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Abstract
Recently, Airy beams, a new kind of non-spreading optical beams where the

amplitude distribution is described by an Airy function, have been introduced.
In contrast to other non-spreading optical waves the Airy distribution is the
only dispersion-free solution in one dimension. Likewise, Airy beams are also
referred to as “accelerating” since they propagate in a curved trajectory, like
that of a projectile moving under the action of gravity. Furthermore, they
are able to self-heal and bypass obstacles. These novel properties make them
exciting for applications.

In this thesis we numerically study the propagation dynamics of 1D Airy
beams. We compare our results with analytic or empirical solutions that have
been presented in the bibliography. Likewise, by varying the initial conditions
we demonstrate the ballistic dynamics of the Airy beam trajectory and by ap-
plying obstacles we study their self-healing properties. Finally, we study the
autofocusing character of a complex wave that is comprised by two counterprop-
agating Airy beams and demonstrate the Janus wave signature by focusing such
waves using a lens.

Περίληψη

Πρόσφατα παρουσιάστηκαν οι δέσμες Airy, ένα νέο είδος μη περιθλώμενων

οπτικών δεσμών, των οποίων η κατανομή πλάτους περιγράφεται από μια συνάρτηση

Airy. Σε αντίθεση με άλλα κύματα φωτός που δεν περιθλώνται, η κατανομή Airy

είναι η μόνη μη περιθλώμενη λύση της παραξονικής κυματικής εξίσωσης σε μία

διάσταση. Επίσης, οι δέσμες Airy αναφέρονται και ως ¨επιταχυνόμενες¨, καθώς

διαδίδονται σε παραβολική τροχιά, όπως αυτή ενός βλήματος που κινείται υπό την

επίδραση της βαρύτητας. Επιπλέον, είναι σε θέση να αυτοαναδομούνται και να

παρακάμπτουν τα εμπόδια. Αυτές οι νέες ιδιότητες τις καθιστούν συναρπαστικές

για εφαρμογές.

Σε αυτή την εργασία μελετάμε αριθμητικά τη δυναμική διάδοσης μονοδιάστα-

των δεσμών Airy. Συγκρίνουμε τα αποτελέσματά μας με αναλυτικές ή εμπειρικές
λύσεις που έχουν παρουσιαστεί στη βιβλιογραφία. Ομοίως, μεταβάλλοντας τις

αρχικές συνθήκες αποδεικνύουμε τη βαλλιστική δυναμική της τροχιάς της δέσμης

Airy και εφαρμόζοντας εμπόδια μελετάμε τις αυτοθεραπευτικές τους ιδιότητες.
Τέλος, μελετάμε τον χαρακτήρα αυτοεστίασης ενός σύνθετου κύματος που απο-

τελείται από δύο αντίθετα διαδιδόμενες δέσμες Airy και αναδεικνύουμε την υπο-
γραφή του κύματος Janus μέσω εστίασης τέτοιων κυμάτων με τη χρήση φακού.
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Chapter 1

Wave propagation and non-diffracting
beams

1.1 Helmholtz Equation
As it is known from classical electrodynamics, the electric field E⃗(r⃗, t) of an electromagnetic
wave in vacuum is solution of the wave equation, i.e

∇2E⃗(r⃗, t)− 1
c2
∂2E⃗(r⃗, t)
∂t2

= 0 (1.1)

where c = 1√
µ0ϵ0

is the speed of light in vacuum and µ0, ϵ0 are the vacuum permeability and
permittivity, respectively. Choosing a unit polarization vector n̂ in a plane perpendicular to
the propagation axis, we can express E⃗(r⃗, t) as E⃗(r⃗, t) = E(r⃗, t) n̂. It is obvious that E(r⃗, t)
satisfies the wave equation (1.1).

Separating variables for the electric field, i.e E(r⃗, t) = A(r⃗) · T (t), and substituting in (1.1), we
obtain:

∇2A

A
= 1
c2T

∂2T

∂t2
= −k2 (1.2)

which leads us to the following two ordinary differential equations:

∂2T

∂t2
+ k2c2 = 0 (1.3)

(∇2 + k2)A(r⃗) = 0 (1.4)
Equation (1.4) is the well known Helmholtz equation [1].

Knowing that e−ikct is a solution of (1.3), we may express the electric field E(r⃗, t) as E(r⃗, t) =
A(r⃗) · e−ikct, describing an electromagnetic wave that travels from left to right.
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1.2 Paraxial wave equation
Let’s assume that an electromagnetic wave is propagating along z axis and describe its spatial
part A(r⃗) as a carrier wave with a slowly changing amplitude u(r⃗):

A(r⃗) = u(r⃗) · eikz (1.5)

If we replace (1.5) to the Helmholtz equation (1.4) we obtain:

(∇2
⊥ + ∂2

∂z2 )(u(r⃗) · eikz) + k2(u(r⃗) · eikz) = 0 (1.6)

where with ∇2
⊥ we denote the transverse part of the Laplacian operator, i.e ∇2

⊥ = ∂2

∂x2 + ∂2

∂y2 .
After some calculations this equation ends in:

∇2
⊥u(r⃗) + ∂2u(r⃗)

∂z2 + 2ik · ∂u(r⃗)
∂z

= 0 (1.7)

The previous equation (1.7) can be further simplified if we work on the paraxial regime. Gen-
erally, in geometrical optics, a ray is characterized as paraxial ray, when it makes a small
angle(θ ≪ 0.1◦) to the optical axis of the system, so that we can assume that sin θ ≃ tan θ ≃ θ.
In our case, this paraxial approximation, is translated to the condition that the amplitude u(r⃗)
has a first derivative that is slowly varying function of z. This condition, often also referred as
slowly varying envelope approximation, is mathematically expressed as:∣∣∣∣∣∂2u(r⃗)

∂z2

∣∣∣∣∣≪
∣∣∣∣∣k · ∂u(r⃗)

∂z

∣∣∣∣∣ (1.8)

After this simplification, we finally get the following relation:

i
∂u(r⃗)
∂z

= − 1
2k∇

2
⊥u(r⃗) (1.9)

which is referred as the paraxial wave equation. This result is unexpectedly interesting,
since it allows us to make a connection between wave optics and quantum mechanics. It is
obvious that the paraxial wave equation is the optical analogue of Schrödinger’s equation of a
free particle:

iℏ · ∂ψ
∂t

= − ℏ2

2m∇
2ψ (1.10)

since the two equations (1.9) and (1.10) are mathematically equivalent, with the obvious cor-
respondences: z ←→ t and k ←→ m/ℏ.

This analogy is of special interest, and is numerically studied in the Appendix.
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1.3 Diffracting and non-diffracting Beams
In general, electromagnetic waves that propagate in free space exhibit the phenomenon of
diffraction. That means that their spatial field distribution spreads while their propagate so
that their maxima’s intensity drop. As an example, a solution of the paraxial wave equation
(1.9) is the well known Gaussian beam where the cylindrically symmetric field distribution as
the beam propagates along the z direction,is described by:

u(x, y, z) = u0
w0

w(z) · e
− x2+y2

w2(z) · e
ik(x2+y2)

2R(z) · e−iϕ(z) (1.11)

w2
0 where w(z) = w0

√
1 + z2

z2
R

, w0 ≡ w(0) is the beam waist, R(z) = z
(

1 + z2
R

z2

)
is the wavefront

radius of curvature, ϕ(z) = arctan(z/zR) is the so called Gouy phase and zR ≡ πw2/λ is the
Rayleigh range of the beam.

The intensity of this beam’s maximum Imax(z) ≡ I(0, 0, z) ∝ |u(0, 0, z)|2 drops while the
beam propagates along z axis. We can easily calculate that:

Imax(z = zR)
Imax(z = 0) = w2(0)

w2(zR) = 1
2 (1.12)

The previous result means that the beam’s maximum intensity has dropped to the half of its
initial value when propagating for distance z = zR.

Figure 1.1: Numerical simulation results of the intensity I(x, z) distribution of an 1D Gaussian
Beam with wavelength λ = 700 nm and initial electric field FWHM wg = 400µm

It is though possible to find solutions of the paraxial wave equation (1.9) that do not exhibit
diffraction. Although plane waves are non-diffracting, it’s not feasible to generate them since
they would contain infinite energy. In 1987, Durnin et al [2], [3] firstly succeeded to theoretically
propose, and experimentally observe a non-trivial non-diffracting wave, the Bessel beam, whose
electric field spatial part is described by a Bessel function:

A(x, y, z) = eiβzJ0
[
α(x2 + y2)

]
(1.13)

where α2 + β2 = k2, and J0 is the first kind Bessel function of zero order.
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Since then, several non-diffracting beams have been realized in 2D , such as Bessel beams,
2D Airy beams, Ring-Airy beams etc. On the other hand, only one non-diffracting solution
of the paraxial wave equation exists in 1D [4]. Early in 1978, Berry and Balazs [4] found out
theoretically from a quantum mechanical perspective, that there exists a non-trivial wavepacket
solution of (1.10) ψ(z, t), whose probability density |ψ(z, t)|2 propagates without distortion.
This wavepacket has the initial form ψ(z, t = 0) = Ai(c · z), where with c we denote a product
of constants. The function Ai(z), called Airy function of first kind or simply Airy function [5],
is a the one of two linearly independent solutions of Stokes equation, y′′−xy = 0, and is defined
by:

Ai(z) = 1
2πi

∫
C
e(t3/3+zt)dt (1.14)

where C is a path starting at the point at infinity with argument −π/3 and ending at the point
at infinity with argument π/3.

From the Optics point of view, as shown in 2007 by Siviloglou et al. [6], this optical wavepacket
would correspond to a non-trivial solution of (1.9) that propagates without diffraction and car-
ries infinite energy. Apart from their ability to defeat diffraction, these wavepackets have the
ability to freely accelerate in the absence of any external potential. We will discuss this later,
as well as how these beams are actually realized.
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1.4 Angular spectrum method for computational mod-
eling

In general, the angular spectrum method is a technique for modeling the propagation of a wave,
whose origin lies in the field of Fourier Optics [7]. The basic idea of this method is expressing
a field distribution as a superposition of plane waves, and it is mathematically described by a
two dimensional Fourier transform [8].

More specifically, let’s consider that a wave is incident on the plane z = 0 with an initial
field distribution U(x, y; 0). Across the plane z = 0, the 2D Fourier transform of U is given by
[7]:

P (kx, ky; 0) =
∫∫

U(x, y; 0)e−i(kxx+kyy) dx dy (1.15)

Thus, we can express U as the inverse Fourier transform:

U(x, y; 0) =
∫∫

P (kx, ky; 0)ei(kxx+kyy) dkx dky (1.16)

Let’s recall that the complex amplitude phasor of a plane wave with wavevector k⃗ = kxx̂ +
kyŷ+ kz ẑ ≡ k cos a · x̂+ k cos b · ŷ+ k cos c · ẑ (where a, b, c are the direction angles), for a plane
of constant z is given by:

u(x, y, z) = eik⃗·r⃗ = eik(cos a·x+cos b·y) · eik cos c·z (1.17)

and for z = 0 this leads to u(x, y, 0) = eik(cos a·x+cos b·y) = ei(kx·x+ky ·y). From this expression, it is
evident that equation (1.16) is simply a decomposition of U in an infinite sum of plane waves
with wavenumbers (kx, ky) = (k cos a, k cos b) and amplitudes P (kx, ky; 0) dkx dky. That’s why
we refer to (1.15) as the angular spectrum of the distribution U(x, y; 0) and we also denote it
as P (k · cos a, k · cos b; 0).

If we express the field distribution U(x, y; z) for a different plane of constant z using the angular
spectrum, by analogy with (1.16) and substitute it in Helmholtz equation (1.4) we conclude
that:

P (k cos a, k cos b; z) = P (k · cos a, k · cos b; 0) · eikz
√

1−cos2 a−cos2 b (1.18)

Figure 1.2: Graphical representation of the decomposition of a field distribution at a plane
z = z0 into plane waves, as expressed by (1.16). Image source:[9]
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So, we find that the field distribution at position z is given by the expression:

U(x, y; z) =
∫∫

P (k · cosa, k · cosb; 0)eikz(
√

1−cos2 a−cos2 b)eik(cos a·x+cos b·y) d(k cos a) d(k cos b)⇒

U(x, y; z) =
∫∫

P (kx, ky; 0) · eiz(
√

k2−k2
x−k2

y)ei(kxx+kyy) dkx dky (1.19)

This technique gives us the ability to numerically calculate and model the propagation dy-
namics of a field distribution. The numerical calculations of this thesis have been conducted
using the Virtual Lab Wave Propagation Code (Wp-Maxima) [10], which uses the angular
spectrum method to numerically propagate an 1s scalar optical wave.
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Chapter 2

Study of propagation of
one-dimensional Airy Beams

2.1 Introduction
In this chapter we will study the propagation characteristics of 1D Airy Beams. As shown by
Berry et al. [4] these beams, are non-diffracting solutions of the one dimensional paraxial wave
equation:

i
∂u (x, z)
∂z

+ 1
2k
∂2u (x, z)
∂x2 = 0 (2.1)

where x is the transverse coordinate, z is the propagation distance and k is the wavenumber.
The amplitude distribution of Airy beams is described:

u (x, 0) = u0Ai
(
x+ x0

w

)
(2.2)

Figure 2.1: Graphical representation of the Airy function Ai(s)
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where Ai is the Airy function [8], u0 is related to the peak amplitude, w is the primary lobe
width parameter and x0 is an offset. The initial field distribution of such a beam is depicted
in Fig. 2.1, for the case of u0 = 1 as a function of the dimensionless parameter s ≡ x+x0

w
. Note

that the Airy function presents a peak value at smax ≃ −1. Although these beams are non-
diffracting solutions of (2.1), they carry infinite energy so their generation is not realistic. On
the other hand, as shown by Siviloglou et al.[11, 12], by applying an appropriate apodization
they carry finite energy thus they can be realized. In more detail, using an exponential decay
apodization function, the beam amplitude at z = 0 becomes:

u (x, 0) = u0Ai
(
x+ x0

w

)
ea

x+x0
w (2.3)

where a > 0 is an apodization parameter and w and x0 are respectively the width and peak
position parameters of the primary Airy lobe. By solving [12] the 1D wave propagation equation
(2.3) we reach to the following analytic solution for the propagation of an apodized 1D Airy
beam along z axis:

u (x, z) = u0Ai

(
x+ x0

w
− z2

4k2w4 + i
az

kw2

)
e

a

(
x+x0

w
− az2

2k2w4

)
e

i

(
a2z

2kw2 + x0+x

2kw3 z− z3
12k3w6

)
(2.4)

This leads to an intensity I(x, z) given by:

I(x, z) = I0

∣∣∣∣∣Ai
(
x+ x0

w
− z2

4k2w4 + ia
z

kw2

)∣∣∣∣∣
2

e2a
x+x0

w
−a z2

k2w4 (2.5)

where for small apodization parameters a≪ 1 we can drop the imaginary term in the argument
of Airy Function, and so (2.5) is simplified to:

I(x, z) = I0

∣∣∣∣∣Ai
(
x+ x0

w
− z2

4k2w4

)∣∣∣∣∣
2

e2a
x+x0

w
−a z2

k2w4 (2.6)

2.2 Trajectory of the Airy primary lobe
Airy beams propagate in an unconventional way [4, 11, 12]. They resist to diffraction and follow
a curved trajectory as they propagate. The trajectory of the primary lobe of an Airy beam can
be estimated by solving Eq.(2.6) for Ai(smax), where smax ≃ −1 :

xmax(z) = −(x0 + w) + 1
4k2w3 · z

2 (2.7)

From this equation it is apparent that the primary beak of an 1D Airy beam follows a parabolic
trajectory as the beam propagates, a characteristic that led to the characterization of these
beams as "accelerating". [11]

Using numerical simulations [10] we can confirm the validity of the analytically derived
Eq. (2.7). In our numerical simulations we alter each time a single parameter (e.g. w) while
keeping the other parameters constant (e.g. k and z) and we compare the xmax(z) values to
the theoretical predictions of Eq. (2.7). At all the numerical experiments, we chose to set the
apodization parameter a = 0.05 and the peak position parameter to x0 = 0.

A typical simulation result of the intensity I(x, z) distribution of a propagating Airy beam
is shown in Fig. 2.2. As we clearly see, the primary peak of the beam follows a curved trajec-
tory that, as we are going to confirm in the analysis that follows, is parabolic.
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Figure 2.2: Propagation of a typical Airy beam in 1D+1 regime. (w = 200 µm, x0 = 0, λ =
800 nm, a = 0.05)

In order to confirm the validity of the theoretical prediction of Eq. (2.7) we performed nu-
merical simulations [10] of the propagation of Airy beams. In our simulations we firstly kept
w = const = 100 µm while varied the wavelength for λ = 400 nm → 800 nm with a 100nm
step. In each numerical experiment we retrieved the peak position xmax at fixed propagation
distance z = 500.2 mm. In the following Table 2.1 we display our numerical results, compared
to the corresponding theoretical predictions from equation (2.7).

Please note that the discretization error of our numerical measurements was, each time,
orders of magnitude smaller than the measuring physical quantity.

At the following Figure 2.3 we have plotted in the same diagram both the theoretical curve
as predicted by equation (2.6) and the numerical results of the peak position xmax as a function
of wavelength λ (for constant w and z).

Table 2.1

wavelength theoretical
prediction

numerical
simulation difference

λ(nm) xmax(mm) xmax(mm) (%)
400 0.1535 0.1660 8.14
500 0.2961 0.3027 2.23
600 0.4704 0.4833 2.74
700 0.6764 0.6877 1.67
800 0.9140 0.9180 0.44
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Figure 2.3: Theoretical curve and numerical results of the peak position xmax as a function of
wavelength λ

We clearly see that our numerical results are in very good agreement with the analytical
predictions.

Then, we kept the wavelength, and thus k, constant to λ = 800 nm, while varying the
value of the width parameter w. We ran numerical simulations altering the value of w, from
w = 80µm → w = 160µm with an 20µm step. Again, in each numerical experiment we
retrieved the peak position xmax at fixed propagation distance z = 500.2 mm. Our numerical
results, compared to the corresponding theoretical predictions from equation (2.7) are shown
in in Table 2.2.

Table 2.2

wavelength theoretical
prediction

numerical
simulation difference

λ(nm) xmax(mm) xmax(mm) (%)
80 1.901 1.904 0.15
100 0.914 0.918 0.48
120 0.4668 0.4785 2.5
140 0.2295 0.2442 6.4
160 0.0876 0.1074 22.6

At the following Figure 2.4 we have plotted in the same diagram both the theoretical curve as
predicted by equation (2.6) and the numerical results of the peak position xmax as a function
of the width parameter w (for constant k and z).
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Figure 2.4: Theoretical curve and numerical results of the peak position xmax as a function of
width parameter w

Again, we conclude that our numerical results are in good agreement with the analytical
expression of equation (2.7).

Lastly, we kept the wavelength and the width parameter constant, λ = 800 nm, w = 100 µm
and we tracked the peak position xmax for various propagation distances. In Table 2.3 we dis-
play our numerical results, compared to the corresponding theoretical predictions from equation
(2.6).

Table 2.3

propagation
distance

theoretical
prediction

numerical
simulation difference

z(m) xmax(mm) xmax(mm) (%)
0.1005 -0.0590 -0.0488 17.3
0.2003 0.0626 0.0781 24.7
0.3000 0.2647 0.2734 3.3
0.4005 0.5501 0.5567 1.2
0.5002 0.9140 0.9180 0.4

Furthermore, in Fig. 2.5 we plot in the same diagram both the theoretical curve as predicted by
equation (2.7) and the numerical results of the peak position xmax as a function of propagation
distance z.
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Figure 2.5: Theoretical curve and numerical results of the peak position xmax as a function of
propagation distance z

As we can clearly see, our numerical results are in excellent agreement with the analytical
prediction of Eq. (2.6). Likewise, we have straightforward demonstration of the parabolic
trajectory of the Airy beam primary lobe.
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2.3 Rayleigh range of one-dimensional Airy beams
As already mentioned in Section 1.4, the one-dimensional Airy beam has a unique characteris-
tic; it is the only non-trivial non-diffracting solution of the paraxial wave equation in 1D[4, 13].
Of course, for small but non-zero values of the apodization factor a, which is the only realis-
tic case, the one-dimensional Airy beam tends to diffract slightly and can only be described
as quasi non-diffracting [14]. That means that, for a << 1, apodized Airy beams compared
to Gaussian beams diffract in a much slower rate thus can be considered as "diffraction free"
for all the practical purposes. We will now study this property using numerical simulations [10].

At first, we simulate the propagation of a Gaussian beam with wavelength λ = 800nm and
FWHM = 228µm. Then, we simulate the propagation of an 1D Airy beam of the same wave-
length and main lobe’s FWHM , with apodization factor a = 0.05. In Fig. 2.6 we show the
I(x, z) intensity distributions and the peak intensity Imax(z) for case of 1D Airy and Gaussian
beams.

(a) (b)

(c) (d)

Figure 2.6: Comparison I(x, z), Imax(z) for an Gaussian and Airy beam with
λ = 800nm, FWHM = 228µm and a = 0.05

From the above numerical experiments, we measured the propagation distances from z = 0
at which the intensity of the primary peak has dropped to the half of its initial value, often
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referred to as Rayleigh range zr [1] for the two-dimensional Gaussian Beams. We measured
the Rayleigh range of the Gaussian beam zG

r equal to zG
r = 0.1267m, and the Rayleigh range

of the Airy beam zAi
r equal to zAi

r = 0.55m. So, we numerically confirmed that a truncated
one-dimensional Airy Beam can, indeed, be described as non-diffracting, in comparison with
the Gaussian Beam.

We would now like to find a theoretical relation for the Rayleigh range zAi
r of an Airy beam

at 1D+1 regime, in analogy to a Gaussian Beam’s zG
r ≡ zR that we represented in Eq. (4.28),

That is, by definition (here we use the property of 2D, instead of 1D, beams), the Rayleigh
range is defined as the distance from z = 0 that the beam propagates until it’s peak intensity
drops to half of its initial value I(xmax, z

Ai
r ) = I(xmax,0)

2 .

At first, using Eq. (2.7) we replace for xmax(z) to Eq. (2.6) (setting for simplicityx0 = 0)
that describes the intensity beam intensity I(x, z) to estimate peak intensity distribution
Ipeak(z) ≡ I(xmax, z):

I(xmax, z) = I0 |Ai(−1)|2 e
2a
w

(
−w+ z2

4k2w3

)
−a z2

k2w4 = I0 |Ai(−1)|2 e−2ae− az2
2k2w4 (2.8)

Demanding from I(xmax, z
Ai
r ) to satisfy the condition I(xmax, z

Ai
r ) = I(xmax,0)

2 we finally get:

zAi
r = kw2

√
a

√
2 ln 2 (2.9)

Having derived (2.9) theoretically, we wish to check its validity, conducting numerical experi-
ments [10].

At first, we kept the apodization factor a and the wavelength λ fixed to the values a = 0.05 and
λ = 800nm, respectively, and changed the width parameter w from w = 60µm to w = 140µm
with a 20µm step. For each value of the width parameter w, we numerically found the prop-
agation distance z = zAi

r , at which the intensity of the beam has dropped to 1/2 of its initial
value. We display our numerical results compared to the theoretical predictions of equation
(2.9) at the following Table 2.4.

Table 2.4

width
parameter

theoretical
prediction

numerical
simulation difference

w(µm) zAi
r (µm) zAi

r (µm) (%)
60 0.1489 0.1568 5.3
80 0.2647 0.2782 5.1
100 0.4135 0.4357 5.4
120 0.5955 0.6262 5.2
140 0.8106 0.8512 5.0

At the following Figure 2.7 we have plotted in the same diagram both the theoretical curve as
predicted by equation (2.9) and the numerical results of the Rayleigh range zAi

r as a function
of the width parameter w.

17



Figure 2.7: Theoretical curve and numerical results the Rayleigh range zAi
r as a function of the

width parameter w.

Although our numerical results are in fair agreement with the theoretical prediction, we
clearly observe a systematic discrepancy between them. In fact, the discrepancy seems to
increase as the width parameter w increases.

Then, we kept a and w constant to a = 0.05, w = 100 µm and changed the wavelength
λ, thus and the wavenumber k. In our numerical simulations, the wavelength λ, ranged from
λ = 600nm to λ = 1000nm with a 100nm step. In each simulation we identified the propa-
gation distance z = zAi

r , at which the intensity of the beam has dropped to 1/2 of its initial
value. In Table 2.5 we display our numerical results, compared to the corresponding theoretical
predictions from Eq. (2.9).

Table 2.5

wavelength theoretical
prediction

numerical
calculation difference

λ(nm) zAi
r (µm) zAi

r (µm) (%)
600 0.5514 0.5810 5.4
700 0.4726 0.4981 5.4
800 0.4136 0.4357 5.3
900 0.3676 0.3875 5.4
1000 0.3308 0.3488 5.4

In Fig. 2.8 we have plotted in the same diagram both the theoretical curve as predicted by
equation (2.9) and the numerical results of the Rayleigh range zAi

r as a function of the wave-
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length λ.

Figure 2.8: Theoretical curve and numerical results the Rayleigh range zAi
r as a function of the

wavelength λ.

Again, our numerical results are in good agreement with the theoretical curve. But, it is
clearly visible, again, that a systematic divergence between the numerical results and the curve
exists. Moreover, it seems to get increased while the wavelength λ decreases.

Lastly, we kept λ and w constant to the values λ = 800nm, w = 100µm and changed the
value of the apodization factor a. We ran numerical simulations for five different values of
a. For each different a, we numerically measured the propagation distance z = zAi

r , at which
the intensity of the beam has dropped to 1/2 of its initial value. In the following Table 2.6
we display our numerical results, compared to the corresponding theoretical predictions from
equation (2.9).
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Table 2.6

apodization
factor

theoretical
prediction

numerical
calculation difference

a zAi
r (µm) zAi

r (µm) (%)
0.03 0.5339 0.5528 3.5
0.05 0.4135 0.4357 5.4
0.1 0.2924 0.3245 11.0
0.15 0.2388 0.2791 16.9
0.2 0.2068 0.2550 23.3

At the following Figure 2.9 we have plotted in the same diagram both the theoretical curve
as predicted by equation (2.9) and the numerical results of the Rayleigh range zAi

r as a function
of the apodization parameter a.

Figure 2.9: Theoretical curve and numerical results the Rayleigh range zAi
r as a function of

apodization parameter a.

As we can observe, the numerical results diverge, at an increasing rate, from the theoretical
prediction as the apodization parameter a is increased.

The origin of this systematic error, lies on the assumptions under which the Eq. (2.9) is
valid. Already from Eq. (2.6), we assumed that the imaginary term of the Airy function’s
argument has a negligible effect on the Airy function values thus it can be neglected. This
assumption is valid only for very small values of the apodization parameter, and it leads to an
increasing underestimation of the Rayleigh range zAi

r , already observed in Figs 2.6-2.8.

In order to better understand this effect, let us firstly introduce the more convenient dimen-
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sionless notation s ≡ x/w, ξ ≡ z/kw2. Using this we can describe the the Airy function term
of Eq. (2.5) as

fa(smax) ≡ Ai(smax + ξ2
r

4 + iaξr) (2.10)

where ξr = zAi
r /kw2 is given by ξr =

√
2 ln 2

a
. This is the exact form of the Airy function that

we used in Eq. (2.6), assuming that a→ 0.
For the limiting case of a = 0, we obtain

f0(smax) = Ai(smax + ξ2
r

4 ) (2.11)

which is the Airy function that we used in equation (2.6).

Let us now define the difference function:

Da(smax) = |fa(smax)|2 − |f0(smax)|2 (2.12)

that gives as the difference between the accurate value of the Airy beam’s intensity and the ap-
proximate value of Airy beam’s intensity I(x, zAi

r ) that we used in Eq. (2.8) (assuming a→ 0),
as a function of the dimensionless peak’s transverse coordinate smax.

In Fig. 2.10, we show the functions |f0(smax)|2, |f0.05(smax)|2, |f0.1(smax)|2 and the difference
function D0.05(smax).

Figure 2.10

From Fig. 2.10 we clearly observe that as a is increased the peak the systematic divergences
that we observed at Figures 2.7, 2.8 and 2.9. First of all, the beam’s intensity at the distance
that we regarded as Rayleigh range zAi

r , is always greater than the intensity that it would have
if a was equal to 0. Thus, the beam will have to propagate for a distance further than zAi

r in
order to obtain an intensity that truly is equal to half the initial intensity. The reason why all
our numerical measurements for the Rayleigh range were greater than the theoretical prediction
has now been revealed..

21



Furthermore, Figure 2.10 shows that this divergence will become greater, as the apodization
factor a is increased. That explains the behavior of the divergence at Figure 2.9.

Lastly, is is clear from Figure 2.10 that the difference vanishes if the Rayleigh range (as predicted
by (2.9) ) corresponds to large values of the primary peak transverse coordinate (smax ⩾ 7).
On the other hand, for values of smax < 7, the difference increases when smax becomes lower.
That explains the behavior of the divergences at Figures 2.8 and 2.9; from Figures 2.3 and 2.4
we know that while k or w increases, the primary peak’s transverse coordinate smax decreases,
and that’s the reason why the corresponding divergences increase.

2.4 Reduction of one-dimensional Airy beam to Gaussian-
like beam

We now want to discuss how Airy Beams at 1D+1 regine behave when the apodization factor
a takes large values. It will be revealed easily that, in fact, Airy Beams are reduced to our
well-known Gaussian Beams. We recall from equation (2.3) that the initial condition for z = 0
is a product of an Airy function and an exponential decay function, namely (for x0 = 0):

u (x, 0) = u0Ai
(
x

w

)
ea x

w (2.13)

In order to realize the qualitative characteristics of this initial field distribution, we plot it as
a function of the dimensionless transverse coordinate parameter x

w
for various values of the

apodization factor a. We represent these beam profiles in the following Figure 2.11.

Figure 2.11: Airy Beam field profile for various values of the apodization factor α

Looking to the previous diagram, we find out that while a is increasing, the main lobe
shifts to the positive direction of x-axis and gets greater values, while the secondary lobes
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shrink and tend to disappear. For a ⩾ 1 the beam’s profile consists only of a main peak
that has a Gaussian-like shape. So, we conclude that the propagation of an Airy beam with

(a) a = 0.01 (b) a = 0.03

(c) a = 0.05 (d) a = 0.2

(e) a = 1 (f) a = 1.5

Figure 2.12: Propagation image of an Airy Beam with λ = 800nm, w = 150µm for various
apodization parameters
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a large apodization factor a at 1D+1 regime will be similar to that of a Gaussian Beam. We
still have to confirm this numerically, and we will do it conducting numerical simulations with
Wp−Maxima as previously.
Running the simulation code for six different values of a, correspondingly with Figure 2.12, we
see the following image for the propagation over z − axis, together with the intensity of the
beam at each point in the attached colourmap.

It can be deduced from these propagation images that for a ⩾ 1 the Airy Beam has indeed
been reduced to a Gaussian-like beam. Already for a = 0.2, as we see in Figure 2.12d, the
beam has lost its interesting property to have a parabolic moving primary peak.
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2.5 Self-healing property of one-dimensional Airy beams
At the last part of this chapter, we will discuss the property of Airy Beams to self-reconstruct
during propagation after being intercepted by obstacles [15],[16], [17]. This characteristic is
very important, when such beams propagate in inhomogeneous media and have the ability to
reform after several perturbations [18]. This property has a very simple and beautiful physical
origin, as it is a result of Babinet’ s principle for non-diffracting beams [19].

Generally, as we discussed in Chapter 1, a beam, in free space, is described as non-diffracting
when its intensity profile I ∼ |uI |2 remains constant during propagation. Let’s suppose an
initially non-diffracting beam at 1D+1 regime, whose complex amplitude uI is disturbed by an
obstacle of width D placed at z = z0. As a consequence of Babinet’ s Principle, the amplitude
of the disturbed field, in the half plane z > z0 is given by:

uD = uI − uC (2.14)

where with uC we denote the complex amplitude of the field diffracted by an hypothetical
aperture of width D, complementary to the obstacle.

Since the complex amplitude uC decreases as 1/z under propagation, the contribution of this
term in equation (2.14) for propagation distance ∆z > πD2

λ
≡ zH can be neglected. Thus, due

to the non-diffracting nature of the beam, the total amplitude uD after propagation distance
z−z0 > zH will be practically equal to uI . This property of all non-diffracting beams is referred
in the literature as self-healing [20].

Applying these simple arguments for the case of one-dimensional Airy beams, which can be
assumed as non-diffracting for small values of apodization factor a, we can predict their self -
reconstructing behaviour. We will try to observe the self - healing property of one-dimensional
Airy Beams conducting numerical experiments with Wp−Maxima as usual.

At first, we wish to visually verify the validity of expression (2.14), which explains this self
- reconstructing behaviour. For this purpose we conducted two numerical simulations for an 1-
D Airy beam of λ = 800 nm and apodization factor a = 0.02. At the first, we chose the FWHM
of the primary lobe equal to wg = 456 µm and placed a block of width D = 2wg = 912 µm
at propagation distance z0 = 0.4 m and transverse position x = −0.4 mm. At the second,
we chose the FWHM of the primary lobe equal to wg = 228µm and placed a block of width
D = wg/2 = 114 µm at propagation distance z = 0.05 m and transverse position x = −0.1 mm.
For both configurations, we then repeated the simulation, replacing the block with the comple-
mentary aperture of the same width D. We represent the simulation outputs for the beams’
propagation over z-axis, together with attached colour-maps that correspond to the intensity,
at the following Figure 2.13. We also represent the propagation images of the corresponding
beams without the presence of a block or an aperture.
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(a) wg = 456µm, block width
D = 912µm

(b) wg = 456µm, aperture
width D = 912µm

(c) wg = 456µm, free
propagation

(d) wg = 228µm, block width
D = 114µm

(e) wg = 228µm, aperture
width D = 114µm

(f) wg = 228µm, free
propagation

Figure 2.13: Propagation of Airy beams in free space and under the action of various
obstacles. (a),(d): the beam is partially blocked by a finite obstacle. (b), (e) an aperture

(complementary to the obstacle) allows only a portion of the beam to pass through. (c),(f)
free propagation

It is clear from this Figure that the image of propagation of the beam with the presence of a
block(Figures 2.13a and 2.13d) is complementary to the image of propagation of the beam with
the presence of a corresponding aperture(Figures 4.1b and 2.12e); the combinations of these
two pairs gives normal propagation images of free 1-D Airy beams 2.12c and 2.12f. So, after
visualizing the application of Babinet’ s principle to the case of one-dimensional Airy Beams,
we wish to turn our attention to their self-healing property.

Firstly, we ran numerical simulations having chosen apodization factor a = 0.02, wavelength
λ = 800 nm, FWHM of the primary lobe wg = 228 µm and having placed a block at propagation
distance z0 = 0.05 m and transverse coordinate x = −0.1 mm. At each simulation we changed
the width of the block D. At the following Table 7 we calculate the expected typical distance
of self-reconstruction, zH for the various block widths. Furthermore, at the next Figure 2.14
we display the corresponding images of propagation.

Table 2.7

Block
width
D(µm)

Expected
Self-Healing

distance zH(m)
114 0.05
228 0.20
456 0.82
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(a) block width D = 114µm (b) block width D = 228µm

(c) block width D = 456µm

Figure 2.14: Self-reconstruction of one-dimensional Airy Beam with λ = 800nm, wg = 228µm
that is intercepted by an obstacle of various widths D, placed at z = 0.05m, x = −0.1mm

Then, we ran numerical simulations having chosen apodization factor a = 0.02, wavelength
λ = 800 nm, FWHM of the primary lobe wg = 456 µm and having placed a block at propagation
distance z = 0.2 m and transverse coordinate x0 = −0.2 mm. At each simulation we changed
the width of the block D. At the following Table 8 we calculate the expected typical distance
of self-reconstruction, zH for the various block widths. Furthermore, at the next Figure 2.15
we display the corresponding images of propagation.

Table 2.8

Block
width
D(µm)

Self-Healing
expected

distance zH(m)
228 0.20
456 0.82
912 3.27
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(a) block width D = 228µm (b) block width D = 456µm

(c) block width D = 912µm

Figure 2.15: Self-reconstruction of one-dimensional Airy Beam with λ = 800nm, wg = 456µm
that is intercepted by an obstacle of various widths D, placed at z = 0.2m, x = −0.2mm

At both Figures 2.14 and 2.15 we can observe that the one-dimensional Airy beam recon-
structs after being intercepted by a block, at a propagation distance which is, approximately,
the distance zH that we calculated at Tables 7 and 8. The self - healing behaviour though, is
not totally evident at Figures 2.14c and 2.15c. The reason for this is very simple. The typical
distances of self-healing zH for these configurations, 0.82m and 3.27m, are greater than the
corresponding Airy beam Rayleigh ranges zAi

r , that we find to be 0.65m and 2.61m respec-
tively. That means that the beam can’t fully self - reconstruct, since its main peak intensity
has already dropped to lower than half of its initial value.

This observation gives us the opportunity to emphasize that we can refer to the one-dimensional
Airy beams as truly non-diffracting, only if a = 0. For non-zero values of a, which is the only re-
alistic situation, the one-dimensional Airy beams can be characterized as pseudo non-diffracting
in the sense that they preserve the main properties of non-diffracting beams, such as self-healing,
but only for propagation distances smaller than their Rayleigh range zAi

r .

Lastly, at this point we would like to make a comment about the characteristic scale of the
propagation of an 1-D Airy Beam in z-axis. It is totally obvious from the Figures 2.14 and
2.15 that each propagation image of Figure 13 looks identical to the corresponding image of
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Figure 14. That is because at each simulation configuration of Figure 14 we have used the
corresponding configuration of Figure 13, with the changes: w → 2w, z0 → 4z0. The reason
that leads to identical propagation images, is that the characteristic scale of propagation in
z-axis is kw2. That’s why the dimensionless notation introduced in (2.10), ξ = z/kw2, is very
often preferred in the literature for describing the propagation of Airy beams.
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Chapter 3

Ballistic dynamics of one-dimensional
Airy beams

3.1 Introduction
In this chapter we wish to study the propagation of one-dimensional Airy beams to greater
depth. We will deal with the amazing property of one-dimensional Airy beams to propagate in
free space, following parabolic trajectories equivalent to those of a projectile moving under the
action of a homogeneous gravitational field[21]. This behaviour allows them to bypass obstacles
and optically reach any intended target. Our beginning will be, the one-dimensional paraxial
wave equation (3.1).

i
∂u (x, z)
∂z

+ 1
2k
∂2u (x, z)
∂x2 = 0 (3.1)

with the initial condition (2.2) plus an initial tilt angle θ described by an exponential phase
factor eikθx:

u (x, 0) = u0Ai
(
x

w

)
ea x

w eikθx (3.2)

where, for simplicity, we have chosen the peak position of the primary lobe to be x0 = 0.
Solving (3.1) under the initial condition (3.2) leads to the following analytic expression for the
beam’s intensity I(x, z):

I(x, z) = I0

∣∣∣∣∣Ai
(
x

w
− z2

4k2w4 −
θz

w
+ ia

z

kw2

)∣∣∣∣∣
2

e2a x
w

−a z2
k2w4 −2a θz

w (3.3)

Under the assumption that a≪ 1, we can neglect the imaginary term of Airy’ s argument and
conclude to:

I(x, z) = I0

∣∣∣∣∣Ai
(
x

w
− z2

4k2w4 −
θz

w

)∣∣∣∣∣
2

e2a x
w

−a z2
k2w4 −2a θz

w (3.4)

3.2 Ballistic propagation of the primary lobe
Using the argument of Airy function of equation (3.3), correspondingly to (2.2), we end up to
the following expression for the transverse coordinate of the beam’s primary peak:

xmax(z) = −w + 1
4k2w3 · z

2 + θ · z (3.5)

It is easy to see that the primary lobe of the beam follows a parabola in x − z plane, analo-
gous with the trajectory of a projectile in a uniform gravitational field, where θ would be the

30



projectile’s initial launch angle. We can also write the corresponding "Newtonian" kinematical
equations:

g ≡ ∂2xmax

∂z2 (z) = 1
2k2w3 (3.6)

v(z) ≡ ∂xmax

∂z
(z) = z

2k2w3 + θz = gz + θ (3.7)

where in our case g plays the role of gravitational acceleration, θ is the initial launch angle and
z has taken the place of time t.

Before trying to numerically confirm that the beam’s primary peak follows equation (3.5),
we conduct some simulations using Wp−Maxima in order to see the propagation images I(x, z)
of a beam whose initial field distribution is described by equation (3.2), with apodization factor
a = 0.02, width parameter w = 100 µm and wavelength λ = 8000 nm, for various values of the
tilt angle θ.

(a) θ = −0.24◦ (b) θ = +0.24◦

(c) θ = −0.09◦ (d) θ = +0.09◦

Figure 3.1: Intensity I(x, z) profile of a propagating 1D Airy beam for various values of the
tilt angle θ. (apodization factor a = 0.02, width parameter w = 100 µm and wavelength

λ = 800 nm)
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In Chapter 2, we have already confirmed numerically the validity of equation (3.5) for the
case of θ = 0. So, considering the dependence of xmax on the width parameter w and wavenum-
ber k to be given by (3.5), we wish to confirm numerically that the dependence of xmax on z
and θ (for non zero tilt angles θ) to be also given by (3.5).

In order to achieve that, we conduct numerical simulations using Wp − Maxima, as usual,
for the propagation of an Airy beam at 1D+1 regime with wavelength λ = 800 nm, width
parameter w = 100 µm and apodization factor a = 0.05.

We first ran a simulation with an initial launch angle θ = 0.07◦ and found the peak position
xmax for various propagation distances z. In the following Table 9, we display our numerical
results, compared to the corresponding theoretical predictions from equation (3.5).

Table 3.1

propagation
distance

theoretical
prediction

numerical
calculation difference

z(m) xmax(mm) xmax(mm) (%)
0.1 0.063 0.075 19.0
0.2 0.306 0.322 5.2
0.3 0.631 0.639 1.3
0.4 1.037 1.053 1.5
0.5 1.524 1.547 1.6

At the following Figure 3.2, we have plotted in the same diagram the theoretical curve as pre-
dicted by (3.5) and the numerical results of the peak position xmax as a function of propagation
distance z.

Figure 3.2: Airy primary lobe peak position as a function of the propagation distance
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It is obvious from the previous diagram that the main lobe indeed moves in a parabola and
that the numerical results are in excellent agreement with the theoretical relation.

Then, we ran numerical simulations using the same parameter values as previously, for dif-
ferent values of the initial launch angle θ and each time we found the main lobe transverse
coordinate xmax for propagation distance z = 0.2 m. In Table 3.2 that follows, we display our
numerical results, compared to the corresponding theoretical predictions from equation (3.5).

Table 3.2

initial tilt
angle

theoretical
prediction

numerical
calculation difference

θ(◦) xmax(mm) xmax(mm) (%)
-0.5 -1.683 -1.675 0.5
-0.3 -0.999 -0.978 2.1
-0.1 -0.287 -0.288 -0.3
-0.07 -0.182 -0.172 5.5
-0.05 -0.112 -0.097 13.4
+0.05 0.237 0.247 4.2
+0.07 0.306 0.322 5.2
+0.1 0.411 0.429 4.4
+0.3 1.109 1.117 0.7
+0.5 1.807 1.810 0.2

In Fig. 3.3, we have plotted in the same diagram the theoretical curve as predicted by (3.5)
and the numerical results of the peak position xmax for propagation distance z = 0.2 m as a
function of the initial tilt angle θ.

Figure 3.3: Airy primary lobe peak position at z = 0.2 m as a function of tilt angle θ.
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We can conclude that the numerical measurements of the previous diagram are in excellent
agreement with the theoretically expected values of the peak position xmax(0.2 m) from equation
(3.5).

3.3 Bypassing an obstacle
At the previous subsection we numerically confirmed that the main lobe of an Airy Beam at
1D+1 regime follows a parabolic trajectory equivalent to that of a projectile in a homogeneous
gravitational field. We now wish to take advantage of this interesting property in order to
bypass obstacles and optically reach any wanted target.

Let’s suppose that we have a not-tilted Airy Beam, at 1D+1 regime, with apodization fac-
tor a = 0.02, width parameter w = 100 µm and wavelength λ = 800 nm, that propagates over
z axis.

At first, an absorbing block of width D = 1 mm is placed at propagation distance z = 0.4 m
with its center at transverse position x = 0.4 mm. This block does not allow the main lobe
to continue its propagation (see Fig.3.4a). We will demonstrate the impressive ability of one-
dimensional Airy beams to bypass obstacles at the following Figure 3.4b-3.4h, changing the
initial launch angle of the beam and moving the block’s position, as mentioned below.

• We first set an initial launch angle at the Airy Beam, θ = −0.1◦. Although the main lobe
is not totally destroyed by the block, it still does not bypass the obstacle (Fig.3.4b).

• Then, change the initial launch angle to θ = −0.15◦. Now the obstacle is bypassed by the
Airy Beam (Fig.3.4c).

• The block’s center is moved to transverse position x = 0 ((Fig.3.4d) and x = −0.2mm
(Fig.3.4e). Again the block intercepts the beam’s propagation.

• We change the initial launch angle to θ = −0.25◦. Again the obstacle is bypassed by the
Airy Beam (Fig.3.4f)

• The block’s center is moved to transverse position x = −1mm at propagation distance
z = 0.2m (Fig.3.4g). Again the obstacle blocks the beam’s primary peak.

• Finally, we change the initial launch angle to θ = +0.15◦. Part of the beam is still
blocked by the obstacle but the primary peak bypasses it and can optically reach any
wanted target. (Fig.3.4h)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4: Optical obstacle bypassing
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3.4 Superimposing one-dimensional Airy Beams
We will now study the propagation of an initial field distribution equivalent to two symmetric
superimposing one-dimensional Airy Beams that accelerate at opposite directions. We will
interestingly find out that this beam exhibits abrupt autofocusing [22], [23]. The initial field
distribution has the form

u(x, 0) = uAi(x, 0) + uAi(−x, 0) (3.8)
where uAi is the usual field distribution of an Airy Beam at 1D+1 regime, i.e

uAi (x, 0) = u0Ai
(
x+ x0

w

)
ea

x+x0
w (3.9)

where w, x0 are respectively the primary lobe width and position parameters and a is the
apodization factor. The primary peak xL of the "left" Airy Beam uAi(x, 0) will propagate over
z-axis following the equation of motion:

xL(z) = −(x0 + w) + z2

4k2w3 (3.10)

whereas the primary peak of the "right" Airy Beam uAi(−x, 0), for obvious symmetry reasons,
will follow the equation of motion:

xR(z) = (x0 + w)− z2

4k2w3 (3.11)

While propagating over z-axis, the main lobes of the two symmetric Airy Beams will "collide"
at some distance of propagation z0 ≡ fAi, to which we will simply refer as focal distance
fAi. Demanding from equations (3.10), (3.11) to obey the relation xL(fAi) = xR(fAi) we find
theoretically that the two beams that accelerate at opposite directions focus, and their focus
position is be given by:

fAi
∼= 4πw

2

λ

√
1 + x0

w
(3.12)

where the equality is absolutely valid only for small values of the apodization factor a. In
order to confirm the validity of the above equation, we conducted numerical experiments using
Wp−Maxima. At all our simulations, we chose to keep the apodization factor a constant to
the value a = 0.05.

We demonstrate a typical propagation image of two symmetric superimposing Airy beams at
1D+1 regime, for wavelength λ = 700nm, peak position x0 = 0.5mm and FWHMAi = 400 µm
at the following Figure.

36



Figure 3.5: Intensity propagation image of two symmetric superimposing one-dimensional Airy
beams.(peak position parameter x0 = 0.5 mm and FWHMAi = 400µm

At first, we fixed the value of wavelength λ to λ = 700 nm, and the FWHMAi ≡ wg to
wg = 400 µm (so that the width parameter w was equal to w = wg/2.28 = 175.44 µm) and
changed the value of the peak position x0. We ran numerical simulations altering the value of
x0 from x0 = 0.3 mm to x0 = 0.7 mm with 0.1 mm step, and each time we found the focus
position fAi. In the following Table 3.3 we display our numerical results, compared to the
corresponding theoretical predictions from equation (3.12).

Table 3.3

peak
position

parameter

theoretical
prediction

numerical
calculation difference

x0(mm) fAi(m) fAi(m) (%)
0.3 0.9095 0.9087 -0.1
0.4 1.0006 0.9998 -0.1
0.5 1.0841 1.0831 -0.1
0.6 1.1616 1.1592 -0.2
0.7 1.2342 1.2281 -0.5

At the following Figure 3.6, we have plotted in the same diagram the theoretical curve as
predicted by (3.12) and the numerical results of the focus position fAi as a function of the peak
position x0.
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Figure 3.6

As we can see from this diagram, our numerical results are in very good agreement with the
theoretical relation (3.12).

Then, we fixed the value of wavelength to λ = 700 nm and the peak position parameter to
x0 = 0.5 mm and changed the value of the width parameter w (by altering the corresponding
value of FWHMAi = 2.28w). We ran numerical simulations altering the value of w from
w = 100 µm to w = 350 µm with 50 µm step, and each time we found the focus position fAi.
In the following Table 3.4 we display our numerical results, compared to the corresponding
theoretical predictions from equation (3.12).

Table 3.4

width
parameter

theoretical
prediction

numerical
calculation difference

w(µm) fAi(m) fAi(m) (%)
150 0.8408 0.8366 -0.5
200 1.3434 1.3408 -0.2
250 1.9434 1.9411 -0.1
300 2.6384 2.6302 -0.3
350 3.4271 3.4231 -0.1

At the following Figure 3.7, we have plotted in the same diagram the theoretical curve as
predicted by (3.12) and the numerical results of the focus position fAi as a function of the width
parameter w.
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Figure 3.7: Focus position fAi as a function of the width parameter w.

As we can see from this diagram, our numerical results are in excellent agreement with the
theoretical relation (3.12).

Lastly, we fixed the value of peak position x0 to x0 = 0.5mm and FWHM to FWHMAi =
400µm changed the value of the wavelength λ. We ran numerical simulations altering the
wavelength from λ = 500µm to w = 900µm with 100µm step, and each time we found the
focus position fAi. In the following Table 3.5 we display our numerical results, compared to
the corresponding theoretical predictions from equation (3.12).

Table 3.5

wavelength theoretical
prediction

numerical
calculation difference

λ(nm) fAi(m) fAi(m) (%)
500 1.5178 1.5159 -0.1
600 1.2648 1.2623 -0.2
700 1.0841 1.0829 -0.1
800 0.9486 0.9471 -0.2
900 0.8432 0.8417 -0.8

At the following Figure 3.8, we have plotted in the same diagram the theoretical curve as
predicted by (3.12) and the numerical results of the focus position fAi as a function of the width
parameter w.
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Figure 3.8: Focus position fAi as a function of the wavelength λ.

As we can see from this diagram, our numerical results are in excellent agreement with the
theoretical relation (3.12).
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Chapter 4

Janus Waves

4.1 Introduction: Conjugate and Janus Waves
As it was firstly noted by Papazoglou et al [24], there is a family of waves which are super-
position of twin waves, conjugate to each other under inversion of the propagation direction.
The two twin waves are related to the converging and diverging parts of the beam and are
referred in the literature as "real" and "virtual" respectively. They can both be observed in the
real space at two different foci positions if the beam is focused by a converging lens. We will
theoretically study this family of waves.

Let’s assume a harmonic wave whose electric field is given by u(r⃗, z), where r⃗ is a vector
that describes the transverse position and z is the propagation coordinate. We define this wave
as conjugate wave if its field u(r⃗, z) can be described as:

u(r⃗, z) = ψ(r⃗, z) + ψ∗(r⃗,−z) (4.1)

i.e. as a superposition of two waves ψ(r⃗, z) and ψ∗(r⃗, z).
By simple observation, we find two obvious properties of a conjugate wave. Firstly, it is conju-
gate symmetric under inversion of the propagation direction, as:

u(r⃗,−z) = ψ(r⃗,−z) + ψ∗(r⃗, z) = (ψ∗(r⃗,−z))∗ + (ψ(r⃗, z))∗ = u∗(r⃗, z) (4.2)

Furthermore, the field for z = 0 is always a real valued function, i.e.

u(r⃗, 0) = ψ(r⃗, 0) + ψ∗(r⃗, 0) = 2Re (ψ(r⃗, 0)) (4.3)

This second property of conjugate waves motivates us to search for a mathematical criterion
for characterizing a wave as conjugate. A sufficient condition for a wave to be conjugate, as
was formulated by Papazoglou et al [24], [25], is the following:
Theorem 1. If the field distribution u(r⃗, z) of an harmonic wave is real valued at a transverse
plane along its propagation, then the wave is conjugate.
Proof. Without loss of generality, let’s suppose that the field is real valued for z = 0, i.e
u(r⃗, 0) = Re (u(r⃗, 0)). The angular spectrum [7] P (kx, ky; z = 0) ≡ P0(kx, ky) ≡ P0(k⃗⊥) of this
real valued field is given by:

P0(k⃗⊥) =
∫∫

u(x, y, 0)e−i(kxx+kyy) dx dy (4.4)

where k⃗⊥ are the transverse components of the wavevector. We can easily show that the function
P0(k⃗⊥) is hermitian, P0(−⃗k⊥) = P ∗

0 (k⃗⊥):

P0(−k⃗⊥) =
∫∫

u(x, y, 0)ei(kxx+kyy) dx dy = P ∗
0 (k⃗⊥) (4.5)
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so that we can describe it as:
P0(k⃗⊥) =

∣∣∣P0(k⃗⊥)
∣∣∣ eiϕ0( ⃗k⊥) (4.6)

where the magnitude
∣∣∣P0(k⃗⊥)

∣∣∣ and the argument ϕ0(k⃗⊥) are even and odd functions, respectively,
of the transverse component k⃗⊥ of the wavevector.
The field distribution at some distance z along the propagation axis can now be expressed
[7, 24] as:

u(r⃗, z) =
∫∫ ∣∣∣P0(k⃗⊥)

∣∣∣ eiϕ0(k⃗⊥)eiz
√

k2
0−k2

⊥ei(kxx+kyy)dkx dky (4.7)

Setting:
ψ(r⃗, z) = 1

2

∫∫ ∣∣∣P0(k⃗⊥)
∣∣∣ eiϕ0(k⃗⊥)eiz

√
k2

0−k2
⊥ei(kxx+kyy)dkx dky (4.8)

we easily conclude that the field distribution can be expressed as:

u(r⃗, z) = ψ(r⃗, z) + ψ∗(r⃗,−z) (4.9)

■

From the large variety of conjugate waves that satisfy this criterion, we are interested in
studying the properties of those that exhibit a discrete focus away from their symmetry plane.
We refer to these waves as Janus Waves [24].

4.2 Janus Waves focusing using Matrix theory
In this subsection, our aim is to theoretically predict the effect of the presence of a lens on the
propagation of an auto-focusing beam that belongs to the family of Janus Waves [24], such as
the superposition of two symmetric 1D Airy beams that we discussed in Section 3.4. We will
prefer, at first, to study the effect of the presence of a general imaging system on the propaga-
tion of a general auto-focusing beam, under the geometrical optics approximation [25].

Let’s suppose that we have an auto-focusing beam that propagates in free space. This beam
propagates in a way that local maxima are generated along the propagation axis. In the context
of geometrical optics, that means that many light rays intersect at the maxima positions.

Now, let’s suppose an optical system with principal planes H and H ′ and a light ray that
intersects the entrance principal plane H at height h with inclination α. If the optical sys-
tem was absent, the ray would intersect the propagation axis z at some position with distance
z0 = |h|

α
from the plane H.

The effect of the optical system on the propagation of this ray can be easily found if we use
the general optical system (with principal planes H, H ′) ABCD matrix representation, i.e

M =
(

1 0
−P 1

)
(4.10)

where P is the optical power of the system. Actually, if we denote with n and n′ the refractive
indices of the media before and after the optical system, respectively, then the height h′ and
the inclination α′ of the ray at the exit principal plane H ′ will be given by:(

h′

n′α′

)
=
(

1 0
−P 1

)(
− |h|
nα

)
=
(
− |h|

Ph+ nα

)
(4.11)
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Thus, the intersection coordinate z1 of the optical ray with the propagation axis(measured from
the exit principal plane H ′), with the presence of the optical system, will be:

z1 = |h
′|
α′ = n′ |h|

Ph+ nα
= |h|

α

n′

P · |h|
α

+ n
= z0

n′

Pz0 + n
(4.12)

From the previous equation, we conclude that:

n

−z0
+ n′

z1
= P (4.13)

The last equation has the general form of the relation between the object position, s ↔ −z0,
and the image position, s′ ↔ z1, of an optical system with optical power P . This corre-
spondence is totally reasonable. Firstly, the focus without the presence of the optical system
corresponds to the object, which is located after the entrance of the optical system and, thus,
is imaginary(s < 0). Then, the focus after the presence of the optical system corresponds to
the image, which is located after the exit of the optical system and thus is real (s′ > 0).

In our case, the optical system is just a thin converging lens(P = 1
f
) and the surrounding

medium is air (n = n′ = 1), so that the equation (3.12) is reduced to:

1
−z0

+ 1
z1

= 1
f

(4.14)

and the principal planes H and H ′ coincide, at z = 0. Our beam of interest has the initial
field distribution introduced in eq. (3.8), and belongs to the family of Janus Waves, because it
is a Conjugate Wave (u(x, 0) ∈ R) and is auto-focusing, as we saw in Section 3.4. This beam
will abruptly autofocus at a distance z0 ≡ fAi along the propagation direction, but, since is
Conjugate, will also have a conjugate focus at position −z0 = −fAi which is not physically
accessible when the beam propagates in free space.

Thus, after the addition of the thin lens, we expect that the initial "real" focus will be im-
aged to a position z that satisfies the equation [24]:

1
z
− 1
fAi

= 1
f

(4.15)

and, analogously, the "virtual" focus will be imaged to a position z that satisfies the equation
[24]:

1
z

+ 1
fAi

= 1
f

(4.16)

4.3 Double foci positions
At the previous subsection, we found the following theoretical relation for the double foci
positions z of the two symmetric one-dimensional Airy Beams after they are focused by a lens
of focal length f :

1
z
± 1
fAi

= 1
f

(4.17)

where with fAi we denote the focus position of the two symmetric superimposing Airy Beams
at 1D+1 regime, without the presence of the focusing lens. Thus, eq. (4.17) leads to two foci,
with positions z1 and z2 given by:

z1 = f · fAi

f + fAi

(4.18)
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and
z2 = f · fAi

fAi − f
(4.19)

Recalling that the initial focus position fAi is a function of the width parameter w and the
peak position x0 of the one-dimensional Airy Beams, i.e

fAi = 4πw
2

λ

√
1 + x0

w
(4.20)

we will try to numerically confirm the validity of equations (4.18), (4.19) for the two foci po-
sitions by altering the width parameter w, the peak position x0 and the focal length f , while
keeping the wavelength constant to λ = 800 nm.

At first, we fixed the focal length f to f = 0.6 m and the value of peak position x0 to
x0 = 5 · 10−4 m and changed the value of the width parameter w(by altering the beam’s
FWHMAi, as FWHMAi = 2.28w). We ran numerical simulations altering the value of
FWHMAi from FWHMAi = 500 µm to FWHMAi = 1300 µm with 200 µm step, and each
time we found the two foci positions z1 and z2. In the following Table 4.1 we display our
numerical results, compared to the corresponding theoretical predictions from equations (4.18),
(4.19).

Table 4.1

FWHMAi

(µm)
z1 theoretical
prediction(m)

z1 numerical
calculation(m)

z2 theoretical
prediction(m)

z2 numerical
calculation(m)

500 0.4171 0.42 1.069 1.04
700 0.4800 0.48 0.7999 0.8011
900 0.5160 0.51 0.7167 0.7256
1100 0.5381 0.5311 0.6780 0.6922
1300 0.5526 0.5467 0.6563 0.6622

We demonstrate the intensity propagation images, for the cases FWHMAi = 500µm and
FWHMAi = 1300µm, together with attached colourbars that correspond to the intensity, at
the following Figure 21.
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(a) FWHMAi = 500µm (b) FWHMAi = 1300µm

Figure 4.1: Intensity propagation images, for two symmetric superimposing 1D Airy Beams
that are focused by a lens of f = 0.6 m. (λ = 800 nm, x0 = 5 · 10−4 m for different values of

FWHMAi

At the following Figure 4.2, we have plotted in the same diagram the theoretical curves
as predicted by (4.18) and (4.19) and the numerical results of the focus positions z1, z2 as
functions of the FWHMAi.

Figure 4.2

It is obvious that our numerical results are in very good agreement with the theoretical
prediction.
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Next, we kept the focal length fixed to f = 0.6 m and the width parameter to w = 219.29 µm(so
that the FWHMAi was equal to FWHMAi = 500 µm), and changed the peak position x0.
We ran numerical simulations altering the value of x0 in a range between x0 = 5 · 10−4 m to
x0 = 20·10−4 m, and each time we found the two foci positions z1 and z2. In the following Table
4.2 we display our numerical results, compared to the corresponding theoretical predictions from
equations (4.18) and (4.19).

Table 4.2

x0
(10−4m)

z1 theoretical
prediction(m)

z1 numerical
calculation(m)

z2 theoretical
prediction(m)

z2 numerical
calculation(m)

5 1.0687 1.04 0.4171 0.42
7.5 0.9643 0.9806 0.4355 0.4306
10 0.9048 0.8971 0.4488 0.45
15 0.8376 0.8357 0.4674 0.4686
20 0.7997 0.8029 0.4801 0.4786

At the following Figure 4.3, we have plotted in the same diagram the theoretical curves
as predicted by (4.18) and (4.19) and the numerical results of the focus positions z1, z2 as
functions of the peak position x0.

Figure 4.3

Again, we see that our numerical results are in very good agreement with the theoretical
prediction.

Finally, we kept the peak position fixed to x0 = 15 · 10−4 m and the width parameter to
w = 219.29 µm(so that the FWHMAi was equal to FWHMAi = 500 µm), and changed the
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focal length of the lens f . We ran numerical simulations altering the value of f from f = 0.4 m
to f = 1.2 m with a step of 0.2 m, and each time we found the two foci positions z1 and z2.
In the following Table 4.3 we display our numerical results, compared to the corresponding
theoretical predictions from equations 3.2.

Table 4.3

f(m) z1 theoretical
prediction(m)

z1 numerical
calculation(m)

z2 theoretical
prediction(m)

z2 numerical
calculation(m)

0.4 0.4933 0.4921 0.3364 0.335
0.6 0.8376 0.8357 0.4674 0.4686
0.8 1.2866 1.279 0.5805 0.5807
1.0 1.8967 1.897 0.6789 0.68
1.2 2.7735 2.7709 0.7656 0.7622

At the following Figure 4.4, we have plotted in the same diagram the theoretical curves
as predicted by (4.18) and (4.19) and the numerical results of the focus positions z1, z2 as
functions of the focal length f .

Figure 4.4

Again, we see that our numerical results are in excellent agreement with the theoretical
prediction.
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4.4 Focusing by an axicon
After studying the propagation of two symmetric 1D Airy Beams that are focused by a con-
verging lens, we wish to find out the behaviour of these beams when the converging lens is
replaced by a plano-convex axicon [26].

An axicon is a specialized type of refractive optical element which has a conical surface. It
is widely used in order to convert a Gaussian beam into a non-diffractive Bessel-like beam by
adding a conical phase gradient to the initial beam. This is schematically shown in the Fig.
4.5.

Figure 4.5: Diagram of Axicon and resulting Bessel Beam, Wiki

In the case of symmetric one-dimensional Airy beams, the action of an 1D axicon of cone
angle θ is equivalent to a prism that leads to the addition of an initial tilt angle of opposite
sign for each of the two symmetric Airy beams. So, the field distribution after the presence of
the 1D axicon for the "left" Airy Beam will be:

uL (x, 0) = u0Ai
(
x+ x0

w

)
ea

x+x0
w eikθx (4.21)

Respectively, the field distribution after the presence of the 1D axicon for the "right" Airy Beam
will be

uR (−x, 0) = u0Ai
(−x+ x0

w

)
ea

−x+x0
w e−ikθx (4.22)

We can easily conclude that the equations of motion of the "left" and "right" Airy beams’
primary lobes after passing through an 1D axicon of cone angle θ will be, respectively [26]:

xL(z) = −(x0 + w) + z2

4k2w3 + θ · z (4.23)

xR(z) = (x0 + w)− z2

4k2w3 − θ · z (4.24)

Now, it is trivial to find the focus position of this field distribution at the propagation axis,
simply demanding from equations (4.23) and (4.24) to obey the relation xL(z) = xR(z).
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Solving the resulting quadratic equation we end up to the following relation for the focus
position:

z± = 4πw2

λ

−2πwθ
λ
±
√

4π2w2θ2

λ2 +
(
x0

w
+ 1

) (4.25)

It is often preferred in the literature [26] to introduce the notation zAi = kw2/2, x̃ = x0/w + 1
(normalised position parameter), θ̃ = zAiθ/w (normalized cone angle), so that the previous
equation takes the simpler form

z± = 4zAi

[
−2θ̃ ±

√
4θ̃2 + x̃

]
(4.26)

Of course, the positive solution z+ corresponds to a real focus and we will refer to it simply as
focus position fAx ≡ z+. On the other hand, the negative solution z− corresponds to a virtual
focus, and is not visible without the presence of a converging lens. So, we finally have the
following expression for the focus position fAx:

fAx = 4πw2

λ

−2πwθ
λ

+
√

4π2w2θ2

λ2 +
(
x0

w
+ 1

) (4.27)

Having derived an analytical expression for the focus position fAx, we will try to confirm it
numerically, conducting simulations with Wp − Maxima, as usual. At first, we conduct a
numerical experiment in order to see the propagation image of two symmetric superimposing
one-dimensional Airy beams with wavelength λ = 800nm, peak position x0 = 15 · 10−4 m,
FWHMAi = 500 µm and apodization factor a = 0.02, that are focused by an 1D axicon of
cone angle θ = 0.03◦. We demonstrate the propagation of this configuration in Fig. 4.6.

Figure 4.6: propagation of two symmetric 1D Airy beams with λ = 800nm, x0 = 15 · 10−4m,
FWHMAi = 500µm and a = 0.02, that are focused by an axicon of θ = 0.03◦

It is clear from the previous figure that the two beams indeed focus at some propagation
distance. Now we will try to confirm the validity of the analytical relation (4.27).
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We will try to numerically confirm the validity of equation (4.27) for the focus position by
altering the wavelength λ, the peak position x0 and the axicon’s cone angle θ, while keeping
the FWHMAi constant to FWHMAi = 500 µm)(and thus the width parameter constant to
w = 219.29µm).

At first, we fixed the axicon’s cone angle θ to θ = 0.03◦ and the peak position x0 to x0 =
15 · 10−4 m and changed the value of the wavelength λ. We ran numerical simulations altering
the value of λ from λ = 500nm to λ = 900 nm with 100 nm step, and each time we found the
focus positionfAx. In the following Table 4.4 we display our numerical results, compared to the
corresponding theoretical prediction from Eq. 3.11.

Table 4.4

wavelength theoretical
prediction

numerical
calculation difference

λ(nm) fAx(m) fAx(m) (%)
500 2.063 2.058 0.2
600 1.858 1.866 0.4
700 1.686 1.692 0.4
800 1.541 1.528 0.8
900 1.417 1.416 0.1

In Fig. 4.7, we have plotted in the same diagram the theoretical curve as predicted by (4.27)
and the numerical results of the focus positions fAx as a function of the wavelength λ.

Figure 4.7: Focus position fAx as a function of the wavelegth λ
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It is clear from the previous diagram that our numerical results are in very good agreement
with the theoretical prediction.
Subsequently, we fixed the axicon’s cone angle θ to θ = 0.03◦ and the wavelength λ to λ =
900 nm and changed the value of the peak position x0. We ran numerical simulations altering
the value of x0 from x0 = 5 · 10−4 m to x0 = 25 · 10−4 m with 5 · 10−4 m step, and each time
we found the focus positionfAx. In Table 4.5 we display our numerical results, compared to the
corresponding theoretical prediction from Eq. (4.27).

Table 4.5

peak
position

theoretical
prediction

numerical
calculation difference

x0(10−4m) fAx(m) fAx(m) (%)
5 0.792 0.792 0.0
10 1.134 1.134 0.0
15 1.417 1.416 0.1
20 1.665 1.668 0.2
25 1.887 1.880 0.4

Likewise in Fig. 4.8, we have plotted in the same diagram the theoretical curve as predicted
by (4.27) and the numerical results of the focus positions fAx as a function of the peak position
x0.

Figure 4.8: Focus position fAx as a function of the peak position parameter x0
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Again, it is clear from the previous diagram that our numerical results are in very good
agreement with the theoretical prediction.

Finally, we fixed the peak position parameter x0 to x0 = 25 ·10−4m and the wavelength λ to
λ = 900 nm and changed the value of the axicon’s cone angle θ. We ran numerical simulations
altering the value of θ from θ = 0.03◦ to θ = 0.48◦, multiplying its value by 2 each time, and we
found the corresponding values of focus position fAx. In the following Table 4.6 we display our
numerical results, compared to the corresponding theoretical prediction from equation (4.27).

Table 4.6

axicon’s
cone angle

theoretical
prediction

numerical
calculation difference

θ(◦) fAx(m) fAx(m) (%)
0.03 1.887 1.880 0.4
0.06 1.522 1.527 0.3
0.12 1.045 1.050 0.5
0.24 0.606 0.606 0.0
0.48 0.319 0.319 0.0

Furthermore, in Fig. 4.9, we have plotted in the same diagram the theoretical curve as
predicted by (4.27) and the numerical results of the focus positions fAx as a function of the 1D
axicon’s cone angle θ.

Figure 4.9: Focus position as a function of the 1D axicon cone angle θ.
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Again, it is clear from the previous diagram that our numerical results are in very good
agreement with the theoretical prediction, so we can conclude that the theoretical relation 3.11
has been numerically confirmed.
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Appendix

In order to emphasize the analogy between wave optics and quantum mechanics, as revealed by
the equivalency of equations (1.9) and (1.10), we conduct two numerical experiments. At the
first one, we wish to see the intensity I(x, z) of an optical beam with initial field distribution
while propagating over z − axis:

u(x, 0) = 3 · e−( x−x0
d

)2 + 3 · e−( x+x0
d

)2 (4.28)

where x0 = 10−3 m, d = 350µm, λ = 600 nm, conducting a wave propagation simulation using
Wp −Maxima. Then, we wish to see the time evolution of the probability density P (x, t) =
|ψ(x, t)|2 of an one-dimensional quantum-mechanical wavepacket with initial wavefunction:

ψ(x, 0) = 3 · e−( x−0.1
0.35 )2 + 3 · e−( x+0.1

0.35 )2 (4.29)

using the method of Exact Diagonalization in Python. We demonstrate the results of the
simulations at the following Figure:

(a) Intensity image of optical beam’s
propagation over z − axis(Wp−Maxima)

[10]

(b) Probability density time evolution of
wavepacket in one-dimensional chain (Python)

Figure 4.10: Comparison of the two different simulations

The similarity of the two images is totally evident, so the mathematical equivalence of the
Eq.(1.8),(1.9) is confirmed in our numerical simulations.
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