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Πρόλογος 

Η ανακάλυψη όχι ένα σημανχικό τμήμα της εκπεμπόμενης ενέργειας από χο Ηλιακό 

οχέμμα προέρχεχαι από μαγνηχισμένους βρόγχους πλάσματος ήταν από τις πιο θεμελιώδεις 

γ ι α την κατανόηση του Ηλιου. Οι βρόγχοι αυτοί είναι οι δομικοί λίθοι του Ηλιακού στέμ­

ματος, ιδιαίτερα στις ενεργές περιοχές του Ηλιου. Η μελέτη τους έχει παρουσιάσει αξιο­

σημείωτη αύξηση τα τελευταία χρόνια, τόσο απο παρατηρησιακής όσο και από θεωρητικής 

σκοπιάς. 

Η διατριβή αυτή, το αντικείμενο της οποίας εντάσσεται στην Ηλιακή μαγνητοϋδροδυνα-

μική, έχει σκοπό αφενώς στη θεωρητική μελέτη των μαγνητισμένων βρόγχων με έμφαση την 

επίδραση ροών σε αυτούς, των οποίων η ύπαρξη σε αρκετές περιπτώσεις είναι αδιαμφισβή­

τητη, και αφετέρου χην δυνατότητα εύρεσης λύσεων των χρονοανεξάρχητων εξισώσεων της 

ιδανικής μαγνητοϋδροδυναμικής, εφαρμόσημες σε διάφορες δομές της Ηλιακής ατμόσφαι­

ρας . 

Το περιεχόμενο της διατριβής αυτής διαιρεΐχαι σε επτά κεφάλαια. Στο πρώτο παρα­

θέτονται, γενικά παρατηρησιακά δεδομένα γ ι α την δομή της ατμόσφαιρας του Ηλιου, με 

έμφαση στους μαγνητικούς βρόγχους, ενώ στο δεύτερο και τρίτο αντίστοιχα αναπτύσσεται 

χο θεωρηχικό πλαίσιο γ ια χην θεωρηχική περιγραφή χους, όπως επίσης και χα κυριώχερα 

προχαθέντα μέχρι σήμερα πρόχυπα γ ι α αυχούς. Σχα υπόλοιπα χέσσερα περιγράφονχαι λε-

πχομεριακά κλάσεις προχύπων που αποχελούν και χην πρωχόχυπη συνεισφορά χης διαχριβής 

καθώς και ερευνηχικές ιδέες γ ι α χο μέλλον. 

Η εκπόνηση χου μεγαλόχερου χμήμαχος της διατριβής, που πραγματοποιήθηκε την πε­

ρίοδο 1990-94, έγινε στο Πανεπιστήμιο Κρήτης, εκτός από ένα μέρος της που έγινε στο 

Observatoire de Meudon, στο Παρίσι, την χρονική περίοδο 1991-92. 
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διεθνών προδιαγραφών, καθώς επίσης καιτην ομάδα αστροφυσικής γ ι α τις συζηχήσεις που 

είχα μαζί χους σε όλο αυχό χο διάσχημα. Ευχαρισχώ χους φίλους και συνεργάχες μου σχην 

Γαλλία Jean Heyvaerts και Pascal Demoulin γ ι α χο αχέλειωχες ώρες που αφιέρωσαν σε 
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Observatoire de Meudon. Τον καλό μου φίλο και συνεργάτη Christophe Sauty με τον 

όποιο περάσαμε πολλές όμορφες στιγμές, επιστημονικές και μη, τόσο στην Κρήτη όσο και 

στο Παρίσι, ο οποίος επωμίστηκε το βάρος όλων των επαφών και των συνθηκών ζωής μου 

στις πρώτες μέρες μου στο Παρίσι. Αφησα τελευταίο, τον επιβλέποντα αυτής της διατριβής 

Κανάρη Τσίγκανο, για τον οποίο όσες και ευχαριστίες να παραθέσω θα είναι λίγες. Θα πω 

μόνο ότι στάθηκε κοντά μου σαν δεύτερος πατέρας σε όλα τα προβλήματα που αντιμετώπισα 

στο διάστημα αυτό, επιστημονικά ή μη, καθοδηγώντας με σαν νέο ερευνητή και άνθρωπο. 

Κλείνοντας, ευχαριστώ θερμά την σύζυγο μου Θεανώ Μαρινοπούλου για την υπομονή και 

συμπαράσταση που έδειξε σε όλη αυτή την προσπάθεια, στην οποία και αφιερώνω αυτήν την 

διατριβή. 

Ηράκλειο, Αύγουστος 1994 



Contents 

1 T H E S O L A R A T M O S P H E R E 1 

1.1 General Properties of the Sun 1 

1.2 Solar photosphere, chromosphere and corona 2 

1.3 Transient Features in the Solar Atmosphere 10 

1.3.1 Active Regions 10 

1.3.2 Sunspots 13 

1.3.3 Prominences 16 

1.3.4 Loops 21 

1.3.5 Flares 26 

1.3.6 Modern view of solar corona 28 

1.4 Coronal plasma loops 30 

1.4.1 Introduction 31 

1.4.2 Cool loops 31 

1.4.3 Hot loops 37 

1.4.4 Flare loops 47 

1.5 Flows in solar atmosphere 50 

1.5.1 Supergranular flow 50 

1.5.2 Flows in sunspots 52 

1.5.3 Flows in filaments and prominences 53 

1.5.4 Coronal rain 54 

1.5.5 Surges and sprays 54 

1.5.6 Flows in loops 55 

2 T H E O R Y O F S O L A R P L A S M A S 61 

2.1 The reduction of Maxwell equations 61 

2.2 Plasma Equations 63 

2.3 Equations of ideal Magnetohydrodynamics 65 



» 

CONTENTS 

2.4 Dimmensionless parameters 71 

3 C O R O N A L L O O P M O D E L S 75 

3.1 General remarks 75 

3.2 Static energy-balance models 76 

3.3 Dynamic flow models 79 

4 2 -D LOW-/? M H D E Q U I L I B R I A I N U N I F O R M G R A V I T Y 99 

4.1 Introduction 99 

4.2 Low-/? and low Alfvénic Mach number flows 100 

4.3 Cartesian coordinates 101 

4.4 Flows in Current-free Fields 105 

4.5 Flows in a simple arcade 106 

4.5.1 Adimensionalization 106 

4.5.2 Topology of the solutions 107 

4.5.3 The integrals α ( α 0 ) , e(flo) and r(a0) 108 

4.5.4 Subsonic flows 109 

4.5.5 Transonic flows 112 

4.6 Cylindrical geometry 118 

4.7 Conclusion 120 

5 1-D M H D E Q U I L I B R I A I N U N I F O R M G R A V I T Y 125 

5.1 Introduction 125 

5.2 Magnetostatic equilibrium 126 

5.3 Hydrodynamic equilibrium 128 

5.4 1-D Hydromagnetic and Isothermal Equilibrium 129 

5.4.1 Governing equations 129 

5.4.2 Relations among the characteristic speeds 131 

5.4.3 The solution 133 

5.4.4 Plots and parametric dependence of the solutions 134 

5.5 1-D Hydromagnetic and Polytropic Equilibrium 137 

5.6 Summary and Conclusions 143 

6 2-D M H D E Q U I L I B R I A I N U N I F O R M G R A V I T Y 145 

6.1 Introduction 145 

6.2 2-D MHD steady flows in uniform gravity 146 

6.2.1 Governing equations 146 

6.2.2 Critical Points 150 

6.3 Solution Topologies 152 



CONTENTS 

6.3.1 Arcades with scale height ζ in the interval 1 < £ < 2 154 

6.3.2 The case ξ = 2 and the strongly stratified case £ > 2 158 

6.3.3 The weakly stratified case £ < 1 159 

6.4 Useful limits of the Present Analysis 160 

6.4.1 Magnetostatic Equilibrium, M = 0 160 

6.4.2 Low-/? solutions 163 

6.5 Solar Arcade-like Solutions 164 

6.5.1 Physical Parameters in Solar Coronal Loops 165 

6.5.2 Change of Curvature and Footpoint Separation of Arcade . . . . 168 

6.6 Nature of Critical Points 170 

6.6.1 Siphon Flows in Isolated Thin Magnetic Flux tubes 170 

6.6.2 Wave Propagation and Characteristic Speeds 173 

6.7 Summary and Discussion of Results 174 

7 S U M M A R Y A N D F U T U R E P E R S P E C T I V E S 179 

7.1 Summary 179 

7.2 Suggestions for future work 181 

7.2.1 General low-ß models 181 

7.2.2 Further s tudy of the general 2-D MHD equations 183 

A G e n e r a l t r ans f i e ld e q u a t i o n in low-/? a n d Ml l imi t 189 

Β G r e e n f u n c t i o n s for t h e l i n e a r i z e d t r a n s f i e l d e q u a t i o n . 191 

C N u m e r i c a l t e c h n i q u e s . 193 

D A n a l y t i c a l f o r m of E q . ( 5 . 4 . 1 9 ) 195 



CONTENTS 



Chapter 1 

THE SOLAR 
ATMOSPHERE 

1.1 General Properties of the Sun 

The Sun is an ordinary star with an absolute stellar magnitude 4.8, and it is of spectral 
type G2 V. But its short distance from the Earth makes it unique object. Thus its 
study is of central importance for understanding the behavior of stars and of cosmical 
plasmas in general. The overall properties of the Sun are summarized in Table 1.1. 

In comparison to the Earth, the Sun has similar mean density but is 330,000 times 
more massive. The solar radius is 109 times larger, while its surface gravity is 27 times 
greater. The received solar radiation in Earth, is about 1 KW/m2. Furthermore the 
Sun's equator is inclined at about 7° to the plane of the Earth's orbit and the solar 
equatorial velocity is comparable to the terrestrial one. 

In a first approximation, solar atmospheric phenomena can divided into two broad 
classes, quiet and active. The quiet Sun is viewed as a static, spherically symmetric ball 
of plasma, whose properties depend on a first approximation on the radial distance from 
the center and whose magnetic field is negligible. The active Sun consists of transient 
phenomena, such as sunspots, loops, prominences and flares, which are superimposed 
on the quiet atmosphere and most of which owe their existence to the magnetic field. 
But in many cases this division does not apply. For example the quiet atmosphere is 
influenced markedly by the magnetic field; it is structured by the magnetic network 
above and around evolving supergranule cells and the normal heating of the outer 
atmosphere may well be due to the magnetic field. 

In this chapter we shall present a general description of the Sun from the ob-

1 



2 CHAPTER 1. THE SOLAR ATMOSPHERE 

Age: 4.5 x 10 9 yr. 

Mass: M© = 1.99 χ I O 3 3 g. 

Radius: RQ = 696, OOO km. 

Mean density: 1.4 g/cm3. 

Mean distance from Earth: 1 AU - 150,000,000 km = 215RQ. 

Surface gravity: g — 274 m/sec2. 

Escape velocity at surface: 618 km/sec. 

Luminosity: LQ = 3.86 χ I O 2 6 W. 

Equatorial rotation period: 26 days. 

Polar rotation period: 34 days. 

Angular momentum: 1.7 x 10 4 1 kg m2/sec. 

Mass loss ra te : 10 9 kg /sec. 

Effective temperature : 5785 K. 

1 arc sec(= 1") = 726 km. 

Table 1.1: Characteristic quantities in the Sun (Priest 1984). 

servational point of view which is based on the first chapter of Priest 's book "Solar 

Magnetohydrodynamics". At the end of this chapter, the emphasis will be given on 

the presence of various types of systematic flows in the solar atmosphere, for which the 

models in the following chapters refer. 

1.2 Solar photosphere, chromosphere and corona 

T h e solar atmosphere (Priest 1984) consists of three regions with different physical 

properties. The lowest is an extremely thin layer of plasma, called photosphere, which 

is relatively dense and opaque and emits most of the solar radiation. Above it lies the 

rarer and most transparent chromosphere while the corona extends from the top of a 

narrow transition region to the E a r t h and beyond. Hydrogen is almost totally ionized 

in the upper chromosphere, but neutrals are important in the lower chromosphere and 

photosphere. The density decrease rather rapidly with height above the solar surface, 

starting from 10 2 3 m ~ 3 at the photosphere, becoming 10 1 5 m - 3 at the transition region 

and 10 1 2 m~3 at a height of 1 R®. 

Before 1940 it was thought, quite naturally, that the temperature decreases as one 

goes away from the solar surface. But, since then, it has been realized t h a t , after falling 

from about 6600 Κ (at the bot tom of the photosphere), to a minimum value of about 

4400 Κ (at the top of the photosphere), the temperature rises slowly through the lower 

chromosphere and then dramatically through the transition region to a few ΙΟ 6 Κ in the 

corona (Fig.1.1). Thereafter, the temperature falls slowly in the outer corona, which 
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Figure 1.1: The variation of the temperature with height in the solar atmosphere 

(Athay 1976). 

is expanding outwards as the solar wind, to a value of ΙΟ5 Κ at 1 AU. The reason 

for the temperature rise above the photosphere has been one of the major problems in 

solar physics and is not yet fully answered; T h e low chromosphere is probably heated 

by sound waves that are generated in the noisy convection zone, propagate outwards 

and then d u m p their energy after steepening to form shocks; higher levels may well 

be heated by several magnetic mechanisms. In coronal temperatures of order a few 

million degrees the hydrogen and the lighter atoms are completely ionized. 

Most of the solar radiation comes from the photosphere (its name comes from the 

Greek word "φως" which means light), which emits a continuous spectrum with su­

perimposed dark absorption lines. These lines have to do with the absorption of the 

light by the atoms in the overlying atmosphere. Most lines are formed in the upper 

photosphere, but some, such as He*, come from the chromosphere. Thus, when the 

Sun is observed through filters of different wavelengths, pictures can be obtained of 

the Sun's structure at a variety of levels (Fig.1.2). For example, the lower chromo­

sphere is shown up by using an H a filter, which is the most important for following 

the evolution of active regions, and prominences and for observing the lower part of a 

solar flare. In the beginning of an eclipse we can see light that has emitted from the 

photosphere and is then scattered towards us at the chromospheric levels as well as 

the intrinsic chromospheric emission. This colourful effect, led Young in 1870 to give 

the chromosphere its name (from the Greek word "χρώμα" which means colour). The 

chromosphere has sometimes been modelled as a static plane-parallel region, but in 

reality is highly non-uniform. 

In more detail, the photosphere is the Sun's extremely thin visible surface layer 

PHOTO­
SPHERE 

CHROMOSPHERE TRANSI­
TION 

REGION 

LOW,' MIDDLE 1 HIGH I 

^ T E M P E R A T U R E MINIMUM REGION 

L 

Τ 

h 
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Figure 1.2: The appearance of the Sun at various wavelengths which reflect to different 
levels in atmosphere, (a) photosphere at white light (BBSO), (b) chromosphere in Ha 
(BBSO), and (c) corona in soft X-rays (AS&E). 
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about 500 km thick from which most solar light escapes. It is not uniformly bright; in 

high-resolution it appears covered with irregularly shaped bright granules of size of or­

der 1000 km which are in continual motion with speeds about 0.5 km/sec. This struc­

ture called granulation, covers the whole Sun (there are about 106 granules present) 

and is an evidence of the presence of the convection zone (Fig.1.3). In addition to 

the granular pat tern , there are also mesogranulation and supergranulation which their 

typical scale size and velocities are 5000 — 10000 km and 60 km/sec for mesogranules 

(which their origin still unknown) and 20000 — 40000 km and about 0.3 km/sec for 

supergranules which are the tops of large convection cells. These supergranules ap­

pears very clearly in chromosphere as a network of supergranulation boundaries with 

an irregular bright pat tern . This is the basic reason for the high non-uriiformly of the 

chromosphere (Fig.1.4) which at the limb one sees it as a mass of plasma jets, tem­

perature 104 K, known as spicules; they are ejected up from the high chromospheric 

part of supergranule boundaries (probably along magnetic field lines) and reach speeds 

of 20 to 30 km/sec and heights of about 11000 km before fading, although most show 

no sings of falling (their typical lifetimes are 5 — 10 min). A surprising feature is that 

after the initial acceleration, the velocity of a spicule remains fairly constant over a long 

distance, despite the strong gravitational field. In polar regions, where the magnetic 

field lines are open, there are larger jets of plasma, called macrospicules which reach 

to heights 4000 to 40000 km, and their typical velocities are 10 to 150 km/sec. 

The corona (from the Latin for "crown") is known from many centuries and in white 

fight is observed at eclipses as a faint halo of very low density and high temperature 

(Fig.1.5). Because the eclipses are rare Lyot in 1930 prompted to create artificial 

eclipses by means of a coronograph. This is a telescope containing an occulting disc to 

eliminate the glare of the photosphere, which is about a million times brighter than 

the corona. Many weeks of observation have now been made as well from Ear th and 

from broad satellites. 

In the quiet inner corona, the average electron density is several times 1014 m ~ 3 , 

but this is enhanced by factors of 5 to 20 in many of the structures seen in Fig.1.5. The 

density rapidly falls off with the distance from the solar surface, it is about 1012 m - 3 

at 1 i?© above it, 1011 m~3 at 4 i ? 0 and less than lO^10 m~3 at IORQ. The overall 

shape of the corona varies with the solar cycle, near sunspot maximum, bright features 

called streamers extend out in all directions; near sunspot minimum, streamers are 

present only in the equatorial region and polar plumes are seen to fan out from the 

poles. Coronal streamers are roughly radial structures extending from heights of 0.5 

to 1 RQ up to 10 RQ, with a density enhancement of 3 to 10. In particular, helmet 

streamers lie above prominences and active-region streamers above active regions. A 

streamer consist of a round base (or arcade) of closed field lines surrounded with open 
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Figure 1.3: A high resolution picture of the photosphere close to a spot (upper-left). 
It is evident the granulation pattern while in some cases, dark structures called pores 
are seen (J. P. Mehltretter; SPO). 
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Figure 1.4: Spicules as seen near the limb in the wing of Ha outlining the network 
(SPO). 

Figure 1.5: (a) White-light eclipse (12 November 1966) photographs of the corona 
showing (1) prominence, (2) streamer, (3) coronal hole (G. Newkirk; HAO). (b) Echpse 
photograph (7 March 1970) with superimposition of a soft X-ray photograph of the 
inner corona from Skylab (A. S. Krieger; AS&E). 
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Figure 1.6: A soft X-ray image of the corona from Skylab, showing (1) coronai hole, 
(2) active region, and (3) X-ray bright point (A. S. Krieger; AS&E). 

field lines; from the end it looks like a helmet and from the side like a fan. Polar 

plumes are ray-like structures near the poles, especially noticeable at times of sunspot 

minimum; they last for only about 15 h and presumably outline the local magnetic 

field. Plumes are also seen in coronal holes. 

In soft X-rays, the corona emits thermally and so may be viewed directly, since the 

contribution from the lower atmosphere is negligible. The disadvantage of observing in 

soft X-rays is that such wavelengths are normally absorbed by the Ear th ' s atmosphere. 

But the resulting images from satellites such as Skylab and YOHKOH are truly spec­

tacular, and show the corona in a completely new guise (Fig.1.6). There are regions 

of two distinct types. Those in which the magnetic field is predominantly open appear 

relatively dark and are known as coronal holes; here the plasma is flowing outwards 

to give the solar wind. Those in which the magnetic field is mainly closed consist of 

myriads of coronal loops. Also, small intense features called X-ray bright points are 

scattered over the whole disc. 

In open field regions, the solar corona is not in hydrostatic equilibrium, but is 

continuously expanding outwards as the solar wind. Most of it probably escapes along 

open field lines from coronal holes, especially the two polar coronal holes that are 

normally present, but small, open regions above active regions may also exist. The 
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Figure 1.7: An illustration due to (Hoeksema) of the warped heliospheric current sheet, 
drawn to scale with some planetary orbits. As the Sun rotates, an observer above 
the solar equator sees a sequence of alternating polarities (typically four in number), 
successively from one side or the other of the current sheet (Foukal 1990). 

two polar holes with their oppositely directed magnetic fields are, at small distances 
from the solar surface, separated by the closed magnetic configuration typical of active 
regions. But beyond one or two solar radii above the solar surface they come into 
contact at a neutral current sheet. In an idealized solar atmosphere, this current sheet 
would lie along the magnetic equator, but the presence of large-scale photospheric fields 
causes the sheet to be warped (Fig.1.7). 

The flow speed increases monotonically from very low values in the inner corona 
and eventually becomes supersonic and superalfvénic. Close the Sun the magnetic field 
dominates the plasma dynamics while the opposite far away. In the Earth distance the 
average plasma wind velocity is 400 km/sec (from 200 to 900 km/sec), the density 
6.5 χ 106 m~3 (from 4 χ IO5 to IO8 m - 3 ) , the temperature ΙΟ5 Κ (from 4 χ IO3 Κ to 
IO6 A') and the magnetic field ,6 χ 10~5 G (from 2 χ 1 0 - 6 G to 8 χ 10~4 G). The large 
variation of the above parameters related directly to the solar cycle (the maximum of 
solar activity the strongest solar wind). Also the solar wind plasma does not quite flow 
radially from the Sun; its velocity is inclined at about 1.5° to the radius vector. This 
means that angular momentum is being transferred from the Sun to the solar wind and 
the Sun is being braked in the process; this effect is sufficient to slow the Sun down 
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significantly over its lifetime. The solar wind is far from uniform. It consist of a series 
of high speed streams related with the appearance of open field regions on the Sun. On 
a small scale the solar wind is highly irregular as a result of propagation of various 
magnetohydrodynamic waves and discontinuities on it. 

1.3 Transient Features in the Solar Atmosphere 

When viewed at low resolution in white fight, the Sun appears rather simple, but a 
closer look at the photosphere and the overlying atmosphere reveals a complex struc­
ture, which changes dynamically in a rich variety of ways. For example, an Ha photo­
graph such as Fig.1.7 shows up many features superimposed on the quiet atmosphere. 
Active regions appear as bright plages of emission in the equatorial belt within ±30° of 
the equator; they represent moderate concentrations of magnetic flux with mean fields 
of 100 G or so. Within an active region one finds dark regions of intense magnetic field 
called sunspots, and near sunspots there is occasionally a brilliant region of intense 
emission, called a solar flare, which represents the violent instability of part of an ac­
tive region magnetic field and the resulting energy release. Furthermore, around and 
far away from active regions there are thin, dark ribbons called filaments (or promi­
nences). It is interesting to compare the appearance of all these features at different 
levels in the atmosphere, as for instance in Fig.1.2; in white light, sunspots represent 
the dominant departure from uniformity, whereas in soft X-rays the active regions as 
a whole are most prominent (Fig.1.6). Furthermore, the eclipse photograph in Fig.1.5 
shows clearly the streamers that lie above prominences and active regions, while a 
magnetic field map shows intense magnetic flux concentrations in sunspots and, to a 
lesser extent, in active regions (Priest 1984). 

All the above forms of activity owe their existence to the magnetic field. Rather 
than being distinct, they simply represent different ways in which the solar plasma is 
responding to the underlying magnetic field development. They evolve on a variety of 
time scales. The distribution of sunspots varies with an 11-year periodicity known as 
the solar cycle. Prominences, the most stable of all surface features, may endure for 
200 days, whereas a large sunspot group may last half that time and a solar flare is 
usually over in an hour or so. 

1.3.1 Active Regions 

When new magnetic flux rise up from below at the photosphere as an emerging flux 
region, the atmosphere is heated and produces an X-ray bright point. The mean lifetime 
of those is less than a day but sometimes magnetic flux near the equator continues to 
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Figure 1.8: A composite photograph of the Sun, showing several forms of activity. It 
includes the solar disc in Ha and the corona during an echpse (S. Martin; LSO). 

emerge and à bright point grows into an active region. Most active regions are bipolar 

with the flux well-ordered into two islands of opposite polarity, but occasionally a 

magnetically complex region forms as new flux emerges with a different orientation or 

as a new region appears within an existing one. In the photosphere the most intense 

concentrations of magnetic flux called sunspots which form during the emergence of 

flux in one day or so. They decay away during the slow dispersal of the magnetic flux 

which marks the decay of an~active region, but the region may remain active with 

an enhanced magnetic field for weeks or months after the disappearance of sunspots. 

Typical well-developed active regions (Fig.1.9) have a single sunspot; its preceding 

flux is concentrated there and its following flux is r?uch more diffuse. The long, thin, 

dark rope-like structure are called fibrils and probably follow magnetic field lines, some 

connecting opposite polarities; They have widths 700 to 2200 km, an averaged length of 

11000 km and life times of 10 to 20 min, although their overall pat tern remains constant 

for hours. During the emergence of new flux the active region typically consists of a 

pair of sunspots joined by a system of dark loops calling an arch filament system which 

subsequently replaced by fibrils called field transition arches, which continue to join 

opposite polarity areas (Priest 1984). 
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Figure 1.9: (a) A typical active region in Ha (K. Marsh & H. Zirin; BBO). (b) A new 
growing active region (top right) together with an older one (bottom left) containing 
a single sunspot above which stretches a ßlament (S. Martin; LSO). 
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Figure 1.10: A large sunspot (Müller 1973). 

The density and the temperature are enhanced in the corona above an active region 
(1016 m - 3 and 3 χ ΙΟ6 Κ) which makes it visible in white light at the limb during eclipses 

(Fig.1.5) and also in EUV, X-ray and radio wavelengths against the disc. Above an 

active region is found an active region streamer (Fig.1.5) extending outwards for 3 to 

4 RQ as a series of fans or rays; the most conspicuous ones narrow to a throat or neck 

at 2 to 3 RQ above the base and then diverge slightly. 

1.3.2 Sunspots 

The most intense phase of an active region is characterized by the presence in the 

photosphere of sunspots (Gurman 1992, Priest 1984, Thomas 1981), which are cooler 

than their surroundings and represent exceptionally strong concentrations of magnetic 

flux. They form when the magnetic flux appears at the center of a supergranulation 

cell, seeing in Ha as an arch filament system, forming eventually a pore in about 5-

6 hours. Pores (Fig.1.3) are darker than the surrounding photosphere and have no 

penumbra; they have diameters of 700 to 4000 km, and magnetic field greater than 

1500 G. Often they last for hours or days, but sometimes one develops into a small 

sunspot. During the growth-phase of the sunspot, lasting between 3 and 10 days, more 

and more magnetic flux is added to it. Most sunspots disappear within a few days 

of forming, but some large ones last much longer, slowly decaying over a few months 

(Fig.1.9). 
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T h e central dark area of a sunspot (Fig.1.10) is known as the umbra, with a typical 

diameter of 10000 to 20000 km, about 0.4 of the total spot diameter. T h e magnetic 

field strength of about 2000 to 3000 G, and temperature of only 3700 K, in comparison 

with the 5800 Κ temperature of the ambient photosphere, are fairly uniform and the 

intensity in visible light is only 5 to 15% of the photospheric value. But at high 

resolution one may find 20 or so timbrai dots, with a diameter of only 150 to 200 km 

and a normal photospheric brightness; they have depths of about 100 km and are 

moving upwards at 0.5 km/sec with a lifetime of 1500 sec and a temperature of 5700 

K. It appears that the magnetic field in umbral dots is the same as in u m b r a . At 

lower resolution, umbral dots are described as umbral granulation. Umbral granules 

resemble ordinary photospheric granules, but they are fainter, more closely packed and 

have substantially longer lifetimes. 

Outside the umbra is found the penumbra, which consists of light and dark radial 

filaments that are typically 5000 to 7000 km long and 300 to 400 km in width. Individ­

ual penumbral filaments endure typically 0.5 to 6 hours, by comparison with a lifetime 

of days or months for the sunspot as a whole. The intensity of a bright filament is 

typically 95% that of the photosphere, while that in a dark filament is only 60%. Run­

ning penumbral waves start at the umbral boundary of a regular spot and propagate 

outwards at about 10 to 20 km/sec, with a velocity amplitude 1 km/sec and periods of 

260 to 280 sec. Also continuous plasma outflow with speed of 6 to 7 km/sec is observed 

along the dark penumbral filaments, called Evershed effect It seems that the field lines 

spread out as one moves outwards from the center of the spot, as indicated in Fig.(1.9). 

Nearly all the magnetic flux from a sunspot probably returns to the photosphere. 

The appearance of a sunspot changes as it passes from the east to the west limb 

of the Sun, the east side of penumbra being thinner than the west side when the spot 

is located near the west limb and vice versa, as shown in Fig.1.11. This is known as 

the Wilson effect and implies that the sunspot is a saucer-like depression of about 500 

to 700 km below the photosphere. T h e effect is caused by the fact that the sunspot is 

more transparent than the surrounding photosphere (because of its lower temperature 

and density) and so the observed fight comes from a greater depth. 

The 53% of the sunspots groups are bipolar, with the spots concentrated at the 

preceding and following sides of a group and having opposite polarity. The 46% are 

unipolar and only 1% are complex in their polarity. 

Of course the most known about sunspots is their cycle which is remarkable in its 

complexity and regularity. The major aspects of the cycle are, the 11-year period of 

sunspot number and their spatial distribution (Fig.1.12), (ii) the H ale-Nicholson law 

of sunspot polarity; the polarity of the leading spots in the northern hemisphere is the 

same and reverses its sense at the start of a new cycle (also leading spots in the southern 
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Figure 1.11: The Wilson effect in a sunspot, showing the changing appearance of the 
spot as it passes from the east to the west limb of the Sun (Bray L· Loughhead 1964). 
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Figure 1.12: The butterûy diagram, with a single dot for each spot group. The new 
cycle spots form at high latitudes before the old cycle spots disappear. The lower panel 
shows the sunspot number in each cycle (B. Yallop; GO). 

hemisphere have opposite polarity to those in the north), and, (iii) the reversal of the 

general field. 

1.3.3 Prominences 

Prominences are the most impressive objects on the Sun because they are located in 
the corona but possess temperatures a hundred times lower and densities a hundred 
or a thousand times greater than the coronal values. In eclipses they appear bright at 
the limb, but in Ηα-photographs of the disc they show up as thin, dark, meandering 

ribbons called filaments (Fig.1.13). 

The observations suggested that prominences are supported against gravity by hor­

izontal magnetic fields. In fact the term prominence is used to describe a variety of 

objects ranging from relatively stable structures with lifetimes of many months, to 

transient phenomena that last a few hours or less. Prominences have been classified 

morphologically in several ways, but there appear to be of two basic types. 

(i) Quiescent prominences (Figs.1.13, 1.14) are exceedingly stable structures and 

may last for many months. They are located outside active regions and they migrate 

towards latitudes higher than 45°; then they are called polar prominences. Their 

spatial dimensions are 60000-600000 km long, 15000-100000 km high and 4000-15000 

km thick. They are anchored in the photosphere at footpoints periodically distant of 

about 30000 km. Their densities and temperatures are of order 101 6-101 7 m~ 3 and 

5000-8000 K, respectively. The magnetic field is found to be 5-10 G. The average 

angle between the direction of the magnetic field and the long axis of prominence is 

about 15° (Demoulin 1991, Priest 1984, Zirker 1989). 
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Figure 1.13: The migration of a quiescent prominence to the limb seen in Ha due to 
solar rotation (S. Martin; LSO). 

Figure 1.14: A prominence 70000 km high seen in Ha (H. Zirin; BBSO). 
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Figure 1.15: A small limb flare and surge, typical of what is seen as a modest active 
region goes over the limb (H. Zirin; BBSO). 

A quiescent prominence forms at a relatively small active region (or plage) filament, 
which is located either along the magnetic inversion line of an active region or an active 
region where it meets a surrounding region of opposite polarity. Sometimes it may enter 
a sunspot from one side. As the active region disperses, the prominence grows thicker 
and longer. Often continue growing for many months up to 106 km in length, and in 
the process it moves slowly towards the nearest pole and becomes a polar prominence. 

(ii) Active prominences are located in active regions and are usually associated 
with solar flares. They are dynamic structures with violent motions and have lifetimes 
of only minutes or hours. There are various types, such as surges (Fig.1.15), sprays 
(Fig.1.16) and loop prominences (Fig.1.17). They have magnetic fields of order 100 
G and it appears that may be aligned approximately with the filament, whereas for 
quiescent ones the field run across the filament. The spatial dimensions are typically 
three or four time smaller compare to the quiescent one, but the temperature is much 
higher. The density is rather larger (> 1017 m - 3 ) . Although it seems that their support 
may be hydrostatic or ballistic. 

Often a prominence reaches downwards towards the chromosphere in a series of 
regularly spaced feet, which resemble great tree trunks. These feet are located at 
supergranule boundaries and are joined by huge arches (Fig.1.12). Within a prominence 
there is much fine structure in the form of vertical threads of length 5000 km and 
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Figure 1.16: A limb spay. These are associated with larger ßares and less dominant 
fields than surges (H. Zirin; BBSO). 
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Figure 1.17: Loop prominences observed in Ha, (a) at limb (Bumba Sc Kleczek 1961) 
and (b) at disc (Svestka 1976). These loops go higher and higher in the thermal cooling 
of the ûare. 
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diameter about 300 km or less (Fig.1.12); material continually streams slowly down 

these threads and down the arches into the chromosphere at speeds of only 1 km/sec, 

which is much less t h a n the free-fall speed. The resulting loss of mass is immense and 

would drain the prominence in a day or so if it were not being replenished somehow. 

Hardly any motion along the axis of a quit quiescent filament is observed, unless it 

interacts with a sunspot, but active region filaments often show mat te r flowing along 

the axis into a sunspot. 

Active·?region and quiescent prominences can became activated and exhibit several 

types of large scale motion, such as growing in size and varying their brightness. At 

this time, there may be an increase in turbulent or helical motion or flow along the 

filament. This type of activation sometimes fades away after an hour, but sometimes 

leads to an eruption if the filament become completely unstable, especially for those 

exceed about 50000 km in height. Thus we have an erupting prominence (Fig.1.18) 

which eventually disappears; some of the material escapes from the Sun altogether 

while some descends to the chromosphere along helical arches. Also at some cases the 

prominence material may drain away from the summit along a curved arc at speeds of 

100 km/sec. 

Erupting prominences are related to the 70% of it coronal transients which have 

been observed in the outer corona by Skylab (Fig.1.19). The rest are associated with 

large flares. They represent outward-moving loops or clouds with speeds of 100-1200 

km/sec; the material probably originates in the low corona above the prominence, 

rather than from its interior. These loops had similar orientations to those of the 

original filaments. 

1.3.4 Loops 

One of the most exciting realizations of the past 15 years is t h a t the solar corona is 

filled with myriads of loop structures. Today it is quite acceptable that the loops that 

we see is the solar corona. These loops relate with closed magnetic structures, on a 

relatively large scale in quiet regions and a smaller scale inside active regions. The only 

exception are the coronal holes where the field fines are open and are the source of the 

solar wind. There is a wide range of different types of loops (Priest 1978): 

(i) Interconnecting loops join different active regions and seem to form either when 

two loops stretch from separate active regions and recconect or when one loop rec-

conects with some newly emerging flux (Fig.1.20). They may be up to 700000 km long 

and in soft X-rays have a temperature of typically 2 to 3 χ ΙΟ 6 Κ and a density of 

3 χ 10 1 4 m~3. Their ends are rooted in regions of strong magnetic field near the edges 

of active regions. A single loop lasts about a day, but the whole system may endure for 
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Figure 1.18: Examples of erupting prominences. The left photograph is in Ha (G. 
Newkirk; HAO) and the rìght in Hell (R. Tousey; NRL). 
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Figure 1.19: A coronal transient associated with a prominence eruption observed by 

Skylab (R. MacQueen; HAO). 

many rotations. Loops that connect fully developed active regions have an intermittent 

visibility, but those that join an active region to an old remnant change little in shape 

and brightness for up to 12 days. Interconnecting loops sometimes brighten suddenly 

(exhibiting higher temperatures and densities by factor two), which may be associated 

with a twisting of the foot points. 

(ii) Quit region loops do not connect active regions, and in soft X-rays are somewhat 

cooler than interconnecting loops with a temperature of 1.5 to 2.1 χ ΙΟ6 Κ. This, 

surprisingly, is independent of the density, which may range from 2 χ I O 1 4 m - 3 to IO 1 5 

m~3 

(iii) Active region loops are found inside active regions. In soft X-rays, only a few 

are distinguishable with temperatures 2.2 to 2.8 χ ΙΟ6 Κ for a wide range of density, 

from 5 χ 10 1 4 m ~ 3 to 5 χ 1 0 1 5 m ~ 3 and their lengths He typically between 10000 km 

and 100000 km, the sorter loops appearing brighter in X-rays. But in 1975 Foukal 

was found that exist also extremely cool loops, with temperatures at least an order 

magnitude lower than the surrounding corona. Usually these loops connect sunspots, 

so may be called also sunspot loops. Most are about 100000 km long and 10000 km 

wide and have cool cores with a temperature lower than 2 χ ΙΟ5 Κ (Fig.1.21) The core 

density is lees certain but is probably the same as the surrounding density, so that the 

core pressure is about a tenth of the coronal pressure. Also, there may be a sheath 
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Figure 1.20: Comparison between a (negative) picture in the EUVline of FeXV (above) 
and a photospheric magnetogram, showing several active regions and their intercon­
necting loops (Sheeley et al 1975). 



1.3. TRANSIENT FEATURES IN THE SOLAR ATMOSPHERE 25 

0 iv 0 vi Max 

Figure 1.21: An active region sunspot loop about 60000 km high in the EUV lines of 

CII (3 χ IO4 K), Ly α (ΊΟ4 Κ), CHI (7 χ IO4 A'j, OV1 fi.8 x IO5 K), MgX (1.5 x 10° 

Λ'). Hotter emission comes from progressively thicker co-axial shells (Foukal 1976). 

around the core with a plasma density three or four times bigger than the ambient value. 

The low core-temperature accounts for its visibility in EUV lines, whereas the sheath 

density-enhancement shows up the loop in X-rays against the background emission. 

The pressure and energy balance are steady over several hours, much larger than the 

free-fall t ime, and their intensities are not directly related to umbral area; large loops 

can be rooted in insignificant spots and some large spots may have no bright loops at 

all. 

(iv) Post-flare loops (Fig.1.22) relate with solar flares as it observed in EUV and 

X-rays. These loops may be up to 100000 km high, have bright tops (as hot as 4 x 106 

Κ"), densities Ι Ο 1 7 ?n~3 and follow a filament eruption. They link the two H a ribbons 

and form an arcade (visible in both H a and X-rays) that increases in height as the 

main phase of the flare proceeds and the H a ribbons move apart . Post-flare loops are 

evolving in a manner that m a y a r i s e from the closing down of a magnetic field that 

has previously blown open during the stages of a two-ribbon flare. Also an enormous 

material downflow is observed in H a , 

(v) Simple-flare loops (Fig.1.23) are usually smaller than the post-flare loops, with 

typical size between 5000 and 50000 km, and are extremely hot and dense, with tem-



26 CHAPTER 1. THE SOLAR ATMOSPHERE 

Figure 1.22: Post-ßare loops ending in the ilare ribbons inside the limb. The soft X-ray-

emission comes from loop tops (H. Zirin; BBSO). 

peratures as high as 4 χ ΙΟ7 Λ' and densities up to IO 1 7 or 10 1 8 ?n~ 3. Simple flare 

loops must contain some dramatic heat source and are far from steady; they may have 

emerged from below the photosphere during the previous few hours (or a day) or they 

may be pre-existing loops that have became unstable. 

Finally we must note the existance of interplanetary magnetic loops (with dimen­

sions > 1 AU) which are connected bipolar active regions. They are dued to the flare 

activity, and can be acted like magnetic bottles trapping energetic particles (Sarris & 

Krimigis 1982). 

1.3.5 Flares 

The solar flare is the most violent event in the solar system. It varies from being a 

simple, localized brightening to a very complex violent structure. A solar flare consists 

of three phases. During ih^^reflare phase a large flux tube 4?t prominence) starts to 

rise slowly, and there is a gradual brightening in soft X-rays, EUV and microwaves for 

several minutes. In the flash phase which lasts typically 5 min the flux tube suddenly 

starts to erupt much more rapidly and there is a steep increasing in H a , EUV, and 

soft X-rays, while they appear radio bursts in the form of electron beams. At the same 

time nonthermal particles are evidenced by the appearance of hard X-rays spikes and 

impulsive EUV and microwave bursts, with shock waves sometimes initiated. Also, H a 

knots of emission become joined up to form two ribbons in the chromosphere. During 
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Figure 1.23: Two views of a Rare near the limb which ejects a loop (H. Zirin; BBSO). 
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the main phase the intensity declines slowly over about an hour, while the ribbons 
separate with velocities 2 to 10 km/sec and are joined by a rising arcade of post-flare 
loops (Fig.1.24). 

When a large flare occurs near a quiescent prominence, where the magnetic field 
is weak, the flare tends to be slow, long-lived and thermal, sometimes with no He* 
brightening at all, thought the basic magnetic instability is probably the same. When 
it occurs instead near an active-region prominence, where the magnetic field is strong 
and complex, the flare is violentv short-lived and nonthermal (Priest 1984). 

Near the polarity inversion line one often finds small pores and transient weak X-
ray sources. Many other precursors in the corona can be seen up to an hour preflare, 
while prominence activation may sometimes begin even earlier. Soft X-ray and EUV 
brightening occurs often around the prominence or in the form of loops or kernels 
close to the subsequent flare site. In microwaves sometimes there is an increase in 
intensity because of heating and a change in polarization due to changes in the coronal 
magnetic field. Also radio bursts can occur before a large event, possibly because of 
the preaccelaration of electrons (Priest 1988). 

Since flares invariably occur in active regions and the other sources of energy seem 
inadequate, it has usually assumed that it is the magnetic field which supplies the 
energy of 1022 to 3 x 1025 J for a flare (Priest 1984). 

1.3.6 Modern view of solar corona 

It is now known that the old magnetohydrodynamic, steady picture of an active region 
and the background corona based on the previous low cadence images is not correct. 
Instead, recent observations from YOHKOH (Ogawara et al 1992) revealed that steady 
mass from below supply at least a certain fraction, if not all, of the mass and energy of 
the active region corona which is almost continually expanding (Ushida 1992, Ushida 
et al 1992). The injected mass itself is confined in flux tubes inside the active regions 
(Klimchuk et al 1992). The mass injections may turn out to be the cause of desta-
bilization of such coronal active regions, and they may turn bring a new component 
(magnetically driven mass loss) into the solar mass loss problem (Shibata et al 1992). 

The background general corona turns out not to be an isolated quiet entity, but 
is rather a system closely linked with the active region corona. Changes in the active 
regions can affect the environment corona. In some cases propagating 'magnetic recon­
nection waves', caused by changes in the magnetic field connectivity in the stronger 
magnetic field regions, can propagate further away from an active region in cascade. 
In some other cases magnetohydrodynamic disturbances may simply perturb distant 
magnetic structures transiently in the form of simple waves, but in some other cases 
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Figure 1.24: An excellent view of .a ßare near the limb, showing the development of 
loop prominences. The fìrst frame is after the ßare peak. Bright loops is seen two 
sunspots. As they develop, the loops rotate, become darker, but the tops are always 
brightest and densest. In all loops the material rains down in two branches (H. Zirin; 
BBSO). 
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they may influence distant structures permanently either stimulating some instabili­
ties, or through such magnetic reconnection waves (McAllister et al 1992, Ushida 1993, 
Shimizu at al 1992). 

Dynamical changes in the general background corona itself, either spontaneous or 
by stimulation, often occur at the same time as disappearances of Ha dark filaments. 
Coronal mass ejections may, in this way, either be related to a flare occurring at a 
distance from the site of coronal mass ejections, or be unrelated to a flare but related 
to a much less energetic phenomenon, an active region transient loop brightening that 
can greatly affect the magnetic structure in the surroundings. The required energy 
may come from the release of the magnetic buoyancy of the structure anchored by the 
magnetic ties. It is possible that the dark filament disappearance itself in these events 
is merely a passive feature, not a driver of the energy liberation, but one of the results 
of an instability of the field structure as a whole, which can be triggered by a small 
disturbance at a distance (Hara et al 1992, McAllister et al 1992). 

An interesting point is that various phenomena in the solar corona, such as ar­
cade formation in relation to the disappearing dark filament, seem to have examples 
or analogues with scales ranging from very large in the polar region to small inside 
active regions. These may correspond to the weak field case and the strong field case, 
respectively, with similar field configurations. Thus the large and faint arcade above a 
disappearing polar dark filament, the medium scale hotter arcade, and the relatively 
quiet version of flares with Ha double-ribbon structures in active regioas may all be­
long to the same physical class and occur in similar magnetic field configurations but 
with different magnetic field strengths and different scales (Ushida 1993). 

1.4 Coronal plasma loops 

The discovery that a significant part of the energy emission from the solar corona 
is concentrated along well-defined curved paths - called loops - represents a major 
advance in our understanding of the Sun. Such plasma loops are the basic structural 
elements of the corona, particularly in and over active regions. Moreover, they play a 
decisive role in the origin and physics of solar flares. Our new insight is due largely 
to the wealth of space observations of the Sun obtained, in particular, firstly from the 
satellite Skylab (1973-1974) and the Solar Maximum Mission, Hinotory and YOHKOH 
satellites which followed. Ground-based observations in the visible and microwave 
regions of the electromagnetic spectrum have also play a vital role. The literature on 
coronal plasma loops is vast and includes not only hundreds of research papers but also 
the proceedings of numerous symposia and workshops. In this section we shall cover 
briefly the observational part of coronal loops, while in chapter 3, we shall present a 
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magnetohydrodynamical analysis of them. In the rest of this thesis they are described 

in detail our proposed models for the structure of coronal loops and the solar corona 

in general. 

1.4.1 Introduction 

Coronal loops are a phenomenon of active regions and there is significant evidence t h a t 

they are in fact the dominant structures in higher levels (inner corona) of the whole 

atmosphere of the Sun. Although that our knowledge of loops has greatly expanded 

in recent years because of the space observations in the far ultraviolet and X-rays, 

we must not ignore the fact that a considerable amount of quantitative information 

on the morphological, dynamical, and physical properties of coronal loops has been 

derived from ground based observations in the visible and near-visible regions, in fact, 

observations at these wavelengths have achieved significantly higher spatial resolution 

(better t h a n 1") than almost all the space observations so far obtained. 

Observations show that coronal loops, depending on their temperature, can be 

divided into two distinct categories. The properties of the two types differ radically. 

Loops formed at temperatures in excess of « ΙΟ 6 Κ are conventionally referred t o as 

hot loops, while those formed at lower temperatures are termed cool loops. We shall 

consider the two types separately. 

1.4.2 Cool loops 

The range of temperature covered by the category of cool loops extends from fti 10 6 

Κ down· to ~ 20000 K; the Fig.1.17 represents a temperature characteristic of loops 

observed in H a . Taken as a whole, the observations described in this section show t h a t , 

with the exception of temperature, all cool loops appear to have similar properties and, 

in fact, can be regarded as manifestations of the same basic physical nature. 

When cool loops observed in the limb in H a and other visible region lines, appear 

to be anchored to underlying sunspots. In Fig.1.17 is shown a particular fine example 

of an active region loop system beyond the limb (Bumba &: Kleczek 1961). In general, 

photographs of active region loops (Lategan & Jarre t t 1982, Foukal 1978) showing a 

single neat loop and the characteristic condensations or knots often present in H a loop 

systems. T h e number of loops in a single system may range from just one up to perhaps 

ten or so; an upper limit is hard to establish from limb observations because loops 

overlap each other. The apparent, projected heights measured by various authors range 

from 26400 km (Lategan & Jarret t , 1982), through 50000 km (Tandberg-Hanssen 1977, 

Makhmudov et al 1980), to 57000 km (Kleczek 1963). However, true heights cannot be 

determined from limb observations unless the loop geometry is known. Observations 
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did not say anything about loop lifetimes, but Tandberg-Hanssen (1977) quotes a 

typical value of 15 min. Active region cool loops are found to be in dynamical stage 

with flows. It has long been known that there are three types of motion associated 

with them (de Jager, 1959), (i) a downflow in both legs, starting at the top of the loop 

(Kleczek 1963, Lategan & Jarret t 1982), (ii) a flow up one leg and down the other 

(Martin 1973), and, (iii) a mainly horizontal back-and-forth oscillation of the whole 

loop (Vrsnak 1984). Bodily upward motions of the whole loop have also observed 

(Kleczek 1963, Vrsnak 1984). The majority of the velocities are inferrent either from 

Doppler shifts (Foukal 1978, Lategan & Jarret t 1982) or from the proper motion of 

knots (Kleczek 1963, Foukal 1978, Makhmudov et al 1980) lie in the range 20-150 

km/sec. The upflow accelerations are sometimes greater than ÇQ (absolute values), 

while the downflow ones are always less. These values are also consistent with values 

derived from measurements of loops observed on the disc. Finally, the magnetic field in 

active region loops is found to be in the range 7-100 G (Bray et al 1991). Measurements 

have been done using either the Zeeman effect (Tandberg-Hanssen 1974, Tandberg-

Hanssen &: Malville 1974) in order to find the Une of sight field component, or, the 

Hanle effect (Bommier et al 1981, Athay et al 1983) in order to find all the field 

components. It is possible that the typical value of « 50 G for the magnetic field in 

active region loops, is probably represent lower limit to the true field along the axis of 

loops. However, the limb measurements are valuable since no disc measurements have 

yet been at tempted. Not have any measurements so far been a t tempted in the EUV 

spectral region. 

On the disc an active region loop appears in the H a line as a thin, curved, dark fea­

ture linking a sunspot with another spot or area of opposite magnetic polarity (Ellison 

1944, Tandberg-Hanssen 1974). The actual location of the footpoints with respect to 

the associated sunspot or spots is seems to be the umbra /penumbra boundary. Also 

according to Ellison (1944) single or double loops are quite common, but complex for­

mations of loops are rare. By contrast, post-flare loop systems commonly contain a 

large number of loops in the form of an arcade (Fig.1.22). The lifetimes of H a loops 

observed in the disk are found to be less than 1 h (Bray et al 1991). Often, the planes 

in which He H a loops are inclined at fairly large angles (30° to 40°) to the solar vertical; 

this is also the case for cool loops observed in the EUV. The axes of symmetry, are 

tilted at only small angles (—6° to 6°) to the perpendicular bisector of the fine joining 

the footpoints, while the highest points He some 40000-50000 km above the solar sur­

face, in agreement with the estimates of the heights of cool H a loops observed at the 

Hmb (Loughhead et al 1984, Loughhead & Bray 1984). Note also that these heights are 

comparable to those found for cool EUV loops. Finally, two types of flow are observed; 

(i) a unidirectional flow along the axis of a loop, in other words an ascent in one leg 
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and a descent in the other (Ellison 1944, Tandberg-Hanssen 1977, Bray & Loughhead 

1983), and (ii) a downflow from from the top towards both footpoints (Martin 1973, 

Chen & Loughhead 1983). The first type of flow is a commonly observed characteristic 

of loops in new and complex active regions. Only few velocity measurements in H a 

loops on the disk are available (Loughhead & Bray 1984). In one studied case (Lough­

head L· Bray 1984) they show high (supersonic) velocities almost throughout the loop 

(Fig.1.25), with the material to be accelerated fastly as it rises and descends from and 

in the solaç surface. This means that upflow is driven by a strong accelareting mech­

anism (larger t han g® at this particular case) despite the presence of gravity, while 

downflow is subject to a retarding force since the acceleration which found is less than 

the solar gravitational one. ; ι; 

Below 150 nm the contribution of the photospheric layers to the solar spectrum 

vanishes and the radiation comes from overlying material at chromospheric or coronal 

temperatures. When this wavelength is reached, the character of the emission has 

changed from that of familiar dark line spectrum in the visible and near ultraviolet to 

that of a bright-line spectrum (Fig.1.26). The far ultraviolet extends down to about 

10 nm, below which it is customary to categorize the emission as soft X-ray radiation. 

The solar EUV spectrum is dominated by emission from resonance lines of HI (Lyman 

series), Hel, and Hell, of intermediate stages of ionization of C, N, O, Si, and S, and of 

highly-ionized stages of Si, Ne, Mg, and Fe. Other distinctive features are the Lyman 

continuum at λ < 91.2 nm, and the Hel and Hell continua at λ < 50.4 nm and λ < 22.8 

nm respectively. Under the conditions of formation normally assumed to apply, the 

intensity of any given line is a sensitive function of the electron temperature, peaking 

at some particular value and falling off sharply on either side. T h e presence of this line 

in the spectrum of a feature under study thus indicates that the temperature in the 

emitting region must be close to the resulting electron temperature . For this reason 

this temperature is often termed the formation temperature of the line. EUV Unes 

characterized by electron temperature values of m ΙΟ 6 Κ or less are conventionally 

reffered to as cool lines, whereas lines with electron temperatures greater that « 106 

Κ are described as hot lines. In the case of coronal loops this distinction is more than 

a matter of convention, cool loops observed in EUV lines in temperatures < < ΙΟ6 Κ 

differ in their properties from hot loops observed in lines with electron temperatures 

> 106 K. 

Usually, when an active region is observed in EUV Unes it is found that the emission 

is centered on two bright areas overlying the regions of opposite magnetic polarity in the 

photosphere; not surprisingly, the outlines of the bright areas follow the contours of the 

underlying H a faculae (Cheng et al 1980, Schmahl et al 1982). With the best available 

resolution the central bright areas are resolved into aggregates of small, very bright 
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Figure 1.25: (a) Active region loop of 6 June 1980 photograph at Ha (Bray L· Lough-
head 1983). The small white circles identify the points of the loop using for its geomet­
rical reconstruction seeing in (b). The arrows at these points represent the magnitudes 
and directions of the true flow speed V along the central axis of the loop, which is 
seen in (c), and is supersonic at all locations. Note that between L2 and Lz the speed 
of the rising material almost doubles, despite the retarding effect of gravity. On the 
downward leg the material speeds up as it approaches Ls, and the footpoint Pi, but it 
does not attain the velocity of free-fall (w 150 km/sec) from the highest point above 
the surface (39800 km). 
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Figure 1.26: Prominent EUV emission lines at the center of the solar disc. 

kernels, some of which are noticeably elogated. But, just outside, a number of bright 

loop-like features are seen pointing more or less radially outwards. Limb observations 

demonstrate that these features represents portions of coronal loops, which may extend 

up to heights of tens of thousands of kilometers. 

In common with all other solar features, cool EUV loops are always observed in 

projection against the plane of the solar disk or of the sky beyond. Consequently, in 

the absence of geometrical reconstructions of individual loops along the Unes of those 

accomplished for H a loops, relatively little can be said about the true shapes and sizes 

of cool EUV loops. Nevertheless, limb observations such that in Fig.(1.27) do show that 

most loops are essentially planar. The inclination of the planes containing the loops 

may vary from nearly vertical to nearly horizontal. Moreover, there is some indication 

that the preferred inclination of a loop may become more vertical as the region grows 

older (Levine 1976, Bray et al 1991). Limb observations also yield estimates of the 

heights attained by the loops. Usually there are found to be in the range 50000 to 

60000 km (Cheng 1980, Chiuderi 1981) while sometimes reach 110000 km (Athay et 

al 1983). The widths of cool EUV loops seem to increase only slowly with height by 

a factor less than two (Foukal 1976, Cheng 1980), and lie in the region from <2000 to 

5000 km (Foukal 1975). But Dere (1982) gives larger estimates, ranging from 6000 to 

22000 km. For L a loops observed at the limb, Tsiropoula et al (1986) have measured 

diameters, constant with height, of 2000 to 3500 km. However, it is important to 

say that the loop width increases with temperature (Foukal 1976, Sheeley 1980); an 

example is seen in Fig.(1.21). The aspect ratio parameter, which sometimes arises in 
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Figure 1.27: Attractive region cool loop system in the EUV line OVI ( 3 x l 0 5 K). Despite 
the obscuration at low heights caused by overlapping, the region consists basically of a 
number of separate loops lying in planes inclined at widely differing angles to the solar 
vertical. Individual loops may reach heights of tens of thousands of kilometers (Levine 
1976). 

studies of loop stability, defined as the ratio of the cross-section loop radius to its 

length, is found to be 0.006 (Cheng et al 1980), an order magnitude smaller than that 

found in hot EUV loops. The footpoints of cool EUV loops are generally located on 

the peripheries of the two areas of opposite magnetic polarity in a bipolar active region 

(Cheng et al 1980). On the other hand, there is an important class of cool coronal 

loops which have at least one end anchored in bright EUV emission over a sunspot 

(Foukal 1976). The former ones possibly may be more stable than the others cool EUV 

loops. Despite of this, there are no quantitative informations about the lifetimes and 

the evolution of them, although that cool loops observed in the EUV regime are found 

to have flows. The line of sight velocities in the CIV (Athay et al 1982, 1983) are found 

to range from ± 5 to ±10 km/sec near disk center and from ± 9 to ±18 km/sec near 

the limb, a negative (positive) sign denoting redshift (blueshift). In most cases the 

flow was directed downwards in both legs of the loop, but there were others showing a 

unidirectional flow from one end of the loop to the other. This pat tern is analogous to 

tha t observed in the Ha active region loops discussed previously. 

To end this section, we give in Table 1.2 the known quantitative data concerning the 

morphological, dynamical and physical properties of cool loops (Bray et al 1991). From 

the da ta presented it is evident that , over the temperature characterizing cool coronal 
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Quantity 
Height, true (km) 

Height, projected (km) 

Length (Aim) 

Separation of the footpoints(Jfem) 
Diameter (km) 

Aspect ratio 
Inclination of loop plane to vertical 

Tilt of axis of symmetry 
Lifetime 

Axial flow speed (km/tec) 

\ 
Mach number 

Temperature (K) 

Electron density (cm~ ) 

Gas pressure (dyne/ cm ) 

Gas density (g/cm ) 
Degree of hydrogen ionization 

Sound speed (km/sec) 
Nonthermal velocity (km/sec) 

Line-of-sight magnetic field (G) 
Total magnetic field (G) 

Value 
40000-53000 
26000-57000 
50000-67000 

130000 
22000-109000 
71000-86000 

1600 ('normal' loop) 
< 2000-22000 ('normal' loop) 

1300-580 ('very thin' loop) 
0.006 

30 D -40° 
4 °-6° 

3-6 hr (loop system) 
< 15 m i n (single loop) 

34-125 
20-150 

95 
1.6-6 
21000 

7000-25000 
6 X 1 0 4 - 1 0 6 

5.6 X 1 0 1 0 

3-6000 X 1 0 9 

0.36 
0.14-0.58 

1.3 X 1 0 - 1 3 

0.996 
21 
2 6 

10-30 
7-100 
4-45 

Wavelength 
H a 
H a 

E U V 
H a 

E U V 
H a 
H a 

E U V 
H a 

E U V 
H a 
H a 
H a 
H a 
H a 
H a 

E U V 
H a 
H a 

Visible 
E U V 

H a 

Visible 
H a 

Visible 
H a 
H a 
H a 
H a 

E U V 

Visible 
Visible 

Disk (D) or Limb (L) 
D 
L 
L 
D 
D 
D 
D 

D , L 
D 
D 
D 
D 
D 
D 
D 
L 
D 
D 
D 
L 

D , L 

i D ί 
L 

D 
L 

D 
D 
D 
D 
D 
L 
L 

Table 1.2: Properties of cool loops (Bray et al 1991). 

loops (20000 — IO6 Ä'), both the heights and lengths of the loops are comparable. 

On the other hand, there is a small but apparently real increase in diameter with 

temperature, the inferred values of the electron density in cool loops observed in 

both the visible and EUV regions of the spectrum extend over a wide range of several 

orders of magnitude, despite this, the values of the gas pressure listed in Table 1.2 

are restricted to a much smaller range of one order of magnitude. This may reflect 

the circumstance that the stability of a loop, whatever its temperature, depends on 

the maintenance of approximate pressure equilibrium with the surrounding coronal 

medium. Taken as a whole, the presented da ta show that , with the exception of 

temperature, all cool loops appear to have similar properties and can be regarded as 

manifestations of the same basic physical s tructure. 

1.4.3 Hot loops 

As we have seen, observations made in cool visible and EUV lines have provided exten­

sive information on the large-scale systems of loops which dominate the structure of 

the lower corona above active regions. The loops are believed to trace out closed field 

Unes of force of the magnetic field which protrude up from beneath the photosphere 

and expand to fill the whole coronal volume above an active region. Hence a picture of 

the loop systems gives us some insight into the three-dimensional configuration of the 
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magnetic field. But the picture obtained from observations of cool loops is far from 

complete. For more detail we have to turn to observations of hot loops, filled with 

material at coronal temperatures of a million degrees or more. Emission from material 

at that temperatures dominates the EUV and the soft X-ray regions of the solar spec­

t r u m . The lack of any appreciable photospheric or chromospheric emission at these 

wavelengths enables the corona to be viewed directly against the disk and, in fact, most 

of the available information on hot loops has been obtained from such (space) observa­

tions. In addition, other important contributions to our knowledge have come from the 

visible and the radio regions of the spectrum. The line and the continuum radiation 

emitted by the corona in the visible region is many orders of magnitude too faint to 

be detected on the disk against the glare of the underlying photosphere. Nevertheless, 

it can be observed beyond the limb both during and, with the aid of coronograph, out 

side of a solar eclipse. 

Before we are reffered to EUV and X-ray observations of hot coronal loops, we shall 

cover briefly the observation in visible and radio wavelengths. From many decades 

ago, it is known that the solar corona emission in the visible (wavelengths in the 

range 500-700 nm) consist of three components, conventionally denoted by the the 

letters K, F and L. The Κ component originates from the Thomson scattering of the 

photospheric fight by free electrons and is thus proportional to their number density. 

The F component is due to scattering by interplanetary dust. Finally, the L component 

is due to the emission of spectral lines, and is termed the monochromatic corona; it is 

visible only in the inner corona. Hot coronal loops usually observed in FeX, FeXIV, 

FeXV, NiXV, CaXV visible lines, because they are very bright in the Sun and they 

have high ionization potential, which is a direct indication of the temperature of hot 

loops which must be of order of 1-2 Χ ΙΟ6 K. Thus active regions observed in this 

spectrum regime (Kleczek 1963, Dunn 1971) are seen to consist from a system of loops 

with typical heights of up 50000 to 100000 km. The systems appear to be rooted in 

sunspot groups or in plage areas. But the larger loops may connect two active regions 

and extend up to heights of 200000 to 250000 km. Also the larger loops are generally 

uniform in intensity and have diameter of 8000 to 12000 km, while the smaller loops 

are less uniform, particularly in their earlier stages, and they have a diameter of 3000 

to 8000 km. Hot loops are planar structures and they are more active when they are 

small, they tend to grow in situ, then fade, in a couple of hours and others grow at a 

higher elevation, while large loops are very stable lasting for days. 

Centimeter and low decimetre observations of the Sun with a spatial resolution 

comparable to that achieved for EUV and X-ray loops are a relatively recent devel­

opment. This advance has largely been brought about by construction of large array 

type radio telescopes (i.e., Very Large Array, Westerbork Synthesis Radio Telescope) 
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employing the method of aperture synthesis. As we have seen thermal radiation from 

the Sun is detectable over a vast range of electromagnetic spectrum, from the soft 

X-rays t o metric radio waves. But two factors combine to make the thermal radio 

radiation from the Sun observed at the Earth 's surface peak in the centimetric region. 

One is the onset of strong tropospheric absorption at wavelengths below about one 

centimetre, while the other is the intrinsic decrease in the density of the radiation 

at longer wavelengths. T h e two processes which contribute t o the thermal emission 

from active regions are bremsstrahlung (free-free emission by electrons) and gyrores-

onance radiation by electrons spiraling around magnetic field Unes. Until today the 

more extensive radio observations are referred to active regions generally than of in­

dividual loops. These observations have studied the magnetic field distribution in the 

low corona above active regions and the correlation between the distribution of the 

radio emission and chromospheric features and the photospheric field pat tern. Only 

few observations existed for individual radio loops of temperature of order ΙΟ 6 Κ giving 

lengths in the range 70000 to 100000 km and widths typically of 15000 km. As we will 

see in the following the aspect radio (loop width over its length) which is around 0.075 

is comparable to those found for active regions hot loops observed in the EUV and soft 

X-rays (Bray et al 1991, and references therein). 

Going now to the high temperature regime, the EUV emission from the Sun is 

confined very largely to active regions and the loops emanating from them (Tousey et 

al 1973, Sheeley at al 1975). This contracts strongly with the case of the cool EUV 

emission, which comes from all parts of the disk. When photographed in hot EUV 

fines well-developed bipolar active regions on the disk often present a characteristic 

'butterfly' appearance (Levine 1976), so called because most of the emission comes 

from two extended lobes of rather diffuse bright material shaped like the wings of a 

butterfly. In some cases any detail discernible within the lobes tends to be in the form 

of blobs or streaks rather t h a n loops. Recognizable loops are readily seen, however, 

outside the lobes. These may be grouped together to form systems of loops curving 

around the outside parts of t h e active region. Where individual hot EUV loops can 

be distinguished they are found to be broad and irregular and, overall, appear less 

loop-like t h a n those visible in the cool EUV. Sheeley (1980) remarks t h a t , unlike cool 

EUV loops, the hot loops are never observed to brighten progressively along lengths, 

but appear to brighten and fade in situ. The exact location of the loops footpoints is 

not known, since hot EUV looJ>s, unlike the cool ones, tends to fade out towards the 

footpoints; they appear to join regions of opposite magnetic polarity in the underlying 

magnetic field. 

However, not all of the loops extending outwards from an active region necessarily 

return to the same vicinity. Frequently loops arch across the disk for distances of the 
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order of 100000 km to link two or more active regions into a huge magnetic complex 
(Tousey et al 1973, Sheeley et al 1975, Sakurai & Uchida 1977). Such linkages are not 
confined to active regions located in the same hemisphere, i.e. north or south, but may 
involve regions lying on both sides of the equator (Sheeley et al 1977). From the other 
hand interconnecting loops are generally fainter than those with both ends terminating 
in or on the outskirts of the same active region. Habbal et al (1985) have examined 
the geometry of the hot and cool EUV loops in an active region near the limb. They 
find that some of the cool loops appear to extend further out from the limb than the 
hot loops, which may reflects differences in the heights of the hot and cool loops or 
could imply that the hot loops tend to He in planes making greater angles to the solar 
vertical than those of the cool loops. Clearly a reconstruction of the true geometry 
of individual loops is required to distinguish between the two possibilities. At that 
time one information is available about the true shapes and sizes of hot EUV loops 
(Berton L· Sakurai 1985). They studied two long-lived interconnecting loops which 
was asymmetrical and had inclinations 25° and 7° and heights 119000 and 131000 
km respectively. However, loops associated with a single active region do not rise 
to the great heights as the interconnecting ones. Typically they reach up to 5000 to 
11000 km above the solar surface and their widths is in the range 11000 to 18000 
km (Gerassimenko 1980), or according to Cheng (1980) and Foukal (1975) the widths 
are range from 4800 to 6500 km and from 3000 to 12000 km respectively. Thus, hot 
EUV loops may be significally thicker than the cool ones, and so the aspect ratio is 
found to be typically 0.03 for loops at the outer parts of an active region (Cheng et 
al 1980), which is an order of magnitude greater than that found for cool EUV loops, 
while Cheng (1980) found even larger aspect ratios ranging from 0.09 to 0.18 for small 
loops observed on the disk. About the spatial relationship between hot and cool EUV 
loops we must note that these structures, which although obviously related, must be 
regarded separately, since they form in quite separate locations (Dere et al 1982, Cheng 
et al 1980). On the other hand, as Cheng (1980) has remarked, the existence of hot and 
cool loops side by side in active regions without any obvious direct spatial relationship 
to one another intriguing questions about the mechanism of formation and dynamical 
stability of coronal loops. 

Below about 10 nm we leave what is conventionally termed the EUV portion of the 
spectrum and enter the region of soft X-rays which terminates near to 0.1 nm; below 
this we speak for hard X-rays observing only during and in aftermath of solar flares. 
In appearance the solar X-ray spectrum resembles the EUV spectrum. It is dominated 
by the presence of emission Unes of highly ionized stages of the elements N, O, Si, S, 
Ne, Mg and Fe, superimposed on a continuum background. Three processes contribute 
significantly to the X-ray continuum, thermal bremsstrahlung (free-free emission by 
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electrons), radiative recombinations of electrons and ions (free-bound emission), and 

two-photon decay of certain metastable states of helium-like and hydrogen-like ions. 

Their relative contributions depend on the temperature and density of the emitting 

plasma. T h e region of the solar X-ray spectrum below 2.5 nm is of special interest 

because it embraces the resonance transitions of many highly ionized ions formed at 

temperatures truly representative of the conditions in the Sun's inner corona in tem­

peratures of order 2 χ ΙΟ6 Κ or greater (Walker 1972, Culhane & Acton 1974). 

As in the EUV, active regions seen in soft X-rays are believed to be composed 

basically of bright coronal loops arching between areas of opposite magnetic polarity. 

However, since the X-rays brightness of an active region may exceed that of 'quit' parts 

of the corona by some three orders of magnitude (Vaiana et al 1976), the actual appear­

ance of the region on a broad-band photograph depends very much on the exposure 

t ime. It is also influenced by the spectral bandpass . While intermediate density expo­

sures, for example, serve to show details of the loop structures associated with active 

regions, very short exposures are required to reveal the small cores of intense X-ray 

emission t o be found at the hearts of some of them. Thus, it is found that X-ray active 

regions overlie regions of strong bipolar magnetic fields in the photosphere (Vaiana et al 

1973, Poletto et al 1975, Zombeck et al 1978, Pallavicini et al 1979, Golub et al 1982). 

T h e most intense X-ray emission from each active region comes from the vicinity of 

the magnetic neutral line. Also, if the field gradient across the neutral line is large, 

there is frequently a small bright core connecting the two areas of opposite polarity. 

T h e spectrum of the core is harder t h a n t h a t of the rest of the active region, implying 

t h a t , if the emission is thermal in origin, the hot is hotter. Observations of high spa­

tial resolution resolve the core into a small cluster of densely packed, compact loops. 

According to Howard & Svestka (1977) older active regions do not have compact cores, 

the X-ray loops associated with an active region are similar in general appearance to 

those seen in hot EUV lines (Kundu et al 1980, Pallavicini at al 1981). They have been 

classified by Davis & Krieger (1982) on the basis of their location into three classes. 

Class I loops which occurring in the core of the active region and joining the areas of 

opposite polarity on either side of the neutral line. Class II loops which surrounding 

the core and occupying an area somewhat large in size than the associated Ha faculae, 

and class III loops which extending outwards from the active region and connecting 

it to magnetic areas in the surrounding photosphere. Loops of class III sometimes 

occur in arcades spanning active region H a filaments or they may link adjacent active 

regions, which together form a huge magnetic complex. When interconnecting loops 

join active regions on opposite of the equator they are referred to as trans-equatorial 

loops. Also m a n y quit region loops seem to occur in association with the final type 

of solar X-ray filament cavities. These appear as elogated patches of reduced emission 
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directly overlying quit region H a filaments. Filament cavities which are observed both 

on the disk and at the limb cover a (projected) area much larger than that of the H a 

filament itself and may persist for some time after the filament disappears (Bray et al 

1991). 

As we have mentioned above, loops of class I are found in the bright central cores 

of X-ray active regions. They are small, density packed features which connect areas of 

opposite magnetic polarity on either side of the neutral fine through the active region, 

according to Davis & Krieger (1982) the widths of such loops range from 700 to 5000 

km and their lengths from 7000 to 20000 km, implying an aspect ratio of the order 

of 0.1. This accords with the estimate of 0.1 to 0.2 given by Cheng et al (1980) for 

core loops observed in the EUV. On the other hand, the lat ter authors give the larger 

values of 7300 to 11000 km and 29000 to 44000 km for the widths and lengths of such 

loops respectively. The loops that they observed showed little change over a period of 

about 10 hours. 

Loops of class II are seen in the outer par ts of an active region. At the limb they 

appear as giant structures rising to heights of 100000 km or more. In fact, Howard &; 

Svestka (1977) observed loops with heights exceeding 200000 km reaching in one case 

260000 km (nearly 0.4 times the solar radius). Davis & Krieger (1982) quote a range 

of 5000 to 15000 km for the widths of class II active region loops and a range of 10000 

to 100000 km for their lengths, which correspond to an aspect ration of order of 0.1. 

But Gerassimenko et al (1978) give the somewhat larger widths of 20000 km. 

Class III loops extend outwards from an active region and terminate either in an­

other or in a surrounding magnetic area. The former case corresponds to intercon­

necting loops and they will discussed later. Frequently the loops form bright arcades 

spanning Ha filaments associated with the active region. Measurements made by Davis 

& Krieger (1982) indicate that this class of loops have widths in the range 10000 to 

30000 km and lengths in the range 50000 to 500000 Arm, yielding an aspect ratio of 

order of 0.04. Such loops therefore tend to be winder and longer than the class I and II 

loops. Apart from occasional localized brightenings, individual loops show no evidence 

of internal structure. Class III loops appear to be connected to localized areas on 

the outskirts of an active region where the magnetic field and gradients are relatively 

high. Their other ends are anchored to the bright chromospheric network outlining the 

boundaries of supergranulation cells (Davis & Krieger 1982). Finally, the brightness 

of individual loops seems to vary in a slow and continuous manner throughout their 

lives, presumably in response to changes in the underlying photospheric magnetic field 

(Krieger et al 1976). More sudden enhancements of the loop are observed, but they 

are generally associated with Ha flares or filament eruptions (Rust & Webb 1977). 

Interconnecting loops appear when a new active region is born in the neighborhood 
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Figure 1.28: (a) X-ray image, taken from the AS&E telescope on Skylab, showing 
arcades of active region loops over filament cavities, (b) Simultaneous Ha photograph 
showing the locations of chromospheric filaments and filament channels, (c) Schematic 
drawing depicting the arcade loops above active region Ha filaments and filament 
channels, (d) Map of the underlying longitunal photospheric magnetic field (Davis L· 
Krieger 1982). 
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(a) (b) 

Figure 1.29: Soft X-ray loops linking the outer parts of an active region to points 
in the surrounding bright chromospheric network (Davis & Krieger 1982). (a) X-ray 
image of the active region and its surroundings. (b,c) H a and Ca l l k line photographs 
respectively, (d) Schematic drawing showing the relationship between the loops and the 
network. Note the localized brightenings in the network marking the outer footpoints 
of the loops. 

of an existing region. The birth of one short interconnecting loop took less than 12 

hours, and seems to relate with the emergence of new magnetic flux which tends to 

trigger the appearance of interconnecting loops or to make existing ones brighten. Once 

magnetic field linkages have established between active regions these connections tent 

to last at least as long as the interconnecting regions exist as distinct entities. At this 

stage, the appearance of interconnecting loops against the disk is similar to tha t of 

the loops associated with individual active regions but they have heights in the range 

25000 to 110000, so they are smaller than the loops internal to active regions. Their 

lifetimes are typically few days or even hours. During their lifetimes, the shapes of loops 

changes and sometimes are related directly to variations in the photospheric magnetic 

field. Also growth of brightening of X-ray interconnecting loops in the absence of flares 

is observed quite often in old active regions (Howard & Svestka 1977, Chase et al 1976, 

Bray et al 1991). 

Little information is available on quit region loops pertains to those associated with 

filaments cavities. Ray & van Hoven (1982), and Mcintosh et al (1976) demonstrated 

tha t their heights can be reached at 500000 km, while Serio et al (1978) found tha t 

filament cavities are enclosed by a series of loops with heights greater than 50000 km. 

The emission from such loops is generally faint, so it is not surprising tha t their tops are 

not always visible when they are observed on the disk. Serio et al 1978 point out that 
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the X-ray loops seen oven filament cavities appear to be related to the large-scale loop 

systems observed above quiescent H a prominences in white light and visible coronal 

lines. Also, isolated loops sometimes accompany the transient X-ray enhancements in 

the lower corona associated with the disappearance of Ha filaments (Webb et al 1976). 

But not all neutral fines in the longitudinal magnetic field outside active regions are 

associated with either existing or recently dissolved filaments. Most of the solar surface 

is in fact covered with the dispersed remnant fields of long vanished active regions, in 

which are embedded neutral fines spaced less than 30 heliographic degrees apart . Thus, 

loops, when present, appear as isolated structures rather than as the components of 

long arcades spanning the neutral lines, these loops are somewhat smaller than those 

over filament cavities, having heights of 200000 to 350000 km (Mcintosh et al 1976). 

Finally, since the photospheric magnetic field is concentrated in the bright network 

outlining the boundaries of the supergranulation cells, one might expect quit region 

loops to be rooted in the network (Davis & Krieger 1982). 

Thus we have described what at first sight might appear to be a bewildering variety 

of X-ray loops distributed over the solar surface. Closer examination, however, reveals 

that they all form part of an evolving pat tern which begins with the appearance of an 

active region. As we have seen in section 1.3.1, when first born, an X-ray active region 

is relatively small ad compact and so must be the loops comprising it. Within hours 

other loops appear which link the region to other active regions in its vicinity. These 

inter-region links, but not the individual connecting loops, last at least as long as the 

regions concerned survive as distinct entities. As the region grows older, it expands and 

becomes more diffuse and large peripheral loops appear. Some of these are anchored 

within the active region at both ends, while others terminate in magnetic areas outside. 

Of particular interest are the peripheral loops which form arcades spanning channels in 

the corona which represent extensions of dark H a filaments associated with the active 

region. Eventually the region dissolves but leaves behind the filaments, each with its 

associated arcade of X-ray loops. During this final stage of their lives the filaments are 

termed quiescent filaments. After some 100 to 250 days these filaments too disappear, 

but still their associated arcades of loops linger on, spanning the neutral lines in the 

longitudinal magnetic field over which the filaments had formally lain. With the further 

passage of t ime the loops in the arcade increase in number and become fainter until, 

the magnetic field of the original active is fragmented and dispersed and no apparent 

X-ray trace of its presence remains (Bray et al 1991, Zhang et al 1992). 

Little information is available about the detailed relationships between hot loops 

observed in different regions of the spectrum. As we have seen X-ray loops associated 

with an active region are similar in general appearance to those seen in hot EUV lines, 

but systematic comparisons are lacking. More attention has been paid to the complex 
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relationship between radio and X-ray loops. Lang et al 1982, Lang & Wilson (1982), 

Webb et al (1983), Dulk & Gary (1983) found that in general, the areas of microwave 

emission on their maps were not associated with X-ray emission, although several of 

them were found to coincide with the apparent bases of short coronal X-ray loops and 

few of them with the tops of X-rays loops. Webb et al (1983) explain this apparent lack 

of association as a consequence of the strong dependence of the gyroresonance opacity 

on variations in the strength and direction of the magnetic field pervading the active 

region. Thus, a radio loop and an X-ray loop could coincide in space but look very 

different on maps depicting the emission which escapes. 

We shall end this section, giving first in Table 1.3 the known quantitative data 

concerning the morphological, dynamical and physical properties of hot loops and 

second a comparison between cool and hot ones (Bray et al 1991). By contrast with 

cool loops, where the data comes almost exclusively from Hcc and various EUV lines, 

here we are able to draw upon data from no less than four regions of the spectrum. 

When we examine the tabulated figures for the various morphological and physical 

quantities, we see that - despite the rather large of values in many cases - the picture is 

a consistent one. In fact, all hot loops appear to be basically similar in their properties 

regardless of the wavelength region in which they are observed. Also, by contrast 

with cool loops, dynamical information is not available for hot loops. The inferred 

temperatures and electron densities cover the ranges 106 to 3 χ ΙΟ6 Κ and 1.5 χ IO8 

to 2 χ ΙΟ 1 0 cm~3 respectively, whereas the gas pressures cover a range of, at most, 

a single order of magnitude. This parallels a similar situation for cool loops and in 

fact, the actual values for pressure appear to be much the same for cool and hot loops. 

Once again, this suggest that, regardless of its temperature, a loop is in approximate 

pressure equilibrium with its surroundings. 

Comparing the two kinds of loops, it is found that hot loops, especially some of 

those observed in X-rays, can attain much greater heights than cool ones. Both hot 

and cool loops exhibit a wide range of lengths, but certain classes of X-ray loops 

(interconnecting) are much longer than cool loops observed in Hct or the cool EUV 

lines. Hot and cool EUV have much the same diameter, but cool Ha and La loops 

appear to be much than any other class, measurements of the inclinations of the 

loops planes to the vertical are sparse, but both hot and cool loops may be inclined at 

significant angles. In general, hot loops last longer than cool ones, and there appear to 

be no hot counterparts to the sorted-lived He* loops, which last for only a few minutes, 

from the other hand however, it is difficult to compare the electron densities in hot and 

cool loops, since both cover a large range, with considerable overlap. The gas pressures 

show a much smaller range, as pointed out above, and the values for hot and cool 

loops are much the same, this also applies to the non-thermal velocity, but there are 
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Quantity 
Height, true (km) 

Height, projected (km) 

Length (km) 

Separation of the footpoints(fem) 
Diameter (km) 

Aspect ratio 

Inclination of loop plane to vertical 
Lifetime 

Temperature (K) 

Electron density (cm~ ) 

Gas pressure (dyne/cm ) 

Nonthermal velocity (km/sec) 
Total magnetic field (G) 

Value 
110000-130000 (interconnecting) 

45000 
50000-100000 

200000-250000 (interconnecting) 
5000-70000 

100000-200000 (class II) 
50000-100000 (class III) 

25000-110000 (interconnecting) 
200000-500000 (quiet region) 

18000-29000 
7000-44000 (class I) 

10000-100000 (class II) 
50000-500000 (class III) 

70000-100000 
250000-500000 (quiet region) 

3000-22000 
3000-18000 

5000-11000 (class I) 
5000-20000 (class II) 

10000-30000 (class III) 
15000 

0.03-0.18 
0.1 (class 1,11) 
0.04 (class III) 

0.075 
7°-25° 

hours (small loops) 
days (large loops) 

> 6 hi· 
> 31 Λ r (interconnecting) 

> 10 hr (class I) 
hours-days (interconnecting) 

hours-days 
1-2.6 X 1 0 6 

2-2.2 X 1 0 6 

2-3.2 X 1 0 6 

1.7-3 X 1 0 6 

1.5-20 X 1 0 8 

1.8-20 X 1 0 9 

8-60 X 1 0 8 

5-25 X 1 0 8 

0.5 (class I) 
0.7-16.6 

2.4 (class II) 
2 

6-16 
130-200 

Wavelength 
B U V 

radiowave 
visible 
visible 

E U V 
X-ray 
X-ray 
X-ray 
X-ray 
E U V 
X-ray 
X-ray 
X-ray 

radiowave 
X-ray 
visible 

E U V 
X-ray 
X-ray 
X-ray 

radiowave 
E U V 

X-ray 
X-ray 

microwave 
E U V 

visible 
visible 

E U V 
E U V 
X-ray 
X-ray 

microwave 
Visible 

E U V 

X-ray 
radiowave 

visible 
E U V 

X-ray 
radiowave 

Visible 
E U V 
X-ray 

radiowave 
Visible 

radiowave 

Disk (D) or Limb 
D 
D 
L 
L 
D 
L 

D , L 
D , L 

L 
D 
D 
D 
D 
D 
L 
L 

D , L 
D 
D 
D 
D 

ί D 
D 
D 
D 
D 
L 
L 
D 
D 
D 
D 
D 

L 

D 

D 

D 

L 

D 

D 

D 

L 
D 
D 
D 
L 
D 

( L ) 

Table 1.3: Properties of hot loops (Bray et ed 1991). 

few measurements. Similarly, there are too few measurements of the total magnetic 

field to permit meaningful comment. In summary, hot loops tend to be thicker, longer, 

higher, and longer-lived than cool loops, with which they are not cospatial. however, 

our present knowledge appears to indicate that their other morphological and physical 

properties (except temperature) are similar. 

1.4.4 Flare loops 

In the two previous sections we have described in detail the morphological and physical 

properties of coronal loops which have nothing to do with the solar flare phenomenon. 

In this section we shall refer briefly in flare loops and their role in solar flares, since the 

coronal loop models constructed in this thesis have small relation with those in flares. 
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Flares appear to form two basic types, simple-loop flares and two-ribbon flares 
(Priest, 1984,1985, Svestka 1981). Two-ribbon flares, which are highly dynamic events, 
are perhaps the more interesting since most large flares fall into this category so that 
- with a given spatial resolution - the structure is more easily observed, and because 
they contain numerous loops. 

A simple-loop flare, also known as a compact flare or subflare, is a small flare 
which consists of a single loop or collection of loops which simply brightens and fades, 
without movement or change of shape (Priest 1984). It is observed both in Ha and 
in soft X-rays. Compact flares comprise some of the best flare observations obtained 
from Skylab, the main difference between compact and large two-ribbon flares is in 
the relative absence of continued heating and of a loop system growth of a compact 
flare during the decay phase. 

Two-ribbon flares rank as the largest and most energetic of all solar flares. Photo-
spheric magnetograms show that the two characteristic ribbons of bright Ha emission 
lie on either side of a line of zero longitudinal field strength treading the active region. 
Prior to the onset of the flare, this inversion line is usually occupied by a dark filament. 
Sometimes the two bright ribbons are straight, parallel and very similar in appearance. 
Often, however, the structure seen in Ha line is much more irregular. In such cases, 
however, the true two-ribbon nature of the flare can be established with the aid of 
maps of the longitudinal photospheric field, where the neutral line will be observed to 
separate the ribbons of flare emission. 

The process of the onset of a two-ribbon flare, starts quite some time before, with 
changes in the photospheric magnetic field (Svestka 1981). On the occasions when the 
fine, defined where the longitudinal field strength is zero, is marked by a filament, the 
rearrangement of the field is signalled by the activation and ultimately disruption of 
the filament. The disruption marks the appearance of newly-formed loops visible in 
Ha which form an arcade spanning the neutral Une. The footpoints of the loops are 
located in the ribbons which constitute the Ha flare. As the flare proceeds, the two 
ribbons are often seen to move apart with a velocity of 2 to 10 km/sec. The number 
of Ha loops that are visible at any time varies, and the duration of their visibility is 
from 6 to 23 min (Heinzel et al 1992). 

Early in the course of a flare a soft X-ray loop system is also observed; this system 
can outlast the optical event by many hours. As time proceeds new, progressively 
higher, Ha loops are formed, their footpoints remaining rooted to the ribbons. This 
process can last for hours, which explains why the Ha are often called post-flare loops. 
During the decay phase of the flare the X-ray loops are also formed as successively 
greater heights, greater than those of the Ha loops; the height of X-ray loops can 
extend to beyond 100000 km. The Ha and X-ray loop systems do not appear to consist 
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of single loops rising upwards but rather of newly formed or activated stationary loops 
appearing at successively higher levels. At heights similar to those of Ha and X-ray 
loops, loops are also observed in the EUV Unes (Pneuman 1981). 

The physical connection between the footpoints of the Ha loops and the chromo-
spheric ribbons has been known for a long time. More recent observations show that 
the Ha footpoints are located on the insides of the ribbons, while the X-ray footpoints 
are rooted in the middle and outer portions of the ribbons. This is consistent with the 
concept of "a system of hot loops (Pneuman 1981). 

It is of considerable importance to out understanding of the role of loops in flares 
to establish the site of the primary energy release. MacCombie &: Rust (1979) found 
that the tops of soft X-rays loops were considerably hotter and' brightei than the 
legs, and that in each case the temperature difference was maintained for at least 8 
hours, indicated a continual heating. Also, confidence for hard X-ray emission from 
the footpoints of loops has been presented. Nevertheless, the convectional view at the 
present time is that the primary energy release occurs at or near the tops of the flare 
loops, i.e. in the inner corona (Bray et al 1991). 

The morphological, dynamical and physical properties of flare loops observed in dif­
ferent regions of the spectrum are summarized in Table 1.4. For many of the quantities 
there is a large range in values - due in part to real variations from flare to flare and 
from loop to loop. However a satisfactory degree of consistency is apparent in most, 
but not all, cases. 

It is important to attempt a comparison between the Table 1.4 with the Tables 1.2 
and 1.3 for cool and hot non-flare loops described in previous sections. Let us con­
sider, firstly, the morphological and dynamical properties. In the case of Ha loops, we 
find that the properties of flare and non-flare loops are the same or nearly the same. 
However, compared with non-flare loops, Ha loop systems appear to be slightly higher 
and to last longer, as do individual flare loops. Ha loops must therefore be distin­
guished from non-flare loops by their other properties, including their other properties, 
including their closer association*with flares, brightness, direction of material flow, and 
number of loops in a system. 

The morphological and dynamical properties of EUV flare loops are also similar to 
those of EUV non-flare loops. EUV flare loops appear to lie somewhat lower, but the 
ranges of values overlap. The microwave data are inadequate to make a comparison 
between flare and non-flare loops meaningful (Heinzel et al 1992). 

Finally, in soft X-rays both flare and non-flare loops reach very great heights, but 
the non-flare ones appear to reach greater heights. But again the ranges overlap. The 
footpoint separation for soft X-ray flare loops appears to be much smaller, but this 
particular quantity is very dependent on the geometry, which is usually unknown. 
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In general, therefore, we are led to the conclusion that the morphological properties 
of flares and non-flare loops are remarkably similar, regardless of the wavelength region 
in which they are observed. 

The situation is very different when we compare physical conditions. For the hot 
not-flare loops we find that independent of the wavelength region, flare loops are ap­
proximately an order magnitude hotter than non-flare loops. Also, except in the EUV, 
the electron density is also an order of magnitude greater. Accordingly, we arrive at the 
important conclusion that the gas pressure in flare loops is approximately two orders 
of magnitude greater than in non-flare loops. 

The value of the total magnetic field given by the microwave observations appears 
somewhat bigger for flare than for non-flare loops, but in both cases the results are 
sparse. 

Finally, unlike hot flare loops, cool flare loops observed in He* and other visible 
region fines yield similar values for the electron temperature and also of the non-thermal 
velocity to those of cool non-flare loops. 

In summary, the extensive numerical data which has been derived for flare and 
non-flare loops leads to the conclusion that hot flare loops are distinguished from hot 
non-flare loops by their very different physical conditions rather than by morphologi­
cal differences. By contrast, cool flare loops can be distinguished from their non-flare 
counterparts only by characteristics other than their morphological and physical prop­
erties. 

1.5 Flows in solar atmosphere 

Solar observations from Earth and satellites have established the fact that the solar 
atmosphere is not a static one but it is in a continuous motion. Apart from the well-
known motions like granulation, spicules, Evershed effect e.t .c, many others have been 
discovered in the recent years. In this chapter we shall review some of these recent 
observations of systematic mass motions related with the subject of this thesis. 

1.5.1 S up er granular flow 

Supergranules are defined by photospheric horizontal flows diverging from the cell cen­
ter and converging at the network-bordering adjacent cell. Magnetic knots are located 
at the foci of of converging flow and are associated with downflow of the order of 0.1 

.^^fffigZ^kiri/sec. Upflow occurs near the cell centers, but unlike the downflow it is not 
^oeffS^tsÈ^d in small tubes and it is lower in amplitude. There is a continuity in 

t& / t h e superèrWmle circulation from the photosphere to the middle chromosphere span-
! l IfflBAioemfo ) | f 
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Quantity 
Height, true (km) 

Height, projected (km) 

\ 
Length true (km) 

Length projected or estimated (km) 

Separation of the footpoints(fcm) 

Diameter (km) 

Inclination of loop plane to vertical 
Tilt of axis of symmetry 

Lifetime 

Axial flow speed (km/sec) 

Temperature (K) 

Electron density (cm~ ) 

Gas pressure (dyne/ cm ) 

Nonthermal velocity (km/sec) 
Total magnetic field (G) 

Value 
45000-60000 
4200-13000 

<2000-50000 
15000-50000 
60000-79000 
33000-67000 

15000 
35000-180000 
60000-100000 
23000-27000 
30000-65000 
10000-20000 

15000 
7250-100000 

45000-250000 
35000-55000 

30000 
< 1500-2200 
2500-14000 

3000 
5000-20000 

6000 
2200-9400 

l ° - 4 5 ° 
5°-14° 

12 hr ( loop system) 
0.25-1.5 hr (single loop) 

13 h r (single loop) 
< 72 /ir(single loop) 

45-110 
30 (downflow) 
200 (upflow) 
7600-21000 

5 X 1 0 6 

2-2000 X 1 0 4 

5-50 X 1 0 5 

1.5 X 1 0 7 

6.8 X 1 0 6 

3 X 1 0 7 

3-7 X 1 0 7 

1-7 X 1 0 1 0 

2-30 Χ 1 0 1 1 

8-2000 X 1 0 8 

4.7 X 1 0 1 0 

1.7 χ 1 0 1 0 

3-11 X 1 0 1 0 

1 0 1 0 

2-700 X 1 0 8 

55 

0.02-7 
ι 195 

1 3 8 

3-16 
21-500 

120-176 

Wavelength 
H a 

E U V 
hard X-ray 
microwave 

H a 
E U V 

soft X-ray 
soft X-ray 

H a 
E U V 

microwave 
E U V 

soft X-ray 
soft X-ray 
hard X-ray 

H a 

soft X-ray 
H a 

E U V 
soft X-ray 
soft X-ray 
hard X-ray 
microwave 

visible 
visible 

H a 
H a 

E U V 

hard X-rày 
visible 
E U V 
E U V 

Visible 
Visible 

E U V 
E U V 

soft X-ray 
soft X-ray 
hard X-ray 
microwave 

Visible 
E U V 
E U V 

soft X-ray 
soft X-ray 
hard X-ray 
microwave 
microwave 

Visible 
E U V 

soft X-ray 
microwave 

Visible 
microwave 
microwave 

Flare phase 
3 

1,2 
2 
2 
3 
3 
1 
3 
3 
1 
2 

0 ,2 
1 i 
2 
2 
3 
1 
3 

1,2,3 
1 

2 , 3 
2 
2 
3 
3 
3 
3 
3 
3 
3 

1,2,3 
2 

-
-
-
3 
2 
3 

2 , 3 
2 

-
0 
3 
2 
3 

-
0 

1,2 

-
3 
2 
2 

-
1,2 

3 

Table 1.4: Properties of flare Joops (Bray et al 1991). The last column refers to the 
flare phase, 0 =preflare, 1 =rise, 2 —maximum, 3 = decay. 
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ning approximently 1500 km and 10 scale heights. Although the sense of the flow is 
preserved over this extended height range, the detailed pattern changes markedly. At 
photospheric levels, the horizontal flow velocity of about 0.8 km/sec greatly exceeds the 
vertical flow velocity, whereas in the middle chromosphere the two are approximately 
equal and are increased to at least 3 km/sec (Athay 1980). 

1.5.2 Flows in sunspots 

The most-well known example of plasma flow is of course the Evershed effect (Alis-
sandrakis et al 1988,1992, Dere et al 1990, Dialetis et al 1985, Kjeldseth-Moe et al 
1993). It was J. Evershed in 1909 who showed that observations implied a mainly 
radial outflow in the penumbra at about 2 km/sec, although some evidence has also 
been given for substantial vertical and tangential components. The flow begins near 
the umbra/penumbra border, achieves maximum speed in the penumbra and decays 
within a spot diameter of the outer penumbral boundary. 

The Evershed flow associated with large sunspots has both striking similarities and 
differences from supergranular flow. Among the similarities are the predominance of 
horizontal flow and the divergence from a well-defined center. Among the differences 
are the concentration of vertical magnetic flux at the center of divergence of horizontal 
flow (the sunspot umbra) rather than at the foci of convergence, and the reversal of 
the sense of flow between the photosphere and chromosphere. 

Early observations indicated that the Evershed outflow was largest in the weakest 
photospheric lines, decreased progressively in stronger lines, and then reversed sing 
to increase with line strength as an inflow in chromospheric lines. This dependence 
upon line strength suggested a height variation. But more recent spectral in imaging 
observations at higher spatial resolution have shown that the interpretation is more 
complex, and the Une strength dependence does not yet seem to have a widely accepted 
explanation. 

One finding is that the photospheric outflow is observed only in the dark penumbral 
filaments, where it may be reach velocities up to 6 km/sec (Fig.1.30). The inward 
Evershed flow observed in Ha is clearly associated with rapid motions of chromospheric 
penumbra and extend well beyond it. It is possible that this Ha inflow is just coronal 
material falling into umbra along relatively much higher field lines and has little to do 
with the photospheric Evershed effect. Both flows are usually subsonic, but supersonic 
velocities also have observe in chromospheric altitutes near the the spot. In this area 
the velocity fields often deviate considerably from circular symmetry. It must be note 
that high spatial resolution observations are compatible with the fact that around 
sunspots the plasma flows along the magnetic field fines. 
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Figure 1.30: Components of the velocity vector as a function of distance from the 
center of the spot. Positive radial component corresponds to inßow, positive vertical 
component to upûow and positive azimouthal component to clockwise motion, (a) 
photosphere (Fel 6173 Â). (b) chromosphere (Ha ± 0.3 Â). (c) transition zone CIV 
1548,1550 Â(Dere et al 1990). 

In transition-region lines the situation is less clear, because the flows appear more 

complex. The velocity is, on average, directed into the sunspot with predominant 

vertical directions. If averaged over all position angles in the sunspot, velocities are 

modest and subsonic. In high spatial resolution observations are seen multiple velocity 

structure with velocities up to 100 km/sec. One or two distinctly supersonic velocity 

components may appear in addition to a component with subsonic speed. The regions 

with supersonic speeds may cover a large part of the entire sunspot region. Smaller 

areas of concentrated mass flux may occur within the regions. Also moderate upflows 

are also present in the transition region. Finally the flow pat tern persist for long period, 

but show clear changes on time scales from minutes to days. Finally in active regions, 

downflow speeds of 70-100 km/sec are commonly observed in the "coronal rain" of 

plasma cooling from ΙΟ6 Κ to 10 4 K, draining along fieldlines into sunspots. 

1.5.3 Flows in filaments and prominences 

The presence or not of systematic flows in filaments is a controversial subject. Down-

flows observed in prominences seen in the limb, while upflows in filaments in the disc. 

The concept of the existence of mean upward flow in a filament is generally accepted 

with an amplitude of 0.5 km/'sec in H a and of 5 km/sec in CIV. But strong downflows 

comparable in H a and CIV are observed (< 10 km/sec) at footpoints at the end of a 

filament, lasting 1 to 10 h. Up and down motions ( ± 6 km/sec in H a ) are also observed 

at footpoints suggesting the existance of loops. It should be noted that the detection 

of Doppler speeds in H a in filaments is difficult because of their transparency (Athay 

1989, Chou & Zirin 1988, Georgakilas et al 1990, Schmieder 1987, Schmieder et al 
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1985). 
Analysis of mass motions from center to limb observations in prominences shows the 

existance of an horizontal flow in and around the filament. Fast horizontal motions of 5 
km/sec are inclined to the prominence axis with an angle of « 20°. The direction of the 
velocity is the same as that of the magnetic field fines. Also observations in EUV lines 
shows the presence of horizontal motions with small velocities (< 20 km/sec). Also in 
some cases horizontal velocities are slightly less than the vertical one because of the 
presence of different structures, like bushs of small loops, aligned along the filament 
axis. 

Finally, Athay et al (1983) studies CIV Doppler velocities in an active region, and 
found a velocity neutral line coincident with the magnetic neutral line. While their 
results may not apply to quiescent prominences, they do suggest a large-scale systematic 
flow (in loops perhaps), associated with a magnetic arcade. 

1.5.4 Coronal rain 

Coronal rain is a phenomenon observed over active regions at the limb. Bright con­
densations at coronal levels are observed to funnel into localized areas as trough the 
matter were channeled along magnetic lines of force above one pole of a cupole. This is 
different from the situation for post-flare loops in which matter is seen flowing in both 
legs of a closed loop system, i.e., into both poles of a dipole. Also, the flow trajectories 
for coronal rain typically have less curvature than in post-flare loops, and the focus of 
the inflow is less well defined than in the case of post-flare loops. Material velocities for 
the falling condensation in coronal rain are typically of the order of 100 to 200 km/sec. 
The motion appears to be subsonic in nearly all cases. In general, coronal rain is not 
identified with energetic phenomena related to flare activity (Athay 1980, Athay et al 
1980, Bruner et al 1976, Withbroe & Noyes 1977). 

1.5.5 Surges and sprays 

Surge and spray prominences are associated with flare activity. Both consist of violent 
upheavals of major proportions. Also, both are associated closely with flare-like events 
at the seat of the ejection. It is possible that all true surges occur as expansions of 
flare material (Athay et al 1980). 

Sprays, in general, are more violent events than surges and are more typically 
associated with larger flares. The ejection velocity in sprays exceeds that in surges 
criterion which used for the definition of sprays i.e., ejections for which the outward 
velocity exceeds the escape velocity. Also sprays can be defined in terms of their frag­
mented appearance. In this definition, a spray consists of small, discrete condensation 
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or droplets, whereas surges are more typically fibrous streams of ejected material which 

appear follows the magnetic field lines. 

Surges have have typical velocities of 100 to 200 km/sec. Their upward motion of 

10 to 20 minutes duration, and often along a curved trajectory, is usually followed by 

a retraction along more or less the same path . This is consistent with the conclusion 

tha t the magnetic field pat tern remains the intact. If one considers sprays as those 

events for which the velocity exceeds the escape velocity, then spray éjecta are found 

to typicallyv move in straight fines and never reverse direction. Spray velocities up to 

1500 km/sec are observed (Athay 1980). 

1.5.6 Flows in loops 

In the recent years space observations shows the dominations of loop structures in the 

appearance of the active corona. Apart from the classification of section 1.3.5 we can 

distingouist in two district classes - a high-temperature one or hot loops, (T > ΙΟ6 K) 

for which equilibrium apparently prevails, and a low-temperature one or cold loops (T < 

10 6 K) characterized by large plasma flows. The time behavior of these two classes, 

even though not yet satisfactorily defined, seems to be qualitatively different, hot loops 

have longer durations and appear to be more stable than cool loops. Gerassimenko et 

al (1978) in examing the time behavior of three loops found less than a two percent 

variation over a 25-min period. Sheeley (1980) on the bases of FeXV observations, 

noted t h a t a typical loop pat tern lasts for several days, whereas the individual loops 

within the pattern evolve on a t ime scale of about 6 h. Levine & Withbroe (1977) 

reported a sizable decrease in NeVII emission from a loop observed by Skylab over 

a 16-min period, as well as a total loop disruption in less than 2.5 h. Contrasting 

evidence, however is shown by the cool loops studied by Foukal (1976), who found 

only little variation in a NeVII loop observed with a time separation of 5 h. Also 

temporal changes in loop morphology or emission pattern comprise indirect evidence 

for motions. For cool loops such evidence derives also from consideration of their overall 

visibility pat tern at any instant, loop structures extending up to 50000 km above the 

limb are not uncommon, and observations show no evidence for density variation for 

the factor 10 3 — 104 over this height range that would expect to characterize a plasma 

in hydrostatic equilibrium at IO 5 K. 

But also direct observations suggest the existance of a family of coronal loops char­

acterized by mass flow of the plasma inside the loop (Fig.1.31). Mass motions with 

velocity up to 100 km/sec have been observed in the chromosphere-corona transition 

region, particular in areas of intense vertical magnetic field (i.e., active regions), such 

as those where coronal loops are likely to be rooted. These conclusions coming from the 
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Figure 1.31: Line of sight velocity maps in CIV (1548 Â) of a loop region observed at 
two different times. Filled circles (inverted triangles) correspond to positive (negative) 
velocities, i.e., to blueshifts (redshifts) and the size of the symbol plotted is proportional 
to the observed line of sight velocity. The superimposed curves are the semicircles that 
best represent the shape of the loop. Also is drawn the solar limb (Kopp et al 1985). 

general observed redshift broading of transition region profiles. The redshift velocity 
increase initially with temperature reaching a maximum at ΙΟ5 Κ and after it decrease. 

In general this broadening is larger than the thermal or the expect turbulence broad­

ening by an averaged excess velocity of 18 km/sec. The emission pattern appears to 

be steady for days and to be confined to areas of closed magnetic field. Finally, large 

flows along loop structures have been also observed in the corona (Athay 1981; Kopp 

et al 1985, Withbroe & Noyés 1977). 

This catholic redshift emission is one of the most fascinating and puzzling results 
of the EUV observations of the Sun (Fig.1.32). The inferred mass flux at ΙΟ5 Κ is 

sufficient to empty the corona in only a few minutes, it seems highly unlikely that a 

true net downward mass flux (which would also require plasma to cross closed mag­

netic fieldlines) is involved. More likely the apparent downflow results from a spatial 

and/or temporal averaging of the motion of material which is more visible (at EUV 

wavelengths) when descending than when ascending (i.e., motion along loop-like field-

lines). Although that the downflow mass flux rate is comparable to that of spicules, 

it is unlikely that the two mass flux rates refer to the same phenomenon, because in 
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Figure 1.32: Wavelength shifts in active region spectra and the corresponding Doppler 
line of sight velocities as a function of solar longitude, for lines CIII (1175 A), SiIII(1294, 
1296 A), OW (1401, 1407 A) SHV(1394 A), NV (1239, 1243 A) and OV(1218 A). The 
solar limb corresponds to sine? = 1 (Feldman et al 1982). 

active regions where the down flows are strongest, spicules appear to be suppressed. 

There are also theoretical reasons for expecting such flows. Any pressure difference 

between the footpoints would induce a plasma flow along the loop (Glenross 1980, 

Loughhead et al 1984, Mariska 1984,1988). This should persist for a long time - if 

not disturbed - without canceling the pressure difference itself, given the large mass 

difference between coronal and chromospheric regions of a loop. It appears that loops 

can exist which are not in hydrostatic equilibrium; however, there are likely to be in a 

steady state since the free-fall time (103 sec for a loop of 105 km of height) and sound 

travel time (102 sec) are much shorter than the lifetime. Loops often appear to be stable 

for more than a day (Webb 1981). Finally Craig & McClymont (1986), McClymont 

& Craig (1987), McClymont (1989) tried to explain theoretically the presence of the 

redshift emission in transition region saying steady high-speed flows can exist only in 

cool loops so it gets out that only t h e downflow leg of the loop is visible; if the hot loops 

(with high densities) have flows would be dominated both the blueshifted emission in 

transition region temperatures and the Doppler-shift emission in coronal temperatures. 

Thus we see that in many cases the plasma flows are present in solar structures. 

Especially in active regions the plasma is not a static one. Following Priest (1984), is 

now known that the active-region plasma is dynamic with continual activity in the form 

of a wide range of flows along fieldhnes, while the magnetic field of an active region 

probably evolves through a series of essentially stationary states, mainly force-free. 

In fig.(1.33) we see a typical situation of the various flows presented by Priest (1984) 

discussed previously. In briefly, ground based observations reveal Evershed outflow (6 
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to 7 km/sec), inflow (20 km/sec), network downflow (0.1 to 2 km/sec), surges (20 to 
30 km/sec) spicules (20 to 30 km/sec) and coronal rain (50 to 100 km/sec). Space 
observations show both transient, small scale, fast flows (0 to 150 km/sec), lasting for 
minutes or less, and persistent, large scale slower flows (2 to 10 km/sec), lasting for an 
hour or more (Priest 1984); also, in transition region lines (Doschek et al 1976, Feldman 
1982), or X-ray coronal lines, systematic flows (50 - 100 km/sec) may be responsible 
for the observed nonthermal X-ray line broadening. Furthermore, if these flows occur 
along contorted magnetic field lines (Parker 1983), the derived excess velocities of 100 
km/sec (Acton et al 1981), or 50 km/sec (Saba & Strong 1991), may represent a lower 
limit since the actual velocities could be several times larger, perhaps even comparable 
to the sound speed. 
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Figure 1.33: Several types of active region flow from (a) ground-based observations. 
The schematic active region has preceding magnetic flux (left) concentrated as a 
sunspot and following flux (right) more diffuse. Heavy-headed arrows indicate the 
ûow directions and the numbers give the typical speeds in km/sec. In (b) transient 
ßows has dashed arrows, while large-scale steady ßows are indicated by sohd arrows 
(Priest 1984). 
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Chapter 2 

THEORY OF SOLAR 
PLASMAS 

If the plasma moves in a magnetic field, electric fields are induced in it and electric 

currents flow. The magnetic field exerts forces on these currents which may consider­

ably modify the flow. Conversely, the currents theirselves modify the magnetic field. 

Thus we have a complex interaction between the magnetic and the fluid-dynamic phe­

nomena, and the flow must be examined by combining the field equations with those 

of fluid dynamics. In this chapter we shall derive the basic equations discrubing this 

interaction. 

2.1 The reduction of Maxwell equations 

Maxwell equations for an electric field E and magnetic field Β in any inertia! coordinate 

system in the presence of a net charge density 8 and current density J are 

ν · Ε = 4ττδ, (2.1.1a) 

dB 
V x E = "äT' (2- l lb ) 

V B = 0, (2.1.1c) 

where c is the speed of light. 

61 
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In a frame of reference moving with velocity V relative to the coordinate system, 

the electric field E' is (Jackon, 1975) 

E' = V ( E + ^ - 5 V (2.1.2a) 

B ' = Y ( B - ^ ^ ) , (2.1.2b) 

where γ = (1 — V2/c2) is the Lorentz factor. We assume now that the charged 

particles (electrons and ions) that produce these fields can be regarded as a neutral 

continuum (because the free electrons quickly neutralize any separated charges, so the 

charge densities of the electrons and ions are equal, 8 = 0), and the whole system can 

be approximated as a fluid which means that all physical quantities that characterize 

the fluid are averaged values of the real one. Such a description is possible in the case 

of cosmic plasmas when the Debye length, the cyclotron radius and the mean free path 

for Coulomb collisions are much smaller than a characteristic length of the plasma 

(Tsinganos 1992a). 

Assuming next that the background fluid is a classical fluid with a large scalar 

electrical conductivity σ, in the frame of reference of the fluid the electrical current 

density J ' is related to the electric field by Ohm's law (Parker 1979) 

J ' = a E ' . (2.1.3) 

Consider now the fact that most flows observing in the Sun and the most astrophys-

ical flows are extremely nonrelativistic, i.e., V/c < < 1 where V is a characteristic bulk 

flow speed. Then, in the view of the high conductivity, it follows that the displesment 

current ΘΈ/dt and the polarization current 6*V are both smaller by V2/c2 times to the 

electric current density J . Thus, in those circumstances the plasma is electrically neu­

tral and the only electrical fields that are present are the induced (Eq.2.1.1b). Thus, 

we have the Ampere law 

V x B = — J , (2.1.4) 
c 

Also, neglecting second order terms in V/c we found that the magnetic field in the 

moving and fixed frames are equal, B' = B, so the current densities in the moving and 

fixed frames are equal, J ' = J . This is easy to understood because the polarization 

current 6Y is negligible. It follows from Eqs.(2.1.3) and (2.1.4) 

/ V x B \ • , 
3 = σ[Ε + . (2.1.5) 
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Thus, using Eqs.(2.1.1b), (2.1.4) and (2.1.5) to eliminate J and E we obtain the mag-

netohydrodynamic (MHD) induction equation 

<9B 
— = V χ (V χ B) + V χ (T/V χ Β), (2.1.6) 

where for converience we have defined the resistive diffusion coefficient 

If η is independent of the position, as usually assumed, Eq.(2.1.6) reduces to 

<9B 
- = V x ( V x B ) + f/V2B. (2.1.8) 
ot 

Writing Eq.(2.1.8) in dimmensionless form we see that the first right term dominates 

if 

Äm = - i — » 1 , (2.1.9) 
V 

where Rm is the magnetic Reynolds number (£*, V* being characteristic length and 
velocity scales of the plasma). Using the Spitzer electrical conductivity σ = 10 7 T 3 ' 2 

one finds for the most solar structures Rm « 10 1 2 so the plasma is almost perfectly 

conducting (σ —» oo) and Eq.(2.1.8) simplifies to 

<9B 
— = V x ( V x B ) . (2.1.10) 
at 

This limit of MHD is called ideal MHD. Following from the ideal limit, the 'frozen-

in flux' theorem of Alfvén holds; namely "in a perfect conducting plasma, ßeld lines 

behave as if they move with the plasma". 

2.2 Plasma Equations 

The behavior of the magnetic field, which is described by the induction equation, is 
coupled to that of the plasma by the presence of the velocity term in this. The plasma 
motion is in turn governed by the equations of mass continuity, momentum and energy. 
When ρ and Ρ are the plasma pressure and density, 

P=^- pT, (2.2.1) 
m 



64 CHAPTER 2. THEORY OF SOLAR PLASMAS 

i.e. the perfect gas law holds for the plasma (where kß is the Boltzmann constant and 

m is the mean particle mass; m = mp/2 for a fully ionized H), the mass continuity 

equation can be written as 

a / ? + V - ( p V ) = 0 , (2.2.2) 
dt 

the equation of motion as 

= -C. (2.2.4) 

9V V χ Β χ Β 
P W + p{y ' v ) v = " v p + ^ ^ — p v u ' ( 2 · 2 · 3 ) 

and the energy equation 

ρ* Γd ( Ρ 

7-l[dt\p\ 

where 7 is the ratio of the specific heats of the plasma (For a fully-ionized hydrogen 

plasma 7 = 5/3). In Eq.(2.2.3) U is the gravitational potential, usually known, because 

in the most cases the self-gravitation of the plasma is negligible. Also in Eq.(2.2.3) we 

have neglected viscous, and rotational forces because for the most solar applications 

are very small compared to the other inertial terms. Also in Eq.(2.2.4) C is t h e energy 

function and may be written as 

C = V-q + Lr-H, (2.2.5) 

where q is the heat flux due to particle conduction; Lr is the net radiation, and Η 

represents the sum of all other heating sources (i.e. from nuclear reactions, from viscous 

and wave heating, from ohmic dissipation heating etc). 

Often, when the energetics of a process is not of prime consideration, the energy 

equation is approximated by the polytropic approximation which holds for each plasma 

element following its motion, 
Ρ 
— = const., (2.2.6) 
pa K ' 

where α is a constant. This approximation is simply meant to model tempera ture 

variations in a rough manner, but it may be derived from the full energy equation 

when the only contribution to L is the conduction term and the conductive flux q is 

proportional to the work done by the pressure. If a < 7 we have a heated plasma; 

the opposite happens if α > η. Also the two extreme cases are important . When 

a — η this means that C = 0 and the plasma is thermally isolated and its variations 

are adiabatic. This is the case when the time-scale for changes in Ρ , ρ and Τ much 

smaller than the time-scale for radiation, conduction and heating; this is often valid 

for rapid changes associated with wave motions or instabilities. From the other hand 

if a = 1 this means that following the motion the temperature of each plasma element 

Τ is constant (Priest 1984). 
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2.3 Equations of ideal Magnetohydrodynamics 

dv 
p~dt 

As discussed in the two previous sections, in the cases of a non-relativistic plasma 

with very large conductivity (σ —> oo) and very low viscosity, in which a characteristic 

scale of the system is much larger than all the microscopic characteristic lengths of the 

plasma, the equations which governed the structure and the evolution of the plasma 

are those of the ideal magnetohydrodynamics (MHD) 

V B = 0, (2.3.1a) 

; s ( 2 - 3 - l b ) 

(2.3.1c) 

pVU, (2.3.Id) 

: . (2.3.1e) 

(2.3.11) 

Thus, we have a system of nine partial differential equations with nine unknowns, 

namely the B, V, Ρ, ρ and T. The solenoidal equation (2.3.1a) is used for posing 

conditions in the magnetic field configuration. 

The properties and general behavior of the solutions of the set of Eq.(2.3.1) are not 

known due to its mathematical complexity. Thus, the time-dependent problem posed 

by Eqs.(2.3.1) is formidable and no progress has been made so far towards its solution. 

To simplify the mathematical structure of MHD equations further, we make the 

assumption that all timescales are much larger that the Alfvén and the sound travel 
time. This is not an unreasonable assumption when modeling the solar atmosphere 
(at least to first order) where structures evolve fairly slowly (ranging from hours to 
months). Thus, all time-dependent terms are neglect and we have the following set of 
steady equations, 

V B = 0, (2.3.2a) 

! + v.(,v) = o, 
C'B _ ,_, „ , ^=Vx(VxB). 

- + „(v.v)v = -vp + V xfx B 

47Γ 

ΡΊ 

7 - 1 

P=k-S-PT, 
m 

— 

p(V • V)V = - V P + 

V-(pV) = 0, 

V x ( V x B ) = 0. 

V χ Β χ Β 

4π 
pVU, 

(2.3.2b) 

(2.3.2c) 

(2.3.2d) 
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P1 

Ί 
j(V-V)^=-£. (2.3.2e) 

P=—pT, (2.3.2f) 

m 

Equilibrium states that satisfy Eqs.(2.3.2) may be used to study the macroscopic 

behavior of astrophysical plasmas such as sunspots, solar coronal loops and promi­

nences, solar and stellar winds, jets, etc. But also and in this case there are not 

known exact solutions, except from the trivial equipartition solution Β = V/y/4wp, 

ρ = const, and solutions for symmetric configurations. At this point we must say 

that there is a discussion (Grad 1967, Parker 1972,1976,1979, Yu 1973, Low 1975a,b, 

1980, Edenstrasser 1980a,b, Rosner & Knobloch 1982, Tsinganos 1982a,b, Tsinganos 

et al 1984) on the question of the existance of solutions of MHD equilibrium without 

any symmetry. It seems that , except from the equipartition case, there are not other 

non-symmetric solutions and non-equilibrium is the result. The need for some symme­

try arises from the mechanics of balancing the highly anisotropic Lorentz and inertia! 

forces with pressure gradients and gravity, which are forces involving scalar potentials. 

The requirement of symmetry can be expressed mathematically in the form of a local 

compatibilility relation. In the most simple case this compatibility relation is express 

through the existance of one ignorable coordinate so the resulting solutions are 2-D. 

Because the only 3-D known solutions are magnetostatic (Borgan & Low 1986, Low 

1980,1985,1992) and force-free (Low 1988), in the following we will present a method 

to generate families of symmetric solutions having an ignorable coordinate. 

Starting our analysis from Eq.(2.3.2c) we conclude that the requirement of equilib­

rium excludes space filling ergodic Unes; this property may formally be seen from the 

integral of this equation 

V x B = V $ , (2.3.3) 

where Φ is the induction potential. An arbitrary hydromagnetic system in equilibrium 

should satisfy Eq.(2.3.2). However, this equation alone requires that magnetic lines 

and streamlines cannot be ergodic in 3-D space, since they are constrained to He on 

2-D surfaces (Tsinganos 1992b). This follows immediately from Eq.(2.3.3) 

ν · ν Φ = Β · ν Φ = 0, (2.3.4) 

so, magnetic fieldlines, together with streamlines are constrained to he on the sur­

faces Φ = const.. In the following, we shall derive a scalar differential equation t h a t 

will define these surfaces under the assumption that the hydromagnetic system has a 

symmetry expressible through the existance of an ignorable coordinate. 

The system of coordinates is (x i ,£2,^3) with fine elements hi(xi,x2), ^2(^1,^2), 

hz(x\,X2), wherein coordinate x$ is ignorable. T h e general solution of Eqs.(2.3.2a,b) 
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can be written in terms of a vector potential xz-component A{x\,X2) and a stream 

function iS{x\iX2) (which, as noted, are functions of x\ and X2 alone) 

r)A r)A 
h2h3B1 = i p h1h3B2 = - J - , (2.3.5) 

OX2 OX\ 

Aa/is^! = 7 - ^ — ^ 3 / ^ 2 = - — ^ — , (2.3.6) 
47Γ 9 x 2 4π αχ\ 

Lines of constant A are field lines of the meridional field, while lines of constant Φ are 

stream lines of the meridional flow. 

Following the formalism of Tsinganos (1982) we write the Eqs.(2.3.2c,d) in Jacobian 

notation, ! * 

OX\ OX2 OX2 OX\ 

When {f,g} = 0, this means that V/ and \7g are parallel, / and g are both constants 

on the same lines in the £1-2:2 plane. 

The χι and a : 2 - c o m P o n e n t s °f the induction equation (2.3.2c), yield 

έ ( ^ Μ Α { * < Α } ) = 0 ' (2·3·8) 

and 
9 / 1 * { Φ , Α Λ = 0 , (2.3.9) 

dxi \4πρ hih2hs 

and are equivalent to the single expression 

{Φ,Α} = 0, (2.3.10) 

which its solution is 

Φ = Φ(Λ). (2.3.11) 

Thus the magnetic and stream surfaces (magnetic and steam axes) coincide (Fig.2.1). 

Notice, however, that the streamlines do not coincide everywhere with the magnetic 

lines, since, in general, there is a nonuniform convection of the fields in the ignorable 

direction arising from the difference of the field components V3 and S 3 . 

The ^-component of the induction equation (2.3.2c) gives 

{Μ-{ά··}-°· (2'312) 

or equivalently 

Vz - ^-Bz = h3$A = hzÛ, (2.3.13) 
47Γ/9 
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hydromognetic surface 

magnetic line —^ / stream line 

ΑΙχ,,χ^* constant 

magnetic axis A = A 0 

Figure 2.1: Schematic drawing of a toroidal hydromagnetic surface. The ßelds are 
independent of the coordinate x3 (Tsinganos 1982). 

where Ω(Α) is a function of A relating to the induction potential V χ Β = V # and the 

subscript A in functions Φ and Φ denotes the derivative with respect to their argument 

A. 

From the ^-component of the momentum balance equation we get 

{h3B3-h3VAV3,A} = 0, (2.3.14) 

which has the general solution 

h3Bz - h3VAV3 = G(A), (2.3.15) 

where G(A) is another function of A. 

From the Eqs.(2.3.13) and (2.3.15) we have the following expressions for the field 

and velocity components in the ignorable direction 

ι - δ ) " · = * » η + ^ · ( 2 · 3 1 β ) 

( l - g ) * , = * ! » , + £ . (2.3.17) 

Notice the appearance of a "critical" surface from these two relations with the equations 

Φ^=4π/ί> G + hlnVA = 0. (2.3.18) 

It is easy to check that when the flow is field aligned, Ω = 0. Then, 

4πΡν = ΦΑΒ. (2.3.19) 

In the final step, integrate the remaining two components of momentum equation. 

We must distinguish two cases according to use either (i) the polytropic approximation 
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(Eq.2.2.6) or more general an equation of the form Ρ = P(p), or (ii) the detail energy 

equation (2.3.2e), together with the gas law (2.3.2f). 

(i) In case when the pressure is a function of the density only the momentum balance 

equation can be written as 

VW = ( V x B ^ X B + V x V x V , (2.3.20) 
4πρ 

where \ 
f dP V2 

W 
f dP V2 

and U = U(xi,X2) is the gravitational potential. The Lorentz force has no component 

along the lines of magnetic force, so, 

B- VW = B - ( V x V x V ) , (2.3.22) 

which can be manipulated into the form 

{W'A] = v?{h*y*'A] ~ s ^ { h l B ^ A h ( 2 · 3 · 2 3 ) 

Transforming Eq.(2.3.23) to X\-A coordinates after some algebra we find that, 

/ 

dP V2 Ω 
— + U + — - ^-h3B3 =.E(A), (2.3.24) 
Ρ 2 ΨΑ 

where E(A) is a definite function of A and represents the energy flux density per unit of 

mass flux density. It is the sum of the thermal f dP/p, kinetic V2 /2, potential Î7, and 
Poynting Β x (V χ Β)/4π/>ν energy flux densities per unit of mass flux density. The 

invariance of E on each streamline is simply the consequence of the time independence 

of the equations. 

Now the remaining x\ and ^-components of the momentum balance equation can 

be written 
1 / d fa d_ _d hi d_\dA 

h\h2hz \dx\ hih3 dxi dx2 /Ì2^3 9x2 J dxi 

Φ A / d h2 Φ Α dA d h^ ΦΑ dA \ dA 

hih,2hz \dx\ h\h3 4πρ dx\ dx2 h2h3 4πρ dx2 ) dxi 

+4lTpdx~ = 2ΛΪ{^"-fri dx7~) ' ( 2 3 · 2 5 ) 
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where i = 1,2. If we write these equations in (XJ,A) coordinates respectively (j = 2,1) 
and transform the partial derivatives with respect to A to derivatives of suitable func­
tions of A alone, they reduce to the following expression for A(XÌ,X2) called transfield 
equation 

h\h2hz 

d h2 dA 

dx\ hxhz dx\ 

h2 Φ Α dA 

hihzhs [dxi h\hz 4πρ dx\ 

Φ, 

+ 

+ 

d h^ dA' 

dx2 h2hz dx2 

d h2 ΨΑ dA' 

dx2 h\hz 4πρdx2 

*Α/4πρ 

1 dG2 

2h\ dA2 4- 2itph\ 
dû7 £_(GÜ 
-dÄ + AnpdX\*A + 

G2 

+ 
hin2 

+ 
GÜ d&A dE 

(2.3.26) 
(1-·92

Αβπρ)2[2ττρΗΐ ' 2 Φ Α . 

In the absence of flows, Eq.(2.3.26) is known as the Grad-Shafranov equation. 

(ii) In the second case where the pressure is function both of the density and tem­

perature, using the gas law (Eq.2.3.2f ), the momentum balance equation can be written 

along each fieldline 
dlnP 

+ 
m dT 

dxi kßT dxi 
0, 

where (i = 1,2) and 

*=p +τ-'-£•*·*• 
The general solution of Eqs.(2.3.27) is 

P(A,S)=P0{A)e Jr0*BT{A,r>) 
•dT' 

(2.3.27) 

(2.3.28) 

(2.3.29) 

where PQ{A) is another arbitrary function of A and the integration with respect to J-

is to be performed along each fieldline Α(χχ,χ2) = const. This is an extension of the 

simple barometric law including flows. The unknown temperature function must be 

found from the energy equation (2.3.2e). although that these two equations are coupled 

each other together with the equation for the field lines which in this case is written 

hih2hz 

h2 dA d 

+ 
Λι dA 

dx\ hihz dx\ dx2 h2hz dx2 

Φ, d h2 Φ Α ÔA d h2 Φ Α dA 
+ h\h2hz \_dx\ h\hz 4πρ dx\ dx2 h\h$ 4πρ dx2 

1 Γ 1 du2
 L2dÜ2

 Λ d (Gil 

T^WjJÄTp m ûë + 2*ph* ΊΑ + 47rplÄ [ψ. 

+ 

+ 
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(1 - VJtopY 
G2 hin2 GÜ 'ζ 

+ -*— + 2-Kphl 2 Φ A $+«£),-· ("»> 
which, as expect, is the same as Eq.(2.3.26) except in the last te rm in which the partial 

derivative is taken keeping Τ constant. 

2.4 Dimmensionless parameters 

The derivations of the ideal MHD equations has been done under the assumptions of 

the very large conductivity, very low viscosity, and no rotating inertia! effects. In the 

following we shall define some dimensionless parameters to have a more quantitative 

sense if these assumptions hold for the solar atmosphere. 

As we seen in section 2.1, in terms of a typical plasma speed V* and length-scale 

£ * , the magnitude of the connective term in Eq.(2.1.8) divided by that of the diffusive 

term is a dimensionless parameter 

Am = — , (2.4.1) 

called magnetic Reynolds number. It is a measure of the strength of the coupling 

between the flow and the magnetic field. Typical in the solar atmosphere 

where T* is a typical plasma temperature. Thus, in all cases (except if the plasma 

is in turbulent state, as for example in the central part of a solar flare, in which the 

conductivity is small and a reconnection process takes place) we have Rm » 1 and 

the diffusive t e r m in the induction equation (2.1.8) can be ignored. 

The Reynolds number 

Re = — , (2.4.3) 
V 

known from the ordinary hydrodynamics gives the ratio of the size of the inertial forces 

to the viscous forces. In the above equation ν is the coefficient of kinimatic viscosity 

which depends of both the density and the temperature . Numerically we have 

( L* )( £ Ì 
„ 1 0 VIO4 fem/Vi km/sec I 
Re « 1012 V J • / , , , 2.4.4 

V1014 c m - s A l O * K) 

where n* is a characteristic density of the plasma. Note that even for the low density 

and the high temperature of the corona, we still have Re > > 1 so the viscous forces 

can be ignored. 
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The Rossby number 

Ro = y ^ r - , (2.4.5) 

is the ratio of the inertial forces to the Coriolis forces in the case where the plasma 

system rotates as a whole with angular velocity Ω*. For the Sun we have Ω* — Ω© ~ 106 

sec"1, and 

_ η \ 1 km/sec I 
Ro~10 η—ττ\> (2.4.6) 

VIO* 'Km) 

so the influence from the rotation of the Sun is in general small and can be ignored in 

a first approximation even for the largest structures observing in the Sun such as loops 

or prominences. 

Apart from these dimensionless numbers which its values are such to say that the 

ideal MHD holds in the most parts of solar atmosphere there are also other three 

important definitions about the significant of the various terms in the momentum 

equation. 

The Mach number 
M = ye> ( 2 · 4 · 7 ) 

measures the flow speed V* relative to the sound speed 

(2.4.8) 

where P* is the plasma pressure. The sound speed is the propagation velocity of a 

perturbation (acoustic wave) in a perfect gas. Also the Mach number is a measure of 

the ratio of the inertial forces to pressure gradient forces in momentum equation. 

The Alfvén number 

Μα = ψ-, (2.4.9) 

gives the size of the flow speed in term of the Alfvén speed 

which is the velocity of propagation of transverse waves (Alfvén waves) along the 
magnetic field B* direction. Also is the ratio of the inertial forces to the Lorentz 
forces. If Ma « 1 the effects from the velocity terms can be ignored. 

The plasma β 

β=~ΒΓ> (2 · 4 · 1 1 ) 
'* 
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is the ratio of the plasma pressure P* to the magnetic pressure BI/STT. If β << 1 the 

pressure gradients forces and the gravitational forces can be ignored. 

It is easy to see that the above numbers satisfy the relation 

* = * £ , (2.4.!2) 

To see the importance of these parameters we write the momentum equation in the 

following symbolic form 

/ inertial forces \ __ f pressure forces λ ( Lorentz forces \ . ( gravity forces \ 

I Ml )-{ β ) + { ι ) + \Ϊ u/v* )> 
(2.4.13) 

denoting the order of magnitude of each term with respect to the Lorentz term. In solar 

atmosphere in cases where the gravitational field can be treated as uniform (U = gz) 

the typical length-scale L* of the system is comparable to the vertical scale height Vf fg 

so the ratio U/Vf is of order of β. Thus for solar atmosphere we have the following 

extreme cases, 

(i) Ma « 1. In this case the velocity terms are not important and the force balance 

of the system is described from the magneto static equation 

0 = - V P + ( V x B > x B ^ W , (2.4.14) 
4π 

(ii) Ma « 1, and β « 1. In this case the Lorentz force must be zero, so the 

current density J must be parallel to the magnetic field B, 

( V x B ) x B = 0, (2.4.15) 

so we have the force-free case. In this case the presence of the plasma gas and the mass 

flows they have not significant influence in the magnetic structure. The particular case 

J = 0 is the well known potential-field. 
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Chapter 3 

CORONAL LOOP MODELS 

As we saw in the first chapter, the solar atmosphere has no only vertical stratification 
produced by the force of gravity, but it is also compressible in the horizontal direction, 
and possesses a complex structure dominated by the magnetic field. As indicated 
by X-ray and EUV observations, the corona consists largely of loop structures that 
presumably outline the magnetic field. In this chapter we shall describe briefly some 
theoretical models for these coronal loops. 

3.1 General remarks 

Because ideal MHD holds in most structures at the Sun, a fully theoretical description 
would require appropriate solutions of the MHD equations. For the present time this 
is impossible even numerically, and to make some progress people simplified the ideal 
MHD system to one that is solvable either analytically or numerically. The term 
analytical includes also numerical solutions from ordinary differential equations because 
in this case it is easy to understand the behavior of the system (to check the boundary 
conditions, the dependence of the solutions on the various free parameters etc.). In 
fully numerical solutions this is very difficult and in most times impossible, so we have 
not a clear physical picture of the system. Also, fully numerical studies require very 
large computing power which is not available in most cases. 

Until now people have tried to model coronal loops and other solar structures 
(prominences, sunspots, etc.) following usually two different ways. The first refers to 
the thermal structure and energy balance of them ignoring the effects of flows although 
in many cases are important, while the second focus on the flows only, neglecting in most 
cases the details of thermodynamics. In both approaches the magnetic configuration 

75 
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is predescribed, because in many solar structures we have β « 1 so the plasma 

has negligible influence on the magnetic structure. For the magnetic configuration 

problem, most efforts that have been made are on the force-free case and only a few in 

the magnetostatic case. 

3.2 Static energy-balance models 

In the case of coronal loops, the construction of the static energy-balance models is 

made solving the energy equation (2.14) putting V = 0. The heat flux term, is due 

to electron conduction which occurs mainly along the magnetic field lines and can be 

written 

V · q = Vy · ( K V , | T ) = (B · V) [ | ( Ô · V ) T ] , (3.2.1) 

or more simply, in terms of the distance s along a particular field line, 

where Β is the magnetic field strength and Β the unit vector along magnetic field-

fines. The thermal conduction coefficient AC, for a fully ionized hydrogen plasma with 

temperature greater than 104 K, is 

κ = κ 0 Τ 5 / 2 = 1 0 - n T 5 / 2 - i L . (3.2.3) 

The term Lr which is the net radiation loss, for an optically thin plasma such in 

the chromosphere and the corona, is due to bremsstrahlung, recombination and line 

radiation, and can be written as 

Lr = p2Q(T), (3.2.4) 

where ρ is the density assuming fully ionized hydrogen plasma. The temperature de­

pendence Q(T) has been evaluated by a number of authors (Cox & Tucker 1969, Tucker 

& Koren 1971, McWhirter at al 1975, Raymond & Smith 1977) and is graphed in figure 

3.2.1. It is accurate only to within about a factor of two, and so the detailed variations 

should not be taken too seriously; the most important features are the presence of a 

maximum around ΙΟ5 Κ and a minimum around IO7 K. An analytic approximation is 

Q(T) = XT
a Wm3 , (3.2.5) 

with the temperature variation of the piecewise constants χ(Γ) and a(T) given in 

Table (3.1). For temperature range ΙΟ5 Κ < Τ < ΙΟ7 Κ a good approximation is 
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Range of Τ 
1 0 3 . 6 4 _ 1 0 3 . 9 4 

1 0 4 . 0 0 _ 1 0 4 . 3 0 

1 0 4 . 3 0 _ 1 0 4 . 6 0 

- jn4.60iQ4.90 

I Q 4 . 9 0 _ I Q 5 . 4 0 

1 0 5 . 4 0 _ 1 0 5 . 7 5 

1 0 5 . 7 5 _ 1 0 6 . 3 0 

1 0 6 . 3 0 _ 1 0 7 . 0 0 

a 
11.7 
6.15 

0 
2 
0 
-2 
0 

-0.66 

X 
10-29.30 

1 0 - 7 . 6 2 

1 0 1 8 . 7 5 

1 0 9 . 6 0 

1Q.19.40 

1 0 3 0 . 2 

J Q 1 8 . 6 6 

IO 2 2 ·» 7 

io" 

IO 

τίκ) 

Table 3.1: The variation with temperature Τ of α and χ in Eq.3.2.5. giving the loss 
function (Rosner et al 1978, Serio et al 1981). Plot of the radiative loss function derived 
by McWhirter at al (1975) [ ], and Raymond & Smith (1977) [ ], together 
with the analytic fitting of Rosner et al (1978) [· · ··]. 

Q(T) = 10 2 1 · 6Τ */2 Wmz with a departure from the accurate form less by a factor 1.4 

(Priest 1984). 

Thus for a loop in hydrostatic equilibrium and in thermal equilibrium between con­

duction, radiation and heating (of any kind), the temperature Τ and the density /?, for 

fully-ionized hydrogen (n e = rii), satisfy 

1 dP 

coso ds 

B d U0T*l2dT 

ds\ Β ds . 

~P9, 

XP2Ta - Η, 

where the pressure is, 

Ρ = —^-pT. 
ra. 

(3.2.6a) 

(3.2.6b) 

(3.2.6c) 

For given forms of the magnetic field strength B(s) of a symmetric loop length 2L at 

a distance s along it from the base, and the inclination 6(s) of the loop to the vertical, 

the above set of equations is to be solved given the temperature T0 and pressure P 0 at 

the base (s = 0) and from the requirement that the temperature be symmetric about 

the summit so the temperature gradient (and the conductive flux also) must vanish 

at the loop summit (s = L). The first condition is entirely arbitrary. With To given, 

the temperature profiles and, in particular the summit temperature TL, are determined 

by three parameters, namely the loop length 2L, the base pressure Po and the heating 

rate H, so that Τι = TL(L,PO,H). If we replace the condition for the pressure by the 

http://-jn4.60iQ4.90
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condition that the temperature gradient vanishes at the loop base (s = 0) we have a 

thermally isolated loop (there is no energy flow from its ends). Thus, in this case, the 

summit temperature is a function of only two parameters TL = TL(L, H) and of course 

must be P 0 = P0(L,H) by the remaining boundary conditions. The former case can 

be studied quite easily for the low-lying loops whose summits are much below a coronal 

scale height of roughly 80000 km. In these loops the pressure is uniform (assuming 

uniform cross-sectional area) so the summit temperature may be estimated in order 

of magnitude, using the fact that, whereas the relative sizes of the three terms in 

Eq.(3.2.6a) vary locally, their global (or integral) values are similar. Thus, equal each 

term in order of magnitude in the energy equation (3.2.6b), using the approximate 

form for the radiation loss, we get the following relations in mks units (Priest 1984, 

Rosner et al 1978, Serio et al 1981) 

TL « l O ^ P i ) 1 / 3 « I O 3 H 6 l 7 L h ' 7 , (3.2.7a) 

Ρ « 3.7 χ l02H2/7Li/7 . (3.2.7b) 

From the above scaling laws it follows that both the temperature and pressure are 

increased by either stretching a thermally isolated loop or enhancing its heating. 

The main features of the loop solutions can be seen in Fig.(3.l) which shows the re­

sult of the numerical integration of Eqs.(3.2.6) for a symmetric sercular loop of uniform 

cross-section and half-length L = 3 χ IO7 m. The heating is assumed to be constant 

throughout and is set equal to H = 2 χ 10~4 W/m3. As expected, the pressure, which 

was set at 0.14 Pa at the footpoint where the temperature is 7000 K, drops only 

20% up to the apex. Moreover, the temperature shows only a similar small variation 

over the upper 90% of the loop. At high temperatures the radiative loss rate (~ 10~4 

W/m3) is lower than the heating rate, but the conductivity is so high that conduction 

can convey the excess heat input to the lower part of the loop by means of a very 

shallow temperature gradient. This is the 'coronal' part of the loop. However, when 

the temperature drops below IO6 K, the conductivity drops sharply and the tempera­

ture gradient steepens in order to maintain the conductive flux. This region of steep 

temperature gradient is known as the transition region. It is very thin compared to 

the pressure scale height and is therefore essentially isobaric. 

Many authors (e.g. Antiohos 1984, Athay 1981, Brown 1991, Hood & Priest 1979, 

Mariska & Boris 1983, Poland & Mariska 1986, Priest & Smith 1979, Steele & Priest 

1989; see also Demoulin 1993, Bray et al 1991, Priest 1980 and references therein) 

extend the above results solving Eqs.(3.2.6) numerically, in cases where the loop is large 

and not thermally isolated. They explain the observations for the active region loops 

that the shorter loops often appear brighter, and that different loops exhibit a relatively 

small variation in soft X-ray temperature but a much larger variation in pressure. From 
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2 χ IO6 

α 

ε 

1 x 1 0 ' 2 x 1 0 ' 

Distance from base, s (m) 

3 χ 10' 

Figure 3.1: The one-dimensional structure of a for coronal loop of uniform cross section 

and uniform heating of 2 x 10~4 W/mz. The fidi line shows the temperature, the dashed 

Une the pressure as a function of distance from the base in which the temperature is 

7000 Κ (Bray et al 1991). 

the other side, the fact that the quit region loops which have temperatures and pressures 

lower than the active region ones, is attributed to a lower heating rate in them. But 

the most important result from these studies is that, if the pressure or the length of the 

loop increase, or the heating decrease, to a critical value, the loop becomes thermally 

unstable, and it cools reaching a new equilibrium at temperatures below IO5 K. This 

may be an explanation for the observed cool cores in some coronal loops, although that 

these contains too much plasma to be in hydrostatic equilibrium; so flows are present 

and must taken to account. Also this cooling have been proposed as a mechanism for 

the formation of the active-region filaments or prominences. 

3.3 Dynamic flow models 

As we discussed in chapters 1 and 2, the interest in flows in loop structures has been 

stimulated by observations of various types of mass motions (up to 100 km/sec) over 

spots, plages and network, and also from the absence of hydrostatic equilibrium in 

some loops with cool cores. 

There is a wide variety of possible cases for the flow patterns that are observed. The 

most well studied is the siphon flow, driven by a pressure difference that is maintained 

between the footpoints of a magnetic loop. Only for this mechanism, we shall give a 
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brief review for the proposed models, because in this direction is the contribution of 

this thesis. 

The siphon flow was invoked by Meyer & Schmidt (1968) to explain Evershed mo­

tions along low-lying photospheric and chromospheric loops, but it may also occur 

along coronal loops. If one starts with a static loop and switches on a pressure differ­

ence, an accelerated flow will be driven from the high-pressure footpoint. But, if one 

starts with a loop containing a flow and then a small pressure difference is imposed 

in the opposition to the flow, it is possible for a decelerated flow t o be set u p towards 

the higher pressure. In general, this flow is unsteady, but if the footpoint pressures are 

constant and one waits several sound travel times, a steady flow may be established. 

There are several ways in which different footpoints pressures may be maintained. For 

example, the constancy of total base pressure (plasma plus magnetic) would imply 

that regions of high magnetic field strength possess a low plasma pressure. Also a 

converging photospheric flow could compress both magnetic field and plasma, and so 

enhance the pressure locally. Finally, the pressure at a loop footpoint may be increased 

by enhancing the heating there. 

Until now, siphon flows have been analyzed in a number of studies, all in the 

slender flux tube approximation in which the loop is so narrow that its magnetic field 

is approximately uniform across its width; this means its magnetic flux at a distance s 

along the tube is simply the product of the area of the tube A, and the magnetic field 

strength Β there; also the field strength at the surface of the tube (which is used in 

the surface boundary condition) does not therefore differ greatly from the value at the 

center of the tube. In a few words the above approximation is mathematically identical 

with the consideration of an individual field Une by dropping out the details of the 

effect of the environment or taken a simplified description for the force balance across 

the field. Thus, in this case the steady MHD equations became ordinary differential 

equations (one-dimensional flow) since all the quantities depends only from the abscissa 

s along the loop. 

The effects of the environment can be dropped out if the plasma β of the loop and 

the Alfvén number of the flow are both much less than unity. Then the flow may be 

regarded as taking place in a rigid tube of given shape and cross-section, because at tha t 

circumstances the magnetic structure does not influed by the flow. Thus the problem is 

the calculation of the flow in the context of ordinary hydrodynamics in a loop of given 

cross-section and shape. Cargill & Priest (1980) and Noci (1981) did tha t , for semi-

secular loop in shape, in a uniform and in a spherically symmetric gravitational field 

U respectively. Thus , the equations of continuity, momentum and state, for steady, 
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inviscid flow of a fully-ionized plasma are 

j 

—(pVS) = 0, (3.3.1a) 
as 

„dV dP dU ,ΟΟ,Ι-Ν 

^ ώ = " ώ - ^ ώ ' ( 3 - 3 - l b ) 

P=^pT, (3.3.1c) 

and in both studies they simplified the energy equation in the form 

' λ - (3.3.1d) 

The boundary conditions in the above system is the value of the pressure Po and and 

temperature To at the point where the fluid enters in the loop (at one footpoint) and 

the value of the pressure P2 at the other where the fluid leaves the loop. If we eliminate 

Ρ and ρ from Eq.(3.3.1b) we obtain 

V V J ds - S ds ds ' {3·ό·2) 

where V2 — aP/p is the sound speed. It should be noted that if V is replaced by —V 

Eq.(3.3.2) in both two directions. For shocked flows, such a reversal is not possible 

because the entropy must increase across the shock wave. The reversal is possible 

if the position of the shock is in the other leg of the loop than previously. Another 

characteristic of the above differential equation is that it possesses a critical point 

(where dV/ds is undefined) where the speed is equal to the sound velocity (V = Vs) 

in locations that are determined from the zeros of the right part of Eq.(3.3.2). For 

simplicity let us suppose for the moment that gravity is absent, so we discuss about 

de Laval nozzles in ordinary tubes. In this case the critical point occurs in locations 

where the cross section has extreme, dS/ds = 0. Another differentiation of Eq.(3.3.2) 

gives (U = 0) 

\ds) - S(l + V}) ds' ' V·'-*' 

so if the tube has a minimum (d2S/ds2 > 0), two slopes for the fluid velocity dV/ds 

when the fluid velocity equals to the sound velocity (V = V3) are possible (X-type 

critical point), while if the cross-section of the tube has an maximum (d2S/ds2 < 0), 

there no solutions with V = V3 at the maximum cross-section (O-type critical point). 

For critical solutions, in the case of converging de Laval nozzles the velocity of fluid 
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increases continuously before and after the nozzle, while for diverging de Laval nozzles 

it decreases before the nozzle and increase after. Thus the main conclusion is that the 

velocity reached the sound velocity in the minimum cross-section. For the non-critical 

solutions, in tubes in which there is a minimum cross-section the velocity increases 

before the nozzle and decrease after, while the opposite happens in tubes with a max­

imum cross-section. Both cases are discuss again in section 4.5.2 in which diagrams 

of velocity versus distance are present (Fig.4.1). After the above small parenthesis 

about de Laval nozzles, it is evident from Eq.(3.3.2) that we can define an effective 

cross-section to include the influence of gravity, so the above discussion holds. Also, at 

this stage it is important to say that in general the presence of critical points on MHD 

equations is very important since they determine the topology of the solutions and the 

various types of flows that are possible to occur according to the boundary conditions 

(sections 6.2, 6.3). 

Integrate Eq.(3.3.2) we obtain 

1 + U = U0 , (3.3.4) 

where the subscript zero denotes a value at the footpoint from which s is measured. 

For a semi-circular loop in shape, length 2L, in uniform gravity g we have 

U(s) = gz(s) = g—sm—, (3.3.5) 
7Γ ZL 

The simplest case, an isothermal loop (a = 1) with uniform area, illustrates the basic 

ideas. The critical point is located at the loop summit (Fig.3.2) where the phase plane 

of Eq.(3.3.4) is shown. 

For initial speeds Vo < V0* the flow is subsonic and symmetric about the top of the 

loop, so that the pressure ratio at the footpoints of the loop is unity. For VO > VQ the 

results are unphysical. For VO = V0* the flow becomes sonic at the loop summit. The 

whole situation is identical with converging de lavai nozzles. 

When there is no pressure difference between the ends of the loop (P2 = Po), any 

of the subsonic flows may occur. However, an imposed pressure difference forces the 

flow to became supersonic beyond the loop summit and then to be decelerated (and 

heated) at a shock wave, which is located at some position on the downflowing leg. 

This must be the case because the fluid can not reach the other footpoint at supersonic 

velocity; the value of the pressure there must determined the whole flow, and there is 

only one value of the pressure that corresponds to that case. If we impose other values 

of pressure, this information can not travel in the opposite direction of the flow since 

this moves with supersonic velocity (perturbations travel with the sound velocity), and 
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Figure 3.2: The ßow speed V at a distance s along a loop of half-length L. The loop 
has uniform cross-sectional area and the (unshocked) ßow is isothermal with sound Vs. 
Subsonic ßows (solid) have initial speeds VQ less than VQ. Flows (dashed) with initial 
speed V0* become supersonic at the loop summit (s = L) and are slowed down from 
V_ to V+ by a shock wave. Beyond the shock the ßow has enhanced temperature T+ 
and slows to Vi at the footpoint. Dotted lines indicate unphysical or totally supersonic 
solutions (Cargill Sc Priest 1980). 

also in a first view it seems that there is no solution at this case. In order to do this 
a shock discontinuity appears at some position in the flow in which the fluid enders 
with supersonic velocity and comes out with subsonic. In the shock the entropy of the 
gas increased discontiniously and the comes out of the shock with greater temperature. 
All the quantities (Ρ, ρ, Τ and V) in the shock are discontinuous but the flux mass, 
momentum, and energy must be continuous at the two sides of the shock. Thus we 
can write the shock conditions as follows (Rankine-Hugoniot relations) 

[pV] = 0, 

[P + pV*] = 0, 

! 

dP V2 

= o, 

(3.3.6a) 

(3.3.6b) 

(3.3.6c) 

where the brackets denote the difference between the values of the above expressions 
in the brackets on the two sides of the surface of the shock. Thus the effect of imposing 
different pressure differences is to change the location and the strength of the shock 
and the value of the downstream speed Vz. Of course the above discussion holds for 
any cross-sectional profile of the loop, and also can be generalized in any type of flow 
including also and magnetic effects. 
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Figure 3.3: The velocity (a), temperature (b), and the pressure (c) profiles for adiabatic 
ûowin a loop with uniform cross-section. For the shocked solutions, the pre-shock Mach 
number, M, is indicated (Cargill L· Priest 1980). 

The density has the inverse profile of that of velocity; it decreases up to the summit 
for subsonic flow and right up to the shock wave for a shocked flow. If the flow is 
adiabatic (a - 5/3) rather than isothermal, this rarefraction of the plasma causes a 
fall in the summit temperature and pressure, too. This may possibly explain the cool 
cores that are found in some coronal loops (Fig.3.3). 

If the cross-section is not uniform but it is symmetric having a maximum in the 
top of the loop, the sonic point still remains at the top, but the speed there is reduced. 
If the area-increase or the loop length are too large, the subsonic solutions cease to 
exist. Furthermore, for a moderate area-increase, several sonic critical points appear 
and greatly complicate the topology. One effect of a large enough area-increase is to 
make the flow speed decrease to a minimum before increasing and passing through the 
sonic point (Fig.3.4). 

When the cross-sectional area is not constant or symmetric about the loop summit, 
the critical point no longer occurs at the loop summit. For a converging loop the sonic 
point is situated on the downflowing leg (after the summit), whereas for a diverging 
loop it is on the upflowing leg. At any case, for subsonic solutions, all the quantities 
at the two foot points are now unequal, which means that there is a non-zero pressure 
difference between them. Diverging loops give a phase plane for subsonic flows that 
may be obtained from that of a converging loop by rotating the solutions about the 
summit. Independent of the two above cases there are two possibilities; the flow can be 
accelerated towards to the low pressure footpoint where the cross-section is minimum, 
or to be decelerated as moving in the direction of increasing pressure where the cross-
section is maximum. It can be seen that when the footpoint pressures are equal the 
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Figure 3.4: The phase plane for adiabatic flow along a symmetric loop whose cross-

sectional area varies as S = 5Ό(1 + 19sin7r.s/2). Note that for physical subsonic or 

transonic flows the initial velocity must be less than 0.615. If the area increases very 

fast there are no solutions (Cargill Sc Priest 1980). 

solution is static (no flows). For accelerated (decelerated) flows as the final pressure 

at the minimum (maximum) cross-section decrease (increase) from the initial pressure 

at the other footpoint, the solutions at first yield subsonic flow, and further decreasing 

(increasing) has the result of a shocked flow. It must be noted that in the cases of 

a decelerated flow there are two solutions with the same boundary conditions; one 

subsonic and the other shocked. Also there is an accelerated shocked solution in loops 

where the flow is to the direction of decreasing cross-section (Fig.3.5). 

On the other hand Noci (1981) has studied the properties of the steady siphon flow 

Eqs.(3.3.4) in the spherically symmetric gravitational field of the Sun for a semi-circular 

loop in shape, radius R, and constant cross-section for which 

(3.3.7) 

He also puts α — 1.1, since this value gives solar winds solutions in the inner corona 

that agree quite well with solutions to the full energy equations. T h e phase plane of the 

solutions are shown in Fig.(3.6a) and obviously are similar to that of the previous study 

of Cargill & Priest (1980). Apart from this, he investigated also the distribution of the 

brightness in some coronal UV fines along the loop, to see if the physical differences of 

the various types of flows which can occur in a loop can be seen in the observations. He 

found that the intensities for static and subsonic loops do not differ considerably, while 

those for static and shocked loops do differ greatly in the downflowing leg, especially 

when the shock is close to the footpoint. This suggests a definite observable signature 

!M'=167 

U(s) = -
GMr. Θ GM, Θ 

R 
1 + 2 

R 

0-Θ Re •Θ . 
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Figure 3.5: (a) Phase plane V(s) for isothermal ßow in a converging loop with S = 
SO(1 — s/4L) for accelerated ûows. For decelerated ßows (diverging loop) the phase 
plane is found by rotation of the solutions about the summit, (b) The ßow speeds 
Vo, V2 at loop footpoint at a function of the imposed pressure ratio for an accelerated 
(P2/P0 < I) and a decelerated ßow (P2/P0 > 1) (Cargill & Priest 1980). 
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for supersonic flows. Indeed, it may well be that some loops (observed to extend from 

one foot point and then disappear before reaching the second footpoint) possess this 

feature because of a subsonic-supersonic siphon flow (Fig.3.6a). 

In the plasma β of the loop is not much less than unity, the influences of the pressure 

and weight of the gas, the flow, and the environment must be taken into account. Thus, 

the cross-section and the shape of the loop are not given but must be found from the 

requirement of the satisfying the force balance along and across the loop. Thomas and 

Montesinos dit that in a series of articles (Thomas 1988, Thomas &; Montesinos 1989, 

1991, Montesinos &Thomas 1989) in the thin flux tube approximation. The equations 

that describe the motion of the fluid inside the loop (force balance along the loop) in 

a uniform gravitational field g are again Eqs.(3.3.1), where now the cross-section of 

the loop S(s) is not given but relates with the magnetic field B(s) of the loop by the 

magnetic conservation law 

4-{BS) = 0, (3.3.8a) 
as 

while from the requirement that the total pressure (gas plus magnetic) must be con­

tinuous at the surface of the loop we have 

P+^- = Pe, (3.3.8b) 
87Γ 

where Pe is the pressure of external gas atmosphere outside of the tube for which we 

assume that is in planar-stratified equilibrium in vertical direction 

dP 
--~-peg = 0, (3.3.9a) 

and of course the equation of state is assumed to be the perfect gas law. 

Pe = ^-peTe . (3.3.9b) 
mp 

Thus for given temperature distribution Te(z) we can determine the distributions of the 

pressure Pe(z) and the density pe{z). For simplicity we can take a uniform temperature 

distribution; a more detailed consideration requires a full solution of this problem. It 

easy to see that Eqs.(3.3.1) and (3.3.8) formed a closed set if we predescribed the shape 

Bz(s) of the loop. But if we want to solve the problem completely the shape of the 

loop must be found from the lateral force balance 

pV2 B2 

t— - — - + (pe - p)gcose = 0 , (3.3.10a) 
R 47TÄ 

which express the fact that the centerfucal force plus the gradient of the pressure of 
the external atmosphere in the vertical direction of the loop are equal to the magnetic 
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M 1 

Figure 3.6: (a) Phase plane of solutions for a symmetric loop in the Noci (1981) model 
where gravity drops as 1/r. (b) Brightness variations (in c.g.s. units for two UV Unes 
for a hot loop for subsonic and shocked. The loop width is one tenth of the loop radius. 
Dashed curves represent brightness variation for a static isothermal loop having the 
same temperature as the dynamic loop in the first footpoint. For the sake of clearness 
the dashed curve which is symmetric around the top is not completed. 
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tension force plus the one component of the weight of the fluid in the tube. From 

basic geometrical arguments we can write the following expressions for the radius of 

curvature R at any point of the loop and its inclination angle θ or for its height ζ and 

horizontal distance χ 
dz 

= tan0, (3.3.10b) dx 

— = coso—— 
R dx 

(3.3.10c) 

We should point out that this decoupling of the problem is a direct consequence of the 

thin flux tube approximation; in a thick flux tube, the flow will not be one dimensional 

and the problem of determining the equilibrium path and the flow will be fully; coupled. 

As in the work of Cargill &: Priest (1980) we can derive differential equations relating 

the area S(s), velocity V(s), and height z(s) that are useful in determining the character 

of the flow independent of the shape of the loop is given or not. Thus from momentum 

equation using the conservation mass law we find 

V^\dV 

V? V 

dS g . 
(3.3.11) 

which is the same as Eq.(3.3.2) and is known as the area-velocity-height relation. From 

this using the magnetic flux conservation and the lateral pressure balance we can 

eliminate the cross-section and we get 

Λ V} 

V2 V2 

r 3 

dz. 

and if we eliminate the velocity 

il ν?) s ν2 
V2 dz , 

(3.3.12) 

(3.3.13) 

known as velocity-height and area-height relations respectively. In the above equations 

Vs •=• (aP//?)1/2, and Va = (Β2/Ατιρ)1/2 are the sound and Alfvén velocity respectively, 
and 

/ V2 V2 

is the tube speed which is the velocity of propagation of axisymmetric distortions to 
the cross-sectional area of an isolated magnetic flux tube. In Eq.(3.3.13) Vi is another 
characteristic speed defined by 

VÌ Pe V (3.3.15) 
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We can deduce some qualitative properties of the steady flows by examing just the 

velocity-height relation and the area-height relation. First, note that the tube speed Vt 

plays the role of the critical speed for the flow, replacing the role of the sound speed for 

a rigid flux tube. Thus and in this case we have subcriticai (V < Vt), critical (V = Vi) 

and supercritical flows (V > Vt) instead of subsonic, sonic, and supersonic flows. For 

simplicity we consider the case that the temperature inside the tube is everywhere 

equal to the external temperature assuming uniform. The equality of temperatures 

arises from the rapid radiative cooling of the flux tubes in the solar photosphere. At 

this case we have always Vi < Vi, and Eqs.(3.3.14) and (3.3.15) are written 

[} V*)V ~lV 

V1 V*J S 'Κ1 M*) IL* 

where L = Vf /g is the scale height in the external atmosphere. From Eq.(3.3.16) we 

see that the critical speed V — Vt occurs always in the top of the loop and the situation 

is similar as in the rigid flux tube. But apart of this from Eq.(3.3.17) we see that at the 

points where V = V\ the cross-section obtains a maximum; these points called bulge 

points. Thus for example, if the flow starts from the one foot point of the arc with 

velocity which is less from both the two characteristic speeds Vi, and V\ we can have 

the cases of Figs.(3.7). The rest of the cases can be found easily from the former ones. 

Thomas and Montesinos integrated the systems of equations in two cases; with the 

assumption that the shape of the loop is a parabolic arc (Thomas 1988, Montesinos h 

Thomas 1989), and without this assumption where the shape is an unknown quantity 

(Thomas h Montesinos 1990, 1991). Their results for the second case are seen in 

Figs.(3.8) (Thomas and Montesinos 1990). The difference between the two approaches 

are that in the second case the horizontal extension of the loop has a limited value (a 

expected result because it is known many years ago for the static loops), but near the 

top the two approaches coincide. Also, as it is expected, the effects of the increasing 

the flow causes the loop to became more steeper. 

For a adiabatic consideration for the gas into the tube (assuming now that the flow 

speed is so great that there is no enough time for the internal gas to be heated by 

thermal conduction or radiation from the surroundings) the above qualitative results 

remains the same (Fig.3.9). The difference between the two considerations are that 

in the adiabatic case the arcs are more wide that in the isothermal case, and in some 

circumstances the path of the tube becomes periodic in the horizontal direction. 

Apart from these elementary considerations many others generalized the above re­

sults. For example in the low β limit Cargill & Priest (1982a,b) and solved the hydro-

(3.3.16) 
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subcriticai flow subcriticai flow 

(a) (b) 

supercritical flow 

subcrifical flow supercritical flow 
subcriticai 

X flow 

(0 (d) 

Figure 3.7: Schematic diagrams of various types of steady ßows in a symmetric, arched, 
isolated magnetic flux tube, showing the changes in flow velocity V (arrows) and the 
cross-sectional area S along the tube in each case, (a) Purely subsonic ßow without 
bulge points (Vtop < V\ < Vt). (b) Purely subcriticai Row with upstream and down­
stream bulge points (V\ < Vtop < Vt). (c) Critical (Vtop = Vt) undergoing a smooth 
transition from subcriticai £ow (Kop < Vt) to supercritical now (Vtop > Vt) at the 
top of the arch. The flow velocity is decelerated to subcriticai speed at a standing 
"tube shock" somewhere in the downstream half of the arch, (d) Purely supercritical 
(V > Vt) flows, everywhere (Thomas 1988). 
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Figure 3.8: Plots of (a) the equilibrium path z(x), (b) the velocity v(x), (c) the cross-
sectional area S(x), and (d) the plasma β{χ) for a thin tube with uniform temperature 
inside equals to the external temperature. The integration have started from ζ = 0 
with A = 1 and V = VQ (four values of 0 which corresponds to the static case 0.15 and 
0.25 for subcriticai flows and 0.303 for critical flows). The plasma β at the footpoints 
is equal to 3 and the height of the arch is 1 (all the lengths are normalized with the 
vertical scale height of the external atmosphere and the velocities are in units of V\) 
(Thomas & Montesinos 1990). 
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Figure 3.9: The same as Fig.(3.8) but for adiabatic shock ßows with the foot temper­
ature equals to the external temperature. The other parameters are as in Fig.(3.8) 
except for the critical velocity which is now 0.316 (Thomas L· Montesinos 1990). 
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dynamic equations using the appropriate for the solar corona energy equation (2.17e) 

in order to produced more realistic models for coronal loops in order to compare with 

observations. In a number of studies (Antiohos 1984, Peres et al 1992, Mariska & 

Boris 1983, Mariska 1988, McClymont 1989, Craig & McClymont 1986, 1987) calcula­

tions of the intensities in the UV emission confirmed theoretically the presence of flows 

in some come coronal loops. Also from the other side for low β loops Montesinos & 

Thomas (1993) and Degenhardt (1989, 1991) present solutions for radiative flows using 

an appropriate energy equation for photospheric conditions including also the energy 

exchange between the tube and its environment which is a realistic external atmosphere 

in order to model photospheric flux tubes and the Evershed effect. In well defined cases 

a siphon flow is responsible for the normal Evershed effect (in these cases although that 

the external atmosphere has been taken horizontally stratified the tube is asymmetrical 

due to radiative exchange between the tube and the external atmosphere. 

It is important to say t h a t all the above discrubing approaches are one-dimensional 

because of the difficulty of the solution of the two-dimensional MHD equations with 

one ignorable coordinate (section 2.3). At this case the non-linear ordinary differential 

equations becomes non-linear partial differential equations which is difficult to solve 

even numerically. But except of the numerical approach there is an analytical approach 

to the problem by searching special classes of solutions which can be treated analyti­

cally. This will be the subject of the next three chapters which describing briefly in the 

next section. This approach started studied wind-type solutions in spherical geometry. 

For a modeling of the solar atmosphere structures (arcades, sunspots, prominences, 

open-field regions etc.) we must solve the MHD equations in cartesian or cylindrical 

geometry, de Ville & Priest (1990, 1991a,b,c) found a class of solutions field-aligned 

flows in cartesian and in cylindrical geometry assuming t h a t the plasma is incompress­

ible in each fieldline. In more details they considered the case 

p = p(A), (3.3.18) 

so, the density is constant along each field line. In this particular case from the mo­

m e n t u m balance equation it is easy to see that 

P+\pV2+pU = U(A), (3.3.19) 

where Π(Α) is a function of A only, playing similar role as E(A). Of course making 

similar analysis like in section(2.3) we found that there are also three other free integrals 

Φ(Α), Ω(Α) and G(A). Note that for field aligned flows we must have again Ω(Α) = 0. 

Now it easy to see that Eq.(2.3.25) is written now as (i = 1,2) 

1 / d h2 d J3_JH d \dA 

h\h,2hz \dx\ h\hz dxi dxi h^hz dxi) dxi ' 
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Figure 3.10: Possible magnetic topologies in cartesian coordinates, modeling (a) sym­
metric and (b) asymmetric arcades, and in cylindrical coordinates modeling (c) the 
sunspot field (closed fieldlines), (d) coronal streamers and (e) coronal holes (partially 
open fieldlines) and (f ) emerging flux regions (open fieldlines) (de Ville 1990,1991a,b,c). 
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Φ A i d h2 Φ Λ dA d h Φ Λ dA \ dA 

h\h2hz \dxi h\hz Απ ρ dx\ dx2 h2hz Απ ρ dx2 J dxi 

a n V2 dp 

dxi 2h\ 
Απρ 

d(hlvx\) d{h\Bl3) 
(3.3.20) 

dxi 2 dxi dxi 2h\ \ dx{ dx{ 

and because the density is function of A only the transfield equation can be written as 

SL)_1 τ 
Απ ρ J h\h2hz dx\ h\hz dx\ dx2 h2hz dx2 

d h2 dA d hi dA 

2h\ 

d Φ2. 

dA \Απρ_, 

1 d G2 
dp_ <m _ 

2h\ dA\\- ΦΑΐΑπρ) ~~ dA + PdÄ ~ ° ' 

It is easy to see that the following choice, neglecting gravity (U = 0), 

p = p0A
2 Φ Λ = ΦΟΛ G = G0A U = U0A, 

reduces the above transfield equation to the linear elliptic equation 

h\h2hz 

d h2 dA d h dA 

dx\ h\hz dx\ dx2 h2hz dx2 

+ k2A = C, 

(3.3.21) 

(3.3.22) 

(3.3.23) 

where po, ΦΑ0Ι GO, and Πο are constants, and 

k = 
Go 

M2 ' c = 
Πο 

1~Μ α Υ 
M; 

α„ 

φ2 

4πρ 
(3.3.24) 

Eq.(3.3.23) is easy to solve by separation of variables, de Ville and Priest did that in 

cartesian coordinates (de Ville L· Priest 1990), modeling symmetric and asymmetric 

arcades (Figs.9a,b), and in cylindrical coordinates (de Ville & Priest 1991), modeling 

the magnetic structure of various features such as spots, plumes, coronal streamers 

(Figs.3.9c,d,e,f). Thus in cartesian coordinates the basic result is that the presence of 

a flow increases the summit height of the arcade compared with the static case. Increas­

ing the flow speed will eventually cause the arcade to erupt. In the case of asymmetric 

arcades they can be model siphon flows driving by a non-zero footpoint pressure differ­

ence. In cylindrical geometry they found a wide range of possible magnetic topologies. 

The magnetic field may be closed, open (converging or diverging) or partially open (an 

arcade with an overlying field). The proportion of open fieldlines depends upon the 

flow of the plasma at the base of the region. Increasing the flow increases the number 
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of open fieldlines. Also increasing the twist component of the magnetic field imposed 

at the base results in the arcade of closed fieldlines rising, before it eventually erupts. 

From the other side the closed magnetic solutions could model the field above sunspot, 

with Evershed flow along fieldlines. Totally open magnetic field configurations can 

model emerging flux regions, while coronal streamers or coronal holes can be model 

using solutions consist of b o t h open and closed regions of magnetic fieldlines. All the 

above solutions of course have the disavandange that the density is constant along 

fieldlines and the gravity is absent. Of course an obvious extension of this work is to 

include these parameters which we will do in the next chapters. Note that at least in 

cartesian coordinates, the influence of gravity can be taken into account leaving the 

above particular problem still analytically solvable. ' ί 

We will close this chapter saying a few things about other causes of flows. For 

example downflows or upflows in both legs of a loop can be occur for example if for 

some reasons the heating or the length of the loop changed. From the scaling lows 

(3.2.7) we see that the summit density scales as PL oc i i 4 / 7 ^ 1 / 7 and if the heating or 

the length of the loop increases, this implies t h a t the new equilibrium possess a higher 

density. To attain such equilibrium, extra material must be brought up or evaporated 

from below along the loop. Also if the heating or length are reduced in value, there is 

too much material in the loop for equilibrium, and some of it must drain down until the 

pressure gradient offsets gravity and all energy terms balance. T h e above mechanism 

has been invoked to describe the formation and the draining of some prominences. 

Other mechanisms which can be driven flows are the presence of various types of MHD 

waves and instabilities (Priest 1980,1984, Bray et al 1991). 
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Chapter 4 
τ 

2-D LOW-/? MHD 
EQUILIBRIA IN UNIFORM 
GRAVITY 

4.1 Introduction 

As we have discussed in the first chapter, it is known that the active region plasma is 

dynamic, with continual activity in the form of a wide range of flows, with very small 

Alfvén Mach numbers. At high temperatures solar active regions are seen to consist of 

loops with almost constant temperature , for a wide range of density. The magnetic field 

of an active region probably evolves slowly through a series of essentially stationary, 

mainly force-free states. As far as movement normal to the magnetic field is concerned, 

the plasma is completely dominated by the field, since the plasma β is usually much 

less than unity ( « 1 0 _ 3 , 1 0 - 1 ) and the flow is subalfvénic. But , along the field, the 

plasma is observed to be in continuous motion rather than in a static state. Many type 

of flows are now observed, and are described in section 1.4. 

However, as we saw in chapter 3, for the most part , the effect of the flow in the 

solar atmosphere has been neglected in theoretical models. From a theoretical point of 

view the flow in a loop can be regarded as a siphon flow which is driven by a pressure 

difference between the foot points. This was originally suggested by Meyer & Schmidt 

(1968) to explain Evershed motions, but it may also occur along coronal loops. If one 

starts with a static loop and switches on a pressure difference, then after several sound 

travel times a steady flow is established. In chapter 3 we discuss also how Cargill & 

Priest (1980) and Noci (1981) studied in detail the siphon flow, modeling the loop as a 

99 
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rigid arch with a cross-sectional area that varies in a predescribed way. In this approach, 
which is valid in the limit β —> 0, lateral force-balance is neglected (no deformation of 

the field). Also, siphon flows in magnetic flux tubes has been investigated in the thin 

flux tube approximation by Thomas (1988), Montesinos h Thomas (1989), Thomas & 

Montesinos (1990,1991), and Degenhart (1991). Of course all these models are one-

dimensional (all quantities depend only on the abscissa s along the loop) and do not 

take into account the lateral force balance between different streamlines. Finally, in 

an initial attempt to understand the role played by plasma flows in the equilibrium 

and stability properties of solar MHD structures, de Ville and Priest (de Ville 1990, de 

Ville & Priest 1991a,b,c) have recently presented exact solutions to the steady MHD 

equations in the absence of gravity. These solutions model incompressible flows along 

symmetric and nonsymmetric arcades of magnetic fieldlines. 

In this chapter we study siphon flows in an isothermal magnetized atmosphere, 

taking into account the back reaction of the flow on the magnetic structure, and looking 

for as wide a class of boundary conditions as possible (Surlantzis et al 1993,1994). Since 

however, the solar situation is one of a small β plasma, we take advantage of the fact 

that the flow is subalfvénic but not necessarily subsonic to simplify the search for such 
solutions. In section 4.2 we present the equations of the model, and in sections 4.3 and 
4.4 we discuss the properties of various solutions. Our main mathematical assumption 
is that there is an ignorable coordinate. 

4.2 Low-/? and low Alfvénic Mach number flows 

In coronal loops and in chromospheric Evershed flow both the plasma β, and the 

Alfvén-Mach number Ma are less than unity. In this case the field is to the lowest 
order approximation force-free 

(V x B 0 ) x B o = 0, (4.2.1a) 

V B o = 0. (4.2.1b) 

The force-free structure is some sort of empty container which pressure, gravity and 
inertial forces perturb weakly. We expand the perfect MHD equations in β and M\. 

The zeroth order gives Eq.(4.2.1a). Writing 

B ^ B o + B i , (4.2.2) 

where B j is meant to be small, of order β or M\ as compared to B Q . In other words 

we have split the magnetic field as a sum of a force-free component B Q , and a small 
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B j component which is due to the influence (or back reaction) of the plasma. Thus, 

we get to first order, in these small plasma parameters 

V - B 1 = 0 , (4.2.3a) 

V - ( p V ) = 0, (4.2.3b) 

V x ( V x B o ) = 0, (4.2.3c) 

^ „ „ „ „ (V χ B n ) χ Β·· ( V x B i ) x B n 
o V - V V = - V P + - ^ 1· + ^ ^ -+PS- (4.2.3d) 

4π 4π 

Thus, we have linearized the MHD equations with respect to the magnetic field, but 

not with respect to the flow variables, since we want to allow the 'field-aligned flow to 

be even strongly non linear. Of course this is a valid approach for β < < 1 and the 

Alfvén number Ml « 1. If the magnitude of the flow speed does not greatly exceed 

the sound speed Va, β « 1 implies Ml « 1 (note that Ml = βΜ2/2), so we shall 

refer to these conditions simply as β « 1. 

Finally, we adopt an energy equation of the form 

Ρ = P(p). (4.2.3e) 

So, Eqs.(4.2.3) constitute a closed system for P , p, V and B j . We stress again that 

the velocities are not so small as to ignore the left hand side term in Eq.(4.2.3d). We 

still have the plasma β, and the Alfvénic Mach number much less than unity. 

4.3 Cartesian coordinates 

We start our study by considering configurations with translational symmetry. The 

coordinate system is (x, y, z) wherein coordinate y is ignorable. The 2-axis points in 

the opposite direction to the uniform acceleration of gravity g. The general solution 

with translational symmetry of Eqs.(4.2.3a,b) can be written in terms of a vector 

potential y-component Αι(χ,ζ) and a s tream function Φ(;τ,ζ) (which, as noted, are 

functions of χ and ζ alone) 

R - d A l R - d A l ü , l i 
Βι--ΊΓ Bu--~dz~' ( 4 · 3 ^ 

1 d * 1 <9Ψ 

The general solution of Eq.(4.2.1b) is 

dA0 dA0 , . , , , 



102 CHAPTER 4. 2-D LOW-ß MHD EQUILIBRIA IN UNIFORM GRAVITY 

where the vector potential y-component Ao is also assumed to be function of χ and ζ 

alone. Lines of constant (Ao + A\ ) are field lines of the meridional field, while fines of 

constant Φ are stream lines of the meridional flow. It is well known that the force-free 

condition (4.2.1a) can be written as 

1 dBl {A0) 

where Boy(Ao) is the component of the magnetic field in the ignorable direction which 

must be a function of Ao only. 

Following the formalism of Tsinganos (1982) we write the Eqs.(4.2.3c,d) in Jacobian 

notation, 

(*-A} = a7âi-&&· ( 4 ·3 ·5> 
{Φ, A} = 0 means that ν Φ and VA are parallel, Φ and A being both constants on the 

same lines in the x-z plane. 

The χ and z-components of the induction equation (4.2.3c), yield after simple al­

gebra 

{Φ,Α0} = 0 <̂ => Φ = Φ(Α 0 ) . (4.3.6) 

Then the mass flux can be written as 

where Φ Λ ο = dV/dAQ = Φ^ 0 (Α 0 ). 

The y-component of the induction equation gives 

{Vy,A0} - {50ϊ/47Γρ,Φ} = 0, (4.3.8) 

or equivalently 

Vy - ~;B0y = ΦΑο = Ω(Α 0), (4.3.9) 

where Ω(Α0) is a function of A0 related to the induction potential V χ Bg = V # 

and the subscript Ao in functions Φ and Φ denotes the derivative with respect to 

their argument Ao· In cylindrical geometry Eq.(4.3.9) is usually referred to as the 

isorotation law (Ferraro, 1966). In translational symmetry it means that the motion 

in the symmetry direction is made of a field-aligned flow plus a translation of each 

magnetic surface in the invariant direction. 

From the y-component of the momentum balance equation we get 

VAo{Vy,A0} = {B0v,A1} + {Bly,A0}. (4.3.10) 
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Note that 

{B0)i,A1} = -^-{A1,A0}, (4.3.11) 

so Eq.(4.3.10) is written as 

Bly - yAoVy = ^ - M i + G1(Ao). (4.3.12) 

where GI^AQ) is a function of AQ only. Eq.(4.3.12) expresses force balance in the 

ignorable direction. 

From Eqs.(4.3.9) and (4.3.12) we have the following expressions for the field and 

velocity components in the ignorable direction in terms of the perturbed potential 

Vy=tl + ^ B 0 y , (4.3.13) 

φ . 2 dBn 
B'. = i f7 B °> + ^ n + ^ + G > · (4'314) 

It is easy to see from Eqs.(4.3.7, 4.3.13) that when the flow is field aligned (with respect 

to the B Q field), we have Ω = 0. Then, 

AirpV = VAoB0 · (4.3.15) 

Here we consider this case. Thus the function Φ^ 0 is simply the ratio of the mass flux 

to the magnetic flux. If Ω were not zero, magnetic surfaces would glide on each other 

in the direction of invariance. 

The momentum balance equation can be written as 

(V x B n ) x B-, ( V x B - i ) x B n , „ „ v „ 
VE=^ ^ i + ^ ^ Ü - V X V X V , 4.3.16) 

4πρ Α-κρ 

where 
τ2 

E 
f dP V2 , 

]-+9ζ + Ύ - (4-3.17) 

Since the Lorentz force has no component along the lines of magnetic force and since 

V is parallel to B Q we have, 

B 0 - V £ = 0, (4.3.18) 

which can be written in Jacobian notation as {£, A0} — 0 so, 

/ 

dP V2 

— +gz + — = E(A0), (4.3.19) 
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where E(A0) is another function of AQ denoting the energy flux density per unit of mass 
flux density. Eq.(4.3.19) is the Bernoulli equation for each stream line. Physically it 
expresses that the sum of the thermal (enthalpy per unit mass), kinetic and potential 
energy flux densities per unit of mass flux density is constant along each streamline, a 
result which is simply the consequence of the time independence of the equations. 

Now the remaining χ and z-components of the momentum balance equation can be 

written 

a4o 
dz 

V2Ai + V2A0 
Φ Ac 

d yAo dA0 , d vAo dA0 

+ 

27Γ/9 

dx Απ ρ dx dz Απ ρ dz 

dV* d(BQyBly) 

+ Απρ-
dE 

dz dz 
(4.3.20) 

together with a similar equation where χ replaces ζ and vice-versa. Use is then made 

of Eqs.(4.3.4), (4.3.13), (4.3.14), (4.3.19). Writing these equations in (x,A0) and {z,A0) 

coordinates and transforming the partial derivatives with respect to AQ to derivatives 

of suitable functions of AQ alone, they reduce to the following equation for Αχ(χ, ζ) 

V 2A 1 + 2 dA\ 
A1 

Φ A0 

d Φ Α ο dA0 , d VAo dA0 

+ dx Απ ρ dx dz Απ ρ dz 

d(B0yG1) 1 d(Bi Φ2, ) dE 
" ° - 4 ^ | f . (4.3.21) dA0 8π/9 dA0 dA0 

This is a linear equation in Ai of Poisson type, the right hand-side is known from AQ 

(initial force-free field) wherein ρ is obtained from Bernoulli equation (4.3.19) for the 

zeroth order field. In other words Eqs.(4.3.19) and (4.3.21) describe respectively the 

field-aligned flow and the perturbed magnetic structure. Eq.(4.3.21) could be derived 

as well by performing a linearization in β and in M 2 on the general transfield equation 

which describes such flows. In appendix A we have done this in a general coordinate 

system. A number of the original equations have been absorbed into the first integrals 

represented by Φ (which expresses mass conservation), Boy and Gi (which stem from 

the force balance equation in the ignorable coordinate), and E which expresses en­

ergy conservation. These functions must be defined by consideration of the boundary 

conditions or criticality conditions as we shall see. 

In summary the unperturbed magnetic field B Q is defined by the force-free equi­

librium, Eq.(4.3.4). With this, the perturbed magnetic field B^ is found from the 

linearized transfield equation, Eq.(4.3.21), the velocity field from the mass flux conser­

vation, Eq.(4.3.15), and the density from the Bernoulli equation (4.3.19). In practice, 

we solve first the Bernoulli equation (4.3.19) obtaining the density p(x, z) and then we 

solve Eq.(4.3.21) which is linear in A\. 
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4.4 Flows in Current-free Fields 

As an example we analyze flows in an initial potential field B Q wherein Boy(Ao) — 0. 

In this case, the general form of AQ (solution of V2Ao = 0 vanishing as ζ —> oo) is 

written as 
oo 

Α° = Σ h c o s ( I f ) + ^ s i n (fr)]e~ " ' (4A1) 

i=0 

where L is a typical scale height of the system. 

We assume that each field line has a uniform temperature T(Ao). This is because 

we want our assumptions to remain valid at large z. A consideration of the Bernoulli 

equation under Eq.(4.2.3e) shows that for the density to approach zero as' ζ —• oo the 

specific enthalpy must scale like In ρ which means that the gas should be isothermal at 

large heights. 

Let Vs(Ao) and V300 be respectively the sound speed on the field fine AQ and at 

infinity, and let T(AQ) = Τ(Αο)/ΤΌο be the dimensionless t e m p e r a t u r e . Then on each 

field fine we have an isothermal equation of state, 

P = V?p = T(A0)V?oop. (4.4.2) 

We define the scale height L = V^/g and the Mach n u m b e r M — V/Vs. T h e 

Bernoulli equation (4.3.19) then writes, 

, ρ ζ M2 E(Ao) 

where /9* is a characteristic density (see Eq.4.5.2). 

We suppose that there is no electric field [if Ω = 0 then V is given by Eq.(4.3.15)] 

which means that the flow is field aligned with respect to B Q . Because BQ — 0, 

Eq.(4.3.21) for A\ simplifies to , -

V 2 Ai = Φ, 
d ΨΛΟ dAo j_ d Φ Λ ο dA0 

dx 4πρ dx dz 4πρ dz 

dE 
- **Ρ-7Ί- . ( 4 · 4 · 4 ) 

ÜAQ 

where the density is found from Eq.(4.4.3). 

For Eq.(4.4.4) to have a well behaved solution for ζ > 0, the first-integrals Φ Λ Ο ( Α 0 ) 

and E(A0) cannot be arbitrary. We are restricted here to solutions wherein the density, 

pressure, velocity and the plasma β tend to zero at very large heights (z —> oo). Thus 

the right hand side te rm of Eq.(4.4.4) should approach to zero at large ζ in order t o 

have asymptotically a potential field. 
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Let £ = min[qi], i = 1,2,3,.... For ζ —» oo, where M —» 0, the potential field 

s with height like AQ OC e~ ^L , while the dens 

Thus, the plasma /? behaves at large heights as 

goes with height like AQ oc e 2£ , while the density from Eq.(4.4.3) goes like ρ oc e £ 

0 - ^ - <* e ( i ~ 1 ) z / L · (4-4.5) 

Thus, we conclude that the stratification parameter for the magnetic field must be 

ξ < 1 for β to remain finite at large z, as assumed and as it seems to be the case in 

the corona. For ξ > 1, the magnetic field at large heights would not be strong enough 

to confine the plasma and a wind would be present. 

4.5 Flows in a simple arcade. 

Let us take the simplest current-free field as the unperturbed configuration in Cartesian 

coordinates zxy, 

A0(x,z) = A* cos (^y-& . (4.5.1) 

This is defined in the strip \x\ < ττΣ/ξ, ζ > 0, with ξ < 1. The field strength Bo, which 

depends in this special case only from the height z, is 

B0{x,z) = ^φε-& . (4.5.16) 

The temperature T^ (or equivalently the sound speed at infinity height V300) is taken 

as reference and equal to 1.6 x ΙΟ6 Κ (typical for the quiet solar corona) and L = 80, 000 

km. 

4.5.1 Adimensionalization. 

It is convenient to define the following dimensionless variables in terms of the charac­

teristic length L, temperature Too, Alfvén velocity Va and the sound velocity V31 

£ ' V « p*' V / A Απρ ' 

Α*ξ w _ ΦΛ„.Β, „ _ V. λ , 2 _ Φ, 
Β* = - ^ - , Κ = ?°* \ Μ, = - ^ , Mi. = 

2 
•ο* 

L ' " 4πρ. ' Mm Vsoo' ^Α" Απρ* ' 

VAO(AQ) 2 Γ(Αρ) 

Φ^ο*Κ)' V ' Κ 



4.5. FLOWS IN A SIMPLE ARCADE. 107 

A0(x,z) B0(X,Z) 1 Α^χ,ζ) ,ΑΚΟλ 

α 0 ( χ , ζ ) = — ^ — , δ 0 ( χ , ζ ) = — ^ , α 1 ( χ , ζ ) = -^2 ^ — , (4-5.2) 

where the superscript * refers to fiducial values. Eqs.(4.4.3) and (4.4.4) can be written 

in dimensionless form 

ζ M2a2bl M2 

r l n ^ + Ì + V ^ = 2 e(O0)' ( 4 · 5 · 3 ) 

V 2 a i = a 
d a dao d a dao g de , 

- — . (4.5.4) 
2 dan V ; dx ρ dx dz ρ dz 

This is a Poisson equation in the half strip |x| < π, ζ > 0 with homogeneous Dirichlet 

boundary conditions (because the magnetic flux distribution is supposed not to be 

altered at the boundary) . T h e appropriate Green function is given in Appendix B. 

These two equations for ρ and αϊ contain three free functions α(αη), e(an) and τ(αη) 

which relate to the boundary conditions (section 4.5.3). 

4.5.2 Topology of the solutions 

Before solving Eqs.(4.5.3,4.5.4) it is useful to focus our attention to the Bernoulli equa­

tion which can be written for a given field line (an = const.) in terms of the Mach 

number M of the flow 

M2 ( 1 1 \ 
- In Μ Λ h \z = constant , (4.5.5) 

2 \ ς τ 2 / 

By taking the differential of the above equation we find that we have a critical point 

at M = 1 where dz/dx — 0 (at the top of the field fine). The physical meaning of this 

critical point can be seen better, if we write Eq.(4.5.5) as 

, , M2 ( 2 λ / x\ , 
- I n Μ Η I 1 - — I In (cos - J = cons tant . (4.5.6) 

because to a first approximation the equation for each field line is ζ = 2 In [cos(x/2)/a0] 

(the unperturbed magnetic field B Q ) . This equation is identical with the Bernoulli 

equation in ordinary tubes if the effective cross-section of which would vary with χ as 

5(x) = 2 c o s 1 - ^ ( | ) . (4.5.7) 

The term 1 of the power is due to the actual flux tube geometry, while the term —2/ξτ 

is due to gravity. For £τ < 2 the critical point is of the X-type (the effective cross 

section has a minimum) and for £r > 2 it is of the O-type (the effective cross section 



108 CHAPTER 4. 2-D LOW-ß MEO EQUILIBRIA IN UNIFORM GRAVITY 

Figure 4.1: (a) The variation of the effective cross section Eq.(4.5.7) with the horizontal 
distance χ for three values of ξτ = 1,2 and 6. (b) Topology of the Bernoulli equation 
(4.5.5) for ξτ = 1 and 6. 

has a maximum). If ξτ = 2 the effective cross section is constant along each field line 

(Fig.4.1a). 

Thus, the whole discussion for de Laval nozzles (chapter 3) is valid and we have 

that for ξτ > 2 (hot loops) only subsonic solutions are possible, if boundary conditions 

forbid the flow to be supersonic at the base of the loop, which we assume. But for 

ξτ < 2 (cool loops) either subsonic or transonic solutions with shocks are allowed. 

When ξτ = 2 obviously the velocity is constant throughout the field lines (Fig.4.1b). 

Because of the symmetry of the problem, in the subsonic cases the pressures at 

both foot points of the same field line are always equal. Only in the case of transonic 

solutions are the pressures unequal because of the presence of a shock (the plasma flows 

from the high pressure to the lower pressure foot point). 

4.5.3 The integrals α(α0), e(a0) and τ(α0). 

In order to solve Eqs.(4.5.3,4.5.4) we must prescribe the functional forms of α(α 0 ) , 

e(ao) a n ( l T(°o)· These functional forms correspond to the boundary conditions at the 

photospheric level (z = 0) of the system of Eqs.(2.3) for the mass flux, energy input 

and the temperature distribution. A solution of the Bernoulli equation must exist at 

all points of the strip for the chosen α(αο), e(cto) and τ(αο) functions. For ξτ < 2 

(X-type topology), this is not so, if the resulting initial velocities (at ζ = 0) correspond 

to solutions having a turning point (the velocity has two possible values for a given 
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position x). For ξτ > 2 (O-type topology) the appropriate condition is that the velocity 

at ζ = 0 be always subsonic for any χ (Fig.4.1). Finally the choose of the function 

r(ao) corresponds to the temperature distribution across field lines. 

In the subsonic case, regarding Eq.(4.3.15) at ζ = 0 for given α(αο), we see that if we 

give the boundary distribution of the density (or pressure) for example, automatically 

the velocity distribution is determined. In transonic cases, a shock is present and we 

have another free function which is the post-shock temperature (see section 4.5.5), or 

equivalently the distribution of the postshock pressure at ζ = 0. 

4.5.4 Subsonic flows. 
i s 

Having in mind that we want to construct solutions for coronal loops we split the 

functions a(oo), e(ao), τ(αο) in two components as follows 

a(ao) = a i n ( a 0 ) + a o u t ( a 0 ) , (4.5.8a) 

e(ao) = e i n(ao) + e o u t ( a o ) , (4.5.8b) 

r (ao) = r i n ( a o ) + r o u t ( a 0 ) , (4.5.8c) 

The functions with superscripts " in" refer to the region inside the loop (either with flows 

or not) , and the functions with superscripts " o u t " define the values of its environment, 

(no flow). The choice of all functions must be such that the functions «, e, r and their 

first derivatives are continuous (because the first derivatives are present in Eq.4.5.4). 

We can assume for the environment a uniform temperature T o u t ( a o ) = Too = 

1.6 χ ΙΟ 6 Κ and magnetostat ic equilibrium, a o u t ( a o ) = 0. The functional form of 

e o u t ( a 0 ) reflects the distribution of the environmental density at ζ = 0, since from 

Eq.(4.5.3) we have 

l n ? = ^ e o u t ( a 0 ) . (4.5.9) 

For the internal loop s tructure we have assumed the following profiles 

α*»(α0) = a o u t + a m a x s i n N « (π Q° ~ αϋΐ \ , (4.5.10a) 
V a0i - aof J 

e-(ao) = e o u t + e m a x s i n ^ (* Q° " ü°f ) , (4.5.10b) 
\ a0i - a0f J 

^»(ao) = r o u t + r m a x s i n ^ (η Q° ~ ° 0 / ) , (4.5.10c) 
\ aoi-aofj 

where a^i and ao/ are t h e field lines defining the boundary of the loop. The first 

derivatives of the above functions are non singular only if Na,N(, NT > 1. 
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It is worth to compare the solution obtained with flow [ α ι η ( α 0 ) φ 0] with a static 

solution [am(a0) = 0] having the same boundary conditions ( temperature, density, 

pressure and vertical magnetic field component) at the base (z = 0). This implies that 

ag t a t i c (x,0) = a £ o w ( x , 0 ) , r s t a t i c ( a 0 ) = r f l o w ( a 0 ) and t h a t e s t a t i c ( a 0 ) is given as function 

of e f l o w ( a 0 ) as follows. From Eq.(4.3.4) we have, 

^ + JL + ii! = i » £ ) , ( 4 . 6 . n ) 

h^+±="W«), (4.5.12) 
ξτ 2 

Then 0 s t a t i c = 2 f l o w at ζ = 0 if e s t a t i c ( a 0 ) = e f l o w ( a 0 ) - M?oot/M*. At a given height z, 

the ratio between the densities becomes 

„flow M2-M} , 

£=E = ' — ^ · («·«) 
In Figs.(4.2a,b) we present two typical loop structures for ξ = 0.9. In Fig.(4.2a) the 

flows are absent. We have chosen the parameters for the functions in Eqs.(4.5.10) such 

as to have equal densities at the foot points in each case (Eq.4.5.13). The maximum 

temperature inside the loop is 2.1 χ ΙΟ6 Κ ( r m a x = 0.3) and we see t h a t because 

throughout the loop ξτ < 2 the variation of the density along the field lines is larger in 

the loop with flows in Fig.(4.2b), so the density decrease is steeper than the classical 

exponential density decrease e~9zlv* . The ratio of the densities of the two loops at 

the same height is in the range 0.6 < e~^M _Mf°°»)/2 < 1 because the gas accelerates 

towards the top of the loop ( M > Mf 0 0 t) · Thus in cool loops, the flows· cause the 

density to drop faster along fieldlines in comparison to the static case. 

If the loop temperature is very high this effect is reversed. In Figs.(4.3a,b) where 

the temperature is 7.2 χ ΙΟ6 Κ ( T

m a x = 3.5) the gas decelerates at the top (M < M f o o t ) , 

so the density falls off more slowly t h a n in a static loop. T h e ratio of the densities 

at the same height are in the range 1 < t~^M ~Mtoot>/2 < 1.65. There are cases, as 

in Fig.(4.3b) when the effects of flows are so strong t h a t the maximum density is not 

at the foot points but at a certain height. There may exist sufficiently hot (or small) 

loops where the flows are strong enough to bring the m a x i m u m of the density at the 

loop top! Thus in hot loops with flows the density drops slower or increases with height 

along fieldlines compare to the static case. 

Also, from Fig.(4.lb) we may be explain why strong flows are present only in cool 

loops (section 1.4). If we accept the extreme case t h a t in the footpoints of the hot 

and cool loops (of the same geometrical properties) the velocities are the same, then in 

cool loops the flow speed increases with height reaching its maximum at the top (the 
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Figure 4.2: Typical structure for a moderate hot loop (ξτ < 2) with an unperturbed 
magnetic field given by Eqs.(4.5.1). (a) static loop (am&x = O.J and (b) loop with 
ßows (ormax = 1.1, emax = 0,6). The profile of the functions α,ε,τ are given by 
Eqs.(4.5.8,4.4.10) with Na =.Ne = NT = 1.1 and r m a x = 0.3. The vertical field 
component, the temperature and the density are the same at the base (z — 0) in both 
cases. Continuous lines represent the field lines of the initial current-free configuration, 
while the doted Unes the final magnetic structure. The grey levels are proportional to 
the density. In these solutions, where ξτ < 2 is satisfied everywhere, the density along 
the loop drops faster with height in the presence of ûows as compared to the static 
case. 
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left topology of the Fig.4.1), while in hot loops decreases (the right topology of the 

Fig.4.1). Thus, in cool loops the flows will be appear stronger compare to the hot ones. 

In the static case the shape of field lines depends on the gradient of pressure which 

push either inwards or outwards. With flows, the centrifugal forces, which push out­

wards, are also present. Thus the field fines are pushed "locally" in order to balance 

the hydrodynamic and hydrostatic gas effects. These effects remain small when the 

Alf venie Mach number is low. 

4.5.5 Transonic flows. 

For ξτ < 2 a pressure difference imposed at the foot points of each field line, forces 

the flow to become supersonic at the summit (where the effective cross section S(x), 

Eq.(4.5.7), is minimum). In order to become subsonic again at the other foot point it 

must be decelerated through a shock that is located at some position downfiow. But 

to first become supersonic, the flow must pass through a critical point on the field line 

(ao), and the function a(ao) must then be related to the function e(ao). Put t ing the 

partial derivative with respect to ρ of the left hand side of Eq.(4.5.3) to zero, we see that 

the requirement M = 1 at the summit (x = 0,z = —21na 0 where 5(x) = 5 m i n = 2) is 

equivalent to the following relation (criticality condition) 

ι \ 2T 

eM=M} 
1 , Μ,,αο1 &a 
— ^ — c ~r— (4.5.14) 

This condition imposed at the upstream foot point of a field line implies that the 

solution is transonic on it. It is physical to suppose the existence of subsonic flows 

in field lines around a 'transonic core'. In the transonic region, the temperature is 

τι(αο) before the shock front. After, it is T2(ao), a function determined by boundary 

conditions on the downstream foot point, mainly by the value of the pressure there. 

The boundary condition τ-ι = τ\ must be also satisfied at those field lines that make 

the boundary between the transonic and subsonic layer. In the following we shall for 

simplicity prescribe the profile of the post-shock temperature T2(ao) and deduce the 

associated pressure at the downstream footpoint. 

The conditions at the shock front are that the mass flux, the energy flux, the normal 

component of the magnetic field, and the m o m e n t u m flux must be continuous (Landau 

& Lifshitz 1960). Because we are in the ideal MHD context we must have also that the 

tangential component of the electric field from induction equation must be continuous. 

If we denote with indices η and t the directions normal and tangential to the vector 

which is perpendicular to the shock front we have 

[pVn] = 0, (4.5.15a) 
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Figure 4.3: Typical structure for a very hot loop (ξτ > 2) with an unperturbed mag­
netic fìeld B 0 given by Eqs.(4.4.1). (a) static loop (am a x = 0.) and (b) loop with flows 
(am&x = 2.7, emax = 1.83}. The functions α,β,τ are almost constant inside the loop, 
and its temperature is 7.2 x l'O6 Κ ( r m a x = 3.5j. The vertical Held component, the 
temperature and the density are the same at the base (z = 0) in both cases. The 
drawing conventions are the same as in Figs.(4.2). In these solutions, where ζτ > 2 
is satisfied in the region of strong flows, the density is larger in the presence of ßows 
(b) than without (a). Then the maximum density is not at the foot points but above 
them. 
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BnV-B 

4π 

[ S n ] = 0 : 

pVnVt -

BÌ - B\ 
8π 

BnBt 

(4.5.15b) 

(4.5.15c) 

(4.5.15d) 

0, (4.5.15e) 

(4.5.15Ì) 

47Γ 

[VnBt-VtBn} = 0, 

where h is the enthalpy per unit mass and [ ] means the difference between the up- and 

down-stream values at the shock position. The two first conditions are automatically 

satisfied if the functions Φ Λ 0 ( Α Ο ) and E(AQ) are identical before and after the shock 

front (the second because we assume that V / / B Q SO the Poynting flux te rm is zero). 

Obviously, the continuity of the tangential component of the electric field is satisfied. 

The remaining three conditions yield to first order in β and M2 

\pVnVt]-^[Blt]-=0, 

(4.5.16a) 

(4.5.16b) 

(4.5.16c) 

because both Bon are Bot are continuous. Using the continuity of pVn and V / / B Q , 

Eq.(4.5.16c) becomes 

[PV
2] - % [ 5 l t ] = 0. (4.5.17) 

4π 

Combining Eqs.(4.5.15b,d) we get 

[P + pV2} = 0 (4.5.18) 

This equation gives the shape of the shock since it holds only at a single point on each 

field fine. The Bernoulli equation, valid on both sides implies 

Τί1ηρι + ί + ~^Γ 
Ml 

<oo), (4.5.19) 

which gives the density ρί(χ, z) before the shock (i = 1) and after (i — 2). Eq.(4.5.18) 

then indicates where the j u m p must be situated. Eq.(4.5.16c) can be written as 

[Bit] = -^-[pVnVt] 
±>a„ 

(4.5.20) 
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This gives the surface current density Js = [B\t] along the shock. Note tha t , the flow 

being subalfvénic, such a shock is necessarily of the slow type. 

In order to find the resulting structure of the loop we can use the superposition 

principle, adding the field created by distributed currents and by the surface current 

at the shock. We first solve for αϊ the Poisson equation (see Eq.4.5.4), 

V 2 a i = a 
d a dao d a dao 

dx QÌ dx dz QÌ dz 
£ A (4.5.21) 
2 da0

 V ' 

taking the density from the Bernoulli equation 4.5.19. The right-hand side of Eq.(4.5.21) 

is the distributed current. The potential A\s created by the surface current density J3 

of the shock discontinuity is given by 

4.7Γ 

V2Aii=Js = -—[pVnVt). (4.5.22) 

Making similar adimensionalization in A\s as in Αχ we can write Eq.(4.5.22) as 

coso 
V au = j 3 = b0 (4.5.23) 

where θ is the angle between the shock front and the initial magnetic field line CLQ . T h e 

whole potential a i t o t a I is 

«itoti = «ι + «is > (4.5.24) 

The conditions (4.5.16a) and (4.5.20) are satisfied by our way of constructing the 

solution. 

In some cases, the above described construction of the solution would place the 

shock below the level ζ = 0. This is obviously because our model does not properly 

describes the physics of the flow in the region of steep density gradient where the plasma 

passes from low to high ·β. The downwards supersonic flow is channeled in the low β 

region but not lower down. Tfye situation is somewhat analogous to a flow exhausting 

from a nozzle into an open medium (Landau & Lifshitz 1966). Here however the 

open medium exhibits a steep gradient of pressure due to the stratification of the cold 

atmosphere by gravity. The very high values of the pressure which are obtained at even 

slightly negative altitutes are large enough to decelerate the supersonic downflow at 

some point in this steep gradient layer. This is made through a three dimensional shock 

of sonic nature . In practice then, when our construction fails to locate the decelerating 

shock in the low β region, the latter locates itself very near the photosphere. 

In Fig.(4.4) we show a typical loop structure with shock. Note that the gas density 

in the pre-shocked area is almost constant because the flows are very strong ( M > 1). 
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Figure 4.4: Typical structure of a loop (ξ = 0.9, a m a x = 30, Na = 2) with shock for the 
direction of the ßowfrom left to right. The maximum temperature before (resp. after) 
the shock is r™ax = 0.3 (resp. τψ** = 0.4) and their profiles are given by Eqs.(4.4.8c) 
and (4.4.9c) with NTi — 2. The lines and the gray levels have the same meaning than 
in Fig.(4.2). The dashed line shows the shock position. 

In Fig.(4.5) we see another example applicable to cool loops. Cool loops are ob­

served to have sizes comparable to the coronal scale height but are not in hydrostatic 

balance because their temperature is at least one order of magnitude lower than the 

coronal one, while their density is similar to that of the corona. Cool loops are sur­

rounded by a hotter and denser medium. Foukal (1976) proposed that material enters 

in the cool loops at their top and flows down to the lower atmosphere. We modeled 

such a flow still keeping the isothermal assumption, although radiation losses may play 

a role. The result is shown in Fig.(4.5). Material has been assumed to be injected at 

the loop top with a sonic speed and its motion has then been calculated. The core 

temperature was taken to be 8 χ ΙΟ4 Κ. It is seen that the density profile is quite flat 

in the core before the material passes through the shock. The shape of the shock is 

not transverse to the field fines but tends to wrap around the cool core. We propose 

this as a possible explanation for the hot dense sheet observed around cool loops. 
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Figure 4.5: Typical structure of the half of a loop (ξ = 0.5, a m a x = 300, NQ = 2) with 
shock having a cool core temperature of 8 χ ΙΟ4 Κ fr1

m a x = -0.95, τ ^ Λ Χ = 0A). The 
ßuid inject at the loop summit with a sonic speed and then it ßows down from both 
legs. In the pre-shock area the density is uniform because of the high Mach number 
of the ßow, while the shock tends to wrap around the cool core. The shocked plasma 
forms a hot dense sheet around the cool core. 
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4.6 Cylindrical geometry. 
The most general magnetic current-free field in cylindrical coordinates τφζ is (Priest 

1984) 

Ao(r,z) = A* — 
* ' & > 2L »®<m e 2L (4.6.1) 

which can describe loop-Hke solutions with asymmetrical cross section. It is defined in 

the space between the two semi-open cylinders r\ < r < r2, Ζ > 0 where r2 is the first 

zero of Eq.(4.6.1) larger than r\ and of course r\ φ 0. In limited cases for large £r/L 

we can write approximently 

AQ(T,Z) « A* — * — sin 
7Γ y T\ 

j{r\ -r)' 

2L 
» 2Ü (4.6.2) 

where r2 —r\ +2π. The following simpler magnetic current-free configuration can be 

used as a first approximation for the magnetic field of a spot at chromospheric and 

coronal altitutes where the plasma β « 1 , 

A0(r,z) = A*— J a 2 X ] e 2 £ (4.6.3) 

It is defined in 0 < r < 7.6634ϋ/ξ, ζ > 0 [7.66341 is the first zero of Ji(z/2)]. In both 

cases the magnetic field components are 

£ Or 

ldAp 

r dz 
Bo 

IdAo 

r dr 
(4.6.4) 

We assume the same energy equation (4.4.2) and make the same adimensionaliza-

tion as in (4.5.3), except for the definition ζσ = Çr/L and b0 = Α*ζ2/L2. Equations 

analogous to Eqs.(4.5.3) and (4.5.4) can be obtained from the general form of the 

transfield and Bernoulli equations presented in Appendix A. They can be written as 

and 

1 

το 

, ζ 

τΐηρ + - + 

d 1 dai d 1 da\ 
+ 

dw XD dm dzw dz 

a 

w 

Mla2b\ Ml . . 
2? = 2 eW> 

d 1 a. daQ d i a dao 

dw w ρ dw dzza ρ dz 

ρ de 

2 dao 

(4.6.5) 

(4.6.6) 

Thus, we have to solve Eq.(4.6.6) in the region w\ < w < w2i ζ > 0 when Eq.(4.5.1) 

holds and in 0 < w < 7.66341, ζ > 0 in the other case. Boundary conditions are 

homogeneous Dirichlet ones. The appropriate Green function is given in Appendix B. 
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Figure 4.6: The variation of the effective cross section Eq.(4.6.7) with the horizontal 
distance w for five values of ξτ = 0.6,1,2,3 and 10. 

Writing the Bernoulli equation for a given field line in terms of the horizontal 

coordinate w we find that we can define the effective cross-section as 

S{w) = ^ 
αϊ *Τ{π,0) 

b0(zu,0) 
(4.6.7) 

which has an extremum which depends on ξτ. In Fig.(4.6) we plot the function S{w) 

and we see that now the critical point of Eq.(4.4.3) is not at the top of the loop because 

the loop is not symmetric anymore because of the cylindrical geometry. 

But the previous results still hold. For hot loops, where ξτ > 2, the critical point is 

of O-type (the effective cross section has a maximum after the loop summit), and only 

subsonic solutions are possible. For cold loops, where ξτ < 2, the critical point is of 

X-type (the effective cross section has a minimum before the loop summit) and both 

subsonic and transonic solutions are allowed. In the particular case where ξτ = 2 the 

effective cross section increases continuously as we move outwards, and only subsonic 

solutions are possible. 

For subsonic flows the pressures at the two foot points of a same field line are now 

different. The solution is such that the higher is the magnetic field, the lower is the 

pressure; so the pressure at the outer foot point is higher than at the inner. This is a 

more general result than the usual static condition Ρ+Β2/8π = const, which holds only 

if the magnetic field is vertical. Note also that at the same altitude force balance along 

field lines requires equal densities and pressures in the absence of flows. Thus subsonic 
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flows are driven by small pressure differences. So the flow is accelerated towards the 
inner foot point. This siphon mechanism can explain naturally the reverse Evershed 
flow and the flow in asymmetrical coronal loops. Flows in the reverse direction would 
imply that the fluid move in the direction of increasing gas pressure, which calls for 
an additional driving mechanism, for example by Alfvén or magnetosonic waves, or a 
secular variation of the spot configuration. 

For subsonic flows the ratio of the pressures at the two foot points of the same 
field line has a specific value which depends on α(αο), τ(αο) and e(ao). If boundary 

conditions happen to be different, the flow must be transonic and shocked solutions 

must occur. The criticality condition is given again by Eq.(4.5.14). The calculation of 

the structure with shocks proceeds in the same way as Cartesian coordinates. 

In Fig.(4.7) we show a typical solution for the counter Evershed flow at chromo-

spheric and coronal altitutes (section 1.5.2). 

In Fig.(4.8) we show two typical loop structures. We see that the effect of flows 

causes the loop to become more asymmetrical than in the static case. We can imagine 

that there may exist loop structures in which the innermost part of the loop may not 

be visible. 

In Fig.(4.9) we present two typical loop structures with shocks for the two possible 

directions of the flow. 

4.7 Conclusion. 

In this chapter we have constructed two-dimensional low-/?, and subAlfvénic isother­
mal magnetic arcade solutions. Such stationary solutions are introduced in order to 
model flows in coronal loops and the Evershed effect in sunspots. We solved the MHD 
equations (in two coordinate systems) in the low-/? and low Alfvén Mach number 
limit assuming that the magnetic structure is approximently force-free. Both the field-
aligned dynamics and the cross-field force balance is solved. Our method of solution 
can be used in the presence of any boundary conditions and could allow modeling of 
other situations than the examples given in this paper. This is made possible because 
of the reasonable low-/? assumption . 

We assumed that the flows are always subsonic at the base of the structure. In 
cartesian coordinates, we analyzed the modifications brought about by flows in sym­
metrical magnetic configurations. When there is no pressure difference between the 
two foot points the flow is subsonic (we neglect the viscosity force) and the magnetic 
structure remains symmetric. When there is a pressure difference between the foot 
points and the loop is cool the flow becomes supersonic at the field line summit and 
after deceleration through a shock, the flow becomes subsonic again. In this case the 
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Figure 4.7: Typical structure of a spot at chromosphenc altitutes assuming isother-
mallity with a uniform temperature ΙΟ5 Κ showing the counter-Evershed ßow for ξτ = 4 
and α(α0) — 0.8. 
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Figure 4.8: Density structure of a static loop (emax = 0.55) in (a) and density structure 
of a loop with flows in (b) (amax = 4.6, emax = 0.7). Both have the same density at 
the outer foot. In both cases we have ξ = 0.8 and Na = Ne = NT = 1.5 and r m a * = 1. 
The ûows decrease the density of the loop in the inner part and the loop becomes more 
asymmetrical than in the static case. 
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Figure 4.9: Typical structures of two loops (ξ = 0.8, o; m a x = 70, Na - 2) with shocks 
for the two possible directions òf the üow; from right to left in (a) and the opposite in 
(b).The pre-shock temperature is equal to the external coronal one and the the post-
shock temperature has a "sinenosoidal" profìle with NTi = 2 and its maximum is 1.1 
times the external temperature. 
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loop becomes asymmetrical. In extreme cases the shock may become very inclined to 
the magnetic field and the shocked material seems to wrap around a cool core. This 
might explain the situation observed sometimes in cool loops. In order for the density 
contrast to be visible against the surrounding, the energy flux inside the loop must be 
very different from its surrounding. In cool loops with temperature less than « IO6 K, 
the flows cause the density to drop faster along fieldlines compare to the static case, 
while in hot loops with temperature greater that « ΙΟ6 Κ the flows causes the density 

drops slower and in some cases to increase with the height. Finally, in cool loops the 

flows will be appear stronger compare to the hot ones. 

We also analyzed flows in asymmetric magnetic configurations by using cylindrical 

coordinates in order to apply both to asymmetrical loops and to sunspot configurations. 

We find that the counter-Evershed flow, detected in chromospheric and transition re­

gion temperature range, may be driven by a pressure difference (it flows from the low to 

the high field strength region). In the Evershed flow (observed at photospheric level) 

the plasma flows in the direction of increasing gas pressure. This requires another 

mechanism, may be time dependent, like the concentration of the sunspot magnetic 

field or wave pressure, to drive such flows. In asymmetrical loops the presence of flows 

increases the asymmetry of the density structure as compared to the static case. In 

some cases one leg of the loop may become poorly visible. 



Chapter 5 

l -D MHD EQUILIBRIA JN 
UNIFORM GRAVITY 

5.1 Introduction 

Until now, solar prominences (Priest 1989 and references therein) have been mod­

elled as one-dimensional (Kippenhahn &: Schlüter 1957, Poland & Anzer 1971), two-

dimensional (Low 1975a, Low et al 1983, Hood & Anzer 1990), or, three-dimensional 

(Low, 1982, 1984, Wu k Low 1987, Demoulin 1989) magnetic structures in magneto-

static equilibrium, but without flows. Yet, H a film observations and direct measure­

ments of Doppler shifts indicate that even in quiescent prominences the plasma is not 

static, but it is instead in a continuous motion, suggesting therefore the ubiquitous 

presence of flows in almost all types of prominences (Mein 1977, Malherbe et al 1983; 

Martres et al,1981; Schmieder et al, 1985; Engvold et al, 1986). 

As we have seen in chapter 1, magnetic loops and arcades on the other hand, have 

also been observed to have plasma flows. But from the previous chapters we see that 

such plasma flows have either been neglected altogether by studying the properties 

of those magnetic flux ropes as magnetostatic structures without flows, or, flows are 

allowed but the loops are described as rigid arches with a cross-sectional area that is 

allowed to vary in a prescribed way in the low-beta limit, or, as one-dimensional flexible 

loops, or, as incompresiple flows ignoring gravity (chapter 3). 

The purpose of this and of next chapter is to proceed further by constructing a novel 

classes of steady MHD equilibria in the uniform gravitational field, without the critical 

approximation β « 1, that is approximated to exist in the low solar atmosphere. T h e 

construction is facilitated by the general reduction of the complete set of the symmetric, 

125 
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but nonlinear and partial differential equations of ideal magnetohydrodynamics that we 

assume to describe - to zeroth-order - the interaction of compressible magnetofluids 

in the solar atmosphere. This is the crucial point that makes the difference in the 

solutions discrubing in the two later chapters from the existing ones; to solve the MHD 

equations for each field line. The only similar case to these solutions is the work of de 

Ville & Priest (1991a,b,c). 

The most simpler and analytical class of equilibrium, is of course the one-dimensional 

MHD equilibria (Tsinganos 1992, Tsinganos & Surlantzis 1992). In sections 5.2 and 

5.3 we review the 1-D static and hydrodynamic equilibria and in section 5.4 the one-

dimensional planar MHD solution for an isothermal atmosphere is presented. This 

solution can be extended to the case that there exists a general polytropic relationship 

between pressure and density (section 5.5) and may be also constructed by a systematic 

method that generates analytically solutions of the full MHD equations with one ignor-

able coordinate (chapter 2). Finally, the main conclusions of the study are summarized 

in section 5.6. 

5.2 Magnetostatic equilibrium 

The simplest set of the integrals of the MHD equations, putting V = 0 for the simple 

case of an isothermal atmosphere with a constant sound speed Vs, is 

Φ Α ( Α ) = 0, Ω ( Α ) = 0 , 

G(A) = 0, E{A) = E0 + {g/B0)A, (5.2.1) 

where B0 and E0 are constants. For this choice of the integrals, and an isothermal 

atmosphere, Eqs.(2.3.24, 2.3.26) yield the following two coupled equations for the pair 

of the two unknown variables p(x, z), A(x, z), 

ν2Α + 4πρ~- = 0, (5.2.2a) 
•Do 

V3

2 In L· + gz = E0 + -J-A. (5.2.2b) 
Po t>o 

By eliminating A, we obtain a single equation for the dimensionless density ρ = pi Po-, 

where p0 is the density at the origin χ — ζ — 0, 

V 2 l n £ + ^ £ = 0 . (5.2.3) 
Li 

The differentiation in the above Laplacian is with respect to the dimensionless coordi­

nates χ = x/L and ζ = z/L (where L = Vg/g is the scale height) while β is the familiar 
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plasma ratio at the origin, β = 8np0Vg/Bl. Thus, instead of solving the set of the 

coupled Eqs.(5.2.2) we need to solve this single equation for the dimensionless density 

ρ (Low et al 1983). However, a detailed study of the various solutions of this nonlinear 

partial differential equation shall be postponed for the future. Here we shall confine 

our attention to the simplest possible solutions of this equation which correspond to 

1-D equilibria similar to the Kippenhahn-Schlüter model for a quiescent prominence 
(Kippenhahn-Schlüter 1957) wherein the density is independent of ζ, ρ = ρ(χ) only. 

Indeed, tl\e simplest such possible solution of Eq.(5.2.3) is 

e(*) = ^ χ · • (5-2.4) 

«Λ« (4=) 
From Eqs.(5.2.2) the resulting expression for the magnetic flux function A has the 

following form 

A(x,z) = -B0z + / Bz(x)dx , (5.2.5) 

such that the magnetic field in the orthogonal coordinate system χ — y — ζ where the 

z-axis points toward the opposite direction of the uniform gravitational field g is, 

β A ßA 
BX = -— = B0 , Bz = ^- = Bz{x) , . (5.2.6) 

OZ OX 

Finally, the z-component of the magnetic field, i>2(x) = Bz(x)/B0i may be obtained by 
taking the derivative with respect to χ of Eq.(5.2.2b), 

6,(x) = V 5 t a n h / ^ y (5.2.7) 

Note that the following relations that hold between οζ-ρ-χ 

±dx=—T£ß=. (5.2.8) 

are also obtained from Eqs.(5.4.19) in the limit of zero flows, M=0 . 
The dimensionless density ρ and magnetic field bz are expressed in terms of a single 

parameter, the plasma ratio β at the origin χ = 0 where the density is maximum and 

the magnetic field fines are horizontal, bz = 0. Notice that for given maximum density 

p0 the z-component of the magnetic field which supports the plasma weight against 

gravity is 
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The minimum radius of curvature R0 of the field lines at the point of maximum density 
is then 

V2 

R0 = — . (5.2.10) 
9 

Notice also that in this solution the total pressure [Ρ + Β2 /8π] is constant everywhere, 

with the result that the plasma weight is supported against gravity by the tension of 

the magnetic lines alone. The density is maximum at the origin where the field Unes 

have the greatest curvature and tension. The density tends asymptotically to zero at 

infinity, where the field fines become straight lacking any curvature and tension. Note 

that most of the plasma is confined horizontally within a few scale heights; and the 

extent of the volume containing most of the plasma is smaller the smaller is β. The 

solution (5.2.4), (5.2.7) forms the basis of the well known Kippenhahn-Schlüter model 
for a quiescent prominence (Kippenhahn-Schlüter 1957, Poland and Anzer 1971) and all 
we have done here is to show a novel way for deriving it from the Eqs.(2.3.24,2.3.26). 
This may be helpful in generating more solutions of Eq.(5.2.3) and also additional 
classes of solutions for more general expressions of the integrals in Eq.(5.2.1). 

In the above Kippenhahn-Schlüter solution the atmosphere is compressible only in 
the horizontal direction. It is an interesting fact that this solution can exist in a plane-
parallel stratified atmosphere as well (Low et al 1983). In that case the total density 
/?(x,z) is given by the expression, 

p(x, z) = Pooe^ + P«__^ > (5.2.11) 

c o s h 2 i ^ i 

where p\\ is the density at ζ = 0, χ —> ±oo. 

5.3 Hydro dynamic equilibrium 

It is instructive to consider for a moment the equilibrium of the similar, one-dimensional 
velocity field, 

pV = [pVx,0,pVz] = [p(x)Vx(x),0,p(x)Vz(x)}, (5.3.1) 

in the same isothermal atmosphere where we have put Β = 0. Then, the continuity 

equation is satisfied identically if p(x)Vx(x) = constant, while the remaining force 

balance equations read, 

^ [P + pV2} = 0 , (5.3.2a) 

fa[PvM = -P9' (5.3.2b) 
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Noting the analogy of Eqs.(5.3.2) to the corresponding equations of the previous case of 

magnetostatic equilibrium, integrate Eq.(5.3.2a) to obtain ρ = const. Notice then that 

this result is drastically different from that expressed by Eq.(5.2.3), the streamlines 

of the flow are the familiar parabolic paths of a projectile fired against the uniform 

gravitational field instead of the sagged, under the plasma weight, magnetic field lines. 

None of the interesting features found in the one-dimensional magnetostatic equilibrium 

is found in this case of the one-dimensional hydrostatic equilibrium. This physical 

difference js better understood when we compare the Maxwell and Reynolds stress 

tensors (Parker 1979), 

hj + ^T1' < ( ( 5 - 3 3 a ) 
47Γ 

Mij τ, B2 

P + — 
8π 

Qij = -Pèij - pViVj . (5.3.3b) 

The non-uniform part of the Maxwell's stress tensor represents tension along a magnetic 
line while the non-uniform part of the Reynolds stress tensor represents compression 
along a stream line. The inevitable result is that magnetic lines are stretched tight 
whereas stream lines tend to buckle. It becomes of interest then to know which of the 
two stresses dominates when we have flows along the magnetic field lines. 

5.4 1-D Hydromagnetic and Isothermal Equilibrium 

The simplest cases of pure magnetostatic and hydrostatic 1-D equilibria in uniform 
gravity, respectively, was briefly discussed. In this section we proceed with a step by 
step construction of an analytic solution for the composite case of dynamical equilib­
rium (V, Β φ 0). It will be seen that this general case of MHD equilibrium, although 

it maintains the basic features of the simpler pure magnetostatic and hydrostatic equi­

libria to which it reduces, in the extreme cases V = 0 or Β = 0, respectively, is much 

more complex than each of them and reveals novel features. 

5.4.1 Governing equations 

Take the 2-axis of the orthogonal system yzx to point in the opposite direction of the 

uniform acceleration of gravity g. Search for solutions where the horizontal component 

of the magnetic field is uniform, the vertical component depends only on the horizontal 

distance χ while the mass flux is parallel to the magnetic flux, 

B=[Bx,Q,Bz) = [B0,Q,Bz(x)} , pY = XB. (5.4.1) 
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The components of the momentum balance equations yield then, 

A. 
dx P + Bl 2 o 2 1 

+ 
\2B 

A. 
dx 

8π ρ 

B0BZ / _ 4ττλ^ 

4π V ß 

0, 

= Ρ9· 

(5.4.2a) 

(5.4.2b) 

Assuming for simplicity an isothermal atmosphere, Ρ — Vf ρ, Eq.(5.4.2b) can be inte­

grated to give, 
r>2 \2 D 2 \ 2 D 2 

PVI + & + -^- = PoVJ + A A = ̂  ν/ , (5.4.3) 8π ρ " p0 

where p0 is the density at the valleys of the equilibrium where Bz = 0 and pi is a 

positive constant. Combining Eqs.(5.4.2b) and (5.4.3) we obtain 

J 871-V2 

(5.4.4a) 

dp 

5 0 £ 2 (p) Λ 4ττλ2 

(5.4.4b) 
4π \ ρ 

where δ — \B0/V9. Eq.(5.4.4b) - with Bz(p) substituted from Eq.(5.4.4a) - is then 

the final equation which gives the density ρ as a function of the horizontal distance x. 

Finally, substituting Eq.(5.4.4a) in Eq.(5.4.4b) the following first order ordinary 

differential equation is obtained, 

±JS-^idx = C(p)dp 
Bl~~ P 3 V / ^ z 7 + 7 ^ r ^ ) ' 

while C(p) is the cubic, 

C(p) = p3 + 4ττλ2ρ2 - ρ(δΖ + 8πλ 2ρι) + 12πλ 2£ 2 . 

(5.4.5a) 

(5.4.5b) 

The above expression can be readily integrated to give x(p) in terms of the incom­

plete elliptic integrals of the first and second kind, F(t, k) and E(t, k), respectively 

(Appendix D). The solution x(p) depends on three constants, namely λ, ρχ and δ. For 

any given set of these constants Eqs.(5.4.5) can be integrated to give x{p). In reversing 

the function x(p) to obtain p(x) some caution is needed however, since, for a fixed sign 

in Eq.(5.4.5) the function p(x) might not be single-valued if the cubic equation, C(p) 

= 0 has roots pi, ι'. = 1,2,3, which happen to be in the interval of the allowed density. 

Keeping that in mind, in the following we shall examine the solutions of Eq.(5.4.5) for 

all possible values of the constants λ, p\, and δ. 
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Note that the above solution can be constructed by using the formulation developed 

in chapter 2 with the following choice of the free integrals Φ^(Λ), Ω(^4), G(A), and 

E(A), 

Φ Λ (Α) = 4πλ, Ω(Α) = 0, G(A) = 0, E(A) = Ea + (g/B0)Aì (5.4.6a) 

where E0 is constant and the magnetic flux function A is given by 

A(x,z) = -B0z+ ί Bz(x)dx. (5.4.6b) 

5.4.2 Relations among the characteristic speeds 

In order to have a qualitative understanding of the solution, in this subsection we 

investigate the relation of the magnitudes of the three characteristic speeds, the sound 

speed Vs, the Alfvén speed V^ and the flow speed V^ at the valleys (+) and the 
summits (—) of the field and streamlines where the density is ρ and the fieldlines are 

horizontal. 

Relations at the valleys. The ^-component of momentum balance, Eq.(5.4.2b), 
can be written, 

v+vx d B0BZ B0BZ d 

dx 4π 4π dx (K+)2J = 99 (5.4.7) 

Noting that at the lowest point of each field line Bz = 0, dBz/dx > 0 and Vx = Vx

+, 

Eq.(5.4.7b) yields 

VX

+<V+. (5.4.8) 

This result can be simply understood by writing the equilibrium equations of force 

balance at the lowest point of the field Une 

P+(V+Y 
+ P+9 

Bl 
- j . ' r υ - . ^ , (5.4.9a) 

R+ r y 4πΙΙ+ ' v ' 
* 

where r + is the radius of curvature at this point. By multiplying by r+ and dividing 

by p+ we obtain 

(Va

+)2-(Vx

+)2=K+g, (5.4.9b) 

from which the inequality (5.4.8) follows. 

On the other hand, consider the derivative of the ^-component of the momentum 

balance Eq.(5.4.2a), 

d2p 

dx2 V 
(p+vx

+y 
+ 

2VX

+ dp 

ö+ dx 4π 

dBz 

dx 

Bz d2Bz 

47Γ dx2 
(5.4.10) 
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Substituting Bz = 0, dp/dx = 0 at the position of maximum density where the field 

and streamlines are horizontal we obtain, 

^V/-^) 2 ]— 1 dB^2 

dx 
< 0 . (5.4.11) 

dx2 L a v x ' J 4π 

Since p+ — Pmax, we have that dtp/dx2 < 0 and 

V+ < Vs . (5.4.12) 

It follows that the flow at the valleys of the field and stream lines where the density 

is maximum, is subsonic and subalfvenic. This result should not be surprising, since 

at these localities the equilibrium is dominated by the magnetic tension forces, and 

therefore we have a Kippenhahn-Schlüter, prominence-like solution with a weak flow 
along the sagging magnetic field lines. 

Relations at the summits. Let p~, V~, V^ the density, flow speed and Alfvén 
speed at the summit of some loop-like, one-dimensional hydromagnetic equilibrium, 
where the magnetic and stream lines are horizontal. At this point Bz = 0, dBz/dx < 0, 
and the ^-component of the momentum balance equation - similarly to Eq.(5.4.7b) -
yields the inequality, 

V- > VX . (5.4.13) 

As before, this relation can be simply understood by writing the force-balance equation 

where r~ is the corresponding radius of curvature. 
On the other hand, the x-component of momentum balance gives Eq.(5.4.11), as 

before. Since p~ = pmin, we have d2p/dx2 > 0 and the above inequality yields 

V- >VS. (5.4.15) 

The flow at the summits of the field and stream lines, where the density is minimum, is 
supersonic and superalfvenie. As before, this result should not come as a surprise, since 
the flow at these localities has to be strong enough such that the resulting centrifugal 
force balances both the plasma weight and the magnetic tension force for equilibrium. 

Note that there exists a simple relationship between the Mach numbers M + , and 
M~, at the valleys and summits of the MHD equilibrium. By combining relations 
(5.4.1) and (5.4.3) applied to the valleys and summits, 

P+V+=p-V-, p+V? + t£s- = p-V? + tp-, (5.4.16) 
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we obtain for the ratio of the densities and product of the Mach numbers at the summits 

and valleys, 

ρ- = p-/p+ = ( M + ) 2 , M~M+ = 1. (5.4.17) 

5.4.3 The solution 

Let 

" = Λ + =£=3ί· «·=«?=¥· /»=>•=¥. <«·«»> 
denote the gas and magnetic Mach numbers and the plasma ratio, respectively, at 

the valleys of the MHD equilibrium where the density is p = p0. Then, Eqs.(5.4.4a), 

(5.4.5) for the dimensionless z-component of the magnetic field bz = Bz/B0, and the 

dimensionless density ρ = p/p0 can be written in terms of these constants M, Ma and 

β (which are reffered to the valleys and for simplicity we have dropped the index ' + ' ) , 

where 

ha{e)_±jß[i-to-*]t (5.4.19a) 

±yftd*= 3J^?== (5.4.19b) 

C{Q) = g3 + Μ\ρ2 - [M2 + 2Ml + 2Μ2Μ2

α]ρ + ZM2M2

a , (5.4.19c) 

while again we have defined χ = x/L and L = V2/g is the scale height of the atmo­

sphere. It is obvious that the density must be in the interval i" = [M 2 , l ] . At the 

valleys, ρ — 1, M = M+ < 1 while at the summits, the density is equal to g~ — M2 

and M~ = 1/M > 1. It is interesting to note that this result of a bound density 

distribution is a novel feature of 1-D hydromagnetic equilibria in uniform gravitational 

fields. Apparently it can be regarded as an extension of the known property of 1-D 

magnetostatic equilibria in uniform gravity where the density is bounded above, p < p 0 , 

(ρ < 1), but otherwise unbounded below, except, of course, to have positive values. 

The additional restriction on the density seems to have a hydrodynamic origin, since it 

can be seen that the lower bound disappears when V —+ 0, or M —> 0 (or equivalently 

λ, δ ^ 0 ) . 

We may distinguish two cases of such equilibria. First, equilibria that contain 

both valleys and summits. In this case, at the summits we have M~ = Ma/M > 1 

which requires the relation M < Ma < 1, between the two Mach numbers M and 
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Ma· The cubic C(g) has two roots in / , as it may be also seen from Fig.(5.1) for 
Ma = 0.8 > M = 0.5. In the second case wherein Ma < M < 1, the Alfvén Mach 
number Ma at the summits is not greater than one and the solution from a valley 
cannot extend to a summit; only solutions with a valley, or, a summit are allowed 
in this case. The cubic C{g) has one root in / , as it may be seen from Fig.(5.1) for 
Ma = 0.16 < M = 0.5. 

In order that we obtain from Eq.(5.4.19b) a physical solution for g(x) for a given 
set of the parameters Ma and M, we need to examine if the function x(g) is one-to-one; 
i.e., we need to check if the cubic C(g) has roots in the interval I. By checking the 
determinant of C(g) we find that it is negative and therefore C(g) has always three 
real roots. To check if they fall in the interval I simply note that 

C(l) = [1 - M2][l - M2
a] > 0, (5.4.20a) 

C(M) = -2MMl [1 - M2] < 0, (5.4.20b) 

C(M2) = M2[1 - M2][M2 - Μ2], (5.4.20c) 

In the case of a continuous solution with both valleys and summits, M < Ma < 1, 

C(M2) > 0, and we have two roots in I, Fig.(5.1). 

5.4.4 Plots and parametric dependence of the solutions 

Plots of this dimensionless density g(x) are shown in Fig.(5.3b) for various values of β. 

Note that at the points £, where C(QÌ) = 0, we have that dx/dg = 0. However, since 
the function g(x) must be single-valued, the solutions shown in Fig.(5.3b) have been 
stopped at this root gi < 1 of C(g) which is closer to 1; and after gi we have taken the 
mirror symmetric of the curve x(g) with respect to the line χ = x(gi). In doing so we 

actually take advantage of the ± signs in expressions (5.4.19). 

Plots of the magnetic field Unes for various values of the Mach number, from M = 0 

(magnetostatic Kippenhahn-Schlüter solution) to M = 0.75 are shown in Fig.(5.2), 
while for various values of the plasma β, are shown in Fig.(5.3a). We see that by 

increasing the Mach number M, or the plasma β, the field lines become steeper and 

steeper as a result of the increased centrifugal forces. Nòte that the Alfvén Mach num­
ber (M+)2 = β+(Μ+)2/2 (which represents the ratio of the centrifugal and magnetic 

tension forces) increases by increasing the flow speed or the plasma β+ at the valleys 

and that is the reason why the fieldlines become steeper. Another qualitative way to 

understand this result may be seen from Eq.(5.4.9) which can be written at the valleys 

as 

( M + ) 2 + ^ = · ^ , (5.4.21) 
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? · 

Μ,-0.16 

Figure 5.1: Plot of the cubic C(g), Eq.(5.4.19c), for M = 0.5 and three values of the 
Alfvén Mach number Μα, Μα = 0.8 > Μ, Μα - 0.5 = M and Μα = 0.016 < M, 
for the isothermal case, 7 = 1. In the same plot Η^(ρ), Eq.(5.4.19a, soUd curve), is 
shown for Ma = 0.8 and M = 0.5. Note that there always exist at least one root in the 
allowed interval of the density I — [0.25,1] (shaded area) and only in the case where 
we have two roots of the cubic in I it is possible to construct a continuous solution 
including both valleys and summits. 
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Figure 5.2: Shape of the Held and streamlines shape on the z-y plane for η — 1, 
β = 2.3 and four values of the Mach number M: M = 0, (thick line, magnetostatic 
K-S solution), M — 0.5 (dotted line, magnetically dominated MHD solution), M = 
0.63 (dashed Une) and M = 0.75 (continuous Une, hydrodynamically dominated MHD 
solution). Note that by decreasing M the separation of the peaks together with the 
height of the streamlines increases (converging toward the magnetostatic K-S case), 
while the opposite happens when M increases (converging toward the pure hydro, 
constant density and ßow speed case). 
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with L the scale height. For a constant /?+, an increase of the Mach number implies 

a decrease in the radius of curvature at the valleys which necessarily become steeper. 

Similarly, by increasing the plasma β at the valleys - keeping constant the Mach number 

- the radius of curvature there decreases. This is exactly the trend encountered in the 

plots of Figs.(5.2) and (5.3a). 

In a steep valley the density varies also very fast - Fig.(5.3b) - while the magnitude 

of the 2-component of the magnetic field and the total flow speed - Figs.(5.3c,d) are 

also greater than in a flatter valley. In these plots (5.2), (5.3a), (5.3b) and (5.3c) we 

also show by a thick line for comparison, the density, z-component of the magnetic 

field and the shape of the fieldlines for the static Kippenhahn-Schlüter solution. 

At the summits of the equilibrium, we have similarly to Eq.(5i4.21), * 

Substituting M~ = 1/M+ and ß~ = ß+(M+)2, this relation becomes, 

_ (M+)2R- _2_ 
1 ~ L + ß+ ' 

Thus, increasing the Mach number M~, or the plasma ß~ at the summits, is equivalent 
to decreasing the Mach number M+, or the plasma ß+ at the valleys, and this in turn 
leads to an increase of the radii of curvature R~ and R+, Figs.(5.2), (5.3a). This happens 
despite the fact that the Alfvén Mach number M~ — ß~(M~)2/2, or, equivalently, 
the centrifugal force increase at the summits by increasing the flow speed there. This 
trend, is the opposite from what happens at the valleys and should be expected since 
the flow at the summits is hydrodynamically dominated and the role of the magnetic 
field is simply to reduce the height of the summit as compared to the pure hydrostatic 
case. Thus, the width and height of the summit together with the radius of curvature 
R~~, increase by increasing M~ and ß~. 

Altogether, the solution at the valleys is magnetically dominated and the density 
is Kippenhahn-Schlüter type, while the solution is hydrodynamically dominated at the 
summits where the density is approximately constant. 

5.5 1-D Hydromagnetic and Polytropic Equilibrium 

In this section we briefly extend the previous results to the case of a polytropic atmo­
sphere, with a constant polytropic index 7. 

(5.4.22a) 

(5.4.22b) 
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Figure 5.3: Plot of the fìeldline and streamline shape on the x-z plane in (a), the 
horizontal spatial dependence of the density in (b), the z-component of the magnetic 
fìeld in (c) and the total ßow speed in units of the constant sound speed in (d) for 
7 = 1, M — 0.75 and three values of the plasma β at the valleys: β = 3.2 (continuous 
line), β = 2.78 (dashed Une) and β = 2.1 (dotted line). in the first three plots we have 
indicated with a heavy line the magnetostatic K-S solution corresponding to β = 2.1. 
Note that for β = 2.78 valleys and summits are almost symmetrical, by increasing 
β the summits become flatter than the valleys converging toward a hydro dominated 
case wherein density and ßow speed are constant at the summits (β —> oo). The 
opposite happens when we decrease β and the solution converges toward a K-S type 
magnetostatic equilibrium (β —*• 0). 
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In an atmosphere where a polytropic relationship Ρ = ΚρΊ holds, Eq.(5.4.2a) 

becomes 

Kp-' + -^ + °- = KpJ, 5.5.1 
8π ρ 

where Κ and ρχ are positive constants. Combining Eqs.(5.4.2b) and (5.5.1) we obtain 

\2 D2 

Bz(p) = ±\lK[pl-p'r}--z±, (5.5.2) 

and equation (5.5.5b). 

Let again p0, M = M + = XB0/y/jp0P0 and β = β+ = 8np0V
2/jB2,/;denote the 

density, Mach number and plasma ratio, respectively, at the valleys where the field lines 

are horizontal, (Bz = 0). Then, Eqs.(5.5.1) and (5.4.4b) give the following expressions 

for the dimensionless density ρ = pjp0 and magnetic field bz = Bz/B0, 

Ηρ) - ± ^ [ - ^ + ( ΐ γ Μ ^ - 7 Μ ^ ( 5 5 3 a ) 

± ^ x = D ( g ) < * g , (5.5.3b) 
^ V ^ [ - ^ 7 + 1 + (1 + ΐΜ2)ρ - 7 M 2 ] V ' 

where 

•D(i>) = Q1+2 + (2/7 - l ) M a V + 1 - [M2 + 2M a

2 / 7 + Μ2Μ2}ρ + 3M2M2 , (5.5.3c) 

As before, χ denotes the dimensionless horizontal distance χ = x/L, with L the scale 

height in the atmosphere, L = V8

2/</ where Vg2 = jP0/p0 is the square of the sound 

speed at the valleys of the equilibrium. 

The square of the ^-component of the magnetic field, b2

z(g) = β[—ρΊ+1 + (1 + 

jM2)g — "fM2]/g has an obvious root at ρ = 1 while other roots (Fig.5.4) can be found 

numerically. Continuous solutions exist only in the intervals where Η2(ρ) > 0, as in 

the previous section. Also, in order that the density ρ is a single-valued function of 

the horizontal distance χ beyond the points ρ{ where ΰ(ρί) = 0, the solution should 

be appropriately extended such as ρ(χ) remains a single-valued function, similarly to 

the previous case examined in section 5.5.2. In Fig.(5.4), Ό(ρ) is plotted for 7 = 5/3, 

M = M+ = 0.46 and several values of the Alfvén number Ma = M+ = fß\2/2. Note 
that only those values of the Alfvén Mach number for which (Μ+)2/ρ~ > 1, correspond 

to periodic solutions with valleys (M+ < 1) and summits (M~ = M£/ρ~ > 1). 

As in the previous case of an isothermal atmosphere, at the valleys the flow is 

subsonic and subalfvénic, while at the summits it is supersonic and superalfvenic. The 
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Figure 5.4: Plot of the polynomial Ό{ρ), Eq.(5.5.3c), and the square of the z-component 
of the magnetic field E\, Eq.(5.5.3a), (soHd Une) for M = 0.46, and three values of the 
Alfvén Mach number for the polytropic case with η = 5/3. The dashed line corresponds 
to Μα = 0.76, the dot-dashed to Ma = 0.54 and the dot-dash-dotted Une to Ma = 0.26. 
Note that always there exist at least one root in the allowed interval I of the density 
(shaded area). Also, only in the cases where there exist two roots of the polynomial 
D(Q) in I it is possible to construct a continuous solution including both vaUeys and 
summits. 
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0.5 1 1.5 

Figure 5.5: Shape of the Held and streamlines on the x-z plane for 7 = 5/3, β = 2.3 and 
four values of the Mach number M, M = 0 (thick Une, static K-S solution), M = 0.3 
(dotted line, magnetically dominated MHD solution), M = 0.46 (dashed line) and 
M = 0.7 (continuous line, hydrodynamically dominated MHD solution). 

relation between the Mach numbers M+ and M at the valleys and summits is now, 

Q = 
M+ 

M-

7 + 1 
7[M~]2M+ + M+ 

Ί[Μ+]2Μ- + M-

M-

M+ 

-y + i 

(5.5.4.) 

which has as special case Eqs.(5.4.17) for 7 = 1, as expected. 

In Fig.(5.5) we plot the shape of the fieldlines on the plane x-z, for β = 2.3 and 

various values of M while in Figs.(5.6) the fieldline shape, density ρ(χ), z-component 

of the magnetic field, bz(x) and total velocity V(x) for 7 = 5/3, and M = 0.58 and 

various values of β at the valleys. The solution has the same parametric dependence 

on M and β with the previous isothermal case [cf. Figs.(5.2), (5.3)]. Regarding the 

dependence on 7, it can be seen from a comparison of Figs.(5.5), (5.6) with Figs.(5.2), 

(5.3), that by increasing 7 the valleys become steeper. This result is not surprising 

because for the same dependence of ^(x), the gradient of the pressure is higher, the 

higher is the polytropic index and therefore the field gradients should be steeper in 

order to maintain force balance. Note also that by varying the polytropic index, the 

scale height varies too and identical values of the Mach numbers for different 7 do not 

mean identical velocities. 



142 CHAPTER 5. 1-D MEO EQUILIBRIA IN UNIFORM GRAVITY 

Figure 5.6: Plots of the field and streamline's shape on the z-y plane in (a), of the 
horizontal spatial dependence of the density in (b), the z-component of the magnetic 
field in (c) and the total Mach number in (d) for η — 5/3, M = 0.58 and three values 
of the plasma β at the valleys: β = 3.2 (continuous line), β — 2.78 (dashed line) and 
β = 2.1 (dotted line). In the first three plots we have plotted with a heavy Une the 
magnetostatic K-S solution for β = 2.1. Note that for β = 2.78 valleys and summits 
are almost symmetric. On the other hand, by decreasing β the valleys become wider 
than the summits while their separation increases. The opposite happens when we 
increase β. The velocities and the scale height are the same as in the isothermal case. 
Comparing with the isothermal case (Fig.5.3), note that the valleys are steeper now 
because the gradient of the pressure is greater. On the other hand, at the summits 
density and velocity tend to be almost constant, as in pure hydrodynamic equilibrium. 
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5.6 Summary and Conclusions 

The purpose of this series of articles is twofold. First, to present some classes of 

exact solutions of the full 2-D MHD equations pertinent to prominence- and loop-like 

compressible MHD equilibria in a uniform gravitational field. And second, to examine 

the effects introduced by flows along magnetic fieldlines of solar MHD equilibria. 

Regarding the first purpose, this first article of the series simply illustrated the 

possibilities that open by a systematic construction of symmetric compressible MHD 

equilibria through the method presented in chapter 2. Fur ther solutions of Eqs.(5.2.2) 

(Low et al 1983) and Eqs.(2.3.24) may reveal more interesting classes. 

Regarding the second purpose, we fused the well known Kippenhahn-Schlüter so­

lution for magnetostatic equilibrium (V = 0) , with the corresponding hydrostatic 

equilibrium solution in a uniform gravitational field (B = 0) producing our hydromag-

netic solution; and this one-dimensional MHD solution was shown to have a periodic 

structure with prominence-like density enhancements (valleys) and loop-like density 

depletions (summits). 

With these two extremes as reference cases, we studied the parametric dependence 

of the MHD solution by varying the only two parameters on which the solution de­

pends, namely the Mach number M and the plasma β, bo th computed at the point 

of maximum density of the configuration. In particular, we found that the more we 

increase the magnitude of the flow speed at the valleys, M , or equivalently β by keeping 

Ma — constant, the more the solution departs from the characteristics of a K-S magne­

tostatic equilibrium solution and approaches the characteristics of a hydrodynamically 

dominated equilibrium solution. Thus, as, M increases, 

(i). The density, which is always confined in the interval I = [M 2 ,1] with ( M < 1), 

tends to beoucome more homogeneous, in particular around the summits of the field-

fines. This may be understood if we recall for comparison t h a t in the K-S equilibrium 

the density is quite inhomogeneous being in the larger interval Im — [0,1], while in 

the case of pure hydrostatic equilibrium it is homogerieous, everywhere. Thus, as M 

grows toward 1, the difference between the density a t the denser valleys and the fighter 

summits reduces becoming asymptotically zero in the limit of a pure hydrodynamically 

dominated equilibrium. Also, in the neighbor of t h e summits the density tends to be 

more uniform with the horizontal distance, as M or, β increase, while in the neighbour 

of the valleys it changes rapidly with the horizontal distance (Figs.5.3b,5.6b). 

(ii). The wavelength ί and the height h of the periodic field and streamlines decrease 

as M increases. For comparison, in the K-S equilibrium (£, h) —> oo, while in the case 

of pure hydrostatic equilibrium (£, h) —» 0. At this point we are tempted to mention 

that the recently discovered and striking fibril structure of solar prominences (Ruzdjak 
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and Tandberg-Hanssen 1990), may be related to this feature of the solution. Noting 
that the wavelength £ of the configuration is related to the strength of the flow Mach 
number at the valleys, M, we obtain that for M sufficiently small, I may become a 
very small fraction of the scale height L. 

(iii). The radius of curvature of the magnetic fieldlines at the valleys decreases 
as M increases, in order to balance the increased centrifugal force there through an 
increased magnetic tension force. For the same reason by increasing M, the supporting 
^-component of the magnetic field, Bz, increases faster with the horizontal distance Y 
in comparison to the slower hyperbolic tangent increase of Bz(x) in the K-S solution. 

(iv). The flow speed, V tends to a constant value in a wide interval along the 
horizontal distance Y around the summits (Figs.5.3d,5.6d). This may be understood, 
if we recall for comparison, that in the case of pure hydrostatic equilibrium Vx(x) is 
constant. 

(v). All the above trends and properties of the solution are enhanced as the poly­
trope index 7 increases from 1 to 5/3. For example, the valleys become steeper by 
increasing M for larger 7 because with a higher polytropic index the pressure gradients 
are steeper and therefore steeper field gradients are required for support. 

Another result is that the flow speed is always subsonic and subalfvénic at the 
denser and prominence-like magnetically dominated valleys, while it is always super­
sonic and superalfvénic at the depleted and loop-like summits. The regions of transi­
tion from magnetically dominated and subsonic/subalfvénic flows (valleys) to super-
sonic/superalfvénic and hydro dominated flows (summits), are separated by vertical 
sheets where the density gradient obtains locally very large values. It is well known that 
transonic solutions which emerge from nonlinear differential equations (see, Tsinganos 
and Trussoni 1991, Tsinganos and Sauty, 1991, 1992, 1994) have their subsonic and 
supersonic parts bordering at singular points. For example, in the classical solar wind 
theory, Parker (1963), this singular point is an x-type critical point where the flow 
speed becomes supersonic, while in MHD winds, Tsinganos and Trussoni, (1991) the 
critical point where the flow speed becomes superalfvénic is a higher order singular­
ity. In our case, the two regimes are separated by two singular points, those wherein 
C(g) = 0, where the density gradient becomes infinite, although the density remains 
everywhere continuous and finite everywhere. 



Chapter 6 

2-D MHD EQUILIBRIA IN 
UNIFORM GRAVITY 

6.1 Introduction 

High-resolution X-ray and EUV observations, describing in chapter 1, have revealed 

that the solar transition region and corona are not only radially stratified but also hor­

izontally highly inhomogeneous, consisting of magnetized arcades and loops of various 

sizes and properties (Reeves et al. 1977; Vaiana & Rosner 1978). One basic aspect of 

the problem posed by the observation of these loops is the existence and role of plasma 

flows in them (section 1.5). For example, from the fact that many transition region 

loops extend over heights much larger than predicted by models without flows (Foukal 

1976), indicate that flows play a role in determining their gross properties. Recently, 

Peres et al. (1992) compared the fitting of the intensities of some EUV transition 

region emission lines by.loops with steady siphon flows relative to those without flows 

and concluded that siphon flow models of compact active-region loops are in better 

agreement with the observations. 

The purpose of this chapter is to investigate analytically the physical problem, 

started in the previous chapter, posed by steady MHD flows along magnetic fines in 

the uniform gravitational field of a vertically stratified and horizontally compressible 

atmosphere in a somewhat general approach (Tsinagnos et al 1993a,b, Surlantzis & 

Tsinganos 1993), unconstrained by crucial assumptions such that one-dimensionality 

and β « 1. To that goal, we solve in section 6.2.1 by the method of separation 

of variables the coupled set of the two partial differential equations for the density 

and magnetic flux function that govern the equilibrium. Attention is focused on the 

145 
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critical points of this system of coupled equations in section 6.2.2. The topologies of 

the corresponding solutions are then explored in some detail in section 6.3 in order 

to isolate the physically interesting cases. The form of the exact solutions with flow 

is briefly examined in the limit of the simpler similar configuration of magnetostatic 

equilibrium without flows in section 6.4.1, and the limit of very weak flows in section 

6.4.2. In section 6.5.1 we choose the parameters of the solution to be in the same ranges 

as those inferred from observations of solar coronal loops and in section 6.5.2 explore 

the change of curvature and footpoint separation of the arcade as the magnitude of 

the flow at its summit changes. Finally, in section 6.6 the nature of the novel saddle 

critical point that determines the topologies of the solutions is investigated and the 

main results are summarized in section 6.7. 

6.2 2-D MHD steady flows in uniform gravity 

Consider a compressible plasma structure in magnetostatic equilibrium embedded in an 

isothermal atmosphere with a uniform sound speed Vs. Assume that the plasma is com­

pressible in the horizontal and vertical directions, in a uniform external gravitational 

field -gz. In other words, assume that all physical variables depend on the horizontal 

distance χ and the vertical height ζ in the orthogonal system zxy with ζ pointing up­

wards. In the following we write in a convenient form the basic equations governing 

the equilibrium and examine their critical points, which control their topology. 

6.2.1 Governing equations 

For field-aligned flows, the equilibrium is governed by the familiar equations for the 

conservation of mass, magnetic flux and momentum, 

V - p V = 0, (6.2.1a) 

V B = 0, (6.2.1b) 

p(V . V)V = -Vs

2Vp + ( V X

4 ^ ) X B - pgz, (6.2.1c) 

where the gas pressure P(z, x) is written as 

P = Vs

2p. (6.2.1d) 

Assuming for simplicity that the field-aligned flow is in the zx-plane, define the 

magnetic field in terms of a magnetic flux function A(z, x), 

- _ dÄ{z,x) - _ dA\z,x) . 
B*-—dx— ' Bx~ ΈΓ~' ( 6-2-2 a ) 
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A free parameter of the equilibrium is the mass flux density per unit of magnetic flux 

density. This is formally described in terms of an arbitrary function of Α, Φ^(Α), such 

that 

ΑπρΎ = Φ^(Λ)Β . (6.2.2b) 

With Eqs.(6.2.2), force balance across and along streamlines requires, respectively, 

ν 2 Α - Φ 
d *ÀdA d_ *ÄdA 

dz \ Απ ρ dz J dx \ Απ ρ dx 
A ~ d E η 

+ Απρ~- = 0 
dA 

(6.2.3a) 

v>{iyg2 + }L = E(Äh (6.2.3b) 

where p0 is a constant and F(Ä) an arbitrary function of A(z, x) (Tsinganos 1982). 
The various possible functional forms of Φ^(Α) and E(A) give all possible planar 

MHD equilibria. It occurred to us that an interesting class of novel MHD equilibria is 

obtained by choosing the two free functions Φ^(Α) and E(A) as follows, 

9À(Â) - 4KJCÄ and E(Ä) = Vs
2 In 

A 

A0 

2 ( t - D 

(6.2.4) 

with k, A0 and ξ constants. An interesting special subclass of the above equilibria 

described by Eqs.(6.2.3-6.2.4) is the one where all physical quantities Q(z, x) can be 

written as Q(z,x) = X{x)Z{z). In particular, it is physically interesting to search for 

MHD equilibria where the plasma and magnetic pressures fall exponentially with the 

vertical height z, i.e., 

£ z ~ ξζ 

β(ζ,χ) = p{x)e~ i , P(z,x) = P(x)e~ * , (6.2.5a) 

and 

A(z,x) = A(x)e~iL , Bi(z,x) = Bi(x)e 2L , i = x,z (6.2.5b) 

where L is the constant scale height, L = V^/g and have introduced the positive 

parameter £ > 0 which controls the decline of the density and magnetic field with the 

height z. By substituting the above z-dependence of ρ and A in Eqs.(6.2.3) we obtain 

for the x-dependent parts of the density and flux function, p(x) and A{x), respectively, 

4nk2A2\cPA e_A 

dx2 + 4L2 

ΑπΡΑ2 'dA' 

dx 

AdA dp 

ρ dx dx + 
S*pVs

2U - 1) 

ξ\Α\ 
0, 

(6.2.6a) 
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In 
2 Λ2 

+ 
k2A 

.Po/ 2V2

P

2 

Differentiating Eq.(6.2.6b) we obtain, 

k2A2 

' VI? 

\dx) + 4L2 

2(e - 1) In 
A0 

(6.2.6b) 

(dA 

\dx 

ν , e A2 

J 4L2 

V2p2 \\dx) + dx2 + L2 ξ k2A2j dx ~° 
(6.2.7) 

and substituting d2A/dx2 from Eq.(6.2.6a) in the above equation, we find finally 

ρ dA 

A dp 

ξ A0 

[2( i-1}ln 

i J p i l , 2nk2A2 1 π ί ^ 4 ^ 6 

hi{1t)\+ Ρ 2 2 # Ι ^ 
Α\ I n f ' i l ( ί _ 1 ) ^2fc4^6 (6.2.8) 

An integration of Eq.(6.2.8) gives the functional relation of A and p. However, to obtain 

some physical insight into the solution, in the following we shall express Eq.(6.2.8) in 

a more convenient form in terms of appropriate physical variables. Thus, define the 

Mach numbers associated with Vx and Vz as 

Mx 

Vr. ik A2 

Mz = 
Vz 

kAdA 

Vs 2LVS ρ ' 

such that the square of the total Mach number is 

Va pVg dx 
(6.2.9a) 

M 2 
Μξ + M2

Z 
2 In 

(A/Ä0) 
Ht-ι) 

{ 

p/Po 
(6.2.9b) 

Note that the magnitude of the Mach number M measures the effect of the flows in 

modifying magnetostatic equilibria. Thus, in the limit 'M —> 0, the above expression 

should reduce to the corresponding relation between the density and magnetic flux 

function in the case of magnetostatic equilibrium without flows, as we discuss in section 

4. 

Next, the square of the Alfvén number is 

V2 A2 

ΒΔ/4πρ ρ 
(6.2.10) 
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with A a dimensionless constant, 

= SrrkVsL VXVS 

( v2 
ß0M0 M i 
μ ao (6.2.11) Bz=o 2 M 0 

where β0, Ma0 and M0 represent the plasma β, and the Alfvén and Mach numbers 
at the valleys and summits of a fieldline configuration where Bz = Vz = 0 and the 
field is horizontal. Note that since the Alfvén number represents the relative strength 
of fluid and magnetic effects, small values of λ correspond to magnetically dominated 

states while large values of λ give dynamically dominated states. On the other hand, 

the plasma β gives for field-aligned flows the ratio of the Alfvén and Mach numbers, 
M2

a = βΜ2/2. < '" 

Using the variables M 2 and M 2 we can write Eq.(6.2.6b) in terms of the angle θ a 

fieldline makes with the horizontal, 

tan 2 θ(χ) 
ΒΛ2 \2M2-MÎ 

Br M4 
(6.2.12) 

Evidently solutions exist only when λ 2 Μ 2 - M* > 0. On the other hand, Eq.(6.2.8) 

can be written as 

pdA M2+ M2 - Ml/\2 - 1 

A dp Μ2 - 2 + 2 / ξ - 2 Μ 6 / λ 2 

or, 

(6.2.13) 

2_*ML = t{M2l2 + Ml)-l 
M2

a dM2 [ξ(Μ2/2 + Ml) - 1] - \M2 + Ml - Mf/λ 2 - 1] ' l " ' ; 

Using Eq.(6.2.14), we can write Eq.(6.2.12) as, 

.MldAP [ξ(Μ2/2 + Ml) - 1] - [M2 + Ml - M«JX2 - 1] y 

2 dx (M2+ Ml - Μα

6/λ2 - 1) V 

(6.2.15) 

where χ = x/L and we have assumed that M2X2 - M* > 0. Multiplying Eqs.(6.2.14)-

(6.2.15) we may obtain a third equation, 

dMl ξ(Μ2/2 + Μ2

α)-1 
u^a_ w /o-r^a) 1 — Λ / Α 2 Μ 2 - M 4 . (6.2.16) 

dx Μ 2 + Μ 2 - Μ α ν λ 2 - Ι ν ° ^ ' 

The above set of three equations (6.2.14)-(6.2.16) determines Ma(x) and M(x) for 

given values of the parameters ξ and λ. Two initial conditions are also needed, namely 
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the values of the Mach number M and Alfvén number Ma at a given horizontal position 
x0. However, since χ does not appear explicitly in equations (6.2.14)-(6.2.16), we are 

free to choose the initial value of χ where Ma and M are prescribed, say, at xo = 0. 

Note also that Eq.(6.2.14) may be solved independently of the other two Eqs.(6.2.15)-

(6.2.16) and its solution topology can be studied in the Ma — M phase plane. 

6.2.2 Critical Points 

A topological analysis of Eqs.(6.2.14)-(6.2.16) shows that they have three critical points 

where their numerator and denominator vanish simultaneously. In the following we 

analyze in detail these critical points which control the topology of the solutions. 

First, the vanishing of the numerator and denominator of Eq.(6.2.16) gives the 

following two relations between the squares of the two Mach numbers, 

M 2 

M2

a + 

+ M2

a-

2 

Ml 
λ2 

1 

"V 

- 1 

(6.2.17) 

(6.2.18) 

Note that, when Eqs.(6.2.17) and (6.2.18) hold, the numerator and denominator of 

Eqs.(6.2.14) and (6.2.15) vanish simultaneously, since, 

ξ 
M2 „ 2 

+ M 2 

2 α 

M2 + M2 - ^ s - (6.2.19) 

Therefore, the intersection of the two curves given by Eqs.(6.2.17) and (6.2.18) deter­

mines the square of the Alfvén number at the critical point, Μ*2, through the following 

cubic for M*2 

*,*2 Ma6 2-ξ (6.2.20) 

i.e. 

M ; 2 -
(2 - QAa 

2ξ 

1/3 

1 + W1 + 
4λ2£ 2 £2 

27(2 - Ο2 

1/3 

+ Ί + 
4λ2£ 

2 £2 
• Ί 1 / 3 . 

27(2 - Ο2 

Evidently, a critical point exists at finite M*2 > 0 only when 0 < ξ < 2, while for ξ > 2 

we have M*2 < 0, i.e., the critical point is in a physically uninteresting part of the phase 

plane (M%,M2). The nature of this critical point at (M* > 0, M* > 0) can be analyzed 

by making the usual expansion in Eq.(6.2.14) Ma = M*(l + μ), M — M*( l + e) with 
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μ, e < < 1. A second-order algebraic equation for μ/e Ξ 

at this critical point as 

Ξ S IS obtained giving the slope 

2M. •2 

M* 2 

1 3MT s2 + 
2 

Ì 
M. *2 M *2 

= 0 (6.2.21) 

and for 0 < ξ < 2 the critical point is of X-type. 

The location of the critical point (M*, M*) on the plane M2 — M2 is found as the 

intersection of the two curves (6.2.17) and (6.2.18). For a given ξ of the monoparametric 

family of lines expressed by Eq.(6.2.17), the critical point is on the straight Une which 

intersects the two axes at M2 = 2/ξ and M2 = l/ξ. The smallest possible value of 

the Mach number on this line occurs at the largest allowed value of ξ, i.e., M = 1 

for ξ = 2. On the other hand, the exact location of the critical point on this line 

depends on the value of λ, through the curves given by Eq.(6.2.18) which also form 

a monoparametric family depending now solely on A. For a magnetically dominated 

state (small λ), M*2 —> 0, M*2 —> 2/ξ; and, for a dynamically dominated state (high 

values of λ ), Mf -> 1/ζ, M*2 -• 0. For ξ -»· 2, (M*, M*) -»· (0, 1) while as ξ -»· 0, 

M* and M* increase. 

Second, the numerator of Eqs.(6.2.15) and (6.2.16) vanishes also when λ 2 Μ 2 = M*, 

which when combined with the simultaneous vanishing of the denominator, Eq.(6.2.18), 

gives a second critical point at the sonic transition, 

M A, M = 1. (6.2.22) 

The electric current density J = V χ Β and vorticity ω = V x V have only y-components 

for these planar and symmetric fields, J = J y y, ω = ω. ,y. In order to appreciate 

better the physical implications of the existence of the two critical points (M*,M*) 

and ( Μ 2 = λ, M = 1), it is instructive to consider for a moment the expressions for 

J, y> 

y - 2L* M2 

and ω. yi 

(\2M2 - Mt)(M2/2 + M2- 1/C) ( M 2 / 2 + M2

a - 1/0 

A2(l - Ml){M2 + Ml - Ma

6/A2 - 1) ( 1 - M 2 ) 

Uy = 
(e(M 2 /2 + M 2 ) - l ) ( M a

4 - A 2 ) 

MM* [ A2(M2 + M 2 - Ma

6/A2 - l) 
+ 1 

(6.2.23a) 

(6.2.23b) 

Jy and ωυ diverge everywhere along the curve given by Eq.(6.2.18) with the exception 

of two points; first, at the intersection of this curve with the curve (6.2.17), i.e., at 
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the critical point (M*,M*) and second, at the sonic point M = 1, M2 = λ. In 

addition, Jy is finite at the second intersection of (6.2.18) with the curve determining 

the summits/valleys of the equilibrium where M2 — 1 and M — Ι/λ, but ων diverges 

there. In other words, the sonic point (6.2.22) and the critical point at (M*,M*) are the 

only two positions where the electric current and the fluid vorticity are simultaneously 

finite along the curve given by Eq.(6.2.18). These two points coincide in the case 

λ = (2 - 0 / 2 £ . 

A third singularity of Eqs.(6.2.14) and (6.2.15) exists evidently at Ma = M = 0, 

i.e., at the origin of the ( M 2 , M 2 ) - p l a n e . By writing again M2 = μ, M2 — e with 

μ, e « 1 we find that for ξ φ 1 the corresponding critical point at this singularity is 

of nodal-type where the two characteristic slopes are s = μ/e = —1/2 and s = 0. On 

the other hand, when ξ = 1, the critical point at this singularity is of star-type and all 

slopes are allowed. 

6.3 Solution Topologies 

In Figs.(6.1), (6.2), (6.3) we show some representative topologies of the solutions of 

Eqs.(6.2.14)-(6.2.16) in the planes ( M 2 , M 2 ) and (M, X) for some sets of values of the 

two parameters ξ and λ of our model. Several groups of curves appear in these planes 

corresponding to different classes of physical solutions. However, the following analysis 

makes it clear t h a t , out of this large set of mathematical solutions to Eq.(6.2.14), only 

a few are physically interesting. To that goal, and in order to analyze the properties 

of all solutions encountered in the plane (M2,M2), we proceed as follows, 

First, we distinguish the two critical branches (those passing through the critical 

point M*, M*) and classify the rest of the other branches which are adjacent to the 

critical ones in four groups labeled as L (left), R (right), U (up) and D (down). 

Second, we plot the two curves given by Eqs.(6.2.17) and (6.2.18), the intersection 

of which determines the critical point. In Figs.(6.1a,6.1c,6.1d) Eq.(6.2.l7) corresponds 

to the straight dashed line while Eq.(6.2.18) to the parabolic dashed curve. As λ —• 0, 

the critical point moves toward the lower right end of the line (6.2.17) while for large 

λ it moves towards its upper left end. On the other hand, as ξ —» 2 the critical point 

moves towards the point ( Μ = l , M a — 0) (e.g., Fig.6.2) and away from it as £ —» 0. 

To avoid having a solution where the electric current and the fluid vorticity diverge, we 

shall select only those branches which do not intersect the curve given by Eq.(6.2.18). 

Only branches intersecting (6.2.18) at the sonic and critical points will be accepted as 

physically interesting solutions. 

Third, we isolate the shaded area bounded by the curve M2X2 — M * = 0 which deter­

mines the allowed part of the plane ( M 2 , M2) where Μ 2 λ 2 - M* > 0 [cf. Eq.(6.2.12)]. 
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Note that this curve also determines the locations where the field lines are horizon­
tal. Thus, solutions which intersect this curve may have a valley, or a summit there. 
Branches with only one such intersection may correspond to loop-like solutions with 
one summit, or, prominence-like solutions with one valley only, while those with two 
intersections may correspond to periodic solutions. 

Fourth, in order to decide if a solution starting at a point where Bz = 0 has a valley 
or a summit there, we shall use Eq.(6.2.10), which requires that along a streamline 
A(x,z) — constant the density is inversely proportional to the square of the Alfvén 
Mach number Ma 

P(x'z) -.. , . α Τ « · ' ι 6 " 3 · 1 ) 
A{x,z) — const. Ml 

Therefore, if Ma decreases as we move away from the curve Ml = AM, then the density 

increases along a given fieldline and we have a loop-like solution (summit) which is 

Rayleigh-Taylor stable in the gravitational field; conversely, the density should decrease 

and Ma should increase as we move away from a prominence-like solution (valley) for 

stability. 

Finally, upper and lower bounds can be easily placed on the Mach and Alfvén 
numbers of the flow at the above locations where the magnetic field lines are horizontal, 
Bz = 0. For example, from the z-component of the momentum equation by substituting 
Vz = VXBZ/BX we obtain the following relation for Ma at those points where Bz = 0, 

2(1 -Ml) B7 

ξ + 
2(e - 1)A2 

Ml 
dBz 

(6.3.2) 

,dx 

Thus, at the local minima of the fieldlines (valleys) where [BxdBz/dx] > 0, we have 

Ml > 1 if ξ>1, (6.3.3a) 

and 

{MI-I)[MI- 2 A 2 ( 1 - Q 

i 
> 0 if ξ<1 (6.3.3b) 

On the other hand, at the local maxima of the fieldlines (summits) where [BxdBz/dx] < 
0 we find instead 

Ml < 1 

and 

if 

( M a

2 - l ) ( M a

2 - 2 A 2 ( 1 - e ) 

t 

(6.3.4a) 

(6.3.4b) 
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It follows that the flow is always subaîfvénic at the summits of the arcades and super-

alfvénic at the lower points of the valleys, if ζ > 1. 

On the other hand, by taking the derivative with respect to χ in the ^-component 

of the momentum balance equation we find at the points where Bz = 0 and dp/dx — 0, 

It follows that at the locations where the field lines are horizontal and have a local 

minimum (valley-type) such that BxdBz/dx > 0 the flow is subsonic, V0 < Vs, and 

M2 < λ if the density is locally maximum, d2p/dx2 < 0. If the density is locally mini­

m u m , d2p/dx2 > 0, the flow may or may not be supersonic. Note that in the absence 

of vertical stratification (£ —> 0), Eqs.(6.3.2) and (6.3.5) give subalfvénic/subsonic flow 

at the valleys and superalfvénic flows at the summits, as discussed in the previous 

chapter. In the following section we make use of the above limits in order to select the 

physically interesting solutions of Eq.(6.2.14). 

The analysis is simplified if we consider separately several cases, according to the 

value of the parameter ξ. 

6.3.1 Arcades with scale height ξ in the interval 1 < ξ < 2 

In this case, all intersections of the various solutions with the bounding curve M2 = \M 

correspond to valleys if this intersection is in the superalfvénic regime, because of 

constraint in Eq.(6.3.3a), and to summits if it is in the subaîfvénic regime, because 

of constraint in Eq.(6.3.4a). Furthermore, note that for each value of ξ there is a 

characteristic value of λ 

λ Ξ Adit = , (6.3.6) 

for which the curve M2 = \M (where Bz = 0) crosses the critical point and the two 

critical points are at the sonic transition. Therefore, we may distinguish three subcases 

according to the value of λ relative to Acrit -

T h e critical c a s e , λ = A c ri t, F igs .(6.1a,6.1b) . Consider first the two critical lines 

of positive and negative slope in the representative example of this class, namely 

Fig.(6.la) plotted for ξ = 1.7, λ = 0.08. Since they are bounded by the curve 

M2 — \M in the subaîfvénic regime they correspond to solutions with a summit 

there [c.f. Eq.(6.3.4a)]. The critical point is at the sonic transition in this special 

case, M* = 1, while at this summit of loop-like fieldlines the Alfvén number reaches 

the value M* = \Acrit· In Fig.(6.lb) we have plotted with solid curves the Mach 

file:///Acrit�
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Figure 6.1: Topology of solutions in (Ml — M2) plane (left panels) and (M,x) plane 
(right panels). In (a-b) ξ = 1.7 and λ = 0.088, in (c-d) ξ = 1 and λ = 0.1, while 
in (e-f) ξ = 1.95, λ = 0.03. The new critical point in (a), (c) and (e) is at the 
intersection of the two dashed curves, while the shaded area corresponding to allowed 
solutions is bounded by the curve where the field is horizontal (summits or valleys). 
The classical sonic crìtica! point at (M% = À, M — 1) can be seen in the (M,x.)-plane 
of corresponding panels (b), (d), (f). 
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number of the flow, M(x), for these two critical solutions by arbitrarily setting χ = 0 

at the positions where Bz = 0. Note that along the critical line of positive slope the 

flow is everywhere subsonic, while along the critical line of negative slope the flow is 

everywhere supersonic. 

Two other physically interesting classes of solution can be constructed from the L 

and R-branches, and their Mach number M(x) is also plotted in Fig.(6.1b) with dotted 

curves. These branches also correspond to loop-like solutions with the maximum flow 

speed at their summits everywhere subsonic in L-group and everywhere supersonic in 

R-group. Along those branches (L) and (R), as well as along the critical solutions, 

the density increases as we move away from the summit along the loop and down the 

gravitational field, because Ma decreases and therefore ρ increases in view of (6.3.1). 

This makes solutions (L) and (R) together with the two critical solutions Rayleigh-

Taylor stable in the gravitational field. Note that of au R-branches only those which 

do not intersect the curve given by Eq.(6.2.18) where the electric current diverges (c.f. 

Eq. 6.2.22a) are acceptable. 

Solutions (U) are not interesting because they do not belong to the physical do­

main where X2M2 — M* > 0 [shaded area in Fig.(6.1a)]. Finally branches (D), which 

have magnetic lines without any valley or summit, may be used only for shocked solu­

tions. For instance, in a loop with nonsymmetric physical conditions about the plane 

χ = 0, the flow following the critical line of negative slope, and after crossing the crit­

ical point and becoming supersonic following the critical line of negative slope, may 

jump through a shock transition to one of the appropriate D-branches. Such shocked 

solutions, however, are outside the scope of this paper and will be considered in the 

future. Altogether then, we are left with the two critical branches as well as with L 

and R-branches as the potentially physically interesting loop-like solutions. 

T h e subcrit icai case, λ < Acrj t, Figs.(6.1c,6.1d). The picture changes slightly 

in the subcritical case, λ < Acri t. In the plots (6.1c,d) we show such a representative 

subcriticai case with, say, ξ = 1, λ = 0.1, where the bounding curve M2 = XM passes 

below the critical point in the (M%,M2) plane. The two critical curves are always 

bounded at Mao < 1 and they correspond to loop-like solutions with a density minimum 

at their summits - the intersection of these branches with the curve M2 = XM. As 

may also be seen from Fig.(6.1d), the maximum speed is subsonic at the summit of 

the critical solution with positive slope and supersonic at the summit of the solution 

corresponding to a critical curve of negative slope (solid curves in Fig.6.2b). 

Other physically interesting classes of solution correspond to L, R and D-branches, 

are plotted with dotted curves in Figs.(6.1c,6.1d). The group of branches (R), the 

supersonic curves of group (D) where Jy is finite and the critical solution of negative 
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slope, correspond to supersonic loop-like solutions. For group (L) and the subsonic 

curves of (D) wherein Jy is finite, together with the critical solution of positive slope, 

the density increases as we move away from the summit along the loop and down in the 

gravitational field. The electric current density Jy is finite everywhere along all these 

solutions. The last group of solutions (U) is not physically interesting because in the 

domain of branches (U) \2M2 — M\ < 0. Note that shocked solutions also exist in this 

case through the only transonic branch of (D), i.e., the one tangent to the bounding 

curve M% = \M at M — 1. 

T h e s u p e r c r i t i c a l c a s e , λ > A c ri t, F i g s . ( 6 . 1 e , 6 . 1 f ) . Consider next a representa­

tive supercritical case, say, ξ = 1.95, A = 0.033, where the bounding curve M\ — XM 

passes above the critical point in the (M2,M2) plane. In this case the characteris­

tic (critical) speed is always subsonic. The two critical curves are again bounded at 

Mao < 1, which means that they correspond to loop-like solutions with a density min­

i m u m at their summits (the intersection of these branches with the curve M2 = AM). 

Contrary to the previous case of A < Acrjt however, now the maximum speed is super­

critical at the summit of the solution corresponding to the critical curve of positive slope 

and subcriticai at the summit of the critical solution with negative slope, Fig.(6.If) 

(two solid curves). 

On the other hand, two other physically interesting classes of solution correspond 

again to the L and R-branches, also plotted with dotted curves in Fig.(6.If). They 

too correspond to loop-like solutions with the maximum flow speed at their summits 

everywhere subcriticai in L-group and everywhere supercritical in R-group. Along these 

branches (L) and (R), the density increases as we move away from the summit along 

the loop and down in the gravitational field, because Ma decreases and therefore ρ 

increases [cf. Eq.(6.3.1)]. Similarly to the previous case A < Acrjt, the electric current 

density Jy is finite along branches (L) and (R), as well as in the two critical ones. 

Therefore, again the two.critical branches together with those of the group (L) and (R) 

are physically acceptable. 

Note that for each A the family of subcriticai solutions (L) exists up to a maximum 

value of the Alfvén number at their summit, M™ax . Above this limit which does not 

exist if A < Adit ι physical solutions do not exist and the loop may be disrupted by 

centrifugal forces. Thus, in the supercritical case, we are not completely free to choose 

the initial conditions at the top of the loop. In this context note that it has been 

shown that solar coronal mass ejections can be initiated by the dynamic evolution and 

shearing of the footpoints of a coronal magnetic field (Low 1981; Mikic 1988; Priest 

1988). Here we have also shown that if the magnitude of the flow speed along the field 

in the arcade increases, the height of the arcade increases too and above a limit there 



158 CHAPTER 6. 2-D MEO EQUILIBRIA IN UNIFORM GRAVITY 

Figure 6.2: Topology of solutions in (Ml -M2) plane for the limiting value ξ = 2 and 

λ = 0.32. The critical point is at (Ma =0,M = 1) while the shaded area corresponds 

to, allowed solutions. 

issilo equilibrium with the possibility that the arcade erupts. 

Finally, the other two groups of solution (U) and (D) are not physically interesting 

because branches (U) are bounded by the curve M2

a = XM at two successive summits, 

while in (D) the magnetic lines do not have any valley or summit at all (there are no 

intersections with the bounding curve M\ = AM). Branches (D) may be used only for 

shocked solutions, as in the critical case. 

6.3.2 The case ξ = 2 and the strongly stratified case ξ > 2 

In Fig.(6.2) we plot the topology of the solutions in the phase plane (M%,M2) for the 

limiting case ξ = 2. This is a degenerate case where the critical point is at Ma = 

0, M = 1 while the two critical branches are joined and tangent to the axis Ma = 0 

(solid Une). Only this critical solution together with adjacent solutions (L) and (R) 

correspond to arcades with minimum density at their summits. However, note that 

these solutions have the peculiar property that the velocity monotonically increases 

along branches (L) - decreases along branches (U) - and at their footpoints Ma = 0 

but Va > OO. 

On the other hand, for ξ > 2, where the critical point has changed to a focus 

and moved to the M\ < 0 subplane, acceptable solutions do not exist any longer. 

Thus, loop-like solutions can be found only for the limited range of the stratification 

parameter, £ < 2. 
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Figure 6.3: Topology of solutions in (Ml - M2) plane in (a) and (M, X) plane in (b), 

as in Fig.(6.1) but now for ξ = 0.85 and λ = 0.77. Note that periodic solutions -

subsonic dotted L-branches in (b) and the critical branch of positive slope - have their 

valleys in (b) separated by more than 2π. 

6.3.3 The weakly stratified case ξ < 1 

In all previous stratified atmospheres corresponding to 1 < ξ < 2 we obtained loop-like 

solutions with moderate speeds as the only physically interesting solutions in the plane 

(Ma,M). In the rather weakly stratified atmospheres where 0 < ξ < 1 we found that 

such low-speed loop solutions do not exist at all. In the place of arcades, only periodic 

solutions were found instead. Similar to the case 1 < ξ < 2, for each value of ξ there 

are now two characteristic values of λ for which the curve M% = XM (where Bz = 0) 

crosses the critical point, 

K(1) 
xcrit 

2-ξ 

2£ 
i ( 2 ) 
Vrit 

e 
2 ( 1 - 0 

(6.3.7) 

As before, we may distinguish, several subcases according to the value of λ relative to 

λ ^ and \£}t. For 2/3 < ξ < 1 we have that A $ t < \£}t and obtain periodic solutions 

which do not have points where the electric current density Jy diverges. Such a case is 

illustrated in Figs.(6.3) where we show the topology of the solutions in the (Μξ,Μ2) 

and (M,x) planes for ξ = 0.85 and λ = 0.77. Note that of all branches on this plane 

only the group of branches labeled (L) are physically acceptable as periodic solutions 

with a valley and a summit. Solutions labeled (R) are arcade-like solutions but the 

flow is supersonic and reaches large speeds along these arcades. 

On the other hand, for 0 < ξ < 2/3 all periodic solutions have two points where 

j —> oo. Thus, in the limit of £ — » O w e recover the main features of the results 
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obtained in the previous chapter. 

6.4 Useful limits of the Present Analysis 

As is well known, fully two-dimensional exact MHD solutions for compressible and 

stratified plasmas with flows are not available in the literature to this day, because of the 

intrinsic mathematical difficulty of solving the coupled nonlinear equations governing 

this problem. On the other hand, the special and simpler cases of magnetostatic 

equilibrium without flows (λ = 0), or full MHD equilibrium in the approximation of 

low-Μα flows (β « 1), have received considerable attention because of their potential 

application to observed hydromagnetic structures in the active corona of the Sun. 

In this analysis, we did not make any approximation about the magnitude and 

role of flows. Evidently, the results may apply to configurations of any β and M. 

Thus, in order to establish the connection of the present general analysis to other 

studies performed under mathematically simplifying assumptions, such as the above, 

in this section we briefly examine for comparison two such limiting cases. In the first, 

we set the magnitude of the flow equal to zero so that we have a situation of pure 

magnetostatic equilibrium without flows. And in the second, we examine the form of 

our solution when the plasma β is small, β << 1. 

6.4.1 Magnetostatic Equilibrium, M = 0 

For a planar magnetic field expressed in terms of a magnetic flux function A(z, x) as in 

Eqs.(6.2.2) and an isothermal atmosphere with gas pressure P(z,x) = Vgp~(z,x), force 

balance across the magnetic field lines is obtained from Eq.(6.2.3a) with Φ ^ = 0, 

HP 
V2Ä(x, ζ) + 4πρ-^ = 0 , (6.4.1a) 

dA 

while Eq.(6.2.3b) for force balance along the magnetic field lines reduces to 

V?h(j-)+gz = E(Ä), (6.4.1b) 

with Po a constant and F(A) again an arbitrary function of A(x, z). The set of the cou­
pled equations (6.4.1) determines all possible planar magnetostatic equilibrium states 
in a uniform gravity for the various functional forms of F(A), as is well known. In 
our case, the form of F(A) is again given by Eq.(6.2.10). Then, with the z-dependence 
of all physical quantities being exponential, as in Eqs.(6.2.5), force-balance along field 
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lines is obtained from Eq.(6.2.9b) in the limit M —> 0, 

ρ(χ) 

Po 

A(x) 

A0 

2U-D 

(6.4.2a) 

while force balance across field lines is obtained from Eqs.(6.2.6a) for k = 0 (λ = 0) as 

d2A e Α S*p„V*{t - 1) 
I . T-o "Τ" — 

dx2 4L2 
ξ\Α\ AB 

2 U - D 

= 0 (6.4.2Ò) 

After multiplying Eq.(6.4.2b) by dA/dx and then integrating, we obtain a first-
order differential equation for the dimensionless flux function a — |.A/.Ä0f in terms of 
the dimensionless horizontal distance χ = x/L, 

4_ 

ë 
da 

dx 

T 2 

1 - a2 + β 1 -a « (6.4.3) 

where β = &KV2p0/(£>
2Ä2/4L2) is the familiar plasma ratio at the origin χ = 0, where 

the field lines are horizontal and Bz = 0. For given values of ξ and β we can in­

tegrate numerically the nonlinear Eq.(6.4.3) to obtain the magnetic field and density 

distributions through Eqs.(6.2.2) and (6.4.2a). In the following we briefly review those 

properties of the solutions of Eq.(6.4.3) which are relevant to our study of MHD equi­

librium with flows. The interested reader may find more details in Menzel (1951), 

where the above Eq.(6.4.3) has been originally derived, and in Hood and Anzer (1990), 

where Eq.(6.4.3) is discussed in the framework of modeling a solar prominence. 

First, note that there exist three' values of the parameter ζ, (1/2, 1, 2), where 

Eq.(6.4.3) may be solved analytically, in addition to the limiting case ξ —» oo. Thus, 

AM = λ. J1-*!+1-
-fl * 

cos -
2 2 

for ς 2 , (6.4.4a) 

A(x) = A0 cos - for ξ — 1 (a potential field) , (6.4.4a) 

A(x) = Ä0 
β β + 2 

cos χ 
2 2 

for e = 2. (6.4.4a) 

Since the angle θ(χ) that a field Une makes with the horizontal is tan#(x) Ξ BZ/BX = 

[2L/£A(x)]dA(x)/dx, the field lines are horizontal at the positions x0 where A(x) has 

an extremum, dA(x)/dx\x_x = 0. The first case ξ = 1/2, has θ = 0 at θ = ηπ/2, 

η = 0,1,2,... On the other hand, there are no positions where θ —• 90° and the field is 
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vertical; in this case the fieldlines have a wavy shape, being periodic in the horizontal 

distance x. The second case ξ = 1, has θ = 0 at x 0 = ηπ and θ —» 90° at x m a x = ηπ/2. 

This is the typical geometry encountered in magnetic arcades. Similarly, in the case 

^ = 2 w e have horizontal fields at x 0 = η π and θ —» 90° at the horizontal positions 

Xmax where c o s x m a x = β/(β + 2). 

It is interesting to note that the general properties of these special analytical solu­

tions are indicative of the corresponding properties for any value of ξ. For example, 

it is evident from Eq.(6.4.3) t h a t it is not possible to have simultaneously A = 0 and 

(dA/dx)2 > 0 when ξ < 1. In other words, for such values of the parameter ξ, locations 

where Bx = 0 and the field is vertical do not exist. We obtain then solutions with a 

wavy and periodic fieldline shape in the horizontal coordinate χ for all ξ < 1. On the 

other hand, when £ > 1, there exist values of A such that simultaneously A = 0 and 

(dA/dx)2 > 0. Then, at these locations Bx — 0 and the field is vertical. These arcades 

of infinite height and finite width have fieldlines confined in a finite horizontal interval. 

Second^ consider the above class of solutions in the framework of modeling a promi­

nence equilibrium. Inside the prominence the gas is cool and the scale height Lpiom 

relatively small, Lpt0m ~ 180 km, such that the pressure drops relatively fast. On 

the other hand, in the surrounding hotter corona the scale height LCOT is much larger, 

say, LCOT « 60,000 km « 333 L p r 0 m and the pressure drops more slowly. Therefore, 

in order to match the vertical variation of all physical quantities across the coronal 

boundary of the prominence, we need to employ two different values of ξ, £ p r 0 m for 

the prominence equilibrium and £ c o r for the adjacent corona. For example, selecting 

£cor = 1 to have a potential equilibrium in the coronal environment, we need to have 

£prom = ^cor/333 = 0.003. Then the pressure, density and magnetic field fall off at the 

same rate with vertical height both inside and outside the prominence. Hood & Anzer 

(1990) have used essentially this reasoning to construct an interesting model of a solar 

prominence. 

Third, consider the equilibrium path of an isolated buoyant flux tube embedded in 

the polytropic solar convective zone (Parker 1975, 1979; Browning & Priest 1984,1986). 

T h e curved flux tube may be held in equilibrium by its magnetic tension over horizontal 

distances of the order of the scale height L. Thus, in an isothermal atmosphere any flux 

tube needs to be anchored at points separated by no more t h a n 2πΣ, if it is going to be 

held in equilibrium by magnetic tension against the buoyancy forces. It is interesting 

that the equilibrium paths of the flux tubes described by Eqs.(6.4.4), although they 

are not treated as slender ones, obey the same limit. Thus, the arcade-type potential 

field (6.4.4b) has the footpoints of its fieldlines separated exactly by Parker 's limit, 

2π scale heights. On the other hand, the footpoints of the similar, arcade-type but 

non-potential fieldlines (6.4.4c) are separated by 2 x m a x = 2 c o s - 1 [β/(β + 2)] < 2π scale 
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heights (with xmax —• 0 for large β). Also, the periodic field lines (6.4.4a) have a 

period ATÎL > 2-KL but they cannot be anchored. The curvature of the fieldlines (6.4.4) 

behaves analogously. The value of their radius of curvature R0 at their highest point 

is, 

Br 2 (6.4.5) R o ^ x 

dBjdx BZ=O ξ + (ξ-1)βο' 

in units of H. It is evident that for the potential case (6.4.4b) we have R0 = 2, while 

for all ξ > 1, R0 < 2 with R0 —» 0 for large ß0. In the following sections we shall see 

tha t xma.x and R0 depend also on the magnitude of the flows in the system. 

6.4.2 Low-/? solutions i 

In view of the usual practice to regard the solar corona as a rather low β plasma, it is 

useful to examine the limit of the general MHD solutions of section 2 when β « 1. 

Then, with M2 « M2, we can neglect terms of order M2, or higher, in Eqs.(6.2.14-

6.2.16). In this limit Eq.(6.2.14) simplifies considerably, 

2 dMl_ ξΜ2/2-1 ( 6 4 6 ) 

Ml dM2 (ξ/2 - 1 ) M 2 ' 

and has the solution, 

2 

— — - e 2(2-ί)^Μ °> . (6.4.7) 
M2

0 \M0)
 K > 

On the other hand, Eq.(6.2.15) becomes, after neglecting powers of M2 relative to M 2 

(but not relative to λ 2 Μ 2 ) 

±Τ^=(Αίί^^^> (648) 
and has the solution, 

M _ £ / M 2 _ M 2 ) £x 
—— e 2 < 2 -ί) ν ο ' = cos — , (6.4.9) 
M0 2 κ ' 

Evidently, there are no solutions when ξ > 2. The flux function obtained from 

Eqs.(6.2.9b) and (6.2.10) is 

i = i 0 c o s Ç e ~ ^ , (6.4.10) 

representing a potential field with aligned flows, as expected. 

Eq.(6.4.8) has a single critical point at the sonic transition, M = 1 and Μ 2 = λ < < 

1. In other words, the new critical point at (M*,M*) obtained without assuming that 
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the magnitude of the Alfvén number is small, is lost in this limit of β < < 1. Also, 

Eq.(6.4.10) represents magnetized arcades for any value of £ and does not allow for the 

existence of periodic solutions, while by assumption the effects arising when the flows 

start to dominate the magnetic effects are not included. 

The above solution can be obtained from the initial MHD Eqs.(6.2.1) through a 

perturbat ion analysis, if we require that the magnetic field is potential to zeroth order, 

V 2 Ä = 0. The effect of flows along the field Unes is obtained then from Bernoulli's 

integral, Eq.(6.2.3b), which, after being substituted into the transfield equation and 

so taking into account the feedback reaction of the flow, gives the per turbat ion to the 

potential magnetic field caused by the presence of the low Alfvén number flows. This 

case has been explored in detail in chapter 4. Note, however, that some properties 

arising from the non-linearity of the MHD equations are completely neglected and lost 

by this approach. For example, 

(i) the novel critical speed which is different from the classical sound speed and does 

not appear in the low-M0 perturbation studies, 

(ii) the fact that solutions do not exist for high Alfvén numbers , Ma > M™ a x , and the 

sonic speed cannot be reached in some cases (as in the supercritical case), 

(iii) the existence of periodic solutions for ξ < 1 which do not exist in a low-M a 

analysis. 

We conclude therefore that a general t reatment of the full MHD equations may be 

crucial if we are interested in novel physical properties of MHD equilibria in uniform 

gravity. And, if our interest is confined to modeling those magnetic structures of the 

solar corona where the magnetic field completely dominates over the plasma and its 

flows, we may use approximations like the above, or treat the magnetic fines as rigid 

pipes, or even neglect flows altogether. We should keep in mind, however, that in 

several instances in the lower quiet corona, in chromospheric loops and fibrils where 

the plasma β is the largest, in photospheric Evershed flows and also in the atmospheres 

of other stars where the magnetic field is less important locally, the present general 

analysis is much more appropriate. 

6.5 Solar Arcade-like Solutions 

A major feature that has naturally emerged here from a study of the topologies of the 

solutions of stratified MHD equilibria in a uniform gravity is the existence of loop-like 

solutions. On the other hand, since such magnetic field geometries are ubiquitously 

observed in the solar atmosphere, we are tempted briefly to consider the relation of 

such solutions to solar coronal arcades and loops. 



6.5. SOLAR ARCADE-LIKE SQLUTIONS 165 

6.5.1 Physical Parameters in Solar Coronal Loops 

Our primary motivation in this paper is to build up the basic theory for the first time 

of compressible steady state MHD solutions in the presence of gravity, rather than 

to explain particular observations. In the following however, we outline briefly some 

potential applications, such as, Evershed flow; stellar loops where there is a greater 

variety of parameter values than on the Sun; and some solar chromospheric and coronal 

loops. 

Let us' consider briefly the applicability to the solar atmosphere, bearing in mind 

the three main assumptions, namely (i) of steady flow and (ii) of the plasma β being 

not too small and (iii) of Alfvén number Ma being not too small (say, of ;the order of 
0.1). 

First, write the plasma-/? and the characteristic flow speeds as, 

β== 0 . 3 5 x ^ 1 , (6.5.1) 

Va = 280 χ — = km/sec, V, = 150 V ^ km/sec. (6.5.2) 

with nio measured in units of 101 0 c m - 3 , Te in million degrees, and Βχ in units of 10 

Gauss. 

Second, note that there is a very wide variety of flows and structures in the so­

lar atmosphere (Priest 1984) and even more on other stars. Flows include spicules, 

macrospicules and explosive events, but they are inherently nonsteady. However, they 

also include several types of flows to which our analysis may be relevant. For example, 

compact flares go through a quasi-steady phase for thousands of Alfvén times after 
an initially dynamic phase and the flow speeds may reach 100 km/sec or more, with 
the summit density and temperature reaching 1010 cm - 3 and 107 — ΙΟ8 K, respectively. 

Also, there is Evershed outflow (6 to 7 km/sec) and Evershed inflow (20 km/sec) in 

sunspot regions (Dere et al. 1990). In addition, in surges streams of plasma are ejected 

upwards along curved paths at typically 20 to 30 km/sec though occasionally 100 to 

200 km/sec and may last for up to half an hour; they too may show a quasi-steady 

phase after an initial dynamic start. Again coronal rain is cool plasma that flows down­

ward along curved paths at speeds of 50 - 100 km/sec and it too may continue in a 

quasi-steady manner. From space observations steady large-scale flows over sunspots, 

the network and plage regions are found with a variety of speeds from 2 to 30 km/sec 

(Lites et al. 1976; Athay et al. 1980). 

Third, consider three representative loop structures with flows observed in the pho­

tosphere, transition region and corona. In the photosphere and chromosphere and 
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in emerging flux areas, when a bipolar region with fairly low-lying loops is formed 
(an arch-filament system), the summits of those loops rise at up to 10 km/sec while 
plasma falls down near both ends with speeds up to 50 km/sec (Svéstka 1976). Higher 
up at transition region temperatures, the most prominent active- region loops are the 
sunspot loops which originate in sunspots. Foukal (1976) by analyzing the EUV emis­
sion of these sunspot-loops found that the observed material inside the loops has much 
higher scale-height than the one calculated by assuming hydrostatic balance. He then 
concluded that the material cannot be supported in the observed heights either hydro-
statically or magnetohydrostatically, or by turbulent motions. In other words, pressure 
and energy balance of such loops is most simply understood if coronal material is falling 
downward under gravity, a conclusion reinforced recently by Peres et al. (1992). Strong 
downflows are also observed in cool Ha loops located below hot X-ray loops. Finally, 
in the corona systematic flows (50 - 100 km/sec) in loops of typical active region sizes 
may be responsible for the observed nonthermal X-ray line broadening if they occur 
along magnetic field Unes which are contorted due to interweaving by footpoint mo­
tions (Parker 1983). In this case, if the derived excess velocities of 100 km/sec (Acton 
et al. 1981), or 50 km/sec (Saba & Strong 1991), represent the average line of sight 
component of flows through such twisted loops, the actual velocities could be several 
times larger than the deduced excess velocities, perhaps even comparable to the sound 
speed (Saba &: Strong 1991). 

Fourth, let us consider representative values of the plasma-/?, Va and Vs for such 
loops. If we adopt a temperature of 2.7 χ ΙΟ6 Κ, a density of 109 c m - 3 and a magnetic 

field of 5 Gauss, we obtain a plasma beta of 0.4. In many parts of the solar atmosphere 

the temperature is indeed greater than this, especially in active regions where Yohkoh 

finds 5 - 6 xlO 6 Κ by comparison with the above lower quiet region temperature 

of 2.7 χ ΙΟ6 Κ (Hara et al. 1992). Also, the density can be greater by a factor of 

10, especially low down or in coronal condensations. Thus, following Saba &; Strong 

(1991) we may put in Eqs.(6.5.1-6.5.2) n\o « 1 while T$ & 6 from the Yohkoh results. 

The strength of the magnetic field on the other hand is not well determined due to 

uncertainties arising from the assumption that it is potential with photospheric values 

used as boundary conditions (Poletto et al. 1975; Galeev et al. 1981). Assuming a 

value of the total field Β « 20 Gauss in Eqs.(6.5.1-6.5.2) we find, 

β « 0.5, Va ~ 550 km/sec, Vs « 400 km/sec, (6.5.3) 

Thus, provided we restrict ourselves to regions of low magnetic field, values of plasma­

lo and Mach and Alfvén numbers in excess of say 0.1 are common. However, active 
regions, say, with a field larger by a factor of 10, have β values that are lower by a 

factor of 100 and our analysis is certainly not relevant - at least high in the corona. 
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Figure 6.4: Plot of radius of curvature R0 (in units of scale height L) for field lines at 

the summit χ — 0 of the arcade as a function of the Alfvén Mach number Μαο there, 

for ξ = 1 (solid curve), ξ = 1.5 and β0 = 0.01 (thin dashes), ξ = 1.5 and β0 = 0.4 

( t ü d c das/jesj, ξ = 1.9 and β0 = 0.01 (thin dots), ξ = 1.9 and β0 = 0.4 (thick dots). 

Similarly, in those regions of strong magnetic field the Alfvén number is also small, 

although in parts of the quiet Sun it may also exceed 0.1. Our conclusion therefore is 

that in quiet Sun loops in the chromosphere or corona the conditions for our analysis 

to be relevant and to have significant effects are likely to be met . 

Finally, within the assumptions of the analysis we have chosen to illustrate the 

solutions of the present study with typical values of the parameter λ of the order of 0.1 

and corresponding values of the plasma-/? of the same order. For example, in Fig.(6.1a) 

we have taken λ = 0.088 such" that the Alfvén number at the loop summit reaches 

the value Ma0 « 0.3 and the' plasma-/? in Fig.(6.1b) is β0 = 0.17. In Figs.(6.1c,d), 

λ = 0.088, Mao « 0.8 and β0 « 0.2, while in Figs.(6.1e,f), λ = 0.03, Mao « 0.17 and 

β0 sa 0.06. Needless to say, an advantage of the analytical nature of our study is that 

any value of A and β can be considered in the limits of the previous ambiguities in λ and 

β0. The values chosen here, although for illustration purposes only, were within those 

limits. It is also important to note (in comparing with other studies performed under 

the assumption t h a t Ma « 1 and neglecting the nonlinear effects) that as long as ξ 

is slightly larger t h a n 1 the conclusions are similar to those of section 4.2 (field-aligned 

flows in a potential field). But as ξ -> 2 the non-linear effects become important. 
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Figure 6.5: For the solution with ξ — 1 and β0 = 0.2 we plot the shape of the Held 
lines as the value of the Mach number M0 at the summit χ = 0 increases from M0 = 0 
(dotted curve), to M0 = 0.3 (lower thin curve), then to M0 — 0.7 and finally to 
Μ ο = 0.9 (upper thick solid curve). 

6.5.2 Change of Curvature and Footpoint Separation of Arcade 

As discussed in the previous section 3, when 1 < ξ < 2, we obtain loop-like solutions. 

In order to see in some more detail the effect of the flow in changing the properties 

of such arcades, in the following we discuss how the geometrical shape of the arcade 

changes as the Alfvén number Mao at its summit increases. 

Change of curvature at arcade summit with increasing strength of flow. 
The radius of curvature of the arcades at their top depends both on plasma β0 and the 

Alfvén number there, Mao 

2(1 - Ml) 
K-(+((-m- ( 6 · 5 · 1 ) 

In Fig.(6.4) we plot R0 as a function of Mao for different values of the parameter 
ξ and plasma β0. For given ξ and β, as the strength of the Alfvén number of the 
flow at the summit increases, the radius of curvature of the lines, R0, decreases from 
the static value without flows (Eq. 4.5) to zero for flows which become Alfvénic at 
their summit, Mao — 1. This trend is of course well understood, since in this case, 
by increasing the strength of the centrifugal force at the summit, the loop responds 
by becoming more curved in order that the increased centrifugal force is balanced by 
magnetic tension. Note that, in the special case of £ = 1, the pressure gradient in 
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SaK 

Figure 6.6: The typical shape of the arcade in the vertical x-z-plane is plotted for 
ξ = 1 and β0 = 0.2 in (a) and in (b) for ξ = 1.5 and β0 = 0.2. 
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the z-direction exactly balances the plasma weight, leaving the downward magnetic 

tension (in the ^-direction) to balance the sum of the upward centrifugal force and 

upward 2-component of the magnetic pressure gradient. 

In Fig.(6.5b) we plot the various shapes of an arcade with fixed footpoints, as Mao 

is progressively increased. It is evident, first, that all arcades with flows are already 

more curved than the corresponding static ones (dotted curve); and second, that the 

stronger are the flows (the higher is Mao for fixed ξ and β0) the more curved is the 

loop (progressively thicker curves). The shape of a typical such arcade is shown in 

Fig.(6.5a) together with the contours of constant density. For the special case ξ = 1 

without flows, the density p(x) is flat along a horizontal plane of ζ = const, intersecting 

the arcade, but in the presence of flows the density has a minimum at the vertical plane 

which goes through the summits of the arcade at χ = 0, for large Mao. For 1 < ζ < 2 

the density is dropping fast as we reach the footpoints (Fig.6.6). 

Change of foot ρ oint separation with increasing flow strength at loop sum­

mit. As may be seen from Fig.(6.Id), by increasing the strength of the flow speed at 

the loop top (increasing Mao for constant λ), there results a gradual decrease of the 

separation 2x m a x of the loop footpoints. For Mao —> 0, we have 2x m a x —> 2π, the 

Parker value for the separation of the footpoints of an anchored buoyant magnetic flux 

tube in an isothermal atmosphere. 

6.6 Nature of Critical Points 

In this section we first discuss the nature of the novel X-type critical point we have 

encountered in the (M\ — M2 )-plane of the solution topologies by comparing it to the 

critical points that appear in the study of siphon flows in isolated slender flux tubes; 

and second, we compare the critical speed at this critical point to the characteristic 

speed for MHD wave propagation in a stratified medium. We conclude that the critical 

speed is not always equal to the sound speed. In addition, we find that for a rather 

highly stratified medium there are no loop-like solutions with field-aligned flows because 

MHD wave propagation occurs only above a cut-off speed in such a medium. 

6.6.1 Siphon Flows in Isolated Thin Magnetic Flux tubes 

Steady flows in the solar atmosphere have been studied either in the rigid flux tube 

approximation (Cargill & Priest 1980; Noci 1981) or in the approximation of a slender 

flux tube (Thomas 1988; Montesinos & Thomas 1989; Degenhardt 1989; Thomas & 
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Montesinos 1990, 1991). In this section we go briefly through the main results of these 

studies in order to compare them with the results of the present analysis. 

Force balance along magnetic field Unes in an isothermal MHD equilibrium in a 

uniform gravitational field g in the ^-direction is expressed by 

r2dP 
VdV + V?-^+gdz = 0, (6.6.1) 

For field-aligned MHD flows we also have 

dp dV__dB__ 

~p~+ V ~ ~B ~ ' 

Substituting dp/ρ from Eq.(6.6.2) to Eq.(6.6.1) we obtain 

(6.6.2) 

1 -
V2 

dV_ 

V 

dB dz 
(6.6.3) 

To make more progress we need another relationship between B, V and z. This may be 

taken from magnetic flux conservation, where the cross-sectional area of the tube, σ(ζ), 

is prescribed such that the magnetic field is obtained from B(z) = FB/&(Z), where FB 

is the constant magnetic flux. This provides us with the required extra relationship 

between B, V and ζ such that the velocity V(z) along the magnetic Unes may be 

calculated in terms of ζ from (6.6.3), which now becomes (Cargill & Priest 1980; Noci 

1981) 

Vi 
dV 

V 

1 dB(z) 1 

B(z) dz +L 
dz (6.6.4) 

Note that there exists a critical point in the V-z plane at the sonic transition, V = Va. 

In this approach, however, the tube is considered as rigid and lateral force balance is 

neglected altogether. 

On the other hand, if lateral force balance is taken into account to yield Β = 

B(z,V), we have, 

Ί-Υ1 - — 
V?~BdV 

dV_ 

V Β dz 

1 
dz, (6.6.5) 

It follows that now the velocity at the critical point has shifted to V* φ Vs, where 

1 dB2 

V} V} + B2 dV2 
(6.6.6) 

For an equipartition flow where B2 = 4np0V
2, lateral force balance is identically satis­

fied and the critical point occurs at the characteristic tube speed defined by (Roberts 
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1976) 
V2V2 

1 v? + V2 
(6.6.7) 

By comparison, if lateral force balance is taken into account within the framework of 

the restricted slender flux tube approximation where Ρ + Β2/8π = Pe, we find 

dB 

Β 

V^_dV_ 

V2 V 

dz 

2L 
(6.6.8) 

Combining Eqs.(6.6.5) and (6.6.8) we obtain the following equation for V(z) 

and similarly for B(z) 

y 2 1 

dB_ 

Ύ 

dv_ 

V 

dz 

2 l ' 
(6.6.9) 

V2 

dz 

•2l' 
(6.6.10) 

in terms of another characteristic speed V\ defined by, 

V? = 
v2V2 

r s r a 
2V? + V? 

(6.6.11) 

Note that V\ is the speed above which the flow causes the tube to contract with height 

(Thomas 1988). Thus, the flow accelerates at the expanding initial portion of the 

thin flux tube through a density reduction as the plasma climbs along the expanding 

portion of the tube. Then, after the characteristic speed V\ is reached at the location of 

maximum tube area and minimum field strength, the velocity continues to increase and 

the tube contracts with height because of a pressure reduction through the Bernoulli 

effect until the speed Vt is reached at the summit where the field is horizontal. 

How can the above results be generalized if we do not keep the thin flux tube 

approximation? Let us first note that Eq.(6.6.6) can be written as 

M2 + 
V? dB2 

B2dV2 
) . -

(6.6.12) 

Also, when the flow speed equals the characteristic speed V\ and the magnetic field 

attains an extremum, the Mach numbers M and Ma satisfy the relation 

M 2 

+ M 2 = 1. (6.6.13) 
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Eq.(6.6.12) implies t h a t , in general, Μ φ 1 at the critical point. And, evidently our 

Eq.(6.2.17) is an extension of Eq.(6.6.13) for ξ φ 1, reducing to (6.6.13) when ξ = 1. 

This should be the case because we also obtained Eq.(6.2.17) from force balance along 

the fieldlines. However, we obtained an extra critical relationship between the two 

Mach numbers, namely Eq.(6.2.18) from force balance across the fieldlines; and the 

combination of Eqs.(6.2.17)-(6.2.18) determined the values of the Mach numbers at 

the critical point. 

In the present study we also find that the critical point is not necessarily at the 

summit of the magnetic flux tube and that the speed at this critical point does not 

coincide with any known characteristic speed for MHD wave propagation in a uniform 

medium. , ι; 

6.6.2 Wave Propagation and Characteristic Speeds 

It is usually found t h a t at critical points the flow speed equals some characteristic speed 

for wave propagation in the plasma. Thus, searching for a connection of the flow speed 

at the critical point of the present analysis with some characteristic speed for MHD 

wave propagation, we briefly discuss the various wave speeds that exist in magnetized 

media. 

Consider first a uniform magnetic field Bz filling all space. Then, MHD waves 

may propagate along the field as Alfvén waves, or, at any direction k as either of the 

so-called slow and fast magnetoacoustic waves with phase speeds V = ω/k where 

( £ ) * - (V? + K?) ( £ ) ' + VfV!kf2 = 0 , (6.6.14) 

For propagation along the magnetic field we thus find that the waves propagate with 

either the sound speed Vs or the Alfvén speed Va. 

On the other hand, consider how the phase speed of these waves is modified in the 

limit of squeezing the field in a slender magnetic flux tube . A straightforward normal 

mode analysis of the possible modes leads to the dispersion relation 

k2Vt
2=u>\ (6.6.15) 

i.e., the waves propagate at the reduced tube-speed, Vt < min(Va,V3) (Roberts 1976; 

Defouw 1976). 

Consider next the effect of stratification, a situation corresponding to the present 

analysis. In the framework of the thin flux tube approximation, we may write for the 

^-dependence of the pressure, density, magnetic field strength and area, respectively, 

P ~ e ~ H , ρ ~ e~ », J 3 ~ e ~ " , < 7 ~ e " , (6.6.16) 
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such that both the Alfvén speed and the sound speed Vs are constants. Then a per­
turbation satisfying the conservation laws, 

8P + —— = 0, Β6σ + σδΒ = 0, 
4π 

SP = Vs

2Sp, ρ 
mv_ 
dt 

dSP 

dz 
-gSp, 

dt r dt 

yields the differential equation 

d28P 

d8p dbo c„d(pa) dSV n 

dz dz 

dz* 
Α-ξάδΡ 

Λ h 
2H dz 

V? + 2L2 δΡ = 0, 

with the solution, 

where 

δΡ^ 

ω2 

e-
iîiPi

e«-(«'±**) 

ν? 
e 

16L2 

ω' 

(6.6.17) 

(6.6.18) 

(6.6.19) 

(6.6.20) 

(6.6.21) 

Propagation is possible only for frequencies above the cut-off frequency ω0 = ÇVt/AH, 
which is inversely proportional to the scale height H, as there exists a cut-off frequency 
in e-m wave propagation in a plasma. Thus, for very small scale heights H propagation 
is not possible. The situation is similar in our analysis. In our case, there is no critical 
point and critical speed for small scale heights, ξ > 2 and MHD flows along arcades 

are not possible. In other words, for Η —> 0, no wave propagation in a stratified 

medium is possible, consistent with our conclusion that for £ > 2 no solutions for flows 

in arcades are found. 

6.7 Summary and Discussion of Results 

In Paper I we searched for exact 1-D MHD solutions in a uniform gravitational field. 

For simplicity we considered in that first step a variation of the physical quantities only 

with the horizontal coordinate X. Only periodic solutions were found including valleys 

and summits. The new element introduced in the present treatment is stratification 

in the vertical distance Ζ and therefore dependence of all physical quantities on both 

Ζ and X. As a result, a new feature has emerged naturally from this 2-D analysis, 

namely the existence of loop-like solutions not encountered in the previous unstratified 

treatments. Nevertheless, in the limit of the absence of stratification (ξ —• 0) we 
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recover the results of the analysis for the unstratified case of Paper I. As with Paper 

I, the present study can be generalized t o any nonisothermal atmosphere and also to 

include components of the fields in the symmetry-direction (y). The main conclusions 

of the present study can be summarized then as follows, 

( 1 ) Low Mach number loop-like solutions exist only for a limited range of the strat­

ification parameter ξ, 1 < £ < 2, i.e., for the restricted case of a mildly stratified 

atmosphere where the density, pressure and magnetic field strength do not drop with 

height ζ faster t h a n the classical scale height Η — Vf /g. If this conclusion were shown 

to persist for other functional forms of the free integrals Ψ^(Α) and F(A), Eqs.(6.2.4), 

it would predict, for example, that in highly stratified coronae of stars and accretion 

disks, loops with flows do not exist. Note that this result is also in agreement with a 

perturbat ion analysis for MHD wave propagation in a stratified medium where there 

is a scale height-dependent cutoff frequency for the waves, Eq.(6.6.21). 

(2) Topologies of the solutions in the ( M a , M ) - p l a n e for such loops are controlled 

by a new critical point. We have preliminarily explored the nature of this critical 

point and concluded that its appearance is strictly related to the vertical stratification. 

T h e flow speed at the critical point is then a generalization of the well-known tube-

speed, Vt, encountered in wave propagation in slender flux tubes (Roberts 1976). The 

critical point is not necessarily, however, at the highest point of the tubes, as is the 

case in slender flux tube models with flows (Thomas 1988; Degenhart 1989; Thomas 

& Montesinos, 1990). Instead, the critical point seems to be similar to an analogous 

critical point that emerges from nonlinear solutions of the 2-D MHD equations explored 

in connection with astrophysical winds and jets (Tsinganos &: Trussoni 1991; Tsinganos 

&; Sauty 1992). In both these cases the new critical point appears when the two coupled 

partial differential equations which govern symmetric MHD equilibria - the transfield 

equation and the equation for force balance along the magnetic field and stream lines 

- are properly solved. Also, the critical point does not appear at the fast and slow 

MHD wave speeds, but at some other characteristic speed which evidently includes the 

elasticity of the fieldlines to changes in the flow magnitude. 

(3) As the magnitude of the flow at the summit increases, the arcade responds by 

becoming more curved while the separation of its footpóints 2Xmilx decreases. Always, 

however, 2Xm&x < 2π, with equality reached only in the limit of potential arcades 

without flows (Parker 1975, 1979). This conclusion is valid for arcades which in the 

absence of flows correspond to a potential magnetic field, ξ = 1, a case that may 

be relevant for some solar coronal magnetic fields. This property may explain the 

observational fact that most loops extend over heights much larger than predicted by 

static models without flows (Foukal 1976). 
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(4) Sometimes a limit exists on the magnitude of the flow speed at the summits 

beyond which steady solutions do not exist and we conjecture that the arcades disrupt 

when the flow speed exceeds this limit. Such high plasma motions are observed to occur 

in the solar corona and chromosphere. For example, transition region Une profiles 

(50,000 < Τ < 250,000) are broadened almost everywhere beyond their thermal width 

(Brueckner et al. 1988). Our suggestion is that a consequence of such high plasma 

flows may be the disruption of the magnetic field lines which can be understood in 

terms of the failure of the magnetic tension force to continue to balance the centrifugal 

force. The required increased mass flows along the magnetic field lines may be due, for 

example, to appropriate changes in the footpoint pressure and other physical conditions 

at the base of the loops (Low 1981; Mikic 1988; Priest 1988). 

(5) For asymmetric arcades there is the possibility of a shock transition that would 

connect the M > 1 branches with the M < 1 branches. The existence and location 

of this shock along the loop depends of course on the pressure difference between the 

two symmetric loop footpoints. Note that such shock transitions also appear in the 

subcases of rigid flux tube siphon flows, as well as in flows in slender flux tubes and 

attempts have been made to connect them with heating along the loops. 

(6) The density has a minimum at the summits and increases as we move down 

in the gravitational field toward the footpoints. Also, the density has a minimum 

horizontally at the summit of the arcade. 

(7) Finally, it is worth emphasizing that the present study is valid for any plasma 

β, small or large. And, although results obtained with the assumption of low β can be 

applied to solar active region loops if there β « 1, nevertheless such approximations 

are inappropriate for situations where the effects of the flow are important and a.full 

solution of the MHD equations should be considered instead. Such situations arise, for 

example, in areas of magnetic flux emergence (Brueckner et al. 1988), or in compact 

flares with no eruption where the speeds are typically of the order of 100 km/s; similarly 

in high temperature X-ray loops (T « 5-6 x IO6 K) like those observed with Yohkoh 

(Hara et al. 1992). Similar considerations apply to chromospheric loops and fibrils 

where the plasma β is the largest and in the atmospheres of other stars where the 

magnetic field is less important locally. For the obvious application to photospheric 

Evershed flows in sunspots one needs to write the corresponding Eqs.(6.2.14-6.2.16) in 

cylindrical coordinates, this will be taken up in the future. 

All the above conclusions are based on the particular form of the free integrals 

Φ^(Α) and F(A), Eqs.(6.2.4). It is natural to wonder then whether the results of the 

present analysis are model-dependent and not extendable to other choices of Φ^(,Α) 

and F(A), or whether they indeed reveal some generic properties of MHD flows in 

a uniform gravity and in an atmosphere that is vertically stratified and horizontally 
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compressible. Unfortunately, to this day the set of expressions (6.2.4) for Φ^(Α) and 

F(A) is the only one wherein it has been possible to examine analytically and display 

the general properties of such steady states. In this connection we briefly note that the 

expressions (6.2.5) for the z-dependence of the magnetic fields are quite appropriate 

for magnetic fields that exist high in the solar corona where they are regarded as 

approximately potential. On the other hand, for the mass flux per unit of magnetic 

flux we find that the simplest expression it can take is Φ^(Α) oc A, while for the 

energy flux, F (A) oc hiA. A Taylor expansion of these two free functions in A will 

keep those terms at the lowest order. Therefore, we are inclined to accept the latter 

point of view that the above general trends are not purely accidental for the set (6.2.5) 

for Φ ι{Α) and F(A) alone. However, it remains a task for the future to show if other 

classes of such equilibria share the same properties and therefore that the previous 

trends have a general validity. We conclude then that more work is needed in order 

to understand some key properties of MHD steady flows in a uniform gravity and 

the related problem of MHD wave propagation in a nonuniform atmosphere. Such an 

understanding is necessary before we are able successfully to model the complex and 

nonlinear phenomenon of the MHD structure of solar and stellar atmospheres. 
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Chapter 7 

SUMMARY AND FUTURE 
PERSPECTIVES 

7.1 Summary 

High-resolution X-ray images of the inhomogeneous solar atmosphere by satellites and 
rockets, seem to firmly establish the notion that the building blocks of the corona of 
the Sun are loops of various sizes and properties. In particular the role of magnetic 
field apparently emerges to be rather crucial in providing the confiment of the plasma 
in these higher density structures. On the other hand, a prelimary comparison of 
the fitting of the emission by these loops by static (without flows) or dynamic (with 
flows) models suggests that plasma flows play also an essential role in determining 
the physical and geometric characteristics of the loops. It is evident them, that a 
full MHD description is required in order to understand the basic physical properties 
of magnetized plasma loops. However, the construction of exact MHD models with 
flows for compressible magnetic loops has been so far halted by the nonlinear nature 
of the coupled MHD partial differential equations. This is the basic reason that all the 
models that we have for coronal loops are one-dimensional (in which the MHD partial 
differential equations becomes ordinary differential equations). Needless to say that 
self-consistent models of coronal loops may be the starting point for an examination of 
their stability properties, propagation of waves and subsequent heating. 

With these considerations in mind, we have been studying some families of exact 
solutions of the MHD equations. We developed a method to solve in general the 
MHD equations in two dimensions in the low-/? limit (i.e. that the plasma pressure is 
much less than the magnetic pressure) which an reasonable assumption for the solar 

179 
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corona. In this limit the magnetic configuration is approximently force-free. Thus the 

influences of the plasma pressure, density and flows can be treated as perturbations 

to the initial force-free configuration. The resulting equations, describing the field-

aligned dynamics and the cross-field force balance, which give the dynamics of the 

plasma and the change in the initial magnetic configuration can be solved for any 

boundary conditions assumed. As an example we examing in detail some configurations 

(symmetric and asymmetric) which model coronal loops, arcades and the sunspots. In 

more details in symmetrical magnetic configurations, when the distribution of pressure 

at the foot points is symmetrical, the flow is necessarily subsonic. Otherwise it can 

become supersonic at the summit of the magnetic field fine and then passes through 

a shock. Such shocks can be very inclined to the magnetic field and the shocked 

material may form a dense hot sheet around a cooler core, a situation which seems to be 

observed in cool loops. For asymmetrical magnetic configurations, the flow accelerates 

towards the low gas pressure foot point and could be subsonic or transonic depending 

on the pressure difference between the foot points. Loops can have a significant density 

contrast against their environment only if their energy flux differs markedly from the 

background one. In asymmetrical loops one leg can be much less dense than the other 

and poorly visible. Near spots, the sign of the difference of pressure between the two 

foot points is such as to drive a reverse Evershed flow towards the spot and additional 

effects would be needed to drive a direct Evershed flow. 

From the other hand, we tried to find MHD solutions without the crucial assumption 

that the plasma β is small. In this direction we have study two cases, starting from 

the generalization, in horizontally compressible atmosphere, of Kippenhahn-Schlüter 
model for the support of quiescences prominences. Adding flows along the fieldlines 
to this, we found that the resulting field structure has a periodic character, which is 
similar to the observed fine-scale fibril structure of solar prominences, with prominence­
like valleys and arcade-type summits. At the valleys the density is maximum and 
the flow speed subsonic and subalfvénic while the opposite happens in the summits. 
But if in the above approach take to account the vertical stratification of atmosphere 
due to gravity the situation complicates and new characteristics emerge. The basic 
result for middly stratification, coronal loop models with flows along them comes out 
as the only solutions of the couple equations discrubing the force balance along and 
across fieldlines. The phase plane of this solutions controlled by a classical sonic and a 
novel saddle critical point, corresponding to a new characteristic speed for MHD wave 
propagation in this nonuniform medium. We also found that for strong stratification 
there no solutions at all, while for small stratification only periodic solutions arise which 
are totally subsonic and subalfvénic model the internal structure of prominences. We 
further compare some properties of these loops with those of force-free magnetic loops 
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in the low-/? limit where loops are taking to be rigid. Among our results, is that an 

increase of the magnitude of the flow at the loop increases its height, in accordance 

with solar observations where some loops seem to extent over heights much higher 

than those predicted by static models. Finally, for strong flows there no equilibrium 

solutions and the loop is disrupted. 

7.2 Suggestions for future work 

The approach followed in this thesis is useful to construct more sofisticated models for 

various solar structures in the solar corona where the low-/? assumption valid and com­

paring them with observations and to examine simple situations of the MHD equations 

in order to light some basic properties of them and to model in zeroth order situations 

where the low-/? assumption is not valid. In the following we shall describe how we can 

extrapolate the works of chapters 4 and 6. 

7.2.1 General low-/3 models 

As we saw in the third chapter a magnetic structure in which the plasma β and the 

Alfvén Mach number Ma are both much less than unity (and also the scale of magnetic 

structures are much less than the Alfvénic scale height), is approximently force-free 

( V x B o ) x B o = 0 , (7.2.1a) 

V - B o = 0 . (7.2.1b) 

while the influence of the plasma (density, pressure, flows and gravity) can be treated 

as perturbation of order β and Ma 

B = B 0 + B 1 , (7.2.2) 

writing in first order of these parameters 

V B 1 = 0, (7.2.3a) 

V-(/£>V) = 0, (7.2.3b) 

V x ( V x B o ) = 0, (7.2.3c) 

„ „ , r π π (V X B n ) X B-i ( V x B - i ) x B n , n n n t s 
/ C,V-VV = - V P + - ^ ì + i u -+PR- (7.2.3d) 

4π 4π 

and closing the above system by the ideal gas law for fully ionized Η 

P = ™ B p T (7.2.3e) 
mp 
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and an energy equation 

7 

pVv-v )(£)=- ( ö°-v ) KQT5'2 

B0 
( B 0 · V)T „2 m a χρ'Τα + Η. (7.2.3f) 

where So is the strength of the magnetic field. Thus Eqs.(7.2.3) constitute a closed 

system for P , p, T, V and Bj_. 

For a magnetic configuration in coordinates (χχ, x2, xz) where £3 is ignorable, defin­

ing the flux functions AQ and Αχ from the solenoidal conditions Eqs.(7.2.1b,7.2.3a) it 

is easy to see that the discussion of section 4.3 still holds about the existance of free 

functions of Ao like Φ(Αο), Ω(Α0) and G\{Ao) discrubing mass conservation and force 

balance in the ignorable direction (the integral E(Ao) is not exist in this case). Of 

course the initial configuration satisfies the well-known 2-D force-free condition for AQ, 

and of course the function Go = h3Box is function of AQ only. For field aligned flows 

Ω = 0 we have 

AirpY = Φ Α ο Β 0 , (7.2.4a) 

and the equations discrubing the hydrodynamic and thermal equilibrium of the plasma 

along each field line AQ with abscissa s are 

pV 
JV_ 

ds 

dP 

ds P9 Ba 

(7.2.4b) 

7 — 1 ds 
' P_ 

,ΡΊ 

= -B 
d (K0T*l2dT 

ds Β ds 
- χρ2Τα + Η (7.2.4c) 

together with the ideal gas law. The above system can be solved for the unknowns 

Ρ, ρ, Τ and V. Finally the equation which gives the flux function A\ end thus the 

correction in the xi- and ^-components of the magnetic field is 

h\h2hz 

d h2 dAi d h dAx 

+ dx\ h\hz dx\ dx2 h2hz dx2 
+ 

1 d2(Gl) 

2h\ dAl 
A1 

Φ A0 
d h, Φ Λ 0 dAo 

+ 
d h. Φ Α 0 dA0 

h\h2hz [dxi h\hz Απ ρ dx\ dx2 h\h$ Ακρ dx2 

1 d(GoGi) 1 

hi dA0 8wphl 
i^dJ.^ePi 

dAo dAo ' ? 
(7.2.5a) 

while the correction in J?i is given by 

Bix, 
φ2 

4^*°- + 
±dG±A +G1 

hz dAo hz 
(7.2.5b) 
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where the last partial derivative in the transfield equation is taken keeping the quantity 

Τ = g ζ -f- V2/2 constant, and is calculating numerically from the solution of the system 

of Eqs.(7.2.4). 

The above formalism can be use to model in detail coronal loops, prominences, 

active regions etc., where the isothermally is not a realistic assumption. 

7.2.2 Further study of the general 2-D M H D equations 

Equilibrium s ta tes . The class of solutions studied in chapters 5 and 6 belongs to 

a more general class of solutions of MHD equations under the assumption that any 

quantity is separable. By this we seek solutions in the 2-D MHD equations in x\,X2 

coordinates by writing every variable Q(x\,X2) in the separable form 

Q(xi,X2) = Qi(xi)Q2(x2), (7.2.6) 

and asking which is the appropriate given form for 02(^2)> such that the MHD equa­

tions to became from a partial to ordinary differential equation system for the unknown 

functions Qi(xi). For the cartesian (x,y,z) or cylindrical (τσ,φ,ζ) coordinates with y 

or φ being ignorable, it is easy to check that the most general z-dependence is given 

by Eqs.(6.2.5). Thus an obvious extension of the work of chapter 6 is the study of 

the solutions in cylindrical geometry and the study of non-planar solution assuming 

that the magnetic field and velocity have components and in ignorable direction. At 

this point we must note that in spherical coordinates (r, φ, θ) where φ is the ignorable 

coordinate there are already many models under this assumption discrubing solar and 

stellar winds and jets (Tsinganos & Trussoni 1990, 1991, Tsinganos & Sauty 1991, 

1992, Sauty & Tsinganos 1994, Lima & Priest 1993a,b). 

Critical points in the general transfield equation. Another crucial point that 

found in chapter 6 is this new critical point or a new characteristic speed, denning in 

Eq.(6.2.18) which can be written also using Eq.(6.2.10) as 

Ml+M2 - Ml Ml - 1 = 0, (7.2.7) 

where Ma is the Alfvén number and Mx and M the Mach number of the x-component 
and of the total velocity. Of course for this critical point we have another more equation, 
i.e. Eq.(6.2.17) but this gives the position in the field line where Eq.(7.2.7) satisfies. 
From these results it is important to examing two things (Sauty 1993), 
(i), if this critical point is due to the assumption of the separable variables, and 
(ii) if it is a characteristic speed for wave propagation. 
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In general the study of wave propagation in non-uniform media, is of a great impor­

tance, but is only in its infancy. It is relating directly to the stability of equilibrium 

structures and to the classical problem of the heating of solar corona. To anwser the 

second question, Tsinganos et al (1994) showed that the case of the critical point de­

fined in Eq.(7.2.7) can be written in the more familiar form (note that M = V/V3, 

Ma = V/Va = Vx/Vax 

V-x*-V?(V? + Va

2) + V?Vl=0. (7.2.8) 

which means that the x-component of the flow speed along the critical curve (7.2.7) 

is equal to the characteristic speed of the fast/slow MHD waves propagating in the 

^-direction. 

To answer to the first question we must examing some properties of the general 

MHD equations. In cartesian geometry for planar structures with translational sym­

metry and isothermal equation of state the MHD equations are the transfield equation 

V2A - Φ, 
d VA dA d VA dA dE 

dA0 dx 4πρ dx dz 4π/9 dz 

discrubing the force balance across fieldlines and the Bernoulli equation 

2 / C 1 t χ 2" 

(7.2.9a) 

V2\n \fo)+9z + 
*A 

3 2 T T V ox J \dz J 
= E(A), (7.2.9b) 

discrubing the force balance along fieldlines. It is easy to see from Eq.(7.2.9b) that 

the density is function of A and ζ although that we can not found it explicitly. But 

its derivatives can be calculated explicitly and to substitute in the transfield equation 

which can be written 

(i-K2) 
\d2A d2A 

+ 
+M2

a 

IdpdA ldpdA 

ρ dx dx ρ dz dz 

V2 dvP2, dE 

d2x ' d2z 

where Va is the Alfvén velocity. Thus from the Bernoulli equation we obtain 

, . -2 ΛδροΑ M2MldV2 ,/r2d
2A „, w d2A λ M2

Z dE , „ „ , „ , , 

2 ,,ldpdA M2M2

axd*2

A+M2 

pdz dz 

d2A %/r , , d2A Λ M2

xdE 
ΜχΜζ1Γ^Γ - 4 π ρ - J_ 

vy IMI à A x d2z x zdxdz r M2 dA 
(7.2~10c) 

where Mz, is the z-component of the Mach number of the flow and Μαχ and Maz the 

x— and ^-components of the Alfvén number. Substitute them in the transfield equation 
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(7.2.10a) we get 

[M2 + Ml - MIMI - 1 ] ^ £ - 2MlMxMz^-z + [ Μ 2 + M a

2 - M2

aM
2 - 1 ] ^ 

2 dA ^PM^-^AMX=0. (7.2.11) 

T h e above equation is known in bibliography as 2-D quasi-linear partial differential 

equation because the higher derivatives of A is in linear form although that the coeffi­

cients of them depend from the A itself. 

Now we recognize that the critical point appear in the analysis of chapter 6 is 

simply t h e coefficent of d2A/d2x. When this becomes zero all the others terms must 

became zero in order d2A/d2x to be finite. The same also valid for the coefficient of 

d2A/d2z but in the case studied in chapter 6 the z-dependence is dropped out from 

the beginning. Eq.(7.2.11) written first by Heinemann &: Olbert (1978) in spherical 

geometry. It has the characteristic that is of mixed-type, in some points is elliptical 

(D < 0) while in others is hyperbolic (D > 0), where D = b'l — ac and a, b, c are 

the coefficients of the second order derivatives of A (Eq.7.2.11). Thus, appropriate 

boundary conditions must be used in each domain (i.e Laplace-type for the elliptic and 

wave-type in the hyperbolic domain), taking also to account that the solution must be 

continuous at the points of the line where D — 0. After a simple algebra we found that 

D = {M2-l){Ml-l){M^Ml-l)^{V2-V2){V2~V2){V2-V2)/V^. (7.2.12) 

where Vt is the tube velocity which is smaller both from Va and Vs. Define V^in = 

min[Vs,Va] and V m in '= mm[V s , Va] we conclude that if V < Vt or Vmm < V < VmCLX 

the transfield equation is of elliptic type, while if Vt < V < Vmin or V > Vmtix is of 

hyperbolic type. Thus we see that in the points where the transfield equation changes 

character the fluid velocity is equals to a characteristic velocity which corresponds also 

to a characteristic wave propagation. But apar t from this, it is interesting the fact t h a t 

the velocities defined putting equal to zero the coefficients a, and c of the transfield 

equation are correspond to fast/slow MHD waves. 

Wave p r o p a g a t i o n Because of the great importance of the the study of wave prop­

agation in non-uniform media, we shall give in the following, the general equations 

discrubing this and a simple example. 

Consider a force-free field B Q in a vertically stratified stationary isothermal plasma, 

under the influence of a uniform gravitational field g) . Its density and pressure which 

behave like 

Ρο = Ροοε~ΐ, P0 = P00e-î, (7.2.13) 
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where L = Poo/poo9i and satisfy the hydrostatic equation V P Q = pog· Consider small 
departures from the equilibrium 

p = Po + Pu P = Po+Pu B - B Q + B Ì , V = V t , (7.2.14) 

and linearize the MHD equations (2.3.1) by neglecting squares and products of small 
quantities (denoted by subscript 1). The result is 

V - B x = 0, (7.2.15a) 

dpl
r + V-(PoV1) = 0, (7.2.15b) 

dt 
dB 
dt 

dPx 
dt 

l = V x ( V 1 x B 0 ) , (7.2.15c) 

+ (V 1 -V)Po + 7 i 5 o ( V - V 1 ) - Z : 1 , (7.2.15d) 

8νΛ n (V χ Βχ) χ Βη (V χ Βη) x B i / w 

where for the Eq.(7.2.15d) which describes the thermodynamics of the plasma we have 

linearized Eq.(2.3.1.d) writing 

£ = £„ + £ : , (7.2.16) 

where of course the energy function Co has to do with the initial state and is such 

that isothermallity is holds in that. For simplicity the perturb energy function can 

be choose either zero L\ — 0, so adiabatic gas variations are studying, or such that 

that isothermallity relation holds for the perturb density and pressure. From technical 

point the second case can be found from Eq.(7.2.15d) putting again C\ = 0 but 7 = 1. 

The set of Eqs.(7.2.15) may be reduced to a single equation by differentiating the 

momentum equation and making the necessary substitutions. The result is a general­

ized wave equation for the disturbance velocity V j (Priest 1984) 

P o ^ 1 = 7 n V ( V . V 1 ) + (7-l) / 3o(V-V 1)g + />o(g-V)V1 

| [V χ (V x Vi) x B 0] Χ BQ | [V χ B 0] χ [(V χ V ! ) χ B 0] 

4π 4π ' 

It is obvious from Eq.(7.2.l7) that if the initial state was uniform the solution of this 

is easy to obtain by a Fourier transform (plane waves) 

V 1 = V 1 e i ( u " - k r ) . (7.2.18) 
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Thus Eq.(7.2.17) reduces to algebraic equation for the dispersion relation ω = u>(k) 

and the amplitude of the wave Vj is constant. This analysis cover from all text book 

in plasma physics. But for non-uniform initial states Eq.(7.2.l7) becomes in general a 

partial differential equation for the amplitude Vj which is now a function of the spatial 

coordinates because the solution must be obey to certain boundary conditions. Note 

the Fourier analysis still holds for the time dependence and for coordinates in which 

the equilibrium configuration is invariance. 

As an example we shall examing the propagation of waves in the most simple 

current-free planar magnetic configuration in cartesian coordinates 

A0 = 2LB0 cos ( ^- ) e ~ * , 

(7.2.19) 

in which the plasma β is constant everywhere. For simplicity we shall consider waves in 

which the x- and z-components of the disturbance velocity Vj_ are zero (V\x = V\2 = 0). 

Thus we write for the remaining y-component 

Vly = Viy(x)ei(ujt-kvy-k*z) , (7.2.20) 

because the exponential 2-dependence existing in the quantities of the equilibrium state 

drops out, and thus the amplitude Vi (x) satisfies an ordinary differential equation. It 

is easy to see that substitution of the above expression in the x- and 2-components of 

the general wave equation gives 

fc„ = 0, (7.2.21) 

which means that there are no waves traveling in the invariance direction. From the 

other side the y-component of the wave equation (7.2.17) gives 

c o s 2 x — ^ + 2 iÄvcosxs inx—^ + \iKx + Ω2 - K\sin2xlVi = 0 , (7.2.22) 
dxz dx L J " 

where we have define the dimensionless variables χ = x/2L, Kz = 2Lkz, and Ω2 = 

2ßu2L/g. The above differential equation subject to the boundary conditions 

Vi, = 0 at x = ± ^ , (7-2.23) 

will give the dispersion relation Ω = il(Kz). Making the change of variable ξ = sin χ 

we rewrite Eq.(7.2.22) in the form 
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In order to solve this we make the substitution 

Viv=(l-e)9y, (7-2.25) 

which is leads to the differential equation 

(1 - ξ2)^ + (2iKz - 1 - 4q)^ + [Κ] + 4iqKz + 2q- 4q2)y = 0, (7.2.26) 

where the exponent q is given from the condition 

Ω2 + %Kg -K2

X- 4iqKz + 4q2 - 2q = 0, (7.2.27) 

Application of the Forbenious method in Eq.(7.2.26) gives that the boundary conditions 

(7.2.23) satisfied if 

n(n - 1) - (2iKz - 1 - 4q)n - K\ - 4iqKz + 4q2 - 2q = 0, (7.2.28) 

where η = 0,1,2,.... From Eqs.(7.2.27,7.2.28) we get 

l K z ~ 2 q = " 2 " " n ~ ÌKZ ' ( 7 · 2 · 2 9 ) 

while Eq.(7.2.27) can be written as 

(Ω2 + iKz) + (iKz - 2q)2 - K\ = 0, (7.2.30) 

Thus the dispersion relation written as 

(Ω2 + %KX + n2)2 = K\ . (7.2.31) 

Decoupling the wave number Kz in real and imagine parts we find from Eq.(7.2.31) 

Re(Kz) = lm{Kz) = ί ( Ω 2 + η 2 ) . (7.2.32) 

Thus we conclude that the amplitude of the wave increase with height as e

lia^Kz^z and 

the initial magnetic structure is unstable Ω2 < 0 for wavenumbers 

n 2 

Re{Kz) < — , (7.2.33) 

while the propagation velocity of the wave is (group velocity) 

du q ,_ 

" · - * = & · ( 7 · 2 · 3 4 > 



Appendix A 

General transfìeld equat ion in 
low-/? and M$ limit 

From the general transfìeld equation 2.3.36, in our case, in the lowest order approx­
imation in β and M„, A = AQ, ρ = ΦΑ0 = Ω = E = 0, we get a force-free field 

configuration 

hih2h3 

d h2 dA0 d hi dA0 

dx\ h\hz dx\ dx2 h2hz dx2 • s T ^ - · (-> 
where GQ{AQ) = hzBox is a function of AQ. 

Perturbations to first order in the small Alfvén-Mach numbers (Φ^ /4πρ << 1) 

give non-zero values for p, # A 0 > E. We still impose Ω = 0 because we deal with 

field-aligned flows. We write 

A = A0 + Ai. (A.2) 

Instead of Go(A) introduce another function G(A) 

'G(A) = Go(A) + G1(A), (A3) 

where GQ{A) « Gi(A). Making a Taylor expansion we have 

*Ao(A) = VAo(A0) + ^ A 1 + ... (A4a) 
dAo 

E(A) = E(Ao)+^A1 + ... (AAb) 

G(A) = G0(A0) + ψ±Αχ + Gi(i4«) + ... (A.4c) 
dAo 
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Putting these expressions in the transfield equation and taking into account that the 
square of the Alfvén-Mach number is small and that in order of magnitude we have 
Φ ^ /Απ ρ « Αι/Αο, we get the field-aligned flow condition Eq.(4.3.15), the Bernoulli 

Eq.(4.3.19) and 

h\h2hz 

d h2 dAi d hi dA\ 

+ dx\ hxh3 dx\ dx2 h2hz dx2 
+ 

1 d\Gl) 
2h\ dA\ 

Ax = 

ΦΛ 0 
d h2 <S>AodAo , d h2 VAodA0 

+ h\h2hz [dxi h\h$ 4πρ dx\ dx2 h\hz 4πρ dx2 

1 d(G 0 Gi) d{Gl*\0) 
hj dAo 8TTphl dA0 

47Γ/9 
dE 

dA0 

while the correction in B\x χ is given by 

(Λ.8) 

Bl" - i^ S °- + 
1 dGo Gi 

hz aAo hz 
(A.9) 



Appendix Β 

Green functions for t h e 
linearized transfield equation 

For cartesian coordinates, the required Green function G(x,z;x' ,z') of the Poisson 

equation which satisfies 

Έ^ + ^ = ί{χ'-χ)6{ζ'-ζ)' ( S 1 ) 

and vanishes on x' = a, x' — b, z' = 0, z' —> oo. Such a solution can be expanded in 

the form. 
oo 

G(x, z\ χ',ζ') = Σ sinhn(x' - a)]Zn(z'). (B.2) 
7 1 = 1 

where 

7. = τ=ϊ-. (ΒΛ) 
ο — a 

Inserting this in Eq.(B.2) gives ordinary differential equations for Zn. Solving these 
we get 

2 Ä 1 . 
G{x,z;x',z') = -=— Y — sin[7„(x - a)] s i n k s ' - a)] [e^»'*-*'! - ε-Ύ»<*+*')]. 

(ΒΛ) 

Using complex variables we can calculate the sum and we get 

G(x,z\x' ,z') = 

1 ι + e-27i\z-z'\ _ 2 C Q S 7 I ( I + χ'- 2a)e-^z-z'\ 

2π n i + e-2^\z~z'\ - 2 « Μ 7 ι ( χ - χ ' ) β - " Λ ΐ * - * Ί + 
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1 ι + e-27i(*+*') _ 2cos7i(x - x')e-^z+z'^ . 

2π l + e-2^(z+z'^>-2cosy1(x + x'-2a)e-f^z+z'y ' ' 

For the cylindrical coordinates, for the same boundary conditions, the required Green 

function G(w,z;w' ,z') satisfies 

d2G 1 dG G Ô2G 1 c, , N f . , λ , _ f l . 

and is given by 
G(xv,z;zo' ,z') = 

oo 1 

Y ] 7 [Yi(Tn a ) J i(7n^) - Ji(7na)Yi(7ntJ7)][Yi(7„a)Ji(7„tJ7') - J1(7„a)Yi(7ncc7/)] 

where j n is found from the following condition 

Yi(7«a)Ji(7«&) = hhn^Yi^nb) , (B.S) 

and 

b2 a2 

Ln = — [Yi(7na)Jo(7nfe)-Ji(7„a)Yo(7n&)]2-y[Yi(7na)Jo(7nö)-Ji(7na)Yo(7na)]2 , 
(B.9) 

which is the square of the normalization factor of these eingefunctions. In the special 
case a — 0, 6 = 7.66341 (the first zero of Jj(tu/2) the Green function takes the simpler 
form 

oo 

G{w,z-tw'tz') = Σ j J1(7n^)Ji(7n^')[e-^lz-z'l - e-^'+^] (5.10) 
n = l L n l n 

where 

Ln = 7 - 6 6

2

3 4 l 2 Jg(7 .66341 7 n ) , (5.11) 

and 7„ satisfies 

7 . 6 6 3 4 1 7 n = j 1 > n , (5.12) 

where jitn is the η-zero of Ji(tt7/2). 



Appendix C 

Numerical techniques. 

Although that we know explicitly the appropriate Green functions it was convenient to 

use a standard routine that solves a partial elliptic differential equation in order to find 

the solution of the linearized transfield equations. Such a routine discretizes a given 

equation on a rectangular domain a < x\ <bic<X2<d, with nXl χ nX2 grid points. 

In our case, where c = 0, we have chosen instead of d —> oo the value d — 4(6 — a). 

Thus the rectangular domain was —π < χ < π, 0 < ζ < 8π in cartesian coordinates 

and 0. < î u < t 3 7 2 , 0 < z < 4^2 (with πι = 7.66341) in cylindrical coordinates; for 

the largest z, the right hand side of Eqs.(4.4.4) and (5.3b) is lower than e _ 4 7 r which is 

smaller by two orders of magnitude than the routine errors ( ^p3· ) + ( ^-^ ) ~ 2.10 - 4 

for nX2 = 4nXl — 28 for the grid. For each grid point the density has been obtained 

numerically from the Bernoulli equation keeping the larger (smaller) root for subsonic 

(supersonic) flows. Note that the various space partial derivatives of the density can 

be obtained analytically. The resulting linear system for the values of a\ at each grid 

point is multi-diagonal and it ean be solved by a cyclic reduction algorithm (in our 

case the generated system is always diagonally dominant). 

In transonic cases, we first mark the grid points, there are three types of grid 

points, depending on the choice of solutions in Bernoulli equation, (i) those which are 

in the static (no-flows) and pre-shock (pre-critical) subsonic domain, (ii) those which 

are in pre-shock supersonic domain, and (iii) those which are in the post-shock subsonic 

domain. The character of a grid point comes from the information of the sonic and 

shock position for each field line on which the given grid point lies. Thus we are able 

to solve by the same method Eqs.(4.4.16) in the whole rectangular domain in order to 

find a\ associated with the diffuse current. But to find the field a\t produced by the 
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shock surface current density j a we use the Green functions (Appendix B) writing 

als(x1,x2) = / G(xi,X2]xfi^x2l)Js(s)dsì (C.I) 
Je 

where the integration takes place only along the shock front curve C given from the 
Eq.(4.4.14) and where £ih(s) i = 1,2 are the coordinates of the shock front. Because 
s = s(do), we can transform Eq.(Cl) in ao variable, so 

als(x1,x2) = / G(xi,x2;xfl,x,$l)js(ao)s'(a0)dao , (C.2) 
Jc 

where the prime denotes derivation and can be calculated analytically from the shock 
front shape and the equation for the field lines. Thus we can integrate Eq.(C2) nu­
merically finding first the shock position and then the surface current density. 



Appendix D 

Analytical form of Eq.(5.4.19) 

In Eq.(5.4.19) X can be expressed as a function of R through the elliptic integrals. 

Thus, we may write Eq.(5.4.19) as 

±^βΧ= Γ , dR = + Ml I 
V Λ ^/R(1-R)(R-M2) aJi 

R dR 

-(M2+2M2 +2M2Ma

2) ί 
R 

Ry/R(l-R)(R-M2) 

dR 

R2^/R{1-R)(R-M2) 

+3Μ2Μ'ί *jm " — — (ΟΛ) 
dR 

\/R(l^R){R-M2) 

or, 

±Viy= * at r· * 
2 Λ V(l - <l)(l - kH*) "Jo (l-fi)^/(l-fi)(l-kV) 

-(M 2 + 2M2 + 2M2M2) Γ . dt = 
V a aJJo (l-t2)2^/(l-t2)(l-k2t2) 

+3M2M2

a [ , d t =. (D.2) 

where h2 = 1/(1 - M 2 ) and t = y/{\ - R)/(l - M2). It is evident then that X(R) may 

be expressed in terms of the elliptic integrals of the first and second kind, F(t, k) and 

E(t, k), respectively and the Jacobian elliptic functions snw, cnu, dnu, in the following 
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way (Byrd and Friedman 1971), 

[* dt E(t, k) — k2snucnu/ànu 
1 = Λ (1 - < 2 ) λ / ( ϊ " ^ ί 2 ) ( 1 -Jt 2*2) = l - F ' ( ' ' 

_ Γ* dt _ 2(2 - k2)Ii - u — k2snucnu/dnzu / n c \ 
2 ~ Λ (1-ί2)2νΪΓ=*2)(1-*2<2) ~ 3(1-Ρ) » ( · J 

/*' <# 4(2 - fc2)/2 - 3Ji - fc2snucnu/dn5u 
8 Λ (1-<2)V(1-*2)(1-*2*2) ~ 5(1-P) ' ( ' } 

Note that snu (the inversion of the integral in D.3), cnit = y/l — sn2w and dn« = 

y/l — k2sn2u. 
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Η Μ Α Γ Ν Η Τ Ο Υ Δ Ρ Ο Δ Υ Ν Α Μ Ι Κ Η Δ Ο Μ Η 
Τ Η Σ Η Λ Ι Α Κ Η Σ Α Τ Μ Ο Σ Φ Α Ι Ρ Α Σ 

Μοντέλα μαγνητικών βρόγχων πλάσματος με ροές 

ΠΕΡΙΛΗΨΗ 

Το Ηλιακό στέμμα παρατηρούμενο στις ακτίνες-Χ παρουσιάζει μια έντονα ανομοιο­
γενή δομή. Οι δομικοί της λίθοι είναι μαγνητισμένοι βρόγχοι των οποίων η θερμοκρασία 
μπορεί να είναι μικρότερη ή μεγαλύτερη από την μέση θερμοκρασία του Ηλιακού στέμ­
ματος. Πρόσφατα απλοποιημένα μοντέλα αυτών των βρόγχων με ροές κατά μήκος των 
δυναμικών γραμμών είναι σε καλύτερη συμφωνία με τα παρατηρησίακά δεδομένα από ότι 
στατικά μοντέλα χωρίς ροές. Οι παρατηρήσεις αυτές μας οδηγούν στη μελέΐη μοντέλων 
ηλιακών βρόγχων που αναδύονται σαν οι φυσιολογικές λύσεις των εξισώσεων της μαγνη-
τοϋδροδυναμικής. Στις περιπτώσεις βρόγχων όπου η μαγνητική πίεση είναι πολύ μεγαλύ­
τερη από την θερμική πίεση του πλάσματος λύσεις μπορούν να επιτευχθούν γ ι α ευρύ πεδίο 
συνοριακών συνθηκών. Στην περίπτωση των ψυχρών (θερμών) βρόγχων με ροές βρίσκεται 
ότι η πυκνότητα ελαττώνεται πιο γρήγορα (πιό αργά ή αυξάνεται) με το ύψος κατά μήκος 
των μαγνητικών δυναμικών γραμμών από ότι στην στατική περίπτωση. Επίσης όταν οι 
ροές είναι ισχυρές ένα κύμα κρούσης εμφανίζεται που αλλάζει δραματικά τις φυσικές και 
μορφολογικές ιδιότητες των βρόγχων. Το ίδιο συμβαίνει αν το σχήμα τού βρόγχου είναι 
ασύμμετρο, με συνέπεια ένα τμήμα του να μήν είναι ορατό. Αν όμως η μαγνητική πίεση 
είναι συγκρίσημημε την θερμική πίεση του πλάσματος, μαγνητοϋδροδυναμικές λύσεις μπο­
ρούν να επιτευχθούν μόνο γ ι α ορισμένες συνοριακές συνθήκες. Σε αυτή την περίπτωση 
έχει μελετηθεί η ισορροπία πλάσματος μέσα σε μια ισόθερμη ατμόσφαιρα που είναι ορι­
ζόντια συμπιεστή και κατακόρυφα στρωματοποιημένη, στο ηλιακό πεδίο βαρύτητας. Η 
τοπολογία των ακριβών αυτών λύσεων καθορίζεται από ένα σαγματικό κρίσιμο σημείο. 
Οι λύσεις τύπου μαγνητικών βρόγχων εμφανίζονται μόνο γ ια μια ήπια στρωματοποιημένη 
ατμόσφαιρα, ενώ όταν η στρωματοποίηση είναι μεγάλη, δεν υπάρχουν λύσεις. Από το άλλο 
μέρος όταν η στρωματοποίηση είναι πολύ μικρή, υπάρχουν μόνο λύσεις πού αντιστοιχούν 
σε ηλιακές προεχοχές. Οταν το μέγεθος της ροής αυξάνει, το ύψος των βρόγχων αυξάνει 
και γ ι α πολύ ισχυρές ροές δεν υπάρχουν λύσεις ισορροπίας και εικάζεται ότι οι βρόγχοι 
εκρήγνυνται. 



THE MAGNETOHYDRODYNAMIC NATURE 
OF T H E SOLAR ATMOSPHERE 

Models for magnetized plasma loops with flows 
SUMMARY 

High-resolution X-ray images of the inhomogeneous solar atmosphere by satellites 
and rockets, seem to firmly establish the notion that the building blocks of the corona 
of the Sun are magnetized plasma loops of various sizes and properties in which plasma 
flows seem to play an essential role in determining the physical and geometric charac­
teristics of the loops. In this thesis, there were studied some families of exact solutions 
of the magnetohydrodynamic equations. They have been developed in order to solve 
them in two dimensions in the limit where the plasma pressure is much lower than 
the magnetic pressure - a reasonable assumption for the solar corona - for any bound­
ary conditions imposed. In particular, in symmetrical magnetic configurations, when 
the distribution of pressure at the foot points is symmetrical, the flow is necessarily 
subsonic. For cool loops the flows cause the density to drop faster along fieldlines as 
compared with the static case, while in hot loops with flows the density can drop slower 
or even increases with the height. If the pressures at the two footpoints are unequal 
the flow becomes supersonic at the summit of the magnetic fieldline and then passes 
through a shock. In asymmetrical loops with flows one leg can be much less dense 
than the other and poorly visible as compared with the situation where flows are ab­
sent. However, if the gas pressure is comparable to the magnetic one, MHD solutions 
can be found for specific boundary conditions. In this case they have studied plasma 
equilibrium in a horizontaly compressible and vertical stratified atmosphere due to 
gravity, in which new characteristics emerge. The basic result for mild startification, 
is that , coronal loop models with flows along them, emerge as the only solutions of the 
coupled equations discribing the force balance along and across fieldlines. The phase 
plane of this solutions is controlled by a classical sonic and a saddle critical point, 
corresponding to a characteristic speed for hydromagnetic wave propagation, which 
it may be a common characteristic of other configurations as well. It was also found 
that tor strong stratification there are no solutions at all, while for small stratification 
only periodic solutions arise which are totaly subsonic and subalfvénic and model the 
internal structure of prominences. Comparisons are made of the properties of these 
loops with those of force-free magnetic loops in the low-/? limit where loops are taken 
to be rigid. Among the results is that an increase of the magnitude of the flow at the 
loop increases its height, in accordance with solar observations where some loops seem 
to extent over heights much higher than those predicted by static models. Finally, for 
strong flows there are no equilibrium solutions and the loop is disrupted. 


