

= 6.4.6
M2 dM?  (¢/2 -1)M?° ( )
and has the solution,
2
Mg M\t __¢ 2o pm?
Mzo = (MO> e 2(2—5)( o) . (647)

On the other hand, Eq.(6.2.15) becomes, after neglecting powers of M 2 relative to M?
(but not relative to A2 M?)

MEAM? (/2 - )M
st = S VM - M, (6.4.8)

.-

and has the solution,

M _
e~ T (MP=MD) _ (o &x , (6.4.9)
M, 2

Evidently, there are no solutions when ¢ > 2. The flux function obtained from
Eqs.(6.2.9b) and (6.2.10) is
- . z
A = Agcos %ie_%_ ) (6.4.10)
representing a potential field with aligned flows, as expected.
Eq.(6.4.8) has a single critical point at the sonic transition, M = 1 and M? = X <<
1. In other words, the new critical point at (M}, M*) obtained without assuming that
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the magnitude of the Alfvén number is small, is lost in this limit of § << 1. Also,
Eq.(6.4.10) represents magnetized arcades for any value of £ and does not allow for the
existence of periodic solutions, while by assumption the effects arising when the flows
start to dominate the magnetic effects are not included.

The above solution can be obtained from the initial MHD Eqgs.(6.2.1) through a
perturbation analysis, if we require that the magnetic field is potential to zeroth order,
V2A = 0. The effect of flows along the field lines is obtained then from Bernoulli’s
integral, Eq.(6.2.3b), which, after being substituted into the transfield equation and
so taking into account the feedback reaction of the flow, gives the perturbation to the
potential magnetic field caused by the presence of the low Alfvén number flows. This
case has been explored in detail in chapter 4. Note, however, that some properties
arising from the non-linearity of the MHD equations are completely neglected and lost
by this approach. For example,

(i) the novel critical speed which is different from the classical sound speed and does
not appear in the low-M, perturbation studies,

(n) the fact that solutions do not exist for high Alfvén numbers, M, > M™% and the
sonic speed cannot be reached in some cases (as in the supercritical case),

(iii) the existence of periodic solutions for ¢ < 1 which do not exist in a low—M,
analysis. '

We conclude therefore that a general treatment of the full MHD equations may be
crucial if we are interested in novel physical properties of MHD equilibria in uniform
gravity. And, if our interest is confined to modeling those magnetic structures of the
solar corona where the magnetic field completely dominates over the plasma and its
flows, we may use approximations like the above, or treat the magnetic lines as rigid
pipes, or even neglect flows altogether. We should keep in mind, however, that in
several instances in the lower quiet corona, in chromospheric loops and fibrils where
the plasma 3 is the largest, in photospheric Evershed flows and also in the atmospheres
of other stars where the magnetic field is less important locally, the present general
analysis is much more appropriate.

6.5 Solar Arcade-like Solutions

A major feature that has naturally emerged here from a study of the topologies of the
solutions of stratified MHD equilibria in a uniform gravity is the existence of loop-like
solutions. On the other hand, since such magnetic field geometries are ubiquitously
observed in the solar atmosphere, we are tempted briefly to consider the relation of
such solutions to solar coronal arcades and loops.
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6.5.1 Physical Parameters in Solar Coronal Loops

Our primary motivation in this paper is to build up the basic theory for the first time
of compressible steady state MHD solutions in the presence of gravity, rather than
to explain particular observations. In the following however, we outline briefly some
potential applications, such as, Evershed flow; stellar loops where there is a greater
variety of parameter values than on the Sun; and some solar chromospheric and coronal
loops.

Let us consider briefly the applicability to the solar atmosphere, bearing in mind
the three main assumptions, namely (i) of steady flow and (ii) of the plasma 3 being
not too small and (iii) of Alfvén number M, being not too small (say, of the order of
0.1). | :

First, write the plasma-3 and the characteristic flow speeds as,

n107T6

,3—"—‘035)( —Blz‘“',

(6.5.1)

Va = 280 x \/l% km /sec, Vs = 150 \/Ts—km/sec. (6.5.2)
with nio measured in units of 10!° cm™3, Ty in million degrees, and B; in units of 10
Gauss.

Second, note that there is a very wide variety of flows and structures in the so-
lar atmosphere (Priest 1984) and even more on other stars. Flows include spicules,
macrospicules and explosive events, but they are inherently nonsteady. However, they
also include several types of flows to which our analysis may be relevant. For example,
compact flares go through a quasi-steady phase for thousands of Alfvén times after
an initially dynamic phase and the flow speeds may reach 100 km/sec or more, with
the summit density and temperature reaching 10!° cm™3 and 107 — 10® K, respectively.
Also, there is Evershed outflow (6 to 7 km/sec) and Evershed inflow (20 km/sec) in
sunspot regions (Dere et al. 1990). In addition, in surges streams of plasma are ejected
upwards along curved paths at typically 20 to 30 km/sec though occasionally 100 to
200 km/sec and may last for up to half an hour; they too may show a quasi-steady
phase after an initial dynamic start. Again coronal rain is cool plasma that flows down-
ward along curved paths at speeds of 50 - 100 km/sec and it too may continue in a
quasi-steady manner. From space observations steady large-scale flows over sunspots,
the network and plage regions are found with a variety of speeds from 2 to 30 km/sec
(Lites et al. 1976; Athay et al. 1980).

Third, consider three representative loop structures with flows observed in the pho-
tosphere, transition region and corona. In the photosphere and chromosphere and
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in emerging flux areas, when a bipolar region with fairly low-lying loops is formed
(an arch-filament system), the summits of those loops rise at up to 10 km/sec while
plasma falls down near both ends with speeds up to 50 km/sec (Svéstka 1976). Higher
up at transition region temperatures, the most prominent active- region loops are the
sunspot loops which originate in sunspots. Foukal (1976) by analyzing the EUV emis-
sion of these sunspot-loops found that the observed material inside the loops has much
higher scale-height than the one calculated by assuming hydrostatic balance. He then
concluded that the material cannot be supported in the observed heights either hydro-
statically or magnetohydrostatically, or by turbulent motions. In other words, pressure
and energy balance of such loops is most simply understood if coronal material is falling
downward under gravity, a conclusion reinforced recently by Peres et al. (1992). Strong
downflows are also observed in cool H, loops located below hot X-ray loops. Finally,
in the corona systematic flows (50 - 100 km/sec) in loops of typical active region sizes
may be responsible for the observed nonthermal X-ray line broadening if they occur
along magnetic field lines which are contorted due to interweaving by footpoint mo-
tions (Parker 1983). In this case, if the derived excess velocities of 100 km/sec (Acton
et al. 1981), or 50 km/sec (Saba & Strong 1991), represent the average line of sight
component of flows through such twisted loops, the actual velocities could be several
times larger than the deduced excess velocities, perhaps even comparable to the sound
speed (Saba & Strong 1991).

Fourth, let us consider representative values of the plasma-g3, V, and V; for such
loops. If we adopt a temperature of 2.7 x 10 K, a density of 10° cm™ and a magnetic
field of 5 Gauss, we obtain a plasma beta of 0.4. In many parts of the solar atmosphere
the temperature is indeed greater than this, especially in active regions where Yohkoh
finds 5 - 6 x10® K by comparison with the above lower quiet region temperéture
of 2.7 x 10° K (Hara et al. 1992). Also, the density can be greater by a factor of
10, especially low down or in coronal condensations. Thus, following Saba & Strong
(1991) we may put in Eqs.(6.5.1-6.5.2) n1o ~ 1 while Ts = 6 from the Yohkoh results.
The strength of the magnetic field on the other hand is not well determined due to
uncertainties arising from the assumption that it is potential with photospheric values
used as boundary conditions (Poletto et al. 1975; Galeev et al. 1981). Assumlng a
value of the total field B ~ 20 Gauss in Eqs.(6.5.1-6.5.2) we find,

B=05, Va =~ 550 km/sec, Vs & 400 km/sec, (6.5.3)

Thus, provided we restrict ourselves to regions of low magnetic field, values of plasma-
3 and Mach and Alfvén numbers in excess of say 0.1 are common. However, active
regions, say, with a field larger by a factor of 10, have § values that are lower by a
factor of 100 and our analysis is certainly not relevant - at least high in the corona.
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Figure 6.4: Plot of radius of curvature R, (in units of scale height L) for field lines at
the summit x = 0 of the arcade as a function of the Alfvén Mach number M,, there,
for ¢ = 1 (solid curve), £ = 1.5 and S, = 0.01 (thin dashes), £ = 1.5 and 5, =04
(thick dashes), £ = 1.9 and f§, = 0.01 (thin dots), { =1.9 and 3, = 0.4 (thick dots).

Similarly, in those regions of strong magnetic field the Alfvén number is also small,
although in parts of the quiet Sun it may also exceed 0.1. Our conclusion therefore is
that in quiet Sun loops in the chromosphere or corona the conditions for our analysis
to be relevant and to have significant effects are likely to be met.

Finally, within the assumptions of the analysis we have chosen to illustrate the
solutions of the present study with typical values of the parameter ) of the order of 0.1
and corresponding values of the plasma-3 of the same order. For example, in Fig.(6.1a)
we have taken \ = 0.088 such that the Alfvén number at the loop summit reaches
the value M,, ~ 0.3 and the plasma-3 in Fig.(6.1b) is 8, = 0.17. In Figs.(6.1c,d),
A = 0.088, M,, ~ 0.8 and 3, =~ 0.2, while in Figs.(6.1e,f), A = 0.03, M,, = 0.17 and
B, = 0.06. Needless to say, an advantage of the analytical nature of our study is that
any value of A and 3 can be considered in the limits of the previous ambiguities in A and
B,. The values chosen here, although for illustration purposes only, were within those
limits. It is also important to note (in comparing with other studies performed under
the assumption that M, << 1 and neglecting the nonlinear effects) that as long as {
is slightly larger than 1 the conclusions are similar to those of section 4.2 (field-aligned
flows in a potential field). But as £ — 2 the non-linear effects become important.
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Figure 6.5: For the solution with £ = 1 and 3, = 0.2 we plot the shape of the field
lines as the value of the Mach number M, at the summit x = 0 increases from M, = 0
(dotted curve), to M, = 0.3 (lower thin curve), then to M, = 0.7 and finally to
M, = 0.9 (upper thick solid curve). :

6.5.2 Change of Curvature and Footpoint Separation of Arcade

As discussed in the previous section 3, when 1 < £ < 2, we obtain loop-like solutions.
In order to see in some more detail the effect of the flow in changing the properties
of such arcades, in the following we discuss how the geometrical shape of the arcade
changes as the Alfvén number M,, at its summit increases.

Change of curvature at arcade summit with increasing strength of flow.
The radius of curvature of the arcades at their top depends both on plasma 3, and the
Alfvén number there, M,, :
R = 2(1 — Mgo)
° 6 + (‘S - 1)/30 ’
In Fig.(6.4) we plot R, as a function of M,, for different values of the parameter
¢ and plasma (3,. For given ¢ and f, as the strength of the Alfvén number of the
flow at the summit increases, the radius of curvature of the lines, R,, decreases from
the static value without flows (Eq. 4.5) to zero for flows which become Alfvénic at
their summit, M,, = 1. This trend is of course well understood, since in this case,
by increasing the strength of the centrifugal force at the summit, the loop responds
by becoming more curved in order that the increased centrifugal force is balanced by
magnetic tension. Note that, in the special case of £ = 1, the pressure gradient in

(6.5.1)
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Figure 6.6: The typical shape‘of the arcade in the vertical z-z—plane is plotted for
{=1and 3, =0.2in (a) and in (b) for { = 1.5 and 3, = 0.2.
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the z-direction exactly balances the plasma weight, leaving the downward magnetic
tension (in the z-direction) to balance the sum of the upward centrifugal force and
upward z-component of the magnetic pressure gradient.

In Fig.(6.5b) we plot the various shapes of an arcade with fixed footpoints, as M,,
is progressively increased. It is evident, first, that all arcades with flows are already
more curved than the corresponding static ones (dotted curve); and second, that the
stronger are the flows (the higher is M,, for fixed £ and f,) the more curved is the
loop (progressively thicker curves). The shape of a typical such arcade is shown in
Fig.(6.5a) together with the contours of constant density. For the special case £ =1
without flows, the density p(x) is flat along a horizontal plane of z = const. intersecting
the arcade, but in the presence of flows the density has a minimum at the vertical plane
which goes through the summits of the arcade at x = 0, for large M,,. For 1 < £ <2
the density is dropping fast as we reach the footpoints (Fig.6.6).

Change of footpoint separation with increasing flow strength at loop sum-
mit. As may be seen from Fig.(6.1d), by increasing the strength of the flow speed at
the loop top (increasing M,, for constant A), there results a gradual decrease of the
separation 2xp,x of the loop footpoints. For M,, — 0, we have 2x,,x — 27, the
Parker value for the separation of the footpoints of an anchored buoyant magnetic flux
tube in an isothermal atmosphere.

6.6 Nature of Critical Points

In this section we first discuss the nature of the novel X-type critical point we have
encountered in the (M2 — M?)~plane of the solution topologies by comparing it to the
critical points that appear in the study of siphon flows in isolated slender flux tubes;
and second, we compare the critical speed at this critical point to the characteristic
speed for MHD wave propagation in a stratified medium. We conclude that the critical
speed is not always equal to the sound speed. In addition, we find that for a rather
highly stratified medium there are no loop-like solutions with field-aligned flows because
MHD wave propagation occurs only above a cut-off speed in such a medium.

6.6.1 Siphon Flows in Isolated Thin Magnetic Flux tubes

Steady flows in the solar atmosphere have been studied either in the rigid flux tube
approximation (Cargill & Priest 1980; Noci 1981) or in the approximation of a slender
flux tube (Thomas 1988; Montesinos & Thomas 1989; Degenhardt 1989; Thomas &
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Montesinos 1990, 1991). In this section we go briefly through the main results of these
studies in order to compare them with the results of the present analysis.

Force balance along magnetic field lines in an isothermal MHD equilibrium in a
uniform gravitational field g in the z-direction is expressed by

Vdv + Vfi’f +gdz=0. (6.6.1)
p
For field-aligned MHD flows we also have
dp dV dB
— 4 — - —=0. .6.2
255 : (662)

Substituting dp/p from Eq.(6.6.2) to Eq.(6.6.1) we obtain

[ Vz} v _dB & (6.6.3)

A i .
VEZ|V - B T I

To make more progress we need another relationship between B, V' and z. This may be
taken from magnetic flux conservation, where the cross-sectional area of the tube, o(z),
is prescribed such that the magnetic field is obtained from B(z) = Fg/o(z), where Fg
is the constant magnetic flux. This provides us with the required extra relationship
between B, V and z such that the velocity V(z) along the magnetic lines may be
calculated in terms of z from (6.6.3), which now becomes (Cargill & Priest 1980; Noci
1981)

V%) av 1 dB(z) 1

1— — = ~| d. 6.6.4

v - e e (64

Note that there exists a critical point in the V-2 plane at the sonic transition, V = V.

In this approach, however, the tube is considered as rigid and lateral force balance is
neglected altogether.

On the other hand, if lateral force balance is taken into account to yield B =

B(z,V), we have, -

,_ Y2 _voB
VZ BVl

v _[1op
vV ~|BO:

It follows that now the velocity at the critical point has shifted to V, # V,, where

1
- . .6.5
V+L] dz (6.6.5)

1 1 1 0B?

i T i .6.6
vz = vz T B ave (6.6.6)

-
For an equipartition flow where B2 = 4mp,V 2, lateral force balance is identically satis-
fied and the critical point occurs at the characteristic tube speed defined by (Roberts
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1976)
V= ——~———V’2 Ve .
t V32 + Va2
By comparison, if lateral force balance is taken into account within the framework of
the restricted slender flux tube approximation where P + B? /87 = P,, we find

(6.6.7)

dB V*dV dz

—B— = —‘/:2-7 — ﬁ . (668)
Combining Egs.(6.6.5) and (6.6.8) we obtain the following equation for V(z)
V21 dvV  dz
[1-— i@f]'i7_'_ g (6.6.9)
and similarly for B(z)
V2] dB V2] dz :
LA [ I A et 6.6.1
: IR 0610
in terms of another characteristic speed V; defined by,
V2 VZ
2 __ s 'a

Note that V; is the speed above which the flow causes the tube to contract with height
(Thomas 1988). Thus, the flow accelerates at the expanding initial portion of the
thin flux tube through a density reduction as the plasma climbs along the expanding
portion of the tube. Then, after the characteristic speed V; is reached at the location of
maximum tube area and minimum field strength, the velocity continues to increase and
the tube contracts with height because of a pressure reduction through the Bernoulli
effect until the speed V; is reached at the summit where the field is horizontal.

How can the above results be generalized if we do not keep the thin flux tube
approximation? Let us first note that Eq.(6.6.6) can be written as

KiaBz)zzl.

2 e—————
M*+ pigve

(6.6.12)

Also, when the flow speed equals the characteristic speed V; and the magnetic field
attains an extremum, the Mach numbers M and M, satisfy the relation

M2 -
7;H+Aﬁ:=1. (6.6.13)
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Eq.(6.6.12) implies that, in general, M # 1 at the critical point. And, evidently our
Eq.(6.2.17) is an extension of Eq.(6.6.13) for ¢ # 1, reducing to (6.6.13) when ¢ = 1.
This should be the case because we also obtained Eq.(6.2.17) from force balance along
the fieldlines. However, we obtained an extra critical relationship between the two
Mach numbers, namely Eq.(6.2.18) from force balance across the fieldlines; and the
combination of Eqs.(6.2.17)—(6.2.18) determined the values of the Mach numbers at
the critical point.

In the present study we also find that the critical point is not necessarily at the
summit of the magnetic flux tube and that the speed at this critical point does not
coincide with any known characteristic speed for MHD wave propagation in a uniform
medium. i v

6.6.2 Wave Propagation and Characteristic Speeds

It is usually found that at critical points the flow speed equals some characteristic speed
for wave propagation in the plasma. Thus, searching for a connection of the flow speed
at the critical point of the present analysis with some characteristic speed for MHD
wave propagation, we briefly discuss the various wave speeds that exist in magnetized
media.

Consider first a uniform magnetic field Bz filling all space. Then, MHD waves
may propagate along the field as Alfvén waves, or, at any direction k as either of the
so-called slow and fast magnetoacoustic waves with phase speeds V = w/k where

wy* 2 2y (@) 2 2,2 K2
(75) —(VE+V2) (E) +VAVIZE =0, (6.6.14)
For propagation along the magnetic field we thus find that the waves propagate with
either the sound speed V; or the Alfvén speed V.

On the other hand, consider how the phase speed of these waves is modified in the
limit of squeezing the field in a slender magnetic flux tube. A straightforward normal
mode analysis of the possible ‘n"iodes leads to the dispersion relation

BVE=w?, (6.6.15)

i.e., the waves propagate at the reduced tube-speed, V; < min(V,,V,) (Roberts 1976;
Defouw 1976).

Consider next the effect of stratification, a situation corresponding to the present
analysis. In the framework of the thin flux tube approximation, we may write for the
z-dependence of the pressure, density, magnetic field strength and area, respectively,

_ £z _ 4z -4z £z
P~r~e 8, pr~e ®#, Br~e 2L, gn~eil, (6.6.16)
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such that both the Alfvén speed and the sound speed V, are constants. Then a per-
turbation satisfying the conservation laws,

0P + BoB =0, Béo+06B =0,
4w
o6V 06 P :
§P=V2§ =— —gé 6.6.17
V8 p, p at 02 g p’ ( )
06p  Obo d(po) i1
=_r — = .6.18
aat—i— r +6V P +’006z 0, (6.6.18)
yields the differential equation
O?6P 4 —£O6P w2 2-¢
5t 5 5 [W_ + 573 ] §P=0, (6.6.19)
with the solution,
| §P ~ e~ T gilettkz) (6.6.20)
where
1 2
= (6.6.21)

w? VI 16L%w?°
Propagation is possible only for frequencies above the cut-off frequency w, = {V;/4H,
which is inversely proportional to the scale height H, as there exists a cut-off frequency
in e-m wave propagation in a plasma. Thus, for very small scale heights H propagation
is not possible. The situation is similar in our analysis. In our case, there is no critical
point and critical speed for small scale heights, £ > 2 and MHD flows along arcades
are not possible. In other words, for H — 0, no wave propagation in a stratified
medium is possible, consistent with our conclusion that for £ > 2 no solutions for flows
in arcades are found.

6.7 Summary and Discussion of Results

In Paper I we searched for exact 1-D MHD solutions in a uniform gravitational field.
For simplicity we considered in that first step a variation of the physical quantities only
with the horizontal coordinate X. Only periodic solutions were found including valleys
and summits. The new element introduced in the present treatment is stratification
in the vertical distance Z and therefore dependence of all physical quantities on both
Z and X. As a result, a new feature has emerged naturally from this 2-D analysis,
namely the existence of loop-like solutions not encountered in the previous unstratified
treatments. Nevertheless, in the limit of the absence of stratification (§ — 0) we
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recover the results of the analysis for the unstratified case of Paper I. As with Paper
I, the present study can be generalized to any nonisothermal atmosphere and also to
include components of the fields in the symmetry-direction (y). The main conclusions
of the present study can be summarized then as follows,

(1) Low Mach number loop-like solutions exist only for a limited range of the strat-
ification parameter £, 1 < £ < 2, i.e., for the restricted case of a mildly stratified
atmosphere where the density, pressure and magnetic field strength do not drop with
height z faster than the classical scale height H = V2/g. If this conclusion were shown
to persist for other functional forms of the free integrals ¥ ;(A) and F(A4), Eqs.(6.2.4),
it would predict, for example, that in highly stratified coronae of stars and accretion
disks, loops with flows do not exist. Note that this result is also in agreement with a
perturbation analysis for MHD wave propagation in a stratified medium where there
is a scale height—dependent cutoff frequency for the waves, Eq.(6.6.21).

(2) Topologies of the solutions in the (M,, M)-plane for such loops are controlled
by e new critical point. We have preliminarily explored the nature of this critical
point and concluded that its appearance is strictly related to the vertical stratification.
The flow speed at the critical point is then a generalization of the well-known tube-
speed, Vi, encountered in wave propagation in slender flux tubes (Roberts 1976). The
critical point is not necessarily, however, at the highest point of the tubes, as is the
case in slender flux tube models with flows (Thomas 1988; Degenhart 1989; Thomas
& Montesinos, 1990). Instead, the critical point seems to be similar to an analogous
critical point that emerges from nonlinear solutions of the 2-D MHD equations explored
in connection with astrophysical winds and jets (Tsinganos & Trussoni 1991; Tsinganos
& Sauty 1992)'. In both these cases the new critical point appears when the two coupled
partial differential equations which govern symmetric MHD equilibria — the transfield
equation and the equation for force balance along the magnetic field and stream lines
— are properly solved. Also, the critical point does not appear at the fast and slow
MHD wave speeds, but at some.other characteristic speed which evidently includes the
elasticity of the fieldlines to changes in the flow magnitude.

(3) As the magnitude of the flow at the summit increases, the arcade responds by
becoming more curved while the separation of its footpoints 2X,,, decreases. Always,
however, 2Xpmax < 27, with equality reached only in the limit of potential arcades
without flows (Parker 1975, 1979). This conclusion is valid for arcades which in the
absence of flows correspond to a potential magnetic field, £ = 1, a case that may
be relevant for some solar coronal magnetic fields. This property may explain the
observational fact that most loops extend over heights much larger than predicted by
static models without flows (Foukal 1976).
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(4) Sometimes a limit exists on the magnitude of the flow speed at the summits
beyond which steady solutions do not exist and we conjecture that the arcades disrupt
when the flow speed exzceeds this limit. Such high plasma motions are observed to occur
in the solar corona and chromosphere. For example, transition region line profiles
(50,000 < T' < 250,000) are broadened almost everywhere beyond their thermal width
(Brueckner et al. 1988). Our suggestion is that a consequence of such high plasma
flows may be the disruption of the magnetic field lines which can be understood in
terms of the failure of the magnetic tension force to continue to balance the centrifugal
force. The required increased mass flows along the magnetic field lines may be due, for
example, to appropriate changes in the footpoint pressure and other physical conditions
at the base of the loops (Low 1981; Mikic 1988; Priest 1988).

(5) For asymmetric arcades there is the possibility of a shock transition that would
connect the M > 1 branches with the M < 1 branches. The existence and location
of this shock along the loop depends of course on the pressure difference between the
two symmetric loop footpoints. Note that such shock transitions also appear in the
subcases of rigid flux tube siphon flows, as well as in flows in slender flux tubes and
attempts have been made to connect them with heating along the loops.

(8) The density has a minimum at the summits and increases as we move down
in the gravitational field toward the footpoints. Also, the density has a minimum
horizontally at the summit of the arcade.

(7) Finally, it is worth emphasizing that the present study is valid for any plasma
8, small or large. And, although results obtained with the assumption of low 3 can be
applied to solar active region loops if there § << 1, nevertheless such approximations
are inappropriate for situations where the effects of the flow are important and a full
solution of the MHD equations should be considered instead. Such situations arise, for
example, in areas of magnetic flux emergence (Brueckner et al. 1988), or in compact
flares with no eruption where the speeds are typically of the order of 100 km/s; similarly
in high temperature X-ray loops (T ~ 5-6 x 10° K) like those observed with Yohkoh
(Hara et al. 1992). Similar considerations apply to chromospheric loops and fibrils
where the plasma ( is the largest and in the atmospheres of other stars where the
magnetic field is less important locally. For the obvious application to photospheric
Evershed flows in sunspots one needs to write the corresponding Egs.(6.2.14-6.2.16) in
cylindrical coordinates, this will be taken up in the future.

All the above conclusions are based on the particular form of the free integrals
\I!A(/i) and F(A), Egs.(6.2.4). It is natural to wonder then whether the results of the
present analysis are model-dependent and not extendable to other choices of W A(A)
and F(A), or whether they indeed reveal some generic properties of MHD flows in
a uniform gravity and in an atmosphere that is vertically stratified and horizontally
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compressible. Unfortunately, to this day the set of expressions (6.2.4) for ¥ A(A) and
F(A) is the only one wherein it has been possible to examine analytically and display
the general properties of such steady states. In this connection we briefly note that the
expressions (6.2.5) for the z-dependence of the magnetic fields are quite appropriate
for magnetic fields that exist high in the solar corona where they are regarded as
approximately potential. On the other hand, for the mass flux per unit of magnetic
flux we find that the simplest expression it can take is ¥ A(A) A, while for the
energy flux, F(A) x InA. A Taylor expansion of these two free functions in A will
keep those terms at the lowest order. Therefore, we are inclined to accept the latter
point of view that the above general trends are not purely accidental for the set (6.2.5)
for ¥ ;(A) and F(A) alone. However, it remains a task for the future to show if other
classes of such equilibria share the same properties and therefore that the previous
trends have a general validity. We conclude then that more work is needed in order
to understand some key properties of MHD steady flows in a uniform gravity and
the related problem of MHD wave propagation in a nonuniform atmosphere. Such an
understanding is necessary before we are able successfully to model the complex and
nonlinear phenomenon of the MHD structure of solar and stellar atmospheres.
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Chapter 7

SUMMARY AND FUTURE
PERSPECTIVES '

7.1 Summary

High-resolution X-ray images of the inhomogeneous solar atmosphere by satellites and
rockets, seem to firmly establish the notion that the building blocks of the corona of
the Sun are loops of various sizes and properties. In particular the role of magnetic
field apparently emerges to be rather crucial in providing the confiment of the plasma
in these higher density structures. On the other hand, a prelimary comparison of
the fitting of the emission by these loops by static (without flows) or dynamic (with
flows) models suggests that plasma flows play also an essential role in determining
the physical and geometric characteristics of the loops. It is evident them, that a
full MHD description is required in order to understand the basic physical properties
of magnetized plasma loops. However, the construction of exact MHD models with
flows for compressible magnetic loops has been so far halted by the nonlinear nature
_of the coupled MHD partial differential equations. This is the basic reason that all the
models that we have for coronal loops are one-dimensional (in which the MHD partial
differential equations becomes ordinary differential equations). Needless to say that
self-consistent models of coronal loops may be the starting point for an examination of
their stability properties, propagation of waves and subsequent heating.

With these considerations in mind, we have been studying some families of exact
solutions of the MHD equations. We developed a method to solve in general the
MHD equations in two dimensions in-the low-3 limit (i.e. that the plasma pressure is
much less than the magnetic pressure) which an reasonable assumption for the solar
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corona. In this limit the magnetic configuration is approximently force-free. Thus the
influences of the plasma pressure, density and flows can be treated as perturbations
to the initial force-free configuration. The resulting equations, describing the field-
aligned dynamics and the cross-field force balance, which give the dynamics of the
plasma and the change in the initial magnetic configuration can be solved for any
boundary conditions assumed. As an example we examing in detail some configurations
(symmetric and asymmetric) which model coronal loops, arcades and the sunspots. In
more details in symmetrical magnetic configurations, when the distribution of pressure
at the foot points is symmetrical, the flow is necessarily subsonic. Otherwise it can
become supersonic at the summit of the magnetic field line and then passes through
a shock. Such shocks can be very inclined to the magnetic field and the shocked
material may form a dense hot sheet around a cooler core, a situation which seems to be
observed in cool loops. For asymmetrical magnetic configurations, the flow accelerates
towards the low gas pressure foot point and could be subsonic or transonic depending
on the pressure difference between the foot points. Loops can have a significant density
contrast against their environment only if their energy flux differs markedly from the
background one. In asymmetrical loops one leg can be much less dense than the other
and poorly visible. Near spots, the sign of the difference of pressure between the two
foot points is such as to drive a reverse Evershed flow towards the spot and additional
effects would be needed to drive a direct Evershed flow.

From the other hand, we tried to find MHD solutions without the crucial assumption
that the plasma f is small. In this direction we have study two cases, starting from
the generalization, in horizontally compressible atmosphere, of Kippenhahn-Schliter
model for the support of quiescences prominences. Adding flows along the fieldlines
to this, we found that the resulting field structure has a periodic character, which is
similar to the observed fine-scale fibril structure of solar prominences, with prominence-
like valleys and arcade-type summits. At the valleys the density is maximum and
the flow speed subsonic and subalfvénic while the opposite happens in the summits.
But if in the above approach take to account the vertical stratification of atmosphere
due to gravity the situation complicates and new characteristics emerge. The basic
result for middly stratification, coronal loop models with flows along them comes out
as the only solutions of the couple equations discrubing the force balance along and
across fieldlines. The phase plane of this solutions controlled by a classical sonic and a
novel saddle critical point, corresponding to a new characteristic speed for MHD wave
propagation in this nonuniform medium. We also found that for strong stratification
there no solutions at all, while for small stratification only periodic solutions arise which
are totally subsonic and subalfvénic model the internal structure of prominences. We
further compare some properties of these loops with those of force-free magnetic loops
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in the low-3 limit where loops are taking to be rigid. Among our results, is that an
increase of the magnitude of the flow at the loop increases its height, in accordance
with solar observations where some loops seem to extent over heights much higher
than those predicted by static models. Finally, for strong flows there no equilibrium
solutions and the loop is disrupted.

7.2 Suggestions for future work

The approach followed in this thesis is useful to construct more sofisticated models for
various solar structures in the solar corona where the low-£ assumption valid and com-
paring them with observations and to examine simple situations of the MHD equations
in order to light some basic properties of them and to model in zeroth order situations
where the low-3 assumption is not valid. In the following we shall describe how we can
extrapolate the works of chapters 4 and 6.

7.2.1 General low-§ models

As we saw in the third chapter a magnetic structure in which the plasma  and the
Alfvén Mach number M, are both much less than unity (and also the scale of magnetic
structures are much less than the Alfvénic scale height), is approximently force-free

(VxBg)xBg=0, (7.2.1a)
V-Bg =0. ‘ (7.2.1b)

while the influence of the plasma (density, pressure, flows and gravity) can be treated
as perturbation of order § and M,

B = By + By, (7.2.2)

writing in first order of these parameters

cea

. V-By=0, (7.2.3a)
V.(pV) =0, (7.2.3b)
Vx(VxBg)=0, (7.2.3c)
GV-VV = —yp 4 X B;?T) xBy (VX B;r) xBo | e (7.2.3d)
and closing the above system by the ideal gas law for fully ionized H
p=2k8 1 (7.2.3¢)

Mp
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and an energy equation

-
P(V

v—1

P Ko T/ .
V)(;;) = —(BO V)[ (Bg-V)T| — xp*T*+H. (7.2.3f)
where By is the strength of the magnetic field. Thus Eqs.(7.2.3) constltute a closed
system for P, p, T, V and By.

For a magnetic configuration in coordinates (z1, 22, z3) where z3 is ignorable, defin-
ing the flux functions Ag and A; from the solenoidal conditions Eqs.(7.2.1b,7.2.3a) it
is easy to see that the discussion of section 4.3 still holds about the existance of free
functions of Ay like ¥(Ayp), Q(Ap) and G1(Ap) discrubing mass conservation and force
balance in the ignorable direction (the integral E(Ap) is not exist in this case). Of
course the initial configuration satisfies the well-known 2-D force-free condition for Ay,
and of course the function G = h*By,, is function of Ay only. For field aligned flows
2 = 0 we have
47TpV = ‘I’AOBO 3 (7.2.4&)

and the equations discrubing the hydrodynamic and thermal equlhbrlum of the plasma
along each field line Ay with abscissa s are

v dP By

Vs = g, (7.2.4b)
p' d(P\_ _d[rTdT 2
o lvd.s <p'r> = Bd.s B d.) T XP T*+ H (7.2.4¢)

together with the ideal gas law. The above system can be solved for the unknowns
P, p, T and V. Finally the equation which gives the flux function A; end thus the
correction in the z;- and zs-components of the magnetic field is

1:

1 8 hy 04 N 8 hy 04 1 d%(G%)
h1h2h3 6(131 h1h3 6.’1)1 61‘2 hzhs 8:v2 2h§ dA(z)

‘I’Ao [ 0 hs \I’AoaAo 0 hz'\I'AoaAo
h1h2h3 6.’21 h1h3 47rp 6:1)1 a.’IIz hlhs 47l'p 65132

__]_d(GoGl) _ 1 d(G(ZJ\I’ilo) 4 BP)
R dA,  8mphl  dA, "ddy) F

while the correction in By, is given by

(7.2.5a)

P2 1 dGy G
B, = _Ao 1
s = 7o pB ++h3dA0A 1+ ™

(7.2.5b)
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where the last partial derivative in the transfield equation is taken keeping the quantity
F = gz+V?%/2 constant, and is calculating numerically from the solution of the system
of Eqgs.(7.2.4).

The above formalism can be use to model in detail coronal loops, prominences,
active regions etc., where the isothermally is not a realistic assumption.

7.2.2 Further study of the general 2-D MHD equations

Equilibrium states. The class of solutions studied in chapters 5 and 6 belongs to
a more general class of solutions of MHD equations under the assumption that any
quantity is separable. By this we seek solutions in the 2-D MHD equations in 1,72
coordinates by writing every variable Q(z;, ;) in the separable form

Q(z1,22) = Ql($1)Q2($2), (7.2.6)

and asking which is the appropriate given form for Q(z2), such that the MHD equa-
tions to became from a partial to ordinary differential equation system for the unknown
functions Q;(z1). For the cartesian (z,y, z) or cylindrical (w, ¢, 2) coordinates with y
or ¢ being ignorable, it is easy to check that the most general z-dependence is given
by Egs.(6.2.5). Thus an obvious extension of the work of chapter 6 is the study of
the solutions in cylindrical geometry and the study of non-planar solution assuming
that the magnetic field and velocity have components and in ignorable direction. At
this point we must note that in spherical coordinates (r, ¢#,0) where ¢ is the ignorable
coordinate there are already many models under this assumption discrubing solar and
stellar winds and jets (Tsinganos & Trussoni 1990, 1991, Tsinganos & Sauty 1991,
1992, Sauty & Tsinganos 1994, Lima & Priest 1993a,b).

Critical points in the general transfield equation. Another crucial point that
found in chapter 6 is this new critical point or a new characteristic speed, defining in
Eq.(6.2.18) which can be written also using Eq.(6.2.10) as

M2+ M?—M>M2-1=0, (7.2.7)

where M, is the Alfvén number and M, and M the Mach number of the z-component
and of the total velocity. Of course for this critical point we have another more equation,
i.e. Eq.(6.2.17) but this gives the position in the field line where Eq.(7.2.7) satisfies.
From these results it is important to examing two things (Sauty 1993),

(i), if this critical point is due to the assumption of the separable variables, and

(i) if it is a characteristic speed for wave propagation.
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In general the study of wave propagation in non-uniform media, is of a great impor-
tance, but is only in its infancy. It is relating directly to the stability of equilibrium
structures and to the classical problem of the heating of solar corona. To anwser the
second question, Tsinganos et al (1994) showed that the case of the critical point de-
fined in Eq.(7.2.7) can be written in the more familiar form (note that M = V/V,,
M, =V|V,=V,[Va,

V-2t - VZ(VZ+VH+VIVE =0, (7.2.8)

which means that the z-component of the flow speed along the critical curve (7.2.7)
is equal to the characteristic speed of the fast/slow MHD waves propagating in the
z-direction.

To answer to the first question we must examing some properties of the general
MHD equations. In cartesian geometry for planar structures with translational sym-
metry and isothermal equation of state the MHD equations are the transfield equation

0 Wa04 awAaA} '4 dE

——— — =0. 7.2.
dz 4np Ox + 0z 4mp Oz ﬂdeAo 0 (7.2.92)

VA~ \I![

.

discrubing the force balance across fieldlines and the Bernoulli equation

vy 04\ | (04’
Ve [ £ oa
ia(5) ro s (5) < (50)
discrubing the force balance along fieldlines. It is easy to see from Eq.(7.2.9b) that
the density is function of A and 2z although that we can not found it explicitly. But

its derivatives can be calculated explicitly and to substitute in the transfield equation
which can be written

0*’A  9*A
2 — —_— — ——— —— — —— a—
(1- M)[az * J+ a[p@m@:c +p(’?z 0z

where V, is the Alfvén velocity. Thus from the Bernoulli equation we obtain

= E(4), (7.2.9b)

2[10p0A  10p0A) V2 d¥%y dE
2 dA+47rpdA—-0 (7.2.10a)

10p0A M2MZ d¥2% A 0’ A M? dE

MZ_o1)=2ET8 _F e 2 B
( l)pax Oz 2M? dA M 922 Mz M, ~—~ 2 5707 —4r PM2 74’ (7.2.10Db)
10p04 _M*MZ, d¥% A A MZAE ¢
M2 1= 2 9
( Vo:0: ~ oz da M, MM, 4 "OMIdA V2

(7.2.10c)
where M., is the z-component of the Mach number of the flow and M,_, and M, the
z— and z-components of the Alfvén number. Substitute them in the transfield equation
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(7.2.10a) we get

2 2 2
(M? 4 M? — M2M? — 1]‘?9T —2MEM, M, a?él + M+ M2 — M2M? — 1]‘;2‘4
2 2 d
‘; ‘Z —4r Mzﬁ - VWAMx =0. (7.2.11)

The above equation is known in bibliography as 2-D quasi-linear partial differential
equation because the higher derivatives of A4 is in linear form although that the coeffi-
cients of them depend from the A itself.

Now we recognize that the critical point appear in the analysis of chapter 6 is
simply the coefficent of 92A4/3%c. When this becomes zero all the other/ terms must
became zero in order 8°A/8%x to be finite. The same also valid for the coefficient of
0?A/0%z but in the case studied in chapter 6 the z-dependence is dropped out from
the beginning. Eq.(7.2.11) written first by Heinemann & Olbert (1978) in spherical
geometry. It has the characteristic that is of mixed-type, in some points is elliptical
(D < 0) while in others is hyperbolic (D > 0), where D = b* — ac and a, b, c are
the coefficients of the second order derivatives of A (Eq.7.2.11). Thus, appropriate
boundary conditions must be used in each domain (i.e Laplace-type for the elliptic and
wave-type in the hyperbolic domain), taking also to account that the solution must be
continuous at the points of the line where D = 0. After a simple algebra we found that

D = (M?—1)(M2—1)(M?+ M2 1) = (V2= VE)(V2 = V2)(VI-VZ)/VEVE. (1.2.12)

where V; is the tube velocity which is smaller both from V, and V,. Define V;, =
min[Vs, V] and Vyin = min[V,, V,] we conclude that if V < V; or Vigin < V < Vijax
the transfield equation is of elliptic type, while if V; < V < Vigin or V > Vijax is of
hyperbolic type. Thus we see that in the points where the transfield equation changes
character the fluid velocity is equals to a characteristic velocity which corresponds also
to a characteristic wave propagation. But apart from this, it is interesting the fact that
the velocities defined putting &qual to zero the coeflicients a, and ¢ of the transfield
equation are correspond to fast/slow MHD waves.

Wave propagation Because of the great importance of the the study of wave prop-
agation in non-uniform media, we shall give in the following, the general equations
discrubing this and a simple example.

Consider a force-free field B in a vertically stratified stationary isothermal plasma,
under the influence of a uniform gravitational field g). Its density and pressure which
behave like

z

Po = pooe” T, Py = Ppe™ T, (7.2.13)
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where L = Pyo/poog, and satisfy the hydrostatic equation VP g = pog. Consider small
departures from the equilibrium

p:po-l-pl, P=P0+P1, B=B0+B1, V=V1, (7214)

and linearize the MHD equations (2.3.1) by neglecting squares and products of small
quantities (denoted by subscript 1). The result is

V-B;=0, (7.2.15a)
6,01
%l =V x (V1 x Bg), (7.2.15¢)
0P,

oV VxBy)xBg (VxBg)xB
.,.‘1=_VP1+( x By) x 0+( x Bg) x By

" 4m 4
where for the Eq.(7.2.15d) which describes the thermodynamics of the plasma we have
linearized Eq.(2.3.1.d) writing

+ g, (7.2.15€)

L="Lo+ L, (7.2.16)

where of course the energy function £y has to do with the initial state and is such
that isothermallity is holds in that. For simplicity the perturb energy function can
be choose either zero £; = 0, so adiabatic gas variations are studying, or such that
that isothermallity relation holds for the perturb density and pressure. From technical
point the second case can be found from Eq.(7.2.15d) putting again £; = 0 but v = 1.

The set of Eqgs.(7.2.15) may be reduced to a single equation by differentiating the
momentum equation and making the necessary substitutions. The result is a general-
ized wave equation for the disturbance velocity V1 (Priest 1984)

v '
P~ = RV(V - V1) + (7 = Dpo(V - V1)g + polg - V)V

[Vx(Vle)xBo]xBO+[VxB0]x[(VxV1)xB0]
4r ir

It is obvious from Eq.(7.2.17) that if the initial state was uniform the solution of this

is easy to obtain by a Fourier transform (plane waves)

, (7.2.17)

+

Vy = Vyeitwr=kn) (7.2.18)
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Thus Eq.(7.2.17) reduces to algebraic equation for the dispersion relation w = w(k)
and the amplitude of the wave V is constant. This analysis cover from all text book
in plasma physics. But for non-uniform initial states Eq.(7.2.17) becomes in general a
partial differential equation for the amplitude V; which is now a function of the spatial
coordinates because the solution must be obey to certain boundary conditions. Note
the Fourier analysis still holds for the time dependence and for coordinates in which
the equilibrium configuration is invariance.

As an example we shall examing the propagation of waves in the most simple
current-free planar magnetic configuration in cartesian coordinates

Ao = ZLB() COS (2—2-)6_5% 3

(7.2.19)
6A0 T .z aAO . I - .z
[ L — _— 2r = — = - — T
By, g = By cos (2L>e 228 By, e By sin (2L)e 2

in which the plasma j is constant everywhere. For simplicity we shall consider waves in
which the z- and z-components of the disturbance velocity Vq are zero (V;, = Vi, = 0).
Thus we write for the remaining y-component

Vi, = V1, (z)e'@ihkvymkez) (7.2.20)

because the exponential z-dependence existing in the quantities of the equilibrium state
drops out, and thus the amplitude Vi, () satisfies an ordinary differential equation. It
is easy to see that substitution of the above expression in the z- and z-components of

the general wave equation gives
ky =0, (7.2.21)

which means that there are no waves traveling in the invariance direction. From the
other side the y-component of the wave equation (7.2.17) gives

2
1y

X

cos?®x + 2K ,cos x sinx ——* + [iKZ + 0% - Kfsinzx] Vi, =0, (7.2.22)
where we have define the dimensionless variables x = ¢/2L, K, = 2Lk,, and 9 =
25w?L/g. The above differential equation subject to the boundary conditions

Vi, =0 at x= i:% , (7.2.23)

v

will give the dispersion relation @ = Q(K,). Making the change of variable £ = sinx
we rewrite Eq.(7.2.22) in the form

dy
(1 52)2 d£2 b+ (2K, 1)6(1 ~£%) d;; + (6K, + 02 - K29V, =0, (1.2.24)
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In order to solve this we make the substitution
Vi, =(1-€)Y, (7.2.25)
which is leads to the differential equation

&y
dg?

where the exponent ¢ is given from the condition

. d :
(1-€)—5 + (2K, -1~ 4q)£~d—)£— + (K2 +4iqK, + 29— 4¢)Y =0, (7.2.26)
0 +iK, — K> —4iqK, +4¢> —2¢ =0, (7.2.27)

Application of the Forbenious method in Eq.(7.2.26) gives that the boundary conditions
(7.2.23) satisfied if

n(n—1)— (2K, -1 —4q)n — K2 — 4igK, +4¢* —2¢ =0, (7.2.28)

vs;here n=0,1,2,.... From Eqs.(7.2.27,7.2.28) we get

iK, —2q = n - gzn— K (7.2.29)
while Eq.(7.2.27) can be written as
(2 +iK.) + (iK. - 2¢)* - K? =0, (7.2.30)
Thus the dispersion relation written as
(0 +iK, +n?)’ = K2, (7.2.31)

Decoupling the wave number K, in real and imagine parts we find from Eq.(7.2.31)

1
Re(Kz) =Im(Kz) = 5(92 + n?). (7.2.32)
Thus we conclude that the amplitude of the wave increase with height as eI™(K2)Z and
the initial magnetic structure is unstable Q2 < 0 for wavenumbers
n2
Re(Kz) < —, (7.2.33)
while the propagation velocity of the wave is (group velocity)
dw
vy g (7.2.34)



Appendix A

General transfield equatlon in
low-38 and M2 limit

From the general transfield equation 2.3.36, in our case, in the lowest order approx-
imation in 3 and M2, A = Ay, p = ¥y, = @ = E = 0, we get a force-free field
configuration

1 0 hg aAo ad 'hl 8A0 n 1 dG(z)(Ao)_O
h1h2h3 6.’E1 h1h3 8331 8:172 h2h3 8.’132 2h§ dA(] o

where Go(Ao) = h3By,, is a function of 4.

Perturbations to first order in the small Alfvén-Mach numbers (9% /47Tp << 1)
give non-zero values for p, ¥4,, F. We still impose 2 = 0 because we deal with
field-aligned flows. We write .

(A.1)

A=A+ A (A.2)

Instead of Go(A) introduce another function G(A)
G(4) = Go(4) + Ga(4), | (43)

where Go(A) << G1(A). Making a Taylor expansion we e have

d¥

ao(4) = Tag(do) + AA" Ap + .. (A.4a)
dE
E(A) = E(40) + gt (A.4b)
dGy

G(A) = Go(4o) + EAI + Gl(Ao) + .. (A.4c)
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Putting these expressions in the transfield equation and taking into account that the
square of the Alfvén-Mach number is small and that in order of magnitude we have
W2 /Amp ~ A; /Ao, we get the field-aligned flow condition Eq.(4.3.15), the Bernoulli
Eq.(4.3.19) and

Ay =

1 0 hy 041 8 h 04 1 d*(G2)
h1h2h3 8w1 h1h3 3:171 8:1:2 h2h3 8:1)2 2h§ dAg

U4, [ O hy W 040 O hy Ua, 04
hlhghs 6.731 h1h3 47Tp 8:1:1 a.’L'z h1h3 47(/) 6152

_1dGeGy) 1 dGiY,) |, dE

R dA,  8mphl dA, Pady

while the correction in By, x is given by

(A.8)

v
_Yhp oy 1dC, G (4.9)
TP '



Appendix B

Green functions for the
linearized transfield equation.

For cartesian coordinates, the required Green function G(z,z;z',2') of the Poisson
equation which satisfies

PG 9*G
E:—I'Z— 'a—z—,; = 5(113’ - 23)6(2:’ - Z), (Bl)
and vanishes on 2' = a, ' = b, 2/ =0, 2/ — o00. Such a solution can be expanded in
the form -
G(z,z;2',2") = Z sinfya(z’' — a)]Z.(2"). (B.2)
’ n=1 '
where o
To =32 (B.3)

Inserting this in Eq.(B.2) gives ordinary differential equations for Z,. Solving these
we get .

o0

2 1 . T _ ,
G(z,z;2',2") = Z — sinyn(z — a)] sin[ya(z' — a)][e” 71271 — gm (4]
b — a n=1 ’Yn
(B.4)
Using complex variables we can calculate the sum and we get
G(z,z;2',2') =
1 1 14 e~2mle=#l _2cosyy(z + 2’ — 2a)e~Mlz=#|
2 n 14 e—2nlz=2'| _ 2¢os 71(1) — .7:’)6"‘71|z—21| +
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1 1 + 6—271(Z+z’) — 2cos fyl(x — m’)e—71(2+zl)

2 1 + e—2nlzt+2') _ 2cos v (z + 2’ — 2a)e_.71(z+z/) . (B.5)

For the cylindrical coordinates, for the same boundary conditions, the required Green
function G(w, z; w', 2') satisfies

0*G 1 0G G 8%G 1
307 T g T or t g = oif(@ — @i~ 2) (B.6)

and is given by
G(w,z;w',2') =

> Lnl% [Yi(7na)J1(7a@) — J1(na) Y1 (@) [Y1(1ma)I1 (1 @') = J1(1na) Yi(7nw')]

x[e= Iz _ g (a+2Y) (B.7)

where 7, is found from the following condition

Y1(7na)1(7nb) = J1(1na)Yi(1nb), | (B.8)

and
Ln= %[Yl (7a@)Jo(7n0) = J1(na) Yo(7ab)}* — %‘[Yl(7na)J0(7na)“J 1(1ra)Yo(120)]?,
(B.9)

which is the square of the normalization factor of these eingefunctions. In the special
case a = 0, b = 7.66341 (the first zero of J1(w/2) the Green function takes the simpler
form '

1

o0

' ) = 11 (Ynw)d Nje~ M1zt — gmm (42 B.10
Gz, 2) = 3, 7Bl (a)le e ] (B10)

where ,

7.66341
L, =——-J%(7.663417,), (B.11)

and v, satisfies

7.663417, = j1 (B.12)

where j; » is the n-zero of J1(w/2).



Appendix C

Numerical techniques.

e,

Although that we know explicitly the appropriate Green functions it was convenient to
use a standard routine that solves a partial elliptic differential equation in order to find
the solution of the linearized transfield equations. Such a routine discretizes a given
equation on a rectangular domain a < z; < b, ¢ < 23 < d, with n;, X n., grid points.
In our case, where ¢ = 0, we have chosen instead of d — oo the value d = 4(b — a).
Thus the rectangular domain was —7 < x < 7, 0 < z < 87 in cartesian coordinates
and 0. < w < wy, 0 < z < 4w, (with w, = 7.66341) in cylindrical coordinates; for
the largest z, the right hand side of Eqs.(4.4.4) and (5.3b) is lower than e~*" which is

4
(u) ~ 2.10~*

nz.‘,

smaller by two orders of magnitude than the routine errors (':l"“) +
Ty

for ny, = 4n;, = 2® for the grid. For each grid point the density has been obtained
numerically from the Bernoulli equation keeping the larger (smaller) root for subsonic
(supersonic) flows. Note that the various space partial derivatives of the density can
be obtained analytically. The resulting linear system for the values of a; at each grid
point is multi-diagonal and it ean be solved by a cyclic reduction algorithm (in our
case the generated system is always diagonally dominant).

In transonmic cases, we first mark the grid points, there are three types of grid
points, depending on the choice of solutions in Bernoulli equation, (i) those which are
in the static (no-flows) and pre-shock (pre-critical) subsonic domain, (ii) those which
are in pre-shock supersonic domain, and (iii) those which are in the post-shock subsonic
domain. The character of a grid point comes from the information of the sonic and
shock position for each field line on which the given grid point lies. Thus we are able
to solve by the same method Egs.(4.4.16) in the whole rectangular domain in order to
find a; associated with the diffuse current. But to find the field a;, produced by the
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shock surface current density j, we use the Green functions (Appendix B) writing

rg(o1,22) = [ Glon,aziath,af)i(s)ds, (c.1)
C

where the integration takes place only along the shock front curve C given from the
Eq.(4.4.14) and where z5%(s) ¢ = 1,2 are the coordinates of the shock front. Because
s = s(ag), we can transform Eq.(C1) in a¢ variable, so

a1, (a1, 22) = / o1, 5232, 2305 (a0 )s' (a0 )dao (c2)
C

where the prime denotes derivation and can be calculated analytically from the shock
front shape and the equation for the field lines. Thus we can integrate Eq.(C.2) nu-
merically finding first the shock position and then the surface current density.



Appendix D

Analytical form of Eq.(5.4.19)

In Eq.(5.4.19) X can be expressed as a function of R through the elliptic integrals.
Thus, we may write Eq.(5.4.19) as

+/BX

B /R dR Y fR dR
L JRA-R(E&R-M?) */ RJR({-R)R- M)

dR
R?\/R(1 - R)(R — M?)

R
~(M? +2M? +2M*M?) /
1

grrs [F dR
+3M Ma/1 S TR (D.1)
VB, [ dt s [° dt
e /0 V(A —2)(1 - k2t2) M /o (1 - £2)4/(1 — £2)(1 - k2t2)
_ 2 2302 ! dt
(M? +2M? +2M Ma)/0 I cay ey
g2 [° dt
MM, /o (1 —¢2)3/(1 — 2)(1 — k2t2) (D-2)

where k2 = 1/(1-M?)and t = \/(1 — R)/(1 — M?). It is evident then that X(R) may
be expressed in terms of the elliptic integrals of the first and second kind, F(¢, k) and
E(t, k), respectively and the Jacobian elliptic functions snu, cnu, dnu, in the following

195



196 APPENDIX D. ANALYTICAL FORM OF EQ.(5.4.19)

way (Byrd and Friedman 1971),

I = /0 t = tzc)i(tl — = PR =, (D.3)

h= /0‘ (1-)/(1 ittz)(l —RE) e _1kis::cnwdnu ’ -4

* /0‘ (1- tz)zx/(lcff )1 — k2tz) e ;(I; - z;nucnwdnau - (D)
= e e 0o

Note that snu (the inversion of the integral in D.3), cnu = V1 —sn?u and dnu =

V1 — k2sn?u.
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H MAI'NHTOYAPOAYNAMIKH AOMH
THY HAIAKHY ATMOXPAIPAY

Movtéda payvnuikov BpoyXov HAGCHATOC HE POEC
HHEPIAHWH

To Hliaxd otéppo DapatnpobieEvo OTIG AKTiveG-X mapovcialetl iia £VIOva avORolo-
yevyy Soprl. O Sopikoi tng AiBor eivar payvnuiopévor Bpoyxor wwv onoiwv 11 fepporpaocia
pmopel va givaar mkpotepn 1 peyaldvtepn and tnv peon Beppoxpacia tov Hivaxov otép-
pavog. Ipdogara amdomompéva poviéda aviov v Bpoyxev pe potc Katd PNKOG TOV
Suvapikev ypajpdv eivar oe Kadbtepn ovpgwvia pe ta mapainpnoiaxa Sedopéva amod on
otamikd poviéda xepic poéc. Ot mapatnpnoeic avtég pac obnyodv oty pedéin poviédov
nAokev Bpoyxev iov avabdoviar 0a v o1 QUOIOAOYIKEG AD0ELG 1oV e£1000e@V THG PayvI-
tohidpobuvamkig. Ltig nepurimoeig BpoyXmv OOV 1] LOYVNTIKY Higon eivar HOAD peyalv-
tepn and v Oeppiki) mieorn tov nAdoparog Avoeig pnopovv va emievxBovv yia gvupo nebio
oUVOpIaX®V cUVONK@Y. Linv nepimteon wv yoxpev (feppov) Bpoyxwv pe poeg Ppioketm
OTl 1] IUKVOTTG EAGTIOVETA MO Ypriyopa (Mo apyd 1 avfavetar) pe to VPog KOTG PNKOG
TOV poyvnuikev Suvapikev ypappev amd Ot otnv otankin nepimiwon. Emiong otav o
POEG givar 10XUPEC £va KVPA XKpovong epgaviletar mov addaler Spapankd TG QUOIKEG Kar
popgoloyikeg 610tteg 1@V Bpoyxwv. To ibio ovpBaiver av 1o oxnpa tod Bpoyxov eivar
ACUPPETPO, HE OLVENELQ €£VO TRIRO TOU VA PNV eival 0patd. Av Op®¢ n payvitky mieon
givar ouykpionpun pe v Oeppikn meorn tov mAdopatog, payvirotdbpobuvapmkég Avoeig poo-
povv va emtevxfodv povo yia opiwoptveg ovvopraxeg ovvlnkeg. e avu] v IEPINTOON
¢xel pedewmbetl 1 woppomia nhacpatog pEca oe o 1000eppn atpdo@mpa mov €ivar opi-
Coviio OLJMIESTI] KOt KOTAKOPLPA OTP@HATONOWIEVY, 010 nhiaxkod nebio PBapurtnrag. H
tomoloyia v axpifov avtov Avoeev kabopileta amd €va caypatikd Kpioijo onpeio.
O Adoeic tonov payviukev Bpoyxev epgavifoviar pOvo yia pia Hoia oTpORatONOMpEevT
aTpOCP AP Q, EVE OTAV 1] OTPORATONOINOT eivar peyaldr, 6ev vnapxovv Abdoeig. Ao to aldo
PEPOC OTAV 1| OTP@RATONOINOY £1VAI TOAD JIKPI], VIOPXODY POVO AVOEIG HOD GVTIGTOIXOUV
oe n\okeg npoexoxeg. Ovav to peyebog g porg avfaver, 10 vYog v Bpoyxev avfaver
Kot yia modD 10xvpeg poeg Sev vndpxovv Aboeig woppomiog kar e1kaletar 6t ot Bpoyxor
EKPIYVUVTAL.



THE MAGNETOHYDRODYNAMIC NATURE
OF THE SOLAR ATMOSPHERE

Models for magnetized plasma loops with flows
SUMMARY

High-resolution X-ray images of the inhomogeneous solar atmosphere by satellites
and rockets, seem to firmly establish the notion that the building blocks of the corona
of the Sun are magnetized plasma loops of various sizes and properties in which plasma
flows seem to play an essential role in determining the physical and geometric charac-
teristics of the loops. In this thesis, there were studied some families of exact solutions
of the magnetohydrodynamic equations. They have been developed in order to solve
them in two dimensions in the limit where the plasma pressure is much lower than
the magnetic pressure — a reasonable assumption for the solar corona — for any bound-
ary conditions imposed. In particular, in symmetrical magnetic configurations, when
the distribution of pressure at the foot points is symmetrical, the flow is necessarily
subsonic. For cool loops the flows cause the density to drop faster along fieldlines as
compared with the static case, while in hot loops with flows the density can drop slower
or even increases with the height. If the pressures at the two footpoints are unequal
the flow becomes supersonic at the summit of the magnetic fieldline and then passes
through a shock. In asymmetrical loops with flows one leg can be much less dense
than the other and poorly visible as compared with the situation where flows are ab-
sent. However, if the gas pressure is comparable to the magnetic one, MHD solutions
can be found for specific boundary conditions. In this case they have studied plasma
equilibrium in a horizontaly compressible and vertical stratified atmosphere due to
gravity, in which new characteristics emerge. The basic result for mild startification,
is that, coronal loop models with flows along them, emerge as the only solutions of the
coupled equations discribing the force balance along and across fieldlines. The phase
plane of this solutions is controlled by a classical sonic and a saddle critical point,
corresponding to a characteristic speed for hydromagnetic wave propagation, which
it may be a common characteristic of other configurations as well. It was also found
that tor strong stratitication there are no solutions at all, while for small stratification
only periodic solutions arise which are totaly subsonic and subalfvénic and model the
internal structure of prominences. Comparisons are made of the properties of these
loops with those of force-free magnetic loops in the low-f limit where loops are taken
to be rigid. Among the results is that an increase of the magnitude of the flow at the
loop increases its height, in accordance with solar observations where some loops seem
to extent over heights much higher than those predicted by static models. Finally, for
strong flows there are no equilibrium solutions and the loop is disrupted.



