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Quality of Service Framework for Low Power RDMA 
Operations over Cortex R5 Real Time Microcontroller 

 

Abstract 

 

The High Performance Computing (HPC) contributes to the progress of science and the 

competitiveness of global industry. Nowadays, scaling the performance of 

supercomputers is limited by strict power consumption constraints. Low-power servers 

tightly coupled with high-speed FPGA accelerators can offer a feasible solution to deal 

with this challenge. Along this direction, the ExaNeSt EU-funded project develops and 

prototypes a system composed of power-efficient ARM-based processors, tightly coupled 

with FPGAs. In our system, we leverage the FPGAs in order to implement a custom low-

latency interconnect that will allow computing nodes to communicate with each other as 

well as with fast, non-volatile, in-node storage devices. This creates the need for a 

sophisticated network interface to bridge the processes that run on the ARM cores with 

the interconnection hardware. For bulk memory-to-memory transfers, we have developed 

a custom low-latency multi-channel Remote Direct Memory Access (RDMA) engine, 

which allows processes to bypass the kernel in order to avoid the overheads of system 

calls and of traditional TCP/IP protocol processing. In this thesis, we have implemented in 

software, using a special Real Time co-processor, several stages of the RDMA protocol, 

including a novel transfer segmentation into blocks, per-block timeouts and 

retransmissions, quality-of-service (QoS), as well as end-to-end flow control and a novel 

protocol for fast completion notifications. The new RDMA supports per-block multi-

pathing and selective (block-level) retransmissions, which advance InfiniBand state-of-

the-art RDMA. The new RDMA, including the co-processor part, which is the outcome of 

this thesis, and the hardware part implemented at FORTH, is now fully functional, and 

has been used to run real HPC applications on the ExaNeSt prototype, which consists of 

tens of interconnected Ultrascale+ MPSoCs. By implementing several block and transfer 

level functions using the co-processor, we have reduced the complexity and development 

time of the RDMA, without affecting its processing rate. In this thesis, we report the 

features that we have implemented in the co-processor, the rationale behind our design 

choice, and system-level performance evaluation results. 
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Ανάπτυξη Λογισμικού Βελτίωσης της Ποιότητας 
Υπηρεσιών σε Μικροελεγκτή Πραγματικού Χρόνου 

για Λειτουργίες Άμεσης Προσπέλασης Μνήμης 
Χαμηλής Ενεργειακής Κατανάλωσης 

Περίληψη 
 

Η υπολογιστική υψηλής απόδοσης (HPC) συμβάλλει καταλυτικά στην πρόοδο της 

επιστήμης καθώς και στην αύξηση του ανταγωνισμού στην βιομηχανία σε 

παγκόσμιο επίπεδο. Στις μέρες μας, η απόδοση των υπερυπολογιστών περιορίζεται 

από αυστηρές προϋποθέσεις ενεργειακής κατανάλωσης. Ωστόσο η χρήση 

διακομιστών χαμηλής κατανάλωσης σε συνδυασμό με επιταχυντές FPGA υψηλής 

ταχύτητας μπορούν να προσφέρουν μια εφικτή λύση για την αντιμετώπιση αυτής 

της πρόκλησης. Σε αυτή την κατεύθυνση, το έργο ExaNeSt το οποίο 

χρηματοδοτείται από την Ευρωπαική Ένωση αναπτύσσει και παράγει ένα  σύστημα 

που αποτελείται από επεξεργαστές αποδοτικής κατανάλωσης τεχνολογίας ARM, σε 

συνδυασμό με  FPGAs. Στο σύστημά μας, χρησιμοποιούμε FPGAs για να 

υλοποιήσουμε μιας υψηλής ταχύτητας προσαρμοσμένη διασύνδεση η οποία 

επιτρέπει στους υπολογιστικούς κόμβους καθώς και στις γρήγορες μνήμες τους να 

επικοινωνούν μεταξύ τους. Αυτό δημιουργεί την ανάγκη για μια εξελιγμένη διεπαφή 

δικτύου η οποία γεφυρώνει τις εφαρμογές που τρέχουν στους πυρήνες ARM με το 

υλικό διασύνδεσης. Για μεγάλες μεταφορές δεδομένων μεταξύ μνημών, έχουμε 

υλοποιήσει μια προσαρμοσμένη πολυκάναλη μηχανή RDMA (Remote Direct 

Memory Access) με  χαμηλή καθυστέρηση, η οποία επιτρέπει στις εφαρμογές να 

παρακάμπτουν τον πυρήνα του λειτουργικού ώστε να αποφεύγεται το κόστος 

κλήσεων συστήματος καθώς και η παραδοσιακή επεξεργασία πρωτοκόλλων τύπου 

TCP/IP. Σε αυτήν την εργασία, αναπτύξαμε λογισμικό, χρησιμοποιώντας έναν ειδικό 

επεξεργαστή πραγματικού χρόνου, διάφορα στάδια του πρωτοκόλλου RDMA, 

συμπεριλαμβανομένης μιας καινοτόμας τμηματοποίησης του μεγέθους μεταφοράς 

RDMA σε μπλοκ, εφαρμογή χρονικών ορίων και αναμετάδοσης ανά μπλοκ, 

ποιότητα υπηρεσιών QoS, καθώς και έλεγχο ροής από άκρο σε άκρο και ένα νέο 

πρωτόκολλο για ειδοποιήσεις γρήγορης ολοκλήρωσης. Η νέα μηχανή RDMA 

υποστηρίζει επιλεκτικές και πολλαπλών διαδρομών αναμεταδόσεις ανά μπλοκ, οι 

οποίες προωθούν την υπερσύγχρονη τεχνολογία RDMA του InfiniBand 
πρωτοκόλλου. Η νέα RDMA επίσης, συμπεριλαμβανομένου του τμήματος συν-

επεξεργαστή, το οποίο είναι το αποτέλεσμα αυτής της εργασίας, και το τμήμα 

υλικού που υλοποιήθηκε στο ΙΤΕ, είναι πλέον πλήρως λειτουργική και 

χρησιμοποιήθηκε για την εκτέλεση πραγματικών εφαρμογών HPC στο πρωτότυπο 

ExaNeSt, το οποίο αποτελείται από δεκάδεςc διασυνδεδεμένων Ultrascale + 

MPSoCs. Με την εφαρμογή πολλών λειτουργιών επιπέδου μπλοκ και συναρτήσεων 

μεταφοράς χρησιμοποιώντας τον συν-επεξεργαστή, έχουμε μειώσει την 

πολυπλοκότητα και τον χρόνο ανάπτυξης  πρωτοκόλλου RDMA, χωρίς αυτό να 

επηρεάσει το ρυθμό επεξεργασίας του. Σε αυτή τη διατριβή, αναφέρουμε τα 

χαρακτηριστικά που έχουμε εφαρμόσει στον συν-επεξεργαστή, το σκεπτικό πίσω 

από την επιλογή σχεδιασμού μας και τα αποτελέσματα της αξιολόγησης απόδοσης 

σε επίπεδο συστήματος. 
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Chapter 1 
 

Introduction 
 

Modern computing clusters consist of many heterogeneous computing units that work 

collectively in order to serve high computing tasks. Low latency communication between 

the remote processes that run on these servers is a critical factor for achieving high 

performance. In this effort, there is a demand of a sophisticated network interface, which 

is quite flexible to handle in an efficient way multiple concurrent tasks between remote 

nodes and memories that communicate each other, is considered as a necessity. However, 

this could succeed in case we manage to achieve remote RDMA transfers initiated by the 

user level processes instead of kernel API. This avoidance of kernel intervention gains 

better performance saving us from many time-effective CPU cycles overhead as a result of 

inevitable system calls. Subsequently, in terms of bypassing the kernel stack technique, a 

full custom, intellectual and flexible framework was developed which offers advanced 

Quality of Service (QoS) and resiliency features for RDMA transfers initiated by user level 

space. Particularly, this specialized software is implemented in a real time co –processor 

acting as a RDMA controller that interfaces the processes that run on the ARM cores with 

the interconnection hardware. 

 

1.1 Motivation 
 

In the road to Exascale, supercomputers and warehouse-scale machines adopting low-

power, slim processors in order to reduce the power consumption of the fat processors 

used today. Although, power efficiency is very challenging attempt, simple, low-power 

processors tightly coupled with accelerators offer a feasible pathway. However, as the 

number of computing components increases, the inter-process communication bottlenecks 

become a crucial factor for exascale performance. This creates the need for a low latency 

and reliable interconnect that can support the communication among millions of 

computing cores, accelerators with memories and fast. At the same time, as the cycles of 

general purpose processors become all and more valuable, the industry is shifting to 

RDMA-capable networks that offload segments of the traditional kernel network stack to 

special hardware inside the network and the processor-network adapters. RDMA 

networks achieve lower-latency (due to zero copy copy transfers) and higher line rate, due 

to lower software intervention as the kernel is completely bypassed -- see Figure 1.1. As a 

result, data is transferred directly between application-processes to remote memory 

spaces without any extra packet copy overhead.  
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Figure 1.1: Zero copy User Level Initiated RDMA Transfer 

 

In the framework of this thesis, we design a sophisticated network interface that bridges 

the user level processes with a special purpose interconnection network and initiates low-

cost, fast and reliable RDMA transfers. 

 

1.2 Contributions 
 

This thesis has contributed to the design of a new Remote Direct Memory Access (RDMA) 

engine, suitable for user-level initiated memory-to-memory transfers in systems consisting 

of ARM+FPGA nodes working in a global virtual address space (GVAS).  The RDMA 

engine leverages the System Memory Management Unit (SMMU) in order to translate 

process virtual addresses to physical memory locations, and provides multiple channels 

that can be allocated to user processes, in order to bypass the kernel overhead of 

traditional TCP/IP processing, and support InfiniBand-like capabilities in clusters of 

(ARM+FPGA) nodes. The RDMA supports advanced quality-of-service (QoS) and 

resiliency features, which we report in this thesis, together with our preliminary 

performance evaluation results.   

The design of the new RDMA engine is split into a software-programmable part, 

which is the core of this thesis, and a hardware part, which is implemented inside Zynq 

Ultrascale+ Xilinx MPSoCs at FORTH. In this thesis, we implement a network co-

processor using the Real-time ARMv7 R5 microcontroller that services a number of 

infrequent, (for hardware-speed), operations that are nevertheless critical for RDMA 

networks. These operations include transfer segmentation, end-to-end flow control, 

transfer scheduling, fast notifications, and reliable services. The complete RDMA design is 

now functional, running on the ExaNeSt-project prototype, which consists of Quad-

FPGA-Daughter-Boards (QFDBs), interconnected in a Hybrid-Torus interconnect.  
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The RDMA design offers low-latency/high-bandwidth user-level read/write transfers, on 

par with InfiniBand RDMA, and other members of the group currently port MPI 

applications on top of it. 

The author of this thesis implemented the following R5 Software modules that are 

responsible for the following processing steps of the RDMA: 

 

• Provides multiple virtual channels in a scratchpad memory that are allocated 

to user processes using a newly-developed driver. We currently expose 

1024 virtual channels located in 16 different memory pages of R5 

scratchpad memory, which can be allocated to 16 processes running on A53 

ARM cores. Each page (4KB) in the scratchpad accommodates 32 virtual 

channels for RDMA write operations and 32 for RDMA read operations, for 

a total of 64 channels per page. 

• Segments transfers into blocks (or transactions), which are aligned to 

destination memory addresses, collects the per-block hardware 

acknowledgements, and implements a sliding window protocol and a custom 

end-to-end protocol for fast completion notifications at the receiver, with ½ RTT 

latency for small transfers, and 1 RTT latency for large ones. 

• Offers selective retransmissions of failed or timed-out blocks, warranting end-

to-end reliable transfer delivery. These offloaded resiliency features, which 

incorporate both software and hardware components, further obviate the 

need to use TCP at the communication end-nodes.   

• Implements a fast-path that provide low-latency transmission, speculatively 

bypassing unnecessary (at low-load) processing stages.  We also optimized 

the RT code, in order to minimize the overhead of the RT.  

• Prioritizes urgent transfers over low priority ones, based on transfer size or 

user-hints. In addition, additional scheduling policies can flexibly be 

implemented in our software controller. 

• Provides an RDMA read protocol, where the initiator issues special read 

request to the target node. The RT in that node, reads the request, allocates 

an available read virtual channel of its corresponding process, and initiates 

write transaction.   

• In context of the high-level overview of the RDMA operation, author 

implemented separate mbox queues in order to avoid protocol-induced 

deadlocks.  
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Note that in this section 1.2 the above implemented communication protocols are 

completely designed by Dr.Nikolaos Chrysos, Dr. Vassilis Papaefstathiou, Prof. Manolis Katevenis  

and not by the author of this thesis. 

In this thesis, author also : 

  1.  coded several user applications that run on ARM cores and use the RDMA,  

2.  developed an API library and several kernel modules,   

3. applied various low-level memory settings, in order to accomplish RDMA 

transfers in bare-metal as well as Linux environments in different prototype platforms.   

An especially time-consuming task proved to be the continuous integration with 

concurrent hardware development of the RDMA engine, the network interface, and the 

interconnect. This step required dense software-hardware co-debugging actions, 

especially in cases where we were not confident for the source of the bug (platform, FPGA 

firmware, and RT controller). Another source of difficulty was the RT environment. 

Developing code for the RT controller required deep knowledge of the RT co-processor 

capabilities, and limitations, and the Zynq MPSoC, including coherency issues between 

the main ARM processors, L1 and L2 caches, the scratchpad of the RT and of on-chip 

memories. 

 

 

1.3 Outline 
 

The remainder of this thesis is organized as follows. The ExaNeSt project, its goals as well 

as its prototyping platforms are detailed in Chapter 2. In addition, in this chapter we 

report the software that was developed in order to run our experiments by user level 

processes and describe the application programming interface (API) of the software part 

of the RDMA network.The main design and the core of the RDMA-unit that we 

implemented are explained in chapter 3. In chapter 4, we present the structure of the 

resilience mechanisms and the quality-of-service (QoS) features that we support in our 

implementation. The verification and performance evaluation experiments that we 

conducted in the prototype platform are described in Chapter 5. Chapter 6 concludes this 

thesis, providing also a discussion of potential future work items that could be developed 

as further work. Following Chapters include bibliography and appendices with some 

procedural content of integration tools. 
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Chapter 2 
 

Context 
 

2.1 Exanest Project 
 

The ExaNeSt is European Union funded project which develops, evaluates, and 

prototypes the physical platform and architectural solution for a unified communication 

and storage interconnect and the physical rack and environmental structures required to 

deliver European Exascale Systems. Building on years of advanced R&D knowledge, 

ExaNeSt is going to deliver the solution that can support exascale deployment in the 

follow-up industrial commercialization phases. Using direction from the ETP4HPC 

roadmap and high density and efficiency computations, Exanest project will model, 

simulate, and validate through prototype, a system with the following features.  

First of all, high throughput, low latency connectivity between computing nodes 

with their (volatile) memories, (non-volatile) storage and their input/output (I/O) devices, 

in a way that all of them can cooperate tightly and effectively in solving huge problems 

with congestion mitigation, Quality of Service (QoS) and resilience guarantees. 

Furthermore, ExaNest offers support for task-to-data software locality models to ensure 

minimum data communication energy overheads and property maintenance in databases. 

The platform also ensures management scheme for big-data I/O resilient, unified 

distributed storage compute architecture while reducing energy, complexity, and costs. At 

the end, the project is going to demonstrate the applicability of the platform for the 

complete spectrum of Big Data applications, e.g. from HPC simulations to Business 

Intelligence support. 

However, such large supercomputers connectivity already consumes a huge order 

of magnitude of energy. For this reason, the ExaNeSt EU funded project prototypes a 

system composed of power efficient ARM based processors tightly coupled with FPGAs 

contrary to power-hungry processors used by other HPC systems. In order to satisfy this 

need of power efficiency and low-latency in this thesis, UNIMEM architecture of Global 

Address Space from the EuroServer project is used allowing user level zero copy Remote 

Direct Memory Access (RDMA) operations for communication between nodes. Last but 

not least, RDMA leverages the System Memory Management Unit (SMMU) of the FPGA 

in order to translate process virtual addresses to physical memory adresses. 
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2.2 Hardware Resources 
 

2.2.1 Prototype Platforms  
 

This section presents the development platforms in which we implemented and tested the 

new software and hardware IP blocks. In Exanest project, we have built a prototype based 

on both commercial Trenzs boards and Quad-FPGA Daughter Boards (QFDBs) which 

feature the same Zynq Ultrascale+ FPGA’s. 

 

2.2.1.1 Trenz board 
 

This board includes a Processing System (PS), which mainly for this purpose of this thesis 

embeds a cluster of 4x A53 cores and 2x R5 Real time cores. The commercial product 

featuring a Zynq Ultrascale+ is manufactured by Trenz. It is composed of an FPGA board 

codenamed TE0808, as shown on Figure 2.1, containing only strictly minimal peripherals, 

and a carrier board (codenamed TEBF0808). The FPGA board features 2Gbytes of DDR4-

RAM and 64Mbytes of QSPI non-volatile memory. The carrier board hosts 2 SFP+ cages 

and a RJ45 connector. This hardware is funded by the EuroServer and ExaNode projects, 

however it is also used for developing the firmware and system software for the ExaNeSt 

prototype. 

 

 

 
Figure 2.1:  The Trenz TE0808 system-on-module (SoM), featuring a Zynq Ultrascale+ 

FPGA 
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2.2.1.2 Quad-FPGA Daughterboard (QFDB) 
 

The Node is the Quad-FPGA Daughterboard (QFDB) containing four (4) Ultrascale+ 

FPGAs connecting each other hardwired with 2x High Speed Serial Links (HSS) in one all-

to-all mesh topology as shown in Figure 2.2. Each FPGA features 2x 16MB QSPI and 16GB 

DRAM so that one (1) QFDB aggregates 64 GB of DRAM as well as 512GB SSD storage. 

Moreover, each QFDB provides a connector with ten (10) bidirectional HSS links (10 x 

16Gbit/s = 160Gbit/s = 20GB/s) for high-throughput communication with other devices. 

Four (4) of those links are used to connect neighboring QFDBs hosted on the Blade. The 

remaining six (6) HSS links are attached to the external link cages (SFP+), mainly for 

connection with other blades within the same Chassis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Quad-FPGA Daughterboard overview 

 

 

 

2.2.2 Zynq Ultrascale+ 
 

In ExaNeSt we use the XCZU9EG-ffvc900 model of Xilinx Zynq UltraScale+ FPGA. A 

block diagram of this FPGA is shown in Figure 2.3. The Zynq Ultrascale+, includes the 

Processing System (PS) and the Programmable Logic (PL).  
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The Processing System (PS) features a Quad-core ARMv8 Cortex-A53 MPCore, clocked to 

1.2 GHz which incorporates 32 KB of Instruction / Data Cache per core and 1MB of shared 

L2 Cache. It also includes a Real Time Dual-core ARMv7 Cortex- R5 MPCore clocked to 

600 MHz with 32 KB of Instruction / Data Cache, 128KB of total Tightly Coupled Memory 

(TCM) as scratchpad and 256 KB of aggregate on Chip Memory (OCM). In addition, it 

supports DRAM controller for high-throughput external 16 GB of DDR4 SDRAM main 

memory with 32/64-bit width. System (I/O) MMU provides two stage translation 

(appropriate for virtualization), up to 48-bit physical address and also allows external 

devices to use virtual addresses, thus enabling user-level initiation of UNIMEM 

communication. The Programmable Logic is the area which is intended for hardware IP 

blocks development. This FPGA offers six (6) low latency AXI ports from PL to PS and 

two (2) AXI ports vice versa, and one (1) ACE port which offers cache-coherent accesses 

from the Programmable Logic (PL), as required by the UNIMEM architecture.  

 

 
Figure 2.3:  Zynq Ultrascale+ Top Level Block Diagram (source Xilinx) 
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The Zynq UltraScale+ MPSoC contains four (4) main power domains: 

 

• Low-power domain (LPD) 

• Full-power domain (FPD) 

• PL power domain (PLPD) 

• Battery power domain (BPD) Battery power domain (BPD) and 3rd processing 

unit Mali-400 graphics processing unit (GPU) with pixel and geometry 

processor and 64KB L2 cache, are not used for the purposes of this thesis 

 

2.2.3 Real-time Processing Unit 
 

The Zynq UltraScale+ MPSoC includes a pair of Cortex-R5 processors for real-time 

processing which are also based on the Cortex-R5F MP processor core from ARM. The 

Cortex-R5 processor implements the ARM v7-R architecture. The Cortex-R5F includes a 

floating-point unit that implements the ARM VFPv3 instruction set. In the Cortex-R5 

processor, interrupt latency is kept low by interrupting and restarting load-store multiple 

instructions. This is achieved by having a dedicated peripheral port that provides low 

latency access to the interrupt controller and by having tightly coupled memory (TCM) 

ports for low latency and deterministic accesses to local RAM. 

Despite of the fact that the Cortex-R5 processor is used mainly for safety-critical 

applications, it was used in this thesis in order to develop a QoS framework with 

resilience features playing the role of RDMA controller as part of the network interface. 

The most important features of Real Time Processing unit (RPU) can be considered the 

following: 

 

1 Integer unit implementing the ARM v7-R instruction set 

2 ARM v7-R architecture memory protection unit (MPU) 

3 Single and double precision FPU with VFPv3 instructions 

4 64-bit master AXI3 interface for accessing memory and shared peripherals 

5 64-bit slave AXI3 interface for DMA access to the TCMs 

6 Separate 128KB TCM memory banks with ECC protection for each TCM 

7 32KB instruction and data L1 caches with ECC protection 

8 32-bit master advanced eXtensible interface (AXI) peripheral interface on each 

processor for direct low-latency device memory type access to the interrupt 

controller 

      9  Performance monitoring unit 

The RPU has two (2) Cortex-R5 processors that can operate independently-split or in lock-

step together.  

• Split mode operates as a twin-CPU configuration. Also known as performance 

mode. 

• Locked mode operates as a redundant CPU configuration. Also known as safety 

mode. 



 

 

Leandros Tzanakis Arnaoutakis  ICS-FORTH,UOC 

 

20     CHAPTER 2.2.4 RPU TIGHLY COUPLED MEMORY  
     

When the Cortex-R5 processors are configured to operate in the lock step configuration, 

only one (1) set of CPU interfaces are used. Because the Cortex-R5 processor only supports 

the static split/lock configuration, switching between these modes is only permitted right 

after the processor group is brought out of reset. During the lock-step operation, the 

TCMs that are associated with the redundant processor become available to the lock-step  

processor. The size of each ATCM and BTCM becomes 128 KB with BTCM having 

interleaved accesses from the processor and AXI slave interface. In our case, we use RPU 

configuration in split mode. 

 

2.2.4 RPU Tightly Coupled Memory (TCM) 
 

Tightly-coupled memories (TCMs) are low-latency memories that provide predictable 

instruction execution and predictable load/store data timing. Each Cortex-R5 processor 

contains two 64-bit wide 64 KB memory banks on the ATCM and BTCM ports, for a total 

of 128 KB of memory. The division of the RAMs into two banks, and placing them on 

ports A and B, allows concurrent accesses to both banks by the load-store instructions, 

prefetch instruction, or AXI slave ports. The BTCM memory bank is divided into two 32 

KB ranks that are connected to the BTCM-0 and BTCM-1 ports of the Cortex-R5 

processors. There are two TCM interfaces that permit connection to configurable memory 

blocks of tightly-coupled memory (ATCM and BTCM). 

 

• An ATCM typically holds code section of the program and interrupts or 

exceptions code that must be accessed at high speed, without any potential delay 

resulting from a cache miss 

• A BTCM typically holds a block of data for intensive processing 

 

The entire 256 KB of TCM can be accessed by R5_0 only in lock-step mode. In our 

implementation, we use R5_0 in split normal operation mode. Thus, the 2-bank 128 KB 

TCM support for each Cortex-R5 processor in the split mode includes the following: 

 

• Each TCM is 64 KB 

• One BTCM is composed of two ranks allowing interleaved accesses 

• 32-bit ECC support is available in both normal and lock-step mode 

• TCMs can be combined for a total of 256 KB (128 KB each of ATCM and BTCM) for 

use by R5_0 in lock-step mode 

• External TCM access from AXI slave interfaces 
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2.2.5 On-chip Memory (OCM) 
 

On-chip Memory is a 256 KB memory which resides in Low Power Domain (LPD) and 

provides low latency memory accesses from the RPU Core. In this thesis, OCM is used to 

store 3 class priority scheduler for pending DMA requests, essential data structures which 

are needed for bookkeeping 1024 pending transactions/blocks and some useful queues 

mainly for arbitration operations. In our current implementation, we use only first 64 of 

256 KB of OCM memory, however these data could not be stored in scratchpad TCM due 

to space limitations. 

 

2.3 Platform Software 
 

In the context of this thesis, the most time of effort was spent in software design, 

development and testing of the framework. An important milestone was the effort that 

was conducted in order to overcome the limitations of R5 microcontroller, maintaining 

however high-performance requirements. Another time-consuming part of this work was 

the continuous testing and integration process with the related hardware so that the new 

RDMA engine would perform user level-initiated transfers in Linux environment both in 

Trenz boards and QFDBs. Profound understanding of the Xilinx Ulrascale+ MPSoC 

Technical Reference Manual (UG1085) was necessary for this implementation, as well as 

getting familiar with the software design tools that are provided by Xilinx.  

In addition, both bare metal and user level programs were developed and 

configured respectively for testing and debugging needs. Some modifications and 

additions of generated boot-up files were also necessary so that the software integration to 

succeed. More detailed information about the process of integration in prototyping 

platforms is provided in appendices. 

 

2.3.1 Design Tools 

Xilinx is an American technology company, primarily a supplier of programmable logic 

devices. It is known for inventing the field-programmable gate array (FPGA) and as the 

semiconductor company that created the first fabless manufacturing model. Vivado 

Design Suite is a software suite produced by Xilinx for synthesis and analysis of HDL 

designs, superseding Xilinx ISE with additional features for system on a chip 

development and high-level synthesis. For the purposes of this work , Xilinx Software 

Development Kit (XSDK) was used which is the Integrated Design Environment for 

creating embedded applications on any of Xilinx’s microprocessors Zynq UltraScale+ 

MPSoC. 

Firstly, the version of the SDK was 2017.4 but later was downgraded to version 2017.2 for 

compatibility reasons with the hardware team. 

https://en.wikipedia.org/wiki/Technology_company
https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Programmable_logic_device
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Semiconductor
https://en.wikipedia.org/wiki/Company
https://en.wikipedia.org/wiki/Fabless_manufacturing
https://en.wikipedia.org/wiki/Xilinx
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Xilinx_ISE
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/High-level_synthesis
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
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2.3.2 Linux Booting Process 

In context of running processes in user level space, Linux environment was needed to be 

used as Operating System.  As first step, the main tool that was used in order to boot the 

OS into the quad A53 cores of Trenz boards and QFDBs platforms was Yet –Another-Tool 

(YAT). YAT is a useful tool developed by CARV-ICS and provides operations which builds 

the appropriate software of boot-up process. In detail, YAT tool supports the following 

features: 

1. Bootstrap: Initializes environment and toolchains from scratch taking as argument 

the path to SDK directory.  In our case, we used SDK version 2017.2 
 

2. Build_fsbl: Builds a custom First Stage Boot Loader (FSBL) that boots Linux kernel 

image in A53 cores and loads R5 executable. This feature takes as parameters the 

board profile name (e.g trenz board, qfdb) and the path of the generated hardware 

definition file (HDF). The loading process of R5 executable differs in terms of 

Trenzs and QFDBs and it is described step by step in each board set up in 

appendices. 

 

3. Build_pmufw: Builds the Power Management Unit Firmware 

 

4. Build_bl31: Builds the EL3 Secure Monitor from ARM trusted firmware 

 

5. Build_dtb: Builds the Flattened Device Tree image for the board (DTB) taking as 

parameters board profile and path of HDF as above description. However, DTB 

image creation needed to be modified in order to fit in the needs of SSMU 

translation process, otherwise transfers were blocked. Thus, a special set up was 

coming up both in Trenzs and primarily in QFDBs. The detailed process is also 

described in appendices. 

 

6. Build_uboot: Builds U-Boot (second stage boot loader) taking as parameter only 

board profile 

 

7. Build_kernel: Builds the Linux Kernel Image, in our case it was used pre-built 

Kernel version 4.4.9 in both platforms 

 

8. Build_initramfs: Builds initial ramfs image 

 

9. Build_bootbin : Builds BOOT.bin which was loaded into Trenz board A53 cores 

using SD Card Interface. 

 

10. Build_bootbin_all: Builds BOOT.bin and all its above elements 
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11. Build_package: Builds the requested Boot Package –assuming above elements 

have been build. 

 

12. Build_package_all: Builds the requested Boot Package and its above elements 

 

Boot package method was used in order to boot linux with the appropriate hardware 

definition (HDF) and R5 executable in an already bootbin pre-flashed QFDB platform. 

More information about boot package loading process is given in appendices. HDF path, 

board profile name and boot package name (e.g plupdate) is also essential information 

provided by the user. 

 

 

2.3.3 RDMA Software Interface 
 

2.3.3.1 RDMA Semantics 
 

Remote Direct Memory Access (RDMA) involves the capability of reading and writing 

operations in the memory of other nodes with significant CPU offload, while retaining the 

principles of memory protection. 

Typically, the implementation demands the following minimal set of features: 

 

a. Remote addressing of other processors’ memory. This is the ability of the 

hardware to place data directly into the software application memory of remote 

processors.  

 

b. Asynchronous queues. These queues are the common interface between the  

RDMA capable hardware and the low level user software. The Application 

Programming Interface (API) usually exposes a send-queue and an optional 

receive-queue or in other words a mailbox in a destination memory of the receiver. 

 

c. Kernel Bypassing. User-level software initiates fast-path read/write operations 

interacting directly with the hardware without the intervention of the kernel-

space. In this case, the arrival data should include the destination data as well as 

the destination memory address. This allows software to avoid the overhead 

caused by systems calls in low latency and high performance environments. 

 

Next section presents RDMA Programming Interface API which was implemented in 

order to achieve user level zero copy initiated RDMA transfers in low latency 

environments. 
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2.3.3.2 RDMA Programming Interface 
 

The software QoS framework that operates as the RDMA controller between the processes 

which are running on A53 cores and custom hardware in PL, developed in C language on 

Real Time Processor R5 in split mode, using the existing embedded hardware and 

memories as mentioned above. However, an application library was needed to be 

developed further which constitutes the Application Programming Interface (API) in 

order to initiate and test user level transfers.  

For the purposes of this thesis, a system driver-module, which is called 

“scrachtpad_alloc”, was also developed for the transfer initiation and fast path 

communication between R5 controller and the user process, which is running on Linux. 

This kernel module is responsible to allocate TCM 4KB pages of R5 and to assign them to 

corresponding processes. User should insert this module as well as an addition module 

called “exanest_virt” with destination board identifier as input parameter after booting up 

Linux process. The mentioned API offers the following set of function calls: 

 

 

1. alloc_comm_chan: The application creates a handle for the process, with the      

appropriate addresses 

 

2. alloc_dmable_buf:  The application allocates source and destination buffers 

 

 

3. insert_descriptor_with_completion: The application initializes all appropriate 

RDMA descriptors including source and destination buffers  

 

4. trigger_dma_transfer: The application copies RDMA descriptors to corresponding 

virtual channel in TCM scratchpad and write the channel both in PL mailbox and 

fast path via TCM scratchpad in a special position in order to inform R5 software 

for the new initiated RDMA transfer. 

 

5. poll_dma_transfer: The remote application polls a predefined destination memory 

address in order to check if completion data have been written there and 

afterwards reports the status of the transfer. The status of the transfer completion 

can vary; the following table 2.1 shows the different state cases. 
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Status Description 

DMA_FINISHED Transfer completed successfully 

DMA_ONGOING Transfer is ongoing  

DMA_PAUSED_NO_ERROR Transfer has stopped unsuccessfully  

    DMA_FINISHED_WITH_ERROR Transfer completed unsuccessfully 

 

Table 2.1: Transfer completion state 

 

Below we present the transfer structure which is used both by user level processes and by 

the R5 software framework. It is composed of the descriptors which are defined in user 

level process and initiate a RDMA transfer in a corresponding virtual channel at R5 TCM 

memory. Each field is 64-bit descriptor except for “done” and “transfer size” fields which 

are 32-bit. The aggregate space of the transfer structure is 64 bytes, which also 

corresponds to the size of each virtual channel register in TCM. This means every RDMA 

read/write request occupies 64 bytes in TCM scratchpad and abstains exactly the same 

distance from the previous and following channel. R5 controller reads the descriptors of 

the RDMA transfer structure which is copied in TCM and triggers the specified transfer. 

Each process can copy up to 64 successive transfer structures in its allocated 4KB page, 

that correspond to 64 virtual channels (64 bytes transfer structure * 64 virtual channels => 

4KB = page/process).  

Typedef struct dma_transfer { 

uint64_t src_address; 

uint64_t dst_address; 

uint64_t dst_adress_notification; 

uint64_t first_data_notification; 

uint64_t last_data_notification; 

uint32_t transfer_size; 

uint32_t done; 

uint64_t reserved_0; 

uint64_t reserved_1; 

} dma_transfer; 

 

A detailed explanation of each field follows: 

• src_address: This field contains the source address of RDMA transfer in local 

memory. Substantially, this defines from where dma will read the data.  

 

• dst_address: This filed contains the destination address of RDMA transfer in 

remote memory. Substantially, this defines where dma will write the data in 

remote memory. 
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• dst_adress_notification: This field contains the remote destination memory 

address where the remote process polls if the following data 

(first_data_notification and last_data_notification) have been written in order to 

check if the transfer has finished or not as it is shown in above table 2.1. 

 

 

• first_data_notification: This is the first 64-bit data which have been written in 

previous memory address (dst_address_notification) when the transfer has 

finished. 

 

• last_data_notification: This is the second 64-bit data which have been written in 

previous memory address (dst_address_notification), after the 

first_data_notification, when the transfer has finished. 

• transfer_size: This descriptor contains the size of the write RDMA transfer in bytes 

which are going to be copied from the local to the remote memory or vice versa, in 

case of read RDMA. Each transfer cannot exceed 4 GB size. So, this specifies how 

much successive data should be copied starting from source address and how 

much far away from the remote destination memory the data will reach in bytes. 

• done: This is field is used by the local user process to acknowledge the completion 

of a single RDMA transfer and also as status flag of the transfer. Firstly, the TCM 

memory is initialized with 0xffffffff value and when the “done” field takes the 

value 1 then the transfer has totally completed. The following table 2.2 shows the 

different values that “done” field can take during an end to end RDMA datapath 

and what is the meaning of the transfer status in each case.   

• reserved_0: reserved 64-bit field for future use 

• reserved_1: reserved 64-bit field for future use 

 

 

Values Status Description 

0 Initialized Write transfer just initiated  

1 Completed Write transfer is totally finished  

2 On Going Write transfer has been initiated 

and is still working 

 

Table 2.2: Write “done” field state 
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Design and Implementation  
 

3.1 Overview of the end to end RDMA Datapath 
 

The software framework was developed in C using Xilinx SDK for R5 Real Time 

microcontroller. The project is created based on a Hardware Definition File (HDF) which 

is exported from Vivado design suite.  

In a few words, RDMA engine implemented in three major blocks as shown on figure 3.1. 

The first is the software framework and is responsible for transfer segmentation and 

scheduling (QoS), as well as for the retransmissions of 16KB transactions or blocks of a 

transfer and developed in R5 microcontroller that resides in Processing System (PS). The 

second is implemented in Programmable Logic (PL) and is responsible for executing the 

transactions i.e. reading data from memory, correcting their alignment, and writing them 

to the destination in a custom protocol ExaNet packet format. Finally, the third block 

implemented also in PL and is responsible for bookkeeping the transactions at the 

receiver, monitoring their execution and delivering the negative/positive 

acknowledgments.  

 

 

 

Figure 3.1: Overview of end to end RDMA Datapath 
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Following, it is described briefly an overview of the first block which contributes in this 

thesis. Initially, the user level processes that run on A53 cores initiate new transfers to 

1024 available virtual channels allocated to R5 TCM memory. At this point, a mailbox at 

the PL is developed which receives messages from processes running on A53 cores and 

notifies R5 processor each time a new virtual RDMA transfer has been issued at R5 TCM 

memory. Subsequently, in terms of a sophisticated interface, a flexible scheduler issues the 

transfer, depending on its size, into a three (3) class priority queue. Latency sensitive 

transfers (size <=16KB) obtain the highest priority. Afterwards, the R5 processor takes this 

new transfer and divides it into segments of 16KB each, which we call transactions, 

according to 16KB aligned destination memory address.  

Each time a transfer is selected by the scheduler, some of its transactions are 

initiated to DMA in PL based on a maximum threshold (number of transactions) and the 

transfer is rescheduled again. This is repeated until all transactions for this particular 

transfer have been issued. In addition, software keeps the transactions into a history list 

for future possible retransmissions. Specifically, when R5 receives a negative 

acknowledgement from receiver node for a particular transaction, it takes this transaction 

from history list and retransmits it.  

Finally, R5 supports advanced resilience for timeout events of each RDMA 

transaction in a case of a packet loss or poisoning over the network. R5 compares the head 

transaction of the history list with a global time counter software in every interrupt tick 

and retransmits this transaction if it was expired. Extensive description of the framework 

implementation follows step by step in the next sections. 

 

 

3.2 Write Operation  
 

This section is a detailed explanation of the write RDMA operation and describes the steps 

that are needed to be followed, so that each transfer being initiated until being completed. 

The figure 3.2 below is a top-level diagram of a write RDMA transfer focused mainly in 

functionality of the framework that was implemented in R5 microcontroller. 
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Figure 3.2: Write RDMA timeline  

 

3.2.1 User Process Interaction 
 

The user level process which runs over A53 core involves all appropriate steps that are 

needed and should be followed by a user level zero copy write RDMA transfer in order to 

be initiated and receiving completion notification in conjunction with R5 framework 

capabilities. The following steps were firstly conducted in bare metal without kernel calls 

on A53 core for immediate testing and debugging purposes. 

First of all, each user process corresponds to only one (1) unique 4 KB page in 

BTCM in which there are 64 successive virtual channels that can accommodate 64 

different RDMA transfers. Due to BTCM memory space limitations (64 KB total space), 16 

unique processes can be supported in 16 successive 4KB pages of 64 virtual channels each.  
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That means 1024 virtual channels of 16 different processes can be supported 

simultaneously in BTCM memory of R5. Therefore, a user process should request and 

obtain from the operating system an available BTCM page as well as its corresponding 

protection domain id which is the serial number of the acquired page (0-15). In this 

implementation, 32 first virtual channels of a page are assigned for write RDMA transfers 

and the rest 32 channels for read RDMA requests. This is achieved by a Linux kernel 

module called “scrachtpad_alloc” which is responsible for allocating the BTCM pages to 

corresponding processes and managing this bookkeeping. However, if there are 16 

running processes occupying 16 pages in BTCM (one page for each of them), then there 

are no other available pages for a new process apart from in case of a process is 

terminated or frees its committed page. Moreover, this kernel module is responsible for 

page allocation to a mailbox which is implemented in PL so that the user process can gain 

access to it. 

If the above steps succeed, the user process asks to obtain source and destination 

virtual addresses regarding to their physical mapping in local and remote memory 

respectively. Afterwards, process begins to initialize the fields of the RDMA transfer 

structure initiation with the appropriate information. The RDMA transfer structure as was 

described in section 2.3.3.2 of Chapter 2, consists of “source” and “destination addresses”, 

the demanding data “transfer size”, the “done” status field as well as the “data 

notification” information and “destination address notification” of RDMA transfer and 

occupies space 64 bytes, as much as the exact size of a virtual channel. Now the process is 

ready to copy this RDMA structure to its corresponding BTCM page in one (1) of the first 

32 available virtual channels of the page which are intended for write requests as shown 

Figure 3.3.  

After process copies this transfer structure into the right virtual channel in its 

BTCM page, it should notify R5 processor that a new pending write transfer request is 

initiated in its scratchpad memory. This is achieved by writing into the mailbox base 

address, that was implemented in PL, the particular virtual channel number which is 

assigned to this transfer. R5 processor polls consistently this precise position of the 

mailbox in PL and checks if there is any new arrival in order to be informed from the 

process which virtual channel is initiated by the new transfer. After that, R5 takes the 

descriptors of this channel and begins the new transfer. 

As it is mentioned above, the process has to calculate the exact position of the 

virtual channel in BTCM scratchpad according to the corresponding page in order to copy 

the RDMA descriptors which initiate the new transfer. This is achieved by using the 

following mathematical formula:  

 

 

BTCM base address + Protection domain id * PAGE_SIZE + virtual channel*transfer 

structure size/4 = Virtual BTCM address + virtual channel*64/4 =  

Virtual BTCM address + virtual channel*16 
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• BTCM base address is the memory address BTCM initially begins 

• Protection domain id is the page number that corresponds to the process 

• PAGE_SIZE is the size of a page = 4 KB 

• Virtual channel is the number of the channel which accommodates the transfer 

• Transfer structure size is the size of the RDMA transfer structure consisting of the 

descriptors and in our case is 64 bytes. 

• Virtual BTCM address is the virtual 64-bit address that is returned by OS which 

points to the corresponding base address of the allocated page 

 

 

 
 

    Figure 3.3: Indexing of transfer structure in BTCM 

 

Initially the status of the “done” field as mentioned in section 2.3.3.2 in chapter 2, is “0” 

which means that the transfer is already initiated. When all pending acknowledgments of 

the transfer have been received through the network from the remote node in a new local  

PL also implemented mailbox, R5 software updates the value of the “done” field in “1”, 

which means now the transfer is finished. So, the user process which polls this field can be 

informed for the transfer completion.  
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Furthermore, protocol supports a completion mechanism allowing hardware to inform 

faster the remote process when the transfer has been completed. This is achieved by 

writing a completion notification message, that is comprised of “first” and “last data 

notification” as well as “dst address notification” fields which are defined by the user, to 

remote node. When remote node receives this completion message generates the last 

acknowledgement and writes the “data notification” to “dst address notification”. In this 

way the remote process polls the “dst address notification” and is notified that the 

transfer is completed when the data notification has been written. 

 

3.2.2 Transfer Segmentation 
 

While FSBL loads the framework inside R5 core, BTCM and OCM memories are 

initialized with appropriate values. Soon after, the interrupt controller is initialized as well 

as the interrupt handling routines attached to the corresponding interrupt lines. 

Afterwards, Real Time Processor R5 starts to poll the mailbox base address in 

order to be notified from A53 process if there is any new initiated transfer. As soon as, 

process writes the value of the virtual channel into mailbox, R5 reads this value and 

calculates using the following formula the exact position that indicates where the new 

transfer has been written into BTCM scratchpad. 

 

DMA transfer index in BTCM : 

btcm_base_addr + [ (page_offset * protection_domain_id)/4) + (size of dma_transfer * 

(virtual_channel mod (VIRTUAL_CHANNELS_NUM_PER_PROCESS-1))/4 ] 

 

• btcm_base_addr :  BTCM base address  

• page_offset: 4KB 

• protection_domain_id: The number of the transfer page ranges {0-15} 

• size of dma transfer: 64 bytes 

• virtual channel: The value that process writes into mailbox and implies where the 

transfer is pointed in its corresponding BTCM page. Virtual channel values of 

write operation range: 64* protection_domain_id + {0-31} 

• VIRTUAL_CHANNELS_NUM_PER_PROCESS: 64 defined by default 

 

Therefore, R5 core finds the transfer based on above indexing and reads its size. In context 

of advanced QoS features, this framework supports a segmentation technique which 

divides the transfer size into segments 16KB each, which are called transactions or blocks, 

according to 16KB aligned destination memory address. In this way, this method specifies  
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the first and last block size of each transfer as well as bookkeeps the total number of 

transactions which compose the transfer. Figure 3.4 below illustrates precisely the 

memory segments which arise from the above segmentation process in an unaligned 16 

KB destination address.  

 

 

Figure 3.4: Transfer size segmentation in 16KB aligned destination memory 

 

 

As we mentioned each block or transaction size is 16 KB. However, in a case which the 

destination address is not aligned to 16 KB memory boundary, we need to calculate the 

size of the first and last block of the transfer.  The first block size is the remaining bytes 

from destination address until the block boundary and it is estimated by the formula: First 

block size = Block_size - (Destination Memory Address modulo Block_size). If the 

result of (destination memory address modulo block_ size) is equal to zero, then it means 

that destination memory address is aligned to 16 KB boundary and the size of the first 

block is the same with the block size. On the other hand, if the result of (transfer size – 

first block size) is less than zero then this means that transfer size is smaller than a block 

size 16 KB and it constitutes a single issue transaction. 
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In order to calculate the last block size, we need to find how much bytes are occupied of 

the last block size of the transfer. This is achieved by calculating the formula: Last block 

size = (Transfer size – First block size) modulo Block_size. If (transfer size – first block 

size) is multiple of block size, then the last block size is equal to zero. The aggregate 

number of blocks of a transfer is the sum of the first and last block in addition with the 

remaining number of 16 KB uncut blocks. This above information of first and last block 

sizes as well as the total number of blocks of a transfer is stored in an array for 

bookkeeping reasons for each virtual channel which points to the initiated transfer. 

 

3.2.3 Transfer Scheduling 
 

Soon after the segmentation of the transfer size, a three (3) class priority scheduler that is 

implemented in OCM is responsible to issue the transfer, depending on its size, into a 

circular queue. In this implementation, we have decided to provide highest priority to 

single issue, latency sensitive transfers (<=16 KB) in order to optimize the flow completion 

time. If there is no single transfer issue in the high queue, scheduler decides to serve a 

transfer from a medium queue. Scheduler is programmed to place a transfer in the 

medium queue in a case of its size is less than equal 512 KB. In any other case if high and 

medium queues are empty, the selected transfer is one of the biggest into the low queue.  

Each time a transfer is selected based on its priority by the scheduler, some of its 

transactions of 16 KB are initiated to hardware DMA in PL based on a maximum 

outstanding threshold and the transfer is rescheduled again as it is shown by below figure 

3.5 in a circular way until there are no other pending transactions of this transfer that have 

not been issued to hardware yet. Hence, the scheduling policy algorithm in steps is as 

follows. 

 

1. R5 Controller checks the transfer size of the incoming DMA transfer  

 

2. Enqueues that transfer to the corresponding queue according to its size 

 

3. Chooses to issue the transfer in an order from highest to lowest priority. 

First of all, checks the elements of the high queue and if this is empty then 

checks the medium and if this is also empty checks the low queue. 

 

4. If selected transfer is a single issue transfer (<= 16KB) from high queue, 

then controller issues this one to hardware. Otherwise, if the selected 

transfer is from medium or low queue, scheduler issues each time some of 

its pending transactions (<=16KB) based on a maximum configurable 

threshold which is usually two outstanding transactions.   

 

5. If selected transfer has still pending transactions for issuing, this is re-

scheduled again to its circular priority queue. 



 

 

Leandros Tzanakis Arnaoutakis  ICS-FORTH,UOC 

 

CHAPTER 3.2.4 TRANSACTION BOOKEEPING    35 

 

 

 

 
 

Figure 3.5: Three (3) class priority transfer scheduler 

 

3.2.4 Transaction Bookkeeping 
 

Since software chooses to initiate a new transaction of a transfer to PL RDMA, it needs 

firstly to write down some useful information. For this purpose, an array of structures 

called pending transactions table implemented in OCM in order to bookkeep the state of 

1024 pending initiated transactions as shown the below figure 3.6. This bookkeeping of 

1024 transactions is also mirrored to PL DMA in hardware. The state of each initiated 

transaction is composed of the following appropriate fields as follows: 
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typedef struct block_transfer { 

 

uint32_t transaction_size; 

uint16_t block_number; 

uint8_t state; 

uint16_t tick_counter; 

uint16_t transfer_id; 

uint8_t completion_notification; 

 

} block_transfer; 

 

 

1. Transaction_size: this field is the size of bytes of each initiated transaction 

 

2. Block_number: this field is the sequence number of transaction that belongs to a 

transfer. For instance, if a transaction is the first to be transfered, it will take the 

number zero (0), the second the number one (1) etc. 

 

3. State: this field declares the status of the transaction during its transferring and the 

taken values are listed in following table 3.1. 

 

4. Tick_counter: this field represents either the number of interrupt ticks that are 

needed in comparison with a global tick counter or the number of processor cycles 

that have to be reached so that this transaction is considered as expired. This 

depends on timeout retransmission mechanism that is used.  

In first case, tick counter is assigned as the interrupt ticks since current time plus 

the timeout time is expressed in ticks. Interrupt tick period is configurable by PS 

clock. The equation is:  

tick_counter = current_tick_counts + timeout_ticks 

 

In second case, tick counter is assigned as the current real time processor cycles 

plus the extra cycles in absolute time that are needed in order for this transaction 

to be considered as expired. The equation is: 

tick_counter = r5_current_cycles + timeout_cycles 

 

Further details about timeout retransmission mechanisms in Chapter 5. 

 

 

5. Transfer_id: this is the value that indicates the corresponding virtual channel of 

each initiated transaction in BTCM and is equal with the value of the virtual 

channel 
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6. Completion_notification: this field is a flag that notifies hardware that this is the 

last transaction of a transfer in order to generate completion notification message.  

This must be set to one (1) when software initiates last transaction of a transfer and 

be cleared with value zero (0) when software receives the last positive 

acknowledgement of this transfer. 

 

Figure 3.6: Pending transactions table 

State Values Description 

TRANSACTION_FREE 0 Transaction is not 

issued yet 

TRANSACTION_ISSUED 1 Transaction is 

initiated to 

hardware 

TRANSACTION_ACKED 2 Transaction has 

received positive 

acknowledgement  

TRANSACTION_NACKED 3 Transaction has 

received negative 

acknowledgment 

TRANSACTION_RETRANSMITTED 4 Transaction has 

received either 

NACK or timeout 

Table 3.1: Transaction state 
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3.2.5 Transfer Initiation to PL RDMA 

This section delineates the procedure which software follows in order to initiate a whole 

transfer to hardware implemented in RDMA in PL. As we mentioned in previous section, 

the above transfer scheduler checks each queue according to its level priority policy and if 

there is any existing transfer to issue, it conducts the above bookkeeping for each 

candidate transaction issued before initiates it to PL DMA. 

First of all, if the selected transfer was dequeued from medium or low priority queue, 

means that this transfer is consisting of more than one transactions. In this case, R5 DMA 

controller follows the below steps: 

1. Checks if this dequeued transfer has remaining transactions that are not issued yet 

and also if the outstanding transactions of this transfer do not exceed a maximum 

threshold. By placing limits on the number of transactions that can be transmitted 

at any given time, this operation acts as a sliding window protocol which allows 

two or more number of transactions to be communicated using sequential ids. If 

the above condition is true, then gets an available transaction id from a ticket 

based circular queue and assigns this id to the candidate issued transaction 

 

2. Checks if this transaction is the first or the last one and sets its size. Otherwise 

transaction size is the default 16KB 

 

3. Checks if this transaction is the first and last one of the same transfer 

simultaneously, meaning it is a single issue transfer, or if it is just the last 

transaction of a regular transfer which has received all the positive 

acknowledgements of its previous transactions. In both cases, software should 

assert a flag of completion notification message 

 

4. Bookkeeps the fields that constitute the state of this transaction as it was described 

in previous section, before initiating this to PL DMA 
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5. Initiates the transaction to PLDMA transmitter as explained below. 

 

6. Sends completion notification message to DMA transmitter if completion 

notification flag is asserted 

 

7. Updates some temporary bookkeeping like new outstanding blocks and remaining 

unissued transactions of this transfer  

 

8. Inserts this transaction id into the rear of a timeout list so that software is capable 

to retransmit this transaction if does not receive its acknowledgment during a 

timeout period 

If first condition is still valid, repeats the same procedure. Otherwise, if there are 

remaining transactions that are not issued yet, reschedules this transfer to its priority 

queue again. 

The first job that software needs to do in order to initiate a transaction/block to the PL 

implemented RDMA in step 6, is to determine transaction’s source and destination 

addresses. This could be achieved by adding an offset in source and destination base 

addresses of the transfer in which this transaction belongs to. The offset can be calculated 

according to block number field of this issued transaction and is defined by the following 

formula. 

 

offset = first transaction size + ((block_number -1) * 16384) 

 

where block_number possible values ={1,2,3…} 
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Except for the case in which the issued transaction/block is the first of the transfer, the 

offset is zero (0). Afterwards, R5 controller makes three (3) 64-bit writes to a 

parameterized-based on transaction id PL DMA destination memory. These writes are 

comprised of transaction’s source and destination addresses as well as the transaction 

size, protection domain id that corresponds to this transaction and completion notification 

flag that indicates if this is the last block of the transfer. 

By sending completion notification message to DMA transmitter in step 7, R5 controller 

needs to make three (3) separate 64-bit writes to a parameterized-based on transaction id 

PL destination memory. The first one is the destination address notification, the second 

the first data notification and the third the last data notification of the transfer.  

On the other hand, if the selected transfer was dequeued from high priority queue, means 

that is a single issue transfer (<=16KB). Due to the fact that in worst case scenario, when 

transfer is targeted on a 16 KB misaligned destination memory, it is separated in exact two 

(2) transactions with size <16KB, software doesn’t need to check if the maximum 

outstanding transaction threshold is violated. In a case of a 16KB aligned destination 

memory the transfer issues just a single transaction with size <=16KB. All the above steps 

2-10 of previous implementation for a medium priority transfer remains the same for a 

single issue transfer too. 

 

3.2.6 Receiving Acknowledgements 
 

This technique includes the steps should be followed by software in order to decode 

correctly a positive or negative acknowledgment for a transaction reaching through the 

network. Moreover, R5 controller takes over to notify a transfer that has completed, when 

it has received all its transactions acknowledgments. In context of completion notification 

mechanism, software in this section is committed to send completion message to DMA 

transmitter when it receives the penultimate transaction positive acknowledgment of a 

transfer whose the last transaction is already initiated. 

The following routine explains step by step how R5 software handles the receiving 

positive acknowledgments from remote nodes through the network. 
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1. R5 controller polls a special for this purpose PL implemented mailbox in order to 

receive any kind of transaction acknowledgement which is sent by receiver node 

via network.  

 

2.  When routine receives a valid value from mailbox, checks if this value constitutes 

a positive or a negative acknowledgment. If the received value is a positive 

acknowledgment, extracts its transaction id in order to make the matching 

between the transaction and the mentioned acknowledgment. 

 

3. Afterwards, framework drops out this positive acked transaction from timeout list 

so that this transaction does not take place in further retransmission. 

 

4. R5 makes some appropriate bookkeeping updates such as marks the state of this 

transaction as ACKED, increases the acknowledgments and decreases the 

outstanding transactions which belong to the corresponding transfer located in 

BTCM  

 

5. If receiving transaction acknowledgment is the penultimate of its transfer and r5 

DMA controller has already initiated the last transaction of this transfer, software 

should send the completion message to transmitter which is obligated to transmit 

it to receiver node, otherwise software is informed to send completion message to 

receiver after initiating the last transaction. 

 

6. In case of receiving transaction is the last one of a transfer, software should notify 

its transfer which located in BTCM scratchpad that is done and make some 

bookkeeping initializations of this transfer.  

 

7. Last but not least, transaction id should be free so that it can be reused again by 

other initiated transaction 

 

On the other hand, if the receiving mailbox value is a negative transaction 

acknowledgement, then r5 controller should make the following actions. 

 

1. Extracts the transaction id from value 

 

2. Updates the state of this transaction as NACKED 

 

3. Drops out this negative (nacked) transaction acknowledgment from timeout list so 

that this transaction does not be retransmitted by timeout  

4. Retransmits this transaction and sends completion notification message again if 

this is the last block of the transfer. 
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5. After retransmission of this transaction, R5 controller updates its tick counter field 

and puts it again into the timeout list. 

 

 

The following table shows the different cases that receiver could return a negative 

acknowledgment for the corresponding transaction. 

 

 

NACK ID (bits) ERROR CODE 

3’b001 AXI slave error 

3’b010 AXI decoding error 

3’b011 No context available 

3’b100 Packet corrupted 

3’b101 Protection domain mismatch 

3’b110 Reserved 

3’b111 Destination bufer full 

 

Table 3.2:  Negative acknowledgments cases 

 

 

3.3 Performance Optimizations 
 

 

In order to achieve a better performance in our design, a deep breakdown analysis 

required in our framework, for revealing where and why most of the time is consumed. 

Thus, the network interface was divided in three (3) main parts, and so we managed to 

infer valuable time results using R5 processor performance counters as a measurement 

tool.  The first part was from the moment that a single issue transfer initiated by user level 

space until R5 is notified, the second one was from the moment that R5 informed for a 

new transfer before initiates it to PL DMA and the third was the time needed between 

transfer initiation to hardware until taking the acknowledgment from mailbox. 

In the following paragraphs, we examine some feasible performance optimizations 

and alternative techniques that took place in R5 framework as shown below figure 3.7 

compared to figure 3.2, as well as further proposals for achieving lower latency RDMA 

transfers as future work. 
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Figure 3.7: Optimized write RDMA timeline 

 

 

R5 is notified firstly in scratchpad instead in AXI mailbox (PL) - Fastpath 

First of all, a hybrid technique called fast-path which combines cache level R5 scratchpad 

memory in conjunction with PL mailbox allows R5 being notified faster by a user level 

process. In this technique, all processes notify DMA controller for their new initiated 

transfers both in a special position in scratchpad and in PL mailbox. However, one process 

will manage to access successfully this position in scratchpad and the rest of them will 

notify R5 via mailbox. R5 controller firstly reads this special position and soon after the 

mailbox, dropping existing duplicates of already initiated transfers. 
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In this way, software begins a new transfer earlier avoiding wasted latency effective reads 

in PL mailbox. Regarding to real time measurements that conducted using real time 

performance counters, this optimization was managed to reduce latency around 200 

nanoseconds. 

Moreover, one alternative optimization based on communication between R5 controller 

and user process could be the following proposal. Last page of BTCM scratchpad can be 

separated in 15 successive 4-byte process channels that correspond to 15 different 

processes. Each user process writes the virtual channel in which is going to initiate the 

new transfer into its own corresponding process channel. So, R5 which polls in a round 

robin way these process channels, is notified for a new transfer from each different 

process without the need of reading each time PL mailbox. In this way, R5 processor 

avoids to stall valuable working time. From the other side, user process in A53 core polls 

“done” field of each corresponding process channel in scratchpad and if transfer has 

completed then issues a new transfer for this process. 

One more possible optimization could be accomplished by device driver which is 

responsible to allocate the pages of scratchpad. Each time user process orders to allocate 

its corresponding page in BTCM in order to initiate a new transfer there, a character 

device driver called “scratchpad_alloc” takes over to make this job. So, this driver could 

write directly the virtual channel in which process is going to initiate the new transfer in 

scratchpad. On condition that each time process will initiate transfers in successive virtual 

channels of its page, R5 can poll only the new ordered position of virtual channel in 

scratchpad avoiding time consuming overhead. This solution demands co-design between 

user space, device driver and R5 software. 

Last but not least, in context of reducing communication latency between A53 and 

R5, we could implement a distributed queue in which user process using atomic 

operations (e.g.  ADD/FETCH) will be able to put the number of the virtual channel that is 

going to be issued at scratchpad. On the other side, R5 processor could obtain and fetch 

this notification message about virtual channel which is initiated at scratchpad by 

distributed queue, without conducting time consuming reads in PL. 

 

Scheduler Bypassing 

 

R5 controller checks priority scheduler before initiates a new single issue transfer 

(<=16KB) and if there is no other pending transfer in high priority level, then bypasses the 

queue and issues this transfer directly into pending transaction table. This optimization 

contributes to further latency reduction around 300 nanoseconds. 
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Ticket-based circular transaction queue 

 

Every time software issues a transaction to DMA, takes a transaction id based on a ticket-

based circular OCM implemented queue in complexity O(1) instead of searching available 

ids in 1024 slots of pending transaction table. This saves us according to measurements 

around 200 nanoseconds. When this transaction takes a positive acknowledgment of this 

id, software inserts again this id into the rear of the queue. 

 

Peripheral optimized counters 

 

In order to avoid wasted time consuming non computational PS-PL RTT, we added some 

optimization counters that tell us which peripheral buffer, such as scheduling queues or 

timeout calendar queue or pending read request buffer implemented in OCM, is empty so 

that R5 controller does not need check that at all. 

 

Retransmission bit 

 

We write one distinct bit (57) in the third of 64-bit word of each transaction initiation to PL 

with the value zero (0). Thus, each time this block is needed to be retransmitted because of 

a timeout, software checks if this bit remains zero or has been changed by hardware with 

the value one (1). While this bit is still remaining zero, R5 controller doesn’t need to 

initiate this block again to hardware because previous transmission hasn’t finished yet.  

 

 

Memory settings and Compiler optimizations 

 

The code section of R5 frameworks as well as the interrupt line set up was stored in the 

first 64B part of scratchpad in ATCM. For the purpose of R5 controller to begin instantly 

DMA transfers, we assigned all the virtual channels in which each process initiates a new 

transfer into second 64B part of R5 cache level scratchpad BTCM. This achieved by 

configuring the linker script settings in XSDK project. Also, in order to gain further time 

improvement, we optimized compilation flag -O3 configuring build setting optimizations 

in the same project. However, sometimes compiler should be defined optimized based in 

program size so that R5 runs well. Last but not least, it is worth to pay attention on some 

stack and heap sizes limitations that should be also fitted well inside ATCM memory, 

making debugging process of R5 controller even more harder. 
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Dynamic transfer scheduling 

 

In this part, we optimized the flexibility of the transfer scheduler for medium and low 

priority DMA transfers. When R5 controller completes the initiation of some transactions 

of a transfer instead of rescheduling the transfer again in its initial priority queue, now 

decides to put this transfer on run time into a new priority queue according to its new size 

without any explicit given input from user. In this way, R5 scheduler features a kind of 

dynamic priority policy. 

This optimization does not affect the latency for single issue transfers because these are 

not subject to rescheduling policy, however contributes to the flow completion time 

reduce for bigger transfer sizes. 

 

Due to TCM scratchpad limitations, we decided to put scheduler, timeout and transaction 

ids queues into the closest to R5’s memory which is OCM. 

 

3.4 R5 Memory Attributes 

 

ARMv7 architecture provides a variety of memory page attribute settings in order to 

satisfy different memory operation scenarios. Cortex R5 is based on ARMv7 architecture 

and contains a Memory Protection Unit, (or MPU) that configures the attributes of a 

predefined number of memory regions.  

 

 

3.4.1 Memory Protection Unit (MPU) 
 

The Memory Protection Unit (MPU) works with the L1 memory system to control accesses 

to and from L1 and external memory. For a full architectural description of the MPU, see 

the ARM Architecture Reference Manual. The MPU enables you to partition memory into 

regions and set individual protection attributes for each region. The MPU supports zero, 

12, or 16 memory regions. Attributes are only determined from the default memory map 

when zero regions are implemented. Each region is programmed with a base address and 

size, and the regions can be overlapped to enable efficient programming of the memory 

map. To support overlapping, the regions are assigned priorities, with region 0 having the 

lowest priority and region 15 having the highest. The MPU returns access permissions and 

attributes for the highest priority enabled region where the address hits. 
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3.4.2 Memory regions 

Depending on the implementation, the MPU has a maximum of 12 or 16 regions. By 

modifying the file “mpu.c” which can be found inside the board support package (BSP) of 

the Xilinx SDK project, user can specify the following for each memory region: 

 

• Region base address:  

The base address defines the start of the memory region. User must align this to a 

region-sized boundary. For example, if a region size of 8KB is programmed for a 

given region, the base address must be a multiple of 8KB. Note If the region is not 

aligned correctly, this results in Unpredictable behavior. 

• Region size:  

The region size is specified as a 5-bit value, encoding a range of values from 32 

bytes, a cache-line length, to 4GB. Table 4-34 on page 4-55 shows the encoding.  

• Sub-regions:  

In each region can be split into eight equal sized non-overlapping sub-regions. An 

access to a memory address in a disabled sub-region does not use the attributes 

and permissions defined for that region. Instead, it uses the attributes and 

permissions of a lower priority region or generates a background fault if no other 

regions overlap at that address. This enables increased protection and memory 

attribute granularity. All region sizes between 256 bytes and 4GB support eight 

sub-regions. Region sizes below 256 bytes do not support sub-regions. 

• Region attributes:  

Each region has a number of attributes associated with it. These control how a 

memory access is performed when the processor accesses an address that falls 

within a given region. The attributes are:  
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•  Memory type, one of:  

—     Strongly Ordered  

—     Device 

—     Normal 

•  Shared or Non-shared  

•  Non-cacheable  

• Write-through Cacheable 

• Write-back Cacheable 

• Read allocation 

• Write allocation 

 

• Region access permissions:  

Each region can be given no access, read-only access, or read/write access 

permissions for Privileged or all modes. In addition, each region can be marked as 

eXecute Never (XN) to prevent instructions being fetched from that region. For 

example, if a User mode application attempts to access a Privileged mode access 

only region a permission fault occurs. Instructions cannot be executed from 

regions with Device or Strongly-Ordered memory type attributes. 

3.4.3 Memory types 
 

The ARMv7 architecture defines a set of memory types with characteristics that are suited 

to particular devices. There are three mutually exclusive memory type attributes:  

• Strongly Ordered 

• Device 

• Normal. 
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MPU memory regions can be assigned a memory type attribute. Table 3.3 shows a 

summary of the memory types.  

Note: The processor’s L1 cache does not cache shared normal regions. 

 

Memory type 

attribute 

Shared or 

Non-shared 
Description 

Strongly 

Ordered 
- 

All memory accesses to Strongly Ordered memory occur 

in program order. All Strongly Ordered accesses are 

assumed to be shared. 

Device Shared 
For memory-mapped peripherals that several processors 

share. 

  Non-shared 
For memory-mapped peripherals that only a single 

processor uses. 

Normal Shared 
For normal memory that is shared between several 

processors. 

  Non-shared For normal memory that only a single processor uses. 

 

Table 3.3: Memory attributes summary 

 

Difference between Device and normal Memory type 

The main difference between Device and normal Memory types is that normal Non-

Cacheable memory is not looked-up in any cache and the requests are sent directly to 

memory. Read requests might over-read in memory, for example, reading 64 bytes of 

memory for a 4-byte access, and might satisfy multiple memory requests with a single 

external memory access. Write requests might be merged with other write requests to the 

same bytes or nearby bytes. Strongly-ordered and Device memory types are used for 

communicating with input and output devices and memory-mapped peripherals. They 

are not looked-up in any cache. 

All of the processor interfaces to the external memory system have associated store 

buffers that help to improve the throughput of accesses to Normal type memory. Because 

of the ordering rules that they must follow, accesses to other types of memory typically 

have a lower throughput or higher latency than accesses to Normal memory. 
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In particular:  

• Reads from Device memory must first drain the relevant store buffer of all writes 

to Device memory and wait for all Device writes to the relevant interface that 

have been posted onto the bus to complete  

• All accesses to Strongly Ordered memory must first drain the store buffer 

completely and wait for all writes that have been posted onto the buses to 

complete. 

• Read requests in normal memory might over-read in memory (read ahead) and 

write requests may be merged with other write requests in order to satisfy 

multiple write requests with a single memory access. 

  

Memory attributes 

Apart from the Memory types, there are other attributes, each with different functionality: 

• Shared or Non-shared 

• Non-cacheable 

• Write-through Cacheable 

• Write-back Cacheable 

• Read allocation 

• Write allocation 

 

Shared data or Non-Shared: 

Data marked as non-shared are non-cacheable. This bit only applies to Normal memory 

type. 

 

Non-Cacheable: 

Normal non-Cacheable memory is not looked-up in any cache. The requests are sent 

directly to memory. Read requests might over-read in memory, for example, reading 64 

bytes of memory for a 4-byte access, and might satisfy multiple memory requests with a 

single external memory access. Write requests might be merged with other write requests 

to the same bytes or nearby bytes. 
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Write-Back Read-Write-Allocate: 

This is expected to be the most common and highest performance memory type. Any read 

or write to this memory type searches the cache to determine if the line is resident. If it is, 

the line is read or updated. A store that hits a Write-Back cache line does not update main 

memory. If the required cache line is not in the cache the line is obtained from the local 

memory and stored into cache. 

3.5 R5 Processor Drawbacks 

This section highlights the handicaps of real time R5 processor which add extra overhead 

and limit the performance of the new RDMA engine. For this reason, we are going to 

describe the changes in settings that needed to be applied in order to overcome these 

difficulties making R5 framework as much as possible more compatible to low latency 

project requirements. 

Coherency issues 

 

Due to the fact that there is no cache coherence between A53 core cluster and real time R5 

core cluster, some serious issues are coming up which related to inconsistency between 

their shared memories. For this reason, we needed to modify some crucial memory 

regions in MPU as we described above. First of all, we changed the 64KB memory region 

attribute of BTCM scratchpad as normal shared non-cacheable because this memory 

region should be shared between A53 cores, which expose new dma transfers in virtual 

channels there, and R5 which issues these transfers from there to hardware. On the other 

hand, BTCM should be non-cacheable due to the fact that there is no coherence between 

A53 and R5 clusters that causes inconsistency. In addition, we specified precisely ATCM 

memory region as normal non-shared write back write allocate which means cacheable 

because this memory region is used only by R5, so there is no consistency issue and we 

could cache its data. At the end, we defined the 256KB OCM memory region attribute as   

normal non-shared write back write allocate that means regular cacheable but non shared 

with A53 core cluster. 

 

Double precision read/write operations from/to PL 

 

The biggest handicap of real time coprocessor cortex r5 armv7-r edition that slows down 

dramatically the performance is its weakness writing/reading or storing/loading 64-bit or 

coupled 128-bit words to/from PL registers. Despite of the fact that Zynq Ultrascale+ 

technical reference manual refers that these instructions are supported by Real Time 

Processing Unit (RPU), specifically double precision FPU with VFPv3 instructions, we did 

not manage to apply this feature in order to write or read double precision words  
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to/from PL memory. Moreover, we tried to execute double precision load and store 

operations from/to address locations with vector multiple load/store inline assembly 

instructions such as VLDMIA/VSTMIA and LDM/STM as shows the following example 

including appropriate compilation flags -mcpu=cortex-r5 -mfpu=vfpv3 -mfloat-abi=softfp, 

however it did not work too. 

e.g 

 asm volatile ("VLDMIA.64 %0, {D1,D2}\n" : : "r" (data) // data is address ); // load 2 

double precision words 

 asm volatile ("VSTMIA.64 %0, {D1,D2}\n" // Store 2 double precision words : :"r" (dst) 

//destination is address ); 

 

After systematic investigation we managed to succeed writing 64 bit words to PL using 

store buffer losing however some extra cost effective cycles in contrast of writing in order 

32 bit words to PL which would added a pernicious overhead. The cache controller 

includes a store buffer to hold data before it is written to the cache RAMs or passed to the 

AXI master interface. The store buffer has three entries. Each entry can contain up to 64 

bits of data and a 32-bit address. All write requests from the data-side that are not to a 

TCM or peripheral interface are stored in the store buffer. The store buffer has merging 

capabilities. If a previous write access has updated an entry, other write accesses on the 

same line can merge into this entry. Merging is only possible for stores to Normal 

memory. Merging is possible between several entries that can be linked together if the 

data inside the different entries belong to the same cache line. No merging occurs for 

writes to Strongly Ordered or Device memory.  

The processor automatically drains the store buffer as necessary before performing 

Strongly Ordered accesses or Device reads. For this reason, we modified PL memory 

region attribute from MPU as normal memory non-cacheable and we took care to write 

cache line aligned words to store buffer. Therefore, we succeed to write multiple 64 bit 

instead of 32 bit words from PS to PL saving some cycles. Nevertheless, we observed that 

after writing the complete three (3) slots of store buffer, it takes about fifty (50) cycles for 

the next store of a 64-bit word to PL memory. So every time we write three 64 bit words 

for a PL-DMA initiation using store buffer in order to reduce this costly overhead. 

 

Memory settings limitations 

 

Another drawback of R5 processor was the need to define precisely the memory regions 

of code, interrupts, heap and stack sections and the size that should not exceed these 

memory boundaries. This made the testing process such a difficult work because the 

space of ATCM memory is limited (64KB) and we had no free space neither for printing 

commands. This fact makes R5 hard debugging. Also, when stack overflow happens due 

to no free space, compiler does not throw any error to console and the user does not know 

from where the memory violation is coming up. 
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Subsequently, we can break down the whole controller procedure into logical steps and 

highlight the methods that R5 controller calls in order to investigate which of them are 

more time consuming. 

 

Main loop structure 
 

While ( TRUE) {       // non blocking polling 

Poll_btcm_and axi_mbox() {  

    if  (BTCM_special_address  ==  new_vchannel){      // fastpath  

 read_and schedule(transfer);} 

    if(mbox_value != 0xdeadbeef){ dequeuer_and_schedule(transfer);}} 

Select_transfer_to_issue_transactions() {      //avoid OCM reads 

   if (high_priority_count >0){ dequeue_and_initiate_to_PL(); } 

   elseif(medium_priority_count >0){ dequeue_and_initiate_to_PL(); } 

   else(low_priority_count >0){ dequeue_and_initiate_to_PL(); } 

   if(remaining_transactions){reschedule(transfer);} }  

 Transaction_received_ack() { 

  if (mbox_value != 0xdeadbeef)    

 switch(mbox_value){ 

  case “ACK/NACK”: consume or retransmit transaction 

  case “read_request” : issue it to BTCM} } } 

 Check_timeout_list(&timeout) : // timeout retransmission handler 

  if (expecting acks>0){read head(tid) of timeout list();  //avoid OCM read 

  if (head is expired) retransmit(head);} 

 Check_pending_read_channels(pending_read_channel_table){ 

          if (pending_read_request>0) {     //avoid OCM read 

 assign_vchannel(read_request); 

 issue_read request();} }   } 

 

 

Using R5 performance counters and specifying some timestamps in several breakpoints of 

the above pseudocode, we could manage to decompose all the framework into segments 

and measure the time each of this segment need to be completed. The main observation 

was that the most time-consuming tasks that contribute extra overhead were the read / 

write operations from/to R5 controller to its peripheral memories. Therefore, in following 

figure 3.8 we show one by one the demanded memory operations that should be 

conducted by R5 controller in order to execute one single issue transfer which means for a 

block <= 16KB size.  
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Figure 3.8: Breakdown Analysis 

 
 

 

As the above figure 3.8 demonstrates, R5 is notified by the process in BTCM scratchpad 

after 1.1 useconds. Also, each read/write operation to OCM memory costs 200 

nanoseconds. Moreover, the time needed to write three 64 bit descriptors from PS to PL 

with merge buffering is only 60 nanoseconds. However, right after that merge buffering 

the write descriptors for completion message cost 370 nanoseconds which is translated at 

least 50 PL cycles overhead. This gives us an obvious conclusion that the major R5 

controller bottleneck is the read/write operations from/to PL.  

 

PS-PL time cost communication 

 

R5 real time processor is located in PS side of the FPGA but AXI mailboxes, that are used 

to communicate with A53 cores and receiver node, are implemented in PL side that is far 

way. This iterative RRT PS-PL communication costs at least 100-150 nanoseconds each 

time which makes R5 incapable to execute further computations while waiting to finish 

this operation.   
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3.6 Read Operation  
 

 

This section is a detailed explanation of the read RDMA operation and describes the steps 

are needed to be followed, so that each remote read request being initiated until being 

completed. The figure 3.9 below is a top level diagram of a read RDMA transfer focused 

mainly on the functionality of the framework that was implemented in R5 microcontroller 

and is installed in each target node. As you can see, the biggest part of read RDMA 

implementation consists of the write RDMA design. In this chapter, we present the 

additional functionality that was needed in order to accomplish remote reads between 

multiple nodes as well as some protocol deadlock and limited resources issues that we 

managed to overcome.  
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Figure 3.9 Read RDMA timeline 
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3.6.1 Read Implementation  
 

In the implementation for read, a remote (Initiator) node which desires to read data from 

the memory of a local (Target) node, sends a read request through the network and asks 

explicitly the data from the local node. The local node receives this request and writes the 

demanded data using R5 framework included fast completion message mechanism as 

shown in above figure 3.9 back to remote node. In order to achieve sending the request, 

initiator node uses a custom hardware implemented packetizer which is responsible to 

write the appropriate descriptors of a read request in a predefined packet format and send 

this packet through the network to the target node. 

Therefore, each time a remote initiator node sends a read request using packetizer 

through the network for asking the data, target node receives this remote request in a PL 

implemented mailbox, the same one which is used to receiving transaction 

acknowledgments too. So, R5 controller polls this PL mailbox and when receives a valid 

value from mailbox, checks if this value is a transaction acknowledgement or a read 

request from a remote node. If this is a remote read request, then software begins the 

decoding process of this request.  

To begin with, software extracts this packet reading one by one the 32-bit fields of 

this packet request which are predefined in a standard format by packetizer and 

constitute the major descriptors of a read request initiation. In detail, these fields are the 

process domain id in which read request belongs to, the expected transfer size from the 

local memory in bytes, the source and destination addresses of the read transfer as well as 

first and last notification data and destination notification address that compose the 

completion message. Firstly, as it is mentioned in the following table 3.4 the “=done” field 

of each read channel at BTCM is initialized with the value two (2). After read request 

initiation, this transfer request considered as ongoing and its “done” field gets the value 

zero (0). When the read transfer finishes successfully its “done” field becomes one (1). In 

the next step, r5 controller tries to occupy a free read channel of 32 available in BTCM 

page according to request’s process domain id in order to host this new initiated read 

request.  

Therefore, framework checks the “done” field of each of these 32 available read 

channels which corresponds to the read request. The first channel that is free or 

completed, hence its “done” field is two (2) or one (1), hosts the new read request and 

software copies its descriptors in that area. Now the “done” field of the channel is zero (0) 

and the read request is considered as ongoing. Thus, r5 begins to serve this data transfer 

applying exact the same quality of service and resilience mechanism like write RDMA 

implementation in order to initiate this read request as write operation to hardware. 
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Values Status Description 

2 Initialized  Read transfer just initiated or   

1 Completed Read transfer has totally finished 

0 On Going Read transfer has been initiated 

and is still working 

 

Table 3.4: “Read done” field state 

 

 

In the following sections, some issues which have to do with upcoming resources 

limitations as well as protocol deadlock cases related with this read RDMA 

implementation, will be discussed. Also, we recommend some alternatives architecture 

solutions which manage to overcome these problems as future work. 

 

 

 

3.6.2 Protocol Deadlock Resolution 
 

On the other hand, in a case software does not find any free available read channel for a 

long time in a process domain page at BTCM scratchpad, the receiving read requests in PL 

mailbox queue which correspond to this process domain are blocked and falling into 

starvation. Specifically, this scenario could happen in our implementation, if the 32 total 

positive acknowledgments which make the outstanding read channels completed for the 

corresponding process domain id in BTCM scratchpad, are located exact behind from read 

requests in the mailbox queue. Thus, read requests are going to wait until any outstanding 

transfer becomes completed in order to take its place, however the acknowledgements 

that satisfy the completion of the outstanding transfers reside behind these requests in the 

same queue. Obviously, this scenario may lead to a protocol deadlock between the read 

requests and the transfer completions in the mailbox queue, as shown in Figure 3.10 

below, due to the existing dependence on each other. 
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Figure 3.10 Protocol Deadlock Phenomenon 

 

 

 

Therefore, in order to resolve this deadlock phenomenon, R5 controller takes over to store 

temporary the pending read requests in a special purpose FCFS buffer in OCM memory 

which are blocked by incomplete read channels as shows figure 3.11. As long as there are 

no released read channels of a process domain, each incoming read request which belongs 

to this specific domain, is stored by priority sequence in this buffer of pending requests.  

Furthermore, R5 controller cares to serve these pending read requests of this buffer 

periodically. If this buffer is not empty, software gets a pending request and checks if 

there is available read channel for it, otherwise puts it again into the rear of the buffer. In 

this way, starvation of pending read requests is avoided. 
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Figure 3.11 Protocol Deadlock Resolution 

 

 

 

At the end, there is also a case in which this special purpose buffer becomes full due to its 

limited capacity before any of the corresponding read channel is completed. In next 

section, we recommend a holistic method of read requests management in order to avoid 

the above mentioned buffer overflow as well as a better resolution approach of the 

protocol deadlock case. 
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3.6.3 Proposed Optimizations 
 

In this section, we propose an alternative organization of receiving messages from PL 

mailbox queue. As we observe at previous implementation, different kind of messages 

such as read requests and transaction acknowledgements which are destined to the same 

queue with mutual dependence, could drive in a protocol deadlock. Moreover, either read 

requests or acknowledgments, that arrive at mailbox queue that are destined to different 

process domain pages at BTCM can be blocked between each other leading to a kind of 

head of line blocking or starvation.  

In order to avoid these failures and low performance cases, we recommend the following 

implementation as shown figure 3.12 which resolve both deadlock and resources 

limitations scenarios and manage in a more efficient way receiving messages in PL. 

  

 
 

Figure 3.12 Proposed Read RDMA 
 



 

 

Leandros Tzanakis Arnaoutakis  ICS-FORTH,UOC 

 

62     CHAPTER 3.6.3 PROPOSED OPTIMIZATIONS  
     

 

First of all, R5 controller checks if there is any incoming read request from a separate 

queue at PL that is intended only for this purpose, while receiving, in an absolutely 

different queue, acknowledgments from completed transactions. Afterwards, R5 checks if 

there is quite space in pending read request buffer in case of receiving a read request that 

cannot be initiated and should be stored there at the moment. If both above situations are 

satisfied, then controller gets a read request and initiates that to a free read channel at 

BTCM according to its protection domain, otherwise stores that request temporarily in the 

pending read request buffer. In this way, we isolate messages like read requests and 

acknowledgments with possible mutual dependence in totally different incoming queues 

allowing controller treating them independently.  

As a result, applying this design we avoid deadlocks cases such as read request that waits 

for acknowledgments which are exactly behind them in order to be initiated, as well as 

head of line blocking which is observed between these different kind of messages in a 

single queue. Last but not least, now we can ensure pending read request buffer overflow 

avoidance because of the fact that we check his capacity before gets a new incoming read 

request from PL queue. 
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Resilience Mechanism  
  

This chapter describes timeout retransmission timer implementation as part of resilience 

mechanism which is supported by our RDMA. The unit that expires after timeout event 

and should be retransmitted again to PL is a 16KB transaction/block which is composed of 

64 packets of 256-byte each. As a result, we implement transaction but not packet level 

timeout retransmissions.  

As you know, TCP protocol dynamically calculates timeout based on the round-

trip time measured by itself. Currently, in our case we have defined retransmission 

timeout as a fixed minimum value of 200 milliseconds, but it is reconfigurable. However, 

with high-speed networks, such as 10 Gigabit Ethernet, the round-trip time (hence 

retransmission timeout) is expected to be much lower. We lose a lot of throughput for 

each millisecond we are not transmitting. A better method is needed to deal with high-

speed and low-latency networks. 

Following sections explain two different approaches of timeout retransmission 

mechanism that implemented in R5 microcontroller in order to reduce per-tick processing 

overhead of timer. 

 

4.1 Timeout Double Linked List 
 

Every transaction which is initiated by R5 controller to PL-RDMA transmitter constitutes 

a pending connection which expects taking acknowledgment through the network by 

receiver. Soon after software initiates a new transaction to PL-RDMA, stores connection’s 

identity called as transaction id into a data structure that implemented for this special 

reason into OCM. This data structure is a time sorted double linked list consisting of ids 

from already initiated transactions. Each time a new transaction is being initiated, 

software takes over to insert its transaction id in the rear of this list. Thus, this timeout list 

is composed of pending transactions ids in a chronological order. The head of the list 

contains the id of the oldest initiated transaction and the rear the most recent respectively 

as shows the following figure 4.1. 

When R5 controller receives a positive acknowledgment from real time mailbox at 

PL, drops immediately its corresponding transaction id from timeout list wherever it is 

into the list and reconnects the pointers. In case this acknowledgment corresponds to the 

head of the list, controller just make a simple dequeue operation. On the other hand, if the 

receiving response is a negative acknowledgment (nacked), then software drops its 

corresponding transaction id from the list, reconnects again the pointers in the list, 

retransmits this one transaction and inserts its id again in the rear of the list. In case of this 

failed transaction was the last one of the whole transfer, software is obligated to send 

again the control notification message too. 

63 
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  Figure 4.1 Timeout double linked list 

 

 

 

 

Following sections present two different implemented techniques of timeout 

retransmission routines, influenced by TCP protocol, which use the mentioned timeout 

list in order to handle expired transactions.  

 

4.2 Absolute Time Retransmissions 
 

In every transaction (16KB) initiation to PL, before software puts its corresponding id into 

the timeout list, takes a timestamp of the cycles of R5 processor at this moment using R5 

performance counters. Afterwards, R5 controller adds these cycles with the expected 

timeout period translated in cycles taking in this way the future expiration date of this 

transaction as following code lines describe briefly. 

 

1. TIMEOUT_PERIOD = 10000000  // period of expired transaction = 20 milisec 

2. proc_cycles = myperf_pmc_cntr_cycles(); // timestamp of processor cycles 

3. transaction_id.tick_counter = proc_cycles + TIMEOUT_PERIOD; 

 

In general, tick counter variable contains the absolute expiration time in cycles of each 

transaction. Consequently, R5 controller enqueues transaction id included its tick counter 

into the timeout list and initiates the transaction to PL RDMA. Every time softare inserts a 

new transaction id to timeout list increases a counter called “expecting_acks” so that 

taking knowledge how many acknowledgments expects from receiver. Therefore, when 

R5 controller checks the value of the “expecting_acks” and this is positive which means 

that timeout list is not empty, calls a routine in order to handle retransmissions. This 

routine is called check_timeout_list.  

 First of all, “check_timeout_list” routine handler reads the oldest transaction id 

which is the head of the timeout list that is sorted in a chronological order and takes a new 

timestamp called “time” translated in R5 cycles at this moment. After that, handler 

compares transaction id’s timestamp “tick counter” with the value “time” and if “tick  
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counter” is greater than the value “time”, means that the corresponding transaction is 

expired and should be retransmitted. So if this transaction is expired, R5 controller calls 

another routine called transaction_retransmission and makes the following operations: 

 

1. Checks if “retransmission bit” which is the 57th bit of the third word of transaction 

initiation is 1 then initiates again whole transaction to PL again 

2. Checks also if this is the last transaction of the transfer and if it is true then sends 

control notification message to PL too 

3. Calculates the new expiration date for this retransmitted transaction with the exact 

same way as we described in the beginning 

4. Puts its transaction id again into the rear of the timeout list 

 

After that, “check_timeout_list” handler checks the next transaction id of the timeout list 

which is the new head element if it has expired too and executes the same procedure, 

otherwise breaks and returns. In a worst case scenario where all transactions have been 

initiated at the same time and have expired, the handler will traverse and drop all the 

elements of the timeout list. 

 

 

 

4.3 Interrupt Timeout Retransmissions 
 

In every transaction (16KB) initiation to PL, before R5 controller puts its corresponding id 

into the timeout list, specifies a tick counter of this transaction with a configurable value. 

This tick counter implies the total number of clock ticks that are needed to happen 

timeout for this mentioned transaction by this moment in the future. Thus, if the timeout 

period for each transaction is 20 milliseconds and the clock tick happens every 1 

millisecond, this tick counter is set with the value of 20. In order to achieve an accurate 

clock tick interrupt every millisecond, we used one the Triple Timer Counters (TTC) that 

is clocked by PS. More about use and setup of TTC interrupts reported at appendices. 

Now, there are two (2) different ways so that interrupt handler routine can be 

implemented in order to check for expired transactions. Following paragraph is one step 

by step description of these different algorithms. 
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The steps of the first implementation are:  

 

1. R5 controller declares a global tick counter (GTC) as number of ticks. 

2. also, before software initiates each transaction to PL, assigns the timeout 

period of transaction as the sum of the GTC and the expiration time calculated 

in ticks. For example, if interrupt event happens every 1 millisecond and the 

expiration time is 20 then the timeout period = 20 milliseconds, so 

transaction_tick_counter = GTC + expiration time; 

3. R5 initiates transaction to PL and puts its id into the rear of the chronological 

sorted timeout list. 

4. When TTC interrupt handler is called, increases GTC plus 1  

5. and checks the head of the timeout list if GTC has reached the tick counter of 

the mentioned transaction e.g if (GTC == head. transaction_tick_counter ) 

6. If it is true, then software calls the transaction_retransmission routine which 

makes the appropriate operations that described exactly in previous section. 

 

The steps of the alternative implementation could be the following: 

 

1. Before software initiates each transaction to PL, assigns the timeout period of 

transaction as the expiration date calculated in ticks. For instance, 

expiration time = 20; 

transaction_tick_counter = expiration time; 

2. R5 initiates transaction to PL and puts its id into the rear of the chronological 

sorted timeout list 

3. When TTC interrupt handler is called, decreases the transaction_tick_counter 

of the head of the timeout list 

4. If transaction_tick_counter is equal to zero (0), that means this transaction has 

expired and should be retransmitted 

5. Software calls transaction_retransmission routine 

 

 

4.4 Sequence Numbers and Livelocks 
 

In the context of high reliability and quality of network resilience, we developed a 

technique putting sequence numbers in each transaction that is initiated to PL RDMA in 

order to deal with two different existing scenarios. 

First scenario has to do with early timeout event. This happens, when a transaction 

is considered as expired and transmitter is obligated to retransmit it. However, at some 

time transmitter receives the positive acknowledgment by the previous transmission of 

the transaction, not by the retransmission. This could be happened due to the 

miscalculation of the timeout period of this transaction.  
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At the moment, we define a timeout period with a fixed value of 20 milliseconds, but in 

the future this could be estimated based on critical parameters such as transmission 

distance, network topology, routing algorithm and bandwidth etc.  

We resolve this phenomenon setting at the first transmission of each transaction its 

sequence number as zero (0). Each time a timeout of a transaction occurs, we increase this 

sequence number plus one (1). If R5 controller receives a positive acknowledgment of this 

mentioned transaction and its sequence number is smaller than the current, then ignores 

this acknowledgment waiting for the last one. 

Second scenario is related to the level of retransmissions which are conducted in 

this version. Because of the fact that now we retransmit an expired transaction/block 

consisting of 64 total packets, but receiver can send back negative acknowledgment for 

this transaction in packet level, there is possibility receiver sends back more than 1 until 64 

negative acknowledgments for one (1) transaction accordingly to its corrupted packets. 

Thus, we apply exact the same methodology setting at the first transmission of each 

transaction its sequence number as zero (0). Each time, software receives a negative 

acknowledgment of a specific transaction, increases the sequence number plus one (1) of 

the transaction and retransmits that. 

Unless the sequence number of the receiving negative acknowledgment is smaller 

than current of this mentioned transaction, that means negative acknowledgment was 

caused from a corrupted packet that belongs in a transaction of previous transmission, so 

R5 controller should ignore that. 

 

Livelocks 

 

Due to the fact that in this implementation we retransmit a block level only if one packet 

fails. Thus, assuming that:  

 

Probability of a failed packet transmission = p,  

 

and each packet transmission is an independent experiment with fail probability p, then, 

the expected number of packet fails in a block of n packets is:  

 

Expected fails in n packets =  n ·p. 

The probability of seeing at least one fail is  

 

Probability of at least 1 fail in n packets = p(n) = 1 - (1 – p)n. 

 

Assume that the packet size is 256 Bytes, that a transfer wants to convey 1GB of data, i.e 

4M packets, and that the packet fail rate is p= 1 / 1000.  Under these assumptions, the 

block fail probability is  

    

     p(64) = 1-(1-0.001)^64 = 0.062025. 
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On the other hand, the fail probability of an unsegmented 1Mbyte message is  

 

p(4096) =1-(1-0.001)^4096 = 0.98339496. 

 

However, in the segmentation case, for a message to complete, all the blocks that comprise 

it need to complete successfully.  For instance, the 1MB transfer consists of 64 blocks. 

Thus, if we assume for simplicity that these are 64 independent experiments, each with 

success probability p(4096), then, we will see at least on block fail with probability:  

   q  =  1 - (1-p(64))^64  = 0.98339492 

  

Although the expected fail rates are equal for the segmented and the unsegmented case if 

we measure it on the message level, in practice, in the segmented case we expect that by 

retransmitting only the failing blocks, we:  

1. We reduce the overhead of retransmissions 

2. We reduce the livelock probability and durations, as in every fail we have to 

retransmit a smaller number of bits, thus reducing the probability that a fail will 

happen again. We leave a more comprehensive analysis of this fact for future 

work.  

Following figure 4.2 demonstrates livelock protocol scenario that could be happened 

based on above conditions. 
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      Figure 4.2 Livelock scenario 
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Chapter 5 
 

Performance Evaluation 
 

In this Chapter, we present the average flow completion time and the average throughput 

of our new advanced user level initiated read/write RDMA for various transfer sizes 

compared with user level initiated 8-channel Xilinx ZDMA and Kernel initiated RDMA, as 

well as some quality metrics which provide to us useful conclusions. 

 

5.1 FORTH vs Xilinx ZDMA 
 

This section covers the performance analysis as well as experiments that were performed 

between  

• FORTH’s PL RDMA implementation (FRDMA)  

• and Xilinx PS RDMA,  

in terms of message completion time and average throughput.  

The following figure 5.1 demonstrates the average completion time in microseconds based 

on various transfer sizes in bytes for a node which conducts a write RDMA operation to 

itself. As we can observe for very small message sizes until 16 KB approximately ZDMA 

presents faster completion than FRDMA, however for bigger sizes, of one (1) 16 KB or 

more, FRDMA yields much lower latency than the ZDMA – note the y-axis is in logscale. 

 

 

 
 

Figure 5.1 Average Completion Time Loopback write FRDMA vs ZDMA  

 

 

 

70 



 

 

Leandros Tzanakis Arnaoutakis  ICS-FORTH,UOC 

 

 

71      CHAPTER 5.1 FORTH VS XILINX ZDMA 

 

Correspondingly, the figure 5.2 below compares the average throughput of FRDMA and 

of ZDMA. In this experiment, we perform loopback -- a node conducts a write RDMA 

operation to itself. It is obvious again that for message sizes bigger than 16KB, the 

FRDMA offers twice as much throughput when compared with ZDMA, reaching out the 

link capacity (10 Gb/s). 

 

 

 
 

Figure 5.2 Average Throughput Loopback write FRDMA vs ZDMA 

 

 

We conducted the same experiment but this time between 2 remote FPGA nodes. In this 

experiment we observed that 1 hop distance write RDMA operation performs much better 

performance using FORTH RDMA both in average latency measurements and 

throughput in comparison with Xilinx ZDMA.  

The following figure 5.3 clearly shows that for transfer sizes bigger than 1 KB FORTH’s 

RDMA presents one order of magnitude lower completion time than the ZDMA. 
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Figure 5.3 Average Completion Time 1-hop write FRDMA vs ZDMA  

 

Exact the same behavior is reflected to 1-hop distance write RDMA operation measuring 

the average throughput between Forth RDMA and ZDMA as shown in figure 5.4. 

 

 
Figure 5.4 Average Throughput 1-hop write FRDMA vs ZDMA 

 

Next, two (2) figures, 5.5 and 5.6, make a comparison between read and write 1 hop 

distance FRDMA operation. For latency sensitive transfer sizes such as 16B, 256B etc write 

operation FRDMA yields lower completion time than the corresponding read operation. 

However, over 16KB message size both operations present exact the same behavior. 
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Figure 5.5 Average Completion Time 1-hop read vs write FRDMA 

 

This behavior is reflected also in the throughput graph. The following figure 5.6 proves 

that write operation exhibits better performance for up to 16KB message sizes when 

compared to read FRDMA operation. 

 
 

Figure 5.6 Average Throughput 1-hop read vs write FRDMA 

 

 

The overhead of read operations is justified due to the fact that when the RT software 

receives a packet request, it needs to extracts the request from the real time mailbox, 

reading its payload in 32-bit words. This bottleneck is caused due to R5 handicap which 

cannot read double precision words as mentioned in section 3.5. 
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5.2 FORTH vs Kernel initiated RDMA 
 

This section shows the performance benefits of user level initiated FORTH RDMA 

compared to to Kernel-initiated RDMA operations. The experiment that we conducted 

was 1-hop distance write RDMA operation between 2 remote nodes/FPGAs. As figure 5.7 

indicates, the Kernel initiated write RDMA operation starts with a latency of about 11 

microseconds, for small transfer sizes; on the other hand, FORTH’s RDMA consistently 

presents a lower completion time behavior for all transfer sizes. 

 

 

 

 
Figure 5.7 Average Completion Time 1-hop write FRDMA vs KERNEL 

 

 

Next, in figure 5.8 we show the average throughput of user level initiated FRDMA 

when compared with Kernel initiated RDMA. In this experiment, we perform 1-

hop distance remote write operation. As you can see the average throughput for 

Kernel initiated RDMA is limited to maximum 3 Gbps contrary to FORTH RDMA 

average throughput which saturates over 8 Gbps.  

 

 

 

 

 

 

 

 

 



 

 

Leandros Tzanakis Arnaoutakis  ICS-FORTH,UOC 

 

75     CHAPTER 5.3 QUALITY MEASUREMENTS 

 

 
Figure 5.8 Average Throughput 1-hop write FRDMA vs KERNEL 

 

 

5.3 Quality Measurements 
 

This section introduces some qualitative measurements that were conducted in order to 

evaluate the behavior of Forth RDMA beyond the regular run cases. 

Following figures 5.9 and 5.10 demonstrate the average message completion time and 

average throughput for the optimized and non-optimized write Forth RDMA operation. 

Non-optimized Forth RDMA is referred to RDMA with disabled all the optimizations that 

targeted latency reduction as described in chapter 3 and section 3.3. Both figures prove 

that optimized Forth RDMA has better performance for transfer sizes smaller than 16KB. 

 

 
 

Figure 5.9 Average Completion Time optimized vs non-optimized FRDMA 
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Figure 5.10 Average Throughput optimized vs non-optimized FRDMA 

 

In another experiment that we conducted, we evaluated of performance behavior in the 

case of one (1) timeout retransmission for various transfer sizes. As we can observe in 

figure 5.11, the average completion time for write FRDMA operation presents at least 20 

milliseconds overhead when one packet fails, and thus one block has to be retransmitted. 

This additional delay happens due to the fixed timeout period (about 20 milliseconds) 

which takes place until the lost block the source retransmits the failing block. Figure 5.11 

proves obviously this phenomenon.   

 

 

 
Figure 5.11 Average Completion Time Regular vs Timeout FRDMA 
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Figure 5.12 shows how much bandwidth could be lost in case of one (1) timeout 

retransmission event over the network for various message sizes. As we can see the 

damage of performance is so huge, even for 1KB transfer size the average throughput is 

much lower than 1 Gbps. This happens because of the timeout period during which the 

link is idle. 

 

 

 
 

Figure 5.12 Average Throughput Regular vs Timeout FRDMA 
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Chapter 6 
  

Conclusions – Future Work 
 

Modern computing clusters consist of many heterogeneous computing units that work 

collectively in order to fulfill high computing tasks. Low latency communication between 

the remote processes that run on these servers is a critical factor for achieving high 

performance. In this work, we described the software programmable part of an advanced 

RDMA engine which is used in the ExaNeSt prototype. This firmware of the RDMA 

engine provides advanced Resiliency and Quality-of-Service (QoS) features and allows 

user-level transfer initiation. Performance evaluation demonstrates flow completion time 

reduce in various transfer sizes as well as a significant increase of throughput that 

approaches the upper bound of links.  

The bottleneck that was observed, is the weakness of real time processor to make 

64 bit read/writes from/to PL memory due to its limited 32-bit bus width. On the other 

hand, this issue could be solved either using an A53 core which is obviously capable of 

64bits read/writes from/to PL instead of R5 microcontroller or making hardware 

implementation of the whole R5 framework into the PL. 

One another solution for latency reduction could be the process write directly the 

dma descriptors for a small transfer  (< =16 KB block) to PL registers in order to initiate 

instantly the RDMA operation and after that notifies the R5 for bookkeeping and receiving 

the corresponding acknowledgment. 

Alternatively, we could replace R5 processor with a Microblaze Xilinx core however again 

some critical questions come up about feasibility due to Microblaze: 

 

1. Supports 32-bit AXI master/slave interface 

2. May not reach 500-600MHz clock 

3. Need specified BRAMs > 128 KB 

 

This idea could be feasible if we used a 64bit RISCVI included in PL otherwise supported 

with coherent IO accesses. 

Also, it deserves further investigation if this framework can also corporate well applying a 

congestion control on each node implemented by a hardware rate limiting block based on 

the feedback of the network path.    
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Appendix A 

R5 Memory Settings  

We should specify and limit precisely the memory regions of R5 microcontroller in order 

to control application’s memory map settings. This configuration can be succeed 

following the next steps:  

1)  Right click on the R5 project directory that you created in XSDK platform.  

2)  Choose “Generate Linker Script” selection  

3)  Click “Basic” button right on the top and define all place sections in first 64 KB part 

of R5 scratchpad memory (ATCM).  

• Code Section: psu_r5_0_atcm_MEM_0  

• Data Section: psu_r5_0_atcm_MEM_0  

• Heap and Stack in: psu_r5_0_atcm_MEM_0  

Also, we should specify the size of heap and stack memory about 1KB, no more than 2-3 

KB because an overflow occurs and no less because this action leads to memory violation 

without any notice in compilation phase and the program throws segmentation fault on 

run time.  

In order to choose compilation optimizations or any other settings, you should click right 

on the R5 project again and select “C/C++ Build Settings”. For instance, if you prefer 

another optimization level click on “Optimization” selection of ARM R5 gcc compiler or if 

you want to add extra compilation flags click on “Miscellaneous” selection.  

 

R5 Memory Attributes  

As we mentioned in section 4.7.1 Memory Protection Unit (MPU) works with the R5 L1 

memory system to control accesses to and from L1 and external memory. If you   intend to 

change its memory regions in order to apply any memory protection from miss coherent 

access, to enable merge store buffer or any other modification then pay attention on 

following guideline.  

i 
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ii APPENDIX A. R5 MEMORY ATTRIBUTES 

1) You should make double click to open bsp directory that generated by R5 project  

2) then cd psu_cortexr5_0/libsrc/standalone_v6_3/src/ and find mpu.c source file  

3) In mpu.c file every memory region for R5 processor is defined and you are able to do 

necessary changes there, as Chapter 4 specifies.  

• In our case, in order to enable merge store buffer, it was needed to make the 

attribute of PL memory region “normal shared non chacheable” with read/write 

user full rights as follows:  

Addr = 0x80000000; //EDITED// old = "STRONG_ORDERD_SHARED"  

RegSize = REGION_1G;  

Attrib = NORM_SHARED_NCACHE | PRIV_RW_USER_RW;  

Xil_SetAttribute(Addr,RegSize,RegNum, Attrib);  

RegNum++;  

• If you desire to make OCM memory cacheable because only R5 processor conducts 

read/writes at the moment, you can define the following section:  

/* 256K of OCM RAM from 0xFFFC0000 to 0xFFFFFFFF marked as normal memory */  

Addr = 0xFFFC0000U;  

RegSize = REGION_256K;  

Attrib = NORM_NSHARED_WB_WA| PRIV_RW_USER_RW;  

RegNum++;  

 

And 
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• If you want to extend or split regions for example protecting TCM memory from 

miss coherency by A53 you can define the following regions:  

//WE ADDED ANOTHER REGION, THE ATCM, TO BE OVERLAPPED AS NORMAL, 

NON SHARED WB-WA  

Addr = 0xFFFE0000U;  

RegSize = REGION_64K;  

Attrib = NORM_SHARED_NCACHE| PRIV_RW_USER_RW;  

Xil_SetAttribute(Addr,RegSize,RegNum, Attrib);  

RegNum++;  

//WE ADDED ANOTHER REGION, THE BTCM, TO BE OVERLAPPED AS 

NORMAL, NON -CACHEABLE 

Addr = 0xFFFE2000U;  

RegSize = REGION_64K;  

Attrib = NORM_SHARED_NCACHE| PRIV_RW_USER_RW;  

Xil_SetAttribute(Addr,RegSize,RegNum, Attrib);  

A total of 10 MPU regions are allocated with another 6 being free for users.  
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Appendix B 

Linux Booting Process in Prototypes 

Trenz Prototype  

In order to run Linux in Trenz prototype in cooperation with R5 firmware, you should 

build an appropriate BOOT.bin that has the R5 executable file (.elf) included.Thus, you 

must  follow instructions below:  

1) cd yat (YAT-yet another tool)  

2) cd  .../trenz/profiles/trenz-sd/bootbin directory and open the extras.sh script file.  

3)  look at gen_bif() routine in which you can format BIN the ROM image, as well as it 

gives you the opportunity to define precisely the destination of the R5 executable (.elf) file  

4) More specifically, you should add highlighted entries such as: 

function gen_bif () {  

printf "\t//arch = zynqmp; split = false; format = BIN \n \  

the_ROM_image: \n\ {  \n\  

[destination_cpu=a53-0, bootloader] fsbl.elf \n\  

[destination_cpu=pmu, destination_device=ps] pmufw.elf \n\  

[destination_cpu=a53-0, exception_level=el-3, trustzone] bl31.elf \n\  

[destination_cpu=r5-0] /home/leandros/r5_controller_v5.elf \n\  

[destination_device=pl] ${2} \n\  

 [load=0x8000000,startup=0x8000000,destination_cpu=a53-0, 

exception_level=el-2] u-boot.elf \n\  

[load=0x800000, destination_cpu=a53-0] Kernel.bin \n\  

[load=0x000000, destination_cpu=a53-0] system.dtb \n\ }" > ${1} }  

i 
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 Afterwards, you can build a new BOOT.bin using the appropriate yat commands as were 

described adequately in section 2.3.2 and you can mount it on a SD card in order to boot 

Linux in Trenz preloaded with R5 firmware.   

QFDBs Prototype  

In order to run Linux in QFDBs prototype in conjunction with R5 firmware, you should 

build an appropriate “boot package” according to the desirable design description file 

(.hdf) using yat (YAT-yet another tool) toolchain commands as we described in section 

2.3.2. 

In the next step, you should connect to QFDB environment and if you can achieve to boot 

the design (.hdf) you need to follow the next  bullets: 

1. cd at directory where you will find a script that contains commands for 

loading packages such as “load_boot_package.sh” 

2. edit “load_boot_package.sh” with the new command 

/root/qfdb-stuff/boot_package 

/home/pxirouch/bps/2.0.<last_stable_version>/output.bp.<fpga_number> 

 and run this script. 

 

So now, you have loaded the RDMA design in the FPGA in which you prefer to run 

processes. In order to load R5 firmware, you should follow the next steps: 

 

1.  Set two (2) FPGA reset registers with the corresponding values as: 

 

/root/qfdb-stuff/rwphys/write32 0x80070004 0x1 

 

/root/qfdb-stuff/rwphys/write32 0x80070000 0xffffffff 

 

2. Install two (2) device drivers  

➢ Scratchpad_alloc: TCM memory allocation  

 

insmod ~/scratchpad_alloc.ko 

 

➢ Exanest_virt 

 

insmod ~ /exanest_virt.ko board_id=$”fpga_destination_id” 

3. Copry R5 executable to /lib/firmware as follows: 

cp  ~ /r5_controller_linux.elf /lib/firmware/  
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4. cd to directory in which exists r5 executable (.elf) 

5. start R5 firmware running the commands: 

 

a. echo r5_controller_linux.elf > /sys/class/remoteproc/remoteproc0/firmware 

b. echo start > /sys/class/remoteproc/remoteproc0/state 

 

        

6. If you want to stop and restart R5 firmware without conducting any board reset, 

then you should first of all run the command:  

echo stop > /sys/class/remoteproc/remoteproc0/state 

and after that you should reload the boot package and r5 firmware (above 

procedure) again. 

 

Briefly, you can run “remoteproc.sh” and “removeproc.sh” scripts in order to load and 

stop respectively R5 firmware. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


