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Introduction

To a closed Riemann surface S of genus g > 1, we associate the following
spaces of structures of S :

-Quasifuchsian space of S, the space of quasi-Fuchsian structures of §
and
-Teichmiiller space of S, the space of conformal structures on S.

These spaces have rich analytic and geometric characteristics and our
aim is to study the connection between them.

Quasifuchsian space QF(S), can be naturally imbedded into a complex
number space and is a complex manifold [B4].

Teichmiiller space can be imbedded into a complex Banach space and
in this way becomes a complex manifold [B2|. This manifold is denoted by
Teich(S), and it can be viewed as a complex submanifold of QF(5).

On the other hand, Teichmiiller space is in a natural way a real ana-
lytic manifold [Kr|, denoted by F(S), which is isomorphic to a real analytic
submanifold of QF(S).

It is known that Teich(S) is a Kéhlerian manifold, its Kahlerian metric
induced by the Weil-Petersson hermitian form and F (S) is a real symplectic
manifold [W1,2].

In this thesis:

a) We prove that QF(S) is a complex symplectic manifold, by construct-
ing a complex symplectic structure which is natural from the point of view
of hyperbolic geometry and can be seen as the complexification of the real
symplectic structure of Teichmiiller space.

b) We define a new complex structure on QF'(S), with respect to which,
F(S) is a complex submanifold of QF(S).

c) We define the Weil-Petersson hermitian form on QF'(S). We prove that
the two complex structures for QF(S), together with the metric induced by
the Weil-Petersson form, give rise to a Hyperkéhlerian structure on QF(S)
which unifies all the above structures and provides a new perspective for
their study.
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Previous Results

We fix a closed (that is compact and without boundary) Riemann surface
S of genus g > 1, and identify its fundamental group m, (S) with the Fuchsian
group I' acting on the upper half plane U = {z € C, Imz > 0} which is such
that S = U/T. We denote by S the surface with the opposite orientation.

Teichmiiller space. Teichmiiller space of S, is the set of marked Rie-
mann surfaces [X], where X is a Riemann surface homeomorphic to S by
a sense preserving homeomorphism, and a marking on X is a choice of iso-
morphism of the fundamental groups I' of S and ', of X.

Teichmiiller space appears already in an implicit way in works of Klein
and Poincaré. Fricke, Fenchel and Nielsen were among the first who studied
its real analytic structure. Real analytic coordinates are provided locally by
the hyperbolic lengths [, 2 = 1,...,6¢9 — 6 of certain simple closed geodesics
on S. In this way, Teichmiiller space becomes a real analytic 6g — 6 manifold
denoted by F(S). [W1]

In the 1950’s, L. Ahlfors and L. Bers developed the theory of quasiconfor-
mal mappings, which has proven a powerful tool for the study of Teichmiiller
space.

Complex structure for this space was firstly defined by O. Teichmiiller,
but this structure was not the “right” one.

Ahlfors defined a complex structure for Teichmiiller space and L. Bers
showed a little later that this structure is natural: Teichmiiller space can be
naturally imbedded into an open set of a 3g — 3 complex Banach space, and
thus inherit the structure of a 3¢ — 3 complex Banach manifold [B2|. This
manifold is denoted by Teich(S).

The group of biholomorphisms of T'eich(S) is discrete |[R|, and is called
the modular group Mod(S). This group identifies two points [X],[Y] of
Teich(S) when there is a conformal mapping from X to Y.

A natural hermitian form for Teich(S) was originally introduced by Weil
and Petersson. This form is obtained by a hermitian product which, for every
point [X], X = U/I",, is defined in the complex Banach space of quadratic
differentials Q(I",, U). This is the space of integrable holomorphic functions
¢ defined on U which satisfy the condition ¢(v(2))(v'(2))? = ¢(z) for all
v € I'; and for all z € U. For any such ¢, the Weil-Petersson (W-P)
hermitian product h,,,is given by

g () = /X 5.

Q(T',U) can be identified to the holomorphic cotangent space of Teich(S)
at [X]. Ahlfors proved that the Riemanian metric g,,, which is induced from
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hyp is Kéhlerian. In 1974, H. Royden proved that its group of isometries
is Mod(S) |R|, and in 1976, Scott Wolpert showed that g,,, is incomplete,
(see [W2| and the reference there).

The real form wy;, , induced by the Kéhlerian metric in T'eich(S), is a real
symplectic form for F(S), and thus (F(S), Wy p) 18 @ symplectic manifold.

In the 1980’s, Wolpert studied extensively the W-P symplectic geometry
of Teichmiiller space. Wolpert described the symplectic form w,,, in terms
of real analytic coordinates [,, and Fenchel-Nielsen (F-N) or twist vector
fields [W1,4]. A twist vector field ¢, associated to a simple closed geodesic
« of S, is by definition the infinitesimal generator of a l-parameter group
of diffeomorphisms of Teichmiiller space, where such a diffeomorphism is
obtained from the following deformation of S : Cut S along «, rotate the
one part of the surface by an anle 8, and then glue the two pieces to obtain
a new Riemann surface. This deformation is known as the F-N or twist
deformation of S. Wolpert’s formula for w,,, is

Wp(tarty) = Y cosd(a, B)y

pEang

where {_,t, are twist vectors corresponding to «, 3 and ¢(a, B) is the angle
of geodesics «, 3. N

Teichmiiller space F'(S) admits global (F-N) real analytic coordinates
[,,7,,1 =1,...,3g—3, where [, are hyperbolic length functions corresponding

to 3g — 3 simple closed geodesics v, which form a maximal partition of 5,
and 7, the associated twist functions. According to [W2], these coordinates

are canonical for the symplectic manifold (F/(S )s Wiy p)

39—3
Wyp = Y dl, Adr,.
=1

Quasifuchsian space. A quasi-Fuchsian deformation of I' = 7, (5) is a
homomorphism p of T' into PSI(2,C) which is obtained by conjugation by
a quasiconformal mapping of the complex plane C. Images p(T") of quasi-
Fuchsian deformations are quasi-Fuchsian groups. If G is such a group,
then its limit set is a Jordan curve and it acts properly discontinuously on
the complement D, = D, U D, of this curve in C. The action of G on
D,, D, induces two Riemann surfaces X = D, /G and Y = D, /G, which are
homeomorphic by an orientation reversing homeomorphism. G also acts on
the upper half space U?, and the quotient (U* U D,)/G is a 3-manifold (a
quasi-Fuchsian manifold), diffeomorphic to S x [0,1].

Quasifuchsian space QF(S) of S, is the quotient of the set of quasi-
Fuchsian deformations with the action of PSI(2, C) by inner automorphisms.
It can be also seen as the set of marked quasi-Fuchsian manifolds [M], where
a marking on M is a choice of isomorphism between I' and , (M).
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QF(S5) has a natural complex structure as a space of representations into
a complex Lie group. Topologically it is a ball of dimension 12¢g — 12, and
L. Bers proved that it is a 6g — 6 complex manifold [B4].

Let [p] be a point of € QF(S), p(I') = G. Recall that two Riemann
surfaces X,Y are associated to G. To the point [p] we correspond the pair
of marked Riemann surfaces ([X],[Y]) € Teich(S) x Teich(S).

This correspondence is bijective and compatible with complex structures:

The mapping
U : QF(S) — Teich(S) x Teich(S)

sending [p] to ([X], [Y]) is biholomorphic.
Complex submanifolds of the form B, (S) = U~ !}(Teich(S) x {[Y]})
and B, (S) = U1 ({[X]} x Teich(S)), are biholomorphic to Teich(S) and

Teich(S) respectively. These submanifolds are called the Bers’ slices of

QF(S).

Another subset of Quasifuchsian space of particular interest, is the Fuch-
sian space F'(S) of S. F(S) contains points [p], with p(I') Fuchsian, and thus
the corresponding Riemann surfaces X,Y satisfy the condition: ¥ = X. It
is a real analytic 69 — 6 submanifold of QF(S), and can be identified real
analytically with the Teichmiiller space F(S).(See [Kr]). Denote by I, the
almost complex operator acting on the tangent space of Teich(S). It also acts
on the tangent space of F(S), and in this manner F(S) can be considered
as an almost complex manifold. From the identification of F(S) with F(S),
we may give F(S) an almost complex manifold structure, but its natural
imbedding into QF(S) is not holomorphic.

C. Kourouniotis defined holomorphic coordinates for QF(S) [K2]. These
coordinates are given locally at each point by the complex lengths A,, i =
1,...,69—6 of certain geodesics of the corresponding quasi-Fuchsian manifold.
If the point is Fuchsian, then complex coordinates are reduced to real analutic
coordinates of Teichmiiller space F'(S).

Kourouniotis defined the bending vector fields on Quasifuchsian space.
To any simple closed curve « of S, there is associated a holomorphic vector
field T, which by definition is the infinitesimal generator of a 1-complex pa-
rameter group of biholomorphisms of QF(S), where such a biholomorphism
is obtained at each point [p], by bending the corresponding 3-manifold along
the geodesic p(a). On the tangent subbundle of Fuchsian space, the real part
of T, is just the twist field ¢_.

A heuristic picture. Bers’ mapping W, gives us the following heuristic
picture for QF(S) and its submanifolds:
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One may think of Quasifuchsian space as an open connected subset A of
the complex space C%9=6. Then she may draw Bers’ slices B (S) and B_(S)
as two 3g — 3 complex axes inside A which meet at the point “zero”, which is
U~L([S] x [S]). For convenience she may assume that these axes are perpen-
dicular at 0, but since there is no metric defined, the word “perpendicular”
is for the moment meaningless. In this figure, Fuchsian space F'(S) is the
segment of the 6g — 6 real diagonal of C%~% contained in A. She can also
think of A as a subset of C597%_ but the latter endowed with the three quate-
nionic complex structures I,.J, K where I? = J? = K? = [JK = —id. If
I corresponds to the natural complex structure, then the diagonal is a real
submanifold of (A, ) but a complex submanifold of (A4, .J).

Then, the following questions may come to her mind:

a) Which must be the appropriate metric that QF(S) must be endowed
with, so that Bers’ slices be perpendicular at 0?7

b) Which must be the appropriate complex structure, analogue to J, so
that F'(S) is a complex submanifold of QF(S) with respect to this structure?

Mainly, our work answers to these questions.

Exposition Of Results

The first part of our work is devoted to the study of the complex sym-
plectic geometry of QF(S) which arises from the hyperbolic geometry of
quasi-Fuchsian manifolds.

Complex symplectic manifolds. A 2n—complex dimensional com-
plex manifold M is called complex symplectic, if there exists a non-degenerate,
closed, (2,0)—holomorphic form € defined everywhere on M.

The first and the second variation of the complex length of a geodesic
under bending admit a neat geometrical description [K3|. We use this de-
scription to define a holomorphic (2,0) form for QF'(S). We prove (Theorem
3.1.3)

THEOREM. There exists a non degenerate closed holomorphic (2,0) form
Q defined everywhere on QF(S) turning QF(S) into a complex symplectic
manifold. The form S is given at each [p] € QF(S) by the formula:

Q([p])(Ta’Tg): Z cosha(p(a),p(ﬁ))p

where T, T, are bending vectors corresponding to simple closed geodesics
a, B on S, and o(p(a), p(B)) is the complex distance of geodesics p(a), p(f3).

The form €2 can be regarded as the complexification of the Weil-Petersson
real symplectic form of F(5).
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Quasifuchsian space QF'(S) admits global complex (complex F-N) coor-
dinates A,, 3,7 =1,...,3¢g — 3, |[K2|, where X, are complex length functions
corresponding to the geodesics of the partition of S and 3; are the associated
bending functions. We prove (Theorem 3.1.10)

THEOREM. Complex Fenchel-Nielsen coordinates are canonical for the
complex symplectic manifold (QF(S), ) :

39—3

Q=" dx NdB,.
=1

Hyperkihlerian manifolds. A 4n-dimensional Riemannian manifold
(M, g) is called Hyperkihlerian if there exist two complex operators I,.J
defined on M such that IJ 4+ JI = 0 and g is a Kéhler metric for both I
and J. Note that the existence of such I, J implies the existence of a third
operator K, which is also such that (M, K, g) is a Kdhlerian manifold.

A Hyperkédhlerian manifold is automatically a complex symplectic man-
ifold: in the first place it is symplectic with respect to all three symplectic
forms w,w,,w, induced by the three operators I, J, K repectively. Consider-
ing M as an I-complex manifold then the I -holomorphic (2,0)-form

Q=w, +iw,

defines a complex symplectic structure for (M, I). The converse is known to
be true when M is compact.

Having already defined a complex symplectic structure for QF(S) it is
natural to ask whether there exists a Hyperkdhlerian structure, from which
this complex symplectic structure is obtained. Since our form €2 is actually
the complexification of the W-P symplectic structure w,,,, we are led to
W-P geometry, which we study in the second part of our work.

Firstly, and in analogy with Teichmiiller space, we define the W-P her-
mitian product at each point [p] of QF(S). The holomorphic cotangent
space of QF(S) at [p] is the complex Banach space of quadratic differen-
tials Q(G), G = p(I"). This is the space of integrable holomorphic functions
¢ defined on D, the region of discontinuity of G, which satisfy the condition
#(9(2))(g'(2))? = ¢(2) for all g € G and for all z € D,. For any such ¢,
the W-P hermitian product A, is given by

BQ(g, ) = /X T

From this product, we obtain the W-P Riemannian metric ¢ defined on
Quasifuchsian space. Our following result establishes the W-P Ké&hlerian
structure for Quasifuchsian space: (Theorem 3.2.2)
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THEOREM. Let W be the biholomorphic Bers’ mapping from QF(S) onto
T(S). The following relation holds:

g9 = (T*)g"

The triple (QF(S),IQ,QQ) defines a Kdihlerian manifold. The metric is in-
complete and the full group of biholomorphic isometries is the modular group
Mod,, (S).

I, is the almost complex operator in the tangent space of QF (S), from
which its standard complex structure arises. The group Mod,,(S) is a dis-
crete subgroup of biholomorphisms of QF(S) isomorphic to the cartesian

product Mod(S) x Mod(S).

We construct a new almost complex operator J,, in the tangent space of
QF(S), with the following properties:
a) J,, is skew-commuting with I, and

b) its restriction to the tangent subbundle of F(S) is just the almost
complex operator I, of Teichmiiller space.

We show that the almost complex operators J,, K, = I,J,, are complex
and parallel with respect to ¢%. In this manner we obtain our main result:

(Theorems 3.2.5 and 3.2.8)

THEOREM. The space QF(S) with complex structures I,,J,, and the
Weil-Petersson riemannian metric g2 is a Hyperkdihlerian manifold. Teich-

miiller space F(S) is a complex submanifold of (QF(S), J,).

Results concerning the symplectic geometry of Quasifuchsian space fol-
low from our main theorem. Denote by wQ,le ,wQQ the three Kahlerian
real symplectic forms corresponding to I, J,, K, respectively. The follow-
ing describes the symplectic behaviour of Teichmiiller space inside QF(S) :
(Theorem 3.2.7)

THEOREM. 1) Teichmiiller space as the set of Fuchsian deformations
F(S) is a Lagrangian submanifold of QF(S) with respect to w® and w2Q

and a symplectic submanifold of QF(S) with respect to w?. ii) Bers’ slices

are symplectic submanifolds of QF(S) with respect to w® and Lagrangian
with respect to le and wZQ.

The complex symplectic form induced from the Hyperkihlerian structure
of QF(S) is

09 = le +7Jw§
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It is natural to ask about the relation of Q% and €. We prove: (Theorem
3.3.1)

THEOREM. The complex symplectic form Q2 induced from g% is equal
to 2Q).

REMARK. Quasifuchsian space is an open subset of the space V(S), the
quotient of the space of irreducible representations of the fundamental group
of a surface S into PSIL(2,C) by the action of PSI(2,C) by inner automor-
phisms. Spaces of the form Hom'"(r,(S) — G)/ ~, where G is a semi-
simple Lie group with an invariant inner product on its Lie algebra, are
known to be symplectic if the Lie group G is real and complex symplectic
if G is complex, by a construction of W.Goldman [G1,2]. Using the same
methods, N. Hitchin proved that in the case where G is complex, then these
spaces admit a Hyperkdhlerian structure [H|. Our constructions and proofs
follow an entirely different route. They are based on the theory of quasi-
conformal mappings and hyperbolic geometry, and thus reveal the analytical
and geometrical perspective of the subject.

This work is divided in chapters.

Chapter [ is preliminary, and is divided in three sections.

In section 1.1 we revise briefly Mobius transformations and Kleinian
groups. A short discussion about quasiconformal mappings lies in 1.2.1 and
Ahlfors-Bers existence theorem is stated in 1.2.2.

In section 1.2, we are concerned with Riemann surfaces, and their con-
nection with quasiconformal mappings (subsections 1.3.1 and 1.3.2). In 1.3.3
we describe Bers’ Simultaneous Uniformisation Theorem.

Chapter II is divided in two sections.

Section 2.1 reviews topics on Teichmiiller theory.

In subection 2.1.1 we give the descriptions of Teichmiiller space which we
use for the rest of our work. A quite detailed discussion about the complex
structure and the Kéhlerian structure induced by the W-P hermitian product
is presented here. (Subsections 2.1.2 and 2.1.3). In subsection 2.1.4, we state
some of the results concerning the F-N real analytic coordinate description
and the symplectic geometry of Teichmiiller space.

In section 2.2 we introduce the Quasifuchsian space QF(S). Subsection
2.2.1 is devoted to topics on the theory of general deformation spaces of
Kleinian groups which we use in our further discussion. In 2.2.2 we restrict
ourselves to the Quasifuchsian space, describing explicitely its holomorphic
tangent and cotangent spaces at each point and highlighting the idea of
introducing .J,,. In subsections 2.2.3-2.2.6 we review in brief the notions of
complex length, complex distance and bending in Quasifuchsian space. In
2.2.7 we are concerned with the holomorphic nature of bending vector fields.
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Our main work lies on Chapter III, which is divided in three sections.

In section 3.1 we construct the complex symplectic form €2 in QF'(S). Our
construction yields a duality formula which describes the Hamiltonian nature
of bending vector fields. In 3.1.3, by using an analytic continuation argument
we prove that complex F-N coordinates for (QF(S),€2) are canonical.

In section 3.2 we are concerned with W-P geometry of QF(S). In subsec-
tion 3.2.1 we define explicitely the W-P metric in QF(S) and prove that it
is Kahlerian. The real symplectic structure obtained from the metric is also
described there. Subsection 3.2.2 contains the proof of the main theorem in
three steps:

In the first step we define the almost complex operators J,, K, acting
on the tangent space of each point.

In the second step, we prove that these almost complex operators are
almost hermitian: The W-P metric remains invariant under their action.

In the third step we prove that J,, (and therefore K o ) are integrable.
We deduce that QF(S) is a complex manifold for both J,, K, and further
that these operators are parallel with respect to the metric. Consequences
of the main theorem follow.

Finally, in section 3.3 we prove that the complex symplectic structure €2
is the one obtained by the Hyperkdhlerian W-P metric.

ACKNOWLEDGEMENT. I wish to thank professor Christos Kourouniotis
for his supervision.

Several people supported me morally in the years of preparation of this
work. From this position, I thank them all.
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INTRODUCTION



CHAPTER 1

Kleinian groups and Riemann surfaces

1.1. Kleinian groups

Definitions and results presented in subsections 1.1.1 and 1.1.2 are stan-
dard in bibliography. Here we follow [B1] and [B2].

1.1.1. Mobius transformations. A Mobius transformation g is a con-
formal automorphism of the Riemannian sphere C= C U {oo}. It can be
represented as the complex function

az+b

= — =1
g(2) ot d ad — be , a,b,c,d € C

Denote by SI(2,C) the group consisting of 2 x 2 complex matrices

a b
2]

with determinant 1. The set of Mobius transformations is a group isomo-
morphic to PSI(2,C) = SI(2,C)/{I, —I}, where I is the identity matrix. Its
subgroup consisting of transformations g with a,b,¢,d € R is denoted by
PSI(2, R).

Mobius transformations other than the identity can be classified as fol-
lows:

i) Parabolic: They are conjugate to ¢g(z) = z+ 1

ii) Elliptic: They are conjugate to g(z) = Az, | A|=1 and

iii) Lozodromic: They are conjugate to g(z) = Az, | A |# 1. A loxodromic
transformation is called hyperbolic if X\ > 0.

Denote by U the Poincaré upper half plane:

U={z=z+iyeC, y> 0}

Every element of PSI(2,R) maps U onto itself. U becomes a model for
hyperbolic geometry when equiped with the line element
_ldz|

ds ,
y

and thus PSI(2, R) can be viewed as the group of all conformal self mappings
of U as well as the group of all non-Euclidean motions in the plane (the group
of isometries of the Riemannian manifold (U, ds?)).

15
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As for PSI(2, C) something similar holds. Denote by U? the upper half
space: U? = {(z,t) € C x R, }.When equiped with the line element

V| dz |2 +dt?
ds:—| 2P+

t
it becomes a model for non-Euclidean 3-space. We identify (z,t) € U with

the quaternion z +%j = x + iy +¢j + 0k. Then an element g = [ CCL Z ] of
PSI(2,C) acts on U by the rule
g(z +t§) = [a(z + tj) + b][c(z + t5) +d] L.
PSI(2,C) is the full group of isometries of (U3, ds?).

1.1.2. Kleinian and Fuchsian groups. Let X be a topological space
and G a group of homeomorphisms acting on X. The action of G is called
properly discontinuous if for every compact subset K of X the relation g(K)N
K # ) holds for only a finite number of g € G.

A Kleinian group G is a discrete subgroup of PSI(2,C) acting properly
discontinuously on some open subset of C.

It can be shown that a discrete subgroup G of PSI(2,C) always acts
properly discontinuously on U?, and the quotient U?/G is a 3-manifold.
However, the discretness of G is not sufficient for properly discontinuous
action on some open subset of C. An equivalent to the previous definition of
a Kleinian group is the following:

A Kleinian group G is a discrete subgroup of PSI(2,C) whose limit set
A = A(G) is not the whole of C.

The limit set Ais defined to be the set of accumulation points of the
orbits. A fized point of a Mo6bius transformation is a point z € C satisfying
the relation g(z) = z. It can be shown that

i) If g is parabolic then it has one fixed point

ii) If g is elliptic then it it has infinitely many fixed points in R3
iii) If ¢ is loxodromic then it has two fixed points in R3 and

iv) If g is hyperbolic then it has two real fixed points.

We may give now an equivalent to the previous definition of the limit set
of a Kleinian group G :

The limit set A of a Kleinian group G is the closure of the set of fized
points of non-elliptic elements of G.
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The region of discontiniuity @ = Q(G) is the complement of A in C. It is
open and dense in C and the largest subset of C on which the action of G is
properly discontinuous. The connected components of € are called compo-
nents of 2. A Kleinian group is called elementary if its limit set is finite. We
shall not be concerned with these groups. The rest of our discussion shall be
about non-elementary Kleinian groups.

A Fuchsian group I' is a Kleinian group where all lozodromic elements
are hyperbolic.

Its action leaves a disc or a plane fixed. By conjugation in PSI{2,C) we
can always assume that a Fuchsian group leaves fixed the upper half plane
U. In this way its limit set can be

i) the extended real line R=RU {—00,+00} and then G is called of the
first kind, or R
ii) a nowhere dense subset of R and then G is called of the second kind.

Fuchsian groups are the simplest kind of Kleinian groups. The next
simple case of Kleinian groups is that of quasi-Fuchsian groups, which we
shall define in 1.2.3.

1.2. Quasiconformal mappings

Intuitively, a quasiconformal mapping of the complex plane is a map-
ping which in the tangent plane, takes infinitesimal geometric circles into
infinitesimal ellipses, with a global bound on the eccentricity. For the exact
definition and its variations given in 1.2.1 we follow [E1].

1.2.1. Quasiconformal mappings of the plane. Let D and D’ be
domains in the complex plane C and w : D — D’ a sense preserving homeo-
morphism. For each z € D we consider the numbers

L(z,r) = max{| w(() —w(2) |,| { =z |=r}

[(z,7) = min{| w(¢) —w(2) |,| ¢ =z |=r}

and

L
H(z) =l
() = Bnsie 7.y

We say that w is quasiconformal (qc from now on) if H is a bounded
function in D. The qc mapping w is K— quasiconformal (K— qc): there
exists a finite number K such that H(z) < K for almost all z in D.
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Suppose now that w : D — D' is a sense preserving O diffeomorphism.

The complex derivatives w, = %—Z’ and wy = %—%’ are given by

(0w 0w
Y2 =5 o Zay

w——l a—w—l—za—w
=2\ 0x dy

Since w is sense preserving, the Jacobian J,, =| w, |* — | wz |? is strictly
positive and we can check that

L(z,r) = r(| wz(2) [ + | wz(2) |) + o(r),

l(z,r) = (| we(2) | = [wz(2) |) + o(r),

_Jwe(z) [+ [wz(2) |

| w2 (2) | = [wz(2) |
We obtain then that the function w is K— qc if and only if for all z in D
the following relation holds:

H(z)

K-1
w2 IS g | we2) [ ()
The above is a criterion for quasiconformality and it can be extended in
the general case.
A function w has distributional derivatives w,,ws in D if the functions

w,,w are in L? (D) and satisfy

[ s+ ooty = [ [ (ows+wosdedy =0

for every smooth function ¢ with compact support in D. The definition for
gc mappings can be proven equivalent to the following:

A sense preserving homeomorphism w : D — D' is K— qc if w has
distributional derivatives in D satisfying (x) a.e.

We list some properties of qc maps. If w: D — D' is K— qc in D then:

i) w is differentiable a.e.

ii)| wy(z) |> 0 a.e.

iii) m(w(E)) = [ [ Jwdzdy for all (Lebesgue) measurable sets £ C D.
iv) If K =1 then w is conformal.

v)w!: D' — Dis K— qc.

vi) Ifu: D" — D" is K'— qc, then uow is KK'— qc.



1.2. QUASICONFORMAL MAPPINGS 19

1.2.2. Beltrami equations and Ahlfors-Bers theorem. Let w :
D — D' be a qc mapping. Then it solves in D the Beltrami equation

wy = pw,

where i = p(z) is a measurable function on D ( the complez dilatation of w)
belonging to the open unit ball of L>°(D). This set is called the set of Beltrami
differentials of D, and is denoted by Belt(D). If a Beltrami differential p is
given, then there exists a qc mapping in D solving the Beltrami equation.
In fact the following theorem due to L. Ahlfors and L. Bers [AB| holds:

THEOREM. Let pu € Belt(C) a Beltrami differential. There ezxists a
unique solution w’ : C — C to the Beltrami equation wy = pw, which
is qc in C and leaves 0,1,00 fired. FEvery other qc solution is of the form
Ao wt where A is a Mobius transformation.

If p depends holomorphically as an element of the complex Banach space
L>®(C) on complex parameters, so does wt : For sufficiently small € and
every z we have

w(2) = 2 + ew'[p](2) + o(g), € = 0

o(g) uniform on compact subsets of C and

wlle) = 25 o= =2 [ [ w0Rez, ey

where

z(z—1)
R(z,0) = —————%-
CC=1(C—2)

If now p € Belt(D) where D is any subdomain of C, then we consider
Belt(D) as the set of elements of Belt(C) which vanish everywhere outside
D. Then w* is a qc self mapping of C which is conformal outside D.

Let D = U the upper half plane, p € Belt(U). Associated to u there
exists unique qc self-mapping of U fixing 0, 1, co, which is obtained as follows:
Let 11 € Belt(C) defined by

~ z) z€lU
i) = { 4

uwz) zel

Then the mapping in question is f# = w# when the latter is restricted in U.
The Beltrami differentials which satisfy the condition

p(z) = p(z)
for every z € C are called symmetric and their space is denoted by Belt(C).
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1.2.3. Beltrami differentials for Kleinian groups. For the follow-
ing we refer to [E1].

Let G be a Kleinian group with region of discontinuity 2 and limit set
A. Let w* be any qc map of the extended plane. The group

G =w'oGo(wh)™ = {wogo (W) g€ G}

is again a group of homeomorphisms acting properly discontinuously on
wh(Q). G* is Kleinian if it is a group of conformal maps. That is, if
wt o g o (w")~! is conformal for all ¢ € G. A simple computation shows
that this is equivalent to the relation

1(g(2))g'(2)/9' (2) = u(z)
forall g € G.

The space of G— invariant complex differentials L>°(G) is the complex
Banach space consisting of measured complex essentially bounded functions
wu(z) defined on C with support in Q, satisfying the transformation law

n(9(2))g' (2)/9'(2) = p(2)
for all g € G and for all z € C and p, = 0. The open unit ball

{n e L7(G) : |p llo< 1}

endowed with the supremum norm is the space of Beltrami differentials for

G and shall be denoted by Belt(G).

For each Beltrami differential u € Belt(G) the group G* is again Kleinian
and according to Ahlfors-Bers theorem its elements depend holomorphically
on the parameter pu.

The groups G* are called quasiconformal deformations of G.

Suppose now that I" is a Fuchsian group and denote by Belt(T", U)(resp.
Belt(T")) its set of Beltrami differentials when T' is considered acting on U
(resp. on C —R). Denote also by Belt,(I") the subset of Belt(I') consisting
of symmetric Beltrami differentials. If u € Belt(T",U), then consider f* as
in 1.2.2. The group I'* = f#oT o (f#)~! is a Fuchsian group acting on U.
Note that this group is the same with T# = w# o I o (w#)~!, T# acts on the
complex plane.

Fuchsian groups obtained in this manner are called Fuhsian or real de-
formations of T'. Note that since iz depends real analytically on u, so do the
elements of T/,

Quasi-Fuchsian groups. Starting from a Fuchsian group I', and for
arbitrary p € Belt(T'), the Kleinian group I'* is called quasi-Fuchsian. It is
Fuchsian if and only if p € Belt (I"). Constructing a quasi-Fuchsian group



1.3. RIEMANN SURFACES 21

in this way, we lead ourselves easily to the proof of Bers’ simultaneous uni-
formisation theorem (see 1.3.3 below).

1.3. Riemann surfaces

In this section we review topics on Riemann surfaces which are useful for
our further discussion. The reference is mainly to [E2] and to the book of
O. Lehto |L], chpts 4 and 5.

1.3.1. Riemann surfaces and differentials. Let S be an oriented
smooth surface in R3. For any such surface the line element is of the form

ds® = Edz? + 2Fdzdy + Gdy?

where E, G, F are the classical Gaussian quantities expressed in terms of the
coefficient functions of the inverse of a local parameter f = (f,, f,, f,) and
EG — F? > 0. Using the notation dz = dx + idy, dZ = dx — idy we can
always write the expression for the line element in the complex form

ds = Az) | dz 4+ u(z)dz | . (*x)

Here A is a positive function and f is a complex function with |u(z)| < 1.

Two such metrics ds,,ds, of S are called conformally equivalent if they
are proportional at every point of S, that is, the identity map of S is confor-
mal with respect to these metrics. A conformal structure on S is a conformal
equivalece class of metrics.

A Riemann surface is an oriented smooth surface S with a given confor-
mal equivalence class of metrics.

This definition is equivalent with the following:

A Riemann surface S is an I-dimensional connected compler analytic
manifold.

Indeed, if S is oriented and has a given conformal structure, then the
sense preserving conformal mappings from open sets of S into the complex
Euclidean plane form a complex analytic atlas for S. Conversely, every con-
nected one dimensional complex manifold has a natural orientation, and has
a Riemannian metric such that the complex coordinate functions on S are
conformal mappings into C.

Let S be a Riemann surface with a complex analytic atlas ( i.e confor-
mal structure) {U,,z,}. Suppose that f : § — C is a holomorphic func-
tion and the local parameters z;,z; have overlapping domains. Writing
fi=1Ffo z:l, fi=Ffo z]fl and regarding z,, z; as complex variables, then by
differentiating the relation f,(z,) = f;(z;) we have

fi'dzi = fj'dzj

This relation defines locally the (invariant) differential of f. In general
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A (m,n) differential on a Riemann surface S is a collection  of functions
¢, : U, — C satisfying

dz, 07

%(d—zj) (d_z_j) = ¥;

in U, NU,.

It is clear that (m,n) differentials are complex tensors for S. The most
important kinds of differentials are:

The set of Beltrami differentials Belt(S) is the set consisting of Lebesque
measurable (—1,1) differentials p on S satisfying || p || < 1.

The set of quadratic differentials Q(S) consists of the holomorphic (2,0)
differentials on S.

We note that Beltrami differentials can be integrated with respect to
the Lebesgue measure, the absolute value of a quadratic differential is a
(1,1) differential and the tensorial product of a Beltrami differential and a
quadratic differential is a (1,1) differential that is an area element for S.

1.3.2. Riemann surfaces and qc mappings. We give below the def-
inition of a quasiconformal mapping between Riemann surfaces.|L| p.176.

A homeomorphism f : S, — S, between two Riemann surfaces is called
K — qc if for any local parameters z; of an atlas on S;, i = 1,2, the mapping
z,0fo zl_l 1s K— gc in the set where it is defined. The mapping f is qc if
it 1s K— qc for some finite K > 1.

We call two Riemann surfaces S, S, quasiconformally equivalent if there
exixts a qc mapping f : S, — S,. Such a mapping defines an element p €
Belt(S,). If p = 0 then f is conformal (i.e holomorphic) and S|, S, are called
conformally equivalent.

Riemann surfaces and Fuchsian groups-Uniformisation. The fol-
lowing theorem due to Ahlfors classifies Riemann surfaces. It is also known
as Riemann’s mapping theorem for Riemann surfaces. We refer for a slightly
modified version to [L] pp.143-145.

THEOREM. (Ahlfors) Let S be a Riemann surface. Then it is conformally
equivalent to one of the following i) C ii) C — {0} 4i) C iv) C/L where L is
a lattice and v) U/T" where I' is a Fuchsian group.
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The above theorem answers to the problem of uniformising Riemann sur-
faces i.e to parametrise them by single-valued holomorphic or meromorphic
functions.

We list below some results which are standard in the theory. Their proofs
can be found in |[L| pp.177-181.

Lifting of qc mappings. Qc mappings and Beltrami differentials of
Riemann surfaces can be lifted to qc mappings of the corresponding covering
surfaces and covering groups respectively.

Let S|, S, Riemann surfaces and f : S, = S, a gc mapping. Suppose that
(§, m,), is the universal covering surface of S;, 1 = 1,2, and I, the covering
group 0f§ over S,.(The covering surface has to be the same for both S, since
they are quasiconformally equivalent). Every lift f: S8 of f s qc.

If S, =U/T,,i=1,2,and f:S, — S, is qc, then the corresponding
w € Belt(S,) can be lifted to an element of Belt(T',,U), which we denote
again by L.

Existence. Let S = U/T' a Riemann surface and u € Belt(S). There
exists a gc mapping f of S onto another Riemann surface with complex
dilatation u, determined uniquely up to a conformal mapping.

For the sake of our following discussion, we give a brief sketch of the
proof: Given p € Belt(S) we may consider it as an element pu € Belt(T', U).
As in 1.2.3 we obtain a qc mapping f# : U — U which is unique up to a
Mébius transformation. The group T* = f# oT o (f#)~! is Fuchsian and
St = U/TH is a Riemann surface. (S* is the surface S with conformal
structure the one obtained by p). If pr : U — S, pr' : U — S# are the
canonical projections, then f is defined by the relation

fopr=proft

Uniqueness of f is deduced by uniqueness of f*.

Conformal structures and Beltrami differentials. An important
consequence of the existence theorem is that Belt(S) is in one-to-one corre-
spondence with the set of conformal structures on the Riemann surface S.
Indeed, an element of Belt(S) is defined from the form of the metric (**).
Conversely, given an element u of Belt(S), then by the existence theorem,
we obtain a conformal structure for S.

Group isomorphisms induced by qc mappings-Homotopy. The
following results play an important role in Teichmdiiller theory:
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Let S = U/T and S" = U/T’ two Riemann surfaces and f, : S — S,
1 = 1,2, two gqc mappings. Let fl a lift of f,. Then f, and f, induce the
same group isomorphism between T' and T if there is a lift f; of f, which
agrees with fl on the limit set of I.

Let S = U/T" a Riemann surface and f : S — S a conformal mapping
homotopic to the identity. Then f is the identity mapping.

Up to now, all results are valid for general Riemann surfaces. In the
sequel, we are going to be concerned with closed Riemann surfaces, i.e com-
pact Riemann surfaces without boundary. A closed Riemann surface of genus
g > 1, is a quotient U/T" where I' is a Fuchsian group of the first kind con-
sisting only of hyperbolic elements.

Any two closed Riemann surfaces of the same genus are quasiconformally
equivalent.

Let S =U/T and S' = U/T’ two closed Riemann surfaces of genus g > 1
and f, S — S, i = 1,2, two qc mappings. Then f, is homotopic to f, if
there exist qc lifts f, and f, which agree on OU.

Not every sense preserving homeomorphism between two Riemann sur-
faces is homotopic to a qc mapping. But in the case of closed surfaces we
have the following due to Teichmiiller:

Let S = U/T and S" = U/T’ two closed Riemann surfaces of the same
genus g > 1. Then every homotopy class of sense preserving homeomor-
phisms of S onto S’ contains a qc mapping.

1.3.3. Simultaneous uniformisation. Let S, S,be closed Riemann
surfaces of genus g > 1. Due to uniformisation we can choose a Fuchsian
group ', so that U/T, = S|, the mirror image of S,. It is evident that then,
S, = L/T,, where L = {# = 2 + iy, y < 0} is the lower half plane. We
choose another Fuchsian group T, so that S, = U/T,. Let f: S, — S, a qc
mapping. Then f can be lifted to a qc self mapping of U. For simplicity we
denote the lift again by f. Consider the function p = f_/f. in U, and the
element p* of Belt(T',,U) defined by the relations: p* = p in U and p* =0
elsewhere. Then G = F’l‘* is a quasi-Fuchsian group. It is obvious that

(U)/G = S, and f* (L)/G = S,

and S,, S, are homeomorphic by a sense reversing homeomorphism. We say
that the quasi-Fuchsian group G represents the Riemann surfaces S,, S, or
equivalently the Fuchsian groups I',,I',. We refer to Bers [B3|, for further
details.
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Teichmiiller and Quasifuchsian space

2.1. Teichmiiller space

We fix once and for all a closed Riemann surface S = U/T" of genus g > 1.

2.1.1. Definitions of Teichmiiller space. Teichmiiller space of a
Riemann surface. [W1] We consider triples (5’,[f],S) where [f] is the
homotopy class of a quasiconformal mapping f of the surface S to S’. We
define an equivalence relation on the space of these triples as follows:

-(S,,[f.],8) ~ (S 2 [f,],S) if there is a conformal mapping of S, to S,
homotopic to f, o f

An equivalence class [X] = [(X,[f],S)] is a marked Riemann surface,
and the Teichmiiller space T'eich(S) is the set of marked Riemann surfaces.
The equivalence class of (5, [id], S) is called the origin of T'eich(S) and shall
be denoted by [id].

Teichmiiller space of a Fuchsian group. [W1| Consider triples
(I, p,T') where I is a Fuchsian group acting on U and p : ' — I is an
orientation and type-preserving isomorphism of Fuchsian groups. We define
an equivalence relation on the space of these pairs as follows:

-(T,,p,,T) ~ (le’w T') if there exists a real Mobius transformation A
such that AT, A1 =T,, p, = AdAop,.

The equivalence class [I] = [(IV, p,T')] is a marked Fuchsian group, and
Teichmiiller space Teich(T',U) is the space of marked Fuchsian groups. The
origin [id] here is the equivalence class of the triple (T',4d,T").

Isomorphism: [B2] theorem VII. If S = U/T" then Teich(S) and Teich(T, U)

are canonically isomorphic.

Teichmiiller spaces and Beltrami differentials. Let L>°(I",U) be
the space of I'-invariant differentials, and Belt(I",U) the set of I'-invariant
Beltrami differentials.

Let pu € Belt(T',U). Consider the Beltrami equations

25
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_Jopw, z€U
W‘{ 0 zer U

pfz zelU
ﬁ:{u@ﬂ ceL

Denote by w#, f*, the unique normalised quasiconformal solutions to (1)
and (2) respectively.

From the above stated definitions we can easily see that:

1. Teich(T',U) is the space of equivalence classes of quasiconformal map-
pings f : U — U which are such that f oI'o f~! = I'" is again a Fuchsian
group, where two such qc self mappings f,, f,of U are equivalent if they co-
incide on the real axis. We have seen in 1.2.3 that such a mapping induces
an isomorphism p, : I' — [V, If f is the restriction in U of f*, a solution of
(2), then I is always a Fuchsian group. To any equivalent class [f] associate
the point [I'] = [(T", p,,T")] € Teich(T',U). Any triple (I", p,T) is equivalent
with one of the form (I", p,,T).

2. Teich(T',U) is the space of equivalence classes of Beltrami differentials.
Suppose that f,, f, are the restrictions in U of f#1 and f#2 solutions of (2)
respectively. We see that equivalence relation between mappings establishes
an equivalence relation between Beltrami differentials: u, ~ p, if and only
if f1 ~ fH2.Therefore an equivalence class [u] also represents a point of
Teich(I',U).

3. To each [u], correspond the point [S¥] = [(S*, [id],S)] of Teich(S).
Any triple (X, [f],S) is equivalent to one of the form (S*,[id], S). Therefore
Teich(S) is the space of equivalence classes [S*].

2.1.2. Complex structure. Teichmiiller space of S is a complex man-
ifold of complex dimension 3g — 3. In the following we shall describe its
complex structure. We shall work with the space T'(I',U) and refer to [W2]
for what follows.

We consider Q(I', U) the vector space of I'—invariant integrable quadratic
differentials. An element ¢ € Q(I',U) is a holomorphic function ¢(z) on U
satisfying the transformation law: ¢(7(2))(Y'(2))? = ¢(z) for all v € I' and
for all z € U and also the condition

/S|¢|<oo

Any element of Q(T",U) defines a (2,0) differential on S.
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Given p € L*®(I',U) and ¢ € Q(I',U) the natural pairing

(m@=éu¢

is well defined since the product u¢ is a ['—invariant area form. Let

Q(,U)L = N(T,U)

be the null space of the pairing. The dual vector spaces R(I',U) = L*(I", U)/N(I", U)
and Q(T',U) are 3g — 3 complex dimensional.

Complex structure. We consider the surjective map
& : Belt(I',U) — Teich(T, V)

sending each p € Belt(I',U) to the marked Fuchsian group [f*I'(f*)~'] €
Teich(I',U), for f* solution of (2). We define a complex structure on Teich(I", U)

by requiring ® to be holomorphic.

Fact 2.1.1. For p € L>(T",U) the relation EI;’(O) (1) = 0 is equivalent to

(y @) = 0 for every ¢ € Q(T',U). The kernel of the differential map at the
origin is the space N(T',U).

Fact 2.1.2. Holomorphic tangent and cotangent spaces at the origin are
realised by the dual spaces R(T,U) and Q(T',U) respectively.

The almost complex operator I, defined on the holomorphic tangent
space at the origin is obtained by multiplication by 7 in R(I',U). Each coset
of R(I", U) has a unique representative in the subspace L3°(T", U) of L*°(T", U)
consisting of canonical differentials, that is differentials of the form

(Imz)*¢, ¢ € Q(T, ).

There exists a natural projection operator P : L*°(I',U) — Lg°(T,U)
given by

mz 2
Plu(z) = % / / (CM—(C?)) ~dzdy, z€U.

The projection operator induces the inverse of the isomorphism
LX (T, U) — R(T,U).

Consequently L2°(T", U) provides another model for the holomorphic tan-
gent space at the origin.
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Local complex coordinates can be described in a neighborhood of the
origin as follows:[W3| We choose
fiys s Pag—s € L7(D, U)

whose N(I',U) cosets form a basis of the holomorphic tangent space at the
origin. Given any p € Belt(I', U) we define the map

a" : Belt(I',U) — Belt(T*,1)
so that it satisfies the relation
FrO = o ()
for every v € Belt(T",U). Explicitely

AN
Eﬁ(m:( ! f—) o (1),

l—ﬁuf_g

This map is a biholomorphic (in the sense of Frechet derivatives) bijection
of Belt(I', U) onto Belt(I'*,U) The induced mapping

at : Teich(I',U) — Teich(I'*,U)
defined by
a"([v]) = [a¥(v)]
maps [u] € Teich(I',U) to the origin of Teich(I'*,U). We choose V, a neigh-
borhood of zero in C39~3 sufficiently small so that if t = (¢,,....t, _,) € V

»Ugg—3
then
39—3

N(t) = Z tjuj
j=1

satisfies ||p(t) [|co< 1. Consider the complex linear bijection
L*: LT, U) — L®(T*, 1)

L4(w) = (— H ) o (1)

= uP "

given by

(Note that LH(v) = %&7(# +tv) |,_,cf. [Al]). The coordinate mapping
®: V — Teich(T,U)

is then given by ®(t) = [P#(")]. Holomorphic tangent vectors are described
via this map by

= LMY (u;)mod N (T U) € R(T*Y), 1).

We mention here the following, [L] p. 211:
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Fact 2.1.3. Quasiconformally equivalent Riemann surfaces have biholo-
morphic Teichmiiller spaces.

Complex structure again. Although we have required the projection
mapping d to be holomorphic, the complex structure arising on the Teich-
miiller space is natural. This can be seen through Bers’ imbedding[B2] which
we shall describe in the sequel.

We have seen that two Beltrami diffellentials 1, v are equivalent if and
only if f# = f¥ on the extended real axis R.

The following is due to Bers:

Fact 2.1.4. f*# = fYon R if and only if w* = wYon L the latter being
solutions of (1).

Teichmiiller space can be canonically identified with a bounded domain
in the complex vector space B(T',IL) of I'—invariant bounded quadratic dif-
ferentials. An element ¢ € B(T',L) is a bounded holomorphic function ¢(z)
on L, that is

oz
16 = sup{—;z), tel) <o
and satisfying the transformation law
¢(1(2)) (' (2))? = ¢(2)
for all v € I' and for all z € L. Let ¢* be the schwarzian derivative of the
conformal map w* on L :

g (WYL (Y
(wh)’ 2 \ (wh)
THEOREM. (AHLFORS-WEILL-BERS): a) ¢* is an element of B(I',L) and
|| o ||«< 6. b) The mapping
B : Belt(I',U) — B(I',L)
defined by B(u) = ¢ is an open and holomorphic map of Banach spaces
and has a holomorphic section o,on the ball B(0,2) of B(I'\L) : If ¢ €
B(0,2) then o,(¢) defined by o,(¢)(z) = —2y*¢(Z), z € U is an element of
Belt(T', U).
For the proof see for instance [L] p. 207. The map B induces a mapping
o, : Teich(I',U) — B(T',L)

where

Oy (1)) = ¢
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® . is injective since by fact 2.1.4, Teich(I',U) is in natural one-to-one
correspondence with the set of conformal maps w#. The identification of
Teich(I',U) is with the set

{¢", 1 € Belt(',U)},

in B(I',L).The complex structure obtained in this way, is the same with
the one defined in the previous paragraph. We refer to L], p. 208-211, for
further details.

Modular group. The modular group (or the mapping class group)
Mod(S) or Mod(I',U) is the group of all q¢c mappings h of U such that
ho~yoh™! €T for all v € I' modulo the group of these mappings which
satisfy h o~y oh™' = v for all ¥ € I'. There is a homomorphism of this
group into the group of biholomorphic self-mappings of Teichmiiller space:
if h is a representative of a coset, then the coset is mapped into the self-
biholomorphism +,, where

(L) = [f* o b

for every [f#].The modular group is the full set of such biholomorphisms
[R].

Real tangent space. In the following we shall give a descrirtion of the
real tangent space, and the action of the almost complex operator I, on it.
The description is via the space of symmetric differentials L°(T').

LP(T) is isomorphic to L>°(T', U) when the latter is considered as a real
vector space.
The isomorphism L*°(T',U) — L°(T) is given by

- u(z) z€eU
’H“:{ nz  zel

Note that the isomorphism maps Belt(I',U) to Belt (I'). We define a
complex operator in L°(T") as follows: For g symmetric, the operator I is
given by

@ ={ e

It is easy to see that if p € L°°(T",U), then

| R
p =5 —ig(n))-
Now if p € L*°(T',U) is a representative of a holomorphic tangent vector

%(“), and %(u) the corresponding real vector then the above can be viewed

as the isomorphism of the Lie algebra of infinitesimal automorphisms of the
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complex structure I, with the Lie algebra of holomorphic vector fields, that

is
0 1 ( 0 . 0 )
== —il,—— .
Oz(p) 2 \Oz(p) Oz ()
The complex operator defined in this way differs in sign from the one

defined in [G]. There, the complex structure of the Teichmiiller space is
described via the Hilbert transform.

2.1.3. Weil-Petersson geometry. For the following we refer to [W2]
and the references given there. Teichmiiller space can be given a natural
hermitian structure. For ¢,1 € Q(T',U) we define

B (6,9) = / b0

which is the Weil-Petersson hermitian product in the cotangent space at the
origin. We obtain the corresponding description in the tangent space using
the fact that KerP = N(T',U) : Indeed

foro= [

forall u € L>®(T",U) and ¢ € Q(T",U). The Weil-Petersson hermitian product
in the holomorphic tangent space L2°(T", U) at the origin is then given simply

by
h(p,v) = / po.
S

The hermitian form in the holomorphic tangent space at the origin of T'eich(T", U)

is given by
(5 3) = [ PR

and the induced riemannian metric in the real tangent space at the origin is

just
(axa( ) ) 236{/

The metric is Kéhlerian, of negative holomorphic sectional curvature,
incomplete and its group of biholomorphic isometries is Mod(S). The real
symplectic W-P form w,,, ., induced by the metric is given by

wP

P(%n)’%)zg(@aﬁ) ' 9a(v) ) 2I’”{/

The W-P hermitian form can be everywhere defined in the following
manner: If [£], £ € Belt(I',U), is any point of Teich(I',U), then it can be
considered as the origin of the Teichmiiller space Teich(I'¢,U). The mapping
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at : Teich(I',U) — Teich(I'¢, )

is biholomorphic and maps [¢] € Teich(I', U) to the origin [id, ] of Teich(T¢,U).
Having defined the W-P product h¢ at the origin of Teich(I'¢,U), we have
the product h at [£] € Teich(T',U) by pulling back h¢ to [£]. Explicitely, for
nyv € L®(T,U),

"o (%@)’%@)) = <8z(ifu)’ 62(18157/)> = (@ W) (%u)’%v)) '

2.1.4. Real analytic structure and symplectic geometry of Te-
ichmiiller space. In this subsection we list some known results about the
real analytic and the symplectic structure of Teichmiiller space.

Teichmiiller space as a real analytic manifold will be denoted again by
Teich(S). For the notions of geodesic length and twist functions as well as
for the proper definition of the Fenchel-Nielsen twist field we refer to [W1,2].
Theorems 2.1.5 and 2.1.6 provide real analytic coordinates for Teichmdiller
space. Theorem 2.1.7 describes a local basis for the real tangent space. A
complete description of the real symplectic form induced by the W-P metric
is given in Theorem 2.1.8.

THEOREM 2.1.5. [W1]: Given a partition of the surface S by 3g—3 sim-
ple closed geodesics vy;, there exist geodesic length functions I, : Teich(S) —
R and twist functions 7, : Teich(S) — Ri =1,...,3¢g—3 which form a system
of global real analytic coordinates for Teich(S). (Fenchel-Nielsen coordinates
for Teichmiiller space).

THEOREM 2.1.6. [W1]: Given a partition of the surface S by 3g — 3
simple closed geodesics v, then for every [p] € Teich(S) there exist a neigh-
borhood V ([p]) and 3g — 3 simple closed curves a; with v; Ny =0 if i # j
such that the geodesic length functions 1o, i =1,...,3g — 3 form a system
of local real analytic coordinates for Teich(S).

THEOREM 2.1.7. [W1]: Let v, o as in Theorem 2.1.2. The twist vector
fields t.;,to; form a local basis of the real tangent space of Teich(S).

THEOREM 2.1.8. [W2,4]: The real form w,,, induced by the W-P met-
ric turns Teich(S) into a symplectic manifold. The form w,,, satisfies the
following:
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i) (wWP)([p]) (t.,t5) = Zpeamﬁ cos 0(p(a), p(ﬁ))l’

where t,,t, are twist vectors corresponding to geodesics o, 3 on S, and
O(p(a), p(B))p denotes the angle between geodesics in U.

ii) The twist field t is hamiltonian for the geodesic length function I, that
18

Wy p(t,, ) = —dl

@

iii) The expression of wy,, in global Fenchel-Nielsen coordinates is

39—3
Wyp = Y dly, Adr,
i=1

2.2. Quasifuchsian space

2.2.1. Deformation spaces of Kleinian groups and the theorem
of Bers. Let G be a finitely generated non elementary Kleinian group with
region of discontinuity € and limit set A. The quotient /G is a complex
manifold, a finite disjoint union of Riemann surfaces [A1l].

Consider the spaces of G-invariant differentials L°°(G) and its unit ball
Belt(G). Let u € Belt(G). By w* we denote the unique normalised solution
to the Beltrami equation

wz = pw, (3)

As we have seen in 1.2.3. that the function w* induces a quasicon-
formal isomorfism of G onto another Kleinian group, that is p, : G —
whG (wh) 1. We call two such isomorphisms py,, pw, equivalent if there ex-
ists an element A of PSI(2, C) such that p,,, = AdAop,,. The equivalence of
isomorphisms is the same as the equivalence of Beltrami differentials, where
two such differentials u, v are equivalent if w” = w” on A.

DEFINITION. The set of equivalence classes
Def(G) = Homg(G — PSL(2,C))/ ~
is the deformation space of G [Kr].

Deformation space Def(G) admits a natural complex structure. Con-
sider the following surjective mapping

® : Belt(G) — Def(G)
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sending i € Belt(G) to [p] = [wH] € Def(G). The mapping ® is holomorphic
since by Ahlfors-Bers theorem if p € Belt(G) depends holomorphically on
complex parameters, the same holds for w”.

Bers’ theorem. The following theorem modified here for our purposes
is due to L. Bers [B4], [Kr]:

THEOREM 2.2.1. Let G be a finitely generated Kleinian group with region
of discontinuity Q0 consisting of simply connected components. Then Def(G)
s a connected complexr manifold, biholomorphic to a cartesian product of
Teichmiiller spaces.

Denote by Q(G) the vector space of G—invariant quadratic differentials.
An element ¢ € Q(G) is a holomorphic function ¢(z) on 2 satisfying the
condition: ¢(g(2)(¢'(2))? = ¢(2) for all g € G and z € Q and is such that

/m|¢|<oo

A natural pairing can be defined as follows: Given p € L*°(G) and ¢ € Q(G)

then
(1, ) = e
/Q/G

Denote by N(G) C L°°(G) the null space of the pairing. The spaces
R(G) = L*(G)/N(G) and Q(G) are finite dimensional and dual with respect
to the pairing[A1] . Further we have [B5]:

FACT 2.2.2. Let @ : Belt(G) — Def(G) be the canonical surjection & —
(€] and p € L>®(G). Then Q)EO) (1) = 0 if and only if (u,p) = 0 for every
o € Q(G). Accordingly, the holomorphic tangent and cotangent spaces at the
origin of Def(G) can be identified with the finite dimensional vector spaces

R(G) and Q(QG) respectively.

We may now carry out the same procedure as in the case of Teichmiiller
space to describe local complex coordinates in a neighborhood of the origin:
Let d = dim,(R(G)). Again we choose p,,...,pu, € L*(G) whose N(G)
cosets form a basis of the holomorphic tangent space at the origin. Given
any u € Belt(G) we define the map

ak : Belt(G) — Belt(G*)
by the relation

wgﬁ(u) = w’ o (wu)—l
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where G* = w" o G o (w")~!, w” is the normalised solution of (3), v €
Belt(G). a* is given by

ab(v) = (”_” wg) o (wh)~.

l—ﬂyw:lzj

This map is a holomorphic bijection of Belt(G) onto Belt(G*). The induced
mapping
a" : Def(G) — Def(G*)
defined by
a([v]) = [ak(v)]
maps [u] € Def(G) to the origin of Def(G*).

We choose V' a neighborhood of 0 in C? sufficiently small so that if
t=(t,,..,t;) €V then

d
plt) = Z 2T
j=1

satisfies ||p(t) o< 1. Consider the complex linear bijection

LF: L®(G) — L®(G")

n
L'(v) = (L“’> o (w1

= [u Pt

given by

The coordinate mapping ® : V — Def(G) is then given by ®(t) = [u(t)].
The coordinate holomorphic tangent vectors are

| = 2O (u;)mod N (G*?) € R(G"V).

Ot(p)

Fact 2.2.3. [B4] Quasiconformally equivalent Kleinian groups have bi-
holomorphic deformation spaces.

2.2.2. Quasifuchsian space. Let I' be a Fuchsian group. We main-
tain our assumptions for I' i.e that is finitely generated, identified with the
fundamental group of a closed Riemann surface S of genus g > 1, and we
consider it acting on UU L.

DEFINITION. The space QF(S) of quasi-Fuchsian structures of S (the
Quasifuchsian space from now on) is simply Def ().
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Consider p € Belt(I') and w* the unique normalised solution of (3). Let

pw: LT —TH

where I'* = w"T'(w*)~!, be the induced group homomorphism. Recall that
I'* is quasi-Fuchsian, (when g is symmetric I'* is Fuchsian) and also that
it Q, = w*(U), Q, = w'(L) are the disgoint invariant components of its
region of discontinuouity, then Q /I'*,Q, /T'* are Riemann surfaces which
are homeomorphic by an orientation reversing homeomorphism.

Bers’ theorem 2.2.1 can be rephrased in the case of the Quasifuchsian
space as the following:

THEOREM 2.2.4. QF(S) is a connected complex manifold of complex di-
mension 6g — 6. There exists a biholomorphism

U : QF(S) — Teich(S) x Teich(S).
We may describe ¥ as follows (we follow [Kr|). We consider

n.: L) — L®(T',U) x L®(T, L)

mapping each p € L*(T') to (uy = pyy, py, = py,) € L(T, U) x L>(T, L).
The mapping W is induced by 7. when the latter is restricted to the open

unit ball and maps [p] to ([iy], [pt.]) € Teich(S) x Teich(S).

NoTE 2.2.5. We can regard the Quasifuchsian space in the following
manner [M]: Let U? be the hyperbolic upper half-space. If Q is the region
of discontinuity of G then the hyperbolic 3-manifold M = (U® U Q)/G is
diffeomorphic to S x [0,1]. We call M a quasi-Fuchsian manifold. M car-
ries a hyperbolic structure on its interior and a projective structure on its
boundary. Therefore a point of QF(S) determines a pair of projective sur-
faces whose union is the boundary of M. The pair of underlying conformal
structures on these surfaces denoted by ([0.M], [0.M]) is an element of the
product of Teichmiiller spaces Teich(S) x Teich(S). The space QF(S) is the
space of marked quasi-Fuchsian manifolds: A marking [M] of M is a choice of
isomorphism between its fundamental group 7, (M) and I" = 7, (5). Speaking

in these terms, Bers’ mapping ¥ maps each [M] to ([0.M], [0.M]).

REMARK 2.2.6. (Bers slices) Teichmiiller space Teich(S) (resp. Teich(S5))
is complex isomorphic to the complex submanifold of QF(S) consisting of
marked manifolds [M] where .M = S (resp.the complex submanifold of
QF(S) consisting of marked manifolds [M] where 9.M = S.)
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Teichmiiller space as the space of Fuchsian deformations is a real analytic
submanifold of QF'(S) : Let ¢ be the involution
u(z) =%, z€C.

It induces an involution 3 of Belt(T'), p — ¢ o pu ot and accordingly an
involution (3 of QF(S)

B([w"]) = [B(w)]-

Teichmiiller space can be identified real analytically with the fixed point
set of this involution [K-M]. This set is the subset of Fuchsian deformations

F(S) of QF(S5) :
F(S) = Homg(I' = PSL(2,R))/ ~
or in terms of the above note
F(S)={[M] € QF(S): 0.M = 0.M}.

Modular group. The modular group Mod,(S) or Mod,(T') is the
group of all quasiconformal homeomorphisms h of the complex plane such
that hoyoh™! € T for all v € I' modulo the group of those homeomorphisms
which satisfy hoyoh™! =~ for all ¥ € I'. As in the case of Teichmiiller space,
there is a homomorphism of this group into the group of biholomorphic self-
mappings of QF(S) as follows: if h is a representative of a coset, then the
coset is mapped into the self-biholomorphism 7, , where

Y ([wh]) = [w" o h™]
for every [w#] € QF(S).

Holomorphic tangent and cotangent spaces at the origin. The
holomorphic tangent and cotangent spaces at the origin of QF(S) are identi-
fied according to our discussion in 2.2.1 with R(I") = L*°(T")/N(T") and Q(T")
repectively. The alternative description for the holomorphic tangent space
is that of the space L2°(T") of canonical differentials. An element u € L>(T")
is canonical if u = (Imz)?¢, ¢ € Q(I'). We can easily verify the next:

PROPOSITION 2.2.7. p € LX°(T') if and only if py, € L°(I,U),p, €
L®(T,L).

The projection operator P, : L>®(I') — L°(T") is given in the obvious
manner :

[ Plulz) z€U
Felul(z) = { Pl seL

where p; = ), p, = p, and B, P, are the projection operators L>(T,U) —
L*(T,U), L>*(T,L) — L°(T, L) respectively.
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Real tangent space at the origin. We need the following preparatory
lemma:

LEMMA 2.2.8. There exists an isomorphism:
L¥([) =~ LY (T) ©rilX(T) = LT T) @ C

ProOF. Firstly observe that the direct sum is meaningful since L3°(T')

is a real vector space. We define a symmetrisation operator S : L*®(I") —
L (T) sending each p € L(T') to S(u) € L°(T") where

for every z € C. One may check trivially that S|, ., = id, and S? = S, the
S

latter denoting that S'is a projection operator. Moreover S is bijective when

restricted to the sets L (T, U) and L*°(T", L) respectively. Now if y € L>®(T)
we can write

p=5S(p) +1iS(—ip)

and the isomorphism in question is defined by the above relations. ]

Let pu be a representative of a holomorphic tangent vector %(M)and
denote by I the multiplication by 7 in L2°(T") defining the complex struc-
ture operator I, in the holomorphic tangent space at the origin of QF(S).
The relation p = S(p) + iS(—ip) implies that for each tangent direction
%(u)corresponding to =2— in the underlying real tangent space, associated

) ) 9z()
there is a pair

<3w(~§(u)) ’ ax(S(a—w»)

of “Fuchsian” tangent directions at the origin. We may write

o _ o0 )
Ox(u) — 0x(S(n) ¢ 0x(S(=ip))’

In view of the mapping W, the relation n.(u) = (uy, pt,,) implies

v (3Z?u)> B (323%)’ 3Z?ML)>

0 0

0z(py)” 02(py,)

are holomorphic tangent vectors at the origin of T'eich(S), Teich(S) respec-
tively. Let

where
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0 0
Oz (py)” 0x(py)

be the corresponding real tangent vectors. Since W is holomorphic, we have

v (%m) - (ax(g(u))’ ax(S(a—w») - (ax(auu)’ ax?ua) |

In section 2.1.1 we saw that the complex operator I, of the Teichmiiller
space is arising from the complex operator I of L2°(T). However, I, is not
I in the complexification: if g = S(u) +iS(—ipn) € L>(I") then

in(z) z€eU

I ()(2) = I (S()(2) + s (S(—ip))(2) = { —in(z) zeL

whereas I(u) = iy everywhere on C. This reflects the fact that Teichmiiller
space, when considered as the space of Fuchsian deformations, is a real sub-
manifold of QF(S) (cf. Remark 2.2.4).

On the other hand, it is easy to check that I is equal to the complex
structure of L (T, U) when we are restricted to L°(T", U), and is equal to the
conjugate complex operator of L°(T", L) when we are restricted to L (T",L).
We may trivially verify that I, commutes with I in L*(T").

We consider the operator I defined for each p € L>(T") by

I (1) (2) = I (S()) (2) — iI5(S(=ip))(2)
which we shall denote from here on by J. It is easy to verify that J skew-
commutes with I :

1J+JI=0.
The explicit form for J is given by

in(z)y =zelU
J =
e ={ ML 2D
Our goal is to show that J gives rise to a complex operator J, on QF(S),
turning QF(S) into a J,— complex manifold. We shall deal with this in
Chapter III. For the moment we turn our discussion todeformation spaces of
quasi-Fuchsian groups.

Deformation space of a quasi-Fuchsian group. Suppose that G is

a finitely generated quasi-Fuchsian group and Q = €, U Q, is its region of
discontinuity. There exist conformal Riemannian mappings

p:U—=Q,, x: L —=Q,
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such that the groups

T,=(p) 'oGop, I =(x)""'oGox

are Fuchsian groups acting on U and L respectively. We state Bers’ theorem
for the case of a deformation space of a quasi-Fuchsian group:

THEOREM 2.2.9. Let G be a finitely generated quasi-Fuchsian group. Def(G)
1s a connected complexr manifold. There exists a biholomorphism

U, : Def(G) — Teich(T,,U) x Teich(I',,L)

Consider 7, : L>*(G) — L*(I',,U) x L>(I',,L) which sends each p €
L%(G) to (jigs 1) € L™(Ty,U) x L(T, L) where

RN A C N
py (2) = (o )( )@,(Z), e,
() = (o) ()X L er

X' (2)
N, maps Belt(G) bijectively onto Belt(I',,U) x Belt(I',,L). ¥, is defined
so that it maps each [p] to ([1y], [1.])-

Holomorphic tangent and cotangent spaces to Def(G) at the origin
are the spaces R(G) and Q(G) respectively. An alternative description
for the holomorphic tangent space is that of the space L3°(G) of canoni-
cal Beltrami differentials on Q. An element u € L*°(G) is called canonical
if p = (\,) 20, ¢ € Q(G), and ), is the hyperbolic metric in 2. The
following is easy to verify:

PROPOSITION 2.2.10. p € L°(G) if and only if puy, p, are elements of
LX(T,,U), Le (I, L) respectively.
The projection opertator P, : L>*°(G) — L°(G) is

PQ:(nG)ilo(PUXP]L)OTIG

where P, P, are the projection operators of L°(I',,U), L
tively.

oo
C

(I',,L) respec-

PROOF. Since 7, maps bijectively L°(G) onto L°(T',,U) x L°(T,,L),
P, is well defined. Also, since P[[? = P, and P]L2 = P, it follows that

LY

P2=P,. O
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Tangent spaces of QF(S) at any point. Let £ € Belt(I') and [¢] €
QF(S). As usual we denote by w¢ the unique normalised solution of (3).
The group I'é = wé o' o (w®)~! is quasi-Fuchsian.

The mapping

a® : QF(S) — Def (')
(see 2.2.1) is biholomorphic.We have that

i) the holomorphic tangent space of Def(I'¢) at the origin is

LX(€) = (af). (L2(D))

and
ii) the holomorphic cotangent space at the origin is

Q(r*) = ((a®) H*(Q(D).
Therefore if p € L>®(T') then

_9 ) _ S = (a6l (92
(az(m)m) Facl Ul = (@) gy (az(Lf(u»)([idw

where [id,] is the origin of Def(T'¢).
Let p = S(u) +iS(—ip) € L>°(T"). Then

B - 0 0
<8x(,u)> ( *)([idﬁl) (aw([ﬁ(s(ﬂ)))’ 8x(L£(S(_iu)))>([id£])

(13))

2.2.3. Complex distance and length. To obtain geometric parame-
ters for QF'(S), we use the notion of complex distance (see [K3|): if «, 3 are
two geodesics in the upper half space U3, and v is their common perpendic-
ular, then the complex distance between « and ( is 0 = d + i¢, where d is
the hyperbolic distance between « and 3, and ¢is the dihedral angle between
the plane containing o and « and the plane containing 3 and . If h is a non
parabolic isometry of U?, and « is a geodesic perpendicular to the axis of h,
then the complex displacement of h is the complex distance between o and
h(a). If a is a simple closed geodesic on S, and h is an element of 7, (S) =T
corresponding to «, then the complex length of a at a point [p] € QF(S),
denoted by A_ ([p]), is just the complex displacement of p(h). For each such
«, the complex length function

A, QF(S)—=C
defined in this way is a holomorphic function of QF(S). We mention that
A, =1, +1i0,
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where [_is the geodesic length function and ¢, is an angle function, obtained
by the imaginary part of complex displacement.

2.2.4. Bending in the Quasifuchsian space. In [K1,3] C. Kourouni-
otis defined a holomorphic transformation of QF(S) called the bending de-
formation, which is a generalisation on QF(S) of the Fenchel-Nielsen as well
as of the quakebending deformation[E-M] defined for the Teichmiiller space.
Kourouniotis’ construction is described in detail in [K1]. We review this
construction in brief. Suppose that « is a simple closed curve on S. For
any [p] € QF(S) and t in a neighborhood of 0 in C, we obtain a new quasi-
Fuchsian structure B,_ (¢, p) as follows: assume for simplicity that [p] € F(S),
that is p(I') = I'" Fuchsian, and « is the geodesic of the upper half plane U
corresponding to «. All the translates I'(&) lie on U C U3. We want to map
each component of U~I" (&) isometrically to a flat 2-dimensional piece in U?,
in a way such that each component is moved with respect to its neighbours
by a complex distance t. If ¢ is sufficiently small, then we can construct a
quasiconformal homeomorphism w : U — U3, which does exactly that, and
which defines a quasi-Fuchsian structure B_(t,p) : [' = PSL(2,C) (bend-
ing p along a) mapping each v to w o p(vy) o w™!. For the non-Fuchsian
case, we only note that all the necessary information is encoded in the or-
der of the endpoints of geodesics around the limit set of the corresponding
quasi-Fuchsian group. Furthermore, and under assumptions of discreteness,
B, (t,p) defines a local holomorphic flow of QF(S).

2.2.5. Variations of complex length functions of geodesics. As-
sociated to bending along « there is a holomorphic vector field (cf. prop.
2.2.12 below)

7. () = S O)(B.(1,p)

called bending vector field (associated to «). Bending vector fields are related
to complex length functions by identities which are generalisations to QF'(S)
of analogue identities which were firstly given by S. Wolpert.

Let a be a simple closed geodesic on S and A, its complex length func-
tion. Suppose that 3 is another simple closed geodesic of S. The first varia-
tion T, A, of A, under bending along 3 is given by

T, = SO (B,(t0)

If v is a simple closed geodesic on S, then the second variation 7" T, A of
A, under bending along (Sand 7 is given by
82

T T\, = 550,00\, (B, (t B, (s.p))))
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Variations of complex length have the following geometric interpretation
[K3]:

T.T,\, =

Zpeaﬂﬁ quaﬂ'y Sinh 0'(,0(0[), p(ﬁ) )p Sinha(p(a), p(f}/))l] COSh(%Aa - O-(pa q) +
2sinh 1\,

Y peans Soresny Sinho(p(a), p(B)), sinh o (p(B), p(7))r cosh(3A, — o(p,r)

+ —
2 sinh 5/\5

The following identities due to C. Kourouniotis [K3|, are crucial for our
construction of the complex symplectic structure of QF(S) given in the next
chapter:

1. T\, +T,\, =0

2. T, T\, +T,T\, +T,T,\, =0

a3y BTaly

2.2.6. Complex coordinates. The following theorems provide com-
plex coordinates for QF(S) [K2]:

THEOREM 2.2.11. Given a partition of the surface S by 3g — 3 simple
closed geodesics vy;, there exist complex length functions Ay, : QF(S) — C
and bending functions 3; : QF(S) — Ci=1,...,3g —3 which form a system
of global holomorphic coordinates for QF(S).( complex F-N coordinates).

THEOREM 2.2.12. Given a partition of the surface S by 3g — 3 simple
closed geodesics ~y;, then for every [p] € QF(S) there exist a neighborhood
V([p]) and 3g — 3 simple closed curves a; with v; Na; =0 if i # j such that
the complex length functions Ay, A; @ = 1,...,3g — 3 form a system of local
holomorphic coordinates for QF(S).

2.2.7. Holomorphic nature of bending vector fields. The follow-
ing is in [K2| (Prop. 3.10):

PROPOSITION 2.2.13. Let « be a simple closed geodesic on S. T, is a
holomorphic vector field of QF(S).

Since T, is holomorphic, it can be written as

1 .
T, = 5(F, —il,F,)

@ @

where F, is a real vector field and I, is the complex operator defined on the
tangent space of of QF(S).
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PROPOSITION 2.2.14. Let o, 3 be simple closed geodesics on S and T,
the corresponding holomorphic bending vector field on QF(S). Then in the
tangent space of F(S) we have

Fl,=tl,, (I,F,)l,=0
where t,, 1s a twist vector field corresponding to o and 1, is the geodesic length
function corresponding to [3.

Proor. Making elementary calculations we have

1 . . 1 ‘
T\, = §(F“ — il F,)(l, +1i0,) = §(Falﬁ + (I, F,)0,) + §(Fa’95 — (I F)ls)

On the other hand

pEanS
Y coshd(p(a), p(B))p cos p(p(r), p(B))p+
peEanS
i Y sinhd(p(a),p(B)), sind(p(a), p(B))p
pEQNS

Equating real and imaginary parts and applying Cauchy-Riemann equations
we obtain:

F,l, = (I,F,)9, = ) coshd(p(a),p(B)), cos d(p(a), p(5))

pEang

Faﬁg = _(IQFa)lg = Z Sinhd(p(a),p(ﬁ))p SinQb(p(a)ap(ﬁ))P

pEanS

At Fuchsian points we have that d(p(a),p(8)) = 0, since p(«), p(3) are
intersecting geodesics in U? and therefore

Fl,=tl,= Y cos¢(p(a),p(B))p
peanp
and
(IQFa)lB =0.
O

COROLLARY 2.2.15. When restricted to the tangent subbundle of F(S),
E, is the twist vector field .



CHAPTER 3

Differential Geometries of Quasifuchsian space

3.1. Complex symplectic geometry

In this section we describe in detail the construction of a complex sym-
plectic form for QF(S). We firstly discuss some general aspects on complex
symplectic manifolds.

3.1.1. Complex symplectic manifolds.

DEFINITION 3.1.1. Let M be a 2n complex manifold. We say that M is
a complex symplectic manifold if it carries a complex symplectic structure i.e
there is a non degenerate, closed (2,0)- form 2 defined everywhere on M.

It is simple to check that a complex symplectic manifold is also a real
symplectic manifold: If Q is the complex symplectic form on M, then =
w + 1 and w, @ are non-degenerate real closed 2-forms defining symplectic
structures on M.

We state some definitions and properties holding on complex symplectic
manifolds. Their proof is analogue to that in the real case and can be found
for instance in [L-M].

1. The holomorphic form §2 defines an isomorphism between holomorphic
tangent and cotangent bundles of M. For every p € M and every holomorphic
vector Z € T((pl)’o)(M ), the isomorphism is described by the holomorphic 1-

form Q(Z) where

Q(Z) Q(p)(zv )

@ =

2. Let f be a holomorphic function on M. A holomorphic vector field
H;vahich satisfies

Q(HT)(E) = QHC,Z) = ~d'f(2) = —=f.

for every holomorphic vector field = defined on M shall be called the com-
plex Hamiltonian of f. (Here by d' we denote the holomorphic differential
operator on M. If d is the usual differential then d = d’ + d” where d” is the
antiholomorphic differential on M ).

45
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3. If ¢, is the local holomorphic flow of H ;C, then for sufficiently small ¢
we have

$*Q = Q.

4. If L, denotes the Lie derivative with respect to a holomorphic vector
field Z, then

5. Suppose that in a neighborhood of a point p of a complex symplec-
tic manifold (M, Q) there exist coordinates (z,,..., z,, ) such that Q can be
expressed as

n
Q= Z dz, Nd'z,,, .
i=1
Then (z,,..., 2,, ) are called canonical coordinates for M in the neighborhood
of p.

3.1.2. Construction of the complex symplectic structure. We
start with the following:

PROPOSITION 3.1.2. Let ~;,; be as in Theorem 2.2.11. The bending
vector fields T, , T, form a local basis of the holomorphic tangent space of

QF(S).

PRrOOF. We consider an open neighborhood V'([p,]) of [p,] € QF(S) and
local coordinates

(>")’1’ sy >‘73973a >‘a13 seey >\a3973)

The bending vectors T, , Tj,, are linear combinations of the vectors %, % :
At each [p] € V([p,]) we have

where:

[T] = [Tma e T Talv "'7Ta3g—3]T’

» £Y3g—39

[i]_[a o 0 9 r
O OXy, T ON TOAay T 0o,y ]

the matrix B is a non zero (3g — 3) x (3¢ — 3) complex matrix with entries
Tp; Aoy or 0, and the matrix A is a diagonal (3g — 3) x (3¢ — 3) matrix with
entries

Y3g—3
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Tyda, = cosha(p(vi), plai))p

peYiNa;

Thus the determinant of the transformation is equal to (—1)3973(det A)?
which is different from zero, since at each [p] € V([p,]) we have T, Ao, # 0
for every i = 1,...,3g9 — 3. U

THEOREM 3.1.3. There exists a non degenerate closed holomorphic (2,0)
form Q defined everywhere on QF (S)turning QF(S) into a complex symplec-
tic manifold. The form Q is given at each [p] € QF(S) by the formula:

Q) (T,,T,) = Y cosho(p(a), p(B));

where T, T, are bending vectors corresponding to simple closed geodesics
a, B on S, and o(p(a), p(B)) is the complex distance of geodesics p(a), p(5).

The proof will be given in steps:
STEP 1. Local definition of the form.

We firstly define locally a closed holomorphic 2-form in the holomor-
phic tangent space of QF(S). Let V([p,]) be an open neighborhood of [p,] €
QF(S), (Ayys-s Aygg_zs Ay s -0y Aag,_3 ) local coordinates for V([p,]) and T, , Ty,
1=1,...,3g— 3 the basis of the holomorphic tangent space consisting of bend-

ing vectors. For indices «, 8 running through indices v,, o, we set for each
o] € V([po])

Q p])(TavTﬁ) Ta([p]) >‘5 = Z cosho(p(a),p(ﬁ))p
pEang

By Kourouniotis’ first identity, the skew symmetry of € is instantly ob-
tained. On the other hand €2 is a holomorphic form, since the quantities
T, ), are all holomorphic functions in V' ([p,])-

STEP 2. Independence of the choice of coordinates.

The form 2 does not depend on the choice of local coordinates: To see
this, we consider «, 8 simple closed geodesics on S and we establish that
the above formula is also valid in this case. Indeed by Prop.3.1.2 there exist
holomorphic functions f,g’ and f;, gf3 i=1,..,3g — 3 defined on V([p,])
such that

T,=fT +g¢'T,



48 3. DIFFERENTIAL GEOMETRIES OF QUASIFUCHSIAN SPACE
i i
TB = ng'vi —i—gﬁT

o
7

where upper and lower indices denote summation. We now calculate straight
forward:

AT, T,) = UL, +d.T. . [iT, +9¢.T. )=

ar g a;

FLRQT, T )+ LT, T, ) + g FIT, T, ) + g, g’ AT, T, ) =

'Yi ) »y]. ) . ai 7 'y]. ai ? ozj
LT, + T A+ [T A, +9. 9T, A, =

FT, + g TN, +¢ (fiT, +g T )\, =FT\ +g T\, =
7 7 7 2 z J J J

B ay; BT a o,

= —fIT, A, —g/T, N, = =T\, =T, A,

STEP 3. Q 1is closed.

Consider bending vector fields T, T, T, on simple closed curves «, 3,
of S respectively. Then

dT,,T,,T,) =T,T,,T,) - T,T,,T,) + T,NT,,T,)~

artprty ar

-[T,,T,],T,) + [T,,T,),T,) —U[T,,T,],T,) =

T, T\, — T,T.\, + T, T\, — [T., T\, + [T.,T,]\, — [T,, T,]\, =

a) g ol Ty B Ty @
T.T,\, - T,T\, — T, T,\, — T,T,\, + +T,T,\, + T,T,\, — T, T, \,—

~T, T\, +T,T,\, =0.
STEP 4. ) is non degenerate.
Suppose that there exists a holomorphic vector field Z such that Q(Z, W) =

0 for all holomorphic vector fields W. This equation is equivalent locally to
the 6g — 6 equations

QZ,T.) =0
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where « is an index running among indices v,, o, ¢ = 1,...,3g — 3. Since an
expression for Z in local coordinates is

Z=fT, +4'T,

for some holomorphic functions f?, ¢¢, we obtain from the equations

QZ,T,)=0
that ¢’ = 0, since
Q(Tvi’ij) =0

and

2 pea;rn, cosha(p(en), p(;))p i =

Q(Tai’Tv):{ 0 Y

Therefore Z = f iTy_, and by the same reasoning we get from the equa-

tions Q(Z, T, ) = 0 that f* = 0. Thus Z = 0 and € is non-degenerate.
The proof is therefore completed.

Two immediate consequences of Theorem 3.1.3 follow:

COROLLARY 3.1.4. Let B, be the local holomorphic flow induced by bend-
ing. Then

B*Q=Q.

t

COROLLARY 3.1.5. For each bending vector field T, the following holds:
L, (Q)=0.

The next theorem is also obvious and generalises Wolpert’s Duality for-
mula (Theorem 2.1.4. ii)):

THEOREM 3.1.6. (Duality formula): Let o be a simple closed geodesic
on the surface S. The bending vector field T, is the complex Hamiltonian of
the complex length function A :

c _
HAQ =T,

that is

Q(Ta7 ) = _dl>\a
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3.1.3. Expression of ) in global complex F-N coordinates. In
this section we prove an analogue of S. Wolpert’s Theorem 2.1.4. iii). We
need an analytic continuation argument first.

LEMMA 3.1.7. Let D be an open connected subset of C*, and F : D — C
a holomorphic function,

F=F(z,..z,), z =z +iy, i =1,...,n.
Suppose that D contains segments of

R = {7, ¢ C",7; = (0,...,x,,...,0,0,...,0)}

foreveryi=1,..,n,and F(x, ...z, ,0,...,0) =0 for every (z,, ...z, ,0,...,0) €
D. Then F =0 in D.
PrOOF. We fix a polydisk A = A(x_(l), ) X . X A(E, r, ) where

20 = (0,...,2%,...,0,0,...,0) € D

for every ¢« = 1,...,n and r, > 0 are small enough so that A C D. Now
R, (z,,..7,,0,..,0) = 0 and therefore F|, = 0. Since F' vanishes in an
open subset of D, it has to vanish everywhere in D. ]

Let now €2 = w, +iw,. Consider the real symplectic form w,, , of the real
submanifold F'(S) = Teich(S) of QF(S).

THEOREM 3.1.8. Let w,,, be the symplectic form of Teich(S) and w, =
ReQ), w, = I'mfQ restricted to the tangent subbundle of Fuchsian space. Then

w, = wy,p and w, = 0.

PROOF. Let «, # be simple closed curves on S and t,,,, the correspond-
ing twist vector fields. At a point [p] of F'(S) we have

d
@) (b ts) = D cosB(p(a), p(B))y = 7 10 (L (Ba(@,p)) =
peEanS
by the holomorphic character of bending
d
= Re [% ‘t:w+iy:0 (AB (Ba (t7 10)) = Re[Ta([p]) A,B] =

by definition of €2
= RG[Q([p])(TaaTB )] = wl([p]) (Fa7FB) =

by corollary 2.2.14

=w (toﬂtﬁ)

)
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In an analogous manner we prove the second relation. At Fuchsian points
we have:

2] =

t,t F,,F,) = Im[T,
wy o Garts) =ws (F, Fy) = ImlI, A,

(o~ @78
O

The previous theorem provides informations concerning the symplectic
behaviour of Teich(S) inside QF(S). Let (M,w) a symplectic manifold of
dimension 2n. Recall that a submanifold N of dimension n is called: a)
symplectic if w,, the restriction of w to the tangent subbundle of N is a
symplectic form for N, and b) Lagrangian if w, = 0.

Therefore, from Theorem 3.1.8 we have the following

COROLLARY 3.1.9. Teichmiiller space is: a) an w, —symplectic subman-
ifold of QF(S) and b) an w,—Lagrangian submanifold of QF(S).

We are ready now to prove the main theorem of this section:
THEOREM 3.1.10. The expression of Q in global complex F-N coordinates

18

39—3

Q=>"dxr, ndB
=1

O \o o 9 N_as
2(ag) = 2 (or) =

and therefore the holomorphic vector fields c’%ﬂ %are complex Hamiltonian
for the form Q.

Also

NoTE 3.1.11. The coefficients of €2 in the complex F-N coordinates do
not depend on the bending parameters. Recall that if €2 is a (2,0) form and
4,7, ,Z,are holomorphic vector fields on a complex manifold M, then for
the Lie derivative L, of 2 we have:

L,XNZ,Z,)=20Z4,,2Z,) —UN[Z, Z,],Z,) —Z,,[Z, Z,)).
Set Z = 3/6 for some j and Z,,Z, € {Ew’a)\ 1. Slnceﬁ —HC :

74

we obtain that L , Q= 0. Since Z, Z,, Z, are coordinate vector fields, they

BB
commute and therefore we have:
0 0 0
—(—,—)=0
Bﬁj (8@ ’ BAV_ )

a relation which proves that the coeefficients of 2 are independent of the
bending parameters.
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PRrOOF. By duality formula of Theorem 3.1.6, we easily see that the

following hold:
o 0
Q — ) =—0,.
<a/82 ’ a>\fyj > 77

0 0
oL 2=
(aﬁi’aﬁ) 0’

for each 7,7 =1, ...,3g9 — 3. Therefore,

and

39—3

a 0

— U I 2. ! !

Q_ZdA%/\dﬁz—i— Z Q(W’W)“*“””
i=1 1<i<j<3g—3 i g

Straightforward calculations lead us to the following expressions for the real
and imaginary part of €2 :

39—3
w, = ReQ =Y (dly, Adr, — d¥, Adij,)+
=1

g 0
+ Y Re [Q (W’ W)] (dly; A el — d9, A dd,)—
1<i<j<3g—3 i i

0 0

1<i<j<3g—3
and
39—3
w, =ImQ =" (d¥, Adr, —dl, Adi,)+
=1
a0
+ ) Re|Q o ) | (@0 Al — Ly Ao )+
1<i<j<3¢g—3 i i
o 0
+ ). Im|Q o ) | (o Ay, —d9, A d))
1<i<j<3g—3 Vi i
where

o 0 o 0
Q-2 2 )| =0 [, =
relo (55 on, )] = (oot )

and
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o 0 o 0
o (or v )| = ().

When restricting ourselves on the tangent bundle of F'(S) the functions 9,1,
are all zero, therefore in this case

iy o 0
Q= Zdl%/\dTiwL Z Q(W,W> dly, Adly,.
i=1 1<i<j<3g—3 i Vi

We shall show that the holomorphic functions

0 0
Qz]([p]) = Q([p]) (W’ W)

are real valued when restricted to F'(S). Let [p] be a Fuchsian point. Then
by Prop. 3.1.2, we have that in a neighbourhood of [p]

0
BA

where f] gJ are holomorphic functions defined on this neighborhood. Ac-

—fiT J
=T, 9 T,

cording to the matrix equation in Prop. 3.1.2, we obtain by multiplying with
the inverse matrix that

0 A-'BA-L —A-t
a1 T e
Therefore
O\ [ aBat a1
8>\7
where
T
L I
6>\ - 6>\ '"8>\73 ,
g—

Recall that the entries of the diagonal matrix A are of the form T A, or
0 wheras the entries of the matrix B are of the form T _>\ or 0. All these

quantities (and eventually the quantities fj ’91 ~ which are the entries of the
i J

matrices A"!BA™! and —A~! respectively) evaluated on a Fuchsian point
are real, for if [p] is such a point then we have

T, = Y cosg(p(a), p(B)),

pEang

where «, 3 are indices running over indices v,, o;, @ = 1,...,3g — 3. After this,
it is easy to see that at the point [p] we have:
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0 0
Q. =Q =
9 (BA% Oy )

l [ k k .
AR, +g T fET, +65T,) =
I ¢k 1k
LT, + 10 TN +

—i—gfk)\—i—ggT)\

A

which is clearly real when evaluated at [p]. From Theorem 3.1.8 and Wolpert’s
wP

duality formula for w ., we have:
0 0 o 0 o 0
elo (55 5x)] = (o, ) = (o, ) -

o 0 o 0
(-2, 2 )| = =
w92 (oxvany ) = (o any ) =0

at points of F'(S). The holomorphic functions

and

Q= QO A Brse By )

satisfy the assumptions of Lemma 3.1.7. Therefore they are identically zero
in QF(S) and the theorem is proved. O

NoTE 3.1.12. The complex length functions A, are completely deter-
mined by the geodesics «, of the partition of the surface S. But to define
the bending functions [;, we need a choice of partition of S. We deduce that
holomorphic differentials d’3, and complex Hamiltonian vector fields %

depend on the choice of the partition.

2. Weil-Petersson geometry

3.2.1. Kihlerian geometry. Let G be a finitely generated quasi-Fuchsian
group. Denote as usual by € = ,USQ, its region of discontinuity, and I';,,T",
the associated Fuchsian groups induced by the conformal Riemann mappings

p: U—=Q,, x: L—=Q,.
The hyperbolic metric A\, in €2 is defined so that

Aq |QU: AQU Ao |QL: AQL
where the hyperbolic metrics in €, €, are defined by
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AQU = (90_1)*>‘U AQL = (X_l)*A]L

and Ay, A are the usual hyperbolic metrics in the upper and lower half planes
respectively.
Given p € L*®(G) and ¢ € Q(G) we consider the pairing

(1)) = /Q = /Q TS CISE: /Q @)

L
From the right hand side of the equation we obtain that the pairing is well
defined. The finite dimensional spaces R(G) ~ L°(G) and Q(G) are dual
with respect to the pairing.
Let p € L™®(G) and ¢ € Q(G). Consider (uy,p,) = n,(p) and also

by(2) = (600) (2)(¢ (2))% and g (=) = (#x)(2)(X' (2))?. Observe then that
by changing the variable we obtain

(/’L’ ¢)Def(G) = /HJ/F /"LU(lbU + // ML¢]L = (MU,¢U)T6iCh(FU) + (ML’(pL)Teich(F]L)‘

U LTy

Weil-Petersson hermitian product and metric for QF(S).

We start by defining the Weil-Petersson hermitian product in the holo-
morphic tangent and cotangent spaces at the origin of Def(G).

Let p,v € L°(G) and ¢, € Q(G). The Weil-Petersson hermitian prod-
uct is defined by

WP () = / v
Q/G

and the corresponding product on the cotangent space by

hPel(@) (g, 4p) = o

Q/G

Denote by T (@) the cartesian product of Teichmiiller spaces T'eich(I",, U) x
Teich(I',,L) and by

hT(G) _ hT(FlU) % hT(F]L)

the hermitian product, where hT(FU), KT('L) are the Weil-Petersson hermitian
product on LX(I',,U), L¥ ([, L) respectively. Let

g+ L (G) = L (Ty, U) x LB (T, L)

restricted to canonical differentials, and denote by 77, its dual mapping from

Q(,,U) x Q(T',,L) onto Q(G).

U’
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PROPOSITION 3.2.1. hPef(@) = nZ(hf(G))

PrOOF. For u,v € LX(G) we have

WP D (p,v) = / o =
Q/G

:/ (1 1o, (v Io,,) +/ (410, ) o, )

(Qy)/& @)/a

Changing the variables we deduce that this is simply

[ [ s = WO ) ) = (BT ).
U/Ty L/T,
O

After this preparatory discussion we are ready to define the Weil-Petersson
hermitian form on QF(S). Let u,v € L>®(I"), [£] any point of QF(S), and
( 82?#))([5])’ ( az?u))([i])the corresponding holomorphic vectors at [£].

The Weil-Petersson hermitian form of QF(S) is defined by

o 9 .
% ( ) = HOTP [£4]. P )

(€D -

0z(p)” 0z(v)
_ / P [LEu]P. [LE0].
Q¢ /1¢

The Weil-Petersson Riemannian metric corresponding to H2(5) is then
given by
Q ( i i ) _
9ien \ 2w’ 92(v)

Q ( 0 L)}:zRe{ P [L*u)P, [LEv]}.

—9Re{H? [
Retfia 9oty 9o0) S

The following relates the Weil-Petersson geometries of QF(S) and T'(S)

Teich(S) x Teich(S5), the latter endowed with the product Riemannian met-
ric gf _ gT(S) JrgT(§)_

THEOREM 3.2.2. Let U be the biholomorphic Bers’ mapping from QF(S)
onto T'(S). The following relation holds:

g9 = (I)g"
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The pair (QF(S),g®) realises a Kdhlerian manifold. The metric is incom-
plete and the full group of biholomorphic isometries is the modular group

Mod,, (S5).

We need a preparatory lemma first.

LEMVA 3.23. Let [¢] € QF(S), n(€) = (6.6,).

The following relation holds:
(LEU X LglL) ONp =1 © LS.

PROOF. Let g € L®(T) and ¢* : U — 95, x* : L — Qf be the
normalised conformal mappings.Then

(771“6 o Lg)(u) = ((L'f'u o 906)(2’) (©%)'(2) : (Lgu o Xé)(z) (Xﬁ)/(z)> .

(%)'(2)

Now,

(P(:) _ _ pl(wh) Lop)(z)  wf ey e (PTG

(@9)(2) 1= (W) o 8)(2)) I* we IOk
where w¢ is the unique normalised solution to (3) corresponding to £. Let

f&u be the unique normalised solution to (2) corresponding to &, Then fu

and (p%)~! ow? are equal on U : Observe that the normalised functions f%

and w* defined so that w* = (¢¢)~! ow? in U and w* = f& in L are equal,

since they solve the same Beltrami equation in the complex plane. Therefore

onat U we have

(Lo °)(2)

()™ ot = (ff)7!
Consequently,
(¥4)'(2)

€106 (2 _
(Lo o @)( )(wg),(z)

p(f) () o
=16 ((f) ) P &

and in the same manner one obtains

((F5)71(2)) = (Lfvpay) (2),

p((fe)71 (=) S
—1

1= [&((f%) (=) |z§<(ffL>‘1(z>> = (Lo 1) (2).
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PROOF OF THEOREM 3.2.2: The induced product metric on f(S) is

Kihlerian and since ¥ is biholomorphic, so is (U*)g’. We only need to
establish the equality.

Let & € Belt(D), [] € QF(S), 1:(§) = (&, &) and p € L*(L), n(u) =
(py, oy, ). We have that

v <%(u)>m) - (az(auu)’ 32(81@))

For p,v € L*>®(T)

9o <6xa(u)’ aw(?u)) = 2Re{H) <<9L(u) ai()>} -

¢
2Re{hP* (P L4, P, [LEV))).
By proposition 3.2.1 the latter is equal to

(&gl D)

2Re{n", (WP (P [L4], P [LEV])} =

7(ré
2Re{n" ") (n (P [L4]),m, (P [L0]))}.
By proposition 2.2.9 this becomes

2Re{RTT) (P, x P, (LE)], (P, x P)n,. (Lv)))}

which by lemma 3.2.3 is equal to

2Re{hT T (P x P)[(LS % L) (g, 1y )], (P % P)[(LS0 % L) (g, 1y )} =

2 oo (o 72 (o 2) ) =
G

g(f () ( (M) (? )) = (‘I’*Qf)([sn <%(M)’%(V)> .

The metric g9 is incomplete due to incompleteness of gf._Since the full
group of Weil-Petersson isometries in T'eich(S) (resp. Teich(S)) is Mod(S)
(resp. Mod(S)) and g” is a Riemannian product metric, it follows that the
group of biholomorphic isometries of T(S) is just Mod(S) x Mod(S). We
only have to establish the isomorphism of this group with Mod,, (5).
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Let h be a quasiconformal automorphism of the complex plane and v, €
Mod,, (S) acting on QF(S) as follows: For each [w"] € QF(S)

%o ([w]) = ([w" o 7))

We define a biholomorphic self mapping v, of Teich(S) x Teich(S) by the
relation

Vo =Toy, ol
The isomorphism in question is R : Mod,, (S) — Mod(S) x Mod(S) where

R(v,) =,
Clearly, for each v, , 7, € Mod(S) x Mod(S) and R is a group homomor-
phism. Also R is injective:
kerR=1{v,: v, =Por, o ¥ ! =id} = {id}
Finally R is surjective: If ¥ € Mod(S) x Mod(S) then v = ¥~'o5 0V is an

element of Mod, (S) and R(7y) = 7. Therefore, the group of biholomorphic
isometries of Q(S) is Mod,, (S).

Weil-Petersson symplectic geometry. As for the real symplectic
form w® induced by g9 we have

o (ax?u)’ axa(v)> =i (IQ 8xa(u)’ 6w?v)> )

_ 3
2T { /Q e P PRI [Lfy]} ,

which by Theorem 3.2.2 is equal to

where

The mappings

Pr, : T(S) = Teich(S) Pr, : T(S) = Teich(S)
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; aet] T(s) ,,1(S
are the natural holomorphic projections and wW(P ), wW(P) m

plectic forms induced by the Weil-Petersson product on Teich(S), Teich(S)
respectively.

are the real sym-

For later use we finally prove the following

LEMMA 3.2.4. Let [£] € QF(S), p,v € L*°(T') and S : L>(T") — L3(T)
the symmetrisation projection operator. Then

9(%) (axa(u) ’ ax(?V) ) B

o 0 0 0 0 0
e <8x(5’(u))’3m(5(l/))> T e (8x(5(—iu))’3m(5(—iV))> i

wQ 0 0 —wQ 9 0
e <8x(S(—iu))’8x(S(V))> (LeD (Gw(S(u))’Gw(S(—iV))>'

PROOF. Recall that every p € L*°(T") can be written as p = S(u) +
1S(—ip). Therefore

o 9 S
9% < ()’ 833(”)) = 2Re { /Q e P [LEuP, [Lﬁy]} _

2Re {/ P [L8(S(n) +iS(—ip))|P_ [LE(S(v) +i5(—iV))]} =
Q¢ /r¢

since L¢ is complex linear

[913

2Re {/ P [L5(S(p)) + iL8(S(=ip))| P, [LE(S(v)) +iL5(S(—iV))]} =
Q& /T¢

since PQ§ is complex linear

M%Lmﬂﬂwwwﬂmmﬁwwx

X (PR [LE(SW))] — i LS | =

m%éwgmﬁmmmgmww@+
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e §(S(—i —iv —
2R { /Q e T L (S TESCST ))1}

2Im { e Poc B CI [Lﬁ(S(u))]} +

2Im { e Poc (S UDP, [Lf(S(—iv))]}

and the result is obtained. O

3.2.2. Hyperkihlerian geometry. We refer to [Be|, chpt.14, for the
definition of Hyperkdhlerian manifolds and the general results stated below.

A 4n-dimensional Riemannian manifold (M, g) is called Hyperkdhlerian
if and only if there exist two complex structures I and J defined on M such
that:

a)lJ+JI=0

b)g is a Kédhler metric for each I and J.

It is immediate that K = IJ is a complex structure and g is also K&hler
for K. In general, given (z,y,2) € R® satisfying 22 + 2 + 22 = 1 then
xl +yJ + zK is a complex structure on M parallel with respect to g. We
choose one of all those complex structures (say I) and we consider M as a
complex manifold for I. An important fact about Hyperkéhlerian manifolds
is that their Ricci curvature tensor is zero.

We also always have that

A Hyperkdhlerian manifold is a complex symplectic manifold.

Indeed the complex 2-form 2 defined by
QX,)Y)=9g(JX,Y)+ig(KX,Y)
is non-degenerate, parallel with respect to g and I-holomorphic.
The converse is true in the case where M is a compact manifold but not
known to be always true otherwise. Examples in the non-compact case were

given among others by Calabi [C], Hitchin [H].

In this subsection we shall prove
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THEOREM 3.2.5. The space QF(S) with complex structures 1,,J, and

the Weil-Petersson Riemannian metric g% is a Hyperkdihlerian manifold.

PRroOOF. The proof will be given in steps. Since we already have that
(QF(S),49, I,) is Kéhlerian it remains to show the following: O

-There exist complex operators J,, K, defined on QF'(S), skew commut-
ing with 1.
-These operators are parallel with respect to g%.

STEP 1. Almost complez operators.

We had seen in 2.2.2 that there exists a naturally defined complex op-
erator J on L% (T") skew commuting with the standard complex operator I.
Recall that

in(z) =z€U
—ip(z) z€L

706 =

for € L°°(T"). We shall define almost complex structures J,, K, everywhere

on QF(S) so that the Riemannian metric g% induced by the Weil-Petersson
product remains invariant by their action. We focus our attention on J,.
Let p € L*>(T") and [€] any point of QF(S). Let

(%) ’ (%(NJK] ’ (%('“Q([s])

(13))

be (see 2.2.2) the associated tangent, holomorphic and antiholomorphic tan-
gent vectors at [£] respectively. Speaking in complex terms, we may define

J, in terms of two operators

! . (1,0) (0,1)
() TUOQE(S)) —» TOV(QE(S)

n . (0,1) (1’0)
o) * Ty (QF(S)) = T P (QF(S))

satisfying the conditions

at each point [¢]. Set
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1 0 =P [LE(J(p))] = 0
oo (m>qg]) = Pl B0 = (m>(m)

0

(73) e (m) - = P [L5(J(1))]

Speaking now in real terms we set

I
N
Q
2
=@
=
N——

=

9 0
(o) e (W) =2Re{P , [LE(T ()]} = <m>

((3)) ((13))

In an analogous manner an almost complex structure K, is defined on QF(S)
induced by the complex operator K of L>°(T") given by

K ={ 4 2e)

The above lead us to the following:

-(QF(S),J,) and (QF(S), K,) are almost complex manifolds.
STEP 2. Almost hermitian structure.

An almost complex Riemannian manifold (M, g, ) is called almost her-
mitian if for every two vector fields X,Y of M the following holds:

gUIX, 1Y) = g(X,Y)
We shall prove:

-(QF(S),99,J,) and (QF(S),9%,K,) are almost hermitian manifolds.

PRroOOF. We only prove our first assertion, the proof of the second one is
then immediate. Let [¢] € QF(S) and p,v € L*°(T"). It suffices to show that

gQ<J8,J8>:gQ<8,a>

@€y \ ¢ 0z(p)’ ?ox(v) aen \ Ox(p)’ o0z (v)

It is convenient to prove the above relation firstly in the case where pu,v €
LP(T). It is obvious that J is then just I. Therefore

0 0 0 _ 0 0 0 B
e (JQ 8w(u)’JQ 830(1/)) Y (&m([s ()’ ax(IS(V))> N
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0

* T 9 =
(U*g") I.(w)’ 896([5(7/))> B

(1€h (aw(

7 ( 0 0 ) ( 0 0 ) =
Jowten \ Daipe,) 0x(—ipn,) " Oulivgy)’ du(—iv,)’) ~
g (9 o\, §®) 0 0 _
Ueyh \ Oz (ip, )’ Ox(iv,) (&) \ Ox(—ip, )’ Ox(—iv,)
g7 9 9 +gT(§) 0 0 =
b \Bxljeg) B2) ) T 90 \ () Do)

. ) ) 0 0
gg(m)) ((am(%)’ 893(%))’ (Bx(y,u)’ 0x(1) )>

5" (et 2) = (oo 3

Additionally, by the skew—commutamwty of J, and I, and the above
relation, we obtain that for y,v € L3(I') the following holds:

o <JQ 630(? ) Qaﬁ@) = (axa(u)’ aﬁm)‘

We apply Lemma 2.1.4 to get

) ) ) )
gin (JQ 92 @ 8x(y)> ZQQED (39&( T(n ))’895(J(1/))> -

- 9 0 9 9
G (396(5(J(u)))’ a96(5(J(1/)))> " Jien (3%’(5(—U(u)))’396(5(—71J(V)))> i

0 0 9 0 9 9
e (%(S(—um)))’ aw(su(u)))> @ (3w(S(J(M)))’ aw(S(—z’J(u))))> |

Since J skew commutes with I this is

o 9 9 o 0 )
Taen <3w(S(J(u)))’ aw(su(u)))> " 9da (ax(su(zm))’ ax(S(J(z’u)))> i

e 0 0 L@ 0 0

(D \ 0x(S(J(ip))) " 0x(S(J(v))) D\ 0x(S(J (1)) 0x(S(J(iv))) )
On the other hand J and S are commuting operators: SJ = JS. Thus, the
previous expression becomes
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o 9 o 0 0
Taen (axu(smm’ aw(J(S(w») e (axu(swm’ ax(J(S(z’z/)))) i

) 0 0 0 0 0
+UJ A 9 —w ) B .
D\ 9z (J(S(ip))) " 0x(J(S(v))) D\ 9z (J(S(w))) " 0x(J(S(iv)))
The product is invariant and the symplectic form is skew-invariant in the
case of symmetric differentials, therefore we conclude that the previous is
equal to

o 0 0 0 0 9
e <8m(5(,u))’ 83:(5’(1/))) * 90 <3m(5(iu)) ’ 895(5(2'1/))) *

e 0 0 e 0 0
(& <396(5(iu))’396(5(7/))> (S (39«“(5(u))’ 393(5(2'7/))) '
But this is

o o B, 0 0 9
e <8x(S(u)) ’ 895(5(1/))) ") (8x(S(—z‘u)) ’ 8m(5(—iv))> i

0 0 0 0 0 0
+w . ) —w ) .
@ \22(S(—ip) 02(5() ) ~ i \ 9a(S(w)’ Da(S(—in)
which by Lemma 3.2.4 is just

g(i]) (%(M)’ %(VJ '

The proof of the J,-invariance of the metric is thus completed. O

STEP 3. Integrability and Kdhlerian structure.

By Newlander-Nirenberg theorem an almost complex structure J on a
manifold M is complex and therefore M is a J-complex manifold iff J is
integrable, that is also equivalent to say that J has no torsion. If the manifold
is almost hermitian let V be the Riemannian connection. The connection is
said to be almost complex if V,J = 0 for all vector fields X of M. If the
latter happens, then M is a J-complex Kéahlerian manifold.

Let V be the Riemannian connection corresponding to gQ . We shall prove

-V is almost complex with respect to J,, that is

V o J =

EEIO

for every p € L®(T).
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PRrROOF. It is sufficient to prove the relation

B B
Vs (JQ 835(1/)) =7 (Va%w ax(y)>

for all p, v € L®(T'). Start from V, the Riemannian connection of 7(S). This

is I g ¥ IT(E) almost complex. We assert that it is also I'? =TI % (—IT(E))

almost complex. Indeed, one verifies at once that I ; is a complex operator

for T(S) and so, its torsion N is zero. In addition, gT remains invariant
under the action of ; < and one verifies that the following holds for the

corresponding fundamental form Q' :
! T(S T(S
Q = T _ T(S)

and therefore ' is closed. Now if [i,7,& € L>(T',U) x L>=(T", L) then the
following condition is satisfied ([K-N], Prop. 4.2, Chpt IX, p.148):

s 0 o 0 0 o
4 T I’ — = Q, I, I, = -
g <(Va%m ’f)ax(l/))’ax( )> 6d (630(/’2)’ 792(D)" 7 g ))

o9 a0 - o 9 9
e (ax(m’ax(ﬁ)’ax@)) e (N (ax(m’agco) e ax(m>'

Since dQ¥ = 0 and N = 0 we conclude that

V o I' =0.

o2(m) T

We now distinguish two cases: Suppose first that v is a symmetric differen-
tial. Then we can then verify straightforward that at every point [¢] and for
every u € L>(T"), the following relation holds:

oo (gagy) = e 10w (55 o

((13))

Since I ’f is an integrable operator and W is a biholomorphism, we have

9 9
Vs (JQ 3m(1/)> =7 <Vaf’m 81:(1/))

for every p € L>°('), and v € LY, (T). Let now v be an arbitrary differential.
Since
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we have:

since IQ and JQ skew-commute

\%

w7 (%) ~Vasleda (%)

since I, is integrable

Vot (g5m) o (Vate (st

by the first case

7o (Vs (s ) =% (Wt () -

again by skew-commutativity

7o (Wt (asion)) + 7o (i (arcscm)) =

by integrability of I,

7o (Yt (asm) ) + e (Ve (m)) -
o (%t (a5t5m) * Vit (05w -

(5 (s r ) -

0
_JQ(V%(M)—BJJ(V))'

It is now evident that the connection is also almost complex with respect to

K,,. O
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The proof of theorem 3.2.5 is here completed.

A series of consequenses of Theorem 3.2.5 is following: The first one is
obvious:

THEOREM 3.2.6. The fundamental forms corresponding to the Kaehle-
rian manifolds (QF (S), g%, J,), (QF(S),g%, K,) respectively given by

wg[sn (&ju)’ 8:@)) - g(i]) <JQ 3906(#)’ &Ua(y))

wg[sn <8x(?,u)’ 8;?1/)) - (?fD (KQ 51'8(,“)’ 393”)>

are closed.

THEOREM 3.2.7. i) Teichmiiller space as the set of Fuchsian deforma-
tions F(S) is: A Lagrangian submanifold of QF(S) with respect to w? and
w? and a symplectic submanifold of QF (S) with respect to le.

i) Bers’ slices are symplectic submanifolds of QF (S) with respect to w@
and Lagrangian submanifolds of QF (S) with respect to le and w?.

PROOF. i) Let p,v € LY(T) and [{] € F(S) (i.e £ is a symmetric Bel-
trami differential). We shall prove that the restriction of w? to the tangent
subbundle of F(5), is equal to 0. We calculate

QM{/ %w%&ww+/ a@%ﬁM&@%ﬁm}

u/ré L/Té§

Note that for ¢ € Belt, (T'), L¢ maps L¥(T) onto Lgo(Fg). Therefore, by
changing the variable in the right integral and taking out conjugates, we
obtain that the above expression is equal to

—2Im { / P,[Lp] P, [LEv] + /

u/Té v/ré

—2I'm {2Re {/ PU[qu]PU[Lﬁy]}} = 0.

U/Té

%ww%ww}z
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We prove now that the restriction of w? to the tangent subbundle of F(S),
is equal to 2wy, ,. Recall that if u € L2°(T") then J = I;. We have then

WQ»S]) (3938( )’ 395(?7/)) N

2Re{ / P, [LE(i)| P [L60] — / PILE (i) P, [Lfy]}:

u/ré L/T¢

—2Im{/ P,[Lép)P,[LEv] — / P, [Ly] Léu]}
u/ré L/ré
—4Im {/

u/ré

- 9 0
PU[L%]PU[L@]} = Wweg <8m( )’ ax(u)>'

Finally, we prove that the restriction of w? to the tangent subbundle of
F(S), is equal to 0. Indeed, if p € L3(T) then

ke ={ 45 2E]

which is not symmetric and therefore K, = 0 when restricted to the tangent
subbundle of F(S). Thus

waD (39:8( )’ 3931/)) ="

ii) With no loss of generality we deal only with the Bers’ slice

B(S) = U1 (Teich(S) x {[S]}).
Let p,v € L>®(I',U) and [£] € B(S) (i.e £ =0in L.

wQ&D <3ma( )’ aL(V)) B

> TrET 9, 9]
- ¢ €]y = -
#m {/Q%/Fs PQ% L N]PQ,% L V]} WP (Bx(u)’ 330(1/)) '

In this manner the restriction of w¥ to the tangent subbundle of B(S) defines
a symplectic structure for B(S). It can be easily checked that

T (') % {0}) = (9 [ 5s))
where W is here restricted to B(S). Now, if u € L>®(T",U) then
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106 ={ g 150
and
ke ={ 5 11

Therefore, J, and K, are zero when restricted to the tangent subbundle of
B(S). Thus

wgm (%@)’%@)) :wg[ﬁn (%@)’%@)) ="

THEOREM 3.2.8. Teichmiiller space F(S) is a complex submanifold of
(QF(S),Jy)-

O

Proor. Consider the immersion
Lt (L (D), Is) — (L72(T), J)
given by

Ls(1) =p

It is clear that ¢4 is a holomorphic mapping. From ¢, we obtain the immer-
sion

tp 1 (F(S), 1) = (QF(S), J,)

sending each [¢] to itself for £ € Belt,(I"). We only have to show that ¢}, is
almost complex, i.e satisfies

JQ o (tp)s = (tp)roly

Indeed, consider any vector field %(u)’ p € LP(T). Then

(Jo o (tp)«) <ami(u)> =Jq (395(3@))) - am(,](i )

~seitro = (g ) = o1 ()
Ox(ts(Is(n) 77 \ Oz (I (1) TN o))
Therefore, (cf. [K-N], Lemma of section 8, Chpt. IX) ¢, is holomorphic

and (F(S), 1) is a complex submanifold of (QF(S), J,,). O



3.3. COMPLEX SYMPLECTIC GEOMETRY AGAIN 71

3.3. Complex symplectic geometry again

In this section we prove that the complex symplectic structure of QF'(S)
constructed in 3.1 is that obtained from the W-P Hyperkéhlerian metric.

We denote by Q% the closed holomorphic (2,0) form induced from the
Hyperkihlerian metric g% by the relation

Q?ED (B%W)’ami@» :wg[w <3%(u)’3xi@)> Hw’gm (B%W)’ami@»

This form, as we have mentioned in the beginning of section 3.2, defines
a complex symplectic structure on QF(S). We shall prove here the following

THEOREM 3.3.1. Q@ = 2Q.

PrOOF. By Theorem 3.2.7 and Theorem 3.1.8 we obtain that the holo-
morphic forms Q, 2Q are identical in the tangent subbundle of F(S). In
other words if we express the holomorphic form Q% — 2Q in global complex
F-N coordinates A, = 1,, +9,, B8, =7, +¢,,i=1,...,3g — 3 and let

Fa@ = FQB(AW e >\'Y3gf3’ By ﬁ?)g—?))’
be the coordinate holomorphic functions of Q% — 2, then

F, (yysoos lyggss Tys ooy Tay_35 0, 40,0,0,...,0) = 0

Since (ly;,7;) € (0,400) x R for each i = 1,...,n,[W4] we apply Lemma
3.1.7 to get F_, =0. Thus Q% and 29 coincide everywhere in QF(S). O

DEFINITION. Let (M,) be a complex symplectic manifold and N a
complex submanifold of M. We call N complex symplectic if the restriction of
 to the holomorphic tangent subbundle of N provides a complex symplectic
structure for N. We call N complex Lagrangian if  vanishes identically in
the holomorphic tangent subbundle of N.

THEOREM 3.3.2. Bers’ slices are complex Lagrangian submanifolds of
(QF(S),09).

PROOF. By Theorem 3.2.7 ii) Bers’ slices are Lagrangian submanifolds
of QF(S) with respect to both le, w? and the result follows. O
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