
Timing-Driven Physical Design EDA
Algorithms for Tackling Process

Variations

Evriklis Kounalakis
December 2011

University of Crete
Department of Computer Science

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Doctoral Thesis Committe: Christos Sotiriou, Associate Professor (Supervisor)
Manolis Katevenis, Professor
Ioannis Tollis, Professor
Apostolos Traganitis, Professor
Giorgos Georgakopoulos, Associate Professor
Dionysios Pnevmatikatos, Professor
Giannis Papaeystathiou, Assistant Professor

ii

University of Crete
Department of Computer Science

Timing-Driven Physical Design EDA Algorithms for Tackling Process Variations

Dissertation submitted by

Evriklis Kounalakis

In partial fulfillment of the requirements for
the PhD degree in Computer Science

Author:

Evriklis Kounalakis, University of Crete

Examination Committee:

Christos Sotiriou, Associate Professor, University of Crete

Manolis Katevenis, Professor, University of Crete

Ioannis Tollis, Professor, University of Crete

Apostolos Traganitis, Professor, University of Crete

Giorgos Georgakopoulos, Associate Professor, University of Crete

Dionysios Pnevmatikatos, Professor, Technical University of Crete

Giannis Papaeystathiou, Assistant Professor, Technical University of Crete

Approved by:

Angelos Bilas, Chairman of Graduate Studies
Heraklion, December 2011

Acknowledgments

This work has been partly funded by FORTH-ICS, Greece, which the author would like to
acknowledge.

I would like to thank Nanochronous Logic, Inc, which helped me uncover real problems
that the industry is facing and has proven as an inspiration for this work. Being part of
Nanochronous’ R&D team, I also had the chance to expand on my software engineering skills,
which helped me towards the demanding implementation aspects of this thesis.

I would like to thank my supervisor, Christos P. Sotiriou, who has been patient with me
throughout all the years of this thesis’ development. His advice has been valuable as to what
kind of problems were most promising for research, as to helping me stay on track during my
research and as to identifying the time to conclude my thesis.

I would like to thank my thesis internal committee, Christos Sotiriou, Manolis Katevenis
and Ioannis Tollis, who have provided me with valuable directions and advice. I would also
like to thank the other members of my thesis committee, Apostolos Traganitis, Giorgos Geor-
gakopoulos, Dionysios Pnevmatikatos and Yiannis Papaeystathiou for their suggestions and
advice.

I would like to thank my family for their encouragement and support, especially during the
last 15 months, which proved to be the hardest.

Lastly, I would like to thank all the people who have been near me during all the years this
research took.

iv

Abstract

Moore’s law states that the total number of transistors of an integrated circuit approximately
doubles every two years. Maintaining this trend, requires tools able to cope with the ever-
increasing complexity of chip design. Electronic Design Automation (EDA) has so far addressed
this problem by providing automated tools and flows which enabled designers to handle chips
consisting of more than a few millions transistors.

However, the ever shrinking of the size of transistors and interconnects, now poses new ob-
stacles for designers and automated EDA flows. Smaller dimension devices, although providing
more speed and less area, pose new challenges. Contemporary Deep-Sub-Micron (DSM) fabri-
cation processes suffer from the presence of manufacturing variations, due to unpredictability in
the exact dimensions and characteristics of transistors and wires. These variations now affect
high-level characteristics of the chips such as their speed and power consumption. Technol-
ogy vendors have always provided a number of characterizations for each circuit element at
different operating scenaria (operating corners). Nowadays, more corners are needed to ac-
count for process variations, which adds to the complexion of achieving closure for all corners
simultaneously.

One way to mitigate this phenomenon is to integrate multiple operating scenaria into a
single, unified model, which can then be incorporated into existing flows. Statistical models
offer this capability. They can encapsulate each corner into a random distribution, which can
reflect the variation of speed and power consumption characteristics of the circuit elements. In
this case, the delay and power becomes statistical rather than deterministic. Although such
statistical models exist, their use in EDA flows has not been demonstrated. An alternative ap-
proach for combating variations is to design circuits which include clock-less or asynchronous
speed-independent designs. These, possess the property of adjusting to their operating con-
ditions instead of failing for fixed constraints. This approach requires further development of
asynchronous circuits, the implementation of which has not been proven viable in EDA flows.
Currently, there is significant lack of EDA tools capable of handling asynchronous circuits,
making their use impossible in industrial designs.

In this work, we have developed and evaluated placement and post-placement optimization
algorithms, which aim to tackle the problem of process variations in contemporary EDA flows.
We present a novel placement algorithm, SCPlace, which based on a statistical timing model
in its optimization engine, alleviates the need for multi-corner placement. SCPlace is the first

vi

large-scale statistical optimization tool appearing in literature targeting placement, which is the
cornerstone of physical implementation. SCPlace exploits statistical wire delay bounds, gener-
ated by our novel statistical slack assignment algorithms, which distribute slack according to
statistical distributions. We have also developed a post-placement statistical leakage reduction
algorithm, which is able to perform in-place statistical leakage reduction without negatively
affecting statistical delay. Our third contribution is CPlace, a fully automated placer for asyn-
chronous, cyclic circuits. CPlace is able to meet both performance and speed independent
constraints.

Experimental results indicate that SCPlace compares favourably with state-of-the-art, in-
dustrial and academic placers, providing routable designs which achieve superior timing yield
computed from the resulting statistical delay distributions. Our statistical leakage reduction
flow achieves 20% average leakage reduction, without affecting the statistical delay of the pre-
placed circuit. Our results also show that CPlace provides routable placements for asynchronous
circuit and superior placements compared to state-of-the-art industrial and academic placers
which cannot guarantee speed independent constraints. All three of our flows have been de-
signed with ease of integration into contemporary EDA flows in mind, through the use of only
industry-standard formats and by collaborating with commercial EDA tools.

Περίληψη

Ο νόμος του Moore υποδεικνύει ότι ο αριθμός των τρανζίστορ σε ένα ολοκληρωμένο
κύκλωμα διπλασιάζεται κάθε δύο χρόνια. Για να διατηρηθεί αυτή η τάση, απαιτείται
τόσο οι διαστάσεις των τρανζίστορ να συρρικνώνονται, όσο και να υπάρχουν εργαλεία
ικανά να χειριστούν την αυξανόμενη πολυπλοκότητα των κυκλωμάτων. Ο τομέας του
Ηλεκτρονικού Σχεδιαστικού Αυτοματισμού (ΗΣΑ) μέχρι τώρα, αντιμετώπισε το πρό-
βλημα αυτό, προσϕέροντας ροές και εργαλεία, τα οποία έκαναν δυνατό το χειρισμό
κυκλωμάτων με πλήθος τρανζίστορ αρκετών εκατομμυρίων. Σήμερα όμως, τα εργα-
λεία ΗΣΑ πρέπει να αντιμετωπίσουν και το ϕαινόμενο της κατασκευαστικής μεταβλη-
τότητας, το οποίο εισάγει αβεβαιότητα σε σημαντικά χαρακτηριστικά των κυκλωμάτων,
όπως ο χρονισμός και η κατανάλωση.

Σε αυτήν τη διατριβή, αναπτύξαμε και αξιολογήσαμε αλγορίθμους βελτιστοποίησης
για το στάδιο της τοποθέτησης και της βελτιστοποίησης μετά την τοποθέτηση, ώστε
να αντιμετωπιστεί το ϕαινόμενο της μεταβλητότητας. Παρουσιάζουμε έναν καινοτόμο
αλγόριθμο τοποθέτησης, SCPlace, ο οποίος βασιζόμενος στη στατιστική χρονική ανά-
λυση του κυκλώματος, χειρίζεται την αβεβαιότητα στον χρονισμό. Επιπλέον, αναπτύ-
ξαμε ένα εργαλείο βελτιστοποίησης της κατανάλωσης λόγω ρεύματος διαρροής, μετά
την τοποθέτηση, το οποίο βελτιστοποιεί για κατανάλωση χωρίς να επηρεάζει αρνητικά
το στατιστικό χρονικό ωϕέλιμο του κυκλώματος. Τέλος, η τρίτη συνεισϕορά της δια-
τριβής αυτής είναι το εργαλείο CPlace, ένα εργαλείο τοποθέτησης, το οποίο μπορεί να
χειρίζεται ασύγχρονα κυκλώματα, τα οποία είναι λιγότερο επιρρεπή στα αποτελέσματα
της μεταβλητότητας.

Τα πειραματικά αποτελέσματα δείχνουν ότι το SCPlace πετυχαίνει καλύτερα απο-
τελέσματα από τα καλύτερα βιομηχανικά και ακαδημαϊκά εργαλεία όσο αϕορά τη στα-
τιστική συμπεριϕορά του χρονισμού του κυκλώματος μετά την τοποθέτηση. Η ροή μας
για βελτιστοποίηση της κατανάλωσης πετυχαίνει 20% μείωση της κατανάλωσης χωρίς
καμία επίδραση στο στατιστικό χρονικό ωϕέλιμο του κυκλώματος. Τέλος, το CPlace
μπορεί με επιτυχία να χειριστεί ασύγχρονα κυκλώματα σεβόμενο τις χρονικές υποθέ-
σεις οι οποίες είναι απαραίτητες για τη λειτουργία τους. Όλα τα εργαλεία που αναπτύ-
ξαμε συμμορϕώνονται με βιομηχανικά στάνταρ και έχουν σχεδιαστεί ώστε να μπορούν
να ενταχθούν άμεσα σε βιομηχανικές ροές υλοποίησης κυκλωμάτων.

viii

Contents

Acknowledgments iii

Abstract v

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Electronic Design Automation . 2
1.2 Major Technology Challenges . 6
1.3 Drawbacks of Existing EDA Practices . 7
1.4 Contributions of this Thesis . 8

2 Background 11
2.1 Timing Analysis . 11

2.1.1 Synchronous Static Timing Analysis . 12
2.1.2 STA-based Timing Optimization . 14
2.1.3 Statistical Static Timing Analysis . 15

2.1.3.1 SSTA-based Timing Optimization 16
2.1.4 Asynchronous Timing Analysis . 18
2.1.5 Asynchronous Timing Analysis Models 19

2.1.5.1 Timing Separation of Events 20
2.2 Placement Algorithms . 22

2.2.1 Optimization Objectives and Constraints 23
2.2.2 Requirements for a Placer . 25

2.3 Algorithmic Approaches to Placement . 26
2.3.1 Iterative vs Constructive Placement . 27
2.3.2 Global vs Detailed Placement . 27
2.3.3 Standard Cell Placement vs Mixed-size placement 28
2.3.4 Wire Bounds as an Optimization Directive 29

x CONTENTS

2.3.5 Taxonomy of Placers . 29
2.3.6 Challenges for Contemporary Placers . 30

2.3.6.1 Multi-Corner Placement . 30
2.3.6.2 Asynchronous Circuits Placement 31
2.3.6.3 Post-placement Optimization 32

2.3.7 Limitations of Contemporary Placers . 33
2.3.8 Our Approach to the Placement Problem 34

2.3.8.1 Statistical/Multi-Corner Timing-Driven Placement 34
2.3.8.2 Placement for Asynchronous Circuits 35
2.3.8.3 Post-Placement Optimization 35

3 Statistical Delay Bounds 37
3.1 Statistical Static Timing Analysis . 37

3.1.1 Statistical Gate Delay . 38
3.1.2 Statistical Delay Propagation . 38

3.2 Minimum Sigma Propagation . 44
3.2.1 Motivation and Intuition for MSSA . 44
3.2.2 MSSA for a Single Gate . 45

3.3 Minimum Sigma Slack Assignment . 47
3.3.1 MSSA Superfluous Constraints . 49
3.3.2 Runtime Issues . 50

3.4 Target Sigma Propagation . 50
3.4.1 Motivation and Intuition for TSZSA . 50
3.4.2 TSZSA for a Single Gate . 52
3.4.3 TSZSA Algorithm . 53
3.4.4 TSZSA Wire Delay Propagation . 53

3.5 Target Sigma Zero Slack Assignment . 54
3.6 LP slack assignment . 56

3.6.1 LP formulation for Statistical Slack Assignment 58
3.6.2 Runtime Improvement Through Hierarchical LP 59

4 SCPlace 63
4.1 Motivation for SCPlace . 64
4.2 Description and Intuition for SCPlace . 65
4.3 Requirements for Statistical Placement . 66
4.4 SCPlace Interface . 67
4.5 Optimization Objectives . 68
4.6 The SCPlace Flow . 69
4.7 Implementation Details . 71

4.7.1 Constructive Process . 71
4.7.2 Reconstruction . 72

CONTENTS xi

4.7.3 Perturbation . 75
4.7.4 Finalization . 77
4.7.5 Routability . 78
4.7.6 Legalization . 78
4.7.7 Slack Reassignment . 79

4.8 SCPlace Hierarchical Approach . 83

5 Post-Placement Statistical Leakage Optimization 85
5.1 Statistical Leakage Optimization . 85
5.2 Statistical Leakage Optimization Requirements 86

5.2.1 Physical Information . 87
5.2.2 Timing Analysis and Leakage Model . 87
5.2.3 Timing and Leakage Constraints . 88
5.2.4 Gate Substitution . 89

5.3 Statistical Leakage Optimization Interface . 89
5.4 Optimization Objectives . 90
5.5 Leakage Optimization Flow . 92
5.6 Optimization Flow Details . 95

5.6.1 Statistical Slack Assignment . 95
5.6.2 Gate Sorting . 96
5.6.3 Incremental SSTA . 97
5.6.4 Slack Reassignment . 98

5.7 Routability and Legalization . 102
5.8 Runtime Issues . 103

6 CPlace 105
6.1 Asynchronous Placement Requirements . 105
6.2 CPlace’s Interface . 106
6.3 CPlace Objectives . 107
6.4 Slack Assignment for Asynchronous Circuits . 109

6.4.1 Wire-Delay Bounds . 109
6.4.2 LP Formulation . 110

6.5 The CPlace Flow . 112
6.6 CPlace Implementation Details . 114

6.6.1 Constructive Process . 114
6.6.2 Reconstruction . 114
6.6.3 Perturbation . 116
6.6.4 Finalization . 116
6.6.5 Routability and Legalization . 117

6.7 Runtime Issues . 117

xii CONTENTS

7 Results 119
7.1 Benchmark Set . 120

7.1.1 Synchronous Benchmarks . 120
7.1.2 Asynchronous Benchmarks . 121

7.2 Slack Assignment Results . 122
7.2.1 Slack Assignment Runtime . 127

7.3 SCPlace Results . 129
7.3.1 Timing Yield . 129
7.3.2 Routability . 132

7.4 Leakage Recovery Results . 133
7.4.1 Leakage Recovery vs Industrial . 135
7.4.2 Delay-Leakage Tradeoff . 136
7.4.3 Leakage Recovery Runtime . 136

7.5 CPlace Results . 138
7.5.1 CPlace vs Industrial and Capo . 139
7.5.2 QDI Satisfaction . 140
7.5.3 CPlace Runtime . 143

8 Conclusions 145
8.1 Future Work . 146

A Synchronous and Asynchronous Timing Models 149
A.1 Static Timing Analysis Models . 149
A.2 Statistical Timing Analysis Models . 151
A.3 Variation and Correlation Models . 152

B Placement Approaches 159
B.1 Simulated Annealing . 159
B.2 Genetic . 160
B.3 Min-Cut . 161
B.4 Analytical . 162

C Statistical Distributions 163
C.1 Normal Distribution . 163
C.2 Log-Normal Distribution . 164

References 167

List of Figures

1.1 Contemporary design flow . 3
1.2 Thesis contributions . 9

2.1 STA example annotation . 13
2.2 STA violating and non-violating paths . 15
2.3 Timing yield . 16
2.4 Cases of distributions’ relative position . 18
2.5 Statistical optimizations . 18
2.6 A simple petri-net with initial marking . 19
2.7 A xyz-STG . 20
2.8 A xyz-ER . 21
2.9 A process graph . 21
2.10 A process graph unfolding . 22
2.11 Layout manufacturing grid . 26

3.1 Progression of SSTA . 42
3.2 Monte Carlo analysis compared with SSTA result 43
3.3 MAX of two normal distributions . 45
3.4 3-input gate MSSA delay assignment example 46
3.5 σ(MAX), as a function of mean . 47
3.6 MSSA example with a superfluous constraint . 49
3.7 Applying TSZSA offset to gate inputs . 53
3.8 Optimizing successor level bounds - possible cases 54
3.9 Hierarchical support for LP . 60

4.1 Bounding box estimation . 67
4.2 SCPlace’s flow . 69
4.3 Upper and lower bound constraint types . 71
4.4 Multiple physical distance constraints . 72
4.5 Reconstruction example . 73
4.6 Placement of a cell on a valid location . 79

xiv LIST OF FIGURES

4.7 SCPlace slack reassignment example . 81
4.8 Hierarchical SCPlace . 84

5.1 Statistical leakage extrapolated PDF example 88
5.2 Leakage reduction flow . 93
5.3 Re-Sizing example . 95
5.4 Distributing unused slack with incremental SSTA 99
5.5 Re-distributing slack after one full optimization iteration 101
5.6 Overlaps after standard cell resizing . 103

6.1 Absolute and relative constraints . 110
6.2 CPlace flow . 112
6.3 CPlace constructive bounds . 114

7.1 TSZSA timing yield gains . 125
7.2 ZWD, ZSA, MSSA and TSSA comparison . 126
7.3 TSSA mean, sigma tradeoff curve . 127
7.4 SCPlace timing yield improvement . 130
7.5 b05 after detailed routing . 133
7.6 Timing yield loss after leakage reduction . 136
7.7 Delay-leakage tradeoff . 137
7.8 Experimental flow . 142

A.1 Rise (fall) transition depending on input rise (fall) transition and output driving
capacitance . 150

A.2 Physical layout quadrisection . 157

C.1 Normal Distribution pdf and cdf . 164
C.2 Log-Normal Distribution pdf and cdf . 165

List of Tables

7.1 Synchronous benchmarks . 120
7.2 Synchronous large benchmarks . 121
7.3 Asynchronous benchmarks . 122
7.4 Comparison of zero wire delay with MSSA . 123
7.5 Comparison of ZSA and TSZSA results for given slack, illustrating yield im-

provement . 124
7.6 MSSA and TSZSA runtime . 128
7.7 Placement results comparison . 129
7.8 SCPlace runtime breakdown . 131
7.9 Initial placement . 134
7.10 Timing yield comparison . 135
7.11 Leakage optimization runtime breakdown . 138
7.12 Synchronous placement results comparison . 139
7.13 Comparison of relative constraints violations for CPlace and the industrial placer 141
7.14 CPlace runtime breakdown . 144

xvi LIST OF TABLES

Chapter 1

Introduction

Moore’s law, which states that the number of transistors in a chip doubles every two years,
has always been then driving force of the semiconductor industry, driving for faster and more
power efficient circuits.

If Moore’s law is met, then a positive feedback phenomenon takes place. The faster and
more efficient chips, allow for more integration, which in turn, allows for fabricating even faster
circuits. However, by the mid-70s, although circuits were still designed by hand, it became
apparent that the complexity of the design process for chips with large scale integration made
it difficult to follow Moore’s law [30]. The first step to mitigate this effect was to partition
the implementation process into discrete steps. However, the complexity of even a single step
was starting to become overwhelming for designers. Steps of the flow like translation of circuit
into logic gates, placement of the gates and interconnecting them, could no longer be done
by hand. The ever increasing complexity called for fully automated approaches, which would
enable designers to cope with the exponential growth in circuit sizes. Automated tools began
to appear, creating a new section of the semiconductor industry, i.e. Computer Aided Design
(CAD) which evolved into fully automated flows, described by the term Electronic Design
Automation (EDA). EDA encompasses a set of tools available to circuit designers, which enable
them to implement and fabricate complex circuits with more than a few million transistors.
According to the International Technology Roadmap for Semiconductors (ITRS) [34], versatile
EDA tools will be needed in the forthcoming years, coupled with more complex flows.

2 Introduction

1.1 Electronic Design Automation

The first EDA tools, during the 80’s, consisted mainly of placement and routing tools [30]. EDA
tools of this era, helped designers cope with the increasing number of transistors which had to be
placed and routed on the layout. However, they were still away from fully automated tools, as
they required for the designer to make important decisions, which affected chip characteristics,
such as timing and power.

As EDA technology continued to develop, the complexity of, invariably, all steps of design
flow began to overwhelm the designers. Thus, the need for automated tools became more
prominent. By the mid-80s an increasing number of EDA tools appeared, both in academic
and industrial environments [30]. One major breakthrough occurred in 1986, when the hardware
description language (HDL) Verilog was introduced. In 1987, a second description language,
VHDL was developed. The introduction of HDLs enabled a high-level more comprehensive
description of circuits. Additionally, it allowed for formal interaction between EDA tools,
targeting different steps of the flow.

In the next few years, basic steps of the standard design flow were defined, so as to divide
the complex problem of chip implementation into smaller, manageable sub-problems. As a
consequence, specialized EDA tools were developed, for virtually every step and aspect of
the flow. As EDA tools became more advanced, their automation capabilities and features
increased. Standard design practices were also developed so as to allow for more comprehensive
specifications and better debugging. The design practice of synchronous circuits, which assumes
that all synchronization is done with one, or more global signals, became standardized. This
allowed for the definition of the frequency at which the circuit operates. Advances in EDA tools
and standardization of design implementation led to the emergence of high-level constraints,
which guided their algorithms, with the most important constraint being timing constraints,
which specify that the circuit must operate at a given frequency.

The importance of timing constraints have led EDA tool developers to integrate static timing
analysis engines within the optimization process in order to achieve timing closure at all steps
of the design flow. This led to timing-driven algorithms and tools, which are commonly used
today and the focus of EDA shifted entirely to synchronous circuits.

Despite the complexity of modern EDA tools, they have become essential for designing
complex chips and meeting time-to-market constraints. It is not uncommon for a contemporary
chip to go through ten or more dedicated EDA tools and steps, each covering a fraction of the

1.1 Electronic Design Automation 3

implementation aspects and interacting only with the previous and the next EDA tool in the
design chain.

Figure 1.1: Contemporary design flow

Figure 1.1 shows a typical design flow for contemporary, synchronous designs, which typi-
cally target three optimization objectives, i.e power, performance and area. Initially, a high-
level description of the circuit is provided by the designer. The first step is to translate the
description, which is typically in Verilog or VHDL into logic circuit components. These compo-
nents are logic gates or logic macros such as memories, adders, multipliers etc. The description
derived from this translation step, and termed Synthesis, uses generic gates or macros, inde-
pendent of technology. The next step is to map each generic component into a real technology-
specific element, provided and described in a technology library. This is performed in the
Technology Mapping phase. After technology mapping, the circuit consists entirely of technol-
ogy components. These can be gates, small macros, or larger macros. In the former case, each
component is a standard cell, whose characteristics such as area, timing, power are described
in the technology libraries. In the latter cases, each component is a small or large logic block,

4 Introduction

whose characteristics are described by separate technology files. Both synthesis and technology
mapping in contemporary flows, use static timing analysis to achieve timing closure. Technol-
ogy mapping is the last step of Front-End design, which refers to the design steps that lack
physical information.

Back-end design on the other hand, refers to the physical steps of the design flow. The first
step is Placement. Placement’s objective is to identify appropriate locations for all components
of the design, i.e. standard cells and macros, within a physical layout. Placement’s quality is
determined according to the constraints that a placer supports. One type of constraints are
physical constraints, which refer to the size and shape of the layout. Such constraints describe
the locations on which any component can be placed. In contemporary industrial placers,
timing constraints guide the optimization towards timing closure. There may be other types
of constraints, e.g. power constraints, which can also affect the relative locations of compo-
nents. After placement, there may be a step for in-place optimization, which allows for local
optimizations with respect to timing, area and power with little changes over standard cells.
This may refer to replacing standard cells with other, equivalent cells, in order to e.g. reduce a
cell’s power consumption. However, the degree of freedom for an optimization algorithm at this
step is significantly smaller than that of a placer, so the amount of optimization that can be
achieved in this step is significantly smaller than the potential optimization through placement.
Consequently, it is important that the placement process does not introduce violations, which
cannot be fixed by in-place optimization. After the design has been placed, the components
must be connected by wires, which is done in the next step, Routing. Routing typically works
closely with STA, similarly with the previous steps of the design flow. Routing is the last step
where optimization is possible, i.e. after routing only small corrections can be made by experi-
enced engineers through Engineering Change Order (ECO). It is also the last step, which can
significantly affect circuit’s timing, as it has control over the length and dimension of individual
wires. Any violations introduced in this step are not likely to be fixed in any step beyond that.
The final flow step is static sign-off where the circuit is validated against all constraints. The
design undergoes detailed STA using accurate delay models, which encapsulate cell and wire
delays under worst-case conditions. Power and design-rule analysis is also done in order to
validate the design against the required power performance and manufacturing requirements.

A typical timing-driven design flow for synchronous circuits relies heavily on STA. This has
led to the development of accurate STA tools and methodologies. STA’s task is to calculate
the arrival times of data from the circuit’s startpoints to all endpoints for all circuit’s paths.

1.1 Electronic Design Automation 5

The slowest path defines the worst-case delay of the circuit.
At first, timing analysis was done by hand, without the use of any automated tools. The

designer would compute the amount of time required for data to propagate from inputs to
outputs, by taking into account estimated gates and wires delays. However, due to the large
number of computations, doing this by hand requires too much time. Soon, it became clear
that timing analysis should be automated to be efficient.

The most prominent approach, still used today, is called Static Timing Analysis (STA),
which is perfectly suited for the synchronous-design practice. Synchronous circuits are mod-
eled after the notion that the whole circuit is synchronized with a global signal, called clock.
The computations are done with combinational elements and the results are stored in sequential
elements at each clock pulse. Using this assumption, STA can estimate whether the combina-
tional elements can perform their task during one clock cycle and how long this clock cycle is
required to be. STA operates on an annotated directed and acyclic timing graph, from which
the delay for each timing element (gate or wire) can be extracted. By traversing the graph, it
computes the worst-case arrival times at all points in the circuit and determines the longest
delay paths, which define the circuit’s delay. STA has proved to be very accurate and fast and
has established itself as the golden sign-off tool for guaranteeing the delay and the frequency
at which the circuit can operate after fabrication.

Another method of timing analysis is with the use of simulators [7]. This kind of analysis
refers to dynamic timing analysis. Dynamic timing analysis applies vectors to the inputs of
the circuit and then calculates the time that is required for the result at the endpoints to
be stabilized. Since delay depends on input vectors, it is essential that a number of different
vectors are applied. Then, the worst-case, the best-case and the average-case arrival times may
be inferred. This approach is very accurate if the number of inputs is very small so that all
possible combinations for inputs can be applied. However, for contemporary circuits, where
the number of inputs and startpoints can be more than a few thousands, simulators for timing
analysis have become obsolete.

Although flows for synchronous circuits have been well established in EDA today, syn-
chronous design is not the only promising design methodology. Asynchronous circuits offer an
alternative way to designing circuits. These, do not rely on a global clock signal as to when
operations should be performed. Instead, data propagate through the circuit in accordance
with local “handshaking” signals, i.e. an element communicates with its neighbouring elements
as to when they are ready to receive new data. This way, operations are performed as soon as

6 Introduction

possible rather than waiting for a global clock signal. Potential benefits of asynchronous design
include less power consumption, due to the absence of the power-consuming clock network,
modularity, adaptation to operating conditions, less electromagnetic interference, due to the
lack of global synchronization and robustness to process variations, as elements synchronize lo-
cally depending on their true speed characteristics [59, 19]. Although the synchronous practice
has been well established today, still parts of contemporary circuits are largely asynchronous
in nature and operate in an autonomous manner. It is projected by ITRS [34], that by 2020,
40% of a general purpose CPU will consist of asynchronous parts.

Despite the advances in EDA tools industry, over all aspects of design implementation,
there are still challenges, which need to be addressed. In the next section we describe the
major challenges that contemporary EDA tools need to tackle and we discuss deficiencies of
current EDA methodologies, which are starting to emerge.

1.2 Major Technology Challenges
The first challenge stems from the fact that circuit elements constructed in Deep Sub-Micron
(DSM) technologies exhibit uncertainty in their characteristics. This is the result of process
variations, which stem from fluctuations in physical and electrical characteristics. Other operat-
ing variations include temperature and voltage levels. Fluctuations in temperature and voltage
have always had impact on timing and power of circuit elements, which has led technology
vendors to supply characterizations (corners) under different operating scenaria. With the in-
troduction of process variations, the number of corners has increased further. Worst, best and
average case scenaria are provided for any combination of process-voltage-temperature case.
A designer must account for all corners so as to guarantee that the design will work under
any operating and fabrication condition by employing multi-corner analysis techniques. EDA
tools then, must be coupled with methods to achieve closure for all corners. Although this is
possible, it requires a lot of effort from the engineers, as the constraints needed for achieving
closure for one corner, e.g. worst-case may be contradicting with the constraints for another
corner, e.g. best-case. Typically, engineers guard-band optimization constraints on one corner
by applying a margin so as to ensure that the design will not fail another corner. This can
directly lead to loss of speed or power, as the margin is there only to enhance the probability
that the design achieves closure at all corners [29].

On the other hand, a unified approach to enable simultaneous optimization for all corners,

1.3 Drawbacks of Existing EDA Practices 7

would reduce the effort required by the designer and would eliminate the need for excessive
margins. One possible way towards this direction is the inclusion of all corners into a statistical
model [39, 3]. This model will encapsulate the probability that any corner will manifest itself
during the circuit’s lifetime making optimization statistical in nature. Today, there have been
various proposed methodologies for describing and optimizing for statistical delay and power [13,
9, 36, 5, 79]. However, there is still the need for incorporating these methodologies into current
EDA flows.

A second challenge for EDA tools is that the diverse nature of contemporary circuits drives
designers outside the framework of typical design flows. It is not uncommon today, for example,
to design cyclic circuits, which breaks the fundamental rule that any circuit graph should be
acyclic, so as STA can be applied. Cyclic circuits are essential for the implementation of
architectures that implement local synchronization instead of relying on a global clock, in
order to take advantage of potential gains in power and adaptability [59, 19, 6]. These are
asynchronous circuits, whose operation is of concurrent nature, requiring different modeling
than circuits of synchronous, sequential nature. The challenge lies on the requirement to
account for the acyclic nature of circuits in EDA flows.

Another challenge for EDA tools is that leakage power is becoming increasingly important in
contemporary designs. Leakage current’s magnitude has traditionally been negligible compared
to other sources of power consumption such as dynamic power. However, leakage current’s
exponential dependence on threshold voltage, renders it increasingly important. The lower the
threshold voltage, the higher the leakage and this trend is likely to continue in the forthcoming
technologies, where threshold voltage is expected to be further decreased to allow for lower
supply voltage levels without negatively impacting performance [28]. Furthermore, variations
in the physical dimensions of circuit elements and electrical properties, directly impacting
threshold voltage, cause fluctuations in leakage current, making imperative multi-corner or
statistical analysis.

In the next section, we explore the drawbacks of existing EDA tools, stemming directly
from the challenges they fail to address.

1.3 Drawbacks of Existing EDA Practices
The first serious issue is that multi-corner analysis is not efficient for chips with tight con-
straints. Multi-corner analysis requires the introduction of margins, even for the best or typical

8 Introduction

cases to allow for closure, minimizing the probability of failing in other corners. Multi-corner
analysis is also too time consuming and reduces time-to-market for circuit engineers. Statistical
approaches, which could help mitigate these problems have not yet been fully incorporated into
EDA tools.

The second issue is that STA, which is the backbone of contemporary timing-driven op-
timization tools, can only be applied to circuits from which a Directed Acyclic timing Graph
(DAG) can be constructed. This is easy for synchronous circuits, where sequential elements are
boundary elements and thus, no cycles are present in the corresponding timing graph. How-
ever, for asynchronous circuits this is not true. Thus, efficient timing-driven optimization of
asynchronous circuits is not currently supported.

A third issue stems from the fact that leakage current is becoming more important than
dynamic power consumption in DSM chips. Like timing, closure for leakage will require multi-
corner analysis or statistical optimization. However, contemporary EDA tools do no currently
support statistical leakage analysis or optimization.

1.4 Contributions of this Thesis
In this thesis we address solutions for the lack of EDA tools able to handle statistical optimiza-
tion for timing and leakage and lack of flows for alternative design approaches like asynchronous
circuits. We have created three EDA tools, each one addressing one of the three specific de-
ficiencies that we have identified for contemporary EDA tools. Next, we briefly describe each
one of our contributions.

We have developed a placement algorithmic tool, called SCPlace [48], which incorporates
a statistical timing analysis engine in its inner loop of optimization. SCPlace employs the
use of novel statistical timing bounds for wires, which guarantee that the circuit’s endpoints
meet statistical constraints, with respect to both the mean and the standard deviation of the
statistical delay.

We have developed CPlace [47], a constructive placement algorithm able to handle asyn-
chronous circuits. CPlace is timing-driven in the sense that it uses novel bounds for the delay
that each wire is allowed to have. The bounds are inferred by Asynchronous Timing Anal-
ysis (ATA), which guarantees both the performance and the correctness of the asynchronous
circuit’s concurrent behaviour.

We have also developed a post-placement leakage recovery flow [49], which employs the

1.4 Contributions of this Thesis 9

same wire bounds as SCPlace in order to reduce the statistical leakage without affecting the
statistical timing of the circuit. This is an in-place optimization flow, which works by identifying
gates that can afford an increase in their statistical delay without violating any constraints.
These gates are then optimized so that their statistical leakage is reduced.

A visualization of this thesis’ contributions and the way they fit into a contemporary EDA
flow is shown in Figure 1.2.

SCPlace CPlace

ATA ConstraintsSSTA Constraints

Technology
Mapped
Circuit

Placed
Circuit

Optimization
Leakage Thesis

This

Routing

Figure 1.2: Thesis contributions

The rest of this thesis is structured as follows. Chapter 2 provides background on timing
analysis, leakage and the placement problem. Chapter 3 explains our framework for extracting
statistical bounds for wires, which will then be utilized by our optimization tools. Chapter 4
details our constructive statistical placement algorithm, SCPlace. Chapter 5 describes our

10 Introduction

post-placement statistical leakage recovery flow, which can be applied either after SCPlace, or
after any industrial placement tool. Chapter 6 presents our constructive placement tool, CPlace
which can handle asynchronous circuits. Chapter 7 shows the evaluation of our flows and tools
and Chapter 8 presents the conclusions of this thesis.

Chapter 2

Background

In this chapter, we present the general framework under which (i) timing analysis is performed,
(ii) the placement problem is formulated and (iii) the leakage problem is addressed. Our
approach to these issues will be addressed in the next chapters.

2.1 Timing Analysis

The benefits of timing analysis have been well understood by academia and industry. Timing
analysis has been incorporated into the main steps of design flow, including synthesis, place-
ment and routing. Most algorithms for these steps use timing analysis in their inner loop of
optimization in order to validate on the spot the progress of optimization. Thus, timing analysis
must be kept up to date with advances in delay modeling, advances in the flow of optimization
algorithms and must also be applicable to as many types of circuits as possible.

Timing analysis can be performed by either dynamic or static methods. The former is done
by applying input vectors and measuring the time required for outputs to appear. However,
this method is cumbersome and prone to errors if the input vectors are not exhaustive, or
if the simulation scenario does not fit with the actual conditions the circuit will experience.
Static methods do not depend on input vectors, but measure the delay using case analysis.
Worst, best or average delays can be inferred by the circuit and the case characterization of the
circuit’s elements delay behaviour. Both types of timing analysis can be further categorized as
deterministic or statistical, depending on the actual delay model they employ.

Regardless of the nature of timing analysis, optimization algorithms can benefit from it.

12 Background

First, timing analysis provides estimates as to whether the optimization algorithm has met
the timing constraints. Secondly, if the timing constraints are not met, timing analysis can
offer guidelines as to which components are most critical, or most violating and thus need to
prioritized in optimization. As timing analysis can also quantify violations, the optimization
process also knows how hard it must try to meet the constraints, or if the constraints are
unrealistic and thus infeasible.

2.1.1 Synchronous Static Timing Analysis

Static timing analysis (STA) is the cornerstone of timing in EDA. STA is performed on a
timing graph representation of the circuit. The timing graph, which must be directed and
acyclic, consists of vertices for gate pins and edges for the wires. A set of startpoints and
endpoints allows for a forward traversal whereupon STA determines the arrival times at each
node. Arrival time for each node is one of the two values timing analysis aims at determining.
The second one is required time, which can be inferred by the timing constraint. Required time
is the absolute time at which computations must be finished in the circuit’s internal nodes,
so that computations at the circuit’s endpoints do not violate the timing constraints. Next,
slack, is defined as the difference of required time minus arrival time. Slack quantifies the
amount of timing violation for each node. Positive slack means that the circuit is faster than
required, while negative slack means that the circuit violates the timing constraint. In a typical
synchronous circuit, each path starts from either a primary input or a sequential element, e.g.
a flip-flop. which are boundaries for paths. Each path then, ends at either a primary output or
a sequential element. A gate may not appear more than once in a single path, thus the timing
graph will not contain any cycles. STA requires annotation on the timing graph regarding the
timing characteristics of each timing node. A gate characterization library provides the delay
of each gate (vertex). In the case that the wire lengths are known, i.e. post-placement, then a
number corresponding to the delay of the wire can be applied to each edge. STA traverses the
graph, typically in Breadth-First-Search (BFS) fashion and at each node it annotates a number
which corresponds to the delay of the longest path leading to that node. After all nodes have
been annotated, the delay of the circuit is defined as the largest delay in the set of endpoints,
in the case of max-delay analysis. In the case of min-delay analysis, the endpoint with the
smallest delay is selected. An important property of STA is that it can store, for each timing
node, its preceding timing node which causes the delay currently annotated. This allows for

2.1 Timing Analysis 13

path reconstruction with a simple traceback. Path reconstruction is important, as the delay of
each path, as well as the amount of timing violation for each path, can be inferred.

Figure 2.1: STA example annotation

Figure 2.1 shows an example of max-delay annotation for a simple circuit. The numbers in
each gate denote gate delay. The numbers on each wire denote the path delay up to that point.
All inputs are assumed to have an arrival time of 2 timing units. The annotation depicted in
Figure 2.1 is the result of STA and is shown in boxes over each gate pin. In the example of
Figure 2.1, the max delay of the circuit is 12 timing units, as defined by the delay of the slowest
endpoint End2.

In order to be able to perform static timing analysis, a number of requirements are necessary.
These are

• Timing characteristics for all gates that constitute the design. In contemporary
flows, these are derived from characterization libraries for standard cells. These libraries
provide timing information for all standard cells under a number of possibilities like the
possible drive strengths, loads and number of fanouts. A number of technology libraries
for each operating corner is also necessary, as the designer must guarantee that the chip

14 Background

will always work under all possible conditions with respect to the most important factors
affecting timing performance: process, voltage and temperature fluctuations.

• A gate-level netlist representation of the circuit. Otherwise, STA will not be able
to extract the timing information for each design element from the technology library.

• A directed graph representing the circuit. Since STA identifies paths on the circuit
starting from the inputs, or startpoints and ending at the outputs, or endpoints, a suitable
graph representation of the circuit is required.

• In case of industry-standard tools, LEF, LIB files. LEF stands for Library Ex-
change Format [50] and contains all the physical descriptions of the cells, including wire
capacitance and the number of metal layers. The unit capacitance and resistance values
are used in wire delay models. LIB stands for the Liberty format [52] and is a technology
library which contains timing and power information for all standard cells of the library.

2.1.2 STA-based Timing Optimization

STA, not only can provide timing information about the design, but can also help towards
design optimization. Regardless of the actual implementation stage of the chip, STA may be
used to direct optimization efforts. In timing-based optimization, the designer imposes a timing
constraint for the circuit. STA is used to calculate the delay of each path. Compared to the
timing constraint, some paths will meet the constraint and some will violate the constraint,
as shown in Figure 2.2. The task of the optimization process is to fix, at each iteration, as
many paths as possible, without creating new violating paths. At each iteration the number of
violating paths should be decreased, making optimization more focused on less violating paths.

The most common way of implementing the optimization process is to employ a slack
allocation algorithm. Path slack, i.e. the amount of timing violation for each path in the case
that slack is negative, is transformed into net/gate slack. Net/gate slack is then, the amount
of optimization that must be applied to each net/gate. Thus, the optimization algorithm will
typically identify the elements of the circuit with the most negative slack, which are in greatest
need for optimization and will try to fix them. After the slack of some nets/gates is fixed, STA
is performed again for validation and identification of the new violating elements.

2.1 Timing Analysis 15

Delay

Paths Constraint
Timing

Figure 2.2: STA violating and non-violating paths

2.1.3 Statistical Static Timing Analysis

Statistical static timing analysis (SSTA) is the extension of STA where all delays are expressed
as random variables instead of real numbers. Like STA, SSTA is performed on a timing DAG
representation of the circuit with the goal of determining the arrival times, required times and
slack of all the circuit’s elements. All these metrics correspond to random variables. This leads
to additional requirements that must be considered for the development of an SSTA engine.
These are:

• Selection of random distribution for gate delay. The expression of a gate’s delay
must encompass all the delay possibilities under all process and operating conditions.
Normal distributions are widely adopted in literature [62]. Experimental results on actual
delays have shown that normal distributions correlate well with the actual delays [24].
Alternative approaches are described in Appendix A.

• Correlation model. Experimental results have shown that there is strong physical
correlation in terms of variability. This is intuitively explained by the fact that gates
which are in close proximity tend to be affected in similar ways by the sources of variation,
e.g. temperature, voltage, process. Correlation models in literature [69, 62, 24, 3] use
functions which assign high correlation to gates which have small geometric distance. An
overview of correlation models is given in Appendix A.

• Statistical performance evaluation. Two delays in terms of STA are easily compared;
the smaller delay is usually better in terms of optimization. Normal distributions, in terms

16 Background

of SSTA, however, are described with two numbers, one denoting the mean and the other
the standard deviation (sigma). Comparing two normal distributions must be done in
statistical terms. The statistical metric that is used in literature is that of timing yield,
which expresses the probability that the delay meets the constraint. Given a distribution
and a constraint, this probability can be computed analytically. Timing yield is illustrated
in Figure 2.3. It essentially is the area of the distribution which is to the left of the timing
constraint.

DELAY

PROBABILITY

YIELD
TIMING

CONSTRAINT
TIMING

Figure 2.3: Timing yield

2.1.3.1 SSTA-based Timing Optimization

Given the framework for statistical timing analysis, we can perform statistical timing optimiza-
tions. Compared to traditional non-statistical timing analysis, SSTA-based optimization allows
for a greater number of different optimization types.

In non-statistical optimization the target is clear; optimize the delay. The delay is expressed
as a single number, so optimizing for delay means that this number is reduced, or placed below
a constraint. With the introduction of statistical timing, delay is no longer a simple number,
but is represented by a distribution. Analytically, the distribution, which in our case is a
normal distribution, can be adequately described by its first two moments, i.e. its mean and

2.1 Timing Analysis 17

its standard deviation (sigma). Statistically optimizing the delay can mean optimizing for mean
delay, sigma of delay, or both.

Figure 2.5a illustrates the first type of optimization. Here, the goal of optimization is to
shift the distribution to the left. This means that the probability that the random variable
takes smaller values is increased. In other words, the target is to minimize the mean delay,
while not increasing the standard deviation.

The second type of optimization is shown in Figure 2.5b. Here the standard deviation
is minimized. This directly corresponds to minimizing uncertainty of delay. As shown in
Figure 2.5b the range of values that the random variable is allowed to take has been reduced.
Although in this particular example the mean delay is increased, reduction of standard deviation
does not necessarily incur a penalty in the mean delay. Even if it does so, it might be preferable
for the designer to minimize uncertainty at the cost of some delay, particularly if the new mean
delay does not violate the timing constraint.

A combined type of optimization is shown in Figure 2.5c. In this case, the goal of optimiza-
tion is to maximize the timing yield. By appropriately manipulating the mean delay and the
standard deviation, the statistical yield may be optimized.

Statistical optimization can lead to serious implications in the type of constraints that must
be used. Intuitively, shaping the distribution, which might be the result of a function between
two, other, distributions, might mean that the two distributions must overlap in a specific
way. This can mean that the means of the two distributions might need to be close, that one
distribution is “inside” the other distribution, that the mean of one distribution is close to the
edge of the other distribution, that the two distributions do not overlap at all, or any other
complex constraint. The aforementioned example cases are depicted in Figure 2.4. It is not
uncommon, that this will lead to upper and lower bounds on the mean and the sigma of one
distribution or both. This makes statistical optimization harder than deterministic optimization
(where usually there are only upper bounds) as two-sided constraints are introduced. This new
property needs to be accounted for in any optimization framework, as algorithms which are
optimized for one-sided constraints may not be efficient for two-sided constraints.

In the next section we turn our focus to asynchronous timing analysis, which is better suited
for cyclic circuits.

18 Background

PR
O

B
A

B
IL

IT
Y

DELAY

(a) Means are close

PR
O

B
A

B
IL

IT
Y

DELAY

(b) Full overlap

PR
O

B
A

B
IL

IT
Y

DELAY

(c) Almost no overlap

PR
O

B
A

B
IL

IT
Y

DELAY

(d) No overlap

Figure 2.4: Cases of distributions’ relative position

DELAY

PROBABILITY

CONSTRAINT

UNOPTIMIZED

OPTIMIZED

TIMING

(a) Statistical optimization of
delay

DELAY

PROBABILITY

LESS
UNCERTAINTY

(b) Statistical optimization of
variance

DELAY

PROBABILITY

CONSTRAINT

UNOPTIMIZED
YIELD

OPTIMIZED
YIELD

(c) Statistical optimization of
yield

Figure 2.5: Statistical optimizations

2.1.4 Asynchronous Timing Analysis

Timing analysis of asynchronous circuits differs from STA, or SSTA for synchronous circuits
both in methodology and in their goals. The goal of STA is to calculate the frequency at
which the clock can be set. In asynchronous circuits, where the clock is absent, other metrics
must be employed. One such metric is the time required for two successive occurrences of
the same event. In a high level of abstraction, two events could be two full computations the
circuit performs. For example, in the case of an adder the performance metric could be the
time required for two successive additions. The state-of-the-art procedure for finding the time
required for two events to happen is called timing separation of events. It essentially computes
the minimum, or maximum, time required for two events to happen in succession, or the same
event to happen twice.

2.1 Timing Analysis 19

2.1.5 Asynchronous Timing Analysis Models

The STA model is not suitable for asynchronous circuits due to the cycles in circuit representa-
tion. However, the concurrent behaviour of asynchronous circuits can be effectively modeled by
concurrent representation models such as petri-nets [54]. A petri-net is a graph which consists
of nodes and directed edges. Nodes can be either places or transitions. Places are conditions
for transitions and are represented as cycles. Transitions are events that may occur and are
represented by bars. Edges connect the transitions to places and vice-versa. An edge represents
the conditions that are needed for a transition to occur. Additional elements, tokens, represent
data values in places. Tokens can move through the graph and represent the way data flow
through the circuit. For initialization, a marking is used. Marking consists of a number of
tokens placed in the graph which signifies the initial state of the system. Figure 2.6 shows
an example of a petri-net with an initial marking. The concurrent behaviour of the system
is signified by the movement of tokens. All tokens can move independently of each other as
soon as they are enabled. A token is allowed to move if all conditions are satisfied. In Fig-
ure 2.6, transitions Z+ and A- are allowed to execute, as there may be tokens on all the edges
leading to these transitions (all conditions are met). These transitions can execute at the same
time, highlighting the concurrent nature of the system. Z- on the other hand is not allowed to
execute, as there is a token on only one of its conditions.

A− B−A+ B+

Z+ Z−

Figure 2.6: A simple petri-net with initial marking

For more efficient representation of asynchronous circuits, a subset of petri nets is used.
This subset is called Signal Transition Graphs (STGs). The property that is omitted from the
general petri-nets is that each place has exactly one input and one output transition, i.e. there
is no choice-place. This represents the causality of an asynchronous circuit. The elimination

20 Background

of choices means that the graphical representation of an STG is simpler than that of a general
petri-net, i.e. places can be omitted. All the other properties of a petri-net hold. There
are tokens signifying the data flow and for a transition to execute, all its conditions must be
satisfied. Figure 2.7 shows an example of an STG.

x+ y+

z+ x−

z−

y−
Figure 2.7: A xyz-STG

In the STG of Figure 2.7, only x+ can execute at the initial state. This will create two
tokens, one on the edge {x+,z+} and one on the edge {x+,y+}. The new state will enable the
transitions z+ and y+ to execute independently. After y+ executes, a token will appear on the
edge {y+,z-}. z- however, cannot execute until a token has appeared on the edge {x-,z-},
which will happen after x- has executed. When z- is ready to execute, then y- will also be
enabled arriving back to the initial state.

STGs can be enriched with timing values on the arcs to represent the delay of each execu-
tion. Typically, a minimum and a maximum delay, or a range of delays is inserted. The new
representation forms an Event Rule (ER) system, which can be used for the timing analysis
of the corresponding asynchronous circuit. The xyz-STG, which is now transformed into an
xyz-ER is shown in Figure 2.8. On each edge there is a delay range [di, Di], where di rep-
resents the minimum delay for the corresponding transition and Di represents the maximum
delay. Event-rule representation is the basis for the state-of-the-art timing analysis framework
of asynchronous circuits, called Timing Separation of Events (TSE).

2.1.5.1 Timing Separation of Events

Timing separation of events (TSE) starts from an event-rule representation and can answer
questions like what is the minimum time of a full computation, or how late can event A can

2.1 Timing Analysis 21

x+ y+

z+ x−

z−

y−

1 1

2 2

3 3

4 4 5 5

7 7

[d ,D]

[d ,D]
[d ,D]

[d ,D] [d ,D]

[d ,D]
6 6[d ,D]

Figure 2.8: A xyz-ER

occur after event B. It does so by finding bounds on the minimum and maximum separation two
events may have with respect to delay. The idea of TSE has been successfully incorporated into
a number of timing optimizations such as synthesis and verification of asynchronous circuits [12],
interface timing verification [83] and scheduling of concurrent systems [33].

An efficient algorithm for TSE has been presented by Hulgaard et al. in [33]. This algorithm
can handle cyclic representations of concurrent systems. It works on an event-rule specification
and extracts tight lower and upper bounds on the separation between events. The algorithm is
based on the idea of process graph unfolding. An improvement over TSE has been presented
by Kasapaki in [41]. In [41], TSE has been used to create an asynchronous timing analysis
tool, which can operate in closed loop. The author of this work has showed that by an efficient
implementation of TSE, critical cycles and critical gates of the asynchronous circuits can be
identified. This information is the basis for optimizing for speed or area.

The event-rule specification used in [33] is a process graph. It is essentially an event-rule
specification with the inclusion of a root node. The root node marks the point of the graph at
which computation begins. No node may contain an edge to the root node. An example of a
process graph is given in Figure 2.9.

a b

root
[1,2]

[1,6]

[5,20][4,10]

[0,0]

Figure 2.9: A process graph

22 Background

In the process graph of Figure 2.9, any event can occur only after all the conditions for this
event are met. This means that all the events leading to the event waiting to happen must also
have happened. Given the maximum delay required for each event, the maximum delay for the
occurrence of a pair of events can be found with unfolding the process graph. An unfolding of
the process graph of Figure 2.9 is shown in Figure 2.10. The numbers on each node denote the
maximum, absolute time at which this event can happen. The indices under the name of each
event denote the occurrence index of this event. For example, a2 denotes the second occurrence
of event a. One can observe from Figure 2.10 that the timing separation between any two events
fluctuates in the first few unfoldings, but converges later to a delay value. Hulgaard’s algorithm
unfolds the process graph as many times as needed until the timing separation between any
two events converges to a final value. Additionally, methods to detect and prove convergence
are also proposed.

a0 a1 a2 a3 a4 a5

b50 1 2 3 4b b b b broot

0 10 28 48 68 88

2 22 42 62 82 102

Figure 2.10: A process graph unfolding

Having presented our timing analysis framework, we present in the next section an overview
of state-of-the-art placement algorithms with emphasis on timing-driven placers.

2.2 Placement Algorithms
Placement is the first step in the back-end flow, i.e. the physical steps required for the final
fabrication of chips. It is the problem of finding optimal locations for all circuit elements on a
fixed die and placing them accordingly. The best locations are defined by a cost function which
can evaluate the quality of a given placement. Even in the case of standard cell placement
with the simple objective of minimizing the interconnect length, the problem is known to be
NP-hard [51]. On the other hand, placement is the cornerstone of the back-end flow, as it
defines the framework on which the latter steps, like routing, will try to apply optimizations.
Thus, it is imperative that placements are of good quality. Since after placement the degrees of
freedom for optimization are seriously decreased, it is unlikely that a bad placement, negatively

2.2 Placement Algorithms 23

affecting the high level performance metrics of the chip, e.g. speed, can be corrected at a latter
step. This highlights the need for effective placers which can accurately evaluate the quality of
their placements and drive the optimization towards efficient optimization.

In this section we present the placement problem. We then discuss their deficiencies and
our approach to placement which leads to our placement tools, SCPlace and CPlace, described
in Chapters 4 and 6.

2.2.1 Optimization Objectives and Constraints

Given a technology mapped netlist and adequate layout area, any placement algorithm will try
to find the best placement possible. The quality of placement is defined by a set of constraints
which are provided to the placer by the designer. The type of constraints can vary and can
be either performance-oriented, design-rule-oriented or, most commonly, both. Performance
constraints are imposed so that the resulting placement has desirable properties with respect
to a performance metric, e.g. timing or power. Design-rule constraints ensure correctness of
the placement with respect to its suitability for fabrication. We now present a list of common
constraints that a placer must satisfy.

• Wirelength minimization. Wirelength has been the traditional metric for the perfor-
mance of placers, both in academia and in industry, before the emergence of timing-driven
placers. The objective is to minimize the total wirelength required for all wires connecting
the cells. Since during the placement process routing is not available yet, wirelength is
estimated using heuristics like the half-perimeter wirelength of the bounding box (BB
HPWL). The bounding box referring to a single wire is the smallest box that contains
all pins the wire is connected to. The hindsight for optimizing wirelength is that smaller
wires will be easier to route.

• Timing constraints. Nowadays, most industrial placement algorithms are timing-driven
in the sense that they actively perform timing analysis during placement and try to
meet specific constraints on timing. Timing-driven placement algorithms typically try to
borrow slack from cells which are not critical and give it to cells that are most critical
or violate the timing constraint. If all cells are placed and no path violates the timing
constraint, then the placement is considered successful. For the estimation of wire delays,
wire delay models are used. The more accurate the wire delay models are, the more

24 Background

accurate the timing analysis during placement will be. This, in turn, will make timing
closure easier during the later stages of fabrication such as routing.

• Power constraints. Power constraints during placement usually fall into two different
categories. The one is minimization of dynamic power and the other is minimization of
leakage power. The former, depends on minimizing the capacitance of wires which switch
most. This usually means that the length of these wires must be minimized. A placement
algorithm under this type of constraint must bound the distance between cells belonging
to the critical net in order for the net’s capacitance to be minimized. Minimizing leakage
consumption (or essentially leakage current) means changing the standard cell itself. This
is accomplished by replacing the standard cell with a smaller one that performs the same
function as the initial cell but exhibits less leakage current at the cost of a degradation
in speed. A placement algorithm with timing and leakage constraints may choose appro-
priate cells for substitution, using the set of alternative cells from the technology library
in order to co-optimize for timing and leakage.

• Fixed cells and blockages. It is not uncommon for a placement algorithm to be
required to place specific cells or larger macros in specific locations. These cannot be
moved throughout the optimization process and must be treated as fixed blockages, as
no other cell may be placed on the locations they occupy.

• Allowable regions. After all fixed cells have been placed, the shape of the allowable
region for all other cells is revealed. This shape is not always rectangular and must be
identified by the placement algorithm so that it is efficiently utilized.

• Density constraints. The layout area given to the placer is usually much larger than
the total area required by standard cells. There is typically no less than 35% of free space
in order to avoid over-congestion. The placer may face strict constraints for congestion
which could instruct the placement algorithm to limit the local congestion over a small
portion of the layout area to, e.g 70% and the total congestion to, e.g 65%. In this
case, the placer may face artificial blockages caused by congestion issues, a fact which
aggravates the complexity of the problem of placement.

• Legal locations. The placer must place all cells in locations which are considered legal.
Legality is defined by design rules which cannot be violated, otherwise the chip cannot

2.2 Placement Algorithms 25

be fabricated. One of the most important constraints is that all cells must be placed on
locations which cause no overlaps. Other second-order common constraints is that all
cells must be aligned to a predefined grid and must have a suitable orientation.

2.2.2 Requirements for a Placer

Regardless of the actual algorithms a placer employs, a set of requirements is needed for cell
placement. These are mentioned below.

• A technology mapped netlist. The circuit to be placed must have been mapped into
a specific technology, which provides standard cells for all gates of the circuit. High-
level descriptions or hardware-description language representations are not enough for a
placement algorithm.

• A set of constraints or objective functions. The placer needs a set of directives in
order to place the cells into locations which are optimal in the way the designer wants.
The set of constraints may be as simple as wirelength minimization, or more complicated
such as joint timing and power optimization. Moreover, constraints on local congestion
may also be present in order to enhance routability.

• A strictly defined layout area. Cell placement is performed on a predefined layout
area which allows for placement of all cells and accounts for routing, which will be done at
a later fabrication stage. The layout is divided into rows, the height of which equals that of
a standard cell. Each row can also be divided into several segments by the manufacturing
grid, which can be envisioned as a set of dense vertical lines, which in conjunction with
the rows, form small rectangles, called “sites” in each row, as shown in Figure 2.11. A cell
must be aligned to the manufacturing grid, which means that its leftmost side must be
aligned with the leftmost boundary of a site. Any standard cell can span multiple sites
in the same row and any larger block may span multiple rows and sites.

• Characterization of cells. This includes characterization for both the dimensions and
the timing/power performance of each cell. It is obvious that the placer must have
knowledge of the exact dimensions of each cell in order for it to be placed on a legal
location. The characterization for timing and power is critical for the placer to be able
to compute the cost functions it employs throughout the optimization process.

26 Background

ROWS SITES

Figure 2.11: Layout manufacturing grid

• Wire delay modeling. Although no exact estimation of wire delay is possible before
routing, the placement algorithm, especially in the case of timing-driven placement, must
utilize an approximation model for wire delays.

• In case of industry-standard tools, DEF file support. DEF stands for Design
Exchange Format [50] and is the industry standard for placement description. It contains
the physical locations for all cells on the layout area. It also contains information about
the layout itself, such as the number of rows, the width of each row and the manufacturing
grid on which each cell must be aligned.

2.3 Algorithmic Approaches to Placement

The problem of placement has been well studied since the appearance of the first EDA tools.
Thus, a number of different algorithmic approaches have been proposed and tried in practice.
Before we describe specific algorithms in detail, we provide a fair description of the general
algorithmic framework. We distinguish between iterative vs constructive and global vs detailed
placement. We also describe the differences between standard cell and mixed-size placement.
Later, we offer a taxonomy of contemporary placers which can be categorized as stochastic,
partitioning-based and analytical.

2.3 Algorithmic Approaches to Placement 27

2.3.1 Iterative vs Constructive Placement

Iterative placers typically start from an initial placement, which evaluates poorly with respect
to the cost function and then iteratively correct the placement guided by the cost function.
Constructive placers typically place a few seed cells on the layout and then place the remaining
cells on locations which meet their constraints.

Pure constructive placers typically exhibit inferior results compared to their iterative coun-
terparts, as most of their local algorithmic decisions are made with an incomplete global view.
For instance, a local, random choice of seed cell may determine the quality of a complete
placement. Min-cut and partition-based placers address this deficiency and improve on the
local decision making process through global knowledge and repairing techniques such as re-
clustering. Another characteristic deficiency of constructive placers is their tendency, due to
their construction process, to produce layouts with mixed sections of densely and sparsely pop-
ulated areas respectively, i.e. significant congestion differences, which can lead to routability
problems.

However, constructive placers are characterized by their correct-by-construction approach.
Every time a cell is placed on a location, it may remain there without the need to be corrected
in a future optimization step. This is true, since the location of every cell is determined using
the information of the already placed cells with which it shares a constraint. Thus, constructive
placers are especially suitable when conflicting constraints are in place. Such types of constraints
may over-constrain an iterative placer and force it to oscillate between solutions which violate
one or the other constraint. Constructive placers on the other hand, will first determine the best
location, which satisfies all constraints, if this is possible, and then place the cell. Successful
constructive placers need to make sure that they can keep placing cells as long as there are
unplaced cells. Cell placement can be stopped due to unfortunate placement of “seed” cells
which may cause unplaced cells to be over-constrained. The challenge for a constructive placer
is to employ efficient heuristics which escape from local minima of this kind.

2.3.2 Global vs Detailed Placement

A number of placement algorithms distinguish between global and detailed placement as sep-
arate problems of placement, which they address of in different optimization loops. Global
placement can be best described in the case of a partitioning-based placer. This kind of placer,
first finds an optimal segmentation of the circuit using a number of heuristics. Each segment

28 Background

is then assigned to a region of the layout. Global placement finishes by finding an optimal
matching between the list of layout regions and the circuit segments, without placing the cells
into actual locations. Detailed placement then, operates on each segment by placing each cell
on locations which satisfy the placement design rules. These rules can dictate that there can
be no overlaps among cells and that cells must be aligned on rows or on a manufacturing grid.
The division of the placement problem into global and detailed can also be found in other
algorithmic approaches, such as stochastic or analytic placers. In this case, global placement
refers to placing cells in much greater granularity than detailed placement and not paying too
much attention to satisfying overlaps and design rules. In any case, care must be taken that
detailed placement is allowed enough freedom to actually be able to arrange all cells in suitable
locations.

2.3.3 Standard Cell Placement vs Mixed-size placement

Modern circuits may not comprise solely of standard cells but of a mix containing standard cells
and blocks of varying size. Blocks may be “hard” or “soft”. Hard blocks have fixed size and
dimensions which cannot be altered in any way. They can only be treated as large standard
cells spanning multiple rows and having relatively large widths. Characteristic examples of
hard blocks are RAM cells. Soft blocks on the other hand, often refer to logic blocks consisting
of several standard cells. The area of a soft block is known, but its dimensions can alter, the
only constraint often being on a minimum/maximum aspect ratio. The shape of a soft block
may even not be strictly rectangular allowing for more flexibility during the placement process.

If the design contains mixed-size cells, then the task of placing all cells is often called
floorplanning. This is a different problem from placement which employs different metrics for
performance. In modern circuits, the number of hard/soft blocks usually does not exceed few
hundreds which is significantly smaller than the number of standard cells that can easily scale
beyond few millions. Algorithms for floorpacking or block-packing typically try to minimize
the area required for all blocks, or to pack the blocks in such a way such that the unused
area among the blocks is minimized. Two very successful algorithms for block packing are
Sequence pair [53] and B∗-tree [14]. Sequence pair maintains two ordered lists which describe
the geometric relations among blocks. These relations stem from the relative ordering of the
blocks. The objective of sequence pair is to find the optimal ordering. The solution space is
often explored with stochastic algorithms like simulated annealing. B∗-tree on the other hand

2.3 Algorithmic Approaches to Placement 29

is a binary tree representation of block-packing. The objective of B∗-tree is to balance the tree
in such a way such that the nodes are most densely packed. This will result in minimizing the
area for floorplanning all the blocks.

The problems of placement and floorplanning have recently being merged into an approach
called floorplacement [67]. Floorplacement initially considers all cells, standard cells and blocks
alike. Min-cut is employed until the segments contain a number of blocks for which block-
packing can be applied. Block-packing is employed using traditional floorplanning methods.
After blocks have been placed, then only standard cells are left to be placed. These are placed
on the empty areas of the layout treating the placed blocks as obstacles. However, care must be
taken so that the initial placement of blocks does not over-constrain the placement of standard
cells.

2.3.4 Wire Bounds as an Optimization Directive

Any placer will, at some point, need to make a local decision as to where to place a specific cell.
In iterative approaches this action is typically performed by swapping two cells. In constructive
approaches, the location is selected according to the cell’s constraints. In both cases, the action
of placing a cell, or changing its location, has implications on the expected length of the wires
connecting this cell to its neighbours. The decision-making process of the placement algorithm,
for the placement of a cell, must include a check on the expectation of these wire lengths. In
order to simplify this process, wire bounds are extensively used in this situation. A wire bound
is usually an upper bound (although it can be a lower bound) on the allowable delay of each
wire. These bounds are usually derived by performing timing analysis on the circuit, deriving
the slack for each path and assigning slacks to wires. After slacks are known, bounds on the wire
lengths can be directly inferred. A placement algorithm can then check if a candidate location
for a cell creates any wire which violates its bound. If this is the case, then this location can
be rejected, otherwise, the candidate location can be considered for optimization.

2.3.5 Taxonomy of Placers

In this section we offer a taxonomy of state-of-the-art and earlier placers, based on their general
framework and their optimization approach.

30 Background

• Stochastic. Stochastic placers are of iterative nature and use heuristics to optimize
the placement at each iteration. The most widely adopted category is placers which
use simulated annealing. Another category of stochastic approaches consists of genetic
approaches. A detailed description of these approaches is given in Appendix B.

• Min-Cut. A different category of placement algorithms consists of approaches which
recursively divide the netlist and the layout area. These are based on the idea of “divide
and conquer”. They divide the problem of full placement into smaller placement problems
which can be solved more efficiently and then combine the solutions of the smaller, sim-
pler problems into a full placement solution. Min-cut algorithms divide the netlist into
segments and try to minimize the number of nets that span among segments. A detailed
description of these approaches is given in Appendix B.

• Analytical. A different class of placement algorithms use analytical methods to mathe-
matically optimize an analytically expressed cost function. They can be further divided
into non-linear and quadratic algorithms, depending on the type of the cost function they
employ. A detailed description of these approaches is given in Appendix B.

• Constructive. The main idea behind every constructive-based approach is to progres-
sively place all standard cells on the layout on locations which satisfy all the constraints
of the standard cell.

2.3.6 Challenges for Contemporary Placers

As technology advances, a number of assumptions employed by contemporary placers are be-
coming out of date. In this section we describe issues that any placer must overcome before it
becomes obsolete in view of advancing technology.

2.3.6.1 Multi-Corner Placement

In a typical industrial flow, different technology libraries, which define the characteristics of
standard cells under different operating conditions, are used. These include estimations of the
best case and worst case scenarios for temperature, voltage and process fluctuations. Thus,
a number of corners is available to the designer, each of them describing a different scenario
under which the chip should not violate its constraints.

2.3 Algorithmic Approaches to Placement 31

In order to guarantee correct operation at all times, the placement tool must perform
placement at all corners. However, optimizing for one corner will usually cause a violation
at another corner posing the risk of oscillating between solutions which are optimal for a few
corners, but violating for other corners. Nowadays, optimizing for all corners is done manually
using trial-and-error approaches. The designer runs the optimization at one corner and allows
for some slack on all constraints with the hope that no violations will be reported on other
corners. This can be a lengthy process which may also cause the final placement not being
optimal for any corner.

A way to mitigate this problem could be a unification of all corners into a single model.
Placing the design using the unified model could enable simultaneous optimization for all cor-
ners, thus eliminating the need for multiple runs on different corners. One possible model
encapsulating the characteristics of all corners is a statistical model. In this case, optimization
should be done statistically and the type of constraints should also be statistical.

2.3.6.2 Asynchronous Circuits Placement

Asynchronous circuits is the design-level solution to the variation problem due to their ability
to adapt to the environmental and process conditions. An EDA placement tool, capable of
implementing asynchronous designs, (or both synchronous and asynchronous designs) must have
additional capabilities compared to conventional EDA tools. First, some form of asynchronous
timing analysis must be supported, whereby the critical delay cycle, rather than the critical
path will be taken into account for optimization. Second, timing constraints will be required
to be potentially relative, i.e. between internal circuit signals, instead of absolute, relative
to one or more global clocks. Specifically, a placer should be able to satisfy both absolute
timing constraints, i.e. a maximum or minimum delay bound for a given circuit portion, and
relative timing constraints, i.e. relative delays between signals. The latter type of constraints
may satisfy Quasi-Delay Insensitivity (QDI) requirements, i.e. isochronic forks, with a given
allowed delay margin, or Speed-Independent (SI) requirements, i.e. wire delay contribution
being a small percentage compared to gate delay contribution. Third, as the period of the
asynchronous circuit will depend on its critical cycle(s), as identified by asynchronous timing
analysis, a slack assignment strategy is required to account for delay distribution to internal
circuit wires. These additional capabilities may be combined with traditional non-timing driven
placement heuristics, such as total wirelength.

32 Background

2.3.6.3 Post-placement Optimization

During the fabrication of a contemporary chip, rarely it is the case that only one performance
metric is of interest to the designer. That is, the designer will most frequently want to optimize
not only for speed, but also for power and area. It is not unusual that one of the metrics
have priority over the others. This enables the designer to optimize for the primary metric
during the placement process and then run a cleanup process to optimize for the other metrics
without affecting the result of the finalized placement. This process is called post-placement
optimization and usually consists of small tweaks on the placement. The challenge for the placer
is to allow enough room in the solution space for this optimization to take place. This means,
that the final placement should not be exactly on the edge of failing the primary constraint in
case even a small change is made on the placement. Thus, placers must allow for some room
for post-placement optimization, given the constraints that that this particular optimization
intends to use.

Contemporary placement tools use timing as the primary objective and power as a secondary
one. One of the most important sources of power consumption is leakage power, which depends
only on the circuit itself and not on how fast the circuit operates. Leakage power is consumed
due to leakage current in transistors even when they do not perform any computation. Thus,
it is crucial that the circuit is fabricated using gates which are less prone to leaking current,
and will thus consume less leakage power.

Leakage current has three main sources. The first, is source/drain junction leakage current
due to the appearance of reverse-biased nodes in an OFF transistor. The second, gate tunneling
leakage is due to current flowing to the substrate through the oxide insulation. The third,
and most important is subthreshold current, which is due to current flowing through an OFF
transistor that is in the subthreshold region. Subthreshold region is becoming more prominent
in contemporary and future technologies, where the threshold voltage continuously decreases,
minimizing the gap between the OFF and the ON voltage levels of a transistor.

Leakage due to subthreshold voltage is expected to become even more important in overall
power dissipation estimation of a circuit in future technologies. The reason is its exponential
dependence on threshold voltage, which is continuously decreasing. This is illustrated by Equa-
tion 2.1,where K, η and n depend on technology, VDS and VGS are the ON and OFF levels
and VT is the threshold voltage. It is clear from Equation 2.1 that decreasing VT , there must

2.3 Algorithmic Approaches to Placement 33

be expected an exponential increase in leakage current.

IDS = K

(
1− e

(
−VDS
VT

)

)
e

(
−VGS−VT+ηVDS

nVT

)
(2.1)

Threshold voltage is especially prone to variations, both in process and in operating con-
ditions. Process variations can directly affect the threshold voltage by fluctuations in oxide
thickness, which is a very common source of variation in contemporary fabrication flows. Tem-
perature variations on the other hand, is the main source of fluctuations in threshold voltage.
Typically, technology vendors provide characterizations for leakage current under a number of
different operating scenaria (corners) as is the case in timing analysis. Thus, designers need
to perform multi-corner analysis in order to make sure that the design meets the constraints
on the maximum allowable leakage current. One way to overcome the need for multi-corner
analysis is to model the information from all corners into statistical distributions and perform
statistical leakage optimization. However, although there have been proposed a number of
statistical modeling approaches for leakage, there is still lack of fully automated large-scale
statistical leakage optimization flows.

Based on the aforementioned challenges, we now present the limitations of contemporary
placement algorithms and tools.

2.3.7 Limitations of Contemporary Placers

Current state-of-the-art placers focus on either optimizing the total wirelength of a circuit, or
meeting the clock period timing constraints. These goals are generally one-sided, i.e. improve-
ment during a step of the optimization process may be evaluated by direct comparison with
an absolute value. For example, in the case of timing driven placement, if the delay of the
critical path is decreased, while the delay of no other path is increased, then the new placement
is considered an improvement over the previous one. Limitations of current state-of-the-art
placers become evident when they must deal with two-sided constraints. This is the case for
both placement for statistical-based optimization and placement of asynchronous circuits.

In the case of statistical-based optimization, the metric that needs to be optimized consists
of two values, i.e. the mean and the sigma. Optimizing for one value, often requires some sort
of sacrifice for the other value. When the optimization is made with the use of constraints, the
constraints leading to optimization of one value generally contradict the constraints for the other

34 Background

value. This property makes the general framework of contemporary placement optimization
tools to fail, as it is not suited for double-sided constraints. In fact it is prone to make the
placer oscillate between two solutions, optimizing in one iteration one value, i.e. the mean and
on the next iteration the other value, i.e. the sigma.

Furthermore constraints for statistical optimization can be relative, rather than absolute.
This is a serious problem even for the most successful placers known to academia and industry,
as they are developed for use with absolute constraints. Typical examples of absolute constraints
is that total wirelength must not exceed a maximum bound, the slowest path must have a
maximum delay and the total power consumption must be below a certain limit. Statistical
optimization on the other hand, may require certain paths to have a minimum delay or the
difference in delay between two paths be bounded.

In the case of asynchronous placement, two-sided constraints may generally need to be
met. Certain wires, i.e. legs of isochronic forks, will require both a minimum and a maximum
allowable delay constraint. Such bounds may not be known a priori, as they are relative to
other wires.

Furthermore, conventional STA engines used during timing-driven placement assume that
the circuit is acyclic. When cycles are encountered during STA, STA engines will typically
break them arbitrarily and analyze the resultant acyclic timing graph. Asynchronous control
circuits are cyclic circuits, therefore cannot be effectively analyzed using STA, or timing-driven
placed by existing synchronous placers with a given performance goal such as asynchronous
period. Thus, an efficient placer for asynchronous circuits must incorporate a timing analysis
engine which can handle cycles, like TSE, and must also be able to tackle the contradicting
targets created by the relative and two-sided constraints.

2.3.8 Our Approach to the Placement Problem

Having identified the limitations of contemporary placers, we have tackled these specific prob-
lems by developing our physical placement and post-placement flows.

2.3.8.1 Statistical/Multi-Corner Timing-Driven Placement

In order to combat the problem of multi-corner placement, we propose the use of a statistical
approach. We model the timing characteristics of gates across all available corners as normal
distributions and apply optimizations through the use of SSTA, statistical slack assignment and

2.3 Algorithmic Approaches to Placement 35

our statistical placement tool, SCPlace. SCPlace is the first large-scale industry-compatible
statistical optimization placement tool.

2.3.8.2 Placement for Asynchronous Circuits

We have tackled the problem of satisfying timing assumptions during the placement of asyn-
chronous circuits by developing a novel slack assignment procedure which we employ in our
placement tool, CPlace. CPlace is the first placer known to literature which can create
performance-efficient placements of asynchronous circuits without violating their timing as-
sumptions.

2.3.8.3 Post-Placement Optimization

We have addressed the problem of post-placement optimization by developing a post-placement
cleanup algorithm, which minimizes leakage without affecting the statistical delay of the circuit.
We have targeted synchronous circuits only, as this allowed for integration of our SSTA engine
with our statistical leakage analysis process. Our leakage optimization flow is the first flow
which can guarantee the initial statistical delay.

Having concluded the overview of state-of-the-art placement algorithms, their limitations
and our approach to handle the problems that are starting to emerge, we now present the first
contribution of this thesis, which is the derivation of bounds for statistical optimization.

36 Background

Chapter 3

Statistical Delay Bounds

In this chapter we describe our methodology for deriving statistical delay bounds. We derive
bounds for propagating appropriate delay distributions across the timing graph, so that the
statistical delay of endpoints meets statistical constraints.

The motivation for developing algorithms of such type is the recent emergence of statistical
methods to account for circuit delay and the lack of large scale statistical optimization tools.
Traditional slack allocation algorithms derive maximum slacks on wires to account for physical
wire delay and to guide the physical optimization process. We derive bounds which control the
statistical delay for use in a statistical physical optimization algorithm.

In the next sections we present our algorithms for deriving statistical bounds. First, we
demonstrate our methodology for SSTA. Then, we show our Minimum Sigma Slack Assignment
(MSSA) algorithm which derives bounds for propagating delay distributions with minimum
sigma to the endpoints. Next, we present our Target Sigma Zero Slack Assignment (TSZSA)
algorithm, which derives bounds for propagating delay distributions that meet a target on the
mean and a target on the sigma for the delay of the endpoints.

3.1 Statistical Static Timing Analysis

In this section we extend STA into our statistical timing analysis engine. First, we describe our
model for gate delay and then we show how delays are propagated across the circuit as timing
analysis progresses.

38 Statistical Delay Bounds

3.1.1 Statistical Gate Delay

Any statistical timing analysis engine must possess the notion of the statistical delay of a single
gate. The assumption that the delay distribution of a single gate follows a normal (Gaussian)
distribution is widely adopted in literature and has been proven consistent by experimental
results on fabricated chips. Thus, we use the same assumption in our SSTA framework.

Unlike STA, no technology descriptions for the statistical delay of circuit elements is avail-
able to us. On the contrary, we possess a number of technology descriptions for different
operating corners. A statistical model should encapsulate the behaviour of the elements under
different operating corners. Thus, we infer statistical delay distributions from the given tech-
nology corners for every circuit element. Since we assume normal distributions, two values are
necessary for their exact description. The first is the mean value and the second is the standard
deviation (sigma). In normal distributions, the mean value is also the expected value, which is
sometimes referred to as the typical value. Thus, we extract delays from the typical technology
library and assume that these values are the mean (µ) values for each elements’ delay distribu-
tions. For the standard deviation (σ), we use the typical corner and the worst-case corner. As
explained in Appendix C.1, 99.7% of the normal distribution’s samples lie within (µ ± 3 ∗ σ).
Thus, the worst-case corner should lie on (µ + 3 ∗ σ). We calculate the standard deviation as
σ = µwc−µtyp

3
, where µwc is the delay at worst-case and µtyp is the delay at typical case.

Having established the delay model for a single gate, we now describe the propagation of
delays across the circuit.

3.1.2 Statistical Delay Propagation

SSTA aims at calculating the arrival time at the circuit’s endpoints. In order to do so, we first
construct the timing graph of the circuit. This is a direct mapping of the circuit, where the
nodes of the graph are the gates’ ports and the circuits’ ports. Then, we assign any initial delay
distributions to the startpoints, which are the primary inputs and the outputs of sequential
elements, as in the case of static timing analysis. Next, we traverse the timing graph in BFS
until we reach the endpoints, which are the primary outputs and the sequential elements’ inputs.
In order to assign delay distributions to all circuit’s endpoints, propagation of normal delay
distributions is needed across the timing graph.

Thus, two basic operations are needed. The first is the SUM operation and the second is the
MAX operation. Although these operations are straightforward in STA, in SSTA additional

3.1 Statistical Static Timing Analysis 39

computations are needed.
Since we assume that the delay distributions follow the normal distribution, the SUM

operation does not pose any difficulties. The sum of two normal distributions is known to follow
a normal distribution [64]. Thus, for two normal distributions X and Y with X ∼ (µX , σ

2
X)

and Y ∼ (µY , σ
2
Y). their sum Z with Z ∼ (µZ , σ

2
Z) is given by:

Z = SUM(X, Y) = X + Y (3.1)

µZ = µX + µY (3.2)

σ2
Z = σ2

X + σ2
Y + 2cov(X, Y), (3.3)

where cov(X, Y) is the covariance between the normal distributions X and Y . Covariance
can be found through the correlation ρ(X, Y)by cov(X, Y) = ρ(X, Y)σXσY .

Calculation of MAX, however, is not straightforward. In the general case, the MAX of
two normal distributions does not follow a normal distribution. However, it has been found [15]
that the MAX can be reasonably approximated by a normal distribution using the following
procedure:

Z = MAX(X, Y) (3.4)

µZ = µXΦ(α) + µYΦ(−α) + βϕ(α) (3.5)

σ2
Z = (µ2

X + σ2
X)Φ(α) + (µ2

Y + σ2
Y)Φ(−α) + (µX + µY)βϕ(α)− µ2

Z (3.6)

where
α = (µX − µY)/β (3.7)

β2 = σ2
X + σ2

Y − 2σXσY ρ (3.8)

where Φ is the cumulative density function (CDF) and ϕ is the probability density function
(pdf) of a normal distribution with mean 0 and standard deviation 1. We use the aforemen-
tioned formulas for the calculation of SUM and MAX. This allows for propagation of normal
distributions across the timing graph and to the endpoints.

One subtle detail lies in the operation of SUM and MAX in case the operands are more than
two. This case is straightforward in STA, as addition is associative and finding the maximum
of a set of real numbers does not depend on the order at which the numbers are examined.

40 Statistical Delay Bounds

However, working with distributions, these operations may depend on the relative order of the
operands.

We tackle the problem of finding the SUM of more than two normal distributions by elim-
inating the need for this particular calculation. The only point at which the SUM operation is
needed is at the calculation of the delay of a gate output, related to the delay of a particular
input of this gate. This operation requires two operands; the delay of the input and the prop-
agation delay of the gate. Thus, we do not need to calculate sums of more than two normal
distributions.

However, in the case of MAX, we may have a set of normal distributions from which the
MAX must be derived. This is the case of a gate having more than two inputs. The MAX of
the inputs’ delay must be calculated in order to be combined with the gate’s propagation delay,
in order to derive the final delay at the gate’s output. Additionally, the MAX of all circuit’s
endpoints is required for the derivation of the circuit’s delay. The calculation of the MAX
over a set of normal distributions must be done in pairs, as the aforementioned approximation
does not extend to more than two distributions. This can introduce errors, especially if the
distributions overlap. Sinha et. al [72] quantified the error stemming from different approaches
in the order the pairs are selected from the set of distributions. Their results showed that
reasonable accuracy is expected if the normal distributions are sorted with decreasing mean
and the the MAX done in pairs, choosing first the distributions with the largest mean. The
error of this approach was shown to be less than 1% compared to Monte-Carlo simulations.
Thus, we have adopted this approach in our framework.

Figure 3.1 shows an example of a circuit on which SSTA is performed. On each timing node
(gate input/output or primary input/output) the statistical delay is annotated in terms of the
mean and the sigma of delay. In Figures 3.2a to 3.1d, the delays which have just been updated
are shown in bold. First, the statistical arrival times at all startpoints are annotated, as shown
in Figure 3.2a. Then, BFS starts by updating the statistical delay at the gates belonging to
the first level after the startpoints (Figure 3.2b). BFS progresses then, as shown in Figure 3.1c
towards the endpoints, passing through the second level of gates. Note that in Figures 3.2b
and 3.1c, gate G1 has been updated twice, as in its first update, not all of its inputs had taken
their final values. In Figure 3.1d, SSTA has updated all the timing nodes, and thus the whole
circuit has been statistically analyzed.

Our SSTA engine results were validated against Monte-Carlo simulations. Monte Carlo
results are illustrated in Figure 3.2, which compares an SSTA result with Monte Carlo sim-

3.1 Statistical Static Timing Analysis 41

D Q

D Q

0

QJ

K

(1.2,0.2)
(1.0,0.2)

(1.0,0.1)

(1.5,0.2)

(0.8,0.15)

(0.5,0.04)

(0.8,0.15)

(1.0,0.1)

(1.8,0.3) (0.7,0.05)

(0.8,0.15)

(a) Statistical arrival times

(b) First BFS level

42 Statistical Delay Bounds

(c) Second BFS level

(d) SSTA converges

Figure 3.1: Progression of SSTA

3.1 Statistical Static Timing Analysis 43

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.2 0.25 0.3 0.35 0.4

P
ro

ba
bi

lit
y

Mean (ns)

Gaussian Approximation
Monte Carlo

Figure 3.2: Monte Carlo analysis compared with SSTA result

ulation for 1,000 samples. The results were taken for a small circuit of 64 gates, which is
part of the benchmark set we use later for evaluation. We used the following methodology for
Monte-Carlo simulation. The startpoints of the circuit were assigned a delay distribution to
account for arrival time. This was then translated into a set of 1,000 samples which represents
the distribution in numerical fashion. Then, timing analysis of the circuit was performed in
BFS. Every time a SUM operation was needed, the two sample sets of the two operands were
added, yielding a sample set for the result. In case of a MAX operation, 1,000 samples were
selected randomly from the sample sets of the two operands. This was done by selecting a
sample from each set and outputting the larger of the two in the set corresponding to the result
of the MAX operation. At the endpoints, we performed a MAX operation to yield the sample
set corresponding to the final timing of the circuit. Figure 3.2 shows the distribution of the
samples from the simulation-derived sample set and the delay distribution derived from our
SSTA using the same assumptions about the input arrival times. Our tool captures efficiently
the worst-case point of the delay and correlates well with the distribution exhibited by the sim-
ulation results. The results shown are for one of our benchmark circuits, b06, however other
circuits exhibit similar results.

44 Statistical Delay Bounds

3.2 Minimum Sigma Propagation
In this section we describe our procedure for deriving the lowest sigma bound as a function
of wire delays for a gate-level circuit and detail the relevant algorithm. Our goal is to derive,
given a circuit and its SSTA model, a delay assignment at the circuit’s wires which achieves
the minimum sigma, at the virtual sink node, nf . We call this, the Min-Sigma Slack Assign-
ment (MSSA). Similarly to the Zero-Slack Assignment (ZSA) algorithm [56], delay assignment
refers to deriving a required delay bound for a given wire, which can then be converted into a
wirelength bound for physical design algorithms.

3.2.1 Motivation and Intuition for MSSA

MSSA provides, by definition, the distribution with minimum sigma that can appear to the
endpoints of the circuit and to any internal node. An optimization tool for sigma can use
MSSA in order to decide how hard the sigma constraints are. MSSA results can also signal the
infeasibility of a sigma constraint.

MSSA aims at propagating delay distributions with minimum sigma at all circuit’s end-
points. In order to do so, two questions must be answered. The first is how to shape the delay
distribution of a gate’s output so as the sigma of its delay distribution is minimized. The second
is how this procedure can be generalized to circuit granularity, i.e. how to minimize the sigma
at the circuit’s endpoints.

We answer the first question by examining the way delay distributions are calculated at any
gate output. There are two steps for this calculation. The first step is to compute the MAX of
the delays of all gate’s inputs and the second step is to add the propagation delay of the gate.
We cannot intervene in the second step, as the propagation delay is a value extracted by the
technology library. However, the result of the MAX operation can be manipulated. In fact, we
employ the idea that if two delay distributions do not overlap, then the MAX result depends
only on the “dominating” distribution, i.e. the distribution whose samples are always larger
than the samples of the other distribution. This is graphically depicted in Figure 3.3. Thus,
by applying delay to the distribution with the minimum sigma, we can minimize the sigma of
the MAX.

We answer the second question by the observation that minimizing sigma of the delay of
one gate, cannot cause an increase in the sigma of another gate. Moreover, minimizing sigmas
at one logic level of the circuit cannot cause an increase in sigma in a latter logic level. Thus,

3.2 Minimum Sigma Propagation 45

PR
O

B
A

B
IL

IT
Y

MAX

D1

D2

DELAY
(a) MAX depending on both distributions

PR
O

B
A

B
IL

IT
Y

D1

DELAY

MAX
D2

(b) MAX dominated by one distribution

Figure 3.3: MAX of two normal distributions

by finding the minimum sigma for every single gate of the circuit, then the minimum sigma
will also appear at the endpoints.

In the next sections we describe in detail our MSSA algorithm.

3.2.2 MSSA for a Single Gate

Our SSTA delay model focuses on gate delays, i.e. we assume that wires affect the gate load
and delay, but do not themselves possess a sigma contribution. Based on this delay model,
and given a gate with statistical delays at each of its inputs, we pose the question of how to
propagate a statistical delay with minimum sigma at this gate’s output, given that we can skew
the Arrival Time (AT) of its input delays by introducing wire delay.

Given that we can identify the input distribution with minimum sigma, and that the statis-
tical ADD operation performed at the gate’s input pin can only monotonically increase sigma,
one obvious way in which to propagate the distribution with minimum sigma is to sufficiently
delay the input pin of the former with enough wire delay so that it doesn’t overlap during the
statistical MAX operation performed at the gate’s output pin.

Figure 3.4 illustrates a 3-input NAND gate example, where the distribution at node 2,
i.e. the minimum sigma node, with the addition of the appropriate wire delay, results in the
narrowest sigma at the output X. However, there is still the question of finding the minimum
delay offset which will yield the minimum sigma.

Answering this question is not easy due to the mathematical complexity of the Gaussian
approximations for the statistical MAX (or MIN) operators [16]. To the best of our knowledge,

46 Statistical Delay Bounds

3

2

1

X

NAND3 Gate

X

3

2

1 De1

De2

De3

wire

NAND3 Gate

Figure 3.4: 3-input gate MSSA delay assignment example

the mathematical expression for deriving the standard deviation of the statistical MAX oper-
ation cannot be expressed analytically due to the presence of the Gaussian Integral. However,
by using numerical integration methods [26], it is possible to explore the relationship between
the sigma of the statistical MAX operation as a function of a mean value for two or more distri-
butions. Plots of σ(MAX) for two distributions with one mean value constant while sweeping
the other mean over an interval are illustrated in Figure 3.5, for three different mean and sigma
values.

Our numerical analysis indicates firstly that σ(MAX) will converge to the minimum sigma
of the two distributions, and can never be smaller, and secondly that there exists a mean value
(or effectively an offset), whereby σ(MAX) will assume its final value, even though the two
distributions will be overlapping. This is an important observation, as it relaxes wire offsets
for achieving the minimum sigma value. The opposite requirement, i.e. that distributions do
not overlap would imply a very significant delay at each wire assignment.

Hence, it is indeed possible, given SSTA results at a gate’s inputs, to calculate a wire delay
assignment at one of them, which would minimize sigma at the gate’s output. One subtle detail
is that the effect to the inserted wire load has to be accounted for. In the case where a circuit
net forks to multiple gate inputs, i.e. output fanout is present, the delay assignments should be
applied to the appropriate leg of the fork, feeding the relevant gate input of a successor gate.

Overall, the sigma at the gate output will depend on: (i) the narrowest distribution at
the gate’s inputs, (ii) the inserted wire load to skew this distribution which may affect output
sigma, and (iii) the process parameters of the gate which will affect the ADD operation before
the MAX at its output.

3.3 Minimum Sigma Slack Assignment 47

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

S
ig

m
a(

ns
)

Mean(ns)

mean1=1.29

mean1=1.08

mean1=1.1

mean1=[0.6,1.4],mean2=0.8,sigma1=0.005,sigma2=0.07
mean1=[0.6,1.4],mean2=0.9,sigma1=0.015,sigma2=0.09
mean1=[0.6,1.4],mean2=1.1,sigma1=0.03,sigma2=0.11

Figure 3.5: σ(MAX), as a function of mean

3.3 Minimum Sigma Slack Assignment

We derive a slack assignment for minimum sigma by a forward traversal of a circuit’s timing
graph, propagating minimum sigma at every gate. The Minimum Sigma Slack Assignment
(MSSA) algorithm, shown in Algorithm 3.1 takes as input the circuit’s Timing Graph (TG)
and must be run after an initial SSTA analysis. The algorithm operates in block-based, breadth-
first fashion, similar to the SSTA computation, traversing the timing graph forward, level by
level (Line 3), checking whether new SSTA node results have propagated at all inputs of a gate
(Line 9), by using array SSTA to indicate result progression. For each gate, with all its input
SSTA nodes available, the minimum sigma input is selected by function Min_Sigma (Line 10).
Min_Offset computes the wire delay offset that must be appended to the selected input, so as
to minimize the sigma of the statistical MAX operation at the gate output (Line 11). Function

48 Statistical Delay Bounds

SSTA_tent_net performs local, tentative SSTA for a gate. It takes as input a given net
along with a delay perturbation, and taking into account the wire load implied by this net delay,
computes arrival times and sigma at the gate’s output. The input node which yields minimum
sigma at the output of the gate is found with Function Min_Sigma_input (Line 13). The
new timing is committed to the timing graph by adding the offset to the selected input using
Function SSTA_inc_net (Line 13). The final AT and sigma are stored into two MSSA arrays,
i.e. Arrival_MSSA and Sigma_MSSA respectively. The timing graph assignment is flagged
as final (Lines 15), thus indicating that new results are valid for successor level gates. Upon
the algorithms’ completion, the MSSA delay assignment is stored in array δMSSA, while arrays
Arrival_MSSA and Sigma_MSSA contain the ATs and the MSSA bounds respectively.

Algorithm 3.1 - Minimum Sigma Slack Assignment (MSSA)
1: MSSA(TG)
2: SSTA[PIs] ⇐ 1;
3: for currentlevel = 1 to MaxLevel(TG) do
4: LG ⇐ LevelGates(TG, currentlevel);
5: repeat
6: for all (gatei ∈ LG) do
7: gateoutput ⇐ OutputNet(gatei);
8: gateinputs ⇐ InputNets(gatei);
9: if (∀ netn ∈ gateinputs: SSTA[netn] = 1) then

10: minSigmaInput ⇐ Min_Sigma(gateinputs);
11: δMSSA[minSigmaInput] ⇐ Min_Offset(minSigmaInput, gateinputs);
12: done[gatei] ⇐ 1;
13: (Arrival_MSSA[gateoutput], Sigma_MSSA[gateoutput] ⇐

SSTA_inc_net(gatei, minSigmaInput, δMSSA[minSigmaInput]);
14: for all fanoutnet ∈ Fanout(gatei) do
15: SSTA[fanoutnet] ⇐ 1;
16: end for
17: end if
18: end for
19: until (∀ gatei ∈ LG: done[gatei] = 1);
20: end for
21: return δMSSA, Arrival_MSSA, Sigma_MSSA;

After selecting a locally optimal sigma value for each gate node, MSSA will derive the
globally optimal sigma based on minimum sigma propagating wire assignments, albeit with an
effect on the mean. Nets with multiple fanouts must be handled as separate graph edges, i.e.

3.3 Minimum Sigma Slack Assignment 49

each fanout leg is handled individually, according to the sigma which is to be propagated to its
successors.

Reconvergent fanout portions do not affect the algorithm’s operation. The net fanout part
of a reconvergent portion is handled as multiple nodes, whereby the successor gate of each leg
will dictate whether wire delay is added to this fanout portion, while a reconverging gate will
ensure minimal sigma propagation at its outputs. Thus, as the minimum sigma problem has
an optimal substructure, i.e. locally optimal solutions combine to achieve the global optimum,
both net fanouts and reconvengent paths do not affect the quality of the algorithm’s results.

3.3.1 MSSA Superfluous Constraints

C

D

E

F

G

B

A

X

Y

wire 1

wire 2

wire 3

Figure 3.6: MSSA example with a superfluous constraint

A contrived, yet intuitive example illustrating a wire assignment of the MSSA algorithm is
shown in Figure 3.6. A total of three wire bounds have been introduced: wire 1 propagates the
sigma of input E to the output of the first XOR gate, wire 2 propagates the sigma of the OR
gate’s output to Y and wire 3 propagates the sigma of input A to output X.

An aspect of the MSSA algorithm wire assignments illustrated by the example of Figure
3.6, is that some of the MSSA constraints may be superfluous, as MSSA only performs a single
pass. In this case, as wires 2 and 3 essentially dominate the sigma of outputs X and Y, the

50 Statistical Delay Bounds

wire 1 constraint is superfluous with respect to obtaining minimum sigma at the outputs, and
it merely adds unnecessary delay to the circuit.

Hence, such superfluous wire constraints will impact the MSSA circuit’s mean. Eliminating
them requires a second pass of the Timing Graph, in the reverse direction, i.e. from the sink
node to the source node, whereby any wire delay assignment found, which is dominated by
another of a successor level is removed.

3.3.2 Runtime Issues

MSSA is based on a BFS traversal of the timing graph. Thus, its timing complexity is O(V+E),
where V is the number of timing graph nodes and E is the number of edges. Each node is
visited only once and the operations made on each node depend on the type of node. When
MSSA visits a node corresponding to the input of a gate, it performs no operations. If the node
corresponds to the output of the gate, then the aforementioned numerical method is performed.
This, however, is a fast process. The selection of the input with the smallest sigma can be done
in linear time with the number of inputs. It should be noted, that a typical gate will have no
more than four inputs, the average being less than three inputs. Then, the amount of slack that
needs to be applied to this input, so that its delay dominates other inputs’ delays, is derived
easily with a simple calculation. Thus, all the operations in MSSA are fast, making MSSA an
efficient algorithm in terms of runtime. In Chapter 7, this analysis is confirmed by experimental
runtimes.

In the next section we show how the results fromMSSA can be utilized in our novel statistical
slack allocation algorithm, TSZSA.

3.4 Target Sigma Propagation
In this section we describe our methodology for propagating a designated value for sigma to
the outputs, instead of propagating the minimum sigma. This calls for a different algorithm
than MSSA, which nonetheless must use the information from MSSA.

3.4.1 Motivation and Intuition for TSZSA

MSSA typically requires an excessive amount of slack to be added to the mean delay so that the
selected distributions dominate the ones with larger sigma. It is unlikely though, that a designer

3.4 Target Sigma Propagation 51

will need to constrain the sigma of the circuit’s delay so much and to be willing to accept such
a large penalty on the mean delay. The more typical case is that both mean and sigma will
be values that the designer needs to be bounded from above. Thus, we have developed our
Target Sigma Zero Slack Allocation (TSZSA) algorithm, which tries to find a slack allocation
that guarantees that the mean and the sigma of the delays of the circuit’s outputs meet target
mean and target sigma constraints.

It is clear that TSZSA will require less slack to be added to selected nodes in order for the
sigma of the delay of a gate’s output to be reduced by only some amount instead of reaching
its minimum. TSZSA was conceived with this idea in mind; as offsets are applied to inputs of
a gate with relatively small sigma, the sigma of the gate’s output delay is decreased until it
reaches a minimum value. Thus, if a target for the sigma is known, then the amount of offset
that must be applied to an input can also be derived. The questions that a TSZSA algorithm
needs to answer is how to decrease the sigma of the delay at the output of a gate and how to
propagate the distributions with reduced sigmas to the circuit’s outputs.

The first question is answered in a similar way as in MSSA. If a target is set for the sigma
of a gate output’s delay, then the feasibility question can be immediately answered. If the
target sigma is greater than the minimum sigma achieved by MSSA, then the target is feasible,
otherwise TSZSA can conclude that the target sigma is unrealistic. In the feasibility case, there
has to be an offset applied to the input with the smallest sigma that makes this distribution
dominant in the calculation of the inputs’ MAX, reducing the sigma of the MAX delay. In
fact, it is not necessary that the input with the smallest sigma must be selected. Another input
with relatively larger sigma, but requiring less offset might also be enough. Thus, by selecting
an input, which given an offset, can reduce the sigma of the gate’s output delay to the target
sigma, we can derive the exact amount of offset needed and fix the sigma of the gate’s output.

The second question can be solved by means of dynamic programming. Starting from the
circuit’s endpoints, we can first check if the target sigmas are feasible. If they are, we can
determine the sigmas that are required at all the gates that drive the endpoints, which, if were
in place, then a slack allocation could be found in order to fix the sigmas at the endpoints.
At this point, the information from MSSA must be used again to check if the required sigmas
at the drivers are generally feasible. By means of dynamic programming, we can traverse the
circuit from the endpoints to the startpoints, setting targets for the sigma at each internal node.
Then, with a forward traversal, we can meet the target sigmas for all internal nodes using a
similar approach as in MSSA, the difference being that that target sigma is not the minimum

52 Statistical Delay Bounds

possible sigma.
In the following sections we describe how we solve these problems in practice.

3.4.2 TSZSA for a Single Gate

The foundation for developing our TSZSA algorithm is to find a way to decrease the sigma at
the output of a single gate. As explained previously, this is done by selecting one input with
relatively small sigma and applying to its delay distribution an amount of offset. There are two
cases that need to be considered. The first case is that at least one of the inputs currently has
a delay distribution, which if appropriately delayed, will cause a decrease in the sigma of the
output. The second case is that none of the inputs can decrease the sigma of the gate’s output
with its current delay. In the first case, we select the best input and derive the offset that must
be applied to it. The best input is the one requiring the minimum offset and is selected with a
procedure detailed later in this section. In the second case, we assume that the delay of each
input has a sigma that could, potentially cause a decrease in the gate output’s sigma, if an
appropriate offset was applied. Our task is to find the offset and an appropriate target for this
input’s sigma. This is done in two phases. First, we assume that this input is infinitely delayed
and find the maximum sigma that it can have, in order for the sigma at the output of the gate
to meet the target. Having fixed the maximum allowable sigma, we relax the infinite offset
assumed in the first place, in order to find the minimum offset required for this input. We then
select the best input as in the first case and we transfer the problem to fixing the sigma of the
selected input, following the dynamic programming paradigm.

In order to make the best choice for the input, we scan all the inputs, taking into considera-
tion both cases previously described and calculate the minimum offset that needs to be applied
to any of them so that the sigma at the gate’s output meets the target. This is graphically
depicted in Figure 3.7. As inputs will generally have different delay distributions, different
amounts of offset will be required for each one. It will be the case that some of the inputs will
have too large sigma and their minimum sigma, as indicated by MSSA is too large too. These
inputs will not be considered as suitable candidates for decreasing the output’s sigma. In the
case of Figure 3.7, input 1 is rendered unsuitable, as no matter how much offset is applied to it,
the sigma at the output is not decreased. For the remaining inputs, input 3 requires the least
amount of offset, so this is the one selected.

3.4 Target Sigma Propagation 53

σ1
σ2
σ3

σ1

σ2

σ3

σ1

σ3

σ1

σ2
σ2

σ3

NAND3 Gate

3

2

1

X

NAND3 Gate

X

3

2

1 De1

De2

De3

NAND3 Gate

X

3

2

1 De1

De2

De3

wire

NAND3 Gate

X

3

2

1 De1

De2

De3

wire

wire

(a) Offset applied to input 1 (b) Offset applied to input 2 (c) Offset applied to input 3

Figure 3.7: Applying TSZSA offset to gate inputs

3.4.3 TSZSA Algorithm

Having derived a minimum sigma bound based on wire assignments, we now present an algo-
rithm which meets a sigma target, greater than the minimum sigma bound, while also preserving
a target slack value at the circuit’s POs, i.e. the virtual sink node. The TSZSA algorithm’s
inputs are the slack and sigma targets and the output is the wire delay assignments.

As it is impossible to know a priori, whether a required target sigma is achievable, the
MSSA algorithm must first be run on the circuit, when minimum sigma bounds are stored at
every node, to indicate feasibility. TSZSA uses MSSA assignments to relax sigma constraints,
according to the target sigma, while eliminating superfluous sigma constraints, described in
Section 3.3. This requires a backwards timing graph traversal, as both the target slack and
the target sigma apply at the outputs, and their importance decreases towards the inputs, in
accordance with the circuit’s structure. At each gate, during this backward traversal, the best
local wire delay assignment is selected, i.e. the wire delay on one of the gate’s input nets of
minimum length, which guarantees the target sigma at the gate’s output. The target sigma of
the non delay assigned wires is set to their current sigma, to relax their constraints backwards
and avoid superfluous constraints.

3.4.4 TSZSA Wire Delay Propagation

One subtle detail which needs to be accounted for when assigning wire delays at a given node
is whether any successor level’s wire bounds are affected, i.e. may subsequently be reduced, as
the introduction of the new wire assignment modifies their arrival time, hence less delay is now
required for a successor level.

Figure 3.8 illustrates the two possible cases, which emerge while TSZSA traverses backwards.
After a wire bound is added at wire 2 to guarantee a target sigma at X, another wire bound is
added at wire 1, as only G can meet the target sigma now required at node Y. The backwards

54 Statistical Delay Bounds

wire 1

wire 2
+ ∆1

X

∆1

A

B

Y

wire 1

wire 2
+ ∆1

X

∆1

A

B

(a) New wire assignment is distributed

Y

C

D

E

C

D

E

 unevenly to the next level evenly to the next level
(b) New wire assignment is distributed

Figure 3.8: Optimizing successor level bounds - possible cases

level of Y is 2, whereas the level of X is 1. Now after adding wire 1 at level 2, the arrival time
of the next constraint, wire 2, is affected. In the first circuit, Figure 3.8 (a), wire 1 of delay
�1, increases the arrival time at Y by +�1, thus this delay should be be subtracted by wire 2’s
delay. If this delay was not subtracted, the delay at wire 2 would be superfluous increasing
circuit delay and reducing available slack. This is not the case in Figure 3.8 (b), where the
relative delays of the two paths leading to gate X must be preserved. We distinguish between
these two cases and remove any superfluous wire delay assignments.

3.5 Target Sigma Zero Slack Assignment
TSZSA, illustrated in Algorithm 3.2, operates in a backwards, breadth-first search fashion,

i.e. from the virtual sink node of the Timing Graph (TG), towards the virtual source node
(Lines 5 to 33). The target constraints for each node are stored in arrays Slack and TSigma
(Lines 3 and 4), whereas array SSTA indicates result progression beginning from the POs.
All arrays begin initialized to zero. Array Sigma_MSSA is the array of lowest sigma bounds
obtained by the MSSA algorithm’s execution. For each gate of the current level, the slack is
computed (Line 13). The Min operation is required as a net may fanout to multiple gates and
may already have been assigned slack from another gate. Slack is computed as the minimum of
the currently assigned value, and the difference of gate delay subtracted from the slack at the
gate’s output. Function ComputeNetDelayforSigmaTarget (Line 14) performs iterative
wire delay analysis, at gate input j, in order to achieve the target sigma at the gate’s output.
It takes as input the MSSA sigma values, provided by Sigma_MSSA, to assess that the target
sigma specified is achievable. This process is performed for all gate inputs and results are

3.5 Target Sigma Zero Slack Assignment 55

Algorithm 3.2 - Target Sigma Slack Assignment (TSZSA)
1: TSZSA(TG, targetsigma, targetslack, Sigma_MSSA)
2: SSTA[POs] ⇐ 1;
3: Slack[POs] = targetslack;
4: TSigma[POs] = targetsigma;
5: for currentlevel = MaxLevel(TG) to 1 do
6: LG ⇐ LevelGates(TG, currentlevel);
7: repeat
8: for all (gatei ∈ LG) do
9: gateoutput ⇐ OutputNet(gatei);

10: if SSTA[gateoutput] = 1 then
11: Clearqueue(Q);
12: for j = 1 to NoOfInputNets(gatei) do
13: Slack[j] = Min(Slack[j], (Slack[gateoutput] - GateEdgeDelay(j,

gateoutput)));
14: (δ[j], Sigma[j]) = ComputeNetDelayforSigmaTarget(gatei,

TSigma[gateoutput], j, Sigma_MSSA[j]);
15: AscendingOrderEnqueue(Q, δ[j], Sigma[j], gateinputs[j]);
16: end for
17: (δTSZSA[netTSZSA], Sigma[j], netTSZSA) ⇐ Head(Q);
18: done[gatei] ⇐ 1;
19: SSTA_inc_net(gatei, netTSZSA, δMSSA[netTSZSA]);
20: Slack[netTSZSA] = Min(Slack[netTSZSA], (Slack[netTSZSA] - δTSZSA[netTSZSA]));
21: TSZSA_tighten_level(currentlevel + 1, gatei, netTSZSA, δMSSA[netTSZSA]);
22: for j = 1 to NoInputNets(gatei) do
23: if j ̸= netTSZSA then
24: TSigma[j] = Min(TSigma[j], StdDev[j]);
25: end if
26: end for
27: for all faninnet ∈ Fanin(gatei) do
28: SSTA[faninnet] ⇐ 1;
29: end for
30: end if
31: end for
32: until (∀ gatei ∈ LG: done[gatei] = 1);
33: end for
34: return δTSZSA;

sorted by wire delay in a queue, by function AscendingOrderEnqueue (Line 15). The

56 Statistical Delay Bounds

optimal solution is the wire assignment which achieves the target sigma while adding minimum
wire delay to one of the gate’s inputs. This solution will reside at the head of the queue
and is selected (Line 17). The gate is flagged as complete (Line 18), the result of adding
the wire delay is committed locally to the Timing Graph by using function SSTA_inc_net
(Line 19) and the slack of the node is updated, taking into account the added wire delay
(Line 20). Function TSZSA_tighten_level (Line 21), as explained in Section 3.4.4, checks
the impact of the addition of the newly added wire delay to wire delays of the successor level,
potentially reducing them to their minimum delay possible without altering their target sigma.
If TSZSA_tighten_level makes any modifications to successor level wire bounds, it will
update the Slack values of both successor level wire bounds, and of the current wire bound.
Then, the sigma target of other side inputs is set to their current sigma, i.e. their current
standard deviation based on the zero wire delay SSTA analysis, unless it is set to a smaller
value by another gate, to which this net fans out. This is the purpose of the Min operation
(Line 24). Finally, the algorithm flags the gate’s inputs (Lines 32 to 33), proceeds to consider
other gates at this level and then to predecessor levels. Upon the algorithm’s completion, the
TSZSA constraints are stored in array δTSZSA.

At the end of the TSZSA algorithms’ execution, there are two possibilities, (i) there will
either be available slack at the circuit’s startpoints, which implies that the original target
slack was sufficient to satisfy the sigma constraints, or (ii) the slack at the startpoints will be
negative, meaning that it was not possible to assign the allocated slack to achieve the sigma
target. In the first case, where slack is left over at the startpoints, the remaining slack should
be allocated to circuit’s wires, but without significantly altering the target sigma. We solve this
issue by formulating a linear programing problem, which aims to distribute the slack without
affecting the relations between the delays of the inputs of each gate. This is explained in detail
in Section 3.6. In the second case, the sigma constraint conflicts with the mean constraint.
Depending on how tight the slack is, there can be cases, where all of the available slack is
allocated to satisfy sigma constraints, and some nets end up with zero wire delay. These cases
are also unrealistic.

3.6 LP slack assignment
Since we aim at using the TSZSA in the framework of a physical algorithm, we need to make
sure that the derived allocation can provide realistic wire bounds for use in a physical tool like

3.6 LP slack assignment 57

placement. Thus, we have to distribute any remaining slack to nets in such a way that the
physical algorithm can create the nets according to their slack. This means that nets must not
be assigned too small or too large slacks. The former would call for too short nets, making, e.g.
placement of the gates connecting the nets too constrained and the latter would require too
large nets which would require aggressive lower bounds on the distance between the connected
gates. TSZSA guarantees a reasonable slack allocation by formulating all the aforementioned
constraints in a linear programming (LP) problem.

The constraints for the LP problem can be divided into separate categories.

• Absolute constraints on the maximum length of each wire. This type of constraint
ensures that the physical algorithm will not be required to create too long wires.

• Absolute constraints on the minimum length of each wire. This type of constraint
aims at avoiding aggressive upper bounds on the physical distance among gates, which
would be the case if wires were requested to be too short.

• Relative constraints for each pair of gate inputs. This type of constraint ensures
that the relative order of delay distributions are preserved after slack allocation. This
is especially important, as TSZSA is based on selecting a suitable input of a gate and
specifically applying offset to it, in order for the sigma of the gate’s output to be decreased.

• Absolute constraints on the mean delay of the endpoints. This essentially cor-
responds to the available slack that is to be distributed. The final mean delay of each
endpoint must not violate the upper bound on the mean delay.

• A description of the timing graph in form of linear programming. This descrip-
tion provides the information of the connections in the timing graph. The delays at gate
outputs are modeled as the sum of the delays at the gate inputs plus the propagation
delay. The delay at a gate input is modeled as being at least as much as the delay of the
driver plus the delay of the wire connecting them.

• The objective function. We set the objective function to maximize the total length of
all wires. This, coupled with the lower and upper bounds on the delay of each wire will
provide a reasonable slack allocation if the problem is feasible.

We now describe the LP formulation in detail.

58 Statistical Delay Bounds

3.6.1 LP formulation for Statistical Slack Assignment

We have defined the LP problem in such a way that the allowable delay for each wire is
maximized. Thus, Equation 3.9 shows the problem definition.

max Σwi

wi ≤ UpperBound

wi ≥ LowerBound

d(gi) ≤ MeanConstraint

(3.9)

where wi is the delay of a wire in the circuit, UpperBound is the maximum delay for each
wire, LowerBound is the minimum allowable delay for each wire, MeanConstraint is the
maximum allowable mean delay for each endpoint and d(gi) is the delay of a timing node in
the circuit. Additionally, the TSZSA constraints are added in the LP formulation, as shown in
Equation 3.10.

for each ((d(gi), d(gj)) TSZSA constraint:
d(gi) ≥ d(gj)

(3.10)

Equation 3.10 adds the relative TSZSA constraint to the LP problem, i.e. adds the con-
straint that a timing node is slower than another timing node. This type of constraint is
especially important for preserving the offsets added by TSZSA. It is not harmful for the offset
to be augmented by the slack allocation. However, since TSZSA has found the minimum offset
that must be applied to a gate input, a slack allocation which effectively decreases the assigned
offset is not acceptable.

The relations between timing nodes and wires are described in Equation 3.11.

for each input:
d(gi) ≥ d(gdriver) + wi

for each output:
d(gi) = d(gslowest_in) + dpropagation

(3.11)

Equation 3.11 determines that the delay of an input is the sum of the delay of its driver
plus the delay of the wire that connects the input to its driver. The delay of wi is the one which
we require to maximize in the LP cost function. Equation 3.11 also determines that the delay
of an output is the delay of the slowest input for the given gate, plus the propagation delay for

3.6 LP slack assignment 59

the gate.
Thus, the above formulation allows for a well-defined LP problem, which can be solved with

standard LP solvers. The difference from a traditional zero-slack assignment algorithm, used
for reference later in this thesis, is that the aforementioned LP formulation incorporates the
TSZSA constraints, thus the resulting assignment not only is a zero slack assignment, but also
one that guarantees a target sigma at the outputs. We have used the GNU GLPK solver [25]
to solve the LP problem and produce the slack bounds on wires to use later in the placement
algorithm.

3.6.2 Runtime Improvement Through Hierarchical LP

GLPK, which uses the revised simplex method [55] can find optimal solutions of the LP problem.
However, the runtime can be prohibitive, spanning multiple hours even for circuits of a few
thousand standard cells. Thus, we have developed a hierarchical approach to tackle the runtime
problem and enhance scalability of our algorithms.

Although part of the constraint set derived by TSZSA is of relative nature, the constraints
involved typically require information from a relatively small portion of the circuit. Most
constraints can be derived independently to each other, thus the application of a hierarchical
approach is possible. In order to employ our hierarchical approach, we allocate slacks first to all
wires, in a greedy and fast way, which, in the general case will not be optimal in terms of sigma
optimization. We do this, to form an initial solution, which may be suboptimal, but will provide
directives for the LP optimization process. Next, we employ a recursive bisection approach, at
the circuit graph level, which divides the problem of slack allocation into smaller problems of
the same characteristics as the initial problem. We keep bisecting until the segments are small
enough so that the problem can be solved locally and fast by GLPK.

The main idea is to derive circuit portions, which have similar structure to the original
circuit, i.e. primary inputs, primary outputs, internal nodes, startpoints and endpoints. All
startpoints, be it primary inputs or sequential elements, will have input arrival times, as the
startpoints of the original circuit do. All endpoints, be it primary outputs or sequential ele-
ments, will have bounds on their mean and sigma of delays, as is the case with the original
circuit. The problem on the circuit portion is essentially the same as in the original circuit and
can be solved by an appropriate LP formulation using the same approach as the one we use for
the whole problem. The problem is now reduced to creating the circuit portions.

60 Statistical Delay Bounds

Figure 3.9: Hierarchical support for LP

We use a min-cut bisection approach in order to minimize the number of nets spanning
among segments. This step is easily done using any min-cut bisection algorithm like Kernighan-
Lin, Fiduccia-Mattheyses or more advanced like hMetis. An example of a bisection is shown in
Figure 3.9. The original circuit has been bisected into two segments, Segment1 and Segment2
with only one wire spanning between the two segments, the one connecting gates G1 and G2.

Each segment is then treated independently. Given the statistical timing analysis of the
original circuit, the arrival times and bounds on each timing node of the circuit are known. For
example, Segment1, can be handled as an independent circuit with five primary inputs feeding
three input gates, three internal gates, one endpoint in the form of a sequential element and
one additional, artificial endpoint, the output of G1. The bounds on the statistical delay of
this output are defined by the previously done SSTA and greedy slack assignment, which in
this case dictate that the maximum (µ, σ) should be (3.54, 0.32) for the sequential element and
(3.0, 0.25) for the artificial endpoint. Similarly, Segment2 has one primary input, one input in
the form of a sequential element, one internal gate, one primary output (the inverter’s output),

3.6 LP slack assignment 61

one endpoint in the form of a sequential element and one primary input feeding gate G2. In this
case, the arrival time at G2 is known to have a value of (3.0, 0.25). If these two segments are
small enough for the LP problem to be solved efficiently, then we formulate the two problems,
one for each segment, and solve them independently. Otherwise, we keep bisecting forming
smaller circuits. The solutions of the two LP problems on the two segments are then combined
to form the solution for the whole circuit.

However, there is a point of interest exactly at the wire connecting the two segments. The
slack of this wire cannot be found by either of the two LP problems. The slack for this wire
is determined by the initial slack assignment and will not be altered, unless any of the smaller
problems prove to be infeasible. In this case, we merge the two segments, do a second bisection
and prohibit this problematic wire to span between any two segments. In the new bisection,
this wire will belong entirely to a segment and its slack will be optimized by the solution of an
LP formulation.

We guarantee that the hierarchical algorithm will, in the end find a solution if the original
problem is feasible by adding a full merging approach. If, after a number of unsuccessful trials,
a solution cannot be found for the smaller segments, they are merged recursively and LP is
formulated on the merged segments. This, will give greater freedom of optimization, but will
also require larger runtime. In the extreme case, all segments will be merged back to the initial
problem and the LP will be formulated on the whole circuit. Thus, in the worst-case scenario,
although LP will fail to benefit from the hierarchical approach, it will still search for a solution
on the initial problem and will, eventually, find a solution if this is possible.

Having described our novel methodology for deriving statistical wire bounds, we now present
our constructive statistical-based placement algorithm, SCPlace.

62 Statistical Delay Bounds

Chapter 4

SCPlace

In this chapter we describe SCPlace, our placement tool which can perform statistical opti-
mization for delay, through placement, on a circuit. As discussed in Section 2.3.7, although
statistical approaches are being developed both in industry and in academia, there is lack of
support from large-scale optimization tools like placers. SCPlace is our answer to this problem.
SCPlace is a hybrid constructive-iterative placer, which incorporates (i) the statistical wire
bounds produced by TSZSA (cf. Section 3.4), and (ii) the LP-based slack assignment for the
TSZSA’s bounds. We tackled the inherent deficiencies of constructive placers by incorporating
iterative heuristic approaches in the inner loop of SCPlace’s optimization, enhancing SCPlace’s
solution space search mechanism. We addressed the non-uniform density and routability issues
by introducing density screens during the placement process, as described in Section 4.7, which
ensure firstly that congestion does not exceed a maximum within the density screen area, and
secondly that sparsely populated areas are placement candidates. SCPlace selects legal cell
locations by default, thus placement legalization, as a post-placement step is not necessary.

We start the discussion with the description of a rather naive placer we developed, aimed
at tackling the problem of statistical delay optimization. In the context of SSAPlace, we will
show in Section 7.3 that statistical timing cannot be optimized using traditional placement
approaches, employed by contemporary placement tools, but alternative approaches, like the
ones employed by SCPlace, must be targeted for. Next, we describe SCPlace and then we
proceed to more technical details, e.g. the requirements of SCPlace for statistical optimization,
its interface with other tools, its optimization objectives and the implementation details.

64 SCPlace

4.1 Motivation for SCPlace
We have developed SSAPlace in order to highlight the inefficiency of monolithic iterative ap-
proaches for optimizing for double-sided constraints like the ones required for statistical op-
timization. Although we do not provide a formal proof for the unsuitability of iterative ap-
proaches for the problem we are targeting, experimental results, presented in Section 7.3 on
SSAPlace, confirm our intuition. In fact, SSAPlace provided the motivation for developing our
slack-based statistical optimization framework. SSAPlace is a simulated annealing algorithm
which accepts a move if it improves the mean and sigma of an output. Alternatively, it accepts
moves which do not negatively affect the mean delay of the slowest output, but improve sigma
locally. A move may also be accepted if it improves the mean or wirelength without increasing
the local sigma. Pseudocode for SSAPlace is given in Algorithm 4.1. The greedy condition for
accepting a move is performed in Line 9. This directly requires an improvement in either mean,
sigma or wirelength.

Algorithm 4.1 - SSAPlace Algorithm
1: SSAPlace()
2: it ⇐ num_placed * 2
3: for i = 0 to it do
4: cell ⇐ Placed[random]
5: Locations ⇐ PossibleLocations(cell)
6: new_location ⇐ Locations[random]
7: stored_location(cell) ⇐ Location(cell)
8: Location(cell) ⇐ new_location
9: if Improved(mean) || Improved(sigma) || Improved(wl) || HillClimb-

ing(mean,sigma,wl) then
10: Store(mean,sigma,wl)
11: else
12: Location(cell) ⇐ stored_location(cell)
13: end if
14: end for

Experimental results (cf. Section 7.3) showed that SSAPlace cannot effectively manipulate
the circuit’s statistical delay, as local improvements in sigma do not necessarily propagate to
the circuit’s outputs the way improvements on mean do. Thus, we have shifted our attention
to the development of SCPlace which manipulates both mean and sigma through the use of
statistical wire bounds, instead of relying to local, greedy optimizations.

4.2 Description and Intuition for SCPlace 65

4.2 Description and Intuition for SCPlace

SCPlace uses the TSZSA wire bounds as guidance for local decision-making as to where to place
cells. In Section 2.3 we discussed that constructive approaches are better suited for placement
problems which make use of two-sided constraints. This is the case in statistical optimization
and thus, we have developed SCPlace in the general framework of a constructive placer. We
have used the cluster-growth model, which dictates that, after placing a few seed gates, then
clusters are formed around them with gates with which they share common constraints. The
cluster-growth model can be of great value to the problem of placing gates, which have relative
timing constraints, in appropriate locations. An illustrating example is the case of the drivers
of a gate’s inputs, whose inputs share a relative timing constraint that guarantees the sigma
value of the gate output’s delay. By forming a cluster for these specific gates, they can be
placed in appropriate locations and they can also be moved as a cluster in another location if
the optimization requires so.

Constructive placers are known to be prone to make inefficient decisions early in the place-
ment process due to incomplete information stemming from gates which have not been placed
yet. We address this problem by employing a reconstruction step, described in Section 4.7,
which operates as soon as one such deficiency is uncovered. Reconstruction utilizes the notion
that each gate does not have only one optimal location. In the case that an early, unfortunate
placement of a gate hampers the placement of other gates, then reconstruction replaces gates
by examining some of the optimal locations for each gate.

Another deficiency of constructive placers is that they lack global information on gates which
do not share a relation to the gates currently being placed. This could lead some gates to occupy
locations which may be optimal, taking into account their connections, but seriously reduce the
probability that other, unrelated gates find enough room to be placed in the same locations.
We overcome this problem by incorporating an iterative process, described in Section 4.7, which
shuffles the placement of the already placed gates. We use a simulated annealing algorithm,
working on the already placed gates in order to find alternative locations for them, minimizing
global wirelength in the process. This process, enables the constructive approach to escape
local minima, which may not be possible if the placed gates are regarded as fixed from the
point they are placed until placement is complete.

Any placement algorithm needs to be scalable with circuit size, as undoubtedly, circuit
sizes are going to be increasing as integration progresses. The constructive nature of SCPlace

66 SCPlace

ensures that, each gate is generally visited only once and placed at its, almost, final location.
The bottleneck for SCPlace is the derivation of TSZSA wire bounds, which is done efficiently by
utilizing the hierarchical approach described in Section 3.6.2. We have coupled this approach
with a divide-and-conquer approach which we employ during constructive placement greatly
enhancing the scalability of SCPlace. This is described in detail in Section 4.8.

We further enhance the probability that SCPlace does not get stuck in local minima by uti-
lizing the complete information on the already placed gates through re-assigning slacks using
TSZSA. We employ this process only if after a full pass not all gates have been successfully
placed. TSZSA then, regarding placed wires as fixed, re-assigns slacks in the remaining, un-
placed wires, greatly enhancing the chances that suitable locations are found for the unplaced
gates in the next iteration. We describe this idea in Section 4.7.7.

In the next section we discuss the additional requirements that are needed for SCPlace,
being a statistical placer, compared to a non-statistical placer.

4.3 Requirements for Statistical Placement
In order to perform statistical placement optimization, a set of statistical constraints are nec-
essary. SCPlace utilizes constraints on both the mean and the sigma of the required statistical
circuit delay. These can be either minimum or maximum constraints, as is the typical case
in a non-statistical placer. SCPlace can additionally accept statistical constraints on specific
gates of the circuit. Due to the implementation of TSZSA, which derives relative statistical
constraints among gates, the designer may also impose a number of relative constraints at their
discretion. These can then be forwarded to the LP formulation described in Section 3.6 and be
incorporated into the statistical slack assignment, performed by TSZSA, which is then passed
to the core of SCPlace.

In addition to statistical constraints, SCPlace requires a statistical model for variation and a
statistical model for delay of standard cells. The use of these models is detached from the main
placement engine of SCPlace. This means that as research in this area advances, SCPlace can
employ diverse or more accurate models. Currently, SCPlace incorporates its default models,
but the adaptation of other models is straightforward.

For the statistical delay of standard cells, a number of technology libraries must be pro-
vided to SCPlace. These libraries must correspond to different operating conditions. SCPlace
extracts the delay values from the technology libraries and fits them automatically into a nor-

4.4 SCPlace Interface 67

mal distribution, as explained in Section 3.1. In the case that only one technology library is
available, then SCPlace will assume zero standard deviation for the delay, which will essentially
turn SCPlace into a non-statistical timing-driven placer.

For the variation model, SCPlace supports a number of different correlation functions,
the definition of which can be provided by the designer, depending on the technology used.
Currently, SCPlace assumes only spatial correlations, which have the geometric notion that
correlation between devices is inversely proportional to their physical distance. Other corre-
lation functions are in place and can be activated at the designer’s discretion. These include
correlation due to gate similarity and correlation due to the depth of each gate in the paths
it belongs to. SCPlace can also be easily extended to handle hard-wired correlation functions
which can define specific amounts of correlation for specific regions of the layout, due to any
fabrication technology characteristics.

Finally, a model for wire delays is needed. SCPlace employs the bounding-box technique for
the estimation of wire delays. According to this technique, the bounding box for all terminals of
a wire is created and the length of the net is estimated as half the length of this bounding box.
This is illustrated in Figure 4.1. Bounding-box estimation is one of the most commonly used
techniques in both industrial and academic placers. Once the length of the net is determined,
its delay is calculated using the Elmore RC delay model [68]. Given the unit capacitance cu

and the unit resistance ru, the delay d of a wire of length l is estimated as d = rucul2

2
.

Bounding Box Estimation

Figure 4.1: Bounding box estimation

4.4 SCPlace Interface

SCPlace conforms to the industry standards for technology file and circuit model definitions
which renders it suitable for use in any industrial flow. SCPlace supports the gate-level Verilog

68 SCPlace

circuit description language. The technology description of standard cells is given to SCPlace
using the two standard library description formats, LEF and LIB. The description of final
placement is produced by SCPlace using a DEF file.

The netlist, provided in Verilog format, and the placement, provided in DEF format are the
two files needed by a typical fabrication flow in the next step, which is routing. We have verified
the usability of SCPlace’s placements by routers, by forwarding the placements of SCPlace into
a state-of-the-art industrial router using the the industry’s standard file formats.

4.5 Optimization Objectives
SCPlace is a timing-driven placer, albeit timing is expressed statistically. Thus, SCPlace op-
erates using statistical timing constraints and performs statistical optimization. Additionally,
SCPlace must conform with a set of physical requirements. We now describe the full list of
constraints SCPlace can handle.

• Statistical timing constraints. SCPlace accepts a global timing constraint for the
mean of the circuit’s delay and a constraint for the standard deviation (sigma) of the
circuit’s delay. These are then forwarded to the TSZSA algorithm which will derive
bounds for all circuit’s wires. If the constraints are feasible, then the bounds will be
transformed into slack which directly correspond to wire lengths. SCPlace’s task then is
to find locations for all cells that satisfy the suggested wire lengths. Statistical timing
constraints can also be introduced locally, i.e. at internal nodes of the circuit, rather
than only on the circuit’s endpoints. In this case, TSZSA will also derive bounds taking
into account the local constraints. SCPlace then, will proceed as usual working on the
suggested wire lengths, as calculated by TSZSA.

• Wire length constraints. A set of constraints for maximum or minimum lengths for
specific wires is supported by SCPlace. These are formulated as a LP problem. Fixed
wire lengths are also supported by SCPlace. They too are inserted into the LP problem,
the only difference being that they cannot be optimized.

• Layout area. SCPlace works on a given layout area, which must have enough space to
accommodate all cells plus sufficient white space. The layout area does not have to be
rectangular, or continuous. That means that there may be blockages where no standard

4.6 The SCPlace Flow 69

cells can be placed. SCPlace can identify all valid locations and will try to utilize all
available locations in order to find the best place for each standard cell.

• Density screens. In order to avoid over-congested areas, SCPlace accepts a grid of any
granularity, which defines the maximum density allowed at each region of the layout. At
all stages of placement, SCPlace checks the density in the region where it intends to place
a cell and does not place it, if it violates the density constraint.

• Design-rule constraints. The most important design-rule constraint that SCPlace
satisfies is that of no cell overlaps. SCPlace keeps track of the occupied layout locations,
as the placement progresses, and does not create overlaps by placing a standard cell
over another cell at any point in time. Thus, a legalization step is not necessary after
placement, which could violate the timing constraints. Moreover, SCPlace aligns all cells
on a manufacturing grid, which is standard procedure in any industrial placer.

4.6 The SCPlace Flow

constraint
sigma

constraint
mean

MSSA
Place Cell

Perturbator

Placement
Optimized

Sigma

Placed?

Reconstructor

Tried?
All

Placed?
AllStop?

NO
NO

YES

YES

NO YES

SCPlace

YES

NO

LP
Reassignment

Final
Placement

TSZSA

Figure 4.2: SCPlace’s flow

The SCPlace flow is illustrated in Figure 4.2. It begins with the MSSA, TSZSA assignment,
whereby TSZSA assigns the initial placement wire bounds for a given statistical constraint,

70 SCPlace

i.e. (mean, sigma) pair. The LP slack assignment will initially distribute any remaining excess
slack. At this point, SCPlace’s core will enter the constructive placement process.

Pseudocode for the SCPlace is given in Algorithm 4.2. SCPlace starts by assigning slacks to
all nets (Line 2) based on the (µ, σ) constraint. Then, it sorts all cells according to the number
of their connections (Line 3). For a number of iterations, which depends on the number of
cells, SCPlace visits all cells in the sorted array and tries to place them (Lines 4 to 21). For
every cell visited, if it it not already placed (Line 8), SCPlace tries to place it satisfying all its
constraints (Line 9). If the cell is successfully placed, then all its neighbours are added to a
queue (Line 10) and all these cells are tried to be placed (Lines 11 to 14), making sure that no
violations are created at any time. If the cell was not placed, then the Reconstructor algorithm
is called (Line 16). After one full sweep of the sorted list, the Perturbator algorithm is called
(Line 20) in order to shuffle the placement for the next iteration. After the number of iterations
has passed, the placement is finalized (Line 22).

Algorithm 4.2 - SCPlace Constructive Placement
1: SCPlace(µ, σ)
2: SlackAssignment(µ, σ)
3: SortedCells ⇐ SortConnectivity(cells)
4: it ⇐ num_cells / 100
5: for i = 0 to it do
6: for j = 0 to num_cells do
7: cell ⇐ SortedCells[j]
8: if !Placed[cell] then
9: if Place_Constrained(cell) then

10: NeighboursQueue ⇐ Neighbours(cell)
11: for all neighbouri ∈ NeighboursQueue do
12: Place_Constrained(neighbouri)
13: AddNeighbours(NeighboursQueue, neighbouri)
14: end for
15: else
16: Reconstructor(cell)
17: end if
18: end if
19: end for
20: Perturbator()
21: end for
22: SCPlace Finalization()

4.7 Implementation Details 71

4.7 Implementation Details

In this section, we describe in detail the specific implementation aspects of SCPlace.

4.7.1 Constructive Process

SCPlace follows a constructive approach for cell placement, which means that a set of cells are
placed first at random locations and then, remaining cells are placed in locations considered
best. The best choice of location for a cell is dictated by its constraints. These are always
related to some other cells and are always referring to the distance to other cells. The basic
idea is to consider a list of possible and legal locations for each cell and then select one at
random. A legal location is any location which does not cause overlaps and aligns the cell
to the manufacturing grid. With respect to the constraints, there may upper bounds, lower
bounds, or a combination of upper and lower bounds. We treat each case differently.

(a) Upper bound constraint (b) Lower bound constraint (c) Upper and lower bound con-
straint

Figure 4.3: Upper and lower bound constraint types

In the case of an upper bound on the distance to another cell, the valid locations for a cell
lie within a disk whose radius is exactly the upper bound on distance. This is illustrated in
Figure 4.3a. Any location in the disk is valid, so any location can be chosen. In Figure 4.3a,
the disk is shown segmented by the rows and the manufacturing grid, so the valid locations,
from which one will be chosen, have become apparent.

In the case of a lower bound on distance, the allowable region at which a cell may be
placed is outside the disk whose radius is exactly equal to the lower bound. This is shown in

72 SCPlace

Figure 4.3b. The segmentation of the allowable area by the rows and the manufacturing grid,
allows for creating a list for all valid locations.

In the combined case of a lower and an upper bounds, we form a ring, as shown in Figure 4.3c.
This case is slightly more constrained than the simple cases of upper or lower bounds, but the
allowable locations can be similarly extracted.

Since cells can connect to more than one cell, it is not unusual that the constraints originate
from more than one sources. This allows for two cases. Either there is an overlap for the
allowable regions derived from all constraints, or there is no such overlap. In the first case, the
cell may be placed in any location in the overlap region, while in the second case, the placement
of the cell is infeasible. The feasible case is illustrated in Figure 4.4. The second case is the
fundamental problem with any constructive approach; unfortunate placement of some cells may
over-constrain the placement of other cells or even make it infeasible. This issue is overcome
with our Reconstruction and Perturbation mechanisms described in Sections 4.7.2 and 4.7.3.

Figure 4.4: Multiple physical distance constraints

4.7.2 Reconstruction

Cell reconstruction attempts to improve on unfortunate decisions made early in the constructive
placement due to incomplete information of the potential placement of other cells. The problem,
along with the solution reconstruction provides is illustrated in Figure 4.5.

In Figure 4.5, five cells are placed constructively. First, seed cell A is placed at a random
location. Then, cell B, which has a constraint with cell A bounding the minimum distance
between the two cells must be placed. Figure 4.5b shows a list of possible locations for cell
B. In the absence of any other constraints, since no other cells have been placed, cell B can
be placed in any of these locations. This is shown in Figure 4.5c. Then, cell C, which shares

4.7 Implementation Details 73

A

(a) Seed cell A is placed first

B
B

B B

B

BB

B

A

(b) Cell’s B alternatives

A

B

(c) Cell B is placed

C

C

C
C

C
C

A

B

(d) Cell’s C alternatives

A

B

C

D

(e) Cell C is placed

A

B

C

DE

(f) Cell E is over-constrained

E

B

C

D

(g) Cells D and E replaced

E

B

C

D

A

(h) Cell A is placed

Figure 4.5: Reconstruction example

74 SCPlace

a constraint with cell B bounding both their minimum and their maximum distance must
be placed. The possible locations are shown in Figure 4.5d and the final placement of cell
C is shown in Figure 4.5e, where another cell, D has also been placed. Next, cell E must
be placed. Unfortunately, cell E shares a constraint with both cells A and D, bounding the
maximum distance from both cells. Since cells A and D are too far apart, cell E becomes
over-constrained, as shown in Figure 4.5f. This is where the reconstruction step takes place.
We identify this problem and start reconstructing the placement starting from the problematic
cell . All the neighbours of cell E are removed from placement, which in this case are A and D.
Next, the most constrained neighbour of cell E is placed, which in this case we assume it is D.
The amount of constraints each cell must abide with depends on the number of the cells, with
which is shares constraints, are already placed. Next, the problematic cell is placed, which is
now possible, since cell A is absent. Finally, all the remaining neighbours of the problematic cell,
which in this case is only A are placed again in the placement. In this case, cell A can be placed
resulting in the placement of Figure 4.5h. Reconstruction thus, has corrected the unfortunate
placement of cell A, which was placed in a bad location due to incomplete information at the
time it was being placed. Reconstruction uses the information of the already placed cells and
places all the cells in better locations, if this is possible, giving the constructive approach a
“global” view of the placement progress. Pseudocode for the reconstruction process for an
identified problematic cell is given in Algorithm 4.3.

Algorithm 4.3 starts by adding all the neighbours of the given cell to an array (Line 2).
Lines 3 to 7 remove all the neighbours from the placement and store their current locations in
case they are needed if the replacement is unsuccessful. Then, the most constrained cell from
the neighbours array is placed first to serve as a seed cell (Line 8). Then, the problematic cell
is placed (Line 10). At this point the main loop of the algorithm starts (Lines 11 to 14), where
all the neighbours are iterated in search for locations that satisfy all the relevant constraints.
The function PlaceWithConstraints in Line 13 searches for a location for a neighbour cell
that does not violate any of its constraints. After all neighbours have been iterated, it is
possible that some of them have not been placed, i.e. there was no location that satisfied all
their constraints. This case is detected in Lines 15 to 22. In this case the neighbour cells are
placed in their stored locations (Lines 17 to 19) and the algorithm returns with error (Line 20).
If all cells have been successfully placed, then the algorithm returns with success (Line 24).
Returning with failure means that no improvement was made locally, but this problematic case
can be resolved later, at the next iteration of the main loop, or through the simulated annealing

4.7 Implementation Details 75

Algorithm 4.3 - SCPlace Reconstructor Algorithm
1: Reconstructor(cell)
2: NeighboursArray ⇐ GetNeighbours(cell)
3: for all neighbouri ∈ NeighboursArray do
4: /* Unplace all the neighbours */
5: placed[neighbouri] = 0
6: stored_location[neighbouri] = location[neighbouri]
7: end for
8: PlaceMostConstrained (NeighboursArray)
9: /* Place the problematic cell in a random position */

10: Place_Constrained(cell)
11: for all neighbouri ∈ NeighboursArray do
12: /* Try to place all neighbours in good positions */
13: PlaceWithConstraints(neighbouri)
14: end for
15: for all neighbouri ∈ NeighboursArray do
16: if placed[neighbouri] == 0 then
17: for all neighbouri ∈ NeighboursArray do
18: location[neighbouri] = storedlocation[neighbouri]
19: end for
20: return failure
21: end if
22: end for
23: /* If all neighbours were successfully placed, return with success */
24: return success

shuffling which is performed by the Perturbator.

4.7.3 Perturbation

Constructive placement is relative with respect to the placement of the seed cell. A valid placed
cluster in many cases possesses rotational symmetry, i.e. the cluster still possess valid positions
if all cells are rotated. However, these alternative solutions are not automatically taken into
account by the cell by cell placement process, and not considering them may prevent the
algorithm from either satisfying all the wire bound constraints or escaping a local minimum.
The Perturbation step explores equivalent, alternative valid placement solutions. To ensure
that this exploration moves the placement towards better solutions, the Perturbation step
has been implemented as a Simulated Annealling algorithm. Essentially, Perturbation is an

76 SCPlace

iterative step encompassed in the constructive framework of SCPlace, making SCPlace a hybrid
approach to placement. The iterative nature of Perturbation enables SCPlace to overcome
the known deficiencies of constructive placement, like inefficient decision-making which may
steer the placement in local minima. By iterative optimization, the solution space is searched
efficiently, enabling SCPlace to escape any local minima. The Perturbation’s cost function
is total wirelength, while respecting all wire bounds. Thus, this step improves the existing
placement, incorporating a hill-climbing capability, and provides a more global view, compared
to local cluster placement. The Perturbation step always respects the wire bounds imposed by
TSZSA and, thus, maintains the correct-by construction property of the algorithm. Pseudocode
for the perturbator is given in Algorithm 4.4.

Algorithm 4.4 - Perturbator Algorithm
1: Perturbator()
2: total_wl ⇐ WL(Placed)
3: best_wl ⇐ total_wl
4: sbest ⇐ current
5: it ⇐ num_placed * 2
6: for i = 0 to it do
7: cell ⇐ Placed[random]
8: Locations ⇐ PossibleLocations(cell)
9: new_location ⇐ Locations[random]

10: stored_location(cell) ⇐ Location(cell)
11: Location(cell) ⇐ new_location
12: if (WL(Placed) < total_wl) || (HillClimbing) then
13: total_wl ⇐ WL(Placed)
14: else
15: Location(cell) ⇐ stored_location(cell)
16: end if
17: if total_wl < best_wl then
18: best_wl ⇐ total_wl
19: sbest ⇐ current
20: end if
21: end for
22: return sbest

The initialization phase of Algorithm 4.4 consists of defining the current and the best
wirelength based on the current placement (Lines 2 to 3). The current placement is also saved as
the best solution (Line 4) and the number of simulated annealing iterations is defined (Line 5).

4.7 Implementation Details 77

The main loop of the algorithm is described in Lines 6 to 21. According to the simulated
annealing paradigm, a randomly placed cell is chosen (Line 7) and all the valid locations,
i.e. locations which do not violate any constraint, for this cell are determined (Line 8). After
randomly selecting a new location (Line 9), the current location is stored for backtrace (Line 10).
The chosen cell is assigned to the new location (Line 11). If the new placement is better than
the previous one, or in the case of hill climbing (Line 12) the new wirelength is stored (Line 13).
Otherwise, the previous placement is restored (Line 15). If the new solution is better than all
the solutions encountered so far, then this solution is saved as the new best solution (Lines 17
to 20). Algorithm 4.4 returns the best solution found (Line 22).

4.7.4 Finalization

After constructive placement has finished, there may be some cells that were left unplaced
because their placement at any location would cause a constraint violation. In order to ensure
that the algorithm always provides a full legal placement, even at the cost of a sigma or a
mean violation, a greedy placement procedure is called for the unplaced cells. Algorithm 4.5
describes this procedure. The main idea is to traverse all the unplaced cells and place them at
locations that yield the minimum violation of their constraints. The working of the algorithm
is described below.

Algorithm 4.5 - SCPlace Finalization Algorithm
1: SCPlace Finalization()
2: UnplacedArray ⇐ GetUnplaced()
3: for all celli ∈ UnplacedArray do
4: CellConstraints ⇐ GetConstraints(cell_i)
5: ConstraintsArray ⇐ NULL
6: for all constrainti ∈ CellConstraints do
7: current_location ⇐ GetLocation(cell)
8: ConstraintsArray ⇐ AddConstraint(constraint_i)
9: location = MinViolation(cell, ConstraintsArray, current_location)

10: PlaceCell(cell, location)
11: end for
12: end for

Algorithm 4.5 starts by initializing an array containing all the unplaced cells (Line 2). All
unplaced cells are traversed in the outer loop (Lines 3 to 12) and for each cell a location is found

78 SCPlace

based on its constraints (Lines 6 to 11). The location which yields the minimum constraint
violation based on the constraints seen so far is found with function MinViolation (Line 9).
The algorithm works in a greedy basis, finding the best location for each cell based on its
constraints, thus guaranteeing that all the cells will be placed on the layout.

4.7.5 Routability

To ensure that SCPlace produces a routable placement we introduce density screens during the
placement process, which ensure both that the local density is kept under control, i.e. under
a maximum congestion constraint, typically 70%, and that sparsely populated cell regions are
utilized. Density screens are exploited at SCPlace’s core, during the location selection of seed
cells. The density screen size does have a significant effect on the placement. A small number
of large density screens may produce large areas with high congestion, whereas a large number
of small ones may over-constrain the placer and prevent it from achieving a good solution. A
rule of thumb which we used for computing the physical size of the density screens is to make
their size proportional to the number of clusters of cells which should lie within close proximity,
i.e. those which share wire bound constraints.

4.7.6 Legalization

SCPlace guarantees that no overlaps are created at any stage of the placement process. In order
to do so, information about the locations of the already placed cells and the free locations must
be maintained. The manufacturing grid is used for this purpose. The rows of the layout and
the vertical grid lines form virtual rectangles, called sites. Any cell must be aligned to the
manufacturing grid, which means that any cell must be aligned with a site. SCPlace maintains
a two-dimensional array which holds the status of each site; it may be occupied by part of a
cell, or it may be free. This is shown in Figure 4.6a. The occupied sites are shown in black,
while the free ones are shown in blank. Any cell, must be placed in adjacent blank sites,
otherwise it may overlap with another cell, which is not allowed. Thus, whenever a candidate
location is considered for a cell, checks are made to make sure that there is enough free space
to accommodate the cell, which means that there are enough empty sites. A subset of the list
for the candidate locations for a cell is shown in Figure 4.6b. The cell, spanning multiple sites,
can be placed in any of the valid locations shown in Figure 4.6b.

4.7 Implementation Details 79

Every time a cell is placed on a new location, all the sites that lie below the cell are marked
as occupied. SCPlace can also move cells to different locations in the layout, through the
reconstruction and the perturbation functions. In this case, every time a cell is removed from
a location, the sites it used to occupy are unmarked so as to be ready to be used by another
cell. This means, that there will always be up-to-date information on the locations of all placed
cells, enabling SCPlace to maintain its correct-by-construction property with respect to cell
overlaps.

(a) Free and occupied location status (b) Possible placements of a cell

Figure 4.6: Placement of a cell on a valid location

4.7.7 Slack Reassignment

Although the perturbation process can help SCPlace escape local minima through shuffling the
locations of cells, more can be done to help correct any unfortunate cases in slack assignment.
Since the solution offered by LP is not necessary the only best solution, but is chosen among
a set of optimal solutions, it may happen that a cell which is over-constrained by a specific
slack assignment may not be so hard to place with an alternative slack assignment. This is
illustrated in Figure 4.7.

In this example, the initial slack allocation is shown in Figure 4.9a. Here, gate G1 has
upper bounds, of 0.1, on the delay with its neighbouring gates, which may be hard to meet.

80 SCPlace

(a) Initial slack assignment

We assume that after some steps of constructive placement, gate G2 and its fanout gate (the
sequential element) are both placed. Thus, the delay of the wire connecting G2 to its fanout
is fixed and meets its upper bound which is 0.7. This is shown in Figure 4.8b. Since gate G2
has not used all its available slack, it is possible, that through slack reassignment, gate G1 gets
additional slack in order to enhance its chances of being placed successfully. This is shown in
Figure 4.7c, where the unused slack from gate G2 has been distributed to its transitive fanin,
providing an alternative, optimal, slack allocation.

If there are cells which have not been placed after one iteration, we formulate the LP problem
again, with the same set of constraints as in the initial, unplaced circuit. However, for wires
which connect already placed cells we do not allow any optimization; their delays are inserted
into the LP problem as fixed values. Thus, LP will try to find alternative optimal solutions
with different slack assignments for unfixed nets. In the next iteration, SCPlace will try to
place any unplaced cells with different slack constraints, which enables it to search the solution
space efficiently and discover solutions that were hidden in the previous iteration.

One important observation is that after any iteration, the number of placed cells will have
been increased. This will result in an increased number of fixed nets, and thus fewer unfixed
nets. This means that the unknowns in the LP problem will be fewer after each iteration
enabling its faster convergence. Thus, it is unlikely that the repeated calls of LP will form a

4.7 Implementation Details 81

(b) A wire is fixed

(c) Slacks reassigned

Figure 4.7: SCPlace slack reassignment example

82 SCPlace

new performance bottleneck for SCPlace.

4.8 SCPlace Hierarchical Approach 83

4.8 SCPlace Hierarchical Approach
The core of SCPlace is a relatively fast procedure. A small number of computations is necessary
for each cell and each cell is visited only once if it can be assigned to its final location. The
runtime bottleneck of SCPlace lies then, at the slack assignment procedure. We have presented
the hierarchical approach for TSZSA in Section 3.6. In order for this procedure to be effective,
it needs to be incorporated into the framework of SCPlace. In this section, we describe how
SCPlace utilizes the hierarchical approach presented in Section 3.6.

As described in Section 3.6, we apply recursive bisection in order to divide the slack assign-
ment problem for the whole circuit into smaller problems with the same characteristics as the
initial problem. At every bisection, a number of nets will span between two segments. The
length of these nets cannot be optimized by LP, as they cannot be modeled in either of the two
resulting LP formulations for the two separate segments. This is the point of integration of the
hierarchical approach with SCPlace. SCPlace, following its constructive paradigm, places first
the cells forming the nets which span between the two segments. With this action, SCPlace
solves two problems at the same time. First, the length of this wire is fixed and does not need
to be formulated into any LP problem and second, a convenient choice for seed cells is made.
If this fixed length for this wire is proven to cause problems later in the constructive place-
ment process, then it can always be altered through the Reconstruction, or the Perturbation
processes.

Figure ?? shows how the example of Section 3.6 is integrated into placement. After one
bisection, two segments are formed with one net spanning between the two segments. Gates
G1 and G2 are placed in locations which guarantee that the length of their connection meets its
bound. These cells are used then as seed cells for the constructive placement which will happen
separately in Segment1 and Segment2. It should be noted that the regions for Segment1 and
Segment2 in Figure 4.8b are only indicative and do not imply any strict boundary for the cells
connecting to each segment. However, due to the presence of seed cells, the other cells belonging
to the same segments are likely to be placed in these regions.

In the next chapter, we present our novel leakage recovery flow, which uses the TSZSA’s
statistical bounds and can be applied directly after SCPlace.

84 SCPlace

(a) Circuit-level bisection (b) Seed cells are placed

Figure 4.8: Hierarchical SCPlace

Chapter 5

Post-Placement Statistical Leakage
Optimization

In this chapter, we present our implementation of a combined statistical leakage and area
recovery flow [49], which preserves the achieved statistical timing yield. The flow operates
post-placement, on a layout which has met a combined statistical constraint, i.e. a (mean,
sigma) pair, and recovers leakage through gate resizing, while aiming to keep the timing yield
constant. The algorithm is based on our TSZSA statistical slack assignment, described in
Section 3.5 whereby the required timing yield constraint can be mapped to delay bounds for
circuit gates and wires. The latter are exploited for leakage recovery by selecting candidate
gates for downsizing, while preserving timing yield. Incremental SSTA within the leakage
optimization loop enables fast and accurate size selection per candidate gate.

5.1 Statistical Leakage Optimization

EDA tools, like placers, which use global timing constraints, i.e. bounds on the maximum delay
for the whole circuit, do not try to make all paths of the circuit exactly meet the constraints.
However, all paths must have delays better than the constraint, otherwise the circuit would
be failing. This leads to the observation that there will be paths that are not critical, i.e.
paths which can afford some extra delay without violating the timing constraint. In the case of
statistical timing constraints, the same intuition applies; there will be some paths, which can
afford an increase in their mean or sigma of delay without violating any statistical constraint.

86 Post-Placement Statistical Leakage Optimization

In the context of a power optimization process, e.g. a leakage minimization algorithm, this
means that there are some gates that can be replaced with slower gates, having better leakage
properties not being too slow to violate the timing constraints.

We use this intuition in order to optimize the statistical leakage of a circuit. We identify
gates that can be replaced with slower ones by calculating their statistical slack after placement.
Our TSZSA algorithm fits well with this idea. By setting the mean and the sigma of the
finalized delay, after placement, as statistical targets, TSZSA can derive a slack allocation that,
translates the slack of each path into slack for each gate. If these slacks were applied to the
gates, then all paths would be made critical, matching exactly the statistical delay constraint.
Having derived the slack for each gate, then a greedy optimization algorithm can be applied,
which replaces each gate with positive slack with a slower gate which emits less leakage current.
The important property of TSZSA slack allocation is that the slacks assigned to each gate do
not have dependencies among them. This means that consuming all the available slack for
a gate does not affect in any way the slack assigned to another gate, leaving room for the
application of a greedy approach. Since the set of alternative cells is finite, it is unlikely that
the slack of each gate will be spent in its entirety after a gate substitution. In order to make
effective use of the remaining slack, we employ incremental SSTA, which updates the timing
and slack of the cells, close to the one substituted. We also enhance the optimization potential
of our flow by performing slack re-assignment after one full pass of the circuit and starting over
again. The unused slack may be distributed to other cells which might be further optimized
using the additional slack.

An algorithm of this type could also be used to trade-off delay for leakage. By setting larger
mean delay than the one reported after placement, even the most critical gates could afford
some extra delay allowing for more optimization. This way, a designer willing to pay a small
penalty on the delay, could get a circuit emitting less leakage current.

5.2 Statistical Leakage Optimization Requirements

There is a set of requirements for our statistical leakage optimization flow to be effective. These
are models for statistical timing and leakage, physical information, i.e. a placement and wire
modeling, a set of constraints and a library from which alternative gates for each gate can be
extracted.

5.2 Statistical Leakage Optimization Requirements 87

5.2.1 Physical Information

Our leakage flow operates in in the post-placement phase. This means that the circuit must
have already been placed and all cells have valid locations on the layout. Additionally, a model
to estimate wire delays is needed. This can be any model employed by contemporary physical
tools, prior to routing. By default, our flow estimates wire delays by using the bounding-box
technique and Elmore delay assumptions, in a similar way as SCPlace does (c.f. Section 4.3).

5.2.2 Timing Analysis and Leakage Model

Our flow aims at optimizing for both statistical leakage and statistical timing. Thus, models
for SSTA and statistical leakage analysis are needed. For SSTA, we employ our SSTA engine,
described in Section 3.1.

It has been shown [65], that the leakage of a gate, in the presence of variations, can be
approximated by a log-normal distribution. The properties of log-normal distributions are
explained in Appendix C.2. Log-normal distributions correlate well with the behaviour of
leakage current due to the fact that leakage current exhibits an exponential dependence on the
gate length. We follow this log-normal model, and model the leakage power consumption of
each circuit gate as a log-normal distribution.

A log-normal distribution can be adequately expressed by its first two moments, i.e. the
mean and variance of the corresponding normal distribution. We evaluate the log-normal leak-
age distribution parameters of each standard cell, by analyzing the cell’s leakage consumption
per available corner, temperature and voltage, and then fit and extrapolate these leakage values
onto a log-normal distribution, by using the related normal distribution, as follows.

Given a few random samples, xi, of a log-normal distribution, random samples ln(xi) will
map onto a normal distribution whose µ and σ can be easily evaluated [42]. Thus, the first
two moments of the corresponding log-normal distribution can be calculated using the formulas
below:

E(X) = eµ+
σ2

2

V AR(X) = (eσ
2−1)(e2µ+σ2

)
(5.1)

Figure 5.1 shows the extrapolated statistical leakage PDF for a library cell, whose reported
leakage values at five different corners are {1109, 6075, 7294, 15202, 34948, 43531} (pW).

Thus, given the statistical leakage power consumption for all library cells, the total leakage

88 Post-Placement Statistical Leakage Optimization

0.0

0.1

0.2

0.3

0.4

0.5

0.00 10000.00 20000.00 30000.00 40000.00 50000.00 60000.00

pr
ob

ab
ili

ty
 d

en
si

ty

Leakage (pW)

Figure 5.1: Statistical leakage extrapolated PDF example

power consumption may be calculated by summing the current log-normals of all of the circuit’s
constituent cells. The sum of two log-normal random variables is generally not log-normal, but
as has been shown [11], that the first two moments of Z ∼ lnN(µz, σz) = X ∼ lnN(µx, σx)+Y ∼
lnN(µy, σy)may be reasonably approximated to the first two moments of a log-normal, by using
equations 5.2.

σ2
z = ln

 e2µx+σ2
x

(
eσ

2
x−1

)
+e

2µy+σ2
y

(
e
σ2
y−1

)
(
eµx+

σ2
x
2 +eµy+

σ2
y
2

)2 + 1

µz = ln

[
eµx+

σ2
x
2 + eµy+

σ2
y
2

]
− σ2

z

2

(5.2)

5.2.3 Timing and Leakage Constraints

Any optimization tool needs a set of constraints in order to be able to steer the optimization to
the direction the designer wants. Our leakage flow can accept constraints for both timing and
leakage, although they are not strictly required. Timing constraints need to be of statistical

5.3 Statistical Leakage Optimization Interface 89

nature. This means that they must define a maximum on the mean, on the sigma, or both of
the circuit’s statistical delay. In the absence of any timing constraints, our flow sets the initial
statistical delay of the circuit as the statistical timing constraint. In this case, it is assumed
that our flow is expected to optimize for leakage without any negative impact on the delay of
the circuit.

A constraint on leakage can guide our flow, as to how much optimization is required. This
can be statistical in nature, i.e. can be on any of the first two moments of the log-normal
distribution describing the total statistical leakage. The more common constraint would be
on the first moment, i.e. the expected value of leakage. In the absence of any constraints
on leakage, our flow assumes that the best optimization possible is required. In this case, we
optimize for leakage as aggressively as possible, making sure that the statistical delay constraint
is not violated.

5.2.4 Gate Substitution

Our leakage flow operates as a gate resizing/substitution flow. It replaces each gate, which
can afford additional delay without violating the timing constraint, by slower gates which are
less leaky. Thus, a set of alternative, equivalent gates is needed, for each gate, in order for
this substitution to take place. A set of alternative gates is commonly provided from a typical
technology library as gates with different sizes and drive strengths. Additionally, different gates
with the same functionality (e.g. the carry-out of a two-bit adder is equivalent to an AND gate)
can also be used.

5.3 Statistical Leakage Optimization Interface
Our flow operates directly after placement has been completed. Thus, it must be able to accept
industry-standard formats from a placer and create the same files for use in the next step of
the fabrication flow.

First, a description of the technology library must be given in standard library descrip-
tion formats, LEF and LIB. We use the LEF file to extract physical information, like the
unit capacitance and resistance of wires. We use the LIB file to extract timing and leakage
information for the standard cells. For statistical optimization, a set of LIB files must be
provided, each corresponding to a different operating corner, in order for our flow to derive

90 Post-Placement Statistical Leakage Optimization

the statistical behaviour of single circuit elements as described in Sections 3.1 and 5.2.2. In
case only one LIB file is provided, our flow essentially becomes non-statistical in nature, per-
forming static timing analysis and optimizing for non-statistical leakage. Placement must be
provided in the industry-standard DEF format. The circuit description must be provided by
the industry-standard Verilog description language.

In the next section we describe in detail the optimization objectives that can be applied to
our leakage optimization flow.

5.4 Optimization Objectives
Although certain flows can efficiently increase either (i) the timing yield or (ii) the leakage
yield, no approach has been demonstrated which, while keeping timing yield almost fixed, can
perform leakage recovery, which would be ideal for today’s Deep-Sub Micron (DSM) designs.
In many cases, contemporary industrial tools, while optimizing for leakage can incur significant
timing yield penalties. Thus, our leakage optimization flow works on a set of objectives and
constraints which aim to optimize leakage and area without violating any design rules or any
timing constraints. Below we describe in detail the objectives and the constraint set.

• Statistical Timing Constraints. We aim to preserve the initial timing of the circuit,
thus our leakage flow accepts statistical timing constraints. These, in the general case,
refer to the timing of the circuit before optimization. This means that the (µ, σ) constraint
will be the actual (µ, σ) of the circuit’s timing. We then derive bounds in order to preserve
this timing, which means that we identify the gates which can afford to be slowed by a
small amount of delay without affecting the overall timing of the circuit. Our leakage flow
also accepts a relaxation of the circuit’s timing. This means that the timing constraint
will allow the circuit to run somewhat slower, or to have an overall delay with greater
sigma. In this case, our flow tradeoffs between delay and leakage, using the extra delay
allowed by the constraints in order to perform more aggressive leakage optimization.

• Statistical Leakage Constraints. In the general case, our leakage optimization flow
does not need any constraint on the leakage. It derives the maximum amount of opti-
mization allowed for each gate and uses it to the maximum. Thus, it aims at optimizing
leakage in the most aggressive possible way. However, our flow can accept a constraint
on the statistical leakage. If this constraint is tighter than the minimum leakage possible

5.4 Optimization Objectives 91

for the circuit, then our flow will optimize leakage as much as possible and return with
a leakage violation, as referred to the constraint. If the constraint is less tight than the
minimum possible leakage, then our flow will keep optimizing until leakage meets the
constraint. This means that not all gates will be optimized to the maximum, allowing
them not to become too timing-critical.

• Don’t touch constraints. It is not uncommon that during post-placement optimization,
the designer wants to forbid optimization tools from optimizing certain gates or specific
modules. This is commonly done by specifying don’t touch gates, i.e. gates that the
designer does not want to be altered in any way. Our leakage optimization flow accepts
a list of gates that should not be optimized. Although these gates may be found to
have positive slack, i.e. they could have been optimized for leakage, our flow respects
the don’t touch constraint. Currently we do not support the transfer of slack from don’t
touch gates to other gates to allow more aggressive optimization. However, the TSZSA
algorithm, which assigns the statistical slacks to gates can be extended to handle this case
too. This will lead to assigning more slack to the non-don’t touch gates allowing more
leakage recovery, if this is possible.

• Density Screens. Our leakage flow guarantees congestion bounds by using density
screens throughout the layout. Horizontal and vertical, virtual lines, divide the layout
area into regions. The density in each region can be defined by the designer. A typical
value for density is 70% for each region and 65% for the whole circuit. Although a post-
placement flow, which does not move standard cells cannot affect density too much, it
still can, since it changes standard cells, and thus changes the dimensions of standard
cells. Our leakage flow checks before each cell is replaced by an alternative cell, if the
change incurs a violation in the density of the region it belongs to. If it does so, our flow
rejects this substitution. By ensuring that density is not violated after the post-placement
optimization, we guarantee that our flow will not render unroutable a placement which
was initially routable.

• Overlap Constraints. Our leakage optimization flow does not create any overlap vi-
olations. Overlaps can easily occur during post-placement optimization which changes
standard cells. Replacing a standard cell with an alternative, can mean that the width
of the cell is changed, which can potentially cause an overlap with its adjacent cells. Our

92 Post-Placement Statistical Leakage Optimization

flow maintains at all times up-to-date information about the free space around all cells
making sure that changing the width of a standard cell does not create any overlaps.
Should one replacement cause any overlaps, then it is rejected regardless of the amount
of leakage it might recover.

• Design-rule Constraints. Additional second-order design rules are satisfied by our
leakage flow, provided that they were satisfied in the initial placement. This means that
our flow does not have the ability to correct any design-rule violations that were present
in the initial placement, but guarantees that it will not introduce any new violations. The
most important rules that our flow guarantees is that all standard cells, after they are
replaced with alternatives, are aligned with the manufacturing grid. This ensures that no
movement is necessary after optimization, which could potentially jeopardize any strict
timing or density constraints.

5.5 Leakage Optimization Flow
Figure 5.2 shows our implemented flow, which includes the TSZSA and LP slack reassignment
steps.

The first step of the optimization process is derive wire bounds for the (mean, sigma)
constraint, which is performed by running TSZSA on the placed netlist. Since we aim to
preserve timing yield, i.e. fix the mean and sigma values, we regard the SSTA results as hard
constraints for both mean and sigma.

The next step is to calculate the slack of each circuit gate, i.e. the amount of delay each gate
can afford without violating either the mean or the sigma constraint for the overall circuit. This
task is performed by the application of TSZSA and the LP slack reassignment. The TSZSA
wire bounds are forwarded to the LP slack reassignment, which identifies a slack assignment
for all wires. The slack for a gate is then set to the minimum slack of the wires, the gate’s
output drives. Even if all gates are downsized in a way that all their slack is consumed, the
following properties will hold: (i) the mean of the circuit’s delay will not be violated, (ii) the
sigma of delay at each gate will not exceed its initial value, resulting in (iii) the sigma of the
circuit’s delay will not increase.

This last property is the key contribution of TSZSA to our flow, since without the relative
constraints guaranteeing the propagation of the desired sigma, the slack assignment would not

5.5 Leakage Optimization Flow 93

SSTA

Assignment
Slack

SSTA
Incremental

Optimize

Placement
Final

Placement
Initial

TSZSA

LP

Figure 5.2: Leakage reduction flow

guarantee any bound on sigma. Using our approach, we have divided the problem of recovering
leakage, while meeting a statistical delay constraint into two separate problems, which are
solved by two independent algorithms. TSZSA ensures that the mean and sigma is maintained,
and the gate resize algorithm recovers leakage using the sigma-safe slack allocation from TSZSA.

The gate sizing process then examines all gates with positive slack, in breadth-first-manner
starting from the circuit’s inputs, and attempts to downsize them, trading off the available
excess slack for leakage. Algorithm 5.1 illustrates the steps performed for each gate.

As shown in Algorithm 5.1, for each gate, the first step is to extract the transitive fanin
and transitive fanout cone originating from the selected gate (Line 3). These cones are used
in the incremental SSTA step. For each gate, all alternative gates are identified and stored in
decreasing order of size in queue (Lines 4 to 5). Thus, the last gate in this queue will correspond
to the most aggressive downsizing. Moreover, as smaller gates also exhibit larger delay, if one
gate fails the delay check, then all remaining smaller gates will also fail the check, thus they do
not need to be explicitly checked.

The core of the sizing algorithm is Lines 6 to 16. We selectively replace the selected gate

94 Post-Placement Statistical Leakage Optimization

Algorithm 5.1 - Gate Sizing Algorithm
1: Gate Sizing(netlist)
2: for all (gatei ∈ netlist) do
3: cone ⇐ FindCone(gatei)
4: alternatives ⇐ FindAlternatives(gatei)
5: Sort(alternatives)
6: for all (alternativej ∈ alternatives) do
7: ReplaceGate(gatei, alternativej)
8: IncSSTA(cone)
9: for all gate_cone ∈ cone do

10: if violated(delay(gate_cone)) then
11: RestoreSize
12: break
13: end if
14: end for
15: end for
16: end for
17: return

by all alternatives, one at a time (Line 7). After each trial, incremental SSTA is performed
on the selected gate’s cone (Line 8). The delay of each gate in the cone is checked against the
delay constraints. If one gate fails, then the trial is considered to be unsuccessful, the selected
gate is restored to its previous size, i.e. the last successful resize, and the algorithm resumes
operation for the next gate with positive slack (Lines 9 to 14). When the algorithm returns,
all gates will have been examined for being replaced with smaller gates. The successful trials
will have resulted in on-site replacement, resulting in leakage recovery.

Figure 5.3 shows an example of the sizing process. As shown in Figure 5.3a, when we
examine gate A5, we have five alternative gates to consider, A0 . . . A4. Since all gates are
sorted by their area, we start from the largest alternative, i.e A4. In Figure 5.3b, we have
replaced A5 with A4 and now we perform incremental SSTA from the replaced gate, one level
backwards and one level forwards. The cone on which incremental SSTA is performed contains
the gates C1, C2, C3 and A4. This trial resize is successful, as the mean delay of C3 is increased
by a smaller amount than its slack. Additionally, the small increase in the sigma of A4 delay’s,
is not propagated to the output of gate C3. If this increase in sigma could be propagated
through C3, then TSZSA would have enforced a smaller slack on gate A5, thus making the
selection of gate A4 unacceptable. The algorithm proceeds by examining all alternative gates

5.6 Optimization Flow Details 95

in order, until one sizing causes a violation in either the mean or the sigma of delay, or all
alternatives are examined. In the example of Figure 5.3, gate A3 may have caused a sigma
violation, thus the accepted solution is the replacement of A5 with A4. The resulting sizing
scheme, results in the same sigma for the delay, and a trade of available slack for a reduction
in the distribution of leakage consumption ((1.2,0.2) down to (0.8,0.17)).

Leakage (1.4,0.2)
Delay (0.5,0.07)

Delay (0.2,0.03)
Leakage (1.1,0.15) Delay (1.2,0.13)

Leakage (1.2,0.2)

Delay (1.9,0.27)
Leakage (1.2,0.2)

Slack: 0.4

W1

W2

A5

A4A0

A1 A2

A3

C1

C2

C3

(a) Sizing with alternative gates

Leakage (1.4,0.2)
Delay (0.5,0.07)

Leakage (1.1,0.15)

Leakage (1.1,0.15)

Delay (0.2,0.03)

Leakage (0.8,0.17)

Delay (2.2,0.2)

Delay (1.5,0.14)

Slack: 0.1

W1

W2A4

C1

C2

C3

(b) Sizing trial

Figure 5.3: Re-Sizing example

The optimization process ends when all gates with positive slack have been downsized. The
optimization flow is of O(n.p) complexity, where n is the number of gates and p is the number
of alternative sizes for each gate. Each gate is visited only once and at most p trials are made
for each gate.

5.6 Optimization Flow Details
In this section we discuss implementation details of the flow. Specifically, we describe the slack
re-assignment process, how the alternative gates are selected and sorted, why is incremental
SSTA important and how it is performed, how the best candidate gate for replacement is chosen
and why slack reassignment is beneficial for finding the best optimization.

5.6.1 Statistical Slack Assignment

Our statistical leakage optimization works by downsizing gates which can afford an amount
of delay without violating the statistical timing constraints. In order to derive the maximum
amount of delay each gate can afford, a slack assignment procedure is needed. We use the

96 Post-Placement Statistical Leakage Optimization

TSZSA algorithm, introduced in Section 3.4.4, which can derive a statistical slack assignment
which guarantees a statistical (µ, σ) delay at the circuit’s outputs.

Our leakage optimization flow can operate under two modes. The first is to optimize slack
maintaining the current statistical timing and the second is to optimize slack under a relaxed
statistical timing constraint. The first mode corresponds to leakage recovery in a transparent
way referred to timing. The second mode corresponds to trading off timing for leakage. The
choice of modes lies with the designer and the specific application of the circuit with respect
to the criticality of timing and leakage consumption.

In the first mode, TSZSA accepts as (µ, σ) constraints the (µ, σ) delay that the initial
placement has. Using the approach presented in 3.4.4, TSZSA, in conjunction with the LP
formulation, finds the timing slack of each gate so that the initial statistical timing of the
circuit is not affected. If then all gates are delayed by their designated statistical slack, then all
gates will become timing-critical, making in turn all paths timing-critical. This means that all
paths of the circuit will have a delay approximately matching the (µ, σ) of the timing constraint.
However, no timing constraints will be introduced. Our flow will utilize the slacks indicated
by TSZSA to make all gates as close to timing-critical as possible, recovering leakage in the
process.

In the second mode, TSZSA accepts a (µ′, σ′) constraint with µ′ being greater than the µ

of the initial placement’s delay, or σ′ being greater, or both. This allows greater flexibility to
TSZSA. In this case, all gates can have positive slack, as all paths have smaller delay than
the one suggested by the constraint. This will lead to more slack being assigned to gates,
which will allow for more aggressive optimization to recover more leakage. Thus, the designer
is provided with a mechanism to tradeoff between delay and leakage and to choose the best set
of constraints which suit the desired application in the best way.

5.6.2 Gate Sorting

In order to substitute a gate with another one, the set of gates with exactly the same func-
tionality must be found first. To do so efficiently, we maintain a list of equivalent gates for
all library gates. For example, an AND gate will be available with different cells at different
drive strengths. Additionally, other gates which can function as an AND gate, with specific
conditions on their inputs, will also be listed. An example would be a half adder with the carry
out having the same function as an AND gate.

5.6 Optimization Flow Details 97

Every time a gate is found to have positive slack, its alternative gates are retrieved. Then,
the alternatives are sorted with respect to their delay, the fastest taking the first position in
the list. All the gates are then tried in the order of the sorted list to replace the given gate.
The first option will give a fast gate with high leakage, the second a little slower gate with less
leakage and the last gate will give a slow gate with small leakage. All gates are tried until a
gate violates the slack assigned to the gate to be replaced. When this happens, the trials stop,
as the next gate in the list will be even slower violating the slack further. Thus, sorting the
gates before the trials eliminates the need to try gates which are not likely to meet the timing
constraint.

Immediately after a substitute gate fails the timing constraint, we have the best candidate
for replacement. This is the gate which was tried last and met the timing constraint. In
the worse case, where no substitute gate with less leakage is fast enough to meet the timing
constraint, this will be the initial gate. This is an extreme case of slack that will be left unused.
A more common case will happen when the best substitute gate consumes some of the slack
assigned, but not all of it. This will happen very often, as it is unlikely that a substitute gate
will be found, whose delay meets exactly the timing constraint. In this case, the unused slack
cannot be used by any other gate, as it is only assigned to the gate that has just been optimized.
This highlights the need to incrementally update the timing graph and readjust slacks in order
to utilize as much slack as possible.

5.6.3 Incremental SSTA

We use incremental SSTA after every replacement in order to keep the timing graph up-to-
date and to readjust slacks in order to improve efficiency. This is illustrated in Figure 5.4. In
Figure 5.7a, gate G1 is set to be downsized, an action which will improve its leakage. It is very
likely that the best downsize will not utilize all the slack assigned to G1, which currently is
0.5ns. Indeed, the best downsize option uses only 0.2 of its slack, as shown in Figure 5.6b. Any
other downsize for this gate would cause a timing slack violation, thus no further optimization is
possible. We perform incremental SSTA at this point, updating the timing information on gates
G2, G3, G4 and G5. We update the timing graph one level backwards and two level forwards.
This is shown in Figure 5.5c After the timing graph has been updated, the unused slack of gate
G1 is distributed to its neighbouring gates in a greedy way. Currently, it is distributed evenly
to the gates whose timing has been updated by incremental SSTA. Thus, gates G2, G3, G4 and

98 Post-Placement Statistical Leakage Optimization

(a) G1 set to be downsized

(b) Unused slack after downsize

G5 can benefit from the unused slack from gate G1 in order to be optimized more aggressively.
The new slack allocation is shown in Figure 5.4d.

5.6.4 Slack Reassignment

After one full iteration of optimization, all gates will have been optimized in an optimal way,
given their initial slack assignment. However, as it is very unlikely that for all gates, substitute
gates which can utilize all their assigned slack can be found, there will be some unused slack
spread throughout the circuit. In this case, the unused slack at each individual gate cannot
be used, as there are no suitable candidate gates for substitution. However, it is possible that
by reassigning slacks there may be gates which could be optimized further, given that they are

5.6 Optimization Flow Details 99

(c) Incremental SSTA

(d) Unused slack distributed

Figure 5.4: Distributing unused slack with incremental SSTA

assigned more slack. This slack can be found by removing it from gates which are very unlikely
to be further optimized. This is illustrated in Figure 5.5. In Figure 5.8a we assume that only
gates G1, G2 and G3 can be downsized. In Figure 5.7b they have been downsized and their
timing has been updated. This has caused an update on the slack of these gates and on the
slack of their neighbouring gates, which is illustrated in Figure 5.6c. At this point, one of the
inputs of gate G3 has slack of 0.9ns, while the other input has slack of 0.0ns. This prevents
gate G5 from being optimized. Additionally, gate G2 has slack of +0.3ns which cannot be used,
as no suitable substitute gate exists for gate G2. However, gate G4 does not have any slack
and cannot be downsized. This example illustrates how, after one full optimization pass, the
final slack distribution may be unfortunate. At this point we perform slack allocation again, in
order to find another optimal solution. We formulate the LP problem which finds optimal slack
allocations again, by adding artificial bounds on the slack that can be assigned to gates that are
very unlikely to be optimized at another pass. This will lead to assigning more slacks to other
gates, for which it is more likely that suitable substitute gates can be found. The new slack
allocation is shown in Figure 5.5d, where gates G4 and G5 have enough positive slack. If there
are suitable candidate gates, they can be downsized resulting in more leakage optimization.

100 Post-Placement Statistical Leakage Optimization

(a) G1, G2 and G3 set to be downsized

(b) G1, G2 and G3 have been downsized

5.6 Optimization Flow Details 101

(c) Slack has been updated

(d) Slack has been redistributed

Figure 5.5: Re-distributing slack after one full optimization iteration

102 Post-Placement Statistical Leakage Optimization

5.7 Routability and Legalization

Leakage reduction, as a post-placement optimization tool, must not disturb placement in ways
which can affect either its timing characteristics, or its routability and legality. Timing is guar-
anteed by our flow by the aforementioned methods. We guarantee routability and legalization
with the use of density screens and up-to-date information about the occupied locations of the
layout area.

Our flow uses downsizing in order to replace cells with “smaller” ones. However this term
typically refers to the speed and drive strength of cells, rather than their physical size. This
means, that the new cell, which we are substituting another with, may actually be larger than
the substituted one, potentially leading to congestion and legalization issues. This can be
especially true if we substitute e.g. a AND gate with an adder.

We tackle the problem of congestion by enforcing density screens throughout the layout
area. Similarly to SCPlace, we segment the area into regions, typically rectangular ones and
bound the maximum congestion under each region. If not otherwise directed by the designer,
we calculate the total congestion of the initial placement and bound the congestion under each
region to the same percentage as the total congestion over all the chip. If resizing one cell
causes a violation in the congestion of the area the cell belongs to, then this resize option is
discarded. Thus, in dense areas, only resizes which select smaller, in the physical sense cells,
or cells with the same physical dimensions as the original ones are selected. However, our
flow supports global and local density constraints, which can be provided to the tool at the
designer’s discretion.

In order to cope with any potential legalization issues, we maintain up-to-date information
about the occupied sites of the manufacturing grid, in the same way as we do in SCPlace (c.f.
Section 4.7.6). Every time a cell is resized, the status of the sites it occupies is updated. If the
resize causes a legalization conflict with a neighbouring cell, then one fast check is made before
this resize option is discarded. Since every standard cell has fixed height, the only dimension
that can change during a resize is its width. An overlap can occur if another cell, or the core
boundary, is at its left or at its right. One of these cases is illustrated in Figure 5.6a. If this
case arises, we check first, if by moving the resized cell slightly to the left or to the right resolves
the conflict. This is shown in Figure 5.6b. If this fails, we try to move the neighbouring cell
slightly, as shown in Figure 5.6c. If both heuristics fail, then we discard this resizing as it seems
it is causing too much unrest in a dense region, where overlaps will likely be hard to fix. An

5.8 Runtime Issues 103

extreme of this case is illustrated in Figure 5.6d.

OVERLAP

(a) Resized cell A causes overlap

RESOLVED OVERLAP

(b) Overlap resolved by moving cell A

RESOLVED OVERLAP

(c) Overlap resolved by moving neighbouring cell

OVERLAP OBSTACLES

(d) Overlap hard to resolve

Figure 5.6: Overlaps after standard cell resizing

5.8 Runtime Issues

The hardest part of our leakage optimization flow is to calculate the statistical slacks for each
gate. This is done by our TSZSA algorithm, which, coupled by the hierarchical approach
described in Section 3.6.2 can handle large circuits in reasonable time, as will be shown in
Chapter 7. Once slacks are known, then the resize process can begin, examining one gate at a
time. For each gate, its alternatives are checked in decreasing drive strength order. In the worst
case, each gate will have enough slack so that any resize is good, meaning that all alternatives
will be examined. However, in a typical technology library, a gate will have no more than
10-15 cells alternatives, often less than 10. For every resize, incremental SSTA is performed in
the neighbouring cells, which will typically be around 10, depending on the number of fanouts
the cell has. Incremental SSTA only requires the evaluation of a few analytical functions, as
shown in Section 3.1. Checking for congestion is straightforward as it requires only a simple

104 Post-Placement Statistical Leakage Optimization

calculation of the previous and the new size of the cell. Our legalization approach, described
in Section 4.7.6 is a fast and efficient way of keeping track of occupied area in the layout and
does not require any time-consuming operations. Overall, the runtime of our leakage flow is
dominated by the slack (re)-assignment and no runtime bottlenecks are likely to appear in other
functions.

In the next chapter, we move to asynchronous placement and present our novel constructive
placement algorithm, CPlace, which can handle asynchronous circuits.

Chapter 6

CPlace

In this chapter, we present CPlace [47], our placement tool which supports both synchronous
and asynchronous circuits. CPlace is an evolution of SCPlace [48], presented in Chapter 4, our
statistical timing based placer, which supports absolute and relative wire bounds for meeting
a (mean, sigma) constraint.

CPlace exploits: (i) absolute delay bounds produced by asynchronous timing analysis, (ii)
relative bounds for satisfying QDI constraints, and (iii) LP-based slack re-assignment. We use
TSE to derive bounds on wire lengths that guarantee performance of the placed circuit. We
identify all isochronic forks of the circuit and bound the absolute difference in the delay of
each leg in each isochronic fork in order to guarantee the speed independent assumptions of
the circuit. Both types of bounds are then forwarded to the LP formulation, after which, a
slack assignment is derived that can be used for the circuit’s placement, which we perform by
employing a constructive approach.

6.1 Asynchronous Placement Requirements

Current state-of-the-art placers focus on either optimizing the total wirelength of a circuit, or
meeting the clock period timing constraints. These goals are generally one-sided, i.e. improve-
ment over one step of the optimization process may be evaluated by direct comparison with an
absolute value. For example, in the case of timing driven placement, if the delay of the critical
path is decreased, while the delay of no other path is increased, then the new placement is
considered an improvement over the previous one.

106 CPlace

However, in the case of asynchronous placement, two-sided constraints may generally need
to be met. Certain wires, i.e. legs of isochronic forks, will require both a minimum and a
maximum allowable delay constraint. Such bounds may not be known a priori, as they are
relative to other wires. However, as far as we know, synchronous placement algorithms do not
support relative timing constraints.

Furthermore, conventional STA engines used during timing-driven placement assume that
the circuit is acyclic. When cycles are encountered during STA, STA engines will typically
break them arbitrarily and analyze the resultant acyclic timing graph. Asynchronous control
circuits are cyclic circuits, therefore cannot be effectively analyzed using STA, or timing-driven
placed by existing synchronous placers with a given performance goal such as asynchronous
period.

Thus, an efficient placer for asynchronous circuits must incorporate a timing analysis engine
which can handle cycles, like TSE, and must also be able to tackle the contradicting targets
created by the relative and two-sided constraints.

6.2 CPlace’s Interface
CPlace has been designed to conform to industry standards with regard to circuit and library
descriptions.

The concurrent nature of asynchronous circuits often results in a description format for
concurrent systems like the ones described in Section 2.1.4. In other cases, the circuit is
described using standard gate-level description languages, like Verilog. In the latter case, the
circuit can be directly processed by the core of CPlace. In the former case, a preprocessing step
is required in order to transform the circuit description into an industry-standard format.

CPlace supports the Event-Rule specification format, as described in Section 2.1.4 in case
the circuit is described as a concurrent system. If the circuit description is given in this format,
CPlace uses an external tool to transform the event-rule representation into Verilog format.
This is done using the tool Petrify [18], which can translate the concurrent specification into
gate-level representation and then map the gate representation into a given technology library.
CPlace provides Petrify with the specific technology gates and then receives the final gate-level
netlist.

For processing by CPlace’s core, the circuit must have been mapped into a specific technol-
ogy, a process which provides its gate-level description. CPlace, like SCPlace, supports the full

6.3 CPlace Objectives 107

set of Verilog’s semantics.
The technology library’s description must be in LIB and LEF formats. CPlace creates a

final placement which will then be processed by a router. The final placement is described in
DEF format.

We have verified the interface of CPlace with an industrial state-of-the-art router by passing
all CPlace’s placements to the router for detailed routing. All placement were successfully
routed proving that CPlace can be integrated into an industrial flow without any interface
issues with a standard router.

6.3 CPlace Objectives

CPlace, being a placer which can handle asynchronous circuits, must be able to optimize for
both traditional, synchronous circuits optimization objectives, but also for performance and
correctness objectives referring to asynchronous circuits. Below we list the objectives CPlace
is guided from and the constraints it conforms to.

• Wire length constraints. Minimization of total wirelength is the traditional opti-
mization objective for academic placers and has also been one of the main objectives
for industrial placers before the timing-driven placement era. Although CPlace does not
aim at optimizing for wirelength directly, it does support constraints on the lengths of
individual wires. These constraints can be either hard, prohibiting CPlace from creating
wires larger than a threshold or soft, providing CPlace with wire length directives. If the
designer provides CPlace with adequate constraints for individual wires, then CPlace is
capable of optimizing the total wire length.

• Asynchronous timing performance constraints. Performance constraints refer to
how fast the asynchronous circuit can operate. This follows directly from the timing
analysis on the timing cycles of the asynchronous circuit, which can provide information
about the cycle time or the delay of the circuit. By performing TSE on the asynchronous
circuit, as described in Section 2.1.4, CPlace can be provided with directives as to how
the circuit can be optimized for faster cycles or smaller delay. This will directly result in
timing performance optimization.

108 CPlace

• QDI constraints. The second set of timing constraints refer to correct operation of
the asynchronous circuit. Since CPlace works with QDI assumptions on asynchronous
circuits, there need to be in place a set of constraints which guarantee that no isochronic
forks are violated, as described in Section 2.1.4. These constraints do not refer to the
performance of the circuit, but they guarantee that there are no timing violations which
can jeopardize the correct flow of data through the circuit, or in other words, the correct-
ness of computations. CPlace treats this set of constraints as hard constraints, i.e. it is
not allowed to introduce violations of any kind.

• Layout area. Being a placer algorithm, CPlace accepts a total layout area as a hard
constraint as to where it is allowed to place cells. The layout area does not have to have
a regular shape. This means that it may not be rectangular, or it may contain blockages
on which cells cannot be placed. CPlace accepts a geometric description of the layout
area which defines the available space in order to place all cells in their best locations.

• Density screens. To enhance routability, CPlace does not allow for too dense designs.
This is enforced with the use of density screens throughout the layout area. Density
screens define the maximum allowable density on various regions of the layout. CPlace
accounts for these constraints by routinely checking if the region on which it intends to
place a new cell is sparsely populated enough, so that the new cell will not cause a density
violation.

• Legalization. A common problem among academic placers is that they may produce
placements which are not legal. This means that a legalization step is necessary after
placement. The first problem with this is that legalization may not be straightforward
especially in densely populated regions of the layout. Secondly, the legalization step itself
may move cells to locations which cause timing or other violations. CPlace does not suffer
from this problems, as it produces a correct-by-construction placement. The occupied and
the free locations on the layout are kept track of, at all times. Thus, when CPlace decides
for a location for a cell, it first checks if this location causes any overlaps; if it does so, it
rejects it and searches for another location. Thus, no overlaps may be introduced at any
stage of the placement process.

• Design-rule constraints. CPlace accepts a set of common industry design-rule con-
straints which eliminate the need for a correction step after placement in order for the

6.4 Slack Assignment for Asynchronous Circuits 109

placement to be ready to undergo fabrication. Specifically, CPlace places all cells in
locations which are aligned with the given manufacturing grid.

6.4 Slack Assignment for Asynchronous Circuits

CPlace is a constructive placer which uses bounds on the wire lengths for guidance. In order
to derive bounds for the performance-efficient and QDI placement of any asynchronous circuit,
we must identify the critical cycles of the circuit and also examine the presence of isochronic
forks.

6.4.1 Wire-Delay Bounds

We need to distinguish between two types of constraints: absolute and relative constraints.
Performance of an asynchronous circuit is determined by its cycle time, which is the speed at
which its cycles execute. The critical cycle of the circuit dominates the overall performance.
Thus, translating the delay of the most critical cycle to an absolute timing constraint is an
efficient method of creating performance constraints for the circuit.

On the other hand, in order to satisfy QDI, all wire forks must be isochronic with respect
to a given specified margin.

An example of the constraints, both absolute and relative, resulting from a circuit is shown
in Figure 6.1.

TSE can identify the critical cycles and their delay in the circuit graph. In the example
of Figure 6.1, there are several cycles; depending on the delay of the individual gates, any of
them can be critical. The cycle that is most likely to be critical is the one traversing gates
G1 → G4 → G5 → G7. In this case, TSE will evaluate its period p, which will serve as a
performance constraint. We will add a constraint AT (G7) − AT (G1) ≤ p, which states that
the maximum allowable difference in the arrival times between G1 and G7 is p. Similarly, we
create constraints for the remaining cycles, thus producing a complete set of absolute constraints
targeting performance.

In order to satisfy QDI operation, we need to bound the difference of delays in each leg of
each isochronic fork. We identify isochronic forks in the case of a gate which has more than one
fanouts. In Figure 6.1 an example of a gate with more than one fanouts is G3. Thus, we need

110 CPlace

DrZa

X

Da

La

Lr Zr
G1

G2

G3

G4
G5

G6

G7

Figure 6.1: Absolute and relative constraints

to create constraints for the four legs of the isochronic fork: G3 → G3, G3 → G1, G3 → G6

and G3 → G4. These can be implemented the following inequalities:

|(dG3→G3)− (dG3→G1)| ≤ Isochronic_Bound

|(dG3→G3)− (dG3→G4)| ≤ Isochronic_Bound

|(dG3→G3)− (dG3→G6)| ≤ Isochronic_Bound

|(dG3→G1)− (dG3→G4)| ≤ Isochronic_Bound

|(dG3→G1)− (dG3→G6)| ≤ Isochronic_Bound

|(dG3→G4)− (dG3→G6)| ≤ Isochronic_Bound

(6.1)

We define the Isochronic_Bound to be equal to the delay of a fast inverter for the target
technology library, which is a realistic constraint for an automated placement tool. Similarly,
we can create relative constraints for any isochronic fork of the circuit. Equations 6.1 are part
of the LP problem, thus any resulting slack assignment will meet both the absolute and the
relative constraints.

6.4.2 LP Formulation

The set of constraints for the LP problem CPlace formulates are of the following types.

• Maximum and Minimum Wire Lengths. The length of each wire which corresponds
to its delay in the final slack assignment should be bounded within reasonable limits. An

6.4 Slack Assignment for Asynchronous Circuits 111

upper bound is essential to avoid asking from the placer to create too long wires. A lower
bound is equally important to allow the placer some flexibility in placing cells instead of
over-restricting their maximum distance.

• Absolute upper bounds for every cycle in the circuit. This type of constraints
guarantees the performance of the asynchronous circuit.

• Relative bounds for each isochronic fork. Constraints of this type must make sure
that the wires in each fork do not bias the delay towards one leg or another.

• Timing graph description. The LP formulation must have information about the
connections between the circuit elements and the wires it will try to optimize. Each gate
input must be connected to its driver, through a wire whose length is part of the objective
function and each gate output must be connected to the gate’s inputs.

• Objective function. We seek to maximize the total wire length to allow the placer
the greatest flexibility. This, coupled with the upper bounds for performance and relative
bounds for speed independence, will steer the LP solution towards a performance-efficient
slack assignment which respects asynchronous delay assumptions.

The LP formulation is shown in Equations set 6.2.

max Σwi

wi ≤ Wire_bound
∀(i → j) cycle

AT (j)− AT (i) ≤ Cycle_Bound

∀{(g → i), (g → j)} isochronic fork
|d(g → i)− d(g → j)| ≤ Isochronic_Bound

AT (gi) ≥ AT (gdriver) + wi

AT (go) = AT (gslowest_in) + dpropagation

(6.2)

Wire_Bound is the maximum allowable delay for a wire, Cycle_Bound is the absolute
constraint on the delay of each cycle in the circuit and Isochronic_Bound is the maximum
margin of delay between the legs of an isochronic fork. Equation set 6.2 requires that we
maximize the delays of wires, while at the same time, all wires have a maximum delay of
Wire_Bound. Additionally, the delay of all cycles must be bounded by Cycle_Bound. For

112 CPlace

QDI, we require that all legs in isochronic forks have a maximum margin, in terms of their
delay, of Isochronic_Bound. In order to complete the LP problem, we define that the arrival
time (AT) of any gate input is the sum of the arrival time of its driver plus the delay of the
wire connecting them. Finally, the arrival time of a gate output is the sum of the arrival time
at the gate’s slowest input plus the propagation delay of the gate.

We have used the GNU GLPK solver [25] to solve the LP problem and produce the slack
bounds on wires which are to be used later in the placement algorithm.

6.5 The CPlace Flow

The CPlace flow is illustrated in Figure 6.2. Pseudocode for CPlace is shown in Algorithm 6.1.

constraints
relative

constraints
absolute

TSE Place Cell

Perturbator

Placement
Insensitive

Delay
Quasi

Placed?

Reconstructor

Tried?
All

Placed?
AllStop?

NO
NO

YES

YES

NO YES

CPlace

YES

NO

LP
Reassignment

Final
Placement

Isochronic
Forks

Figure 6.2: CPlace flow

CPlace starts by transforming the given STG-file into a Verilog file, if one is provided (Lines 2
to 4). Otherwise, it uses the Verilog netlist provided. The first step of CPlace’s core is to extract
all isochronic forks from the circuit’s description. This is done by function IsochronicForks
using the information from the netlist only. Then, asynchronous slack assignment is done using
any global performance constraints d, the list of isochronic forks and the netlist (Line 6). The

6.5 The CPlace Flow 113

Algorithm 6.1 - Constructive Placement for CPlace
1: CPlace(d, STG, Netlist)
2: if STG then
3: Netlist = STGtoNetlist
4: end if
5: IsochronicForks = FindForks(Netlist)
6: SlackAssignment(d,Netlist, IsochronicForks)
7: SortedCells ⇐ SortConnectivity(cells)
8: it ⇐ num_cells / 100
9: for i = 0 to it do

10: for j = 0 to num_cells do
11: cell ⇐ SortedCells[j]
12: if !Placed[cell] then
13: if Place(cell) then
14: RelatedCells ⇐ IsochronicForks(cell)
15: for all celli ∈ RelatedCells do
16: PlaceQDI(cell, celli)
17: end for
18: else
19: Reconstructor(cell)
20: end if
21: end if
22: end for
23: Perturbator()
24: end for
25: CPlace Finalization()

constructive placement begins then, with creating a sorted list of cells according to the number
of their connections (Line 7). The list is traversed for a number of iterations (Lines 9 to 24) and
at each time a cell is selected to be the next to be placed (Lines 10 to 22). Every time a cell is
selected, CPlace tries to place it at a suitable location (Line 13). If this placement is successful,
then all the cells which form isochronic forks with the cell just placed are retrieved (Line 14)
and suitable locations for their placement are sought (Lines 15 to 17). If the placement of the
initial cell is unsuccessful, then the Reconstructor is called (Line 19) in order to correct the
location of the cell’s neighbours. After one full traversal of the list of cells, the Perturbator is
called (Line 23) in order to shuffle the placement and help CPlace escape any local minima.
After the number of iterations has passed, the placement is finalized (Line 25).

114 CPlace

6.6 CPlace Implementation Details
In this section we discuss the specific implementation details of CPlace. Although CPlace is
an evolution of SCPlace, discussed in Chapter 4, some of the implementation details have been
altered in order to fit better with asynchronous circuits.

6.6.1 Constructive Process

The constructive placement process operates by selecting one of the unplaced cells and placing it
to a location which meets its constraints. Specifically for CPlace, these constraints are absolute
constraints if the cell belongs to a cycle and relative constraints if there is an isochronic fork
related to this cell. The first case is shown in Figure 6.3a. Cell A, connecting to both cells
B and C, will likely be placed near cells B and C due to the fact that they are all part of
a cycle, whose delay must not exceed a performance bound. The second case is illustrated in
Figure 6.3b. Here, cell A has multiple fanouts and only cells B and C have already been placed.
Cell D is pending and must meet relative constraints for the legs of the isochronic fork A → B,
A → C and A → D. Thus, it is most likely to be constrained into the shaded region so that
the length of the wire A → D matches the lengths of the other two wires.

A

B

C

D

E PERFORMANCE

BOUNDED

CONSTRAINT

CYCLE WITH

(a) Cycle performance bound

ISOCHRONIC
FORK

BOUND

A

B

C

D

(b) Isochronic bound

Figure 6.3: CPlace constructive bounds

6.6.2 Reconstruction

The Reconstruction step is a similar procedure, as the one described in Section 4.7. It is
aimed at correcting random decisions on the placement of seed cells, which may hamper the

6.6 CPlace Implementation Details 115

placement of other cells later in the constructive placement process. The difference against
the Reconstructor of 4.7, is that at each step, care is taken that the isochronic forks are fixed.
Algorithm 6.2 shows pseudocode for the CPlace reconstructor.

Algorithm 6.2 - CPlace Reconstructor Algorithm
1: Reconstructor(cell)
2: NeighboursArray ⇐ GetNeighbours(cell)
3: for all neighbouri ∈ NeighboursArray do
4: /* Unplace all the neighbours */
5: placed[neighbouri] = 0
6: stored_location[neighbouri] = location[neighbouri]
7: end for
8: PlaceMostConstrained (NeighboursArray)
9: /* Place the problematic cell in a random position */

10: Place_Constrained(cell)
11: for all neighbouri ∈ NeighboursArray do
12: /* Try to place all neighbours in good positions */
13: PlaceQDI(neighbouri)
14: end for
15: for all neighbouri ∈ NeighboursArray do
16: if placed[neighbouri] == 0 then
17: for all neighbouri ∈ NeighboursArray do
18: location[neighbouri] = storedlocation[neighbouri]
19: end for
20: return failure
21: end if
22: end for
23: /* If all neighbours were successfully placed, return with success */
24: return success

The Reconstructor in Algorithm 6.2, works on a cell which could not be placed. It first
finds and removes from the placement all its neighbours (Lines 2 to 7), storing their current
locations in case the reconstruction is unsuccessful. Then, the neighbouring cell which is most
constrained is placed (Line 8) and next, each neighbour is placed taking special care of its QDI
constraints (Lines 11 to 14). If the reconstruction is unsuccessful, all cells are restored to their
previous locations (Lines 15 to 22). Else, the reconstruction is successful and all cells have been
placed (Lines 23 to 24).

116 CPlace

6.6.3 Perturbation

In order to escape local minina by shuffling the current placement solution, a Perturbator
function is used. This is a simulated annealing process, which works on only the already
placed cells. It aims at reducing total wire length, without violating any constraints. Thus,
at each step, the simulated annealing process ensures that no isochronic forks are violated
and no performance constraints are exceeded. The Perturbator of CPlace is the same as the
Perturbator of SCPlace, described in Section 4.7, the only difference being that the type of
constraints that simulated annealing must check at each step is not of statistical nature, but of
asynchronous nature.

6.6.4 Finalization

At the end of the constructive placement process, there may exist some cells, for which a valid
location was not found. CPlace always delivers a full, legal, placement, so in this case, the
remaining cells will be placed at valid locations, albeit incurring some constraint violations.
The idea of Finalization is to cause as little violation as possible. All the remaining cells are
sorted with respect to the number of their constraints. Then, for each cell, a location is chosen
disregarding one constraint at a time. In the worst case, all its constraints will be removed and
the cell will be placed at random. Pseudocode for the Finalization process of CPlace is shown
in Algorithm 6.3.

Algorithm 6.3 - CPlace Finalization Algorithm
1: CPlace Finalization()
2: UnplacedArray ⇐ GetUnplaced()
3: for all celli ∈ UnplacedArray do
4: celli− > ConstraintsArray ⇐ GetConstraints(celli)
5: end for
6: SortCellsConstraints (UnplacedArray)
7: for all celli ∈ UnplacedArray do
8: while Unplaced (celli) do
9: PlaceCell (celli)

10: RemoveConstraint (celli)
11: end while
12: end for

Algorithm 6.3 starts by finding all unplaced cells (Line 2). All the constraints for each cell

6.7 Runtime Issues 117

are stored (Lines 3 to 5). Then, all unplaced cells are sorted with respect to the number of
their constraints (Line 6). The performance constraints are placed before the QDI constraints,
so that if a violation must occur, it may affect performance rather than correctness. Then, for
each cell, as long as it has not been successfully placed (Lines 8 to 11) the finalization process
tries to place it (Line 9) and then removes one constraint (Line 10) in order to try again with
fewer constraints if the placement trial did not succeed. At the end of the finalization process,
all cells will have been placed, although some of them may have end up in random locations.

6.6.5 Routability and Legalization

To guarantee routability, CPlace employs the use of density screens throughout the design.
These are formed by n horizontal and m vertical lines, separating the layout in nm regions.
The density of each region is bounded to 70%. This is a hard limit on the amount of standard
cells that each region can accommodate. If CPlace is faced with the option of exceeding the
density of a region or not placing the cell, it chooses the latter, hoping that the unplaced cell
will be placed later, benefiting from the effects of reconstruction or perturbation. The density
of the whole design is also bounded to 65% which means that not all regions must have exactly
the same amount of utilization.

6.7 Runtime Issues
Runtime of CPlace is dominated by the solution of the LP problem, which derives the slack
assignment used later in the constructive process. TSE, which is essential for identifying the
cycles in the circuit to be later transformed into absolute wire bounds, is also time-consuming,
but only needs to run once, before placement starts. The derivation of relative constraints due
to isochronic forks is very fast, as it simply requires parsing the circuit description. Constructive
placement, as in the case of SCPlace is very fast given all the necessary bounds. The auxiliary
functions of reconstruction and perturbation are only in place to enhance the performance of
CPlace and do not constitute a performance bottleneck in themselves. Detailed runtimes will be
reported in Section 7.5, where these estimations are quantified. Overall, a fast timing analysis
engine for asynchronous circuits and a fast slack allocation algorithm would greatly enhance
the runtime of CPlace.

118 CPlace

Chapter 7

Results

In this chapter, we evaluate the findings of our EDA algorithms. First, we evaluate our slack
assignment algorithms, i.e. MSSA and TSZSA against a well-known, widely-adopted slack as-
signment algorithm called Zero Slack Assignment (ZSA) algorithm [70]. Our findings will show
that our slack assignment algorithms, operating before any physical information, i.e. place-
ment, is available, can derive statistical bounds which can manipulate the delay distributions
at the circuit’s outputs. Instead, ZSA derives a slack allocation under which the uncertainty of
delay fluctuates uncontrollably. Next, we evaluate the results of our statistical placement tool,
SCPlace, and our statistical leakage reduction flow. Both tools use the statistical bounds of
MSSA and TSZSA. We show that our statistical bounds are suitable for integration with large-
scale optimization processes such as a placement or a leakage reduction algorithm. We also
show that our statistical placer and our leakage reduction flow compare favourably to existing
state-of-the-art industrial and academic tools and algorithms.

A separate section is devoted to our placement algorithm, CPlace, which can handle asyn-
chronous circuits. We show how CPlace can make effective use of both relative and absolute
wire bounds in order to guarantee performance-efficient and operation-correct placements of
asynchronous circuits. We prove that CPlace can indeed meet its targets by evaluating it with
a super-set of the current state-of-the-art asynchronous benchmarks.

120 Results

7.1 Benchmark Set
In this section we describe our benchmark set for both the synchronous flows (SCPlace and
statistical leakage reduction) and our asynchronous placer (CPlace).

7.1.1 Synchronous Benchmarks

To validate our results, we have used state-of-the-art benchmarks, taken from the IWLS 2005
benchmark set [35]. This benchmark set is the only widely adopted set in the literature which
contains synthesizable circuits. This property is a requirement for our flows, as is for standard
industry flows, which require fully synthesizable circuits that can be mapped to a given tech-
nology. Using this kind of benchmarks, we can also compare directly against industrial flows.
For this reason, we have rejected other benchmark sets, such as the IBM benchmark set [1],[2]
which are not synthesizable and are only suitable for wirelength minimization.

Circuit Cells Area Rows
b01 55 486.24 14
b02 27 257.94 10
b03 176 1625.55 24
b04 544 5275.07 44
b05 497 4384.91 40
b06 64 521.36 14
b14 4373 37759.64 118
b15 6445 50488.50 136
b17 18182 136529.37 222
b18 51277 407548.76 382
b19 91931 685848.53 495
b20 7844 61057.29 148
b21 8083 63194.32 151
b22 12016 92007.42 182
aes 26293 65043 153

des3 52174 176194 251

Table 7.1: Synchronous benchmarks

Table 7.1 shows the characteristics of the synchronous benchmarks. The benchmark set
ranges from small circuits, b01 to b06, to larger benchmarks, b14 and above. Three of the
benchmarks consist of more than 50,000 standard cells, which is a reasonable enough circuit
size to test the validity of our tools. In order to prove the scalability of our tools, we needed
larger, synthesizable benchmarks, which, unfortunately, are not available as a benchmark set.
However, we have collected a number of real, reasonably sized circuits from various sources,
including the Opencores [60] online resource which provides the description of real and often

7.1 Benchmark Set 121

industry-sized circuits. We have used the collection of these circuits in order to prove the
scalability of our tools, measure their runtimes and evaluate the importance of the integration
of our hierarchical flows in our proposed algorithms. The set of the larger benchmarks is shown
in Table 7.2. leon2 is a 32-bit CPU microprocessor core, based on the RISC architecture and
instruction set. vga_lcd is a combined VGA and LCD controller. b19_10 and b19_20 are the
b19 benchmark instantiated 10 and 20 times respectively. These particular benchmarks were
created with the sole purpose of showing the scalability of our tools.

Circuit Cells Area Rows
leon2 273626 830847 545

vga_lcd 220014 596046 462
b19_10 801990 1611006 758
b19_20 1605740 3220019 1602

Table 7.2: Synchronous large benchmarks

7.1.2 Asynchronous Benchmarks

To validate our asynchronous placer’s, CPlace, results we have used the most widely adopted
state-of-the-art asynchronous benchmark set. We have enriched the benchmark set with an
asynchronous version of the DLX processor, created with the desynchronization approach [19].
In view of the relatively small size of the asynchronous benchmarks, we have also created larger
ones, by instantiating multiple times smaller benchmarks. The resulting asynchronous circuits,
ranging up to 64,000 standard cells help prove the scalability of CPlace.

Table 7.3 shows the characteristics of the asynchronous benchmarks.

122 Results

Circuit Cells Area Rows
c3dec2 11 42 4

ccc 7 16 3
chu133 7 16 3
chu150 10 25 3

converta 15 47 4
half 10 38 4

mmu 25 85 6
mp_forward_pkt 12 42 4

nak_pa 16 52 4
nowick 9 20 3

rcv_setup 7 20 3
rpdft 13 41 4

sbuf_read_ctl 10 30 3
sbuf_send_ctl 17 61 5

seq_mix 22 73 5
trimos_send 30 132 7

var1 8 36 4
vbe10b 36 136 7
vbe5b 12 36 4
vbe5c 10 28 3
vbe6a 29 148 7

wrdatab 32 100 6
xyz 8 32 3

seq_mix_10000 10560 34944 112
half_10000 10240 39322 119

mmu_10000 12800 43418 125
ccc_15000 14336 33587 110

converta_64000 61440 19331 83
dlx_desync 15793 52277 137

Table 7.3: Asynchronous benchmarks

7.2 Slack Assignment Results

In this section, we present the evaluation of our slack assignment algorithms. MSSA is evaluated
for its property to propagate a statistical distribution which has the minimum possible sigma,
i.e. uncertainty, for the delay of the circuit’s virtual sink. TSZSA is evaluated for its property
to assign slacks to selected internal nodes of the circuit so that their delay distributions meet
targets on both mean and sigma. These targets are calculated during runtime of TSZSA and
are aimed at ensuring propagation of appropriate delay distributions to the circuit’s outputs.
We show that TSZSA can indeed calculate correctly the required values of mean and sigma for
the delay of internal nodes which directly leads to meeting the designer-enforced bounds, i.e.
targets on both mean and sigma of the circuit outputs’s delay distributions.

We first demonstrate the results of MSSA with respect to its aim of minimizing the sigma
of the circuit delay’s distribution. Table 7.4 shows the delay distribution for the virtual sink

7.2 Slack Assignment Results 123

IWLS Zero
Circ. Wire Delay MSSA

µ(ns) σ(ps) µ(ns) σ(ps)
b01 0.21 20 0.37 10
b02 0.20 20 0.36 10
b03 0.35 30 1.31 10
b04 0.40 20 0.65 10
b05 0.66 40 2.87 10
b06 0.24 20 0.39 20
b14 1.63 100 5.37 7
b15 1.18 100 4.41 8
b17 1.23 120 4.86 6
b18 3.58 690 15.85 8
b19 5.22 870 17.45 8
b20 1.67 140 5.74 20
b21 1.78 130 5.7 20
b22 1.75 170 5.82 20
aes 0.95 10 3.52 6

des3 1.08 220 4.14 20
leon2 4.9 790 17.6 20

vga_lcd 3.5 670 15.4 20
b19_10 6.8 1010 21.2 20
b19_20 7.2 1090 22.7 20

Avg. 2.22 313 7.78 13

Table 7.4: Comparison of zero wire delay with MSSA

that MSSA can achieve for all benchmarks. In order to discuss MSSA’s results with respect
to the final mean and sigma, we compare against the zero wire delay (ZWD) model, which
assumes zero delay for all wires. ZWD model is useful in terms of extracting the “hard” lower
bound on the delay of the circuit, which is the delay of only the gates. Although unrealistic
as a model, as any physical algorithm will introduce delay to account for the actual delays of
wires, ZWD can be very useful for estimating the delay overhead each algorithm requires. It
can also provide guidelines as to how much improvement is possible after the delays of wires are
accounted for. Physical algorithms can abandon their optimization process if their results are
close the the ZWD estimate, even if constraints are not met, in which case they may conclude
that the constraints are unrealistic.

The results of Table 7.4 show that MSSA can indeed propagate a delay distribution with
minimum sigma to the virtual sink. The reduction in sigma is 24× on average, compared to the
delay reported by ZWD. Moreover, the absolute values of sigma are comparable for all circuits,
showing that the the minimum possible sigma does not depend on the size or the structure
of the circuit. Furthermore, the absolute value of the sigma is comparable to the sigma of a
typical 2-input gate for the technology used. This shows that indeed, the delay of a gate with

124 Results

relatively small sigma is selected from MSSA and its delay distribution is propagated to the
virtual sink by appropriate slack allocation. However, this approach comes at the the price of
a significant increase in the mean delay. Compared to ZWD, MSSA needs about 3.5× more
statistical mean, which means that MSSA alone is insufficient as a slack allocation algorithm.

IWLS 25% slack 50% slack 75% slack
Circ. ZSA TSZSA Yield ZSA TSZSA Yield ZSA TSZSA Yield

µ(ns) σ(ps) µ(ns) σ(ps) Impr. µ(ns) σ(ps) µ(ns) σ(ps) Impr. µ(ns) σ(ps) µ(ns) σ(ps) Imp.
b01 0.25 20 0.24 20 0.6% 0.31 20 0.3 17 6.1% 0.38 30 0.37 17 8.7%
b02 0.24 20 0.23 20 0.6% 0.29 20 0.29 16 0.8% 0.36 30 0.36 16 5.5%
b03 0.42 30 0.42 20 2.28% 0.51 20 0.49 17 6.1% 0.62 50 0.63 16 22.5%
b04 0.51 20 0.48 18 11.7% 0.63 20 0.59 20 16.1% 0.77 60 0.76 20 20.3%
b05 0.81 30 0.79 20 9.1% 1.02 20 1.01 12 9.7% 1.22 80 1.28 12 11.7%
b06 0.30 20 0.28 20 2.33% 0.37 20 0.34 20 6.7% 0.48 40 0.48 20 6.81%
b14 2.10 140 2.03 90 7.78% 2.61 110 2.48 90 10.2% 3.18 240 3.21 70 15.9%
b15 1.52 130 1.44 80 10.9% 1.85 110 1.78 67 11.7% 2.21 210 2.27 51 15.6%
b17 1.61 170 1.55 90 10.9% 2.01 160 1.95 69 18.1% 2.53 270 2.59 53 20.9%
b18 4.35 910 4.2 504 6.9% 5.14 620 5.08 310 8.1% 5.91 1190 6.12 198 25.1%
b19 6.69 1010 6.4 697 5.1% 8.27 610 8.09 390 5.3% 10.9 1470 11.04 209 25.5%
b20 2.12 180 2.03 130 4.8% 2.53 110 2.42 72 16.9% 2.89 310 2.97 70 17.6%
b21 2.27 180 2.2 110 7.5% 2.74 120 2.65 81 10.2% 3.22 300 3.4 60 11.5%
b22 2.28 210 2.27 109 8.4% 2.87 140 2.82 78 9.5% 3.45 320 3.63 59 13.3%
aes 1.20 50 1.17 50 11.7% 1.47 40 1.42 31 14.2% 1.74 90 1.76 23 16.3%

des3 1.41 390 1.39 240 3.67% 1.78 310 1.81 172 3.92% 2.19 490 2.21 160 14.39%
leon2 6.2 910 6.1 510 6.06% 7.4 980 7.45 540 4.46% 8.7 1240 8.8 510 9.51%

vga_lcd 4.4 720 4.39 380 5.94% 5.4 820 5.43 410 6.3% 6.3 1110 6.32 390 14.23%
b19_10 8.5 1210 8.51 650 5.37% 10.3 1150 10.4 480 9.18% 12.1 1350 12.2 400 16.85%
b19_20 8.7 1240 8.72 670 5.16% 11.4 1210 11.4 510 10.38% 12.8 1510 12.82 430 19.49%

Avg. 2.8 381 2.73 220 6.40 % 3.45 330 3.41 170 9.19 % 4.1 519 4.16 139 15.59 %

Table 7.5: Comparison of ZSA and TSZSA results for given slack, illustrating yield improvement

We now show how TSZSA, making effective use of the information derived by MSSA can
manipulate the delay distributions in the circuit so as to meet targets on both mean and sigma.
We want to compare the results of TSZSA against a state-of-the-art slack allocation algorithm.
We have chosen ZSA, which either in its pure form, or enhanced by process-specific heuristics
is widely used by contemporary industrial algorithms which require slacks on either wires or
gates [70]. Since we perform statistical optimization, we need to account for both mean and
sigma. One way to compare would be to examine mean and sigma separately. However, this
would mitigate the very essence of statistical optimization, which tries to optimize for both
values simultaneously. Thus, we have employed the metric of timing yield. Timing yield is the
probability that, given a delay distribution and a constraint, the delay of a random sample from
the delay distribution meets the constraint. Greater timing yield means that more circuits are
likely to meet their timing constraints. Yield on the other hand, detached from any statistical
notion, is a common metric in industry referring to the probability that a particular chip meets

7.2 Slack Assignment Results 125

its constraints. Thus, statistical timing yield is the natural expansion of the same metric to
statistical flows.

Figure 7.1: TSZSA timing yield gains

Table 7.5 shows the timing yield gains of TSZSA over ZSA. The results are graphically
depicted in Figure 7.1. Table 7.5 shows the delay distributions for all benchmarks, achieved by
ZSA and TSZSA, for three different slack constraints. The slack constraints were defined at
125%, 150% and 175% of the zero wire delay’s mean, which translates into 25%, 50% and 75%
allowed slack over ZWD. Essentially, the slack constraint corresponds to a constraint for the
delay’s mean. For each constraint, ZSA and TSZSA were run, both aiming to distribute all the
available slack. TSZSA was also constrained in terms of the resulting delay’s sigma. For each
benchmark, TSZSA was run multiple times in order to determine the minimum sigma that can
be achieved for the given mean constraint. Therefore, it is expected that if the constraint in
mean is relaxed, then TSZSA can minimize sigma more aggressively.

The results in Table 7.5 show that TSZSA claims 6.4%, 9.19% and 15.59% better timing
yield compared to ZSA for 25%, 50% and 75% slack respectively. The timing yield gains are
proportional to the amount of slack allowed, which can be explained by the fact that given
more slack, TSZSA can effectively utilize it to apply more aggressive optimization on the de-
lay’s sigma. Table 7.5 also shows that TSZSA’s resulting delay distributions have about the
same mean as ZSA’s, which means that TSZSA does not introduce any mean delay violations.
However, the delay’s sigma is significantly decreased, highlighting TSZSA’s ability to manip-
ulate sigma. The reduction in delay’s sigma with no overhead in mean, effectively results in
better timing yield.

The result averages of Tables 7.4 and 7.5 are graphically depicted in Figure 7.2, where the
vertical axis is the sigma value, in ps, and the horizontal axis is the mean value, based on
the allocated slack. The ZWD point serves as reference. ZSA and TSZSA have three points,

126 Results

which correspond to 25%, 50% and 75% slack, while for MSSA we only consider the minimum
sigma solution. Points for ZSA, MSSA and TSZSA all lie on the right of ZWD point, as
all ZSA, MSSA and TSZSA distribute slack, which is considered zero for ZWD. As shown in
Figure 7.2, ZSA exhibits unpredictable behaviour on sigma, which is not linked to the amount
of slack allowed. TSZSA’s results however, appear to correlate on a Pareto type curve, where
sigma can be further optimized if more slack is allowed. Furthermore, TSZSA can produce the
solution of MSSA if enough slack is allowed.

 0

 50

 100

 150

 200

 250

 300

 1.5 2 2.5 3 3.5 4 4.5 5

S
ig

m
a(

ps
)

Mean(ns)

ZWD

MSSA

ZSA

TSSA

Figure 7.2: ZWD, ZSA, MSSA and TSSA comparison

Figure 7.3 illustrates the shape of the typical average mean, sigma tradeoff curve of the
TSZSA algorithm. The leftmost mean point of this curve represents the 25% slack point,
shown in Table 7.5, whereas the rightmost point represents the MSSA solution, i.e. no limit
on slack. The specific circuit generating this curve is b20, however all other circuits exhibit a
similar tradeoff. Essentially, the trend is an initial sharp drop in sigma with a small amount

7.2 Slack Assignment Results 127

 0

 0.05

 0.1

 0.15

 0.2

 2 2.5 3 3.5 4 4.5 5 5.5 6

S
ta

nd
ar

d
D

ev
ia

tio
n

(n
s)

Mean (ns)

Figure 7.3: TSSA mean, sigma tradeoff curve

of slack. Then, another important point is the flattening of this curve, which for this example
occurs for 50% of allocated slack. This happens when TSZSA has reached the point where no
further optimization in sigma is possible regardless of the penalty allowed on mean.

To summarize, the TSZSA results indicate that with little change in the mean delay, TSZSA
achieves a reduction in sigma, proportional to the available slack, which enables the algorithm
to modify the arrival times at the circuit’s internal timing nodes appropriately.

7.2.1 Slack Assignment Runtime

Any step of a contemporary EDA flow must provide optimizations in a reasonable time frame.
In this section we show runtime results for our slack allocation algorithms. We specifically show
that our hierarchical approach, described in Section 3.6.2 enables our slack allocation strategies
to handle circuits consisting of several hundred thousand standard cells. Circuits of this size are
currently regarded by academia as large enough to test the scalability of physical algorithms.
Table 7.6 shows the runtime results for MSSA and TSZSA. All experiments were performed
on an Intel(R) Core(TM)2 Duo CPU E8500 running at 3.16GHz with 4GB of RAM. Profiling
results were collected with the GNU GPROF [27] tool.

128 Results

Runtime (sec)
Non-Hierarchical Hierarchical

Circuit MSSA TSZSA MSSA TSZSA
b01 3 15 3 17
b02 3 14 3 15
b03 5 17 5 18
b04 4 15 4 16
b05 5 13 5 15
b06 5 17 5 15
b14 12 302 12 84
b15 10 287 10 79
b17 13 311 13 93
b18 18 15783 18 1305
b19 20 19038 20 1592
b20 14 471 14 117
b21 13 459 13 109
b22 14 502 14 98
aes 12 399 12 102

des3 13 613 13 96
leon2 51 N/A 51 12035

vga_lcd 55 N/A 55 11593
b19_10 170 N/A 170 18301
b19_20 350 N/A 350 37598

Table 7.6: MSSA and TSZSA runtime

Table 7.6 shows the runtime for MSSA and TSZSA with both hierarchical and non-hierarchical
approaches. The runtime for MSSA is the same for both approaches, as it simply requires a
forward traversal of the circuit’s timing graph and thus, no gains are expected from a hierar-
chical approach. In the case of TSZSA however, the segmentation of the whole problem into
smaller sub-problems yields significant runtime gains. Table 7.6 confirms that MSSA runs very
fast for all benchmarks. The runtime is correlated linearly to the circuit size. The runtime
of TSZSA on the other hand, relies on the runtime of the LP solver, which does not scale
well with circuit size. It is expected that the GLPK solver, which we employed for solving
the LP problem, has complexity no better than polynomial, which calls for the application
of our hierarchical methodology. As shown in Table 7.6, the runtime for the larger circuits
becomes prohibitive, while for the largest circuits, TSZSA fails to provide a solution without
our hierarchical approach. On the other hand, the use of hierarchical approach, can introduce
a small runtime penalty on the smaller circuits, but enables TSZSA to derive bounds even for
the largest circuits. Runtimes of a few hours are not uncommon in contemporary EDA tools
for circuits with a few million transistors, like b19_20, which consists of 1,600,000 standard
cells.

7.3 SCPlace Results 129

7.3 SCPlace Results
In this section we discuss the results of SCPlace. Since SCPlace aims at statistical optimization,
we employ statistical metrics for evaluating its performance. Thus, as previously, we measure
the timing yield gains obtained by SCPlace. Specifically, we investigate the timing yield gains
obtained by SCPlace compared to a state-of-the-art industrial flow, a statistical placer which
does not use bounds and a state-of-the-art academic placer. We also show that the placements
produced by SCPlace are routable. Since we have shown that our hierarchical approach for the
derivation of wire bounds is superior to the non-hierarchical one, we have only used the former
for the presentation of results in this section.

7.3.1 Timing Yield

IWLS Capo [10] Industrial Placer SSAPlace Yield SCPlace Yield
Circ. µ(ns) σ(ps) HPWL µ(ns) σ(ps) HPWL µ(ns) σ(ps) HPWL Imp. µ(ns) σ(ps) HPWL Imp.
b01 0.23 42 6.96×1005 0.21 39 6.46×1005 0.22 38 6.98×1005 -0.25% 0.22 23 6.98×1005 2.17%
b02 0.37 45 4.46×1005 0.33 37 5.41×1005 0.35 36 4.51×1005 -0.59% 0.32 28 4.49×1005 2.33%
b03 0.61 60 1.87×1006 0.56 49 2.23×1006 0.59 49 1.89×1006 -0.87% 0.56 27 1.87×1006 4.95%
b04 0.82 49 7.07×1006 0.75 47 6.88×1006 0.81 46 7.14×1006 -3.92% 0.77 23 7.11×1006 2.94%
b05 1.23 129 8.46×1006 1.14 113 8.88×1006 1.17 109 8.53×1006 -0.23% 1.20 28 8.54×1006 10.2%
b06 0.49 51 2.39×1007 0.44 48 8.72×1006 0.51 45 2.42×1007 -5.05% 0.44 24 2.41×1007 6.81%
b14 3.58 151 2.83×1008 3.45 142 2.55×1008 3.52 136 3.01×1008 -0.45% 3.47 85 2.98×1008 2.68%
b15 1.91 138 1.90×1008 1.78 126 1.59×1008 1.80 125 2.05×1008 -0.21% 1.75 78 1.97×1008 3.36%
b17 1.78 112 6.17×1008 1.65 107 5.11×1008 1.73 99 6.21×1008 -0.75% 1.68 44 6.19×1008 6.55%
b18 6.03 249 1.61×1009 5.87 234 1.37×1009 6.11 217 1.89×1009 -1.70% 5.93 113 1.78×1009 4.46%
b19 7.65 342 1.82×1009 7.13 296 1.51×1009 7.45 282 2.21×1009 -2.22% 7.21 159 2.05×1009 3.01%
b20 2.03 132 6.36×1008 1.84 127 5.66×1008 1.85 124 6.57×1008 0.13% 1.85 79 6.54×1008 2.62%
b21 2.44 205 5.71×1008 2.43 202 5.02×1008 2.49 193 6.14×1008 -0.24% 2.45 112 6.12×1008 3.92%
b22 2.83 247 9.38×1008 2.58 239 7.83×1008 2.91 225 1.19×1009 -4.36% 2.67 74 9.85×1008 9.68%
aes 1.41 93 7.65×1008 1.34 91 7.00×1008 1.42 87 8.32×1008 -1.36% 1.34 48 8.04×1008 5.71%

des3 2.09 102 6.18×1008 2.04 95 5.82×1008 2.07 91 6.34×1008 -0.26% 2.05 54 6.21×1008 3.51%
leon2 6.2 125 4.02×1009 6.04 117 3.77×1009 6.1 116 4.5×1009 -0.62% 6.11 50 4.35×1009 3.01%

vga_lcd 4.9 131 2.44×1009 4.81 123 2.08×1009 4.9 125 2.57×1009 -1.29% 4.9 43 2.52×1009 3.75%
b19_10 9.2 139 1.85×1010 9.01 129 1.61×1010 9.08 140 2.03×1010 -1.19% 9.03 50 2.1×1010 9.51%
b19_20 10.3 145 3.8×1010 9.9 159 3.3×1010 10.1 140 4.1×1010 -2.4% 9.95 55 4.3×1010 8.85%

Avg. 3.31 135 3.54×1009 3.16 127 3.1×1009 3.26 121 3.87×1009 -1.38% 3.2 61 3.97×1009 5%

Table 7.7: Placement results comparison

Table 7.7 illustrates the results of SCPlace, which exploits the TSZSA bounds in conjunc-
tion with the hierarchical LP-based slack assignment, and compares against (1) a commercial
placement tool, (2) Capo and (3) an alternative statistical placer we created for comparison
purposes, which does not use wire bounds. The latter, labeled as “SSA Place”, is an iterative,
Simulated Annealing (SA) based placer, which performs cell swaps to improve wirelength, mean

130 Results

delay and sigma. The results are graphically depicted in Figure 7.4.

Figure 7.4: SCPlace timing yield improvement

The results of Table 7.7 are post-placement and have been verified against a commercial
STA engine, which considers routing delay estimations for a given placement. The correlation
of our SSTA engine with Monte-Carlo simulations has been shown in Section 3.1. The slack
given for TSZSA is defined by the commercial placer’s results, i.e. TSZSA is constrained with
the mean delay achievable by the commercial placer. Its task is to optimize the sigma without
negatively affecting the mean of the circuit’s delay. The sigma target was set to 50% of the
commercial tool’s sigma and was then readjusted accordingly depending on whether it was
feasible or not. The results of Table 7.7 indicate for SCPlace an effective yield improvement
post-placement over the commercial, non-statistical, Capo and the SSAPlace. SCPlace’s yield
improvement is of the order of the yield achieved by TSZSA, albeit smaller due to (i) wire
delay estimations inaccuracies during TSZSA assignment, (ii) lack of systematic correlation
information during TSZSA, (iii) Slack re-assignment by the LP step and (iv) unsatisfied wire
bound constraints which are as close as possible to the original constraint, but may not exactly
meet it. On average, the yield gained is 5% for the same mean value as a commercial placement
tool, which illustrates that the TSZSA’s wire bounds, combined with the LP slack assignment
are effectively used by SCPlace to produce a legal and valid placement. On the other hand,
SSAPlace’s results indicate that local sigma optimization does not necessarily imply sigma
optimization at primary outputs. This is the case because sigma improvements are not additive,
as circuit delay improvements, thus a local sigma improvement at a circuit node can easily be

7.3 SCPlace Results 131

filtered by a side input’s sigma, and it is impossible without a global view to analyze such
interactions during placement.

SCPlace’s runtime ranges from a few seconds for the smaller benchmarks (b01-b06), to a
few hours for the larger ones. SCPlace’s runtime profile is dominated by the execution time
spent for the LP slack assignment step, i.e. the LP solver, and the execution time of the SSTA
engine.

Runtime(seconds)
Circuit Total MSSA TSZSA Perturbation Reconstruction Constructive

b01 27 3 17 4 2 1
b02 23 3 15 0 3 2
b03 26 5 18 0 2 1
b04 28 4 16 5 2 1
b05 29 5 15 4 3 2
b06 24 5 15 0 2 2
b14 134 12 84 17 9 11
b15 134 10 79 19 12 14
b17 141 13 93 15 8 12
b18 1595 18 1305 78 129 65
b19 1954 20 1592 69 201 72
b20 210 14 117 21 42 16
b21 196 13 109 23 39 12
b22 172 14 98 19 27 14
aes 197 12 102 13 51 19

des3 193 13 96 34 29 21
leon2 13859 51 12035 251 1031 491

vga_lcd 13627 55 11593 198 1279 502
b19_10 22897 170 18301 319 3409 698
b19_20 47301 350 36925 702 7592 1732

Table 7.8: SCPlace runtime breakdown

However, none of LP or the SSTA engine is essential in the core of SCPlace, as no timing or
slack calculations are needed after the slacks for each wire are known. The core of SCPlace’s
algorithm is fast and does not require more than a few minutes for any benchmark. Thus, the
execution time is dominated by the execution of TSZSA, which requires SSTA, and the number
of LP solver iterations, which does not require SSTA, but is slow in itself. Table 7.8 verifies
these conclusions. The runtime in Table 7.8 is broken down into the major function calls of
SCPlace. These are the SSTA calls, including any incremental SSTA calls, the MSSA and
TSZSA calls and the calls to the two auxiliary functions, perturbation and reconstruction. As
shown in Table 7.8, the total runtime is dominated by the TSZSA function, which does all the
hard work of deriving the bounds which guarantee the desired delay distributions at the circuit’s
outputs. MSSA is very fast for all circuits and it scales linearly with circuit size. The runtime
of the auxiliary functions depends mainly on how often they are called. For some small circuits,

132 Results

the Perturbation is never called, as all cells can be placed at the first iteration of SCPlace. The
Reconstructor is called only when a cell cannot be immediately placed. This means that the
runtime required by this function depends on how hard the constraints imposed by TSZSA
are. However, the calculations required for each cell during reconstruction are simple enough
to allow it to require only a few minutes even for the largest circuits. Constructive placement
itself is very fast, as all the hard calculations have been transferred to TSZSA and the auxiliary
functions. Thus, the process of finding all candidate locations and choosing one to place any
cell requires only a fraction of the total runtime. In total, the results of Table 7.8 show that
SCPlace, being a complete placement tool for statistical optimization, can handle circuits of
sizes exceeding millions of transistors with total runtime which is considered reasonable for a
physical design tool of this caliber.

7.3.2 Routability

In a typical EDA flow, the step following placement is the routing step. Thus, a placer needs
to make sure that the placement is routable. Although there is no way to guarantee that a
placement is routable before the actual routing information is available, there is one important
heuristic which is used by contemporary placers. This is a limit on the congestion imposed by
the presence of standard cells. The less congested an area is, the fewer wires need to be routed
through this area, making it less likely that the amount of wires requiring routing exceeds the
routing capacity of the layout area. As described in Chapter 4, SCPlace guarantees routing by
employing density screens which constraint local congestion. We employ density screens in a
grid fashion, which bounds the maximum congestion on every segment of the layout, as defined
by the overlaid grid. The free space, which SCPlace guarantees at regular space intervals, limits
the number of standard cells over a given layout area. This means that the number of nets
that arrive or originate from this limited number of standard cells, also does not blow up. The
limited number of nets allows the router to effectively route all nets using the available layout
area.

We have verified the routability of all SCPlace’s placements by performing detailed routing
using a state-of-the-art industrial router. For all placements, routing completed successfully
without any serious congestion concerns. Figure 7.5 shows an example of a successfully routed
benchmark. There are no routing violations, as reported by the industrial tool. For congestion,
there is a small area (coloured blue) with relatively larger congestion than the rest of the layout.

7.4 Leakage Recovery Results 133

However, this amount of congestion is not a problem for the router.

Figure 7.5: b05 after detailed routing

In the next section we evaluate our post-placement leakage recovery flow which can be
applied directly after SCPlace.

7.4 Leakage Recovery Results
In this section we discuss the results of our statistical leakage recovery flow. Our leakage
recovery flow can be used after the placement of the circuit is finalized. This means that it
can be the next step after SCPlace or any other placer which conforms to industry standards
for the description of placement. Our leakage recovery flow works in-place, i.e. it only resizes
standard cells or replaces them with functionally equivalent ones. The primary aim is to reduce
the total statistical leakage of the circuit without affecting the statistical delay of the circuit.
Alternatively, our leakage flow can be used to trade-off statistical delay for statistical leakage
at the designer’s discretion. For comparison purposes, we use a state-of-the-art industrial
leakage reduction flow. Specifically, we show that our flow can co-optimize for statistical delay
and leakage, while the industrial flow cannot manipulate the uncertainty (sigma) factor of the

134 Results

delay.

Circuit Delay (ns) Leakage (uW) Area
Mean Sigma Mean Sigma (µm2)

b01 0.23 0.03 0.79 0.05 156
b02 0.2 0.02 0.61 0.04 109
b03 0.34 0.04 2.23 0.21 494
b04 0.38 0.05 7.1 0.47 1478
b05 0.9 0.11 6.75 0.39 1404
b06 0.23 0.03 0.94 0.07 193
b14 3.93 0.27 159 11.2 30580
b15 1.93 0.19 84.5 4.46 19991
b17 1.69 0.16 256 17.3 61764
b18 6.3 0.65 795 53.9 181008
b19 7.71 0.73 2301 107.2 358554
b20 2.33 0.17 309 23.2 58818
b21 2.67 0.22 268 19.1 54326
b22 2.48 0.25 463 35.8 88764
aes 3.3 0.11 310 21.0 63243

des3 2.32 0.28 101 9.4 176172
leon2 6.17 1.02 5397 315.4 859310

vga_lcd 4.90 0.84 4732 286.1 613047
b19_10 9.34 1.29 22956 974.3 1784713
b19_20 10.2 1.37 47839 1543.3 3546980

Avg 3.38 0.38 4300 171 395047

Table 7.9: Initial placement

The starting point of our experiments is a finalized placement for all benchmarks. Table 7.9
illustrates statistical delay, statistical leakage consumption and area of each benchmark post-
placement. All placements were created using a timing-driven state-of-the-art industrial placer
which was geared towards timing-efficient placements. This allows for both leakage flows to
show their potential as a placement optimized for timing allows more room for leakage im-
provement. Additionally, using the input from an industrial tool highlights the suitability of
our leakage flow to be integrated into an existing EDA flow. The (µ + 3σ) of the initial’s
placement delay serves as the cutoff point for yield estimation. This means that if the circuit is
slower than the initial delay, then a timing yield loss will be reported with respect to the initial
statistical delay. Statistical delay and leakage are calculated using our statistical timing anal-
ysis engine. The standard deviation of delay in Table 7.9 is considered to be hard constraints
for leakage optimization for our flow. This means that our flow is not allowed to optimize any
standard cells in such a way that the sigma of circuit’s delay is increased.

7.4 Leakage Recovery Results 135

Industrial Flow Proposed Flow
Circuit Delay (ns) Leakage (uW) Area Timing E(X) Delay (ns) Leakage (uW) Area Timing E(X)

Mean Sigma Mean Sigma (µm2) Yield Leakage Mean Sigma Mean Sigma (µm2) Yield Leakage
Loss Recovery Loss Recovery

b01 0.23 0.03 0.56 0.06 138 0% 29.1% 0.23 0.03 0.56 0.06 139 0% 29.1%
b02 0.2 0.03 0.44 0.04 96 2.3% 27.9% 0.2 0.03 0.45 0.04 96 2.3% 26.2%
b03 0.35 0.04 1.82 0.23 475 0.3% 18.4% 0.35 0.04 1.85 0.23 489 0.3% 17%
b04 0.39 0.05 6.07 0.51 1387 0.3% 14.5% 0.39 0.05 6.16 0.51 1432 0.3% 13.2%
b05 0.92 0.13 5.17 0.47 1332 0.9% 23.4% 0.92 0.11 5.38 0.46 1349 0.2% 20.3%
b06 0.24 0.03 0.69 0.08 169 0.4% 26.6% 0.24 0.03 0.71 0.08 173 0.4% 24.5%
b14 3.92 0.43 132 11.6 28943 2.9% 17% 3.95 0.27 141 11.4 29539 0.1% 11.3%
b15 2.02 0.27 67 4.59 19021 3.8% 20.7% 1.98 0.19 78.3 4.55 19702 0.4% 7.3%
b17 1.86 0.32 229 19.1 57682 16.9% 10.5% 1.71 0.16 240 18.3 59681 0.2% 6.3%
b18 6.52 1.03 538 61.3 172390 4.75% 32.3% 6.32 0.66 550 58.3 174468 0.1% 30.8%
b19 7.94 1.31 1549 129.3 339051 6.8% 32.7% 7.73 0.74 1629 119.1 343529 0.1% 29.2%
b20 2.41 0.38 202 25.8 51803 12.92% 34.6% 2.33 0.18 221 23.7 53655 0.23% 28.5%
b21 2.71 0.44 219 21.1 50913 8.08% 18.3% 2.67 0.23 235 20.4 52976 0.21% 12.3%
b22 2.53 0.41 309 37.4 79104 4.46% 33.2% 2.49 0.26 338 34.6 81302 0.23% 27%
aes 3.51 0.24 179 24.2 55591 31.2% 42.2% 3.31 0.11 190 22.9 57224 0.1% 38.7%

des3 2.34 0.62 65 10.1 165598 9.34% 35.6% 2.33 0.28 78 9.8 170047 0.12% 22.8%
leon2 6.37 1.82 4284 282 832597 3.1% 20.6% 6.19 1.05 4501 289 836721 0.4% 16.6%

vga_lcd 5.23 1.45 4039 217 598639 6.5% 14.6% 4.93 0.85 4251 230 603498 0.1% 10.2%
b19_10 9.41 2.14 15610 725 1593198 3.8% 32% 9.37 1.30 17409 787 1645601 0.1% 24.1%
b19_20 10.2 2.41 34302 1487 3264208 4.4% 28% 10.2 1.38 36741 787 3439847 0.1% 23%

Avg 3.46 0.68 3087 153 365617 6.16% 25.6% 3.39 0.4 3330 121 378573 0.3% 20.9%

Table 7.10: Timing yield comparison

7.4.1 Leakage Recovery vs Industrial

Table 7.10 illustrates the leakage recovery results and contrasts the results of a commercial,
non-statistical, leakage recovery tool with the results obtained using our statistical, (mean,
sigma) preserving leakage optimization flow. The mean delay for both flows is identical. These
results indicate that our flow achieves comparable leakage recovery to the industrial flow. The
average gain in the expected value of leakage is 20.9%, ranging from about 6% to 38.7%. For
some of the largest circuits, b18 and b19, we achieve above average leakage gains, i.e. 30.8% and
29.2% respectively. Our flow also succeeds at preserving the required mean and sigma, which
is not the case in the industrial flow. The use of relative constraints that our flow employs,
guarantees that the sigma at the outputs is not disturbed. During leakage optimization only
very small fluctuations occur, in both mean and sigma. On the other hand, the commercial tool
performs more aggressive gate sizing, resulting in greater optimization for leakage, but fails to
control sigma. The timing yield losses for the two approaches are shown in Figure 7.6.

136 Results

Figure 7.6: Timing yield loss after leakage reduction

7.4.2 Delay-Leakage Tradeoff

For the second set of results, we demonstrate the effectiveness of our flow on trading off delay
for leakage and vice-versa. By adding slack to the initial placement, TSZSA can identify a
slack assignment which distributes this additional slack onto the gates, while at the same time,
respecting the relative constraints guaranteeing the same sigma value at the outputs. Additional
slack, thus, allows for more aggressive downsizing of gates.

For producing Pareto curves, we set the mean constraint, as the initial mean delay plus the
additional slack, whereas the sigma constraint is the post-placement sigma. Then, we optimize
the circuits with our leakage recovery flow.

Figures 7.7a, 7.7b, 7.7c and 7.7d show the tradeoff for delay-leakage for benchmarks b14,
b15, b17 and b20 respectively, where the horizontal axis shows the expected value of delay and
the vertical axis shows the expected value of leakage. As shown in Figures 7.7a, 7.7b, 7.7c and
7.7d, in all cases, our flow could effectively utilize the extra slack for more aggressive leakage
reduction, until the extra slack reaches a point where it can no longer be traded for less leakage.
This point is expected to be reached, as given enough slack, almost all gates will have reached
their smallest size, making the addition of more slack redundant.

7.4.3 Leakage Recovery Runtime

In this section we evaluate the runtime results for our leakage recovery flow. We compare our
runtime against the industrial flow and breakdown the runtime to its contributing functions.
Table 7.11 shows the runtime results obtained from the GNU GPROF profiling tool.

7.4 Leakage Recovery Results 137

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

3.93 3.95 4.03 4.04 4.1 4.25 4.35 4.45

Le
ak

ag
e

(u
W

)

Delay (ns)

b14

(a) b14 Delay-leakage tradeoff

 55

 60

 65

 70

 75

 80

1.98 2.08 2.14 2.18 2.2 2.29

Le
ak

ag
e

(u
W

)
Delay (ns)

b15

(b) b15 Delay-leakage tradeoff

 160

 170

 180

 190

 200

 210

 220

 230

 240

1.69 1.73 1.77 1.81 1.85

Le
ak

ag
e

(u
W

)

Delay (ns)

b17

(c) b17 Delay-leakage tradeoff

 140

 150

 160

 170

 180

 190

 200

 210

2.33 2.41 2.47 2.55 2.6

Le
ak

ag
e

(u
W

)

Delay (ns)

b20

(d) b20 Delay-leakage tradeoff

Figure 7.7: Delay-leakage tradeoff

As shown in Table 7.11, the industrial flow performs optimization in much shorter time
than our flow. However, this is expected as the industrial flow does not support statistical
optimization and thus, the calculations required at each step are fewer and simpler. As a
result, the industrial flow outperforms our flow with respect to runtime, but out flow consistently
outperforms the industrial flow with respect to statistical optimization.

The majority of runtime is dominated by our statistical slack assignment algorithms and
most notably TSZSA. This is expected, as this function performs all the hard work of identifying
which cells can afford extra delay and how much this delay is. A significant amount of time is
also devoted to incremental SSTA, which updates the timing graph allowing for more accurate
on-the-fly optimization. The process of substituting each gate with its best alternative is

138 Results

Runtime(seconds)
Statistical Flow

Circuit Industrial Total MSSA TSZSA Inc SSTA Replace Gate
b01 7 26 3 17 5 1
b02 8 24 3 15 5 1
b03 7 28 5 18 4 1
b04 7 26 4 16 5 1
b05 7 26 5 15 5 1
b06 5 24 5 15 3 1
b14 22 111 12 84 12 3
b15 24 110 10 79 18 3
b17 19 123 13 93 13 4
b18 604 1744 18 1305 382 39
b19 843 2068 20 1592 409 47
b20 32 160 14 117 21 8
b21 31 150 13 109 19 9
b22 49 147 14 98 27 8
aes 41 149 12 102 25 10

des3 44 143 13 96 23 11
leon2 2983 13254 51 12035 917 251

vga_lcd 3014 12945 55 11593 1042 255
b19_10 5941 21036 170 18301 1958 607
b19_20 12093 43798 350 38596 3381 1471

Table 7.11: Leakage optimization runtime breakdown

relatively fast due to the preprocessing step which maintains a list of candidate replacement
gates for all library gates. The total runtime of our flow ranges from a few seconds for the
smaller circuits to a few hours for the circuits with over one million transistors. Since our
flow achieves closure for all benchmarks, runtimes of a few hours are considered acceptable in
industrial tools performing large-scale optimization such as full-chip leakage reduction.

In the next section we turn our focus to the evaluation of our placement tool which can
handle asynchronous circuits.

7.5 CPlace Results

In this section we discuss the results of CPlace. The aim of CPlace is to place the cells
of asynchronous circuits in a way that guarantees the performance of the placed circuit and
the satisfaction of timing assumptions required for the correct operation of the circuit. We
validate the superiority of CPlace against a state-of-the-art industrial placer and show that
CPlace can succesfully place all asynchronous circuits without violating any critical assumptions
required for asynchronous operation, which is not the case for the industrial tool. CPlace also
creates placements which, in terms of performance, compare reasonably to the placements of

7.5 CPlace Results 139

the industrial tool.

7.5.1 CPlace vs Industrial and Capo

IWLS ZWD Constraint Capo [10] Industrial Placer CPlace
Circ. Delay(ns) Slack(ns) HPWL Delay(ns) Slack(ns) HPWL Delay(ns) Slack(ns) HPWL
b01 0.21 0.32 0.23 0.09 6.96×1005 0.21 0.11 6.46×1005 0.22 0.10 6.98×1005

b02 0.20 0.30 0.37 -0.07 4.46×1005 0.33 -0.03 5.41×1005 0.32 -0.02 4.49×1005

b03 0.35 0.53 0.61 -0.08 1.87×1006 0.56 -0.03 2.23×1006 0.56 -0.03 1.87×1006

b04 0.40 0.60 0.82 -0.22 7.07×1006 0.75 0.15 6.88×1006 0.77 -0.17 7.11×1006

b05 0.66 0.99 1.23 -0.24 8.46×1006 1.14 -0.15 8.88×1006 1.20 -0.21 8.54×1006

b06 0.24 0.36 0.49 -0.13 2.39×1007 0.44 -0.08 8.72×1006 0.44 -0.08 2.41×1007

b14 1.63 2.45 3.58 -1.13 2.83×1008 3.45 -1.00 2.55×1008 3.47 -1.02 2.98×1008

b15 1.18 1.77 1.91 -0.14 1.90×1008 1.78 -0.01 1.59×1008 1.75 0.02 1.97×1008

b17 1.23 1.85 1.78 0.07 6.17×1008 1.65 0.20 5.11×1008 1.68 0.17 6.19×1008

b18 3.58 5.37 6.03 -0.66 1.61×1009 5.87 -0.50 1.37×1009 5.93 -0.56 1.78×1009

b19 5.22 7.83 7.65 0.18 1.82×1009 7.13 0.70 1.51×1009 7.21 0.62 2.05×1009

b20 1.67 2.51 2.03 0.48 6.36×1008 1.84 0.67 5.66×1008 1.85 0.66 6.54×1008

b21 1.78 2.67 2.44 0.23 5.71×1008 2.43 0.24 5.02×1008 2.45 0.22 6.12×1008

b22 1.75 2.63 2.83 -0.20 9.38×1008 2.58 0.05 7.83×1008 2.67 -0.04 9.85×1008

aes 0.95 1.43 1.41 0.02 7.65×1008 1.34 0.09 7.00×1008 1.34 0.09 8.04×1008

des3 1.08 1.62 2.09 -0.47 6.18×1008 2.04 -0.52 5.82×1008 2.05 -0.53 6.21×1008

leon2 4.9 7.35 6.2 1.3 4.02×1009 6.04 1.31 3.77×1009 6.11 1.24 4.35×1009

vga_lcd 3.5 5.25 4.9 0.35 2.44×1009 4.81 0.44 2.08×1009 4.9 0.35 2.52×1009

b19_10 6.8 10.2 9.2 1.0 1.85×1010 9.01 1.19 1.61×1010 9.03 1.17 2.1×1010

b19_20 7.2 10.8 10.2 0.6 3.8×1010 9.9 0.9 3.3×1010 10.1 0.7 4.3×1010

Avg. 2.22 3.33 2.94 0.04 3.55×1009 3.17 0.18 3.1×1009 3.2 0.13 3.97×1009

Table 7.12: Synchronous placement results comparison

Table 7.12 illustrates post-placement results obtained by CPlace. We compare and contrast
CPlace with (i) Capo [66, 10], a well-known academic placer and (ii) a state-of-the-art, mature,
industrial placer, the name of which we cannot disclose. Capo was selected as a reference
academic placer, as it supports technology-mapped circuits and LEF/DEF formats, similar
to CPlace. However, it should be noted that Capo does not support timing-constraints. We
illustrate in Table 7.12 the obtained mean and the HPWL (Half-Perimeter Wire Length) for
Capo, the industrial placer and CPlace. HPWL is measured in LEF/DEF database units (2000
units/µm) by Capo’s WireLengthCalculator. The results in Table 7.12 have been verified against
a very commonly used, STA golden-sign off engine, which considers routing delay estimations
for a circuit placement. The slack assigned to each placer was 50% of the zero-wire delay result
for each circuit.

We have verified that the placements produced by CPlace firstly satisfy the majority of the
wire bound constraints and secondly that are routable. The latter was verified by running trial
routing and congestion analysis in a commercial back-end tool.

140 Results

The results of Table 7.12 show that CPlace can effectively handle the synchronous circuits
used in this set of experiments, yielding about the same delay as the industrial placer. CPlace’s
HPWL results indicate a total wirelength comparable to Capo, even though CPlace focuses
secondarily on wirelength.

7.5.2 QDI Satisfaction

In this section, we compare CPlace against a state-of-the-art industrial placer, in terms of
their ability to satisfy both timing and Quasi-Delay-Insensitive (QDI) constraints. This type
of constraints enforce delay insensitivity for the asynchronous design, i.e. the circuit should
work correctly with arbitrary delays on the wires except for isochronic forks. Isochronic forks
refer to the case where a gate has more than one fanouts. In this case, the wires connecting the
gate to all its fanouts must have similar delay, forming an isochronic fork. The satisfaction of
isochronic forks is key to CPlace. CPlace creates specific wire bounds which enforce that the
lengths of each leg in each isochronic fork will be similar after placement. This property enables
CPlace to offer superior results compared to its industrial counterpart, which cannot effectively
bound the absolute difference in delay for each leg of each isochronic fork. The framework used
for determining the degree of QDI satisfaction for both placers is shown in Figure 7.8.

Absolute and relative constraints are derived by TSE asynchronous timing analysis. The in-
dustrial placer can handle absolute constraints using maximum delay bounds (set_max_delay,
set_min_delay or create_clock Synopsys Design Constraints (SDC) constraints appropri-
ately). As it does not support relative constraints, each relative constraint is converted into a
minimum and maximum delay bound (set_max_delay, set_min_delay SDC constraints), in
order to force the industrial tool to match the delay of each leg in an isochronic fork, within
a given margin. We define this margin as the delay of a drive 1 (D1) inverter for the target
library. Thus, if the difference in the delays of the legs in each isochronic fork is not greater
than that margin, we assume that QDI is satisfied.

CPlace, handles both the relative and the absolute constraints as wire bounds, which stem
from the solution of the LP problem. After constraints have been setup for each placer, we run
the tools and produce the placements. Then, a point-to-point STA using a golden sign-off STA
engine is performed validating both absolute and relative constraints. Finally, we report the
number of constraints that are violated by each placement.

Table 7.13 summarizes placement results for the asynchronous benchmarks.

7.5 CPlace Results 141

Circuit Area Cplace Indust. Cplace Indust. Relative Pre-pl Period Slack Slack HPWL HPWL
(um)2 viol viol viol viol bounds TSE bound Indust. CPlace Indust. CPlace

period
(ns) (ns) (ns) (ns) (um) (um)

25ps const 0.025ps const
c3dec2 42 0 0 3 8 11 0.27 0.41 0.05 0.04 1.23×1005 1.31×1005

ccc 16 0 0 0 1 7 0.16 0.24 0.05 0.04 5.78×1004 6.02×1004

chu133 16 0 0 0 0 6 0.16 0.24 0.05 0.06 5.78×1004 5.69×1005

chu150 25 0 0 0 0 2 0.20 0.30 0.05 0.05 7.44×1004 7.72×1004

converta 47 0 0 3 4 10 0.20 0.30 0.04 0.03 2.17×1005 2.29×1005

half 38 0 0 1 2 5 0.24 0.36 0.04 0.05 1.16×1005 1.13×1005

mmu 85 0 0 5 7 24 0.73 1.1 0.12 0.07 3.02×1005 2.99×1005

mp
for-
ward
pkt

42 0 0 0 0 5 0.10 0.15 0.03 0.03 1.25×1005 1.32×1005

nak pa 52 0 0 1 3 7 0.17 0.26 0.01 0.02 2.05×1005 1.99×1005

nowick 20 0 0 1 2 4 0.03 0.04 0.00 0.00 7.74×1004 7.86×1004

rcv
setup

20 0 0 0 0 2 0.08 0.12 0.02 0.02 6.62×1004 6.71×1005

rpdft 41 0 0 1 3 4 0.06 0.10 0.03 0.03 1.47×1005 1.43×1005

sbuf
read_ctl

30 0 0 0 1 6 0.08 0.12 0.03 0.03 9.44×1004 9.38×1004

sbuf
send_ctl

61 0 0 1 3 8 0.16 0.24 0.04 0.05 2.05×1005 2.19×1005

seq
mix

73 0 0 0 3 10 0.32 0.47 0.04 0.02 2.9×1005 2.87×1005

trimos
send

132 0 0 4 11 27 0.32 0.47 0.03 0.02 4.37×1005 4.62×1005

var1 36 0 0 3 4 12 0.17 0.26 0.03 0.03 1.11×1005 1.19×1005

vbe10b 136 0 0 5 18 40 0.41 0.62 0.03 0.01 4.88×1005 4.91×1005

vbe5b 36 0 0 0 2 7 0.14 0.21 0.04 0.04 1.29×1005 1.37×1005

vbe5c 28 0 0 1 1 4 0.13 0.20 0.03 0.04 1.02×1005 1.11×1005

vbe6a 148 0 0 4 16 29 0.31 0.46 0.03 0.01 4.53×1005 4.56×1005

wrdatab 100 0 0 5 9 34 0.62 0.93 0.15 0.09 4.13×1005 4.12×1005

xyz 32 0 0 0 2 7 0.17 0.26 0.03 0.03 1.03×1005 1.05×1005

seq
mix
10000

34944 0 0 23 151 843 7.18 10.77 1.43 0.74 3.9×1006 4.17×1006

half
10000

39321 239 1038 382 4741 18549 217 326 41 7 4.2×1006 4.61×1006

mmu
10000

43417 102 4715 2302 12237 25084 402 603 54 19 4.3×1006 4.58×1006

ccc
15000

33587 129 4272 4418 17835 32251 458 687 32 4 1.90×1008 2.06×1008

converta
64000

193331 1089 18549 39043 65062 126967 1017 1523 234 132 7.55×1008 7.94×1008

dlx
desync

52276 957 8453 2488 16768 33981 4.39 6.59 0.34 0.12 1.07×1007 1.19×1007

Table 7.13: Comparison of relative constraints violations for CPlace and the industrial placer

We used a set of small asynchronous benchmarks, derived from their respective STGs and
mapped with Petrify[18] into a 65nm library. The results for the initial set of benchmarks
are shown in the upper part of the table. Due to the very small area size of all benchmarks,

142 Results

Placement
CPlace

GRAPH

NETLIST

Isochronic
Forks

Absolute
Constraints

Constraints
Relative

Industrial
Flow

Max_Delay
Constraints

Industrial
Flow

Max_Delay

Constraints
Min_Delay

LP
ProblemFlow

CPlace

Industrial
Placement

Analysis
Timing

P2P

Industrial
Relative

Violations

Violations
Relative
CPlace

Cycles
Critical

TSE

PROCESS

Figure 7.8: Experimental flow

the bound for isochronic forks is easily met by both the industrial placer and CPlace. This
is expected, as the delay of a fast inverter, is much greater than the delay of any wire in a
reasonably optimized placement of such size. However, if we set a much tighter bound on
isochronic forks, we observe that for almost all benchmarks, CPlace results in fewer relative
constraints violations than the industrial placer. Although the constraints are unrealistic at
this point, this result shows the potential of CPlace. The absolute constraints are easily met
for all small circuits, which is expected, as the placer can use short wires for all connections.
Although the industrial placer results in higher remaining slack for almost all circuits, both the
industrial placer and CPlace can meet the absolute constraints without much difficulty. CPlace
uses a part of remaining slack to fix the relative constraints, which is the reason for CPlace’s
remaining slack to be smaller than that of the industrial placer, while the number of relative
constraints violations of CPlace’s is smaller for almost all circuits compared to the industrial
placer’s violations.

In order to have a more realistic set of benchmarks, we selected a number of the small
circuits and created larger ones, by instantiating multiple times the smaller circuit. Thus,
we created circuits with about 10,000 cells, like half_10000 which is created from the small
circuit half (a half handshake) by connecting it in a pipeline multiple times. We also created

7.5 CPlace Results 143

a larger circuit, of about 64,000 cells converta_64000, which is multiple instances of a two-to-
four handshake converter. The replicas are created by placing multiple times the originating
instance side-by-side, i.e. by connecting the outputs of the previous stage to the inputs of the
next stage. The results for the larger circuits are shown in the middle section of Table 7.13.
This set of results clearly shows that even for the realistic constraint of an inverter’s delay,
CPlace yields much fewer relative constraint violations than the industrial placer. This proves
the ability of CPlace to handle both absolute and relative constraints, thus maintaining the
delay insensitive properties of our circuits, while at the same time, meeting the performance
constraints.

The final benchmark, shown in the bottom section of Table 7.13 shows a circuit which has
been created using the “desynchronization” approach [19]. This circuit is a real design with
reasonably large size. The results show that even for this circuit, CPlace does better than the
industrial placer in conserving the relative constraints.

The results of Table 7.12 and 7.13 show that (i) CPlace can effectively handle the syn-
chronous circuits used in this set of experiments, yielding about the same delay as the industrial
placer, (ii) CPlace’s HPWL results indicate a total wirelength comparable to Capo, even though
CPlace focuses secondarily on wirelength and (iii) the synchronous placers cannot effectively
handle relative constraints necessary for QDI implementations, which highlights the advantage
of CPlace in that respect.

7.5.3 CPlace Runtime

Table 7.14 shows the runtime breakdown for CPlace and compares against Capo and the in-
dustrial placer. The fastest placer is the industrial, which however, does not support relative
constraints for satisfying QDI constraints. Capo only optimizes for HPWL, so it performs
poorly compared to CPlace and the industrial placer in terms of handling asynchronous cir-
cuits. The industrial placer is faster than CPlace, but as shown earlier, this comes at the cost
of failing to satisfy all QDI constraints. CPlace’s runtime profile is dominated by the execution
time spent for the LP slack assignment step, i.e. the LP solver, and the execution time of the
timing analysis engine.

144 Results

Runtime(seconds)
Industrial Capo CPlace

Circuit Total TSE Constraints LP Constructive
c3dec2 1 1 4 1 1 1 1

ccc 1 1 4 1 1 1 1
chu133 1 1 4 1 1 1 1
chu150 1 1 4 1 1 1 1

converta 1 1 4 1 1 1 1
half 1 1 4 1 1 1 1

mmu 1 1 4 1 1 1 1
mp_forward_pkt 1 1 4 1 1 1 1

nak_pa 1 1 4 1 1 1 1
nowick 1 1 4 1 1 1 1

rcv_setup 1 1 4 1 1 1 1
rpdft 1 1 4 1 1 1 1

sbuf_read_ctl 1 1 4 1 1 1 1
sbuf_send_ctl 1 1 4 1 1 1 1

seq_mix 1 1 4 1 1 1 1
trimos_send 1 1 4 1 1 1 1

var1 1 1 4 1 1 1 1
vbe10b 1 1 4 1 1 1 1
vbe5b 1 1 4 1 1 1 1
vbe6a 1 1 4 1 1 1 1

wrdatab 1 1 4 1 1 1 1
xyz 1 1 4 1 1 1 1

seq_mix_multi 1 1 4 1 1 1 1
sm_10000 47 731 1649 107 17 1513 12
half_10000 42 649 1409 115 19 1263 12

mmu_10000 46 705 1557 116 17 1410 14
ccc_10000 45 920 2041 108 17 1902 14

converta_64000 110 7411 19461 839 76 18437 109
dlx_desync 18 1043 2449 49 9 2383 8

Table 7.14: CPlace runtime breakdown

Chapter 8

Conclusions

As technology continues to shrink, new challenges emerge forcing contemporary EDA tools to
their limits. It is becoming apparent that EDA flows need to adapt to new characteristics of
technologies in deep-submicron or to develop entirely new approaches.

One of the main challenges for contemporary EDA tools is the increasing importance of
process and operating variations, affecting the speed and power characteristics of individual
circuit elements, leading to uncertainty in timing and power performance of the whole circuit.
According to the ITRS, designers are likely to adopt two parallel but different approaches.
The first is statistical analysis of timing and power and the second is design solutions like
the adaptation of speed-independent circuits, most commonly known as asynchronous circuits.
This, coupled with the fact that integration will continue to scale will highlight the need for
EDA tools fitted for the new challenges. However, still to date, there is lack of EDA tools that
can optimize statistically or are ready to be used for speed independent circuits.

This thesis has identified the aforementioned challenges and has proposed efficient solutions
through the research and development of appropriate EDA tools and flows.

We have addressed the challenge of the emergence of statistical methods by developing our
own statistical timing analysis engine and statistical leakage estimation tool. Both are ready
to incorporate statistical models, but can also derive statistical distributions by fitting the val-
ues from contemporary corner libraries. We have developed a placement tool, called SCPlace,
described in Chapter 4 which can perform placement using SSTA in its inner loop for opti-
mization. SCPlace utilizes novel wire bounds, which aim at propagating delay distributions
with bounded mean and standard deviation. For this purpose, we have developed two novel

146 Conclusions

statistical slack assignment algorithms. The first, called MSSA (c.f. Section 3.3) can find a
slack allocation that propagates the delay distribution with the minimum sigma to the circuit’s
outputs. The second, called TSZSA (c.f. Section 3.4) can propagate appropriate delay distri-
butions that meet targets on both mean and standard deviation at all internal points of the
circuits, including the endpoints. We show that SCPlace achieves superior results compared to
a state-of-the-art academic placer and a state-of-the-art industrial placer, with respect to sta-
tistical timing optimization. We have tackled the problem of the ever increasing importance of
leakage power by developing a novel optimization flow which can statistically optimize for leak-
age. By performing statistical timing and leakage optimization simultaneously, we show that
our flow compares favourably to a state-of-the-art industrial leakage optimization flow. Addi-
tionally, our flow can trade-off statistical timing for leakage at the designer’s discretion. For
the design-oriented solution of speed-independent circuits, we have developed the first placer
which can efficiently handle asynchronous circuits. CPlace, described in Chapter 6, is the first
placer which can place asynchronous circuits in a manner which is performance-efficient and
also guarantees the critical assumptions necessary for the circuit’s speed independence.

8.1 Future Work
Research efforts for this thesis have uncovered a number of issues that are likely to become
important in future EDA technologies and can be addressed as extensions of this thesis.

The first issue is uncertainty in delay of wires. Although wires are less prone to variability
due to the different and less complex fabrication procedure that is employed in industry, their
delay characteristics are starting to exhibit fluctuations. Thus, statistical methods are likely
to be used for the characterization of wire delay in a similar way as is the case for gates.
Our statistical slack assignment algorithms can be extended in order to encapsulate statistical
analysis of wire delay in order for more robust calculation of the optimal slack allocation.

The second issue is that, as leakage current is becoming increasingly important, the variance
of its statistical estimation will become more interesting, as currently is the case for statistical
delay. Our leakage reduction flow currently focuses on optimizing for the expected value of
leakage, rather than its variance. As an extension, a slack allocation which targets variance
optimization of leakage can improve the statistical gains on leakage.

The third issue is due to the emergence of asynchronous circuits as an important fraction
of contemporary digital designs. Currently, asynchronous circuits account mainly for control

8.1 Future Work 147

circuits, which are significantly smaller than datapath circuits. With this in mind, our CPlace
tool has not been coupled with a hierarchical approach which could enhance its scalability. We
have shown that CPlace can efficiently handle circuits of several tenths of thousands of cells,
but with the incorporation of a hierarchical approach, this number could scale to a few millions
of standard cells.

148 Conclusions

Appendix A

Synchronous and Asynchronous
Timing Models

In this section we describe the models employed and the assumptions commonly used by timing
analysis engines regarding the timing behaviour of a circuit and the elements it consists of. We
distinguish among static timing analysis, asynchronous timing analysis and statistical timing
analysis models.

A.1 Static Timing Analysis Models

Any static timing analysis engine requires at least one timing characterization of all elements
that appear in the circuit. Additional characterizations may be present if the elements exhibit
different timing behaviour with respect to fluctuations in their fabrication or operating con-
ditions. One characterization must be present for at least the gates consisting of the circuit.
Additionally, characterization of wire delays can enhance the accuracy of timing analysis. In the
absence of detailed characterization of wire delays, an approximation model, called wire-delay
model is required. This approach is widely adopted both in industry and academia, especially
before routing has been completed and thus, the actual wire characteristics are unknown.

Characterization of gates typically consists of lookup-tables, which outline the basic notions
related to timing. These are rise and fall transition delays, which correspond to the time
required for any output of a gate to rise or fall caused by a rise or fall from any input of
the same gate. As shown in Figure A.1 slower rise (or fall) times for the input, or larger

150 Synchronous and Asynchronous Timing Models

driving capacitance for the output slows the rise (or fall) transition of the output. Different
values are given for different scenaria describing possible values for the input’s transition time
and the output’s driving capacitance. These values are given in table format and must be
looked up while timing analysis is performed, as the transition delay of an output is depends
proportionally to the transition delay of an input and its driving capacitance.

C

Input
Rise Rise

Output

C

Input
Rise Rise

Output Input
Rise Rise

Output

C
Figure A.1: Rise (fall) transition depending on input rise (fall) transition and output driving capacitance

In contemporary designs, fluctuations are expected both during the manufacturing process
and the operating conditions of the chip. These alter the nominal, “typical” characteristics of
any element in the circuit. Thus, different characterizations are provided for a number of process
and operating scenaria. These are called “corners”. Each corner describes the timing behaviour
of all circuit elements using the aforementioned lookup tables. Timing analysis performed on
more than one corners is called multi-corner analysis.

Timing analysis of a single element consists of calculating three key metrics, which are
expressed as real numbers. These are the arrival time, the required time and the slack. Arrival
time is the time at which the value at a single point is stabilized. In case of a gate input, it is
the time the input has a steady value, as defined by its driver. In the case of a gate output, it
is the time at which the gate has evaluated its value based on the values at the gate’s inputs.
Required time refers to the time the values should be stabilized at any point in the circuit.
Required times are typically inferred by timing constraints. Slack is the difference of required
time minus arrival time. STA uses these metrics to evaluate the delay and the slack of the
circuit.

The circuit is modeled as a directed acyclic graph (DAG), where all the inputs and outputs
of the circuit and of all gates are the nodes of the graph and the wires are the edges. As STA is
typically applied to synchronous circuits, the transformation of the circuit to its corresponding
DAG is straightforward, as a synchronous circuit does not contain any cycles. The delay of the
circuit is modeled after the circuit’s “critical path”. This is essentially the longest path of the

A.2 Statistical Timing Analysis Models 151

circuit’s DAG. The arrival and required times of the last node in the critical path, as well as
its slack define the values of these metrics for the whole circuit.

Next, we discuss the extension of static timing analysis models into statistical timing analysis
models.

A.2 Statistical Timing Analysis Models
Statistical timing analysis is an extension of static timing analysis, the difference being that
the values stored at each node are not real numbers, but random distributions. This eliminates
the need for multi-corner analysis, as information of all corners is encapsulated into the random
distribution of each circuit element’s delay. However, all the other notions of STA are applicable
to SSTA.

Rise and fall transitions are similarly calculated in SSTA with the use of lookup-tables. Each
entry of the lookup-table is a random distribution referring to the expected transition time for
the output of a gate, given the delay distribution corresponding to the transition time of one of
its inputs and the output’s driving capacitance. The difference from STA is that the inferred
transition time is a random distribution. There are two ways to infer the statistical delay of a
gate. The first, is to assume a specific statistical distribution for the delay and then to fit the
values from a number of given technology library corners into the assumed distribution. The
second, is to use a technology library which already provides delays statistically. There has been
a recent advance towards this direction by the industry in the form of Effective Current Source
Model (ECSM) [20]. This is an open model, aspiring to be the industry standard for statistical
characterization of technology gates. However, this model has not yet been developed fully, so
this option is yet to be available for statistical timing engines.

Arrival, required times and slack can also be calculated for each gate. They too, are random
distributions. Slack is the difference of required time minus arrival time. Since SSTA uses
random distributions, this calculation may not be straightforward and depends on the exact
distributions used. In the next sections we will show the typical distributions used and how
this calculation is done.

Critical path is also defined in SSTA as the longest path in the circuit’s timing DAG.
The delay of the circuit refers to the delay of the path, which is now expressed as a random
distribution. This allows for the introduction of a new metric for the timing performance
of the circuit, which is the statistical timing yield. Given a delay constraint and a delay

152 Synchronous and Asynchronous Timing Models

distribution, the timing yield is the probability that the statistical delay meets the constraint.
The calculations required for deriving timing yield depend again on the exact distributions
used.

Additionally, SSTA employs variation models from which the exact expressions for the delay
distributions are derived. Also, since statistical functions require a correlation value between
their statistical operands, correlation models are also used in SSTA. In the next section we
review the state-of-the-art variation and correlation models.

A.3 Variation and Correlation Models
Early works have proposed ways to handle variation, be it either inter-die or intra-die [13,
80, 61]. However, these approaches require a-priori knowledge of a variation model [3, 84],
which has been extracted from real data from fabricated chips. This approach is not always
practical in EDA, especially for companies or research groups which do not have access to a
fabrication facility. Experimental data measurement on the other hand, can have accuracy
limitations which may directly impact the accuracy of variation model. For this reason, there
have been works which try to approximate the characteristics of variation without relying on
physical data. Next, we describe some of these methods, each of them focusing on different
characteristics of variation.

Xiong et.al [82] describe a variation model using probability density functions (pdf). Vari-
ation is described as a random variable F , which has three components; a chip component Y ,
a wafer component X and a random component Z. It holds:

F = f0 +X + Y + Z, (A.1)

where f0 is variation’s mean. Variation components X and Y are independent. Each chip
in the same wafer is assumed to experience the same amount of X variation. Since variation is
a random variable, it has variance σ2

F , for which it holds:

σ2
F = σ2

X + σ2
Y + σ2

Z , (A.2)

where σ2
X , σ2

Y and σ2
Z are the variance coefficients of variation of wafer, chip and random

components respectively. The covariance of two physical locations is also defined. If i and j

are two locations with variation Fi and Fj respectively, then the covariance is equal to:

A.3 Variation and Correlation Models 153

cov(Fi, Fj) = cov(X + Yi + Z,X + Yj + Z)

= cov(X,X) + cov(Yi, Yj)

= σ2
X + ρ(u)σ2

Y ,

where ρ(u) is the correlation between locations i and j. Correlation between two locations
is given by:

ρu =
cov(Fi, Fj)

σFi
σFj

=
σ2
X + ρ(u)σ2

Y

σ2
X + σ2

Y + σ2
Z

(A.3)

Using the equations described above, authors in [82] propose functions which describe the
spatial correlation of neighbouring devices and wires.

Orshansky et.al in [63], propose that the gate length variation Lintra within the same chip
consists of three components, a proximity component Lprox, a spatial component Lspat and
a random component Lrand. The proximity component is dependent on the circuit and can
be approximated experimentally. The spatial component encapsulates the spatial correlation
between gates and can be described with a random variable. The random component can also
be described as a random variable. That means that Lspat ∼ N(0, σ2

spat) and Lrand ∼ N(0, σ2).
Thus, both spatial correlation and random variation can be expressed by a pdf with zero mean
and σ variance. The authors then express analytically the gate length at each location on the
layout using the aforementioned pdfs.

Friedberg et.al in [24], use experimental data to extract a mathematical model for the
correlation of variation between two locations on the layout. Given the distance x between the
two locations, a base correlation ρB and a base correlation length XL, the correlation between
the two locations is given by:

ρ =

1− x
XL

(1− ρB), x ≤ XL

ρB, x ≥ XL

(A.4)

This means that if the distance between the two locations is more than XL, then there
is no significant correlation between them. In this case, the correlation is given by the base
correlation ρB. Variable XL denotes the within-die variation. Authors in [24] claim that a
normal value for this variable is half the chip length. If the distance between the two locations
is less than XL, then the correlation is almost 1. Correlation then is decreasing linearly with
the distance. Variable ρB is proportional to the factor of within-wafer variation by within-

154 Synchronous and Asynchronous Timing Models

die variation. Overall, this work assumes a linear model of variation which manifests itself
geometrically in the chip. Compared to the previous works, Friedberg et.al also assume that
gates in close proximity are affected by variation in similar ways.

Xiong et. al in [81] adopt a probability-based approach to compute the arrival time and
the input capacitance for gates. According to the authors, the resistance of each wire equals
r × li, where r is the unit resistance and li is the wire length. Similarly, capacitance is given
by c × li, where c is the unit capacitance. The basic idea in [81] is to add buffers in the clock
tree. Thus, the variables under consideration are Lt (buffer input capacitance) and Tt (buffer
required arrival time). Through transformation of random variables, described in [31], the joint
pdf of the two random variables under consideration is given by:

fLt,Tt =

∫
ΩX,Y (Lt,Tt)

fX,Y,Lt,TtdXdY, (A.5)

whereX, Y are the random variables describing the values that c and r can take. ΩX,Y (Lt, Tt)

is the definition field of X, Y with respect to Lt and Tt.

An analysis of the covariance among the paths’ delays is described by Orshansky et. al
in [62]. The delay of each path is described by a random variable which follows the normal
distribution. Since the delays of paths are not independent to each other, mainly because they
may share common gates, the authors define joint probability density functions for the delays
among paths. The correlation among the random variables is also defined. Finally, the authors
propose a formula for the covariance of two random paths’ delays, which is given by:

cov{Di, Dj} =

mi∑
ki=1

mj∑
kj=1

cov{dg(i, ki), dg(j, kj)}, (A.6)

if path i has mi gates and path j has mj gates. In order to compute cov{dg(i, ki), dg(j, kj)}
a Taylor expansion is required as described in [62]. In short, the covariance of delay between
two gates depends on their relative location and the variation sources within-die.

A method which is applicable to the order of paths’ delays under the presence of variations is
described by Jess et. al in [36]. The authors describe a method which calculates the probability
that the delay of a path is greater than the delay of another path. The assumption for the path
delay is that it follows a normal distribution. Next, for a given pair of paths, whose delays have
variance of σ1 and σ2 respectively and correlation ρ, their correlation matrix is given by:

A.3 Variation and Correlation Models 155

Φ =

[
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

]
.

If s1 and s2 is the slack for the two paths respectively, AT
i is the i-th line of A, z are the

sources of variation and V is the correlation matrix η × η between the sources of variation, we
can find σ1, σ2 and ρ from the equations:

Φ = cov(ATV) =

[
(∂s1
∂z

)T

(∂s2
∂z

)T

]
[V]

[
∂s1
∂z

∂s2
∂z

]
=

[
AT

1

AT
2

]
[V][A1 A2]. (A.7)

The probability that path 1 has delay greater than path 2 is: b1 =
∫∞
η=−∞ p1p4, while the

probability that path 2 has delay greater than path 1 is b2 = 1 − b1 =
∫∞
η=−∞ p2p3, where η is

the slack between the two paths and p1, p2, p3, p4 are given by:

p1 = p(s1 = η) =
1√
2π

1

σ1

e
− 1

2

(
η−µ1
σ1

)2
(A.8)

p2 = p(s2 = η) =
1√
2π

1

σ2

e
− 1

2

(
η−µ2
σ2

)2
(A.9)

p3 = p(s1 ≤ η|p2) = 0.5 +
1

2
erf

(

η−µ1√
2σ1

)
−

(
η−µ2√
2σ2

)
ρ√

1− ρ2

 (A.10)

p4 = p(s2 ≤ η|p1) = 0.5 +
1

2
erf

(

η−µ2√
2σ2

)
−

(
η−µ1√
2σ1

)
ρ√

1− ρ2

 , (A.11)

where p1 is the probability that path 1 has slack of exactly η, p2 is the probability that path
2 has slack of exactly η, p3 is the conditional probability that path 1 has slack smaller than η

provided that path 2 has slack of η and p4 is the conditional probability that path 2 has slack
smaller than η provided that path 1 has slack of η. Calculating the probabilities for all pairs
of consecutive paths, as defined by static timing analysis without variation, one can calculate
the probability that the relative order of paths will change after the application of variation.

Amin et. al in [5] analyze the way the delay of gate depends on the variation sources. They
claim that the main sources of variation affecting gate delay are variations on gate length and
threshold voltage. The analysis begins with the relation between the amount of variation with
channel length:

156 Synchronous and Asynchronous Timing Models

le = lenom + les + ler, (A.12)

where le is the actual channel length, lenom is the nominal channel length, les is the fluc-
tuation due to systematic variation and ler is the fluctuation due to random variation. For
threshold voltage it holds:

vt = vtnom + vtr, (A.13)

where vtr is the fluctuation due to random variation. The authors introduce the notion of
correlation due to proximity, which for two gates i and j is given by:

ρij = ρ(dij), (A.14)

where dij is the distance of two gates i and j. The correlation ρ can take any value between
0 and 1 and is inversely proportional to the distance. All variables les, ler and vtr are random
variables following the normal distribution. Thus, their variances are given by σ2

les
, σ2

ler
and

σ2
vtr respectively. The variance of a gate’s delay is then given by:

σ2
delay = σ2

delay,les + σ2
delay,ler + σ2

delay,vtr , (A.15)

where σ2
delay,les

, σ2
delay,ler

and σ2
delay,vtr

is the correspondence of variations les, ler and vtr to
delay variations. Based on [69], this correspondence is given by:

σ2
delay,les

= f1(σles , tt, CL)

σ2
delay,ler

= f2(σler , tt, CL)

σ2
delay,vtr

= f3(σvtr , tt, CL),

(A.16)

where tt is the input slope of delay and CL is the output capacitance. Based on the expression
for a gate’s delay and having defined the spatial correlation, the authors then proceed with a
statistical static timing analysis framework.

The authors in [3] divide the physical layout into segments in order to approximate the
correlation between gates. The layout is divided in the following way. First, the whole layout
consists of a single segment. This segment is level-0 segment. Next, the layout is quadrisected
into four equal segments. The new segments are level-1 segments. Next, each level-1 segment
is further quadrisected to form four new level-2 segments. In total, there will be sixteen level-

A.3 Variation and Correlation Models 157

2 segments. The quadrisection process continues until each segment is small enough. The
threshold at which quadrisection stops depends on the mapping technology used for the gates.
Figure A.2 shows an example with level-0, level-1 and level-2 segments.

1.1

2,1
2,2

2,5
2,6 2,8

2,7
2,4

2,3 2,9
2,10

2,13
2,14 2,16

2,15
2,12

2,11

1.3

1.2 1,4

0,1

Figure A.2: Physical layout quadrisection

Each segment is labeled (l, r), where l denotes the level of the segment and r is a unique
identifier for each segment belonging to the same level. For r, it holds that r ∈ [1, 2l+1 − 1].
Each gate in segment (l, r) experiences variation which is given by the sum ∆L(k, r), where

158 Synchronous and Asynchronous Timing Models

0 ≤ k ≤ l and r is each segment from level-0 to level-l that the gate belongs to. For example,
a gate belonging to segment (2,9), experiences variation which is given by:

∆1 = ∆(2, 9) + ∆(1, 3) + ∆(0.1). (A.17)

This computation is used for the calculation of correlation between a gate pair. If, for
example, a gate belongs to segment (2,10) and another gate belongs to gate (2,5), then it holds:

∆2 = ∆(2, 10) + ∆(1, 3) + ∆(0, 1) (A.18)

∆3 = ∆(2, 5) + ∆(1, 2) + ∆(0, 1) (A.19)

Thus, gates belonging to segments (2,10) and (2,9) are strongly correlated, as they experi-
ence similar variation. This is shown by the right-hand part of equations (∆(1, 3) and ∆(0, 1)).
On the other hand, gates belonging to segments (2,9) and (2,5) are not so strongly correlated,
since their correlation functions share only one common term (∆(0, 1)).

Appendix B

Placement Approaches

B.1 Simulated Annealing

Simulated annealing-based optimization stems from the idea of metal annealing [45]. During
annealing, a metal is melted and then it is cooled progressively until it reaches a structure which
is close to a perfect crystal. The quality of the end result depends on the cooling progress which
affects the way the metal’s molecules move towards their final locations. Algorithms based on
this idea are called simulated annealing algorithms. One of the key characteristic of such
algorithms is that they allow “bad” moves which help them escape local minima. Typical
simulated annealing algorithms use a variable called “temperature” which controls the cooling
process.

In simulated annealing placement algorithms, metal’s molecules correspond to standard
cells of the circuit. These algorithms start from an initial placement which is thought to have
been “melted”. Then it is progressively cooled towards the final placement. During cooling,
standard cells are allowed to move on the layout area. The freedom cells have with respect to
their movement depends on the temperature. The lower the temperature, the harder it is for a
cell to move, especially if this move does not improve the overall quality of placement.

The inner loop of a placement algorithm using simulated annealing can be divided into two
phases. In the first phase, some cells are selected to move. The selection can be made according
to a heuristic which depends on the actual implementation of the algorithm. Typically, the
“worst” cells will be selected, which in the case of simple wirelenegth minimization, will be
the cells causing the longest wires. The selected cells are moved to new locations which can

160 Placement Approaches

be random or stochastically better than the current location of cells. The second phase of the
algorithm’s loop consists of the evaluation of the new placement. The cells that have moved
can have either optimized the overall quality of placement or have deteriorated it. In the first
case the move is considered good and it is accepted. In the second case, the move may be
rejected and the cells returned to their previous location. The rejection decision depends on
the temperature and the amount of deterioration. If the temperature is high enough, then
even very bad moves may be accepted to help the algorithm escape local minima. After the
evaluation step the new placement forms the current solution which the algorithm will try
to optimize in the same way in the next iteration. The most successful implementation of
simulated annealing algorithm is the Timberwolf placer [74].

The challenges for a simulated annealing algorithm is to find the best initial temperature
and the best cooling process. These depend on the structure of the circuit in total analogy
with physical annealing, where temperature and cooling depends on the metal itself. Moreover,
the granularity at which cells will be selected depends on the circuit size. Finally, simulated
annealing algorithms are known to be able to find global minima but at a high runtime cost.

B.2 Genetic
Genetic algorithms form another category of stochastic algorithms. Genetic algorithms like
the ones proposed in [17, 71] are based on the idea of simulating the evolution process which
can be observed on living species. In environments like this, the “law of the fittest” is applied
which tends to favour the characteristics of the fittest organisms over the centuries. This leads
to the creation of new, even fitter organisms. In analogy to placement, the evolution process
is simulated in order for the characteristics of the best placements to be preserved and slowly
evolve to the best placement.

In a typical genetic algorithm for placement, the “individual” is defined as one full placement.
For each individual, there is a metric called “health” which defines the quality of placement.
Health can be measured in a way similar to any other placement algorithm and can be e.g
the total wirelength required. At all times, a number of full placements (or individuals) is
maintained which form the total “population”. A “mating” is the process of combining two
individuals in order to create a new individual. A “mutation” is a change randomly made to
the characteristics of one individual.

A genetic algorithm for placement starts from an initial population which corresponds to a

B.3 Min-Cut 161

number of different initial placements. New placements are created by combining the existing
placements and are added to the population. The less fit placements, or in other words the
placements which rank lowest with respect to the objective function, are discarded to keep
the size of population constant. The new population forms the new generation which will
be optimized in the next iteration. In order to escape local minima, a number of mutated
individuals is created and inserted into the population. The optimization process ends after
the objective function has been met, or after a predefined number of iterations.

Challenges for genetic placement algorithms are the size of population, the number of mu-
tations and the way individuals are combined to form new placements. Especially for the
mating process, a sophisticated stochastic heuristic is required to identify the pairs that are
most likely to produce better placements. The iterative nature of genetic algorithms also incurs
long runtime costs.

B.3 Min-Cut
The first two min-cut algorithms, Kernighan-Lin [43] and Fiduccia-Mattheyses [23] were based
on recursive bisection. The cut cost was defined as the number of nets spanning between the
two segments which were created after bisection. The first, tries to minimize the cut cost by
swapping cells between the two segments and the second, uses simple moves from one segment
to the other. Typically, bisection algorithms work recursively until the segments are small
enough so that the problem can be solved through exhaustive search of the solution space.

Today, most placement algorithms employ a bisection phase to enable them to handle
circuits with a very large number of instances. Most notably, placers like Dragon [75, 76],
Capo [66] and Feng-Sui [44] base some stage of their optimization process on recursive bisection.
Other placers like PROUD [77], Gordian [46], BonnPlace [8] and hATP [57] employ quadratic
partitioning in their main optimization loop. The success of the aforementioned placers stems
from the fact the bisection processes, enhanced with the idea of multilevel bisection [40], boost
the scalability of these algorithms.

Algorithms which use a bisection phase must tackle a number of problems stemming from
bisection itself. The quality of a bisection algorithm depends on the number of bisections allowed
and the relative size of segments. The direction of cuts is also very important and depends on
the structure of the circuit [4]. The cut direction affects the aspect ratio of segments which may
play a critical role in the placement process. Another known problem is the efficient application

162 Placement Approaches

of terminal propagation [37]. The idea of terminal propagation is to control the distance between
gates belonging to different segments. Due to recursive bisection, these gates may become too
far apart, negatively impacting the cost function. Another problem with bisection approaches
is that they are not correct-by-construction, i.e. they do not place the cells on legal locations.
This forces these algorithms to employ a detailed legalization placement procedure which, in the
general case, is not a straightforward problem to solve under the presence of tight constraints.
Finally, bisection algorithms ignore any white (or free) space available on the layout, so a step
which optimizes the placement by efficiently utilizing the white space may also be necessary.

B.4 Analytical
Non-linear placers employ a non-linear cost function like one of log-sum-exp type [58]. Due to
the high computational load required by non-linear optimization, approaches of this type also
employ a partitioning approach. Successful representatives of this category are APlace [38],
mPL [22] and NTUPlace [21].

Quadratic placers on the other hand, employ a quadratic cost function. As mentioned
earlier, successful quadratic placers which use partitioning are PROUD [77], Gordian [46],
BonnPlace [8] and hATP [57]. A type of quadratic placers are force-directed placers. Force-
directed placers model the interconnect as forces which try to place the cells as close as possible.
They also employ spreading forces which prevent the placement from being over-congested.
Force-directed placers start from an initial placement and calculate the forces exerted on each
standard cell. These forces stem from the cells each standard cell is connected to and try
to force the standard cell to move towards its connections. At each step, each cell will try
to move towards a location which is represented by the vector sum of all the forces placed
on the cell. Optimization continues as long as there are cells which have not reached their
equilibrium location, or when any move results in a worse placement with respect to the cost
function. Force-directed placers are known to produce excellent results, but care must be taken
for runtime, as the computational load on the calculation of the quadratic cost function may
be high. Successful placers of this kind are FastPlace [78], mFAR [32] and KraftWerk [73].

Appendix C

Statistical Distributions

C.1 Normal Distribution
Normal distribution is a probability distribution which describes phenomena that exhibit ran-
dom behaviour around a mean value. Its probability density function is:

fX =
1√
2πσ2

e−
(x−µ)2

2σ2 (C.1)

where µ is the mean and σ is the standard deviation. These are the two values necessary for
describing any normal distribution.

It is often referred to as the “bell” distribution due to the characteristic shape in a probability-
value plot. The normal distribution is also known as the “Gaussian” distribution. A typical
plot of the probability density function (pdf) for a normal distribution is shown in Figure C.1a.

Its cumulative density function (cdf) is given by:

1

2

[
1 + erf

(
x− µ√
2σ2

)]
(C.2)

A typical graph of a normal distribution’s cdf is shown in Figure C.1b.

164 Statistical Distributions

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) Normal Distribution pdf

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Normal Distribution cdf

Figure C.1: Normal Distribution pdf and cdf

C.2 Log-Normal Distribution
A Log-normal is associated with a random variable, whose logarithm is normally distributed.
Like the normal distribution, a log-normal distribution can be described with its mean µ and
its standard deviation σ. Its probability density function is given by:

fX =
1

xσ
√
2π

e−
(lnx−µ)2

2σ2 (C.3)

and its cumulative density function is given by:

FX =
1

2
erf

[
− lnx− µ

σ
√
2

]
(C.4)

Typical plots of a log-normal distribution’s pdf and cdf are shown in Figures C.2a and C.2b.

C.2 Log-Normal Distribution 165

−1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Log-Normal Distribution pdf

−1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Log-Normal Distribution cdf

Figure C.2: Log-Normal Distribution pdf and cdf

166 Statistical Distributions

References

[1] S.N. Adya and I.L. Markov. Consistent placement of macro-blocks using floorplanning and
standard-cell placement, 2002.

[2] S.N. Adya and I.L. Markov. Combinatorial techniques for mixed-size placemen, 2004.

[3] A. Agarwal, D. Blaauw, and V. Zolotov. Statistical Timing Analysis for Intra-die Process
Variations with Spatial Correlations. In Proceedings of the IEEE International Conference
on Computer-Aided Design, pages 900–907, San Jose, CA., November 2003.

[4] A. R. Agnihotri, S. Ono, and P. H. Madden. Feng shui 5.0 implementation details. In
ISPD, 2005.

[5] C. S. Amin, N. Menezes, K. Killpack, F. Dartu, U. Choudhury, N. Hakim, and Y. I. Ismail.
Statistical static timing analysis: How simple can we get? In DAC, 2005.

[6] K. Van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij, and A. Peeters. Asyn-
chronous circuits for low power: a dcc error corrector. Design and Test of Computers,
IEEE, 11, 1994.

[7] D.A. Bertke. A simulation for dynamic timing analysis. In Systems Engineering, 1990.,
IEEE International Conference on, 1990.

[8] U. Brenner and M. Struzyna. Faster and better global placement by a new transportation
algorithm. In Proceedings ACM/IEEE Design Automation Conference, pages 591–596,
2005.

[9] Y. Cao and L. T. Clark. Mapping statistical process variations toward circuit performance
variability: An analytical modeling approach. In DAC, 2005.

[10] Capo Placer. http://vlsicad.eecs.umich.edu/BK/PDtools/Capo.

[11] P. Cardieri and T.S. Rappaport. Statistics of the sum of lognormal variables in wireless
communications. In Vehicular Technology Conference Proceedings, pages 1823–1827, 2000.

http://vlsicad.eecs.umich.edu/BK/PDtools/Capo

168 REFERENCES

[12] S. Chakraborty, K.Y. Yun, and D.L. Dill. Timing analysis of asynchronous systems using
time separation of events. IEEE Trans. Comput. Aided Design, 18:1061–1076, 1999.

[13] H. Chang and S. Sapatnekar. Statistical timing analysis considering spatial correlations
using a simple pert-like traversal. In Proceedings of Int. Conf. on Computer Aided Design,
pages 621–625, 2003.

[14] Yi.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu. B*-trees: a new representation for
non-slicing floorplans. In Proceedings of Design Automation Conference, pages 458–463,
2000.

[15] C. E. Clark. The greatest of a finite set of random variables. Operations Research, pages
145–162, 1961.

[16] C.E. Clark. The greatest of a finite set of random variables. Operations Research, pages
145–162, 1961.

[17] J. P. Cohoon andW. D. Paris. Genetic placement. In Proceedings of the IEEE International
Conference on Computer-Aided Design, pages 422–425, 1986.

[18] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: a
tool for manipulating concurrent specifications and synthesis of asynchronous controllers.
IEICE Transactions on Information and System, E80-D:315–325, 1997.

[19] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou. A concurrent model for de-
synchronization. In iwls, pages 294–301, 2003.

[20] ECSM Format.
http://www.cadence.com/Alliances/languages/Pages/ecsm.aspx.

[21] T.-C. Chen et al. Ntuplace3: An analytical placer for large-scale mixed-size designs with
preplaced blocks and density constraints. IEEE Transactions on Computer-Aided Design,
27(7):1228–1240, 2008.

[22] T. F. Chan et al. mpl6: Enhanced multilevel mixed-size placement. In ISPD, pages
212–214, 2006.

[23] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In Proceedings of the 19th Design Automation Conference, 1982.

[24] P. Friedberg, Y. Cao, J. Cain, J. Rabaey, and C. Spanos. Modeling within-die spatial
correlation effects for process-design co-optimization. In ISQED, 2005.

[25] GLPK solver. http://www.gnu.org/software/glpk/glpk.html.

http://www.gnu.org/software/glpk/glpk.html

REFERENCES 169

[26] GNU Octave. http://www.gnu.org/software/octave/.

[27] GNU GPROF.
http://gcc.gnu.org/.

[28] R. Gonzalez, B.M. Gordon, and M. A. Horowitz. Supply and threshold voltage scaling for
low power cmos. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 32(8), 1997.

[29] K.R. Heloue and F.N. Najm. Early analysis and budgeting of margins and corners using
two-sided analytical yield models. IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 27(10), 2008.

[30] A. Hemani. Charting the eda roadmap. IEEE Circuits and Devices Magazine, 2004.

[31] R. Hogg and A. Craig. Introduction to mathematical statistics. Macmillan, 1995.

[32] B. Hu and M.M. Sadowska. Multilevel fixed-point addition-based vlsi placement. IEEE
Transactions on Computer-Aided Design, 24(8):1188–1203, 2005.

[33] H. Hulgaard, S.M. Burns, T. Amon, and G. Borriello. n algorithm for exact bounds
on time separation of events in concurrent systems. IEEE Transactions on Computer,
44:1306–1317, 1995.

[34] International technology roadmap for semiconductors. http://www.itrs.net/.

[35] IWLS 2005 Benchmarks. http://www.iwls.org/iwls2005/benchmarks.html.

[36] J. A. G. Jess, K. Kalafala, S. R. Naidu, R. H. J. M. Otten, and C. Visweswariah. Statistical
timing for parametric yield prediction of digital integrated circuits. In DAC, 2003.

[37] A. B. Kahng and S. Reda. Placement feedback: A concept and method for better mincut
placements. In DAC, 2004.

[38] A.B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. IEEE
Transactions on Computer-Aided Design, 24(5):734–747, 2005.

[39] K. Kang, B.C. Paul, and K. Roy. Statistical Timing Analysis Using Levelized Covariance
Propagation Considering Systematic and Random Variations of Process Parameters. ACM
Transactions on Design Automation of Electronic Systems (TODAES), 11(4):848–879,
2006.

[40] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proceedings of
36th ACM/IEEE conference on Design automation, 1999.

http://www.gnu.org/software/octave/
http://www.iwls.org/iwls2005/benchmarks.html

170 REFERENCES

[41] An eda tool for the timing analysis, optimization and timing validation
of asynchronous circuits. http://elocus.lib.uoc.gr/dlib/0/5/7/metadata-dlib-
7d94bc32d455a2550cbc35aa61fc8acc_1276761364.tkl.

[42] J.F. Kenney and E.S. Keeping. Mathematics of Statistics. N.Y. : Van Nostrand, 1951.

[43] B Kernighana and S Lin. An efficient heuristic procedure for partitioning graphs. The
Bell System Technical Journal, 29, 1970.

[44] A. Khatkhateand, C. Liand, A. R. Agnihotriand, M. C. Yildizand, and S. Ono. Recursive
bisection based mixed block placement. In ISPD, 2004.

[45] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi. Optimization by simulated annealing. In
Science, volume 220, pages 671–680, 1983.

[46] J.M. Kleinhans, G. Sigl, F.M. Johannes, and K.J. Antreich. Gordian: Vlsi placement by
quadratic programming and slicing optimization. IEEE Transactions on Computer-Aided
Design, 10(3):356–365, 1991.

[47] E. Kounalakis and Ch.P. Sotiriou. Cplace: A constructive placer for synchronous and
asynchronous circuits. In Asynchronous Circuits and Systems (ASYNC), 2011 17th IEEE
International Symposium on, pages 22–32, 2011.

[48] E. Kounalakis and Ch.P. Sotiriou. Scplace: A statistical slack-assignment based construc-
tive placer. In Quality Electronic Design (ISQED), 2011 12th International Symposium
on, pages 136–144, 2011.

[49] E. Kounalakis, Ch.P. Sotiriou, and Vassilis Zebilis. Statistical timing-based post-placement
leakage recovery. In Proceedings of Annual Symposium on VLSI (ISVLSI), 2011.

[50] LEF/DEF Formats.
http://www.si2.org/openeda.si2.org/project/showfiles.php?group_id=6#p44.

[51] E. T. Leighton. Complexity issues in vlsi. MIT Press, 1983.

[52] Liberty Format.
http://www.opensourceliberty.org.

[53] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-packing-based module
placement. In Proceedings of ICCAD, pages 472–479, 1995.

[54] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, 1989.

[55] K.G. Murty. Linear Programmin. John Wiley & Sons, New York, 1983.

REFERENCES 171

[56] R. Nair, C.L. Berman, P.S. Hauge, and E.J. Yoffa. Generation of Performance Constraints
for Layout. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 8(8):860–874, 1989.

[57] G.-J. Nam, S. Reda, C.J. Alpert, P.G. Villarrubia, and A.B. Kahng. A fast hierar-
chical quadratic placement algorithm. IEEE Transactions on Computer-Aided Design,
25(4):678–691, 2006.

[58] W. Naylor, R. Donelly, and L. Sha. Non-linear optimization system and method for wire
length and delay optimization for an automatic electric circuit placer, 2001.

[59] L.S. Nielsen and J. Sparso. Designing asynchronous circuits for low power: an ifir filter
bank for a digital hearing aid. Proceedings of the IEEE, 87:268–281, 2002.

[60] OpenCores.org.
http://www.opencores.org.

[61] M. Orshansky and A. Bandyopadhay. Fast statistical timing analysis handling arbitrary
delay correlations. In DAC, 2004.

[62] M. Orshansky and K. Keutzer. A general probabilistic framework for worst case timing
analysis. In DAC, 2002.

[63] M. Orshansky, L. Milor, P. Chen, K. Keutzer, and C. Hu. Impact of systematic spatial
intra-chip gate length variability on performance of high-speed digital circuits. In DAC,
2000.

[64] A. Papoulis. Probability, Random Variables and Stochastic Processes. McGraw-Hill, 1991.

[65] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester. Statistical analysis of subthreshold
leakage current for vlsi circuits. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 12(2), 2004.

[66] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, A. N. Ng, J. F. Lu, and I. L. Markov.
Capo: Robust and scalable open-source min-cut floorplacer. In Proceedings ACM/SIGDA
ISPD, pages 224–226, 2005.

[67] J.A. Roy, S.N. Adya, D.A. Papa, and I.L. Markov. Min-cut floorplacement. IEEE Trans-
actions on Computer-Aided Design, 25(7):1313–1326, 2006.

[68] J. Rubenstein, P. Peneld, and M. A. Horowitz. Signal delay in rc tree networks. IEEE
Transactions on Computer-Aided Design, CAD-2:202–211, 1983.

[69] T. Sakurai and A. Newton. Alpha-power law mosfet model and its application to cmos
inverter delay and other formulas. IEEE JSSC, 25(2):584–594, 1990.

172 REFERENCES

[70] M. Sarrafzadeh, M. Wang, and X. Yang. Modern Placement Techniques. Kluwer Academic
Puvlishers, 2002.

[71] K. Shahookara and P. Mazumder. Gasp - a genetic algorithm for standard cell placement.
In Proceedings of the European Design Automation Conference, pages 660–664, 1990.

[72] Debjit Sinha, Hai Zhou, and Narendra V. Shenoy. Advances in computation of the max-
imum of a set of random variables. In ISQED ’06: Proceedings of the 7th International
Symposium on Quality Electronic Design, pages 306–311, 2006.

[73] P. Spindler, U. Schlichtmann, and F.M. Johannes. Kraftwerk2 - a fast force-directed
quadratic placement approach using an accurate net model. IEEE Transactions on
Computer-Aided Design, 27(8):1398–1411, 2008.

[74] W.-J. Sun and C. Sechen. Efficient and effective placement for very large circuits. In In
Proceedings IEEE/ACM ICCAD, pages 170–177, 1993.

[75] T. Taghavi, X. Yang, and B.-K. Choi. Dragon 2005: Large-scale mixed-size placement
tool. In Proceedings ACM/SIGDA ISPD, pages 245–247, 2005.

[76] T. Taghaviand, X. Yang, and B-K. Choi. Blockage-aware congestion-controlling mixed-size
placer. In ISPD, 2006.

[77] R.-S. Tsay, E.S. Kuh, and C.-P. Hsu. Proud: A sea-of-gates placement algorithm. IEEE
Design and Test of Computers, 5(6):44–56, 1988.

[78] N. Viswanathan, M. Pan, and C. Chu. Fastplace 3.0: A fast multilevel quadratic placement
algorithm with placement congestion control. In ASPDAC, pages 135–140, 2007.

[79] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan. First-order
incremental block-based statistical timing analysis. In DAC, 2004.

[80] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan. First-order
incremental block-based statistical timing analysis. In Proceedings of the IEEE Design
Automation Conference, San Diego, CA., June 2004.

[81] J. Xiong, K. Tam, and L. He. Buffer insertion considering process variation. In DATE,
2005.

[82] J. Xiong, V. Zolotov, and L. He. Robust extraction of spatial correlation. In ISPD, 2006.

[83] T.-Y. Yen, A. Ishii, A. Casavant, and W. Wolf. Efficient algorithms for interface timing
verificat. Formal Methods Syst. Design, 12:241–265, 1998.

[84] L. Zhang, W. Chen, Y. Hu, J. A. Hubner, and C. C.-P Chen. Statistical timing analysis
with extended pseudo-canonical timing model. In Proceedings of Design Automation and
Test in Europe, 2005.

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Electronic Design Automation
	Major Technology Challenges
	Drawbacks of Existing EDA Practices
	Contributions of this Thesis

	Background
	Timing Analysis
	Synchronous Static Timing Analysis
	STA-based Timing Optimization
	Statistical Static Timing Analysis
	SSTA-based Timing Optimization

	Asynchronous Timing Analysis
	Asynchronous Timing Analysis Models
	Timing Separation of Events

	Placement Algorithms
	Optimization Objectives and Constraints
	Requirements for a Placer

	Algorithmic Approaches to Placement
	Iterative vs Constructive Placement
	Global vs Detailed Placement
	Standard Cell Placement vs Mixed-size placement
	Wire Bounds as an Optimization Directive
	Taxonomy of Placers
	Challenges for Contemporary Placers
	Multi-Corner Placement
	Asynchronous Circuits Placement
	Post-placement Optimization

	Limitations of Contemporary Placers
	Our Approach to the Placement Problem
	Statistical/Multi-Corner Timing-Driven Placement
	Placement for Asynchronous Circuits
	Post-Placement Optimization

	Statistical Delay Bounds
	Statistical Static Timing Analysis
	Statistical Gate Delay
	Statistical Delay Propagation

	Minimum Sigma Propagation
	Motivation and Intuition for MSSA
	MSSA for a Single Gate

	Minimum Sigma Slack Assignment
	MSSA Superfluous Constraints
	Runtime Issues

	Target Sigma Propagation
	Motivation and Intuition for TSZSA
	TSZSA for a Single Gate
	TSZSA Algorithm
	TSZSA Wire Delay Propagation

	Target Sigma Zero Slack Assignment
	LP slack assignment
	LP formulation for Statistical Slack Assignment
	Runtime Improvement Through Hierarchical LP

	SCPlace
	Motivation for SCPlace
	Description and Intuition for SCPlace
	Requirements for Statistical Placement
	SCPlace Interface
	Optimization Objectives
	The SCPlace Flow
	Implementation Details
	Constructive Process
	Reconstruction
	Perturbation
	Finalization
	Routability
	Legalization
	Slack Reassignment

	SCPlace Hierarchical Approach

	Post-Placement Statistical Leakage Optimization
	Statistical Leakage Optimization
	Statistical Leakage Optimization Requirements
	Physical Information
	Timing Analysis and Leakage Model
	Timing and Leakage Constraints
	Gate Substitution

	Statistical Leakage Optimization Interface
	Optimization Objectives
	Leakage Optimization Flow
	Optimization Flow Details
	Statistical Slack Assignment
	Gate Sorting
	Incremental SSTA
	Slack Reassignment

	Routability and Legalization
	Runtime Issues

	CPlace
	Asynchronous Placement Requirements
	CPlace's Interface
	CPlace Objectives
	Slack Assignment for Asynchronous Circuits
	Wire-Delay Bounds
	LP Formulation

	The CPlace Flow
	CPlace Implementation Details
	Constructive Process
	Reconstruction
	Perturbation
	Finalization
	Routability and Legalization

	Runtime Issues

	Results
	Benchmark Set
	Synchronous Benchmarks
	Asynchronous Benchmarks

	Slack Assignment Results
	Slack Assignment Runtime

	SCPlace Results
	Timing Yield
	Routability

	Leakage Recovery Results
	Leakage Recovery vs Industrial
	Delay-Leakage Tradeoff
	Leakage Recovery Runtime

	CPlace Results
	CPlace vs Industrial and Capo
	QDI Satisfaction
	CPlace Runtime

	Conclusions
	Future Work

	Synchronous and Asynchronous Timing Models
	Static Timing Analysis Models
	Statistical Timing Analysis Models
	Variation and Correlation Models

	Placement Approaches
	Simulated Annealing
	Genetic
	Min-Cut
	Analytical

	Statistical Distributions
	Normal Distribution
	Log-Normal Distribution

	References

