UNIVERSITY OF CRETE
DEPARTMENT OF COMPUTER SCIENCE

Actions Theories in Temporal Databases

NIKOS PAPADAKIS

DOCTORAL THESIS

HERAKLION CRETE GREECE
MARCH 2004



Copyright by Nikos Papadakis, 2003
All Rights Reserved

ii



Actions Theories in Temporal Databases
Nikos Papadakis

DOCTORAL THESIS
Department of Computer Science

University of Crete, Greece

Abstract

Reasoning about action and change has been one of the main research themes of the
knowledge representation and planning communities of the last 15 years. Action theories
providing an axiomatic basis for managing change are applicable to a wide area of disciplines
including software engineering, (cognitive) robotics and data/knowledge base systems. In this
thesis, we first review action theories proposed for reasoning about the dynamics of database
systems. We examine how these theories deal with the three infamous problems associated
with this area, namely: (a) the frame problem, which refers to the identification of predicates
or functions that remain unchanged as a result of action execution, (b) the ramification
problem, which refers to determining the indirect effects of actions, and (c) the qualification
problem, which refers to determining the preconditions which must hold prior to the execution
of an action. We briefly describe the solutions which have been proposed for these problems
and position these problems in a temporal database context. We also introduce an abstract
solution for the frame and qualification problems in temporal databases based on the language
of situation calculus.

In this thesis we concentrate on the ramification problem. The ramification problem is
of great importance to database systems. The users and designers may not know exactly all
the indirect effects of their transactions and such indirect effects mays violate the integrity
constraints. A solution to the ramification problem permits the designers to discover errors in
their design and to correct them. All the solutions to the ramification problem in conventional
databases are based on the idea of the persistence of fluents. This means that nothing changes
until an action takes place. The above solutions cannot produce automatically the non per-
sistent effects. If such effects exists, they have to be described manually. This is very difficult
and impractical in the large databases with complex transactions. In temporal databases the
predicate and function values can change as time progresses without any action taking place.
Thus the above solutions cannot solve the ramification problem in temporal databases.

We examine the ramification problem in the following cases: (a) sequential action execu-
tion both for instanteous actions and actions with duration when an action may have effects
only in the future, (b) concurrent action execution both for instanteous actions and actions
with duration when an action may have effects only in the future and (c) sequential action
(instanteous) execution when an action may change beliefs about the past. The problem in the
last case is very complex with many philosophic aspects. For each case, we propose a solution

iii



which permits to the designers to determine the effects of their transaction, to discover the
errors and to correct them.

Supervisor:
Dimitris Plexousakis,
Professor of Computer Science,
University of Crete

v









To my parents

vil



Acknowledgments

First, I would like thank my supervisor Prof. Dimitris Plexousakis, for providing me with
the quidance and support over course of my research. Prof. Plexousakis has spent many
hours with me discussing all of the topics of my thesis and writting papers. I would like
thank the other members of my advisory committee (Prof. Grigoris Antoniou and Prof. Panos
Constantopoulos). More importantly, i want to thank them for teaching me what constitutes
quality research.

I would like to thank of my disseration committee from the University of Crete, Professors
Vassilis Christophides, and George Georakopoulos, as well as the external members Professors
Stavros Christodoulakis and Manolis Koubarakis (Technical University of Crete), for their
helpful comments and questions.

Especially, I want to express my gratitude to Professor Grigoris Antoniou. Prof. Antoniou
has spent many hours with me discussing my thesis and writting papers.

Finally, T would like to acknowledge my parents and my brothers and my sister for their
support.

viii



Contents

1 Introduction 1
1.1 Consistency of the Database . . . . . . ... ... ... ... .. ... ... ... 1
1.1.1 The Importance of the Ramification Problem in Databases . ... . .. 3

1.2 Action Theories . . . . . . . . . L e e e e 4
1.3 The purpose of this Thesis . . . . . . . . . . . . . .. 5
1.4 Organization of Thesis . . . . . . ... ... ... L . 6
2 Action Theories in Conventional Databases 7
2.1 Frame Problem . . . . . . . . ... 7
2.1.1 Monotonic Approach . . . . . . . ... L 7
2.1.2 Default approach . . . . . ... o oL 8
2.1.3 STRIPS Approach . . . . . . . ... ... ... . . 9
2.1.4 Situation Calculus . . . . . .. ..o o o Lo 9
2.1.5 The solution of Reiter . . . . . ... ... ... oL 13

2.2 The Ramification Problem . . . . .. ... .. ... ... 000, 15
2.2.1 Minimal Change Approach . . . . . ... ... . ... .......... 16
2.2.2  Categorizing Fluents . . . . . ... ... ... L L oL 17
2.2.3 Causal Relationalships . . . . . . .. .. ... ... 0oL 20
2.2.4  The solution of McCain and Turner . . . ... ... ... ... ..... 24
2.2.5 Lin’sSolution . . . . . . . ... e 28
2.2.6  Sandewall’s Solution . . . . . . . .. ... .. Lo oo 32
2277 Fluents Calculus . . . . . . .. ... .. o e 33

2.3 The Qualification problem . . . . . .. .. ... o 0 L o oL 38
2.3.1 The solution of nearest world . . . . . .. ... ... ... ... .. 40
2.3.2 Explicit Solution . . . . . . .. .. Lo s 41
2.3.3 Fluent Calculus and the Qualification Problem . . ... ... ... ... 42

2.4 Qualified Ramifications . . . . . ... ... ... ... 0 o 42
2.5 SUMMATY . . . ot et e e e e e e e e e e e e e e 45

ix



3 Action Theories in Temporal Databases 48

3.1 Introduction to the Action Theories in Temporal Databases . . . . . . . .. .. 48
3.2 Situation Calculus and Time . . . . . ... .. ... ... 48

3.2.1 Explaining Observations . . . . . . . .. .. ... .. oL 49

3.2.2 External Events . . . . . . .. ... .. Lo 49
3.3 The Frame and Qualification problems in Temporal Databases . .. ... ... 50
3.4 The Ramification Problem in Temporal Databases . . .. .. ... ... .... 57
3.5 Previous Work in the Ramification Problem in Temporal Databases . .. . .. 58
3.6 Extended Situation Calculus . . ... ... ... . ... ... ... ... . 64

3.6.1 Fundamental Axioms. . . . . . ... ... ... oL 66
3.7 symmary ... L e e e e e e 67

4 The Ramification Problem in Temporal Databases - The

Solutions 68

4.1 Sequential execution . . . . . . . ... Lo e e e e 68

4.1.1 Fluent Dependencies . . . . . . . . . . . Lo e 71

4.1.2 Algorithms for the production of staticrules . . . ... ... ... ... 78

4.1.3 Algorithms for the Evaluation of Dynamic and Static Rules . . . . .. 85
4.1.4 The ramification problem when the direct and indirect effects of an action

refer only to future situations . . . . . .. ... ..o 94

4.1.5 The ramification problem when actions have duration . . ... ... .. 99

4.2 Concurrent Execution . . . . . . .. .o Lo o e 108

4.2.1 Concurrent execution of Instantaneous Actions . . . . . ... ... ... 108

4.2.2 Concurrent execution of actions with duration . . ... ... ... ... 115

4.2.3 Concurrent execution of Instantaneous Actions when the effects refer to

the future . . . . . . . . L 122
4.2.4 Concurrent execution of Actions with duration when the effects refer to
the future . . . . . . . . L 124
4.3 Extension of the solution for the Sequential Execution . . . . . ... ... ... 127
4.4 Symmary . . . . . o .o e e e e e e e e e e e e e e 128



5 Changing the belief about the past 130

5.1 Motivation . . . . . . . L e e e e e e 130
5.2 Further extensions to the Situation Calculus. . . . . . .. ... ... ... ... 137
5.3 Fluent Dependencies . . . . . . . . . . .. . .. e 141
5.4 Production of StaticRules . . . . . . . ... ... o o Lo Lo 141
5.5 Case 1: Change in the past may affect all the fluent . . . ... ... ... ... 142
5.6 Case 2: only some fluent could change in thepast . . . . . .. ... ... .... 150

5.7 Case 3: the effects of changes of the past start to hold from the current time point157

6 Conclusions and Future Work 161
6.1 Summary of Contribution . . . . . .. ... ... o oL oL 161
6.2 Future Work . . . . . . e 163
6.3 Comjectural . . . . . . . . L e 165

xi



List of Figures

© o0 N O Ot ks W N =

e e o e
B oW N = O

Simple electric circuit . . . . . ..o Lo Lo Lo 15
Complex Circuit . . . . . . . . o o o o e e e 18
causal relationship . . . . . . . . .. L L L L L 21
Qualification - Movement thebox . . . . . . . . . . . ... ... ......... 40
Qualifications - A complex circuit . . . . . . ... ..o oL 43
The correspondence among Time-Actions-Situations . . . . . . . . ... .. .. 59
Thielscher’s Circuit . . . . . . . . . .. L o e 72
A more complex circuit . . . . ... L.l 73
The scenarios of execution . . . . . . . ... ..o Lo Lo 134
The correspondence between Time-Actions-Situations . . . ... ... ... .. 137
The effects of the past . . . . . . . .. .. . o 139
The branching axes . . . . . . . . . . . o e 140
The effects in the past . . . . . . . .. ... L 147
The scenarios of execution . . . . . . . .. ... o oL Lo oo 157

xii



1 Introduction

A database is a collection of data and relations among them. With the term data we mean
facts which have evident importance and can be stored. A database has three basic attributes,
namely

1. It represents a few views of real world which are called mini-worlds. Any change in any
of the mini-worlds will be reflected in the database.

2. The data which are stored in a database are connected among them.

3. The database is created in order to serve a concrete aim.

A world represented in a database is not static. This means that it changes continuously.
These changes are reflected in the database via the change of data which are stored in the
database (with insertion of new data, deletion or changes in the values of the data).

For example, assume a database in which the grades of the students of a department are
stored. The students receive new grades in courses in which they were not examined in the
past (appending new data) or improve their grade in some course they had been examined
previously (change of value of the existing data).

Data are subject to restrictions (constraints) which refer to the values the particular rela-
tionships that may exist among them may assume. In the previous example a constraint is that
the grade that a student takes cannot be grater than 10 or smaller than 0. Another constraint
can be that the grade should always be an integer or decimal but the decimal part must be
0.5. There may exist more complicated constraints as e.g., when a student is re-examined in a
course then we must store the grater of the grades received. All these constraints are named
integrity constraints.

In a database the data that are stored should satisfy the integrity constraints in order for
the database to be considered consistent.

1.1 Consistency of the Database

The guarantee of consistency of data that is stored in a database is a very important and
difficult problem. The consistency of data, is determined by the satisfaction of integrity con-
straints in the different database states. A database state is considered valid only when all
integrity constraints are satisfied.

Static constraints express properties that should hold in any database state. Syntactically,
all references to the database state in question are made through predicates or functions that
are interpreted in the database state whose consistency needs to be determined. Dynamic
constraints on the other hand, may involve the comparison of predicate truth values in several



states. These cannot be evaluated in a single state. Transition constraints are a special case of
dynamic constraints. They express properties related to the transition from one state to the
next.

In databases without time, static and transition constraints are enough in order to ensure
the consistency of the database. The presence of time in databases (temporal databases) how-
ever renders essential the utilization of dynamic integrity constraints. This happens because
the execution of an action (delete, update, insert) in such databases will have consequences
not only in the current but also in past/future situations. Such an example is a constraint
referring to the grade of students which attend for a second time some course and finally take
a smaller grade in the course than the grade they had originally received. Then, the older
grade must be kept and not the new grade. This constraint can be expressed as the following
formula of many sorted 1st-order predicate calculus:

(d/Date 1/Lessons st/Student) grades(l, st,d,gr) A grades(l, st,today, gr') A d < today D
!
gr > gr.

In order to enforce this constraint the following condition must be verified when a new
grade is assigned on a date d’ to the student in the same lesson 1 that he previously attended:

—grades(l, st,d’, gr') A gr' < gr

This condition is sufficient in order to ensure that the constraint will not be violated. The
general problem of ensuring database consistency is very hard. The difficulty comes from
the potential number of database states in which conditions must be evaluated and from the
difficulty in determining the satisfaction of logical formulae. This becomes even worse if we
take into consideration the indirect effects that actions may have and which arise because of the
presence of rules that implicitly generate consequences (deductive rules, integrity constraints).

Consider the above example and assume that apart from of the grades, the database con-
tains information about which course the student attended and which is the current average
grade. The action take — new — grade(p,l, gr,t) means that the student p has taken the grade
gr in the course [ at time point ¢. In order for the action take — new — grade to execute,
the student must attend the corresponding course. Thus, the precondition which must hold in
order to enable the execution of the action take — new — grade is that the student attends the
course [ at time ¢t. The problem which refers to the determination of the preconditions of an
action is called the qualification problem.

As we have already mentioned the action take — new — grade(p,l, gr,t) may or may not
change the contents of the database. This depends on whether the student p has already



received a grade in the course . If s/he has then, if the original grade is greater than the
last, the action take — new — grade(p,l, gr,t) does not change the content of the database;
otherwise the action change the content. The problem which refer to determining what remains
unchanged by an action is the frame problem.

Assume that the database stores information about students that have graduated. A
student graduates if s/he succeeds in more than 30 courses. Thus, at each time point the
database must satisfy the integrity constraints

grades(ly, st,dy,gr1) A ... A grades(ly, st,dy, gr,) An > 30 D graduate(st) (1)
grades(li, st,di,gr1) A ... A grades(ly, st,dn, grn) An < 30 D ~graduate(st) (2)

where gr; is the grade that the students takes at the course /;. Assume that a student st
has succeeded in 29 courses. When the action take —new —grade (refers to a new course) takes
place and changes the content of the database, the first integrity constraint is not satisfiable in
the new database state. In order for it to be satisfiable the predicate —graduate(st) must be
changed to graduate(st). This change is the indirect effect of the action take — new — grade.
The indirects effects of an action arise because of the integrity constraints. The problem which
refers to the determination of the indirect effects of an action in the presence of integrity
constraints is the ramification problem.

1.1.1 The Importance of the Ramification Problem in Databases

The ramification problem is of great importance to database systems. Database users and
designers may not known exactly all the indirect effects of their transactions. This means
that the users/designer can execute a transaction which has as result to violate the integrity
constraints. The most obvious solution is the designer and the users determine manually all
the indirect effects. The problem with this solution is that in a large database with a large
number of constraints and transactions, the indirect effects may be too many to be taken into
account manually. Thus, we need an automatic way which determines the indirect effects of
transactions and enables the verification of constraints.

A solution to the ramification problem permits to the designers to realize the effects of
their design. For example a transaction can produce an inconsistent situation or can produce
a situation which contains undesirable indirect effects. This means that the designers can
discover erroneous specifications. This discovery is very difficult or impossible to be done
manually. The solution of to ramification problem permits to the designer to discover errors
in the design of database (database schema, integrity constraints, transactions) and redesign
the database if this is necessary.

The solution to ramification problem is necessary in databases because it en-
ables the design of correct, reliable and consistent databases. Many solutions have



been proposed for the ramification problem in conventional databases. As we explain below
none of them address in satisfactory manner the ramification problem in temporal databases.

When time is present an action could have an effect which holds for a time interval. For
example consider the action registration(p,l,t) which means that the student p registers for
the course [ at time ¢. This means that the student attends the course 1 for the next semester.
Assume that the duration of the semester is 6 months. Then the predicate attend(p,l,t1) is
true if t < ¢; < t+ 6. After the time point ¢ + 6 the predicate attend(p,l,t1) is false without
any action taking place. This means that the effects of an action in a temporal database may
not persist. All the solutions to the ramification problem in conventional databases are based
on the idea of the persistence. This means that the non persistent effects must be described
manually. In most cases, this is impossible because the users/designers do not known all the
non-persistent effects. If the designers determine all the indirect effects manually then they
solve the ramification problem manually. As we have already explained this is practically
impossible in large databases. For the above reasons, the solution to the ramification problem
in conventional databases cannot be used in the temporal databases.

The purpose of this thesis is to address the ramification problem in tempo-
ral databases. We describe the ramification problem in temporal databases and
provide a solution which encapsulate non persistent effects.

1.2 Action Theories

We can assume that a database system is an agent which interacts with its environment. This
agent needs precise knowledge as to the effects of its actions in order to act purpose-oriented
and so to achieve pre-determined goals. The latter requires to draw the right conclusions from
this knowledge in view of particular situations. As we can conclude all effects of the agent can
assume as effects which produces by the execution of some actions. Thus, is very important
to be able to describe these effects. Action theories providing an axiomatic basis for managing
changes which happens as result of the execution some actions.

An atomic database transaction can be considered as an action. Thus, we can assume
that the changes in a database occur as results of actions. Actions have direct and indirect
effects which may affect the integrity constraints. This means that the database may not be
consistent after the execution of an action. From the execution of the actions arise the three
infamous problems frame, ramification and qualification which we presented above and
we describe in detail in the following sections. First, we are produce some definitions about
action theories as Thielscher [122] gives these.

”An action theory consists of a formal language that allows adequate specifications of
action domains and scenarios, and it tells us precisely what conclusions can be drawn from
these specifications.”

In order to define these more formally, we must give a definition of all the crucial terms
used.



First, we must define the action domain. By the action domain we mean any aspect of the
world worth formalizing in which the execution of actions plays a central role.

Second, we must define the action scenario. By action scenario we mean exactly these
particular situations which give us some information for past, current and future state of the
world (which we describe in the database).

Finally, we must determine a way that allows us the specification of actions and their effects
as naturally as possible.

Action theories have much in common with logic. They are based on a formal language
and they include an entailment relation among the expressions in this language.

1.3 The purpose of this Thesis

In the database literature the frame, ramification and qualification problems have been ad-
dressed extensively. All the solutions which have been proposed describe how the transition
from the current state to the next is realized. In this case, the truth values of predicates and
functions do not change unless an action takes place.

In temporal databases, this assumption is very restricting because the effects of an action
could refer to a temporal interval and not to the next situation only. This happens because
when time is present an action could have as effect that the fluent f holds for ¢ time points
after the execution of an action. The solutions which are based on the idea of the persistence
of fluents cannot encapsulate effects like the above. Because these solutions assume that any
change occurs only after an action take places, if we want to represent no persistent effects we
must define a "new” action for each non-persistent effect which shows the changes. Also we
must determine the time of execution for each "new” action. This has two major disadvantages.
First, if some other action cancels the non-persistent effect then the corresponding "new” action
must be cancelled. Second, the number of actions may greatly increase because we must define
one action for each non persistent effect of each action( e.g. if each action has two non persistent
effects then if A is the number of actions we need 2 x A extra actions). Thus the complexity
increases significantly.

Previous proposals about addressing the ramification problem have employed so called
causal relationships [21, 82, 43, 124, 125]. They come short in adequately addressing the
problem in a temporal context because they only determine the direct and indirect effects
of actions for the subsequent situation. Also they are based on the persistence of fluents
assumption (i.e., no fluent may change truth value without an action taking place). The same
weakness characterizes all other solutions of the ramification problem in conventional databases
(e.g., [131, 62, 63, 64, 14, 50, 51]).

The most prevalent previous works, in temporal databases, are those by Reiter [105],
Reiter and Pinto [101, 102] and by Kakas [52, 53]. Reiter has suggested an extension of the
situation calculus in order to encapsulate time and axioms which ensure that in each legal



situation all natural actions have been executed. A natural action is an action which executes
in a predetermined time moment except if some other action has changed the time of execution.
Reiter has extended the fundamental axioms of the situation calculus in order to determine
which fluent is true at each time moment. Kakas [52, 53] proposed the language E which
contains a set ¢ of fluents, a set of actions, and a partially ordered set of time points. F
employs axiom schemas for the description of the world. All these are works based on the idea
of the persistence of fluents.

The assumption of the persistence of fluents makes easier addressing the problem but also
restricts the problem very much. In the case that there are no persistent effects the above
solutions cannot encapsulate them except if we describe explicitly all the effects.

In a temporal context, we need to describe the direct and indirect effects of an action not
only in the immediately resulting next situation but possibly for many future situations as
well. These effects refer to a time interval and not to the next state. This means that the
database state could change without an action taking place.

In this thesis we focus on the ramification problem which has many different views in
temporal databases.

1.4 Organization of Thesis

The rest of this thesis is organized as follows:

In chapter 2 we present the frame( 2.1), the ramification( 2.2) and the qualification ( 2.3)
problems in Conventional Databases and we review the most important solutions that have
been proposed.

In chapter 3 we address these problems in temporal databases and we propose one solution
for the frame and qualification problems. Also, we present the most important previous work
on the ramification problem in temporal databases and we extended the situation calculus in
order to encapsulate time.

In chapter 4, in section 4.1.1 we present an algorithm in order to discover the dependencies
which there are between the fluents, while in the rest section 4 we address the ramification
problem in temporal databases with many different assumptions (when an action changes only
the current and the future) and we present solution of all these cases.

In chapter 5 we address the ramification problem in case that an action could change the
beliefs about the past.

Finally, in chapter 6 we present the conclusion of this thesis and the future works.



2 Action Theories in Conventional Databases

2.1 Frame Problem

As it was explained in the previous chapter the ability for comprehension of changes that
happen in a database is very important.

For example assume a database in which we store the things that exist in a room with their
place. Assume that there exists a bookcase with books and a lamp on a table. When we move
the lamp from the middle of table to an end, the position of the bookcase or books does not
change. When we move the bookcase in a new place then the position of books as well as all
the things which are on the bookcase change..

As we can see from the above example, some things are influenced by some actions while
others remain unaffected. The problem of the determination of predicates or functions that
are not influenced when some action takes place, is called the frame problem and it was first
defined by McCarthy [81] in 1969.

2.1.1 Monotonic Approach

Various solutions have been proposed for addressing the frame problem. The simplest among
these is the monotonic approach, which was proposed by MacCarthy [81]. According to this
approach, there exist explicitly declared axioms from which one can draw conclusions about
which predicates and functions are affected by each likely action. These axioms are separated
in two categories

1. the action axioms which indicate which propositions are affected when some action takes
place.

2. the frame axioms which indicate the things which remain unaffected when some action
takes place.

A simple example is when a robot moves things in a house. If it moves an object = from
its current place to another place I, then in order for it to be possible, two conditions must
hold: first, no object should be in [ and no object should be above the object z. In this case,
as soon as the movement takes place, the object z will be found in the place . The action
axiom which describes the above change is

clear(z)s A clear(l)s = on(z,1) domove(x,),s)

The predicate clear(z)s indicates that z is free in the situation s. The on(z,1)go(move(s,1),s)
means that the object z will be in the place [ after the execution of action move(z,l). The



do(move(z,1), s) denotes situation which results after the execution of action move(z,!1) in the
situation s. Apart from the above action axioms, the following frame axioms are necessary

on(x, ll)s Ny#z — on(a:, ll)do(move(y,l),s)
color(z,c)s — color(z, €) go(move(u,v),s)

shape(x, C)s - shape(x, C)do(move(u,v),s)

The first axiom states that some object is not moved if it is not on some other object which
was moved. The second states that any object which is moved does not change the color of
any object and the third that if an object moved, its shape does not change.

This method has two very important disadvantages. The first is that are must determine
explicitly all the frame axioms for each action separately. This means that, for each predicate,
it must be determined whether it changes or not after the execution of an action. If the number
of actions is @ and the number of predicates is r then the number of frame axioms will be in
the order of a x r.

The second disadvantage is complexity. In order to determine what remains true after an
action, all predicates must be examined. Thus, when an action takes place, then if there exist
n facts in the database, all must be examined.

2.1.2 Default approach

The bigger problem with the monotonic approach is that are should determine whether some
object remains unaffected when an action takes place. Usually, when an action takes place, it
changes very few objects while most remain unaffected. The Default approach [104] proposes
that it is necessary to provide axioms only for these predicates which change as the result of a
concrete action, while for the rest, there exists a default axiom which states that, each object
which has not been declared to change after an action, remains as is.

For example the default axiom could have the form

Ps : Pdo(a,s)
Pdo(a,s)

which means that if the predicate p is true in the situation s and after the execution of
action a it continues to hold, we can conclude p after the execution of action a. This method
does not suffer from the first disadvantage of the monotonic approach but has large evaluation
complexity. This happens because the default axiom will be evaluated for all predicates after
the execution of an action, in order to ascertain which of them are true.



2.1.3 STRIPS Approach

This approach was proposed by Fikes [23] in 1971 and it is based on the observation that the
world does not change very much from one instance to the other. This method adopts a simple
model which induce the preconditions, the append list and the delete list.

Preconditions are conditions which they should hold in order for the execution of an action
to be possible. When an action executes then all predicates that become true, are added in
the append list, while they are removed from the delete list.

2.1.4 Situation Calculus

The Situation Calculus, proposed by MacCarthy [81] in 1969 for the solution of the frame
problem, provides a formalism for actions and their effects(direct and indirect).

The Situation Calculus is a second-order language which has been designed for the represen-
tation of changes that takes place in a world of interest. All the changes that happen in a world
are the result of the execution of some actions. A likely evolution of the world is a sequence of
actions and is represented by a first order term, which is called a situation. The initial situa-
tion is symbolized with Sy and it is the situation in which no actions have happened. In the
Situation Calculus the binary function do is defined, with do(a, s) denoting the situation that
will result from the execution of action a in the situation s. An action could be put(z,y) which
means that object x is placed on the object y. For example do(put(z,y), do(put(y, z), do(z, p))),
means that first z will be placed on p, then y will be placed on z and finally x will be placed
on y.

Generally the values of predicates and functions in a dynamic world differ from one situation
to the next. The predicates and the functions whose value changes from one situation to another
are called fluent predicates and functional fluents, respectively. For the rest of the thesis, we
refer to these as fluent. An example of a fluent is colour(z, s), which denotes the color of object
< in situation s.

For the execution of an action to be possible must hold some conditions. We call these
preconditions, as we have already mentiened. The binary predicate Poss declares whether a
precondition holds. When the predicate Posss(a, s) is true then the action a can be executed
in the situation s. For example, assume that a robot wants to pickup object z. In order for it
to be possible, the robot must not hold something else, the object £ must not be very heavy
and the robot must be close to the object x. These are shown below:

Poss(pickup(r,x),s) D
[(Vz)—-holding(r,z,z) N —heavy(z) A nextTo(r,z,s).

The predicate Poss expresses the necessary conditions which must be hold before the
execution of action pickup.



The next step is the determination of causal laws that show how actions influence the values
of fluents. These laws are named rules of result. For example, when a robot drops a fragile
object on the floor, then this object will break. The rule expressing the causal relationship is
expressed as:

fragile(z, s) D broken(z, do(drop(r,x), s))

If a robot repairs an object then, the action has as effect that the object is no longer broken.

—broken(z, do(repair(r,z), s))

The action of painting an object with color ¢ has as effect

color(z,do(paint(z,c),s)) = c.

A basic axiom in situation calculus is the axiom of induction

(VP).P(Sy) A (Va,s)[P(s) D P(do(a,s))] D (Vs)P(s)

This axiom limits the set of situations to be isomorphic with the set S so that the following
conditions satisfied

1. Sp € S, where S is the set of situations.

2. If s€ S, and a € A, then do(a, s) € S, where A is the set of action in the model.

As we may observe from in second condition, the model includes only deterministic actions.
This means that do(A, s) refers to a unique situation.

Then a partial order <, is definied on situations. s < s’ means that the situation s’ results
from s with the execution of one or more actions. From this two more axioms result:

(Vs.s # 80)So < s and —s < Sp
(Va, s,s').s < do(a,s') = Poss(a,s’) Ns<s

where s < s’ means s < s’ Vs =5

10



Let P be a binary relation between situations. Then from the above three axioms, we can

conclude that

(Vs,s').s < s’ = (VP).{[(Va, s1).Poss(a,s1) D P(s1,do(a,s1))] A
[(Va, s1,s2).Poss(a, s2) A P(s1,s2) D P(s1,do(a,s2))]}
D P(s,s").

This conclusion means that the smallest relation between two situations is <.

The Situation Calculus has big expressive power and has been used for the solution of
the frame problem by several researchers. Two of the most important solutions for the frame
problem based on situation calculus have been proposed by Pednault and by Hass (the other

important solution proposed by Reiter).

The first solution was proposed by Pednault [91]. Consider a simple electric circuit that
includes several lamps and each one of them has its own switch. When lamp is on(off) and the
corresponding switch is flipped, then the lamp will turn off (turn on,resp.). Thus,

—on(z,s) D on(z,do(flip(z), s))
on(z,s) D —on(z,do(flip(z), s)),
The above axioms are equivalent with
—on(z,s) Ny =z D on(z,do(flip(y), s))
on(z,s) Ny =z D —on(z,do(flip(y), s)),

Finally we draw the conclusion

on(z,s) A —on(z,do(flip(y),s)) Don(z,s) Ny ==x.

which is equivalent with

on(z,5) Ay # 2 > on(a, o flip(y), s))

This is a positive frame axiom, which means that the action flip(y) does not influence
fluent on(z,s) when y is different from x. Negative frame axioms can be written in similar

way.

11



—on(z,s) Ny 7# x D —on(x, do(flip(y), s)) -

Generalizing, assume a set of positive and negative frame axioms (one for each action).
Then, for each fluent F(z, s)

(€")r(@,y,5) O F(w,do(A(y), 5))
(€7)r(2,y,8) D ~F(z,do(A(y), s)) -

(e")p(x,y,s) shows the preconditions that should hold, so that the execution of action
A(y), the fluent F becomes true ((e~)p(z,y,s) is defined respectively). In the above example
(where —on(z,s) Ay # = D —on(z,do(flip(y),s)) is the negative frame axiom, we have that
(e7)r(z,y,8) = (y # ). This means that when —on(z, s) holds, in order for it to continue to
hold after the execution of action flip(y), it should be the case that y # z holds.

Assume that F(z, s) and - F(z,do(A(y), s)) hold. This means that F is true in the situation
s and the execution of action A makes it false. This is possible if and only if (¢ )p(z,y, s) is
true. Thus

F(z,8) N =F(z,do(A(y),s)) D (¢ )r(z,y,s)

This is equivalent with

F(z,5) A=(e7)r(z,y,5) D F(z,do(A(y), )

Similarly

—F(z,s) A~(e")p(z,y,5) D —~F(z,do(A(y), s))

This solution to the frame problem has the disadvantage that it requires the definition of
2 x A x F frame axioms.

The other solution that has been proposed by Hass [45], is based on a similar idea. Consider
the example with the robot and assume that holding(r, z,s) and —holding(r, z,do(a, s)) hold.
This means that the robot r has left on the floor the object x or it has dropped it. Thus,

12



holding(r, x,s) A =holding(r, z,do(a, s))
D a = putDown(r,z) V a = drop(r,z) .

The important thing to note is that the above proposition is universally quantified on a.
The frame axiom is

holding(r,x,s) A\ a # putDown(r,z) A a # drop(r, )
D holding(r, z,do(a, s)) .

This means that all the actions except from put Down(r,z) and drop(r, z) do not influence
fluent holding. The frame axioms have one of the following two forms.

F(z,s) N —=F(z,do(a,s)) D ar(z,a,s)
-F(z,s) A F(z,do(a,s)) D Br(z,a,s).

In the above frame axioms, the action a is universally quantified. This means that if it
changes value of a fluent F', then o or 8y provides explanation for this change. The number of
axioms needed in order to describe all the likely changes in the truth value of fluents is 2 x F'.

2.1.5 The solution of Reiter

Reiter proposed a simple solution [107] to the frame problem. We present it with an example.
Consider a robot r that holds an object x and a new fluent bomb(b) (b is a bomb). Assume
that the following two positive frame axioms hold

fragile(z, s) D broken(z, do(drop(r,x), s))
nextTo(b, x,s) D broken(z,explode(b), s)),

The first axiom states that the object x that the robot holds in situation s will be broken
in the next situation if the robot drops it. The second axiom states that if the object x is next
to a bomb in the situation s, then in the next situation it will break if the bomb explodes. The
above axioms can rewritten as follows

[(3r){a = drop(r,z) A fragile(z,s)}
V(3b){a = explode(b) A nextTo(b,z, s)}]
D broken(z,do(a, s)) .

13



The above axioms mention two actions which if executed will result in then the fluent broken
being true. In order for the execution of those actions to be possible, some preconditions must
hold. Thus the above axioms must be rewritten as follows:

Poss(a,s) A [(3(r,z)){a = drop(r,z) A fragile(z,s)}
V(3b){a = explode(b) A nextTo(b,x, s)}]
D broken(z,do(a, s)) .

Finally, the positive axiom takes the form

Poss(a, s) A (Y )oroken(a; 8) D broken(z, do(a, 5)).

In a similar way we can take the negative frame axiom

Poss(a,s) A[(3(r,z))a = repair(r,z)]
D —broken(z,do(a, s)) .

and rewrite it as:

Poss(a,s) A (77 )eroken(a, ) D —broken(z, do(a, 5)) .

This form can be generated from axioms of the form:

Poss(a,s) A (y")r(a,s) D F(do(a,s))
Poss(a,s) A (v )r(a,s) D —F(do(a,s)) .

Consequently for each fluent F, we derive an axiom of the form

Poss(a,s) D [F(do(a,s)) = (Y )r(a,s) V F(s) A=(y )r(a,s).

The above axiom means that fluent F' is true in a situation (which resulted from the
execution of action ¢ in a situation s), only when the conditions (y")r(a,s) are true (thus
after the execution of action a, the fluent F' becomes true) or the fluent F' is true in the
situation s and the conditions, which make it false after the execution of action a are false.
(this mean that the (y7),(a, s) is false).

This solution is very simple because it only requires F' + A axioms (one axiom for each
fluent and one for each action).

14



2.2 The Ramification Problem

The ramification problem is a very hard problem that arise in robotics, software engineering
and databases. We introduce this problem by mean of examples. Suppose we are interested in
maintaining a database that describes a simple circuit (figure 1), which has two switches and
one lamp. The circuit’s behavior is described by the following integrity constraints.

up(s1) Aup(s2) = light (1)
—up(s1) D —light  (2)
—up(sq) D —light (3)

The first constraint means that when the two switches are up the lamp must be lit, while
the second and third constraints mean that if a switch is not up then lamp must not be lit.

— light

Action toggle_switch changes the situation of a switch as follows:

Figure 1: Simple electric circuit

toggle_switch(s) D up(s) if —up(s)

15



toggle_switch(s) D —up(s) if  up(s).

The above propositions describe the direct effects of the action toggle_switch. A situation
is called consistent when it satisfies all integrity constraints. Assume that the circuit is in
situation S = {up(s1), "up(sa), light}. The situation S is consistent, because it satisfies all
integrity constraints. Now assume that we execute the action toggle_switch(ss). This action
has as direct effect to change the state of switch so from —up(sz) to up(sz). Now the situation
of the circuit is S1 = {up(s1), up(s2), ~light}. This situation is inconsistent, because it violates
the first integrity constraint. The reasonable conclusion is that the lamp must be lit. So the
final situation is Sy = {up(s1), up(sz2),light}. The change of the condition of the lamp is the
indirect effect of the action toggle_switch(sz). Notice that the indirect effects exists because
of the presence of integrity constraints. The ramification problem refers to the concise
description of the indirect effects of an action in the presence of constraints.

Several ways for addressing the ramification problem have been suggested in the literature.
The majority of them are based on the situation calculus [81].

2.2.1 Minimal Change Approach

The simplest of the techniques suggested in the literature is the minimal-change approach [131].
It suggests that, when an action occurs in a situation S, one needs to find the consistent
situation S’ which has the fewer changes from the situation S. S’ is that situation that is
closer to S than any other situation. The formal definition of the minimal change successor is:

Definition 2.1 Consider three situations, S, S', S". Then S’ is said to be close to S than S"
if and only if S"\ S € S"\'S. The notation that is used is S’ <g S".

After the execution of an action the next situation is minimal the change successor.

Consider the example that was presented above and assume that the situation of the
circuit is {—~up(s1), up(s2), ~light}. The action toggle — switch(s1) has as effects the situation
S’ = {up(s1),up(s2), ~light}. This situation is inconsistent because it violates the first integrity
constraint. The two situations which are consistent are: S; = {up(s1),up(sq),light} and
So = {up(s1), ~up(se), —~light}. We have that: Sy \ S’ = {light}, So\ ' = {—~up(s2)}. Thus,
none of the following two propositions hold: 7 <g S5 or S5 <g S1. Consequently, there exist
two minimal-change successors.

As we can observe, when the action toggle — switch(s1) takes place, there are two possible
indirect effects. One is to turn on the light and the other to toggle down the switch ss.
According to the minimal change approach the two effects are similar and there is no way to
separate them. It is more reasonable to turn on the lamp than to toggle down switch so. More
knowledge should be available in order to discriminate between the two possible situations.

16



2.2.2 Categorizing Fluents

As it was reported in the previous section it is necessary the employ more knowledge in order
to be able to discriminate between the indirect effects of action toggle — switch.

In the above example the desirable indirect result is to turn on the lamp and not to toggle
down the switch. In order to select this, we must be able to discriminate between fluents up
and light. One way to do this [62, 63, 64] is to seperate fluents into those whose truth value
change as direct effect of an action and those whose truth value as indirect effect. The former
are named primary fluents and the latter secondary fluents. In the above example primary
fluents are F, = {up(z) : z € {sl,s2}} and secondary are Fs; = {light}. Now a minimal
change successor situation is defined as

Definition 2.2 A situation S’ is the minimal change successor of situation S if and only if
for every other situation S"

IS\ SINF Z 15"\ S| N F

or

IS'\ SN By = 1S\ 8| N F, and

15"\ S| N Fp Z [|S"\ S|| N Fy

The symbol || || is the number of elements of a set that contains only positive elements (e.g.
I{f,=fH = II{f}).- With the above definition, the situations that has the fewer changes in
primary fluents is selected. '

In the above example the situation S; will be selected as minimal change successor and not
S because ||S1\ S|| N F, = {} while [|S2 \ S|| N F, = {up(s2)}. Si does not contain indirect
effects in primary fluents. Sy contains up(ss).

However, it is not always feasible to separate fluents in primary and secondary. Many times
it is possible to have fluents that can be primary for some actions and secondary for others.
In this case the categorization of fluents cannot work satisfactorily.

For example consider the circuit which appears in figure 7. There are three switches s1, s9
and s3. Fluents are F' = {up, light, relay}. The rules for the execution of actions are:

toggle — switch(z) O {up(z)} change to {—up(z)}
toggle — switch(z) O {-up(z)} change to {up(z)}

These rules mean that if a switch is closed(open) and action toggle-switch is performed
then the switch will open(close, resp). The integrity constraints are

!The situations that contain indirect effects which do not change the truth value many primary fluents.

17



- relay @7 light

~ 1 up(s3)

Figure 2: Complex Circuit

light = up(s1) A up(s2)
relay = —up(s1) A up(ss)
relay D —up(ss2)

The fluents up(s1),up(s3) are primary. The fluents light and relay are secondary. The
problem exists with fluent up(sy). On the one hand it is secondary because when relay is
true, it changes the situation of switch so from up(s2) in —up(s2). On the other, it is primary
because it can change its situation as the direct effect of action toggle_switch(ss).

If it is considered as primary then if the situation of the circuit is S = {—up(sl), up(s2), ~up(s3),
=light, —relay} then the action toggle_switch(s3) will have as result the situation " = {-up(s1),
up(s2), up(s3), ~light, -relay}. This situation is not consistent. Hence it must be changed.
There exist three likely new situations

S1 = {_'up(SI)a _"u'p(SQ)a 'u'p(S?’)a —light, relay}

18



Sy = {up(sl), up(s2), up(s3),light, ~relay}
S3 = {up(s1), ~up(s2), up(s3), ~light, -relay}

We have
181\ 8[| N Fp = {up(s2), relay} N Fp = {up(s2)}

152\ S'l| N Fp = {up(s1), light} N F, = {up(s1)}
1S5\ S"l| N Fp = {up(s1), up(s2)} N Fp = {up(s1), up(s2)}

As we can observe
S1 <gr S

Sy <gr S3
Sl =g’ Sg (fO’I" Fp) .

For the secondary fluent we have
|51\ S'|| N Fs = {up(s3), relay} N Fy = {relay}
|S2 \ 8’| N Fs = {up(s1),light} N Fy; = {light}

Thus

Sl =g’ 52 (fO’I‘ Fp) .

In this case there are two minimal change successors S; and Ss.
If up(s2) is considered as secondary then there also are two minimal change successors.

As it appears the double role of up(s2) has as result the failure of the above solution
(categorization) to produce a unique solution. A solution is to create a third category of
fluents, tertiary fluents that will have still smaller priority than secondary. In that case, the
fluent up(s2) belongs to the new category. Now the following holds

S <gr S (fO’I‘ Fp) .

In complicated systems it is very difficult to separate of the fluents in these three categories
because a large number of dependences between direct and indirect effects must be examined.

19



2.2.3 Causal Relationalships

The production of more knowledge in order to enable the categorization of fluents is very
complicated and difficult. Whether it changes or not a fluent as consequence of the execution
of an action, it depends on the content of database. For example the action toggle — switch(s1)
has as indirect effect the light if and only if the content of database before the execution is
—up(s1),up(se). In any other case the action toggle — switch(se) has not as indirect effect
to light the lamp (e.g. —up(s2) holds). We need a frame which will allows the production of
the indirect effects based on the content of database. This means that the new frame must
encapsulate the dependencing that exists between indirect effects of an action and the content
of database.

Causal relationships [21, 82, 43, 124, 125, 27, 29, 30, 31, 37, 38, 40, 41, 44, 54, 60, 65, 66,
67,117, 123, 135] encapsulate the dependences that exists between the content of databese and
the indirect effects of an action. As we observe from the above example a causal relationship
has the form

A causes B if C

Causal relationships are constituted by two parts. The first part ( C) (which is named
context) is a fluent formula). If the fluent formula is true then could executed the causal
relationship. The second part is a simple result (an atomic fluent) which is the indirect effect.

For example consider the circuit that depicted in figure 1. Then

up(s1) causes light if wup(sy)

In this example ”if up (s2)” is the condition (first part of causal relationship) which when
is true then the effect up(S1) has as indirect effect light (second part the causal relationship).

Causal relationship can produce indirect effects after the execution of an action and after
the production of the direct effects (from the application of concrete rules). Such a relation
functions always on a pair (S,E), where S is a concrete situation and E are the all direct and
indirect results an action.

As we may observe, there exists discrimination between a context and particular effect. The
necessity of this discrimination becomes apparent in the following example. Consider circuit
of figure 3. In this example, there are the followings causal relationships.

up(sl) causes up(s2) if T

20



~ Tup(s1)

lup(s2)

Figure 3: causal relationship

—up(sl) causes —up(s2) 1

up(s2) causes up(sl) if T
) if T
) if T

—up(s2) causes —up(sl

Assume that the circuit is in the situation {—up(s1), -up(s2)} when the action toggle_switch(s1)
takes place. The direct effect will be up(s1) and the new situation will be S = {up(s1), ~up(s2)}.
Now the set E is E = {up(s1)}. Applying the first rule the final situation will be S =
{up(s1),up(s2)} and the effects will be E = {up(s1), up(s2)}.

Assume that the circuit is in the situation {up(sl), up(s2)} and that the action toggle_switch(sz)
takes place. The direct result will be —up(s2) and the new situation is S" = {up(sl), ~up(s2)}
and the set of effects is E = {-up(s2)}. The situation S’ is the same in both cases. How-
ever the triggering effects E are different. Finally, in the second case, the situation is §” =
{—up(sl), ~up(s2)} and set of triggering events is E = {-up(sl), ~up(s2)}.

From the above examples it appears that it is necessary to seperate context from triggering
effects. If they are not separated then it is possible to have a change which would reverse some
previous effects (direct or indirect) and finally cancel an action.

A causal relationship r has the form

€ causes p if @

21



where ¢ is a formula, € is triggering event and p is ramification(indirect) effect. This rule
means that if in a situation S the fluent formula @ is true then if the effect € is true then the
fluent p must be true.

The causal relationship r is applicable in a situation S and in a set of effects FE if and only
if e € E and the ® A —p are true in §. This means that € belongs in E, hence can cause p to
become true because the fluent formula @ is true in S (this means that ® A —p holds, thus @ is
true). In this case the execution of the causal relationship r in (S, E) leads to (S, E') where
S" = (S\{—p} U{p}) and E' = (E\{—p} U {p}). Notice that if p is true then the execution of
the rule does not leads to a new situation.

If with the application of a set of causal relationships R from (S, E) the world is led to
(S', E'), then this is symbolized by (S, E) ~g (S, E'). An action could have a lot of direct
and indirect effects. These in turn can cause a lot of other indirect effects. The process
(S,E) ~pg (S, E') is continued until the world is in a consistent situation.

Causal relationships are applied without a pre-determined sequence. For example, if the
following causal relationships are definied,

e1 causes p1, if Dq
es causes po, if Do

e3 causes ps, if D3

then if the (S, E) holds where

S = {®1;®2a¢3a_'p13 ﬁp27_'p3}
E = {61762763}

we have

(S, E) ~R (SI,E’)
where
S"={p1,p2,p3, -}
E ={p1,p2,p3, .-}

As we observe in the above example all causal relationships are applicable. If execute all
three causal relationships then the final situation is 5.

This means that if we execute the same causal relationships in different order, then the
final situation will be the same. Theilsher [21] has proved the above result.

22



However this does not mean when changes the order of execution (causal relationships) will
be executed the same causal relationships. For example if the causal relationship 1 executes
before ry then perhaps the execution of r5 will not be possible in the new situation. Consider
the above example with some changes

e1 causes pi1, if D4
ey causes pa, if —p1

es causes p3, if D3

Assume that (S, E) holds where

S= {q)17q)3a_'p15_'p27_'p3}
E = {61,62,63}

As we observe in the situation S are applicable the first and the third causal relationships.
If we execute first the e; causes pi1, if @1 then the second causal relationship is not
applicable in the new situation because p; holds. In that case the final situation is

SI = {@15 ®3ap17 P2, p3}

If we executed first the second causal relationship then we could execute the other two. In
that case the final situation is

SI = {Qla ®3aplap27p3}

This means that perhaps there are two or more consistent situations as final situations.
Which of these we finally produce is dependent on the order of the execution of the causal
relationships.

It is obvious that there is need for some mechanism which will allow the execution of causal
relationship in a deterministic order. For this reason, a binary relation I (influence relation)
is used. If (fi1, fo) € I, this means that if the truth value of f; changes then this could change
also the truth value of fo. This relation suggests a deterministic order for the execution of the
causal relationships. The relation I provides a global categorization of fluents. In the above
example with the simple circuit we have that

23



Thus when a switch is up the lamp could be lit but it cannot toggle down another switch.
For the creation of the causal relationships many algorithms have been proposed which take
into account the relation I. The result is the creation of causal relationships that do not cause
undesirable results.

Now we present some other solutions which based in the causal relationships.

2.2.4 The solution of McCain and Turner

The method proposed by in McCain and Turner’s in [82] uses a standard language of propo-
sitional logic, based on a fixed set of atoms. A situation for the language is represented by a
maximal consistent set of literals (fluents).

Background knowledge is given in the form of state constraints and causal laws. A standard
example of a state constraint is eating — Alive (standard implication). McCain and Turner
propose causal rules of the form

Y =9,

where 1) and ¢ are fluent formulas. Informally, this rule expresses a relation of determinism
between the states of affairs that make 9 and ¢ true. To begin with, the causal laws are treated
as inference rules; later they will be recast to rules called s-conditionals.

The standard derivability relation - of propositional logic is extended to take into account
the inference rules. Let I' be a set of formulas and C be a set of inference rules. I' is said to
be closed under C if for every rule v = ¢ € C, if ¢ € T then ¢ € T'. For any formula 1),

IR

means that 1 belongs to the smallest set of formulas containing I' that is closed closed
under C.

The standard framework in which the ramification problem is addressed is one in which
background knowledge is given in the form of state constraints. For this framework, the
problem was specified by Winslett [131] using the following definition.

24



Definition 2.3 For any situation S, any direct effect E, and any set B of formula constraints,
ResB (E, S) is the set of situations S' such that

1. S’ satisfies EU B

2. No other situation that satisfies E U B differs from S on fewer atoms, where ”fewer” is
defined in terms of set inclusion.

For example assume the following:
S = {Alive, Eat}
E = {—Alive}
B = {Eating D Alive}

Thus

RGS%V(E, S) = {{—~Alive, —eating}}

The ramification is —eating. The above definition is right but it does not describe ”exactly”
how we could produce the ramifications. Assume the example with the simple circuit

S = {up(s1), ~up(s2), ~light}
E = {up(s2)}
B = {up(s1) N up(s2) D light, ~up(s1) D —light}

Then,

ResW(E,S) = {{up(s1),up(s2),light}, {~up(s1),up(sz2), ~light}}

As we observe we have two possible situations as in the case of the minimal change approach.

McCain and Turner [82] propose the following reformulation of the above definition, in
order to take inference rules into account.

Definition 2.4 For any situation S, any direct effect E, and any set C of inference rules,
Resc(E, S) is the set of situations S’ such that ' ={L:(SNS"YUE ¢ L}.

25



Consider the first example of the people who eat.

S = {eat, alive}
E = {—alive}
C = {—alive = —eat}

Then

Resc(E, S) = {{—alive, —eat}}
Consider the example with the simple circuit
S = {up(s1), ~up(se), ~light}
E = {up(s2)}

B = {up(s1) A up(s2) D light, ~up(s1) D —light}

Thus

Resc(E, S) = {{up(s1),up(s2),light}}

Notice that

{—up(s1),up(s2), ~light} ¢ Resc(E,S)
because there is no rule such that —light O —up(s;). Thus the new definition is more
deterministic because we have only one possible situation while in the previous solution we
have two possible situations. Also
Resc(E,S) C ResW (E, S)
The trouble with the two previous definitions is that they cannot be recast in semantic

terms by replacing the derivability relation - with |=. To remedy this a conditional logic Cqs
is defined. CYq¢ is an extension of S5 modal logic.

26



The vocabulary of the Cjy4 language consists of a fixed set of atoms (fluents). The for-
mulas of the language are formed from its atoms and expressions of the form (¢ = ¢). Here
expressions of the above form are called s-conditionals, and they may be read as: ”the truth
of 1 determines the truth of ¢”.

The second formalism by McCain and Turner [83] is inspired by the work of Pearl [92,
93]. The underlying propositional signature is described by three pairwise-disjoint sets: A
set of action names, a nonempty set of fluent names, and a nonempty set of time names
(corresponding to a segment of the integers). The atoms of the language are expressions of the
forms a; and fy, where a, f, and t are action, fluent, and time names, respectively. Intuitively,
is true only if action a occurs at time t, and f; is true only if the fluent f holds at time t. A
fluent formula is a propositional combination of fluent names.

A causal law is an expression of the form ¥ = & , where ¥ and ® are formulas of the
underlying propositional language. ¥ is called the antecedent and @ is called the consequent
of the causal law. A causal law ¥ O ® can mean both

e the fact that U causes the fact that ®, and

e necessarily, if U then the fact that ® is caused.

A causal theory is a set of causal laws. An situation S for a propositional language is
identified with the set of literals L such that S |= L. For every causal theory D and situation
S, let

D% = {U| for some ®, & =¥ and S |= d}.

A situation S is causally explained according to D iff S = {L : D% = L}, where L is
understood to stand exclusively for literals.

For example consider the circuit of the figure 1. Then, there are the following causal laws.

toggle_switch(s1) A —~up(s1) D up(s1)
toggle_switch(s1) A up(s1) D —up(sy)
toggle_switch(s2) A —up(s2) D up(sz)
toggle_switch(s2) A —up(s2) D —up(se)
up(1) Aup(se) D light

—up(s1) D —light

—up(sq)-light

27



As we can observe the four first laws are dynamic because they are evaluated when the
corresponding action takes place. The rest are static because they are executed every time.
The dynamic laws encapsulate the direct effects of an actions , while the static ones encapsulate
the indirect effects of an action. Consider the situation

S = {_'U'p(sl)a U'p(SQ)a _'light}

Assume that the action toggle_switch(s,) take place. Then the first rule must be evaluated.
The new situation is

S = {up(s1),up(sq2), ~light}

Now we must evaluate the static law. up(1) A up(s2) D light. The final situation is

S = {up(s1),up(sz2),light}

An interesting feature of this approach that the timeline represented by adding a subscript
to the fluents allows delayed effects, although the authors mention this only in passing. For
example is possible an action which executed at time point ¢ to have effects at time point
t +y. This is very important in the case of temporal databases as we explain in the following
chapter. The author use the causal relationship only for producing the next situation (in the
next time point). This works well in the static world as the world of the circuit, in which
nothing changes until an action take place. As we explain in the Chapter 3 this is very strict
in dynamic worlds.

Also, it is necessary that an automatic way for the production of these causal laws. In
Chapter 4, we propose an algorithm for the production of the causal laws.

2.2.5 Lin’s Solution

Another proposal using explicit causality was presented by Lin [68]. Using a Caused predicate,
directionality of causation can be encoded within the situation calculus framework. Lin later
shows how this approach can be used to deal with nondeterminism.

Time progresses through the execution of actions, that is successive applications of the do
function, leading to a branching time-structure.

In addition to the standard situation calculus notation a ternary predicate Caused is in-
troduced.

28



Definition 2.5 Caused(f,true,S) denotes that the fluent f is caused to be true in situation
S.

From the above definition we can produce the following corollary

Corollary 2.1 The following always hold.

Caused(f,true, S) — Holds(f,S)
Caused(f, false, S) — —Holds(f, S)

Lin proposes the following frame axiom

Poss(a,S) — ((Fv)Caused(f,v,do(a, s)) —
[Holds(f,do(a,S)) <> Holds(f,S)])

From this the pseudo successor state axiom can be derived:

Poss(a,S) — {Holds(f,do(a, S)) <
Caused(f,true,do(a,S)) V
Holds(f,S) N ~Caused(f, false,do(a, S))} .

A formula ®(S) is called a simple state formula about S if ® does not mention Poss, Caused
or any situation term other than S.

Lin gives the following definitions for the direct and indirect effects of an action and for
the preconditions of an action
Definition 2.6 For each action A(

Poss(A(%),S) —
[®(S) — Caused(F(9),v, do(A(Z),S))],

, the direct effects are described by the following azioms

where F is a fluent, ®(S) is a simple state formula about S and v € {true, false}.

Definition 2.7 Formalize all causal rules(which include the indirect effects) by azioms of the
form:

®(S) A Caused(f1,v1,S) A ... N Caused(fr,vn,S) = Caused(F(Z),v,S),

where F is a fluent, and ®(S) is a simple state formula about S.

29



For example consider the simple circuit of figure 1. Then the direct effects are determined
by the following rules

Poss(toggle — switch(z), S) D
up(z,S) D Caused(up(z), false, do(toggle — switch(x), S)),
Poss(toggle — switch(z), S) D
—up(z, S) D Caused(up(x), true, do(toggle — switch(z), S)),

The precondition of the action toggle — switch(z) is the object x to be a switch.

Poss(toggle — switch(z)) D switch(x)

The indirect effects are encapsulated by the following rules

Caused(up(s1),true,do(a, S)) A Caused(up(s2),true,do(a,S)) D Caused(light,true,do(a, S)),
Caused(—up(sy), true,do(a, S)) D Caused(-light,true,do(a, S)),
Caused(—up(s2), true,do(a, S)) D Caused(-light,true,do(a,S))

Lin formalized all other domain knowledge by axioms of the form VgC(S), where C(S) is
a simple state formula about S. All the above give us a starting theory 7.

This starting theory may contain several unnecessary rules. For example
Caused(—up(s1), true, do(a, S)) A Caused(—up(sz), true, do(a, S)) D Caused(—-light,true,do(a,S)),

Caused(—up(sy), true, do(a, S)) D Caused(-light,true,do(a,S)),
Caused(—up(s2), true,do(a, S)) D Caused(-light,true,do(a,S))

As we can observe the first rule overlaps with the other two. Thus we must eliminate them.
The procedure of the elimination of the extra rules is the minimization of the starting theory
T.

Also, the starting theory may contain many different rules about the preconditions of one
action. For example, assume the fluents f, f1, fo, f3 and the action A

Poss(A) = fA fi
Poss(A) = fa A f3

30



As we can observe, in order for the execution of the action A to be possible, the following
must hold

FANFLINfa N3

Thus the above two propositions are replaced by

Poss(A)=fANfiNfaAfs

This procedure is called maximization of Poss.

The following algorithm addresses as the ramification problem

1.

L

Start with a theory T that includes all effect axioms and state constraints.
Let T" = {Minimize Caused in T}

Circumscribe Caused in T with all other predicates fixed.

Maximize Poss in T" to obtain the final action theory.

Replace the occurrences of Caused in the pseudo successor state axiom to get the following
form Caused(F(Z),v,S) <+ ¥, where U is a formula not containing the predicate Caused.

. For each action A, maximize the relation Poss(A(Z),S) with Holds(f,S) fixed but

Caused and Holds(f,S") A S' # S allowed to vary.

Consider the example where shooting someone results in that he stops walking.

Poss(start — walk, S) — Caused(walking, true, do(start — walk, S)),
Poss(end — walk, S) — Caused(walking, false,do(end — walk, S)),
Poss(shoot, S) — Caused(dead, false, do(shoot, s)),
Poss(start —walk, S) — walking(S),

Poss(end — walk, S) — walking(S),

dead(S) — Caused(walking, false, S) .

Lin allows preconditions (®) and triggers in the form of conjunctions. The postcondition
is limited to a literal. This means that his dependency laws cannot model nondeterminism in
its current form. Nondeterminism of actions, however, is handled [69].

One interesting aspect of this method is that it is the first general approach to the ramifi-
cation problem that does not use a fixpoint computation to determine the resulting states.

31



2.2.6 Sandewall’s Solution

A method for addressing the ramification problem is proposed by Sandewall in [118]. The idea
is that different approaches should be assessed with respect to an underlying semantics which
formally defines the intended conclusions for a class of scenario descriptions. The purpose
of the underlying semantics is to define the set of intended models, and thereby the set of
intended conclusions, in a precise, simple and intuitively convincing fashion.

The method for handling ramifications that serves as the basis on which other approaches
are judged has much in common with Thielscher’s method [123] in the sense that it is basically
a fixpoint approach. The details of the causal chains, however, are captured in the function N
, there by avoiding the need for a fixpoint computation.

Let R be the set of possible states in the world, formed as the Cartesian product of the
finite range sets of a finite number of state variables(fluents). Also, let E be the set of possible
actions, and let the main next-state function N(E,r) be a function from E x R to non-empty
subsets of R. The function N is intended to indicate the set of possible result states if the
action E is performed when the world is in state r. The assumption N(E,r) # @ expresses
that every action E can always be executed in every starting state r.

A binary non-reflexive causal translation relation C between states is introduced; if C(r, ")
then 7’ is said to be a successor of r. A state r is said to be stable iff it does not have any
successor. The set R, of admitted states is chosen as a subset of R all of whose members are
stable with respect to C.

Furthermore, an action invocation relation G(E, r,r') is a relation where E € E is an action,
r is the state where the action E is invoked, and r’ is the new state where the instrumental
part of the action has been executed. For every E and r there must be at least one r’ such
that G(E,r,r'), that is, every action is always invocable.

An action system is a tuple (R, E, C, R., Gi). For any state r € R, consider a state r; such
that G(E,r,r1), and a sequence of states r1,72,...,7, where C(r;,r;11) for every i between 1
and k — 1, and 7, € R, is a stable state. Such a sequence is called a transition chain, and ry
is considered as a result state of the action E in the situation r.

The intention is that it shall be possible to characterize the resulting state ry in terms of E
and r, but without referring explicitly to the details of the intermediate states. The following
assumptions (or something similar) are needed in order to make this work as intended.

Definition 2.8 If three states r,r; and r;11 are given, the pair ri,r;+1 s said to respect r iff
(ri(f) # riva(f)) — (ri(f) = r(f)), for any state variable f that is defined in R. Then, an
action system (R, E,C, R.,G) is said to be respectful iff for every r € R. and every E € E, r
1s respected by every pair r;,riy1 in every transition chain, and the last element of the chain
is a member of R,.

This condition amounts to a ”write-once” or ”single-assignment” property: if the action
E is performed in state r, the world may go through a sequence of states, but in each step

32



from one state to the next, there cannot be changes in state variables which have already been
changed previously in the sequence, nor can there be any additional change in a state variable
that has changed in the invocation transition from r to r1. This definition can be compared to
Lin’s definition of stratified systems in [68], or the definitions of applicability and successor
axiom by Thielscher [124, 125, 123].

As a consequence of these definitions, if (R, E, C, R.,G) is a respectful action system, and
r € R, E € E and G(E,r,r") holds for some 7/, then all transition chains that emerge from
(E,r) are finite and cycle-free. The set of states will be denoted N(E,r). N(E,r) is derived
from the elementary relations G and C in the action system.

Respectful action systems are intended to capture the basic intuitions of actions with
indirect effects which are due to causation, as follows. Suppose the world is in a stable state
r, and an action E is invoked. The immediate effect of this is to set the world in a new
state, which is not necessarily stable. If it is not, then one allows the world to go through the
necessary sequence of state transitions until it reaches a stable state. That whole sequence
of state transitions is viewed as the action, and the resulting admitted state is viewed as the
result state of the action.

One has to remember that this is a method used for assessments. This makes a comparison
with more detailed methods somewhat problematic. Some general observations can, however,
be made about the assessment method, for example that it handles causal cycles.

Sandewall uses a fixpoint-oriented approach, but the results of the cascades are captured
by the N function. Using N, the approach can be considered to be a non-fixpoint method.

The fact that C is a relation between only two states and that change isn’t remembered
makes it impossible to distinguish between precondition and trigger. So, just as is the case in
Geffner’s [26, 27] and McCain and Turner’s approaches, preconditions are not expressible.

2.2.7 Fluents Calculus

In this section we present the Fluents Calculus [127, 14, 50, 126, 51, 48, 119], which has been
proposed for the solution of the ramification problem. First we give certain definitions for
fluents calculus.

The definition of fluents does not change from the definition that we have given for the
situation calculus. A situation in fluents calculus is a term, which contains all their fluents (or
negation) that is true.

For the representation of a situation the operator o is used. This operator is binary. In the
example with the simple electric circuit in order to represent the situation at which the fluents
up(s1), ~up(se), ~light are true, we have up(sy) o —~up(s2) o —light.

The order of fluents is not important. Thus up(s1) o —up(s2) o =light = —up(sa) o —light o
up(s1). The operator o has the following properties:

33



Vz,y,z. (roy)oz==xzo0(yoz) (associativy)
Vz,y. zoy=wyox (commutativy)
V. zol =z (unit element)

Ve.~—z =z (double negation)

The symbol () denotes the unit element for the operator o. This set is very useful when we
want to process empty sets of fluents. The four above axioms are called ACIN. In addition to
the above axioms the following are also defined for each n-place function f and predicate P, for
each 1 <j<n.

T==x

T=yDy==zx

T=yYyANy=z2r =2

Ti =Y D f(X1y iy nlpy) = f(T1y oYy o Tyy)
zi =y D [P(x1,.--Ti, - Tp) = P(x1, .Y, . Tp)]

All the variables are considered to be global. All the above axioms are used in equalities
but in order to be able to use the above theory for solving the ramification and frame problems,
it is necessary to prove inequalities of form wup(s1) o light # up(s2) o light. This inequality is
based on the fact that s; # s2. In order to prove these inequalities, we make the hypothesis
that starting from different fluent, the terms that are produced will never be equal. The above
axioms are collectively referred to as EUNA for brevity (extended unique name assumption).
For ease in the representation of a situation S = /;...l,, we use the symbolism Tg =1; 0....0l,.

From EUNA axioms we can produce the following conclusions:
Vi, z.lup(z) o z = up(s1) o up(sz) o ~light] D
(z = s1 ANz = up(se) o ~light) V (z = so A z = up(s1) o ~light)
The following have been established in [14, 50]
If ACB, then EUNAE32Taoz=Tp, else EUNAEVY2zT o0z #Tp

If ACB, then EUNAEVz[Ty0z=Tp =z=Tp 4]
If ANB=/{}, then EUNAEVz.|z=Tyo0Tp =2z =Taus|

34



Now we present the solution to the ramification problem. Assume the following set of
causal relationship

ai[z1] = a1 transforms Cy into En,... an[zn] = an transforms Cp into E,

We define the ternary predicate Action(a,c,e), which is true if and only if there exists
action law with action a, with condition 7T}, ! and effect 7, ! 2 |

Action(a,c,e) = \/ dzila=aiNc=T,; Ne =T,,]

Consider the previous example with the simple circuit. In this case,

(¢ = ~up(z) A e = up(z)
e = ~up(z)]

Action(a, ¢, e) = Jz[a = toggle(x) A
Ve =up(x) A

Notice that the predicate Action produces the direct effects of an action. In order to solve
the ramification problem we must define some other predicates which produce the indirect
effects. Assume the set of causal relationships:

€1 causes p1 if Dq

€, causes pnp if Dp.

We define the predicate Causal(l,l,, s) as follows:

Causal(l,1,,s) = \/335%[16 =€ Nl, =p; N Holds(®,s)]

The above axiom means that if in a situation s the formula ®; is true and the triggering
fluent ¢; is true, then p; will become true (which is the indirect result of the execution of an
action).

Assume the following causal relationships:

*The fluent formula T ' is the negation of the fluent formula T, (resp. T, ').

35



up(s1) causes light if up(ss)
up(sa) causes light if wup(sq)
—up(s1) causes -—light if T
—up(se) causes —light if T

Then the predicate Causal is:

Causal(le,1,,s) =l = up(s1) Nl, = light A Holds(up(sz), s)
Ve = up(s2) ANl, = light A Holds(up(s1), s)
Ve = —up(s1) AN, = —light
Ve = —up(s2) Nl, = —light

The predicate Causal encapsulates all the indirect effects. Thielsher [124, 125] define the
predicate Causes(s,e,s’,e’), which means that starting from the situation s and having as
effects e (direct and indirect) of some action up to this moment then we transition from the
situation s in s’ with effects €.

Causes(s,e,s',¢e') =
A, ,[Causal(le,l,,s) ANJv.eiov =e
Jz[Fpioz=sNAs =zo0p]
Vw.—p;ow #eAe =eop;
[Fw.[-piow=eNe =wopi|

As we may observe, in a situation s in which up to this moment the effects are e, then if in
them exists the ¢; which as indirect effect the p;, then if p; is not contained in the situation s,
we have a transition to a new situation s’ which contains the p; and does not contain —p;. Also,
if the set e contains —p; then we remove it and add the p in e’. The predicate Causes(s, e, s',¢€)
is true if and only if from the situation s and with the effects e with the evaluation of causal
relationships, there is a transition to the situation s’ with effects ¢’.

In the example with the simple electric circuit we have

Causes(up(s1) o up(se) o ~light, up(s1),up(s1) o up(se) o light, up(s1) o light)
Causes(up(s1) o up(se) o ~light, up(s2),up(s1) o up(se) o light, up(ssa) o light)

36



The predicate Causes does not solve the ramification problem because it shows only a
transition from a situation into another, which contains some indirect effects of an action.
It does not ensure that the new situation is consistent. In order to solve the ramification
problem it is necessary to find a consistent situation. For this reason we import the predicate
Acceptable(s), which is true if and only if the situation s is consistent. As we have already
mantioned in order to solve the ramification problem it is necessary to find a consistent situation
after the execution of action. In order to find this situation, one may have to go through a
lot of intermediate situations. In other words it could be a sequence of situation s1, so, ..., Sy,
with s, being the consistent situation. For each situation s; except the s,, there is a transition
Causes(s;, €;, 8i+1,€i+1) to the next. Consequently we need a predicate that will incorporate
all this intermediate transitions. We defined the predicate Ramifys(s,e,s’,e’) as follows:

Ramifys(s,e,s',e') = VII| Vs, e1.T(s,e,5',€)

A [Vs1,e1, 82,629,583, €3
[T(s1, e1,82,e2) A Causes(sa, e2, s3,e3) D II(s1,e1, 83,e3)]] D (s, e, s, €]
AAcceptable(s')

As we observe the predicate Ramifys(s, e, s',€') is true if and only if the (s, e, s, €’) belongs
to the transitive closure of Causes (which gives us the transition from one situation to another
and the situation s’ is consistent). Finally we define the predicate Ramify(s,e,s’) which is
true if starting from the situation s and with effects e we can reach in a consistent situation
s'. This means that the predicate Ramify(s,e,s’) is true if there exists such a e’ such that

s,e, s, €') belongs in the transitive closure of Ramifys and Causes.
) 7 g

Ramify(s,e,s') = VI[ Vs1, e1, 82, ea. Rami fys(s1,e1,82,e2) D Il(s1,e1, s2,e2)

A [Vsl, e1,892,€2,83,€3, 84, €4
[M(s1, €1, 82, e2) A Causes(sa, e, 83, e3)Ramifys(ss,es, s4,e4) D (s1,e1,84,e4)]] D e T(s,e,5,¢€)]
AAcceptable(s')

The predicate Ramify allows us to find a consistent situation when an action take place
(with direct effects which are described by the Action). In the example with the circuit switch
we have that

Rami fy(-up(s1) o up(s2) o —light, up(s1),up(s1) o up(sy) o light)

37



2.3 The Qualification problem

In the previous section we examined the ramification problem which refers to determining the
indirect effects of actions. Related to it is the qualification problem which refers to determining
the preconditions which must hold in order for the execution of an action to be possible.

We introduce the problem with an example. Assume that a driver wants to start his/her
car. In order to achieve this, there must exist petrol in the tank. However this condition is
not enough in order to allow the driver to drive his car. S/he will have to check whether there
exists a potato in the exhausts pipe. Even when this is checked s/he cannot be sure that the
car will start. It could be the case that while the driver is entering the car, somebody places
a potato in the exhaust and thus the car cannot brought to operation.

In the example that we presented above, there are the following rules

—gas O run

potato_in_tail D —run.

In this case, the conditions —gas and potato in tail may disqualify the action run. When
one of the two conditions is true the action run will not be executable.

run inececutable after —gas

run inezecutable after potato in tail.

More specifically, when the formula F = —gas V (potato in tail) is true the action run
cannot be executed. In this case formula F' disqualifies the action run.

F D disq(run)

Generalizing for each action a we define a fluent Fj, which when true disqualifies the action

Independently of the fact that some conditions are unlikely to hold, it is important that
one be able to forbid the action if there conditions happen to hold. It is very important when
this happens, to be able to forbidden the execution of action run. This means that we cannot
ignore the second condition.

As we may observe, when an action executes, it may have as effect to disqualify some
other action (for example the action put a potato disqualifies the action run). The problem
of determining the context in which an action is allowed to execute is the qualification
problem [35, 128, 82].

38



Now we present the qualification problem with another example. Consider a room in which
there are boxes. Each box can only be at one place at a time. Also no box can be moved
in a place that is occupied by another box except if it is placed on it. The precondition that
enables the movement of a box which is in place [ to a new place I’ is that the new place is not
occupied.

poss(move(z,1')) D clear(l').

A placw is considered to be free if there is no object on it.

poss(on(z,l)) D disqualified(move(y,l)) (1)

The above condition tells us that when we move a box = to the place I then we cannot
move another box to that place. The effect of action move(z,1) is

move(z,l) D on(z,l).

The above example becomes even more difficult when two boxes are connected (between
themselves) with a constant contact, as appears in figure 4.B. In this case, the above rules are
not right. Assume that the initial situation is

on(A,ly),on(B,l3),on(C,l3) .

The action move(A,l3) cannot be executed according to rule (1), because another box is
at that place. This however is not right because when the box A is moved then the box B will
be moved too (because the boxes are connected). Thus, if A is moved to place lo then box B
will be also moved to a new place [4. This means that the action move(A4,ls) has as indirect
result(ramification) the movement of box B.

move(A,ly) D on(B,ly) .

In this case rule (1) should change as follows

on(z,l) ANy # x A ~connected(z,y) A on(y,l') D disqualified(move(z,l')) (2)

39



box A box B box C

Figure 4: Qualification - Movement the box

The execution of the action move(A,ls) is allowed because the indirect effect that it has to
release the place lo. The conclusion is that there does not always exist a closer seperation of
the ramification and qualification problems.

However rule (2) does not ensure that the action move(A4,ls) will not be executed when
this do not allow. For example, consider the action move(A,l5) which has as effect on(B,l3).
The second action cannot be executed because in place I3 exists the box C. Thus the rule (2)
must be changed so as to include also all the indirect results of action move. This would have
as result the number of disqualification rules to increase exponentially as the ramifications
increase. For this reason, the default solution of the qualification problem which assumes that
for each action, we determine explicitly all the qualification rules, cannot be applied.

2.3.1 The solution of nearest world

Various solutions has been proposed for the qualification problem. The first solution was
proposed by the Ginsberg [35] and it is an extension of the nearest possible worlds approach,
the solution that had been proposed for the ramification problem.

According to this solution each action will be executed. After the execution, if there is
a consistent situation which includes all the effects of the action(direct and indirect), then
the action is accepted.If no such situation exists, then the action will be rejected and the
situation remains unchanged. The search for this situation becomes possible with the use of
the algorithm of the nearest world that was described in the previous section.

Thus, in the above example when the action move(A,l;) is executed, it has as effect
on(B,l3). Hence, it will not be executed because there is no exist consistent situation that
would include this effect (on(B,[3)). In the example with the connected boxes the movement
is possible because when we move the box A then the box B will be moved too. Thus, if we

40



execute the action, there is a consistent situation which includes the effects of the action (if
the position of box A and B is different from /3 which is the position of box C).

2.3.2 Explicit Solution

Some other proposals [82, 128] suggest that we must define explicitly the preconditions of each
action. These preconditions must hold in order to allow the execution of the action. In the
example with the car in order to start the car, none of the following must hold.

dz.in(x)
tank — empty
low — battery

engine — problem .

We can collect these condition into the following expression:

dz.in(x) V tank — empty V low — battery V engine — problem D disq(run) .

Generalizing, for each action a we define a formula of the form

F® = \/ F; = disq(a) .

In order for an action to be executed this formula must be false. Thus,

/\—|FZ~ = true.

When a action a has as effect

a causes —F; if ¢.

If ~(F® — F;) 3 is true then

3This mean that the part of fluent formula F* which remain if we "minus” from it the F; (when we tell
minus mean to delete from F'* all fluents which belong in the F;).

41



a causes —disq(a) if —(F*—F;).

For example assume that the following hold

Jz.in(z)
—tank — empty
—low — battery

—engine — problem .

Then the formula F™" is true. Hence disq(run) is true. The execution of action clear —tail
has as effect —in(z). Thus the formula F™" is false and —disq(run) become true.

clear — tail causes —disq(run) if —(tank —empty V low — battery V engine — problem) .

2.3.3 Fluent Calculus and the Qualification Problem

In the fluent calculus, in order to address the qualification problem we define the following
predicate as proposed in [14]:

Qualified(][])
Qualified([a*|a]) = Qualified(a™) A
3s, s'[Result(a*, s) A Holds(~disq(a),s) A Successor(s,a,s’)

The predicate Qualified shows when a sequence of action is executable. The above defini-
tion is recursive. Obviously Qualified([]) is true. The predicate Qualified([a*|a] is true when
the action sequence a*|a is executable. The predicate Result(a*,s) is true when the situation
s is the situation which is the result of the execution of action sequence a*. The predicate
Successor(s,a,s') is true when s’ = do(a, s) holds. In order for Qualified([a*|a] to hold, the
action sequence ¢* must be executable (this is represented by Qualified(a*) and the action a
must not be disqualified in s, the situation resulting from the execution of action sequence a*.

2.4 Qualified Ramifications
As it became apparent from the previous section it is difficult to untie the ramification and

qualification problems. A solution [82, 128, 129] is the extension of causal relations in order to
include qualifications as well. More specifically, each causal rule changes from

42



& up(s1) —1 up(s2)

7 light —1 broken
19

1 wiring-problem

- malfuncl ‘ ‘

1 manfunc2

Figure 5: Qualifications - A complex circuit

its previous form: € causes p if @
to a new form:

€ causes p if D A-abo.

where abc is new fluent that when true disqualifies the rule C'. This means that when abc
is true then the execution of action € does not have as effect p.

Consider the circuit which appears in figure 5. This circuit includes two individual circuits.
The right circuit has a big battery. When the switch s2 goes up then lamp will light up if there
is no problem in the wire of circuit and the battery functions correctly. Thus, there is the rule

up(sg) D broken .

This rule is evaluated, if the following does not hold

abs = mal funcy V wiring — problem .

The abs is the fluent that disqualifies the above rule. We change the rule as follows

—abg D [up(s2) D broken].

Also, if the left switch goes up then the lamp will light up if not broken and the wire and
the first battery do not have any problem.

43



aby = broken V mal funcy V wiring — problem
—ab; D [light = up(s1)].

In addition the above rules, there also exists the rule:

broken V mal funcy V wiring — problem D —light .

From the three above rules we produce the following causal relations.

up(s1) causes light if -—ab;

—up(s1) causes —light if —abe

up(se) causes broken if —abo

broken causes ~—light if T

malfuncy causes —light if T

wiring — problem causes -light if T

broken causes aby if T

malfuncy causes aby if T

wiring — problem causes aby if T

—broken causes —aby if —malfuncy V —wiring — problem
—malfuncy causes -aby if —brokenV —wiring — problem
—wiring — problem  causes -—ab; if —brokenV —malfunc
mal funcy causes aby if T

wiring — problem  causes aby if T

—mal funcy  causes —aby if —wiring — problem

—wiring — problem  causes -—aby if —malfuncy.

These rules cannot solve the ramification problem if the qualification problem is not ad-
dressed as well. For example, assume that initial situation is that the two switches are down,
—up(s2) and —up(s1). Assume that the two actions toggle_switch(s2) and toggle_switch(s1)
execute. Then there exist two possible worlds. Firstly, the lamp is broken. Consequently the
action toggle_switch(s1) (which has as direct effect up(s1)) does not have as indirect effect
that of turning on the lamp. Secondly, is the case that the wire or the second battery are
spoiled. Thus, the action toggle_switch(sz) does not have as indirect effect to break the lamp.
Consequently the other action has as effect to turn on the lamp.

44



The conclusion is that global minimization is not suitable approach for the solution of
ramification problem in the presence of the qualification problem.

In order to solve the problem we change each integrity rule as follows:

abc D C.

This means that an integrity rule will not be in effect in each situation. In order for the
rule to be in effect its preconditions must hold.

In the above example we have that in order for the rule up(s2) D broken to be in effect the
precondition —abs must be true. Consider the situation of the circuit which approved in figure
5, 8 = {—-manfunci, ~man funcy, ~broken, ~wiring, ~up(s1), "up(s2)}. In the situation S,
—aby, —aby are true. Hence, the execution of action toggle_switch(sy) will have as direct effect
up(s1). Also the precondition of the rule up(se) D broken is true (because —abs), thus, the
indirect effect will be broken. Consequently, in the end there will exist a unique likely situation.

2.5 Summary

The world represented in a database is not static. It changes continuously. The changes occur
as results of database transactions. An atomic database transaction can be considered as
an action. So, we can say that the changes in a database occur as results of actions. These
actions change stored data in the database, and thus they may affect integrity constraints which
determine the consistent states of the database. A database is consistent when all integrity
constraints are satisfied.

An action may have direct and indirect effects. There are infamous problems which arise
by the execution of an action, the frame, ramification and qualification problems.

Some fluents are affected by some actions while others are not. The problem of determining
which fluents are not affected when an action is executed is called the frame problem and
was introduced by MacCarthy [81] in 1969. The main proposals for the solutions of frame
problem are symarized below.

The simplest solution is the monotonic approach [81] . This solution suggests two kinds
of axioms, namely action azioms and frame azioms. The action axioms specify the fluents that
hold after the execution of an action and frame axioms specify the fluents which do not change
after an action. The biggest problem with the monotonic approach is that we must determine
explicity that some object does not change its situation when an action takes place. Usually,
when an action takes place, it changes very few objects while most remain unaffected. The
Default approach [104] proposes that it is necessary to provide axioms only for those predicates
which tchange after one concrete action while for the rest there exists a default axiom. This
shows that for each predicate which has not been declared that it changes after an action, the
predicate remains as is.

45



For the solution of the frame problem, the use of the situation calculus [81] has been
suggested. The situation calculus is a second-order language that represents the changes which
occur in a domain of interest, as results of actions. One possible evolution of the world is a
sequence of actions and is represented by a first-order term, called a situation. The initial
situation Sp is a situation at which no action has occurred yet. A binary function, do(a, s)
yields the situation resulting from the execution of an action a while in situation s.

Many solutions based on situation calculus have been suggested (Pednault [91], Hass [45]
and Reiter [107]). The most important ones are those proposed by Reiter [107].

Pednault [91] proposed a set from positive and negative frame axioms (one for each pair
action-fluent), moreover for each fluent f(z, s)

6}'(/1, s) D f(z,do(4,s))
€7 (4,8) D ~f(z,do(4,s)),

where e}”, e}L are fluents formulas. When the e}L(A, s) is true then in the situation s’ =
do(A, s) the fluent f is true (respectively for the —f and € (A,s)). The other solution that
has been proposed by Hass [45], is based on a similar idea.

Reiter [107] suggests that for each fluent f there are two frame axioms

Poss(a,s) A (v")f(a,5) D f(do(a, 5))
Poss(a,s) A (77 )¢(a,s) D = f(do(a,s)).

These axioms may be integrated in one

Poss(a, 8) O [f(do(a,S)) = (v7) 4(a, ) V f(s) A=(y ) 4(a, ).

This means that a fluent f is true in a situation S’ = do(a,S) which came up after the
execution of action a in a situation S only if f is false in S and the preconditions (y*) (which
make f true) hold in S’, or f is true in S and the preconditions (y~)s (which make f false) do
not hold in S’. An action a can execute in a situation S only if its preconditions (poss(a,S))
hold.

The ramification problem refers to the concise description of the indirect effects of an action
in the presence of constraints. Several ways for addressing the ramification problem have been
suggested in the literature. The majority of them are based on the situation calculus [81].

The simplest of the techniques suggested in the literature is the minimal-change ap-
proach [131]. It suggests that, when an action occurs in a situation S, we need to find a

46



consistent situation S’ which has the fewer changes from the situation S( S’ is closer to S than
any other situation).

Another solution is the categorization of fluents [62]. The fluents are categorized as primary
and secondary. A primary fluent may change only as a direct effect of an action, while a
secondary one may change only as an indirect effect of an action. After an action takes place,
we choose the situation with the fewest changes in primary fluents. The categorization of
fluents solves the ramification problem only if all fluents can be categorized. If some fluents
are primary for some actions and secondary for some other this solution is not satisfactory.

A fluent can change or remain unchanged after an action. This depends on the context
in which an action takes place. Causal relationships [82, 124, 125] capture this dependence
between an action and an indirect effect. A causal relationship has the form

€ causes p if @

where € is an action, p is the indirect effect and & is the context. The context is a fluent
formula. Each causal relation must be evaluated, after the execution of the action ¢, if and
only if the context is true. The binary relation I defines the dependence that exists between
context ® and fluent p.

The problem of determining the context in which an action is allowed to execute is the
qualification problem.

Several solutions have been proposed for the qualification problem. The most prominent
ones are the minimal-change approach [131] and the ezplicit-solution [82, 128].

According to the minimal-change approach each action will be executed. After the execu-
tion, if there is a consistent situation which includes all the effects of the action (direct and
indirect), then the action is accepted.If no such situation exists then the action will be rejected
and the situation remains as it was before the execution.

The explicit solution suggests that, for each action a, we must determine a formula F*
which, when true, prohibits action a from executing. The formula F'® has the form

F =\/FZ~ D disq(a),

where each F; is a fluent. When any of the Fj is true, the action a can not executed.

In this section we describe the infamous problems frame, ramification and qualification in
the case that the time is absent. In the following section we describe the problem when the
time is present.

47



3 Action Theories in Temporal Databases

3.1 Introduction to the Action Theories in Temporal Databases

In temporal databases all predicates and relationships exist over time. This means that the
truth value of each fluent f depends on the time point at which it refers. As a consequence all
the situations exist over time. A situation has a start time point and a finish time point. In a
temporal database the evolution of a world is not just a sequence of situations Sy, S1,...,Sn
but a sequence of triples (So,0,%0), (S1,%0,%1),---,(Sn,tn—1,ts), where the first element of
each triple is the situation, the second is the situation start time and the third is the end
time point of the situation. Notice that an evolution of the world in a conventional database
may correspond to many different evolutions of a respective temporal database. Also when an
action takes place, this happens at a specific time point.

The situation calculus [81] cannot represent the relationships which exist among fluents,
situations, actions and time.

The situation calculus provide a very good context for the formalization of action theories
in the conventional databases. Most of the solutions of the frame, ramification and qualification
problems are based on the situation calculus. Thus, it is desirable to extend to the situation in
order to encapsulate time. After that we may use it for the addressing of the frame, ramification
and qualification problem in the temporal databases.

3.2 Situation Calculus and Time

A first proposal for encapsulating time in the Situation Calculus is due to Pinto and Reiter
[101, 102].

More concretely they have defined a time line which correspond to a sequence of situations,
beginning from the initial situation. Every time point corresponds to only one situation. All
the situations are universally ordered. Actions that lead to different situations that happen at
concrete time points. For example, occurs(A,t) mean that action A happens at time moment
t. Also, holdsAT(f,t), which means that the fluent f is true time moment ¢.

The time line that was defined above corresponds to the real facts. This creates an asym-
metry between situation calculus and this linear time line. In order to erase this asymmetry a
branching structure of time and the predicate actual are introduced. With a branching time
structure several histories of situations are created. The predicate actual(s) means that the
situation s is true (it has really happened). The actual situations from a linear time line end
at the present moment.

The properties of the predicate actual are

actual (Sy)

48



(Va, s).actual(do(a, s)) D actual(s) A Poss(a, s)
(Vai,az, s).actual(do(ay, s)) A actual(do(az, s)) D a; =a2.

The first property shows that the initial situation is always true. Second that if a situation
which resulted from the execution of an action in a situation s is true then the preconditions
which allowed the execution of action a must hold in the situation s. The third property means
that only one action can be executed in a situation. This is a weakness because you do not
allow the simultaneous/parallel/concurrencing execution of more one of action. This leads the
global ordering of the actions(as long as it concerns their execution sequence).

Certain examples of application of situation calculus with time are present below

3.2.1 Explaining Observations

Assume a car which is parking in the morning.

holds(Parked, Sy,) A actual(Sy,) .

Later it is not parked. Then

actual (Se) A —holds(Parked, Se) A Sy < Se

This means that somebody have stolen the car or some driver took it from there. Hence

Poss(a, s) D holds(Parked,do(a, s)) =
[holds(Parked, s) A a # Steal A a # TowAway |V a = Park.

From the above we conclude that

(3s)-(Sm < Se) A [occurs(Steal, s) V occurs(TowAway, s)] .

3.2.2 External Events

The Situation Calculus can express some facts which happen periodically. For example assume
a bus passes from a stage every 15 minutes, between hours 08:00 and 24:00. Thus

49



occurs(BusArrives,t) = (In).0 <n <64 At =800+ 100 x n/4.

As a conclusion it comes out that

occurs(BusArrives,t) D occurs(BusArrives,t + 1).

3.3 The Frame and Qualification problems in Temporal Databases

We introduce these problems with an example [86]. Assume that a driver can not drive his car
for four hours after drinking alcohol. This is expressed by a constraint of the form:

occurs(drink,t) D —occurs(drive,t1) Aty <t+4h, (1)

where ¢t and ¢; are temporal variables and the predicate occur(drink,t) means that the
action drink is executed at time ¢. Also if a driver drinks alcohol, he is assumed drunk for
four hours, and if he causes an accident then he is illegal until he gets a pardon. These are
expressed by the following constraints:

occurs(drink,t) D hold(drunk,t1) Aty <t+4h
occurs(drink,t) D hold(~drunk,t1) ANty >t + 4h
occurs(car_accident,t) D hold(illegal, 00)

(

occurs(get_pardon,t) D hold(—illegal, >0)

Now we can rewrite the (1) as follows:

holdAT (drunk,t) D disq(drive, t)

In a temporal database we need to describe the effects of an action not only to the next
situation but possible for many future situations. In the above example, the action drink has
the effect that the driver is drunk for the following four hours and cannot drive during this time
(the time he is drunk). In these four hours, a number of other actions may execute leading
to many different situations. In all these situations the action ”drink alcohol” has the effect
drunk (and also the action drive is disqualified).

50



The solutions which have been proposed for the frame problem in conventional databases
cannot solve the problem in temporal databases because they determine effects of an action
for the next situation. In the Temporal Databases the effects of an action start to hold from
a specific time point and end in another specific time point.

The above weakness can be alleviated by constructing a correspondence between situations
and actions to the time. Figure 6 depicts this correspondence. There are three parallel axes.
The first is the situation axis, the second is the time axis and the third is the action axis.
We assume that all actions are instantaneous. When an action occurs, the database changes
into a new situation. For example, at time ¢; when action a; occurs, the situation changes
from Sy to S1 = do(a1,Sp). We introduce two predicates occursa r(a,t) and occurssr(S,t)
which correspond the actions and situations to a specific time stamp. Also, we introduce two
functions start(S) and end(S) which show the start and the end of situation S.

The frame problem in temporal databases becomes more complex in the case the effects
of an action may change the effects of another action in the current and the future situations.
This happens between action car_accident and get_pardon (for the fluent illegal).

As the above relations show there is a dependence between the actions drive, accident, get-
pardon and the fluents drunk and illegal. We represent this dependence with the predicate
duration(a, f,t,t') which when true, it means that the action a executes at time ¢ and affects
the fluent f at time #'. For our example we have that

duration(car_accident,illegal t,t') for all t,t' st. t' >t
duration(get_pradon,illegal,t,t') for all t,t' st. t' >t
duration(drink,drunk,t,t') for all t,t' st t<t <t+4h

The above relations take the form

+

€gruni(t) = occur g T(drink(z),t) A duration(drink(z), drunk,t, t')

61;7‘unlc(tl) =" egrunk (tl)

ezglegal(t') = occur o1 (car_accindent(z),t) A duration(car_accident(z),illegal, t, ")
e;”egal(t') = ﬂeillegal(t') V' [occur o r(give_pardon(z),t) A

duration(get_pardon(z),illegal,t,t')]

The €, (t') expresses the preconditions which when true, the fluents drunk is false at
time point ¢’ . The ejmmk(t' ) expresses the preconditions which when true, the fluent drunk is
true at time #. For each fluent f we define the two preconditions e}r and € - As we observe

the €, (') is true when the preconditions €}, . (#) is false while the €, gal

the €}, gai(t') is false. This mean that the following case

(') is true when

51



€drunk (tl) V €grunk (t,) = FALSE
6i_llega,l(tl) \ ei_llegal(tl) = FALSE

cannot occur 4. This ensures that even if we do not have knowledge which of the two fluents
(f,—f) hold one of the two fluents is true. For example for the (drunk, ~drunk) the —drunk
holds if there is no knowledge for the opposite, while for the (illegal, —illegal) the —illegal is
true if there is no knowledge for the opposite. For each pair (f,—f) we decide which of the
two holds by default. If the f holds then we change the

e}' as

+ _ + -

€ =€ V—|ef .
Else we change the

e; as

- +

€r =€ V—|ef .

There is case to hold the following

6(;runlc (tl) N Ggrunk (tl) =TRUE
6i_llegal(tl) A ei_llegal (tl) =TRUE.

In that case we must determine which of the two propositions (elf, e}') give us more recent
knowledge. In order to achieve that, we must ”"discover” the more recently action which
influences the fluent f. We change the propositions (6;, 6}') as follows

which mean that when the proposition € (#,#') is true in time point #', the more recent
action, which influences(”negatively”) the fluent f, has been executed at time point ¢ (resp.
for e}'(t, ). In the above example we have

41f this cases occur mean that none of f and —f is true.

52



curAT(drznk( ),t) A duration(drink(z), drunk,t,t')

6drunlc (tl)
occur 4 1 (car_accindent(x),t) A duration(car_accident(z),illegal, t,t')

6drunk (t’ tl)
6drunk (O’ t’
(

)
)
)=

zllegal t’ t
zllegal(t’ tl (t ) \ [OCCU’I"A,T(gZ’Ue_pa’r‘dO’I’L(.’II), t) A

duration(get_pardon(z),illegal,t,t')]

zllegal

As we observe the first argument of propositions € e}L is produced by the predicate dura-
tion. Now we defined the two following predicate

Ef (") = [ef (1, 8') A —ef (b2, 8)]V [€f (b1, 8) A €f (ta, ') A (81 > 1))
Ef(t") = [ef (t,t') A —ep (b2, )]V [€F (b1, ) A €5 (2, 8) A (B2 > 12)]

If £ (t) is true then the fluent ~f becomes true at time point ¢’ (resp. the E}L(t' ). If
B (t') is true then the proposition € (¢1,t') is true and the e}'(tg, t') is false or both are true
but the action which influences the e;(tl, t') takes place more recently than the action which

influences the e}'(tg,t' ) (t1 > t2). (Respectively for the proposition E;'[(t' ))- In the above
example assume the following execution of actions

occur (car _accident, 4)

occur(get_pardon, 7)

Suppose that at time point 8 the following hold

ez-_”egal(7, 8) = occur(get_pardon,7) A duration(get_pardon,illegal,7,8)

elf'l'legal(él, 8) = occur(car_accident,4) A duration(car_accident,illegal,4,8)

From the above we conclude that the Eﬁlegal(S) is true and Ezllegal( ) is false because 7 > 4.

This mean that the fluent —illegal is true at time point 8.

Consider the following execution of actions

occur(car_accident,4)
occur(get_pardon, 7)

occur(car_accident,9) .

53



At time point 10 the following are true

e;”egal(7, 10) = occur(get_pardon,7) A duration(get_pardon,illegal,7,10)

egl—legal(g’ 10) = occur(car-accident,9) A duration(car_accident,illegal,9,10)

By the above we conclude that the Eﬁlegal(IO) is false and E;Lllegal(lo) is true because 9 > 7.
This means that the fluent illegal is true at time point 10.

The algorithm for the production of the proposition € (¢,t'), E}L(t, t') is the following:
Algorithm for the production of ¢ (t,#), e}'(t,t’)

1. For every time point ¢/, for every fluent f do

(a) If occurar(ar,ty).....occurar(an,ty) is the sequence of actions which have been
executed then

(b) Select the action a; s.t. occura r(ai,t;) and the predicate duration(a;, f,t;,t') are
true and for all t; s.t. occura r(ak,t;) and the predicate duration(ay, f,t,t') are
true then t; > 1.

(c) Set e}' (t,t") = occura,r(a;, t;) A duration(a;, f,t;,t').
2. do the same for fluent —f.

The following algorithm addresses the frame problem in temporal database

Algorithm for addressing the frame problem

1. For every time point ¢ do

2. if E}'(t’) is true then f is true.

3. else E (t') is true then —f is true.
Theorem 3.1 The above algorithm addressine the frame problem.

Proof: Assume that there is a time point #' at which the fluent f is true but the algorithm
returns it false.

In order for the fluent f to be true at time point ¢’ there must exist an action a which has
been executed at time point ¢ (¢ < #'). As an effect the fluent f is true at time point ¢’ and
between t and ¢’ no action has executed which to has as an effect to make false the fluent f.
These mean that the predicate duration(a, f,t,t') is true. Thus

54



6}'(t,t') = occurar(a,t) Aduration(a, f,t,t'),

is true. Assume that the more recent action a; which influences negatively the fluent f
takes place at time point t; < ¢ 5. We have that

e;f(t,t') = occurar(a,t) Aduration(a, f,t,t')

e;(tl,t') == occurar(ai,t1) A duration(ay, f,t1,t")

Because t; < t we conclude that

Ef(t') = TRUE

E;(t') = FALSE

Thus the algorithm makes the fluent f true 6. A contradiction.

Now we address the qualification problem in a temporal database. Assume that for an
action a the disq(a) is the formula which disqualifies the action a (in a conventional database).
The following algorithm produces a formula for the case of a temporal database.

Algorithm for addressing the qualification problem

1. Transform each disqualified formula in its CNF form. Now each disqualified formula has
the form C; A Cy A ... A Cy,, where C; is a disjunction.

2. For each 7 from 1 to n do

(a) assume C; = f1 V...V fn,
for each j from 1 to m do
if f; then replace it from E}'

else if - f; replace it from E,

5In the opposite case the fluent f is false at the time point ¢'.
5We have assumed that the algorithm makes the fluent f false.

55



The above algorithm produces for each action a a formula disq(a,t'). When this formula
is true the action a cannot be executed.

Consider the above example. For the action drive the above algorithm gives

disq(drive,t') = E} . (t)

Consider the following execution

occur (drink, 5)

occur(drive,7)

At time point 7 the following hold

€ i (5,7) = occur o p(drink,5) A duration(drink, drunk,5,7)

drunk

The €},.,,x(5,7) is true because the occur 4 7(drink, 5) and duration(drink,drunk,5,7) are
true (5 <7 <5+4). Thee,, . (0,7) = el . (7) is false thus

E+

drunk

(7) = TRUE

This mean that the action drive cannot executed at time point 7.

Assume now the following execution

occur(drink, 5)

occur(drive, 11)

At time point 11 the following hold

€t unp(11) = occur 4 v(drink,5) A duration(drink, drunk,5,11)
The €}, .. (5,11) is false because the occur 1 (drink, 5) is true but the duration(drink,

drunk,5,11) is false (because 11 & [5,5 +4]). The €. (11) = =}, . (11) is true thus

E+

drunk

(7) = FALSE

This mean that the action drive will be executed at time point 11.

56



Theorem 3.2 The above algorithm solves the qualification problem.

Proof: Assume that at time point t, the action a must not be executed but it is executed. In
order for this to happen the fluent formula disg(a) must be true but the algorithm returns it
false. The only case this can happen is that one fluent f to be true (or false) and the formula
E]"J is false and E7 is true. This mean that the algorithm return that f is false (resp. true).
Thus we can conclude that the formula E} and E; cannot solve the frame problem 7. This
is contradiction because we have proven 3.1 that they solve it.

The solution of the qualification problem is result on the idea that the formula EJT and EJT
solve the frame problem.

3.4 The Ramification Problem in Temporal Databases

In this section we present the ramification problem in the context of temporal databases. We in-
troduce this problem by means of an example. Assume that when public employees commit mis-
demeanors, then for the next five months they are considered illegal, except if they are granted
a pardon. When public employees are illegal, then they must be suspended and cannot receive a
promotion for the entire time interval over which they are considered illegal. Also, when public
employees are suspended, they cannot receive a salary until the end of the suspension period.
Public employees are evaluated for their work. If they receive a bad grade, then they are con-
sidered "bad employees” and cannot receive a promotion until they are evaluated positively.
Otherwise, they are considered to be ”good employees” and may take a bonus if not suspended.
As we can observe, there are four actions ( misdemeanor, take_pardon, good_grade, bad_grade)
and seven fluents (good_employee, bad_employee, illegal, take_salary, take_bonus, take_promotion,
suspended). The direct effects of the four actions are expressed by the following propositions®:

occur(misdemeanor(p),t) D illegal(p, 5m) (1)
(take_pardon(p),t) D —illegal(p,0) (2)
(
(

bad_grade(p),t) D ~good_employee(p,o0) (3)
occur(good_grade(p),t) D good_employee(p,o00) (4),

occur

occur

where ¢ is temporal variable and the predicate occur(misdemeanor(p),t) denotes that
the action misdemeanor(p) is executed at time ¢. Also, we have and the following integrity
constraints which describe the indirect effects of the four actions.

"Because the do not determine right the truth value of the fluent f.
8Quantifiers are omitted. Propositions are assumed to be implicitly universally quantified over their temporal
and non-temporal arguments.

o7



—good_employee(p,t1) D —take_promotion(p,t1)
illegal(p,t1) D suspended(p,t1)

illegal(p,t1) D —take_promotion(p,t1)

suspended(p, t1) D —take_salary(p,t1)

—suspended(p,t) A\ good_employee(p,t) D take_bonus(p,t)
—good_employee(p,t1) D ~take_bonus(p,t1)
—suspended(p,t1) D take_salary(p,t1) .

In a temporal context, we need to describe the direct and indirect effects of an action not
only in the immediately resulting next situation but possibly for many future situations as
well. In the above example, the action misdemeanor(p) has as indirect effect that the public
worker is in suspension for the next five months. In these five months, the action good_grade
may occur but even if this happens, the employee still cannot receive a promotion. This means
that the world being modelled may change from one situation to another while the direct
and/or indirect effects of action still hold. Also, in this time span other actions may occur
leading to many different situations. Furthermore, five months after the execution of the action
misdemeanor the situation may change without an action taking place (because the public
worker is no longer considered illegal). Hence, fluents cannot be assumed to persist.

Previous proposals about addressing the ramification problem have used so called causal
relationships [21, 82, 43, 124, 125]. They come short in adequately addressing the problem
in a temporal context because they only determine the direct and indirect effects of actions
for the subsequent situation. Also they are based on the persistence of fluents assumption
(i.e., no fluent may change truth value without an action taking place). The same weakness
characterizes all other solutions of the ramification problem in conventional databases (e.g.,
[131, 62, 63, 64, 14, 50, 51]).

The above weakness can be alleviated by constructing a correspondence between situations
and actions with time. Some proposal for that has been done by [82, 102, 105, 87, 88, 86].
We suggest the correspondence that appears in figure 6. There are three parallel axes: the
situations axis, the time axis and the actions axis. For now, we assume that all actions are
instantaneous. When an action takes place, the database changes into a new situation.

3.5 Previous Work in the Ramification Problem in Temporal Databases

The most prevalent previous works are those by Reiter [105], Reiter and Pinto [101, 102]
and by Kakas [52, 53]. Reiter has suggested an extension of the situation calculus in order
to encapsulate time and axioms which ensure that in each legal situation all natural actions
have been executed. A natural action is an action which executes in a predetermined time
moment except if some other action has changed the time of execution. Reiter has extended

58



0 sl — :

situation axis

—@ @ @ @

t0 t1 t2 t3 t4 t5 ; ;
time axis

—@ o0 © @ @
al a2 a3 action axis

@ @ @

Figure 6: The correspondence among Time-Actions-Situations

the fundamental axioms of the situation calculus in order to determine which fluent is true at
each time moment. The problem addressed is the frame rather than the ramification problem.
However the work of Reiter sets the basis for encapsulating time in the situation calculus. In
the section 3.6.1, we propose a further extension of the situation calculus based on Reiter’s
proposal.

Kakas [52, 53] proposed the language E which contains a set ¢ of fluents, a set of actions,
and a partially ordered set of time points. E employs the following axiom schemas for the
description of the world (assume L and F' are fluents, T is a time point, A is an action and C
is a set of fluents).

holds at T
happens at T

L
A
A initiates F when C,
A terminates F when C,
L whenever C

A needs C.

As we may observe, the third and fourth axioms are dynamic because they evaluate when
an action executes, while the last two are static because they evaluate at each time moment.

In the example with the circuit we have the following dynamic axioms:

toggle_switch(s1) initiates wup(s1) when —wup(sy)

toggle_switch(s1) initiates -up(s1) when up(sy)
toggle_switch(s1) terminates -—wup(s1) when —up(sy)

toggle_switch(ss

(s1)
(s1)

toggle_switch(s1) terminates wup(si) when up(si)
(s1)
(s2) initiates wup(se2) when —up(ssy)
(s2)

toggle_switch(sy) initiates —up(sy) when up(ss)

59



toggle_switch(sg) terminates wup(sq) when up(ssz)

toggle_switch(sg) terminates —wup(se) when —up(ss)
Also we have the following static rules
light whenever wup(s1) Aup(s2)
—light whenever —up(s1)V —up(ss)

Assume that the initial situation of circuit at time 0 is

So = {up(s1), ~up(s2), ~light}
At this time we have that
up(s1) holds at 0

—up(s2) holds at 0
=light holds at 0

Assume the following execution of actions:
toggle_switch(ss) happens at 4
toggle_switch(s1) happens at 8

The language E is based in the idea of persistence. This mean that no fluent changes its
true value until some action causes this change. In our example, the situation does not change
until the time point 4. At time point 4 the following axioms will be evaluated

toggle_switch(sz) initiates up(s2) when —up(s2)

toggle_switch(se) terminates —wup(se) when —up(ss)

Now the new situation is

S1 = {up(s1),up(s2), ~light}

60



Now the following static rule is evaluated

light whenever up(s1) Aup(sz)

The new situation now is

S1 = {up(s1),up(s2),light}

The fluents which hold are

up(s1) holds at 4
up(sz) holds at 4
light holds at 4

The situation does not change until time point 8. Then the situation changes again.

In E, one cannot declare effects that persist over a time span as in the aforementioned
example where, if someone drinks then s/he is drunk for the subsequent five hours. In order
to achieve this, it is necessary for an action to occur after five hours. This means that the
users must explicitly determine all the indirect and direct effects. Also, E cannot represent
delayed effects, as e.g., if someone drinks alcohol then s/he becomes drunk half an hour later
and remains drunk for the next five hours. We consider these assumptions rather strong and
examine the problem in a strictly more general setting. The languages E works satisfactorily
only when the world which described is based on the persistence of fluents (like the circuit).

Related also is the language VHDL integrated circuit design used for symbolic temporal
behavior. This language is based on the assumption that fluents persist until their truth value
is changed. This mean that in the case of driver we must describe the direct and indirect
effects as follows:

if (occur(drink(p),t) then
drunk(p)

wait  for 5 month
—(drunk(p)) .

As we observe from this description, the user must determine explicitly all direct and
indirect effects. Also, the description becomes more difficult if an action can change the effects

61



of another action. In the above example, assume that there is an action drink_glycose which
has as direct effect —drunk. In that case, we need to describe an interrupt in order to ensured
the effects of the second action. The language VHDL, as E, works satisfactory only when the
world which described is based in the persistence of fluents.

The Temporal Action Logic is logic which encapsulates time. TAL consists of a compact
surface language L(SD) which can be translated into a first order language L(FL).

Definition 3.1 The L(SD) consists of

1. A set of observation statements. Each observation statement shows that some fluents are
true at some timepoints.

2. A set of occurrences. Fach occurrence shows the time point and the action which take
place at the specific time point.

3. A set of action laws which describe the direct effects of the action and the time intervals
at which these effects hold.

Consider the example which we borrow from [43], with a car which starts its operation.
Initially the engine and the car lights are off, the fan and radio are turned on but since they
are not connected to the battery until the key is turned there is neither fresh air nor any music.
Assume that the time start at 0 and between time point 3 and 4 the driver turns the key. We
have

obsl  [0](—engine A —light—air—music)

occl  [3,4]TurnKey

acsl  [3,4)TurnKeyleadsto[3,4]engine := true A
[3,4]lights := true A
([3,4] fan — [3,4]air := true) A
([3,4]radio — [3,4]music := true)

The first element describes the initial situation of the world. The second element shows
that the action turnKey takes place at the time points between 3 and 4. The third element
show that if the action TurnKey takes place in the [3,4], then the fluents engine and lights
must become true between the time points 3 and 4.

TAL has been extended in order to encapsulate the indirect effects of an action. The
language L(SD) is extend as follows

62



Definition 3.2 The language L(SD) in addition two the three sets of the definition 3.1 it
introduces a set of dependency laws of the form

Vi, aly = ([tla > [¥']6).

The dependency law means that ”if v is true and a becomes true at time point ¢ then the
B become true at time point #'.

Assume the example of shooting someone. Assume that st the time point 0 the person is
alive and walking. At time point between [1, 2] someone shoots him.

obsl [0lalive = true A walking = true

occl [1,2]Shoot

acsl [1,2]Shoot ~ [1,2]alive := false

depl Vti([t[1]alive = false > [t1]walking = false

The problem with TAL is that it assumes that the persistence of fluents holds. In the
above example with the public worker, if we use TAL we must describe explicitly when the no
persistence effects end. In order to achieve that, we must define an action and specify the time
point of its execution which shows the end of no persistence effects. For example assume that
a public worker does a misdemeanor at ¢ then we must determine that after 5 months(t + 5)
the new action ”end-illegal” which has as effect not illegal must be executed. This assumption
create many new problem. Assume the following execution

occur(misdemeanor(p), 3)
occur (take_pardon(p), 5)

occur(misdemeanor(p),7)

The first action has the non persistent effect that the fluent illegal holds for 5 month. Thus
we must determine that an action end —illegal will be executed at time point 8. At time point
5 the action take_pardon(p) takes place and cancels the effect of the first action. Thus we must
cancel the execution of action end — illegal because if it is executed will cancel the effect of
third action and this is wrong. The effect of third action must be cancelled at time point 12.
An obvious solution could be to determine preconditions for these ”cancelling” actions. In the
above example the preconditions could be the fluent illegal to hold. This is wrong because
in the above example the fluent ¢llegal is true at time point 8 but the action end — illegal
must not be executed. Thus the determination of the preconditions is very complex. Also

63



the number of actions are increased very much because we must define one action for each no
persistent effect of each action.

The Event Calculus has been proposed by [84, 59]. In the event calculus the time is
discrete. We defined the following predicates and relations

Initiates(a, f,1t)
Terminates(a, f,t)
Initiallyy(f)
Imitiallyn(f)

t1 < tg
Happens(a,t)
Happens(ti,a,ts)
HoldsAt(f,t)
Clipped(ty, f,t2)
declipped(ty, f,to)
Releases(a, f,t)

The first predicate means that the fluent f starts to holds after action a at time ¢, the
second means that the fluent f ceases to hold after action a at time £, the third means that
the fluent f holds from time 0, the fourth means that the fluent f does not hold from time 0,
the fifth relation means that the time point ¢; is before the time point to, the sixth predicate
means that the action a occurs at time point £, the seventh means that the action a starts at
time point ¢; and ends at time point %o, the eighth means that the fluent f holds at time point
t, the ninety means that fluent f ceases to hold between times ¢; and 2, the tenth mean that
the fluent f starts to hold between times ¢; and #9. The last predicates mean that the fluent
f is not subject to inertia after action @ at time point ¢.

The event calculus is very similarly to the language E. The most important difference is
that the event calculus could encapsulate effects which do not start or terminate in the discrete
time points(the predicates Clipped(t1, f,t2), declipped(ti1, f,t2), Happens(ti,a,ts)).

3.6 Extended Situation Calculus
We extend the temporal situation calculus as follows:

e We define functions start(a) and end(a), where a is an action. The former function
returns the time moment at which the action a starts while the latter returns the time
moment at which it finishes.

64



e We define functions start(S) and end(S) for situations. They return the time moments
at which situation S begins and ends respectively.

e We define the functional fluent f,(a) as current_moment — start(a), i.e., the duration
of execution of action a until the present moment.

e Time is discrete and isomorphic to the set of natural numbers.

e Each fluent f is represented as f(t'), which means that the fluent f is true in the time
interval [current_moment, current_moment + t']. —=f(t') means that the fluent f is false
in the time interval [current_moment,current-moment + t']. As time progresses, the
value of ¢’ is decreased by one time unit.

e We define the function FluentHold(S,t) which returns the set of all fluents which are
true of time moment .

e We define as temporal situation a situation which contain fluents of the form f(¢). This
means that a temporal situation contain information not only about the truth value of
the fluent but also how long they will be true. The function FluentHold is a n — 1
function from the domain of temporal situations to the domain of the situations °. The
domain of temporal situations is infinite while the domain of situations is finite because
if F' is the number of fluent there are 2 different situations. For the rest of the thesis the
term situation will mean temporal situation except if we explicitly specify the opposite.

e Actions are ordered as follows:

For instantaneous actions

a1 <ag < ....<ap, ,when
start(ay) < start(ag) < ..... < start(an)

Also, for instantaneous actions, start(a) = end(a) holds. In this case, two actions a1, a9
will be executed concurrently when start(a;) = start(as) holds.

For actions with duration, a1 < a2 when end(a1) < start(az). Two actions a1, a2 will be
executed concurrently when start(a;) < start(as) < end(a;) < end(az) holds.

We assume that all actions which execute at the same time moment will be executed
concurrently.

e We define the functiondoasdo : action™ X situation — situation. do({a1,as,..,an},S) =
S1 means that the actions a1, a9, .., a, execute concurrently in the situation S and the
result is the situation Sj.

e For two situations Sp,S2, S1 < Sz, when end(S1) < start(S3). It is not necessarily the
case that Sy = do({a;1, aiz, ...}, .....,do({a;j1, ...}, S1)-..)-

 FluentHold({f1(10), f2(34)},12) = FluentHold({f1(2), f2(3)},12) = {f1, f2}.

65



e We extend predicate poss(a, S) as follows:
poss({ai,az,...an},S) = N\j=1,._nPoss(a;, S). This means that the actions {a1, az,...an}
can execute concurrently if and only if the preconditions of each action are true.

e We define naturals actions as action which execute in pre-determined time points if their
preconditions hold.

e We define as a legal (consistent) situation, a situation in which all integrity constraints
are satisfied.

3.6.1 Fundamental Axioms

We use the axioms which have been defined by Reiter [105]

So # do({a1,...,an},S) (1)

do({ai, ...,an},8) = do({ay,...,a,},S') D
{a1,..,an} ={a},..,a, }AS =5 (2)

start(a(t)) =t (3).

Reiter has also defined one other axiom, namely

(VP).P(S0) A (V{a1, a0}, 8) [P(S) O P(do({as, - an}, 5)] O (VS)P(S).

This is an inductive axiom which means that each situation is the result of the execution
of a sequence of actions. Thus, if the initial situation is known we can determine which fluent
is true in each situation. This axiom does not hold in our case because the transition from one
situation to the next does not necessarily happen after the execution of an action. In order for
the above axiom to hold, we could define a natural action ay for each fluent f. The only direct
effect of the action a is that the fluent f becomes false ( f(0) '°). This means that when an
action a has as effect f(10) the action a; will execute 10 time moments later. Natural actions
do not affect the world being modelled. They are employed to ensure that the transition from
one situation to the next is the result of the execution of some action (natural or not). The
transition from one situation to the next happens when the truth value of at least one fluent
changes. By the inclusion of natural actions no fluent can change its truth value without some
action taking place.

10This mean that the fluent f is true for the 0 next time points. Thus is false

66



3.7 symmary

In chapter 3 we address the frame, ramification and qualification problems in temporal databases
and we propose one solution for the frame and qualification problems. Also, we present the
most important previous work on the ramification problem in temporal databases and we
extended the situation calculus in order to encapsulate time.

In temporal databases all predicates and relationships exist over time. This means that the
truth value of each fluent f depends on the time point at which it refers. As a consequence all
the situations exist over time. A situation has a start time point and a finish time point. In a
temporal database the evolution of a world is not just a sequence of situations Sy, S1,...,Sn
but a sequence of triples (So,0,tg), (S1,t0,%1)s---,(Sn,tn—1,tn), Wwhere the first element of
each triple is the situation, the second is the situation start time and the third is the end
time point of the situation. Notice that an evolution of the world in a conventional database
may correspond to many different evolutions of a respective temporal database. Also when an
action takes place, this happens at a specific time point.

In a temporal database we need to describe the effects (direct and indirect) of an action not
only to the next situation but possible for many future situations. This happen because in the
temporal databases the effects refered in the time interval while in the convertional databases
the effects refered only in the next situation. This means that the world being modelled may
change from one situation to another while the direct and/or indirect effects of action still hold.
Also, in this time span other actions may occur leading to many different situations. Hence,
fluents cannot be assumed to persist. All solutions which have been proposed for the three
above problems based on the idea of the persistent of fluents. Hence these solutions cannot
solve the ramification problem in the case of temporal databases.

The above weakness can be alleviated by constructing a correspondence between situations
and actions with time. We suggest the correspondence that appears in figure 6. There are
three parallel axes: the situations axis, the time axis and the actions axis. For now, we assume
that all actions are instantaneous. When an action takes place, the database changes into a
new situation.

The situation calculus provide a very good context for the formalization of action theories
in the conventional databases. Most of the solutions of the frame, ramification and qualification
problems are based on the situation calculus. Thus, it is desirable to extend to the situation in
order to encapsulate time. At section 3.6 we propose an extension of situation calculus which
encapsulate the time. Our extension admir us to discrebe the actions and their effects when
the time is presnt.

In the next chapter we use this extension in order to solve the ramification problem in the
temporal databases.

67



4 The Ramification Problem in Temporal Databases - The So-
lutions

4.1 Sequential execution

In this section we present a solution for the ramification problem in temporal databases, when
the actions execute sequentially. This solution extends the solution which has been proposed
by McCain and Turner [82].

Each action A is represented as A(t) which mean that the action A is executed at time
t. Bach fluent f is represented as f(¢'), which means that the fluent f is true in the time
interval [curent_moment, current_moment + t']. —f(t') means that the fluent f is false in the
time interval [curent_moment,current_moment + t']. As time progresses, the value of ¢ is
decreased by one time unit.

For each action A we define one axiom

A> A\ Li(t),

where L;(t') is f;(t') or =f;(t'). The above axioms describe the direct effects of an action.
For each fluent f we define two axioms

G(t,t) > f(¥)
B(t,t) > ~f(t),

where G(t,1') is a formula which when true (at time point ¢) causes fluent f to become true
at the next ¢’ time moments (respectively for B(t,t')). These axioms encapsulate the indirect
effects of an action. The former of axioms are dynamic because they are evaluated after the
execution of an action, while the latter are static because they are evaluated at every time
point at which the correspondent fluent is false.

The static rules encapsulate the indirect effects of an action, which are caused by the exis-
tence of integrity constraints. The indirect effects of an action ensure that after the execution
of an action the integrity constraints are satisfied in the new situation. Thus the static rules
must be produced in such way that when an integrity constraint is not satisfied in a situation
produced by the application of dynamic rules, at least one static rule is executable. After
execution of static rules the corresponding integrity constraints will be satisfied. The basic
idea we propose is to translate each integrity constraint into CNF form

Ci N... NC,, where
Ci=fuiV..V fmi

68



and to ensure that whenever a C; is false, static rules can be evaluated and make C; true.
To ensure this there must be at least one static rule of the form

—|[\/ fp st pe{li,...,mi} and p#ki]VFLD fi

where FL is a fluent formula and ki € {17,...,mi}. After the execution the fluent fi; will
be true, thus the C; will be true. If the above happens for each C; of each integrity constraint
then the integrity constraint will be satisfied after the execution of the static rules.

One cornerstone of our work is the production of the static rules from integrity constraints,
according to the above ideas. We make use of a binary relation I which is produced from
the integrity constraints and encodes the dependencies between fluents (In section 4.1.1 we
describe the binary relationship with details).

We need O(A + 2 x F) axioms, where A is the number of actions and F' the number of
fluents. Additionally, it may be necessary to define one default axiom for each pair (f,—f).
The default axiom has one of the following forms: f(0)A—f(0) D f(t) or f(0) A—f(0) D = f(¢).
The default axioms are evaluated when f(0) A —~f(0) holds '!. It is not necessary to define
default axiom for each pair (f,—f), if there is no case in which (f(0) A =f(0)) holds.

Consider again the example with the public worker: if a public employee commits a mis-
demeanor, then for the next five months s/he is considered illegal, except if s/he receive a
pardon. When a public employee is illegal, then s/he must be suspended and cannot take
promotion for the entire time interval over which s/he is considered illegal. Also when a public
employee is suspended s/he cannot take his/her salary until the end of the suspension pe-
riod. Each public employee is evaluated for his/her work. If s/he receive a bad grade, then
s/he is assumed to be a bad employee and s/he cannot take promotion until s/he receives
a good grade. If s/he receives a good grade, then s/he is assumed to be a good employee
and s/he may take a bonus if s/he not suspended. Also assume that a public worker is not
illegal if there does not exist information that proves s/he is illegal, is not suspended if there
does not exist information that proves s/he is suspended and takes his/her salary if there
does not exist information that proves the opposite. This helps us define the default axioms.
As we observe we have four actions misdemeanor, take_pardon, good_grade,bad_grade and
seven fluents good_employee, bad_employee, illegal, take_salary, take_bonus, take_promotion,
suspended. The direct effects of the four actions are expressed in propositional form by the
following constraints'?:

occur(misdemeanor(p),t) D illegal(p,5m) (1)

In that case mean that the fluent f and its negation are false. The default axioms determine which of two
fluent f or —f assumed true in that case

12Quantifiers are committed in the expression of these propositions. They are considered to be implicitly
universally quantified over their temporal and non-temporal arguments.

69



occur (take_pardon(p),t) D —illegal(p,0) (2)
occur(bad_grade(p),t) D ~good_employee(p, o) (3)
occur(good_grade(p),t) D good_employee(p,o00) (4),

where t is a temporal variable and the predicate occur(misdemeanor(p),t) denotes that the
action misdemeanor(p) is executed at time ¢. Also we have the following integrity constraints
which describe the indirect effects of the four actions.

illegal(p,t1) D suspended(p,t1) (5)

illegal(p,t1) D —take_promotion(p,t;) (6)

suspended(p, t1) D —take_salary(p,t1) (7)

—good_employee(p, t1) D ~take_promotion(p,t1) (8)

—suspended(p,t1) A good_employee(p, ta) D take_bonus(p, min(ti,t2) (9)
—good_employee(p,t1) D ~take_bonus(p,t1) (10)

—suspended(p,t1) D take_salary(p,t1) (11).

In a temporal database we need to describe the direct and indirect effects of an action not
only in the immediately resulting next situation but possibly for many future situations as
well. In the above example, the action misdemeanor(p) has the indirect effect that the public
worker is in suspension for the next five months. In these five months the action good_grade
may occur but even if that happens the employee cannot take promotion. This means that
the world changes situations while the direct and indirect effects of some action still hold. In
the above example the dynamic axioms are the (1) - (4) while the static axioms are

illegal(p,t1) D suspended(p,t1)

illegal(p,t1) V —good_employee(p, ta) D —take_promotion(p, max(t1,ts)
suspended(p,t1) D —take_salary(p,t1)

—suspended(p, t1) A good_employee(p, ta) D take_bonus(p, min(t1,t2))
—good_employee(p,t1) D —take_bonus(p,t1)

—suspended(p,t1) D take_salary(p,t1) .

We have the following default axioms
illegal(p,0) A —illegal(p,0) D illegal(p, o0)

take_salary(p,0) A —take_salary(p,0) D take_salary(p, oo)
suspended(p,0) A —suspended(p,0) D suspended(p, o).

70



4.1.1 Fluent Dependencies

This section describes algorithms for discovering dependencies between fluents. As we have
already explained the aim of the binary relation [ is to encapsulate the dependencies between
fluents and to ensure that when an integrity constraint is not satisfied then there is at least one
static rule which is executable and after the execution the integrity constraint will be satisfied.

Assume that we have two kinds of integrity constraints:

(a) Gf :)Kf
(b) Gr=Ky,

where Gy and K are fluent propositions. The difference between the two kinds is that, for
the second kind, when =Gy holds then =K also holds, whereas this is not necessarily the case
for the first. For the first kind of constraints, for each f € Gy and f’' € Ky we add the pair
(f,f") in I. Notice that (f', f) & I (because Ky A G¢). For the second kind of constraints
we make the following hypothesis: The change of the truth value of a fluent belonging to G
is expected to affect the truth values of some fluents belonging to Ky, while it is not expected
to affect the truth values of other fluents which belong to G;. We make the same hypothesis
for the fluents of K.

Algorithm 1 for constructing I.

1. For the first kind of constraints, for each f € Gy and f’ € K; we add the pair (f, f') in I.

2. For the second kind of constraints, for each pair of fluents f, f’, such that f € G and
e Ky weadd (f, f') and (f',f) to I.

Consider the circuit in figure 7. The integrity constraints specifying the behavior of this
system are expressed as the following formulae:

(a) light = up(sl) A up(s2)
(b) relay = —up(sl) A up(s3)
(¢) relay D —up(s2)

By applying this procedure the set I is constructed as follows: for constraint (a) we conclude
that (up(sl),light), (up(s2),light), (light,(up(sl)),(light, (up(s2)) must be added in I. From
rule (b) we obtain (up(sl),relay), (up(s3),relay), (relay, (up(sl)),(relay, (up(s3)) to be to I
and from rule (c) we obtain (relay, up(s2)) € I.

71



By the second step of algorithm 1 we have that (up(sl),light) € I, while (up(s1),up(s2)) &
I. Assume that the circuit is in the situation that is depicted in figure 7. The action
toggle_switch(s1) has as indirect effect to light the lamp and not to toggle the switch ss.
We observe that it is not reasonable to include the fluent pairs (light, (up(sl1)),(light, (up(s2)),
(relay, (up(sl)),(relay, (up(s3)) in I. The truth values of fluents light and relay cannot change
as the direct effect of an action, so they cannot affect the truth values of other fluents.

Algorithm 2 for constructing I

1. For each f € Gy, f' € Ky, where Gy D Ky is a specified constraint add the pair
(f,f') to I.

2. For each f € Gy, f' € Ky, where Gy = Ky is a specified constraint do:
If f can change its truth value as the direct effect of an action, then add (f, f') to I. If
f' can change its truth value as direct effect of an action then add (f’, f) to I.

A relay @7 light

~ 1 up(s3)

4|

Figure 7: Thielscher’s Circuit

In our example, the above change is right if and only if each of the fluents light and relay
appear in a single constraint of the form G; = K;. For example, consider the circuit in

72



— up(s4)

7 up(s3)

Figure 8: A more complex circuit

figure 8. The integrity constraints specifying the behavior of this system are expressed as the
following formulae:

(a) light = up(sl) A up(s2),
(b) light = up(s4) A up(sh),
(¢) relay = —up(sl) A up(s3),
(d) relay D —~up(s2)

Applying the procedure described above yields:

((up(s1),light), (up(s2),light), (up(sd),light), (up(sb),light),
(up(sl), relay), (up(s3),relay), (relay,up(s2)) € I.

Assume that the circuit is in the situation depicted in figure 8. Then, after the execution
of action toggle_switch(ss), because (up(sd),light) € I, the fluent light changes from —light
to light. Because (light,up(sl)), (light,up(s2)) & I, the fluents up(sl),up(s2) do not change.
This means that the circuit will be in situation —up(s1), up(s2), up(s4), up(s5), ~up(s3), -relay,
light, which violates the rule (a). Assume now that the integrity constraints specifying the
behavior of this system are expressed as the following formulae:

(a) light = (up(sl) Aup(s2)) V (up(sd) A up(s5))
(b) relay = —up(sl) A up(s3),
(¢) relay D —~up(s2)

In the above specification of constraints, the fluent light is only in one constraint of type
G = Ky and algorithm 2 behaves correctly. As we observe the circuit of the figure 8 consists

73



of two smaller circuits. The first consists of the switches s1, so and the lamp, while the second
of the switches sy, s5 and the lamp. The reasonable behavior is that the lamp lights up when
one of the two circuit is closed. This is ensured by the second set of integrity constraints. The
first set of integrity constraints ensures that when one circuit is closed then the second must
be closed. This is not reasonable.

Theorem 4.1 Let A O B be a constraint and C1 A .... A Cy, its CNF form. Both algorithms
produce I in such way that for each C; there is at least one pair (f1, f2) € I and C; = f1V foVC;]

Proof: The A D B is equivalent with —A V B. Assume that I' = —A.
Assume that the DNF form of I and B are

Y1V i Yn

respectively.

Assume that

Y= f171 A ... A f”71

Yn = fl’Yn A ... A fn,m
b1 = flﬂl A ..... A fnﬂl

B = fip A A fg,

The integrity constraint A D B is equivalent to:

T V Y V ,81 V..V ﬂm

This equivalent with the following:

Ci A ... A Cy, where

(2) Ci=fi, V...... V fin V fing1 VooV fini,  where

74



fi1 € 71,

fin € Tn
fin+1 S /81

[ intm € Bm

For the above two algorithms (from the step 1) we have that the pairs

{(filﬁfin+1)7 """ (fi1afin+m)}g1

{(finafin+1)7 """ (fznafzn+m)}g1

Thus for each C; there is at least one pair (f, f’) € I, where f, f' are disjuncts of C;.
|

Theorem 4.2 Let A = B be a constraint and C1 A .... AN Cy, its CNF form. The algorithm
1 generates I in such way that for each C; there is at least one pair (f1,f2) € I and C; =
[V Ve,

Proof: The integrity constraint A = B is equivalent to (A4 D B) A (B D A). Suppose that

CiN...NCy
CiN...ANC),
are the CNF forms of A O B and B D A, respectively. Then from the previous theorem

we have that for each C; there is at least one pair (f, f') € I and f, f' € C; and for each C]
there is at least (fi, f2) € I and fi, f2 € C|.

The integrity constraint A = B is equivalent to

CiAN...ANCy NCIA...ANC),

In order to transform into CNF form the above proposition we must examine if there is
some pair (Cj, C;) for which C; ”subsume” C; (C; = C; V Cj), in which case we must delete
the C;. Thus the CNF form A = B contains a subset of C1,...,C,. Thus we have proven the
theorem.

75



The theorem 4.2 does not hold for algorithm 2 because it eliminates some pairs which the
algorithm 1 produces. For example assume that the following two integrity constraints:

Assume that A = f A A; and A" = f A A], where fluent f cannot change as direct effect of
an action. Then for all fluents f; which there are in B or in B’ and could change their truth
value as direct effect of an action there is a pair (f;, f)i € I, while (f, f;) ¢ I. Then if an
action has as effect the to become true the B, then A must become true. In order for this to
happen f must become true. After that, B’ must be true. But the fluent f cannot affect the
truth value of any fluent in B’.

An example of such a situation is the following:

(a) light = up(sl) A up(s2),
(b) light = up(s4) A up(sh),
(¢) relay = —up(sl) A up(s3),
(d) relay D —~up(s2)

(a) is equivalent to the successive formulas
[light D up(s1) A up(s2)] A [up(s1) A up(s2) D light]
(—light V (up(sl) Aup(s2))) A (—up(s1) V ~up(s2) V light),
(—light V up(sl)) A (—light A up(s2)) A (—up(s1) V —up(s2) V light)
The last formula is in CNF form. As we observe the rule has three parts
first:  —light V up(sl)
second :  —light A up(s2)

third:  —up(s1) V —up(s2) V light

If we apply the second algorithm, then from the first part the set I contains only the pair
(up(s1),light) and not (light,up(s1)). As we observe from the second integrity constraint the

76



fluent light could change its truth value as result of the changing of truth value of the fluents
up(s4) or up(ss). For the second rule we have

[light > up(ss) A up(ss)] A [up(sa) A up(ss) D light]

The problem is that the following must hold:

up(s4) Aup(ss) D light (from the second integrity constraint) and
light D up(s1) ANup(se) (from the first integrity constraint)

In that case we use the algorithm 1.

Above we identified the following situation as problematic for algorithm 2.

A=B and CDB are ICs and A#C

where A,B,C are fluent formulas and B contains fluents which may change their truth value
only as indirect effect of an action. The following result shows a weaker condition under which
algorithm 2 is guaranteed to lead to an I which preserves consistency.

Theorem 4.3 For each integrity constraint A = B if and fluents Ay and By which belong
in the A and B respectively and could change their truth values only as indirect effects, the

algorithm 2 does not produce an inconsistency when there are no C and D, such that C D By
and D D A1, C # A and D # B.

Proof: Assume that integrity constraint A = B and A; and B; are the fluent formulas which
contain the fluents which belong in the A and B respectively and could change their truth value
only as indirect effects. Assume that there is no integrity constraint C O By or D O A; such
that C # A and D # B.

Suppose that the initial situation satisfied the integrity constraint, and suppose that an
update in the database occurs. There are two cases. First this update does not influence any
fluents which belong to A and B. Then the integrity constraint is satisfied in the new situation.
Second, this update changes the truth value of some fluents which belong to A or B. This
change refers to fluents which belong to A\ A; or B\ By because the fluents which belong
to A1 and Bj could change their truth values only as indirect effects of an action and none
other integrity constraints could affect them (because there is no C O B; or D D A; such that
C # A and D # B).

Thus the fluents which change their truth value could affect the other part of the integrity
constraint. u

In cases where the condition of theorem 4.3 is not satisfied, we use algorithm 1 for generating
I. Otherwise we use the algorithm 2.

(e



4.1.2 Algorithms for the production of static rules

The static rules encapsulate the indirect effects of the execution of each action. The indirect
effects exist because of the presence of integrity constraints. Hence, it is reasonable to produce
the static rules from the integrity constraints. Initially the set of rules is R = {False D
f, False D —f: for each fluent f}. Static rules are produced as follows:

1. Transform each integrity constraint in its CNF form. Now each integrity constraint has
the form Cy A Cy A Cs...... A Cy, where each C; is a disjunct of fluents.

2. For each 7 from 1 to n do

(a) assume C; = f1 V...V fn
For each j from 1 to m do
For each k from 1 to m, and & # j, do
if (fja f]c) € I then
R=RU(~f; causes fr if A-fi),l=1,.m,l# j,k.

3. For each fluent fj the rules '® in R have the following form
/\ fi causes fr if @
/\ fl causes —fy if ®.

We successively incorporate these rules into exactly two, one for f; and one for —fy, as
follows: if the current rules are

G D fk
K D —fy

then we change them into

GIka

KID—'fk

where
G'=GV(\firn®)
K'=KV(\firnd).

13Notice that for a fluent there could be more than one causal relationship. This happens in the case that the
fluent fi, appears in more than one integrity constraint. At this step we integrate all these causal relationships
in one. For example if fi A fo causes fs if fiand fs A fe causes fs if fr then the static rule False D f3
is transformed first in fi A fo A fa D faand (fi A fa A fa) V (fs A fo A fa) D fs.

78



4. For each rule G, D f,, we replace each fluent f with f(¢), as we have defined above. The
static rule has the form G,(t) D f,(1).

The proposition G, (t) could contain information which permits us to understand that
the fluent f, is true for a time interval greater than one time unit. We change the static
rules in order to encapsulate the above observation. The rules change from Gy, (t) D f,(1) to
Gy, (t,t') D fp(t'), where Gy, (,1') means that, if G, is true at time moment ¢, then the fluent
[p is true for the next ¢’ time units:

1. For each static rule G(t) D f do

(a) let G=G1V...VG,
(b) For each j from 1 to n do

e let G; = f1(t1) A woee A fr(tn)
e let t = min(ty,...,t,)
e replace G; with G,(t)

(¢) t' =mazx(t; : G; 1is true)

(d) replace G(t) with G(t,t")

Notice that the first four steps are static and execute one time at the start. The fifth step
is executed dynamically at each time point at which the static rule must be evaluated. This
happens because the formula G, (t,t") can be true for different values of ¢ and #'.

Now we show how the algorithm works in the above example. First, we must construct
the set I using the algorithm which has been proposed in section 4.1.1. All the integrity
constraints (IC) have the form A D B. We have that

illegal, suspended) € I (from IC 5)
illegal, —take_promotion) € I (from IC 6)
suspended, —~take_salary) € I (from IC T)

—suspended, —take_bonus) € I (from IC 9)

good_employee, —take_bonus) € I (from IC 9)

(
(
(
(mgood_employee, —take_promotion) € I (from IC 8)
(
(
(mgood_employee, take_salary) € I (from IC 10)

(

—suspended, take_salary) € I (from IC 11)

The transformation of integrity constraints into CNF form yields:

79



—illegal(p,t1) V suspended(p,t1) (5)

—illegal(p,t1) V —take_promotion(p,t1) (6)

—suspended(p,t1) V ~take_salary(p,t1) (7)

good_employee(p,t1) V —take_promotion(p,t1) (8)

suspended(p, t1) V ~good_employee(p, t1) V —take_bonus(p,t1) (9)
good_employee(p, t1) V ~take_bonus(p,t1) (10)

suspended(p,t1) V take_salary(p,t1) (11)

This is step 1 of the algorithm. In step 2 we have

R = {illegal(p) causes suspended(p) if T,

illegal(p) causes —take_promotion(p) if T,
suspended(p) causes —take_salary(p) if T,
—good_employee(p) causes —take_promotion(p) if T,
good_employee(p) causes take_bonus(p) if -—suspended(p),
—suspended(p) causes take_bonus(p) if good_employee(p),
—good_employee(p) causes —take_bonus(p) if T,
—suspended(p) causes take_salary(p) if T}.

In the step 2 we estimate all causal relationships. In the step 3 we have that

R = {illegal(p) D suspended(p),

illegal(p) V —good_employee(p) D —take_promotion(p),
suspended(p) D —take_salary(p),

—suspended(p) A good_employee(p) D take_bonus(p),
—good_employee(p) D take_bonus(p),

—suspended(p) D take_salary(p)}

In step 3 we construct for each fluent the fluents formula which makes the fluent true.
Notice that perhaps there are many causal relationships which affect the same fluents. We
integrate these causal relationship in this step. For example see the second and fourth causal
relationships from step 2. In step 4

80



R = {illegal(p,t1) D suspended(p,1),

illegal(p,t1) V —good_employee(p,ta) DO —take_promotion(p, 1)),
suspended(p) D —take_salary(p, 1),

—suspended(p, t1) A good_employee(p, ta) D take_bonus(p,1),
—good_employee(p,t1) D —take_bonus(p,1),

—suspended(p, t1) D take_salary(p,1)}

Finally in step 5 (which must execute at each time point at which the static rules evaluate)
we have the following four static rules:

R = {illegal(p,t1) D suspended(p,t1),

illegal(p,t1) V —good_employee(p,ta) O —take_promotion(p, maz(ti,t2))
suspended(p) D —take_salary(p,t1),

—suspended(p,t1) A good_employee(p,t2) D take_bonus(p, min(t1,t2)),
—good_employee(p,t1) D —take_bonus(p,t1),

—suspended(p,t1) D take_salary(p,t1)}

In step 5, for each static rule, we find the maximum time for which its body is true. For
example in the second rule, the body is true when illegal(t1) V good_employee(ts) is true. This
mean that we take the maximum of times 1, to for which good_employee is true. For the fourth
rule, the body is true when —suspended(t1) A good_employee(ts) is true. This means that we
must take the minimum of times t1, t5.

By the production of the static rule we have that
Theorem 4.4 When a static rule is executable at least one integrity constraint is not satisfied.

Proof: Assume that a static rule

Gi(.) D f

is executable in a situation S. Then the fluent formula Gy must be true. We have that

Gr=GpV...GY
where

L= (= N\filt,i=1,.m)

81



Each G’zj} is produced by the integrity constraint C; A .... A C}, such that there is a C; =
fVfiv...Vfn. Thus when the G} is true it must be the case that all fluents f;, 7 = 1, ..m must
be false. The above static rule is only executable when fis false. In that case C; = fVfiV...Vf,
is false, thus the integrity constraint Cj A .... A C, is not satisfied.

We study the case where the set of integrity constraints is satisfiable. For example if there
are six integrity constraints of the form

fiD fa
f2D f3
fsD-h
=f1 D~ f2
—fa D ~f3
-f3s D fi

then there is no situation in which the above constraints are satisfiable because the set

{(=f1, f2), (= f2, £3), (= f3, 2 f1), (f1,~f2), (f2,~f3), (f3, f1)}

is not satisfiable 4. By the above six constraints we produce six static rules which will be
evaluated one after the other for ever. This happens because there is no consistent situation
and thus always at least one static rule will be executable.

Theorem 4.5 Consider a set of static rules G. Then if for a fluent f1 there is a sequence

Gp,(...) D fa(...) where Gy, = f1 Vv GY,
Gy, () D f3(...) where Gy, = foVv G,

Gy, () D ful-) where Gy, = fn1VGY,
G-p(-.) D =fi(...) where G-p = frVG.y
Gppi () D fara(.) where Gy, ., =-fivVGy

Gloim (o) D foym(...) where Gy, = farm1 VG.IfTH—m
Gr(...) D fi(...) where Gy = foym VG,

4 We have that —fiVe=fiDf, foVfa=faDfs,...

82



then the set of rules is unsatisfiable.

Proof: Assume that f; is true. If we apply iteratively the modus ponen we have

fiVGy, D fa
fi

f2
faV G D fs

f3
f3V G, D fa

fa
In
fn VG,—‘fl D) _'fl

~fi

We conclude that —f; holds. Assume that —f; is true. If we apply iteratively the modus
ponen we have

-f1Vv Glan D fn+1
-1

.fn+1
far1VGY D fure

fn+2
fn+2 \% G,fn+3 2 fn+3

fn—|—3

83



fn+m
fn+m \% Gll D) fl

fi

We conclude that f; holds. Thus always we have that f; A —f;. This is not satisfied.

For the rest of the thesis we assume that the set of the integrity constraints is satisfiable
(this means that there is no sequence as in theorem 4.5). This will be ensured if no static rule
is executable in the initial situation at time point 0(by the theorem 4.4)).

We can discover if a set of the integrity constraint is satisfiable if we transform each of
them into its CNF form. Then if we have n integrity constraints we have

011/\.../\01n

CinN...Cpp

Each Cj is a disjunct. Then if the set C = {C11,...Cin,...,Cln,...Cnn} is satisfiable
then the set of integrity constraints is satisfiable.

Also in order for the set of the static rule R to be consistent, for each pair (f,—f) it must
hold that Gy A By = FALSE, when G; D f, By D —f. In other cases, we have the infinite
execution of the rule Gy O f, By D —f (one after the other) if Gy A By = TRUE. This is the
second precondition which we assume for the rest of this paper.

Theorem 4.6 If in a set of static rules R there is a pair (f,—f) such that GgABy # FALSE,
when Gy D f, By D —f then there is a case that the static rules Gy O f, By D —f may be
executed infinitely.

Proof: Assume that Gy A By is true. Also assume that initially the fluent f is true. Then
the static rule By D —f must be executed because the fluent formula B; is true. After the
execution the fluent —f is true but the the static rule G; O f must be executed because the
fluent formula G is true. After the execution the fluent f is true but the the static rule
By O —f must be executed because the fluent formula By is true. Thus the two above rules
will be executed one after the other for infinite.

84



4.1.3 Algorithms for the Evaluation of Dynamic and Static Rules

In this section we present an algorithm for the evaluation of dynamic and static rules

1. After the execution of an action a evaluate the dynamic rule which refers to this action

a(-) D filt) A fults)

and set E = {f1,... fu} '°.
2. Evaluate the default axioms

3. For all static rules except these that have as heading a fluent whose its negation belongs
in the set E (this means that G(..) D f(..) and —f(..) € E) do:

(a) Repeat until no change occurs.

(b) Evaluate the static rules corresponding to the fluents which are false at time point
t.

(c) If a fluent f(t) becomes true after the evaluation of a static rule, then set —f(0).
(the negation is false).

4. For all static rules that have as heading a fluent whose negation belongs in the set E
(this means that G(..) D f(..) and =f(..) € E) do:

(a) If none of these rules is executable then return the current situation, otherwise else
repeat until no change occurs.

(b) Evaluate the static rules corresponding to the fluents which are false at time point
t.

(c) If a fluent f(¢) becomes true after the evaluation of a static rule, then set —f(0).
(the negation is false).

5. For each time point ¢ at which no action takes place do

(a) Evaluate the default axioms

i. Repeat until no change occurs.
ii. Evaluate the static rules corresponding to the fluents which are false at time
point t.
iii. If a fluent f(¢) becomes true after the evaluation of a static rule, then set =f(0).
(the negation is false).

15The set E constrains the direct effects of action a

85



As we can observe in the above algorithm, if at time point ¢ an action a take place then
try to find a consistent situation which contains all the direct effects of a. If no such consistent
situation '® exists then try to find a consistent situation which does not contain all direct
effects of the a. Notice that when the above algorithm terminates there are no executable
static rules.

Consider the example with the public worker. We have four dynamic rules (1-4) as we have
described in the previous section. Also we have produced the six static rules

illegal(p,t1) D suspended(p,t1),

illegal(p,t1) V ~good_employee(p, t2) DO —take_promotion(p, max(t1,t2)),
suspended(p, t1) D —take_salary(p,t1),

—suspended(p,t1) A good_employee(p, t2) D take_bonus(p, min(ti,ts))
—good_employee(p,t1) D ~take_bonus(p,t1),

—suspended(p,t1) D take_salary(p,t1).

Assume now that we have a public worker p and the initial situation is

So = {—take_bonus(p, x0), take_salary(p, o), ~take_promotion(p, ),
—suspended(p, 00), ~good_employee(p, 00), —illegal (p, c0)} .

Time starts at 0 and has the granularity of months. Assume that the following actions
occur at the following time points:

occur(good_grade(p), 2)

occur (misdemeanor(p),4)

occur(good_grade(p), 8)

(

(
occur (bad_grade(p), 6)

(
occur (misdemeanor(p), 10)
(

occur (take_pardon(p),12).

At time point 2 the action good_grade(p) executes. From the algorithm for the evaluation
of dynamic and static rules, after the evaluation of dynamic rule (4) we have the situation

16This happens when a static rule which has as conclusion an effect which is inconsistent with the direct
effects is executable and none other static rule which has as conclusion an effect which is consistent with the
direct effects is executable. In that case the resulting situation is inconsistent (because by the production of the
static rules, we have that when a static rule is executable in a situation S there is an integrity constraint which
is not satisfiable in S). Thus the evaluation of the static rules must go on until no static rule be executable.

86



S = {—take_bonus(p, ), take_salary(p,o0), —~take_promotion(p,o0),

—suspended(p, 00), good_employee(p, o0), illegal (p, 00) } .

As we csn observe the following static rule will be evaluated:

—suspended(p, 00) A good_employee(p, ta) D take_bonus(p, o),
After the evaluation of static rule we have the situation
S1 = {take_bonus(p, 00), take_salary(p, 0o), —take_promotion(p, o),
—suspended(p, 00), good_employee(p, >0), —illegal (p, 00) } .

This situation does not change until time point 4, when the second action (misdemeanor(p))
takes place. From the algorithm for the evaluation of dynamic and static rules, after the eval-
uation of dynamic rule (1) we have the situation

Y, = {take_bonus(p, ), take_salary(p, 00), —take_promotion(p, ),

—suspended(p, ), good_employee(p, 00), illegal (p,5) } .
As we may observe the following static rules will be evaluated
illegal(p,5) D suspended(p, 5)
suspended(p,b) D —take_salary(p,5)
After the evaluation of static rules we have the situation
Sy = {take_bonus(p, 00), —take_salary(p,5), —take_promotion(p, o),
suspended(p, 5), good_employee(p, ), illegal (p,5)} .

This situation does not change until the time point 6, when the third action (bad_grade(p))
executes. From the algorithm for the evaluation of dynamic and static rules, after the evalua-
tion of dynamic rule (3) we have the situation

87



St = {take_bonus(p, ), —take_salary(p,5), —take_promotion(p,co),
suspended(p, 5), ~good_employee(p, >0), illegal (p,5)} .

The following static rule will be evaluated:

—good_employee(p, 00) D —take_bonus(p, o)

After the evaluation of static rule we have the situation

S3 = {~take_bonus(p, 00), —take_salary(p, 3), —take_promotion(p, o),
suspended(p, 3), ~good_employee(p, >0), illegal (p,3)} .

This situation does not change until the time point 6, when the fourth action (good_grade)
takes place. From the algorithm for the evaluation of dynamic and static rules after the
evaluation of dynamic rule (4) we have the situation

S} = {—take_bonus(p,00), ~take_salary(p, 1), —take_promotion(p, o),
suspended(p, 1), good_employee(p, 00), illegal(p,1)} .

No static rule will be evaluated. Thus the situation does not change. At time point 9 does
not executed any action but the situation change because take_salary(p,0) A take_salary(p,0)
, suspend(p,0) A —suspend(p,0) and illegal(p,0) A —illegal(p,0) holds. Thus the following
default axioms are evaluated

—suspended(p,0) A suspended(p,0) D —suspended(p, o0)
—take_salary(p,0) A take_salary(p,0) D take_salary(p, oo)
illegal(p,0) A —illegal(p,0) D —illegal(p, o0)

The new situation is
St = {—take_bonus(p, ), take_salary(p,00), —take_promotion(p, o),
—suspended(p, 00), good_employee(p, 00), —illegal (p, 00) } .

88



Now the static rule

—suspended(p, 00) A good_employee(p, 00) D take_bonus(p, ),
will be evaluated. After the evaluation of the static rule the situation is
S5 = {take_bonus(p, 00), take_salary(p, oo), —take_promotion(p, o),
—suspended(p, 00), good_employee(p, 00), —illegal (p, 00)} .
At time point 10 the action misdemeanor(p) executes, thus the situation changes into
& = {take_bonus(p, <), take_salary(p,00), —take_promotion(p, ),
—suspended(p, 00), good_employee(p, o), illegal (p,5)} .
Now the following static rules will be evaluated
illegal(p,5) D suspended(p,5)
suspended(p,5) D —take_salary(p,5)
After the evaluation of static rules the situation is
Se = {take_bonus(p, 00), —take_salary(p,5), —take_promotion(p, o),
suspended(p, 5), good_employee(p, oc), —illegal (p,5)} .
The last action (take_pardon) occurs at time point 12. The new situation is
S7 = {take_bonus(p, ), —take_salary(p,3), —take_promotion(p,oo),
suspended(p, 3), good_employee(p, 00), —illegal (p,00) } .

Finally the situation changes again at time point 15, because —suspended(p,0) Asuspended(p,0)
and —take_salary(p,0) A take_salary(p,0) holds. Thus the following default axioms are eval-
uated

89



—suspended(p,0) A suspended(p,0) D —suspended(p, o)
—take_salary(p,0) A take_salary(p,0) D take_salary(p, o)

Now the new situation is

Sg = {take_bonus(p, 00), take_salary(p, oo), —take_promotion(p, o),
—suspended(p, 00), good_employee(p, 00), —illegal (p, 00)} .

This is the end of execution.

As we observe from the set R, for each pair (f,—f) it holds that Gy AKy = FALSE, when
Gy D f, Kjy D —f. More specifically the set of static rules is

R = {illegal(p,t1) D suspended(p,ti),

illegal(p, t1) V —good_employee(p, ta) DO —take_promotion(p, max(t1,ts)
suspended(p,t1) D ~take_salary(p,t1),

—suspended(p,t1) A good_employee(p, ta) D take_bonus(p, min(t1,t2)),
—good_employee(p,t1) D —take_bonus(p,t1),

—suspended(p,t1) D take_salary(p,t1),

good_employee(p,t1) D take_promotion(p,t1),

False D —suspended(p,t1),

False D take_promotion(p,t1),

False D illegal(p, t1),

False D —illegal (p,t1), }

As we observe, for the fluents for which there is no static rule we add the rule false D f,
because they cannot become true by the static rule but only by the dynamic rules (this means
that the truth value changes only as direct effect of some action). Now we have

(msuspended(p, t1) A good_employee(p, t2)) N ~good_employee(p, t1)
for (take_bonus,—take_bonus)
suspended(p,t1) A —suspended(p, t1)
for (take_salary(p,t1), —take_salary(p,ti))
illegal(p,t1) A False for (suspended(p,t1),~suspended(p,ti))

90



illegal(p) V —good_employee(p) A False
for (—take_promotion(p), take_promotion(p)
False A False for (illegal(p),—illegal(p))

The assumption Gy A Ky = FALSE is very important in order to ensure that, always,
after the execution of action there is a consistent situation. Now we show with an example
that if this assumption does not hold there is no consistent situation after some sequence of
action execution.

Consider the example with the public worker and assume that there is another integrity
constraint specifying that when a public worker is a good employee then s/he can take promo-
tion. Now the set of static rules is

R = {illegal(p,t1) D suspended(p,ti),

illegal(p,t1) V —good_employee(p, ty) O —take_promotion(p, maz(ty,ts)
suspended(p,t1) D —take_salary(p,t1),

—suspended(p,t1) A good_employee(p, ta) D take_bonus(p, min(ti,ts)),
—good_employee(p,t1) D —take_bonus(p,t1),

—suspended(p, t1) D take_salary(p,t1),

good_employee(p,t1) D take_promotion(p,t1)}

As we can observe, for the pair (take_promotion(p), —take_promotion(p) the above assump-
tion does not hold, because

good_employee(p,t1) A (illegal(p,t1) V —good_employee(p,ts))

can be true when good_employee(p) A illegal(p) holds.

Assume now that we have a public worker p and the initial situation is

So = {—take_bonus(p, 00), take_salary(p, 0o), —take_promotion(p, 0o),

—suspended(p, 00), ~good_employee(p, o), —illegal (p, c0)} .
Assume that the following actions occur at the following time points, assuming time starts

at 0 and time granularity is that of months.

occur(misdemeanor(p),4)

occur(good_grade(p), 6) .

At time point 4 after the execution of the action misdemeanor(p) we have the situation

91



S| = {~take_bonus(p, <), take_salary(p,oc), ~take_promotion(p, o),

—suspended(p, 00), ~good_employee(p, ), illegal(p, c0), }

After the evaluation of the static rules we have

S1 = {—take_bonus(p, ), —take_salary(p, ), "take_promotion(p, o),

suspended(p, 00), 7good_employee(p, 00), illegal(p, ), }

At time point 6, after the execution of the action good_grade(p) we have the situation

St = {—take_bonus(p, <), —take_salary(p, <), ~take_promotion(p,oo),

suspend(p, 00), good_employee(p, 00), illegal(p, o), }

Now the static rule good_employee(p, o0) D take_promotion(p,oo) must be evaluated and
after that take_promotion(p,oc) must hold. But if take_promotion(p, co) holds then we must
examine if the static rule illegal(p, 00)V =good_employee(p, t1) D —take_promotion(p, o) must
be evaluated. We observe that we must evaluate this static rule. As we may observe the two
static rules will be evaluated one after the other for ever. This means that there is no consistent
situation. This happens because there is a mistake in the integrity constraints, which has as
result that the above assumption does not hold.

The algorithm can run without the above assumption but we must determine the precon-
ditions of each action in order to avoid the above problem.

The following theorem establishes the termination of the algorithm.
Theorem 4.7 At each time unit, the algorithms terminate at a finite number of step.

Proof: Assume that at time unit ¢ the algorithm does not terminate. Then, there must
be an infinite loop. Assume that SY is the initial situation at time ¢. Then, there is a non
terminating sequence SY, S}, ...... Sk, 17

In this proof the term situation refers to the set of the truth values of the fluents. Thus
the transition from one situation to the next happens only when a fluent changes its truth
value. '8, Notice that because a static rule is evaluated only when the corresponding fluent is
false, it is not possible for a static rule G(¢,%') D f(#') to be evaluated when the fluent f is true

17The transition from one situation to the next happens after the evaluation of one or more static rules.
'8 This mean that each S} = FluentHold(Sm,t), for a temporal situation S,

92



at point . The static rule will be evaluated when f becomes false. Thus, for the transaction
from one situation that the other it is necessary to there is a fluent f which changes from f to

=f.
If F is the number of fluents then there are 2f" different situations (because the transaction
from one situation to the next happens only if a fluent changes its truth value.) This means

that in the above sequence, there are two identical situations because of the infinite loop.
Without loss of generality we assume S. = SF.

Thus in the sequence S, ...., SF there is at least one fluent f which changes from f to —f
and eventually becomes f again.

Assume that f’ is one such fluent.
Assume that

G(t,t) O f'(t))
B(t, t”) D) ﬁfl(tll)

Assume that first f' holds. Then we must evaluate the rule B(¢,t") D —f’ and after the
G(t,t') D f'. This means that one of the following holds:

e At time ¢ the proposition G A B must be true. But the conditions G and B are mutually
exclusive. A contradiction.

e There is a sequence of static rules as the theorem 4.5 describes. In that case the integrity
constraints are unsatisfiable. A contraction (the initial situation satisfies all integrity
constraints).

Hence, in each case we reach a contradiction and thus the algorithm terminate at a finite
number of step.

The following theorem establishes that we always end up with a consistent situation.
Theorem 4.8 The above algorithm always return a legal situation.

Proof: In order for the algorithm to be correct must always terminate in a consistent situa-
tion. This means that all integrity constraints must be satisfied at this situation.

Assume that integrity constraint Law; is not satisfied in one situation. Assume that the
CNF of this law is Cy A .... A C},. Then it must be the case that one of the C4,...., C, is false.
Assume that C; = f1 V...V fy, is false. Then all fluents f;,j = 1,..m are false. Assume

93



that fi and f, are two of these for which (fk, f,) € I '°. Then for f, it must be the case
that: Gp(t) = G'V (= A fi(tj,7 = 1,.m,5 # p). If all fluents f;,j = 1,..m are false then
(=Afj»i=1,.m,j #p) is true. Thus Gp(t,t') is true and ¢’ > 1. This means that the static
rule Gp(t,t') D fp(t') must be evaluated and thus, the f, is true. A contradiction.

The complexity of the above solution is O(A+2*F')) laws, where A is the number of action
an F' the number of fluents..

4.1.4 The ramification problem when the direct and indirect effects of an action
refer only to future situations

The ramification problem becomes more complex when the direct and indirect effects of an
action do not hold for the next time moment but after some time moments. For example,
assume that in the above example the action good_grade has as direct effect to characterize
the public worker as good employee after two months (respectively for the action bad_grade).
In that case the above representation of fluents cannot encapsulate the direct and indirect
effects of the actions good_grade, bad_grade.

In order to accomodate such cases we extend futher the situation calculus

e We change the representation of fluents as follows: each fluent F' is represented as F'(L),
where L = [[t,#],...] is a list. Each member of the list is a time interval [t,%'], which
means that the fluent is true at time interval [t,¢']. At each time moment ' we reduce
for the list the time intervals [t,#] which refer in the past(t > ') 20. Now the rules
(dynamic and static) change in order to encapsulate the above change.

e We define the function FluentHold(S,t) which returns the set of all fluents which are

true in the time moment ¢. 2!

The static rules are produced from the same algorithm as before except from step five
which changes as follows: At each time moment it which it is necessary to evaluate a static
rule, before the evaluation of the rule execute the following algorithm

1. At time moment ¢, for the static rule G(t,¢,) D f do

(a) let G=G1V...VG,

'9The theorems 4.1,4.2,4.3 ensuring that there is a such pair

20For example at time point 5 we reduce the time interval [2, 4] because 5 > 4.

21Notice that the above representation, allows one situation to contain information that some fluents will be
true in the future, e.g FluentHold({f1([5,9]), f([10,20])},6) = {f1}.

94



(b) For each j from 1 to n do

e let G = f1([..]) Aweee A fu([-])
i. for each fluent f;(L) take the first element [t ,¢ ] of the list L.
ii. if ¢ >t then @ is false; terminate.
iii. elset; =t —t.
o let tyin = min(ty, ..., ty)
e replace G; with G;(t,t + tmin)

When a static rule G(t,¢ ) D f(L) is evaluated the element [t,#] is added in the list L and
is removed from the L', where —f(L') 22. For the rest of this thesis the notation G(t,][t,#]) is
equivalent to G(t,#'). The algorithm for adding an element [¢,# ] add in the list L and removing
it from L' is:

1. Consider the fluent f(L). L is the list at which we add the element [t,].

2. if there is an element [t;1, ;2] for which ;1 <t < tj2 < t' holds then remove it and add
[t t]-

3. if there is an element [t;1, ;2] for which ¢ < ¢;; < t' < t;5 holds then remove it and add
[ta tZZ]

4. else add [t,t].

5. Consider —f(L'). L' is the list from which we remove the element [t,%].

6. if there is an element [¢;1,t;2] for which ¢ < t;1 < tj2 < t holds then remove it.

7. if there is an element [t;1, ;] for which t; < ¢t <t < t;5 holds then remove it and add
[til,t] and [t ,tiQ].

8. if there is an element [t;1, ;] for which ¢t < #;; <t < t;5 holds then remove it and add
[t tio]-

9. if there is an element [t;1, ;2] for which ;1 <t < tj2 < t' holds then remove it and add
[ti1,t].

The above algorithm can be used for the evaluation of dynamic rules, too. The algorithm
for evaluating the dynamic and static rules does not change, except that now there is no need
to evaluate the default axioms. Notice that the algorithm which estimates the indirect effects
of an action, does that at the time that they start to hold. This means that if some action has
direct effects which refer only in the future, the indirect effects are not estimated at the time of

22The list L' is the list, which contains the time intervals, in which the fluent —f is true

95



action execution but at the time that the direct effects start to hold. This has the advantage
that if in the interval between the execution of the action and the time point at which the
effects start to hold some action which cancels the direct effects of the first action occurs, it is
not necessary to estimate the indirect effects twice.

Theorem 4.9 The algorithm for evaluating the dynamic and static rules returns a legal situ-
ation when the direct and indirect effects refer only to future situation.

Proof: The proof is similar with the proof of the theorem 4.8. The proof is similar because
the algorithm which estimates the indirect effects of an action, does that at the time that they
start to hold.

Consider the example with the public worker but with the new assumptions (which we
made at the begin of the section) for the actions good_grade,bad_grade. Assume that the
direct effect of the actions misdemeanor,take_pardon hold for the current moment of the
execution of actions. Now the dynamic rules are:

occur (misdemeanor(p),t) D illegal(p, [t,t + 5m]) (1)

occur (take_pardon(p),t) D —illegal(p, [t,00]) (2')

occur (bad_grade(p),t) D —good_employee(p, [t + 2,00]) (3')
occur (good_grade(p),t) D good_employee(p, [t + 2,00]) (4').

Now assume that the initial situation is:

So = {—take_bonus(p, [[0, ]]), take_salary(p, [[0, ]]),
—take_promotion(p, [[0,>]]), —suspended(p, [0, 0]]),
—good_employee(p, [[0, 00]]), millegal (p, [[0, o0]])} -

Assume that the following actions occur at the following time points, assuming time starts
at 0 and time granularity is that of months.

occur(good_grade(p), 2)
occur(misdemeanor(p),4)
occur(bad_grade(p), 8) .

At time point 2 the first action will be executed. After the execution the new situation is

96



S1 = {~take_bonus(p, [[0, >0]]), take_salary(p, [[0, oc]]),
~take_promotion(p, [[0,0]]), —suspended(p, ([0, o0]])

~good_employee(p, [[2,4]]), good_employee(p, [[4,00]]), —illegal(p,[[0, co]])} -

As we observe at time point 2 no static rule will be evaluated (contrary to what happens
in the previous sections example) because the effects of action good_grade(p) will holds two
time points latter.

At time point 4 the second action will be executed and the effects of the first action start
to hold. Now the new situation is

Sh = {—take_bonus(p,[[0,0]]), take_salary(p, [[0,c0]]),
~take_promotion(p, [0, 00]]), —suspended(p,[[0, 0]]),

good_employee(p, [[4,]]), illegal(p,[[4,9]]), —illegal(p,[[9,0]])} -

As we observe the —good_employee(p, [[2,4]]) does not hold at time point 4 and thus we
remove it. 22 The following static rules will be evaluated

illegal(p, [4,9]) D suspended(p,[4,9])
suspended(p, [4,9]) D —take_salary(p, [4,9])

After the evaluation of the static rules we have the situation

Sy = {—take_bonus(p,[[0, 00]]), ~take_salary(p, [[4,9]]),
take_salary(p, [[9, >]]), —take_promotion(p,[[0,]]),
suspended(p, [[4,9]]), —suspended(p, [[9,¢]]),

good_employee(p, [[4,]]), illegal(p,[[4,9]]), —illegal(p,[[9,0]])}-

As we observe the fluents suspended(p, [[4,9]]), ~suspended(p, [[9, 0]]) and ~take_salary(p, [[4,9]]),
take_salary(p,[[9, 00]]) and illegal(p,[[4,9]]), —illegal(p, [[9,0]]) encapsulate the default ax-
ioms.

At time point 8 the third action will be executed. After the execution the new situation is

23We observe with this representation of fluents we can capture the meaning of default axioms. For example
the fluent illegal, —illegal.

97



S3 = {—~take_bonus(p, [[0, o0]]), ~take_salary(p, [[4,9]]),
take_salary(p, [[9, o0]]), —take_promotion(p, ][0, ]]),
suspended(p, [[4,9]]), ~suspended(p, [[9, o0]]),
good_employee(p, [[4,10]]), —good_employee(p, [[10,c]]),
illegal(p, [[4,9]]), —illegal(p,[[9,00]])}-

At time point 9 no action takes place but the situation changes, because the fluents
illegal(p, [[4,9]]), suspended(p, [[4,9]]) and —takesalary(p,[[4,9]]) cease to hold.

Sy = {~take_bonus(p, [[0, 00]]), take_salary(p, [[9, oc]]),
—take_promotion(p, [[0,0]]), —suspended(p, [[9,0]]),
good_employee(p, [[4,10]]), —good_employee(p,[[10,00]]), —illegal(p,[[9,0]])}-

Now the static rule

—suspended(p, [9, oc]) A good_employee(p, [9,10]) D take_bonus(p,[9,10])
must evaluated. Thus the new situation at time point 9 is
S = {take_bonus(p,[[9,10]]), ~take_bonus(p, [[10, cc]]),
take_salary(p, [[9, 0]]), —take_promotion(p, ][0, c]]),

—suspended(p, [[9, 0]]), good_employee(p, [[4,10]]),
—good_employee(p, [[10, 0]]), millegal (p, [[9, 0]])} -

At time point 10 no action will execute but the situation changes as follows:
S5 = {~take_bonus(p,[[10, 0]]), take_salary(p, [[9, >]]),

—take_promotion(p, [[0, o0]]), —suspended(p, [[9,]]),
—good_employee(p, [[10, o0]]), —illegal(p,[[9,0]])} .

The transition from the situation Ss to S5 happens because good_employee(p, [[4,10]]) and
take_bonus(p,[9,10]) cease to hold at time point 10.

98



4.1.5 The ramification problem when actions have duration

In the case that the actions have duration then all effects must be determined with reference
to the start, the end and the duration of the actions. If all direct and indirect effects can be
described by reference to the start and the end of the action then we can assume that one
action with duration is equivalent with two instantaneous actions: one for the start and one
for the end. In that case the dynamic rules must be defined for the instantaneous actions. The
above algorithms solve the ramification problem without change. But as we show below this
is a very strict assumption.

In the case that the effects of an action depend on its duration, the above approach cannot
address the ramification problem. Consider the example with the public worker and assume
that if the action good_grade has a duration of more than two time moments then it has as
effect the promotion of the employee.

Usually the duration of an action is unknown before its end. So we cannot describe the
direct and indirect effects of an action with reference to the start and to the end. We must
change the dynamic and static rules.

The fluents representation does not change. For each action a we define a new functional
fluent f,(a) which returns the duration of the execution of action a until the current moment.
If this fluent returns 0 the action does not execute at current moment.

The fluent f, helps us to determine the indirect effects of an action which depend on
the duration of the action a. All direct effects of an action do not depend on the duration
of execution. We must change the static rules in order to encapsulate the fluents f,. The
following algorithm implements this change.

1. For each static rule G(t,t') D f do

(a) let G=G1V...VG,

(b) For each action a which can affect the fluent f if executed for more than one time

do
i. set G' =GV (fola) > b))
ii. set G =G’

(c) let G=G1 V...V Gy
(d) For each j from 1 to m do

o let G = fi(t1) A oo A fu(tn)
e let t = min(ty,...,t,)
(e) set " =mazx(t; : G; 1is true)
(f) replace G(t,t') with G(¢,t")

99



The above algorithm ”adds” at each static rule the effect which depends on the duration
of an action. The algorithm of evaluation of the dynamic and static rules does not change.

The main problem with actions with duration is that we cannot assume that each of them is
equivalent with two instantaneous actions one at the start and one at the end of the duration.
We show that with an example. Consider again the example with the public_wcorker. Assume
that the action misdemeanor(p) has duration and the direct effect is that the public_wcorker
p is illegal for time of the duration of the action misdemeanor(p) and also for 5 months after
the end of the action. Because we may not know the duration of the action misdemeanor(p)
from the start we must define the following dynamic rules

occur(start(misdemeanor(p)),t) D illegal(p, [t,0]) (a)
occur(end(misdemeanor(p)),t) D illegal(p, [t,t + 5m]) A
—illegal(p, [t + 5, 00]) (b)

The justification for the introduction of the two rules comes from the fact that when the
execution of action misdemeanor(p) starts, the public worker is illegal identically, because
we do not know when the action ends. After the end of the action and the public worker
is considered illegal for 5 months. This is right if the fluent illegal(p, [t,00]) does not have
as indirect effect to change the truth value of another fluent. For example assume the initial
situation is

So = {—~take_bonus(p, [0, 0]), take_salary(p, [0, o)),
—take_promotion(p, [0, 00]), —suspended(p, [0, o)),
~good_employee(p, 0, o)), —illegal(p, 0, o))} .

Also assume the following execution of actions

occur(start(misdemeanor(p)), 2)

occur(end(misdemeanor(p)),4)
At time point 2 the execution of action misdemeanor(p) starts and thus the dynamic rule

(a) is evaluated. The new situation is

81 = {—take_bonus(p,[0,0]), take_salary(p,|0,o0]),
—~take_promotion(p, [0, 00]), —suspended(p, [0, o)),
~good_employee(p, [0, o)), illegal(p, 2, o0])} .

100



After the evaluation of the static rules

illegal (p, [2, 00]) D suspended(p, [2, >0])
suspended(p, [2,00]) D —take_salary(p, 2, 0])

we have the situation

S1 = {—take_bonus(p, [0, x]), —take_salary(p,[2,x]),
—take_promotion(p, [0,00]), suspended(p, 2, c]),
—good_employee(p, [0, 00]), illegal(p, [2,00])} .

At time point 4 the execution of action misdemeanor(p) ends and the dynamic rule (b) is
evaluated. The new situation is

Sy = {~take_bonus(p, [0, 0]), —take_salary(p,[2,0]),
—take_promotion(p, [0, c]), suspended(p,[2,0]),
—good_employee(p, [0,0]), illegal(p, [4,9]), —illegal(p,[9,0])} .

As we can observe the fluent illegal changes but the fluent suspended(p, [2,00]) does not
change. Thus at time point 9 the fluent suspended(p,[2,c0]) still holds and thus the fluent
—take_salary(p,[2,00]) holds. This is wrong because one expects the fluent suspended to
cease to hold when illegal ceases to hold. This does not happen. The problem is caused by
the dynamic rule which refers to the start of some action. More specifically, the problem is
caused by the assumption that each fluent that the specific action makes true, is assumed to
be true indefinitely, because we do not known the end of the action. Thus we must change the
dynamic rule which refers to the start and similarly with the dynamic rule which refers to the
end of the action. Now there is the problem of how to refresh the direct effects of the action
as time progress.

In order to solve this problem, we define a natural action natural(a) for each action a with
duration. This natural action is instantaneous and will be executed periodically. The direct
effects of a natural action for action a are exactly the same with the effects of action a. This
means that if occur(a,t) D A fi([t,t}]) then occur(natural(a),t) D A fi([t,t;]) The period is
equal with the minimal time that some fluent become trues (as direct effect of action a ) after
the execution of this action. For example,

occur(a,t) D fi([t,t + 3]) A fo([t,t +4]) A f3([t, t + 7)),

101



then the period of execution is 3. The precondition of the action natural(a) is the contin-
uation of the execution of action a. This means

Poss(natural(a)) = fa(a) > 0.

For each action a with duration, we assume that there are three instantaneous actions
start(a), end(a) and natural(a). The dynamic rules must refer to the instantaneous actions
so we change the dynamic rules as follows:

1. if the dynamic rule has the form occur(A4,t) D A fi([t,t]) and t’' # oo for some f; then

(a) replace it with

occur (start(A),t) D /\fz([t,t;])
occur(end(A),t) D N fi([t, )

(b) let t" = man{t; : fi([t,t}])}

(c) set natural(A) to execute periodically with period #".

2. if the dynamic rule has the form occur(A,t) D A fi([t,00]) then replace it with

occur (start(A),t) D /\fz([t, o0))

The algorithm for the evaluation of dynamic and static rules does not change. As we
observe if one action has "permanent” direct effects then it is not necessary to define natural
action for this action, because there is no need to refresh.

Theorem 4.10 The algorithm address the ramification problem in case that the effect of an
action depend on its duration.

Proof: In order to be correct the algorithm must always terminate in a consistent situation.
This mean sthat all integrity constraint must be satisfied at this situation.

Assume that the integrity constraint Law; is not satisfied in one situation at time point ¢.
If Law; does not refer to the effects that depend on the duration then the proof is the same
with that of theorem 4.8. If Law; refers to the effects that depend on the duration then this
mean that there is a fluent f which truth value depend on the duration of an action a. Without
loss of generality we assume that the fluent f becomes true if the action a executes for more
than b time points. Assumed that the action a executes for more than b time points and the

102



fluent f is false. Because the truth value of fluent f depends on the duration of an action a,
the static rule which refers to it has the form

Gs(.) D f(..)

This means that the formula Gy(t,..) is true at time point ¢ because the second part
((fa(a) > b) is true. Thus the rule G¢(t,t') D f(t') is evaluated and the fluent f becomes true.
A contradiction.

Consider the example with the public worker with the new assumption. The dynamic rules
are

occur(misdemeanor(p),t) D illegal(p,[t,t + 5m]) (1)
),1) > —illegal(p, [t,00])  (2)
t) D —good_employee(p, [t,]) (3)
occur(good_grade(p),t) D good_employee(p, [t,o0]) (4),

(

occur(take_pardon(p

occur(bad_grade(p),
(

After the execution of the algorithm which produce the dynamic rules we have

occur(start(misdemeanor(p)),t) D illegal(p, [t,t + 5m]) (la)
occur(end(misdemeanor(p)),t) D illegal(p,[t,t + 5m]) (1b)
occur (natural(misdemeanor(p)),t) D illegal(p, [t,t + 5m]) (1)
occur (start(take_pardon(p)),t) D —illegal(p, [t,0]) (2)

occur (start(bad_grade(p)),t) D —good_employee(p, [t,0]) (3)
occur(start(good_grade(p)),t) D good_employee(p, [t,oc]) (4),

The period of the execution of action natural(misdemeanor(p)) is 5. The static rules as
they are produced by the algorithm in section 4.1.2 are:

R = {illegal(p,t1) D suspended(p,ti),
illegal(p,t1) V —good_employee(p, ta) DO —take_promotion(p, max(t1,t2)),

103



suspended(p) D —take_salary(p,t1),

—suspended(p,t1) A good_employee(p,ta) D take_bonus(p, min(ty,ts)),
—good_employee(p,t1) D ~take_bonus(p,t1),

—suspended(p,t1) D take_salary(p,t1)

False D take_promotion(p,co)}

Now we must perform the above algorithm at the set R in order to encapsulate the
indirect effects which depend on the duration of some action. The only rule which is ef-
fected is the last one and changes from False D take_promotion to f,(good_grade) > 2) D
take_promotion(p, oo)

Assume the following sequence of execution

occur(start(good_grade(p)), 2)

occur(end(good_grade(p)), 5)

occur (start(misdemeanor(p)), 6)
(

end(misdemeanor(p)),13)

Assume now that we have a public worker p and the initial situation is

So = {—take_bonus(p,[0,x]), take_salary(p,|0,0]),
—take_promotion(p, [0, 00]), —suspended(p, [0, o)),
—good_employee(p, [0, oc]), —illegal(p, [0,00])}.

At time point 2 the execution of the action good_grade(p) starts and the dynamic rule (4)
is evaluated. Now the new situation is

S| = {~take_bonus(p,[0,0]), take_salary(p, [0, o0]),
—~take_promotion(p, [0, 00]), —suspended(p,[2,0)),
good_employee(p, 2,00]), —illegal(p, 0,00}

After the evaluation of the static rule

—suspended(p, [2,00]) A good_employee(p, [2,0]) D take_bonus(p, [2, o))
the new situation is

104



S1 = {take_bonus(p, [2,]), take_salary(p, [0, 0]),
~take_promotion(p, [0,0]), —suspended(p, [2,0]),
good_employee(p, [2,00]), —illegal(p, [0, oc])} .

At time point 4 the action good_grade(p) executes for more than 2 time points thus the
static rule f,(good_grade) > 2) D take_promotion(p,00). is evaluated Now the new situation
is

Sy = {take_bonus(p,[2,0]), take_salary(p, [0, 0]),
take_promotion(p, [4,]), —suspended(p, [0, 0]),
good_employee(p, 2, 3]), —illegal(p, 0,00])}

At time point 5 the action good_grade(p) ends but the situation does not change. At
time point 6 the execution of the action misdemeanor(p) starts and the dynamic rule (1a) is
evaluates. Now the new situation is

Si = {take_bonus(p,[2,0]), take_salary(p,[0,o0]),
take_promotion(p, [4,]), —suspended(p, [0, 0]),
good_employee(p, [2,c]), illegal(p,[6,11]), —illegal(p,[11,00])}.

After the execution of static rules
illegal(p, [6,11]) D suspended(p, [6,11])

suspended(p, [6,11]) D —take_salary(p,[6,11])
illegal(p, [6,11]) V ~good_employee(...) D —take_promotion(p, [6,11])

the situation at time point 6 is:
S3 = {take_bonus(p, 2, 0]), —take_salary(p,[6,11]),take_salary(p,[11, cc]),
—take_promotion(p, [6,11]), take_promotion(p,[11,00]), suspended(p,[6,11]),

—suspended(p, [11, o)), good_employee(p, [2,0)),
illegal(p, [6,11]), —illegal(p, [11,00])} .

105



The situation changes at point 11 because the fluent —take_salary(p, [6, 11]), ~take_promotion(p,
[6,11]), suspended(p, [6,11]) and illegal(p, [6,11]) ceases to hold. At time point 11 the situation
is

" = {take_bonus(p, [2,00]), take_salary(p,[11,0]),
take_promotion(p, [11,00]), —suspended(p, [11, x0]),
good_employee(p, [2,00]), —illegal(p,[11,00])} .

At time point 11 the action natural(misdemeanor(p)) executes (because f,(misdemeanor(p)) >
0 holds) and refreshes the effect of action misdemeanor(p). The dynamic rule (1c¢) evaluates.
Now the new situation is

S} = {take_bonus(p, [2,0)]), take_salary(p,[11,c]),
take_promotion(p, [11, 00]), —suspended(p,[11, c0]),
good_employee(p, [2,0]), illegal(p,[11,16]), —illegal(p,[16,00])} .

After the execution of the static rules

illegal(p,[11,16]) D suspended(p, [11, 16])
suspended(p, [11,16]) D —take_salary(p,[11,16])
illegal(p, [11,16]) V —good_employee(...) D —take_promotion(p,[11,16])

we have

S4 = {take_bonus(p, [2,0]), —take_salary(p,[11,16]), take_salary(p,[16, o)),
—take_promotion(p,[11,16])), take_promotion(p,[16,cc]),

suspended(p, [11,16]), —suspended(p,[16,00]), good_employee(p,[2, o)),
illegal(p, 11, 16]), —illegal(p, [16, 0c]) } .

If we compare the situations S3 and S; we can clearly observe the rules of refreshing of the
effects. At time point 13 the action misdemeanor(p) ends and thus the dynamic rule (1b) will
be evaluated. Now the new situation is

S5 = {take_bonus(p, [2,0]), —take_salary(p,[11,16]), take_salary(p,[16, o)),
—take_promotion(p,[11,16]), take_promotion(p,[16,cc]),

suspended(p, [11,16]), —suspended(p,[16,0]), good_employee(p,[2, o)),
illegal(p, [13,18]), —illegal(p, [18, 00]) } .

106



At time point 13 no static rule evaluates because the fluents —take_salary(p, [11,16]),
suspended(p, [11,16]) are true at time point 13. But at time point 16 the situation change be-
cause the fluent suspended(p, [11,16]), ~take_promotion(p, [11,16]) and —~take_salary(p,[11,16])
cease to hold. Thus

S = {take_bonus(p,[2,]), take_salary(p,[16,]),
take_promotion(p, [16,c0]), —suspended(p,[16, o)),
good_employee(p, [2,x]), illegal(p,[13,18]), —illegal (p, [18,00])} .

Now the following static rules evaluates

illegal(p, [16,18]) D suspended(p, 16, 18])
suspended(p, [16, 18]) D —take_salary(p,[16,18])
illegal(p, [16,18]) V =good_employee(...) D —take_promotion(p, [16, 18])

and the new situation is

Se = {take_bonus(p, [2,0]), —take_salary(p,[16,18]),
take_salary(p, [18,]), —take_promotion(p,[16,18]),
take_promotion(p, [18,0]), suspended(p,[16,18]),
—suspended(p, [18,]), good_employee(p,[2, o)),
illegal(p, [13,18]), illegal(p, [18,00])} .

Finally the situation changes again at time point 18 because the fluent illegal(p, [13, 18]),
suspended(p, [16,18]), —take_salary(p, [16, 18]) and —take_pro motion(p,[16,18]) cease to holds.
The new situation is

S7 = {take_bonus(p, [2,]), take_salary(p,[18,0]),
—take_promotion(p, [6, c0]), —suspended(p,[18,0]),
good_employee(p, [2, c0]), —illegal(p,[18,0])} .

107



4.2 Concurrent Execution

4.2.1 Concurrent execution of Instantaneous Actions

In this section, we examine the case that two or more instantaneous actions execute concur-
rently. The direct and indirect effects of an action do not start necessarily from the next time
moment. This means that two or more actions cannot necessarily be executed concurrently
even if their preconditions hold. It must be determined that the direct and indirect effects
of these actions are consistent not only in the next time moment but in the future, as well.
Also, we must ensure that all direct effects of all actions executing concurrently hold. This

means that it is not possible for one action to cancel the effects of other actions which execute
concurrently.

In our example, assume that the following actions execute concurrently:
occur(good_grade(p), 2),
occur(bad_grade(p), 2) .

This means that the following must hold:

good_employee(p, [2,00]) A ~good_employee(p, [2,]) .

This is inconsistent and the inconsistency arises because of the direct effects. Assume now
that, apart from the four actions there is another action grant_promotion which has as direct
effect to grant a promotion to the worker:

occur(grant_promotion(p),t) D take_promotion(p, [t,0]) .

Assume now that the following actions execute concurrently:

occur(grant_promotion(p), 2),
occur(bad_grade(p), 2) .

This means that the following must hold

take_promotion(p, [2,0]) A ~good_employee(p,[2,0]) .

108



This is consistent but there is the static rule

illegal(p, ..) V —good_employee(p,..) D —take_promotion(p,..) .

Finally,

take_promotion(p, [2,0]) A —take_promotion(p, [2,0])

must hold. Here there is a contradiction between the direct effect of action grant_promotion
and the indirect effects of action bad_grade. Also, there is the case that there is a contradiction
between the indirect effects. The following algorithm addresses the ramification problem.

1. Before the concurrent execution of the actions ay,...,a, check the set E = {f;([t,t']) :
Ja; s.t occur(a;,t) DO fi([t,#'])} is satisfiable 4. If it is not, reject the concurrent
execution.

2. After the execution of concurrent actions, evaluate the dynamic rules which refer to those
actions.

3. Execute the algorithm of the evaluation of static rules (see below)

4. If the algorithm of the evaluation of static rules returns inconsistency, then reject the
last action, else continue.

5. Until some other action executes, use the situations which have been produced by the
algorithm of the evaluation of static rules.

The algorithm for the evaluation of static rules appears below. This algorithm cannot
change the direct effects of the actions.

1. At time point ¢ if the static rule G; D f(L;) evaluated then

(a) if =f(L2) € E and Li N Ly # {} then return inconsistency 2.
(b) else set Lo = Lo \ (L1 N L) and evaluate the rule Ky D —f(...).

2. Repeat step 1 until L; and Ly do not change or until they take previous values. In the
latter case, return inconsistency.

24The set E contains all direct effects of the actions that must execute concurrently
ZThere is inconsistency between the direct effects one action and the indirect effects of some other action

109



3. Repeat the step 1 and 2 for all rules.

4. Repeat the step 1,2 and 3 for all time moments at which there are references.

As we may observe, at the time that some actions execute it is necessary to estimate
the indirect effects of these actions not only for the current time moments but for all future
moments as well. This is necessary because there is the case that the indirect effects of these
action become inconsistent at some time point in the future.

Now we show how the above algorithms work for the examples at the start of the section.
In the first example we have concurrent execution of the actions

occur(good_grade(p), 2),
occur(bad_grade(p), 2) .
We know that
occur(good_grade(p),2) D good_employee(p, [2, x])
occur(bad_grade(p),2) D —good_employee(p, 2, c0]) .

At the first step of algorithm we have that

E = {good_employee(p, [2, ]), ~good_employee(p, [2,0])} .

The set F is not satisfiable, thus we reject the execution.

For the second example we have

occur(grant_promotion(p), 2),
occur(bad_grade(p), 2) .

This means that

take_promotion(p,[2,00]) A —good_employee(p, [2, o))
must hold. We know that

110



occur(grant_promotion(p),2) D take_promotion(p,[2,c0])

occur(bad_grade(p),2) D —~good_employee(p, [2,0]) .

At the first step of algorithm we have that

E = {take_promotion(p,[2,0]), —good_employee(p,[2,00])} .

The set E is satisfiable thus we continue. After we evaluate the static rule

illegal(p,..) V ~good_employee(p, [2,00]) D —take_promotion(p,[2, cc]) .

As we observe

——take_promotion(p,[2,]) = take_promotion(p,[2,]) € E.

Thus we reject the concurrent execution, because there is inconsistency between the direct
effect of action grant_promotion(p) and the indirect effect of action bad_grade(p).

Now we present a more complex example. Consider the following sequence of execution:

occur(misdemeanor(p), 2),

occur (take_pardon(p),4),

(

(
occur(good_grade(p),4),
occur(grant_promotion(p), 6)
(

occur(bad_grade(p), 6) .
Assume that the initial situation is
So = {—~take_bonus(p, [0, o)), take_salary(p, [0, 00]),

—take_promotion(p, [0, oo])~suspended(p, [0, 00)),
_'QOOd—employee( ’ [Oa OO]), —illegal (pa [Oa OO])}

At time point 2 the action misdemeanor executes. The new situation is

111



S| = {—take_bonus(p, [0, c]), take_salary(p, [0, x]),
—take_promotion(p, [0, oo])~suspended(p, [0, o)),
—good_employee(p, [0, o), illegal (p, 2, 7]), —illegal (p, [7, oo]) }

After the evaluation of the static rules
illegal(p, [2,00]) D suspended(p, [2,]),
suspended(p, [2,00]) D —take_salary(p, 2, ]),
we have
S1 = {~take_bonus(p, [0, 0c]), “take_salary(p, [2,7]), take_salary(p, [7, o0]),

—take_promotion(p, [0, oo])suspended(p, 2, 7]), ~suspended(p, [T, 0]),
—good_employee(p, [0, oc]), illegal(p, [2, 7)), —illegal (p, [7, oo]) }

At time point 4, the actions take_pardon, good_grade execute concurrently. We have that

B = {~illegal(p, 4, oc]), good_employee(p. 0, o))}
The set E is satisfiable, thus, the new situation is
Sy = {~take_bonus(p, [0, 0c]), —take_salary(p, [2,7]), take_salary(p, [7, o0]),

~take_promotion(p, [0, oo])suspended(p, [2, 7)),
—suspended(p, [7, 00]), good_employee(p., |4, ), —illegal(p,[4, o))}

At time point 6 we have the concurrent execution of the actions grant_promotion, bad_grade.
We have that

E = {take_promotion(p, [6, 0c]), ~good_employee(p, [6, cc]) }

The set E is satisfiable thus the new situation is

112



4 = {~take_bonus(p, [0, ]), ~take_salary(p,[2,7]),
take_salary(p, [7,0]), take_promotion(p, 6, cc)),
suspended(p, [2,7]), ~suspended(p, [7, o0]),
~good_employee(p, [6, 0]), ~illegal (p, [4, 0]) }

Now the static rule

illegal(p, ..) V ~good_employee(p, [6,00]) D —take_promotion(p, [6,0])

must be evaluated.

But take_promotion(p,[6,00]) € E. Thus, we must reject the concurrent execution of
these two actions and the resulting situation remains So. At time point 7 the situation changes

because the fluents suspended(p, [2, 7]), ~take_salary(p,[2,7]) cease to hold. The new situation
is

St = {—take_bonus(p, [0, <)), take_salary(p, [7, x]),
—take_promotion(p, [0, 00]), "suspended(p, [7, 00]),
good_employee(p, [4, ocl), ~illegal (p, [4, o) }

After the evaluation of the static rule

—suspended(p, [7,0]) V good_employee(p, [4,00]) D take_bonus(p, [7,0]),

we have

S3 = {take_bonus(p, [7,]), take_salary(p, [7, 0]),
—take_promotion(p, [0, 0c]), ~suspended(p, [7, c0]),
gOOd—employee( ’ [41 OO]), —illegal (pa [45 OO])}

As we observe, the employee gets a bonus because the action bad_grade has been rejected
at time point 6 (it cannot be executed concurrently with the action grant_promotion). The
execution ends at this point.

The following theorem have been proved

113



Theorem 4.11 The above algorithm always returns a consistent situation in the case that
some instantaneous action execute concurrently.

Proof: One situation is consistent when all integrity constraints are satisfied. Also in the
case of concurrent execution, all direct and indirect effects of the actions which are execute
concurrently must be consistent. In the case that some integrity constraints are violated the
proof is similar with the theorem 4.8. Now we must prove that all direct and indirect effects
of the actions which are executed concurrently are consistent.

Assume that the actions agy,...a, are executed concurrently and the direct effects of these
actions are inconsistent. Then the set E will be satisfied and the execution will be rejected.
Assume that there is an inconsistency between the direct effects f([¢,¢1]) of action a; and the
indirect effects of action aj%. Then there must be a sequence of evaluation of static rules

and also [t,%1] N [te,t3] # 0. In that case the algorithm rejects the concurrent execution
of actions a1, ...a, 27.Thus there cannot be inconsistency between the direct effect of action a;
and the indirect effects of action a;.

In the case that there is inconsistency between the indirect effects of actions a; and the
indirect effects of action a;, then there must be a sequence of evaluation of static rules

Gy(.--) D f([ts, ta])

26Tn order for an inconsistency to exist, the action a; must has as indirect effect the —f([t2,$3]) and [t,t1] N
[t2,ts] # 0. If [t,t1] N [t2,¢3] = O then there is no inconsistency because the two effects refer to different time
intervals.

*"The algorithm(step 1.b) discovers that some indirect effects are inconsistent with the direct effects which
exist in set E.

114



As we observe the fluents = f and f appera twice during the same evaluation of static rules.
Thus the algorithm rejects the execution.

4.2.2 Concurrent execution of actions with duration

When actions have duration, it is not enough to describe the effects at the start and at the
end of their duration. Assume that the action misdemeanor has duration more than five
time points. In that case the public worker is assumed illegal for the time that the action
misdemeanor executed and for five time points after the end. This means that it is not enough
to evaluate dynamic rules at the start and at the end of the action because there is an interval

[occur (start(misdemeanor(p))) + 5, occur(end(misdemeanor(p)))]
during which the direct effects do not hold. This happens because the dynamic rule renders
the fluent illegal true for 5 time moments. In order to address this problem, we define a natural
action natural(a) for each action a with duration. This natural action is instantaneous and

will be executed periodically. The direct effects of natural actions are exactly the same with
those of action a. This means that if

occur(a,t) D /\f,([t,t;])
then
occur (natural(a),t) D /\fz([t,t;])

The period is equal to the minimal time that some fluent becomes true (as direct effect of
action a ) after the execution of this action. For example if

occur(a,t) D fi([t,t + 3]) A fo([t,t + 4]) A f3([t,t + 7))

holds, then the period of execution is 3. The precondition of the action natural(a) is the
execution of action a. This means

Poss(natural(a)) = fo(a) >0

Furthermore, the actions which execute concurrently do not necessarily start or end at
the same time point. Actions ai,....a, execute concurrently at a time point ¢; if all of them

115



execute at ¢;. This means that in the next time point perhaps a subset of the a1, ....a, execute
concurrently (because the rest of them have terminated their execution) together with another
set of actions apy1,...a; which start their execution at time point t; + 1. For instance, assume
the following execution of actions

start(misdemeanor(p), 1),
start(good_grade(p), 3),
end(good_grade(p),5),
start(bad_grade(p),7),
end(bad_grade(p),9)

end(misdemeanor(p), 10).

At time points 3,4,5 we have the concurrent execution of the actions misdemeanor(p)
and good_grade(p), while at time point 7,8,9 we have the concurrent execution of the actions
misdemeanor(p) (the same action) and bad_grade(p). This means that we must examine at
each time point if the actions which execute at this time point may execute concurrently.
Consider the following execution of actions

start(take_pardon(p),1),
start(good_grade(p), 3),

start(bad_grade(p),7)
end(good_grade(p), 8)
end(bad_grade(p),9),
end(take_pardon(p), 10) .

b

At time points 3,4,5,6 we have the concurrent execution of the actions take_pardon(p)
and good_grade(p). There is no inconsistency from this concurrent execution. At time point 7
we have concurrent execution of the actions take_pardon(p), good_grade(p) and bad_grade(p).
There is an inconsistency here because good_grade(p) and bad_grade(p) cannot execute con-
currently. In this case the last action (bad_grade(p)) is rejected.

Another problem that arises in the case of concurrent actions with duration, is that of
effects that depend on the duration of the actions. It is possible, for instance, that actions
may execute concurrently only if their duration is shorter than a time threshold. For example,
assume that in the above example, a public worker may receive a promotion if the action
good_grade executed for an interval longer than two months. Assume now that the actions
misdemeanor and good_grade execute concurrently for an interval longer than two months.
Apparently, there is an inconsistency. In order to encapsulate the effects of an action that

116



depends on the duration of the execution, we change each static rule Gy O f (which refers to
fluent f whose truth value changes according to the duration of the execution) as follows:

fala) VGO f.

Now we have a new static rule

fa(good_grade) > 2 D take_promotion(p, [now, c0]).

Assume that the initial situation is

So = {—~take_bonus(p, [0, 00]), take_salary(p, [0, c0]),
—take_promotion(p, [0, oo])suspended(p, [0, 0o)),
—good_employee(p, [0, o0]), —illegal (p, [0, oc]) }

Assume that the following actions execute concurrently:

start(good_grade(p),0),
start(misdemeanor(p),0),
end(good_grade(p), 3),

end(misdemeanor(p),3).

At time point 0 after the start of execution the situation is

S1 = {—~take_bonus(p, [0, 00]), —“take_salary(p, [0, 5]),
take_salary(p, [5,0]), ~take_promotion(p, [0, oc])
suspended(p, [0, 5]), ~suspended(p, [5, o)),

illegal(p, [0,5]), —illegal(p, [5, oc]), ~good_employee(p, [0, o))}

At time point 2 the situation changes because the last static rule will be evaluated.

Now the set E becomes:

E = {—take_promotion(p, [0, <]),...} .

117



But for the new static rule we have take_promotion(p,[2,00]). Thus, there is an inconsis-
tency and the concurrent actions must rejected. But if the concurrent execution was

start(good_grade(p),0),
start(misdemeanor(p),0),
end(good_grade(p), 1),

end(misdemeanor(p),3)

then the last static rule would not be evaluated and thus the concurrent execution would
be acceptable. Notice that in that case there is no inconsistency. The algorithm which we
presented in the previous section can be modified in order to address the ramification problem
in the case that actions have duration. The only decision that must be made concerns the
way that we reject the concurrent actions. In case of inconsistency, we choose to reject the
action(s) which started their execution more recently. The new algorithm is:

1. At each time point do: If the execution of action a; starts, then if actions a1, ..a;_1, @;+1, .--Gn
continues to execute or starts its execution check that the set
E = {f:([t,t"]) : Ja; s.t occur(a;,t) D fi([t,#'])}. is satisfiable 2. If it is not, reject the
action a;.

2. Evaluate the dynamic rules which refer to the actions which start their execution. For
each time point/interval included in a list L (such that f(L) holds) execute the algorithm
of the evaluation of static rules.

3. If the algorithm of the evaluation of static rules returns an inconsistency, then reject the
last action and repeat the execution for the time point that the last action started its
execution, else continue.

4. In each time point at which no action executed check the static rules which depend on
the action’s duration (i.e., those whose body contains the fluent f).

(a) if no static rule evaluates then go to step 1 and wait for the next time point.

(b) else go to step 4.

5. If an action a; terminates its execution, then remove from the set E the direct effects
which refer to it.

The algorithm for the evaluation of static rules does not change. Consider the following
execution:

28The set F contains all direct effects of the actions that execute concurrently at the specific time point

118



start(misdemeanor(p),2),
start(bad_grade(p), 3),
start(good_grade(p),4),
end(bad_grade(p), 5),
end(good_grade(p), 6),
start(good_grade(p),7),
end(misdemeanor(p),11),
end(good_grade(p),12) .

Assume that the initial situation is

So = {—take_bonus(p,[0,x]), take_salary(p,|0,0]),
—take_promotion(p, [0, oo])—suspended(p, [0, o)),
—good_employee(p, [0, oc]), —illegal(p, [0, 00])}

At time point 2 the execution of the action misdemeanor(p) starts. The new situation
after the evaluation of dynamic and static rules is

S1 = {~take_bonus(p, [0, cc]), ~take_salary(p,[2,7]),
take_salary(p, [7, o)), ~take_promotion(p, [0, oc]),
suspended(p, [2,7]), ~suspended(p, [7, >0]),

illegal(p, [2,7]), ~illegal(p, [7, 00]), 7good_employee(p, [0, oco]) }

At time point 3 the execution of the action bad_grade(p) starts. The situation does not
change. At time point 4 the execution of the action good_grade(p) starts. As we observe the
set I now is

E = {—~good_employee(p, [0,]), good_employee(p,[4,0]),..}

This set is not satisfiable and thus we must reject the execution of action good_grade(p).
Thus we go on with the execution for time point 4 without the execution of action good_grade(p).

At time point 7 natural(misdemeanor(p)) will be executed and it ”refreshes” the effect of
action misdemeanor(p). Now the new situation is

119



St = {—take_bonus(p, [0, <)), ~take_salary(p,[7,12]),
take_salary(p, [12, >0]), ~take_promotion(p, [0, c0]),
suspended(p, [7,12]), ~suspended(p, [12, >0]),

illegal(p, [7,12]), —illegal(p, [12, 00]), 7good_employee(p, [0, >0]) }

Also at time point 7 the execution of action good_grade(p) starts. There is no inconsistency
at time point 7, thus we accept this action. The new situation is

Sy = {—take_bonus(p, [0, 00]), ~take_salary(p, [7,12]),
take_salary(p, [12, o0]), ~take_promotion(p, [0, c0)),
suspended(p, [7,12]), ~suspended(p, [12, >0]),

illegal(p, [7,12]), —illegal(p, [12, 00]), good_employee(p, [T, 00]) } -

At time point 9 the action good_grade(p) it executed for more than 2 time points. This
means that the static rule
fa(good_grade) > 2 D take_promotion(p, [now, cc])

must be evaluated. The new situation now is

SY = {—take_bonus(p, [0, o0]), ~take_salary(p, [7,12]),
take_salary(p, [12, o0]), take_promotion(p, [9, o)),
suspended(p, [7,12]), ~suspended(p, [12, o0]),

illegal(p, [7,12]), —illegal(p, [12, 0]), good_employee(p, [T, ]) }

Now the static rule

illegal(p, L) V ~good_employee(p, Ly) D —take_promotion(p, L1 U Lo)

must be evaluated. Now the new situation is

Sy = {~take_bonus(p, [0, 00]), ~take_salary(p, [7,12]),
take_salary(p, [12, >]), ~take_promotion(p,[9, o)),
suspended(p, [7,12]), ~suspended(p, [12, x]),

illegal(p, [7,12]), —illegal(p, [12, c0]), good_employee(p, [7, 0c]) }

120



Now we must evaluate again the static rule

fa(good_grade) > 2 D take_promotion(p, [now, c0]).

As we observe we take again the take_promotion(p,[9,o0]). Now the algorithm of the
evaluation of static rules will return an inconsistency. Thus, we must reject the execution of
action good_grade and repeat the execution for the time point 7.

As can be seen in this example, rejection may cause backtracking to a previous time point
when the effects of some actions depend on their duration. This happens because some action
which executed concurrently with other actions may yield a consistent situation if the duration
of some of them is shorter than a time threshold. The following result has been established:

Theorem 4.12 The above algorithm always returns a consistent situation in the case that
actions with duration execute concurrently.

Proof: In order to be correct the algorithm, it must always return a consistent situation.
This means that all integrity constraints are satisfied at this situation. In the case that some
integrity constraints which do not depend on the duration of the action are violated the proof
is similar with the theorem 4.8. Also we must prove that all direct and indirect effects of
the actions which are executed concurrent are consistent. In the case that the effects do not
depend on the duration of actions then the proof is similar with that of theorem 4.11. Thus
we must prove that:

1. All integrity constraints which depend to the duration of actions are satisfied.

2. All indirect effects (of the actions which executed concurrently) which depend on the
duration of the actions are consistent among them, and consistent with other effects of
the actions.

Proof 1

Assume that integrity constraint Law, is not satisfied in one situation at time point ¢.
Then there must be a fluent f which must be true, because some action a executed for time
more than b time points, but it is not?. For the new algorithm of the production of the static
rules, we have that the static rule which refers to the fluent f has the form

Gyr(t,..) D f(...)

where
Ge(t,.) = (VN F)) vV (falt, 1) A(t > D))

Now we examine the case that an integrity constraint is not satisfied if some fluent which its truth values
depends from the duration to have wrong truth value.

121



This mean that the formula G((t,%') is true at time point ¢ because the second part
((fa(t,1) A (t > b)) is true. Thus the rule G¢(t,t' D f(...) is evaluated. This means that
the fluent f becomes true at time point ¢. Thus Law; is satisfied.

Proof 2

Assume now that there is inconsistency between two indirect effects. Then there must be
a sequence of evaluation of static rules

Gy D f([ts,ta])

G- 2 = f ([t t2])

Gy D f([ts; 1))

In order for inconsistency to exist it must be case that [ti, o] N [t3, 4] # 03°. As we can
observe the fluents —f and f take the same value twice in the same evaluation of static rules.
Thus the algorithm rejects the execution of the last action.

4.2.3 Concurrent execution of Instantaneous Actions when the effects refer to
the future

When the actions are instantaneous, the backtracking rejection is not necessary. The algorithm
which has been proposed in section 4.2.1 can solve the problem in that case. This algorithm
finds all the situations in the future (assuming that no other action will be executed). If all
these situations are consistent then the execution is accepted, otherwise the algorithm rejects
the execution. This permits us to avoid the backtracking rejection and we can use all the
future situations which the algorithm has already estimated without needing to execute again
the static rules.

Consider the example with the public worker, where the direct effects of the actions start
to hold after 2 time points from the execution. Thus the dynamic rules are:

301f [t, 1] N [t2, ts] = @ then there is no inconsistency because the two effects referred in different time intervals.

122



occur (misdemeanor(p),t) D illegal(p, [t +2,t +7]) (1)
occur (take_pardon(p),t) D —illegal (p, [t + 2,00]) (2"
occur (bad_grade(p),t) D —good_employee(p, [t + 2,0]) (3')
(

occur (good_grade(p),t) D good_employee(p, [t + 2,00]) (4'),

In addition to the other constraints, assume that if a public worker is in suspension then
he is considered to be a bad employee. The static rules are:

R = {illegal(p, L) D suspended(p, L),

illegal(p, L) V ~good_employee(p, Lo) D —take_promotion(p, L1 U Ly),
suspended(p, L) D —take_salary(p, L),

—suspended(p, L1) N good_employee(p, L2) D take_bonus(p, L1 N Ly),
—good_employee(p, L) D —take_bonus(p, L),

—suspended(p, L) D take_salary(p, L),

suspended(p, L) D —~good.mployee(p, L)}

Consider the following execution:
occur(good_grade(p), 2)
occur(misdemeanor(p),2) .
The time starts at 0 and has the granularity of months. Consider the initial situation
So = {~take_bonus(p, [[0, >0]]), take_salary(p, [[0, 0]]), —take_promotion(p,[[0,c]]),
_'Slu'spended(pa [[0, OO]]), _'QOOd—employee(pa [[Oa OO]]), —m’llegal(p, [[0, OO]])} :
At time point 2 the actions good_grade and misdemeanor execute. Now the new situation

is

S1 = {~take_bonus(p, [[0, >0]]), take_salary(p, [0, 0]]), —take_promotion(p,[[0,c]]),
—suspended(p, [[0,0]]), —good_employee(p, [[2,4]]) good_employee(p, [[4,]]),
illegal(p, [[4, 9]]), —m'llegal@o, [[97 OO]])} .

123



The set E of the direct effects is

E = {illegal(p,[[4,9]]), good_employee(p, [[4, >]]) }

This set is satisfied in the current situation. Thus we continue the execution. Now the
algorithm estimates all the indirect effects in the future (not only in the current time moment).
This means that the static rules will be executed for all time intervals. The following static
rules are evaluated

illegal(p, [4,9]) D suspended(p, [4,9]) (a)
suspended(p, [4,9]) D —good_employee(p, [4,9]) (b)
suspended(p, [4,9]) D —take_salary(p,[4,9]) (c).

As we observe there is an inconsistency between the indirect effect of the static rule (b)
and the effects which are in the set E, because for the time interval [4,9], =good_employee A
good_employee3! must hold. Thus we reject the execution.

4.2.4 Concurrent execution of Actions with duration when the effects refer to
the future

When the actions have duration and their effects refer to the future then the backtracking
rejection is necessary because we cannot ”predict” the future situations.

Consider the example with the public worker and assume that the direct effect of the actions
good_grade and bad_grade start to hold 2 time points after the time point at which the actions
have completed 4 time points of execution. This means that direct effects start to hold 6 time
points after the start of execution of the actions if and only if the actions have been executed
for more than 4 time points. The direct effects of other actions start to hold after 2 time points
after the start of their execution. Thus, the dynamic rules are

occur(start(misdemeanor(p)),t) D illegal(p,[t + 2,t+ 7]) (la)
occur(end(misdemeanor(p)),t) D illegal(p, [t + 2,t + 7]) (1b)
occur(start(take_pardon(p)),t) D —illegal (p, [t + 2,00]) (2').

Assume that if a public worker is in suspension then he is considered a bad employee. The
static rules are

31Notice that the time interval [4,9] refer to the future(the execution of the algorithm takes place at time
point 2).

124



R = {illegal(p, L) D suspended(p, L),

illegal(p, L1) V —good_employee(p, La) D —take_promotion(p, L1 U Ls),
suspended(p, L) D —take_salary(p, L),

—suspended(p, L1) A good_employee(p, Ly) D take_bonus(p, L1 N Lg),
—good_employee(p, L) D —take_bonus(p, L),

—suspended(p, L) D take_salary(p, L),

(fa(good_grade(p)) > 4) D good_employee(p, [now + 2, x)),
suspended(p, L) V (fq(bad_grade(p)) > 4) D —good_employee(p, L)}

Consider the following execution

occur (start(misdemeanor(p)),0)
occur(start(good_grade(p)), 2)
occur(end(good_grade(p)), 8

( )

)
);:8).

occur(end(misdemeanor(p
Time starts at 0 and has the granularity of months. Consider the initial situation:
So = {~take_bonus(p, [[0, >0]]), take_salary(p, [[0, 0]]), —take_promotion(p, [0, c]]),
~suspended(p, [0, oo]]), ~good-employee(p, [0, col)), ~illegal(p, [[0, oa]})}.

At time point 0 we evaluate the dynamic rule (1a). Afterwards we evaluate the static rules.
The new situation is

S1 = {—take_bonus(p,[[0,00]]), —take_salary(p,|[2,7]]),take_salary(p,[[7,o0]]),
—take_promotion(p,[[0,]]), suspended(p,|[2,7]]), ~suspended(p,[[7,c]]),
—good_employee(p, [[0, 0]]), illegal(p,[[2,7]]), ~illegal(p,[[7,00]])} .

At time point 5 the natural action for the action misdemeanor executes and ”refreshes”
the effects of action misdemeanor. The following rule

occur (natural(misdemeanor),5) D illegal(p, [7,12])

125



will be evaluated. After the evaluation of the static rules, the new situation is

Sy = {—take_bonus(p,[[0,00]]), —take_salary(p,|[2,12]]), take_salary(p,[[12,0]]),
—take_promotion(p, [[0,0]]), suspended(p,[[2,12]]), ~suspended(p, [[12, x]]),
—good_employee(p, [[0,0]]), illegal(p,[[2,12]]), —illegal(p,[[12,00]])} .

At time point 6 the action good_grade executes for 4 time points, thus the static rule

(fa(good_grade(p)) > 4) D good_employee(p, [8, o0])

must be evaluated. Now the new situation is

S3 = {—take_bonus(p,[[0,00]]), —take_salary(p,|[2,12]]), take_salary(p,[[12,0]]),
—take_promotion(p, [[0,0]]), suspended(p,[[2,12]]), ~suspended(p, [[12, x]]),

good_employee(p, [[8,]]), illegal(p,[[2,12]]), ~illegal(p, [[12,c0]])} .

But at this situation the following static rule

suspended(p, [2,12]) V (duration(bad_grade(p)) > 4) D —good_employee(p, [2,12])
must be evaluated. Now the new situation is
Sy = {—~take_bonus(p,[[0,00]]), ~take_salary(p,|[2,12]]), take_salary(p,[[12, cc]]),

—take_promotion(p, [0, 0]]), suspended(p,|[2,12]]), ~suspended(p,[[12,0]]),
—good_employee(p, [[2, 12]]), good_employee(p, [[12, 0]]), illegal(p,[[2,12]]), —illegal(p, [[12,0]])} .

But at this situation the following static rule

(fa(good_grade(p)) > 4) O good_employee(p, 8, o0])

must be evaluated again. Two rules evaluate one after the other for times. Thus, the
algorithm rejects the concurrent execution.

126



4.3 Extension of the solution for the Sequential Execution

As we have mentioned in section 4.1.5 , in order for the algorithm to always terminate the
precondition GyAK; = False, when G; O f and Ky D —f, must hold for every fluent f. As we
can observe, the last algorithm can solve the ramification problem without these preconditions
holding. This happens because the algorithm can reject the execution of some action if it has
an inconsistent situation as result.

Consider the example with the public worker and assume that there exists an extra integrity
constraint: when a public worker is a good employee then s/he takes a promotion. Now the
set of static rules is:

R = {illegal(p, L) D suspended(p, L),

illegal(p, L1) V ~good_employee(p, Ly) D —take_promotion(p, L1 U L)
suspended(p, L) D —take_salary(p, L),

—suspended(p, L1) A good_employee(p, Ls) D take_bonus(p, L1 N Ly)),
—good_employee(p, L) D —take_bonus(p, L),

—suspended(p, L) D take_salary(p, L),

good_employee(p, L) D take_promotion(p, L)}

As we observe, for the pair (take_promotion(p), ~take_promotion(p), the above assumption

does not hold because good_employee(p, L) A (illegal(p, L1) V —good_employee(p, Ly)) can be
true when good_employee(p) A illegal(p) holds.

Assume the following execution

occur(misdemeanor(p),4)

occur(good_grade(p), 6) .
Time starts at 0 and has the granularity of months. Consider the initial situation
So = {—~take_bonus(p, [0, x0]), take_salary(p,[0, o)), ~take_promotion(p, [0, ]),
ﬂsuspend( ’ [07 OO]), ﬁgood_employee(p, [Oa OO]), ﬁZ'llega'l(pa [Oa OO])} :
At time point 4 the action misdemeanor(p) executes. The new situation is
S| = {—take_bonus(p, [0,00]), take_salary(p, [0, 00]), ~take_promotion(p, [0, o0]),
_'suspended(pa [Oa OO]), _'QOOd—employee(pa [Oa OO])a Z'llega'l(pa [43 9])’ _'illegal(pa [95 OO])}

127



After the evaluation of static rules, the situation is

S1 = {—~take_bonus(p,[0,00]), —take_salary(p,[4,9]),take_salary(p,[9, ]),
—take_promotion(p,00), suspended(p,[4,9]), ~suspended(p,[9, o)),
ﬁgOOd—e"’nplOyee(pa [Oa OO]), illega’l(pa [41 9])5 _'Z'llega’l(pa [93 OO])}

At time point 6 action good_grade(p) executes. The new situation is

S5 = {—take_-bonus(p,[0,00]), —take_salary(p, [4,9]), take_salary(p,[9, 00]),
—take_promotion(p,00), suspended(p,[4,9]), ~suspended(p,[9, 0)),
good_employee(p, 6, 00]), illegal(p, [4,9]), ~illegal (p, 9, 00])}

Now the static rule

good_employee(p, [6,00]) D take_promotion(p,[6,00])

must be evaluated. Afterwards we must examine if the static rule

illegal(p,[4,9]) V —~good_employee(p, L) D —take_promotion(p,..)

must be evaluated. We observe that we must evaluate this static rule. After that the
static rule good_employee(p, [6, 00]) D take_promotion(p, [6, cc]) must be evaluated again. Now
we produce the same result again take_promotion(p, [6,00]) and thus the algorithm returns
an inconsistency. Thus it rejects the execution of the action good_grade(p) and repeats the
execution for the time point 6.

4.4 Symmary

The solutions which have been proposed for the ramification problem in conventional databases [21,
34, 7, 62, 100, 124, 125, 131] cannot solve the ramification problem in temporal databases be-
cause they determine the direct and indirect effects only for the next situation. Also they
assume that fluents persit, i.e., no change in their truth value occurs without an action taking
place.

In a temporal database we need to describe the direct and indirect effects of an action not
only in the immediately resulting next situation but possibly for many future situations as

128



well. In the public worker example, the action misdemeanor(p) has the indirect effect that
the public worker is in suspension for the next five months. In these five months, the action
good_grade, could occur, but even if this happens, the employee cannot take a promotion. This
means that the world changes situations while the direct and indirect effects of some action
still hold. Also, in this time span, other actions may occur leading to many different situations.
Futhermore, five months after the execution of the action misdemeanor the situation changes
without an action take place (because the public worker is no longer considered illegal). This
means that the transition from one situation to the next could happen without an action taking
place. Hence, fluents cannot be assumed to persit until an action changes their truth value.

We propose a solution for addressed the ramification problem in temporal database when
change refer to the future. We extended a previous proposal by McChain and Turner [82].
McChain and Turner suggest that for each action A there is a dynamic rule

occur(A) D A\F
which denotes the direct effects of action. Also each fluent f there are two static rules one
for its and one for its negation
GDOf
B> ~f
where G and B are fluent formulas. The static rules show the indirect effects.

We extend the above proposal as follows: An action A is represented as A(t) which means
that the action A is executed at time ¢. For each action A we define one axiom of the form

AD N\F(LY),

where Fj(L}) is f;(L}) or —f;(L}). The above rules describe the direct effects of an action.
For each fluent f we define two rules

G(t,1') > f([t,¢])
B(t,t') > ~f([t,']),

where G(¢,t') is a formula which, when true (at time point t), causes fluent f to become
true at the time interval [t,#'] (respectively for B(t,¢')). The above sybolism is equivalent
with G(¢t,L') D f(L'") B(t,L') D —f(L'), where L' = [t,t']. These rules encapsulate the
indirect effects of an action. The former rules are dynamic because they are evaluated after
the execution of an action, while the latter are static because evaluated at every time point at
which the correspondence fluent is false.

We propose an extension of the above solution for the case of conccurently execution more
than one actions.

In the following chapter we study the ramification problem in the case that the effects
of an action can change the belief about the past. In this case the problem is very complex
with many diferrent aspects. Notice that if an ction change the past then it could cancel the
execution some other action which has been executed before it.

129



5 Changing the belief about the past

5.1 Motivation

Recall the example from the section 4.1. Assume that if a public employee commits a mis-
demeanor, then for the next five months s/he is considered illegal, except if s/he receives a
pardon. When a public employee is illegal, then s/he must be suspended and cannot take
promotion for the entire time interval over which s/he is considered illegal. Also when a pub-
lic employee is suspended cannot take his/her salary until s/he stops being suspended. Each
public employee is graded for his/her work which do. If s/he receives a bad grade, then s/he is
assumed bad employee and s/he cannot take promotion or increase until s/he receives a good
grade. If s/he takes a good grade, then s/he is assumed a good employee and s/he takes bonus
if s/he not suspended.

Now we extend the example in order to present the problem in the case that an action
could change the belief about the past. Each public employee receives increase and promotion
every two and five years, respectively, if s/he is not illegal. If s/he does a misdemeanor, then
s/he is assumed illegal and s/he cannot take promotion while being illegal. We have two new
function fluents position(p,l,t,t1), salary(p,l,t,t1) where the first one means that the public
worker p at time point t is in position 1 for ¢; time points, while the latter one means that
the public worker p at time point t takes salary [ for ¢; time points. Also we have two new
actions grant_increase and grant_promotion which are being executed every two and five
years, respectively. The preconditions of these actions are

Poss(grant_increase(p),t) = salary(p, s, t,24) A —illegal(p,t) A good_employee(p,t)

t) =
Poss(grant_promotion(p),t) = position(p,l,t,60) A —illegal(p,t) A good_employee(p,t)

We extended the predicate occur in order to encapsulate the case that an action change
the belief about the past.

occur(a,t,t)

means that the action g occurs at time point ¢ and its effects start to hold at the time point
t1 (perhaps t; < t).

Assume that the action take_pardon could change the belief about the past.

take_pardon(p,t,t1) D —illegal(p, [t1,0]),

130



means that the action take_pardon occurs at time point ¢ and its effects start to hold for
the time point ¢; (perhaps t; < t). We present the problem with some examples.

Example 1

Consider the following execution:

occur(misdemeanor(p), 20,20), occur(take_pardon(p),24,21)

The time starts at 0 and has the granularity of months. Consider the initial situation

So = {~take_bonus(p, [0, 00)), take_salary(p, [0, c0]),
—suspended(p, [0, 00]), good_employee(p, [0, oc]), —illegal (p, [0, o0]),
position(p, 1,0, 38), salary(p, 3,0,2)} .

At time point 20 the action misdemeanor executes and the new situation is

S1 = {—~take_bonus(p, [0, 00]), take_salary(p, [20,25]),

take_salary(p, [[0, 20], [25, c0]]), suspended(p,[20,25]),

—suspended(p, [[0, 20], [25, o0]]), good_employee(p, [0, <)), illegal(p, [20,25)),
—illegal(p, [[0, 20], [25, >0]]), position(p,1,20,58), salary(p,3,20,22)}.

At time point 22 is the time that public worker could take increase and promotion. This
cannot happen because s/he is illegal. At time point 24 the situation is

S| = {—take_bonus(p, [0, <)), ~take_salary(p, [20, 25]),
take_salary(p,[[0,20], [25, 0]]), suspended(p,[20,25]),

—suspended(p, [[0, 20], [25, oo]]), good_employee(p, [0, <)), illegal(p,[20,25)),
—illegal(p, [[0, 20], [25, o0]]), position(p,1,24,62),salary(p,3,24,26)} .

At this time point the public worker takes pardon which means that for the time 21 the
public worker ceases to be assumed illegal. This has as indirect effect that promotion and
increase should have been granted at time point 22. We must change the value of fluents for
the past time points. The fluent illegal changes value at time point 21. Now the following
propositions hold at time point 22:

131



position(p, 1,22, 60) A —illegal(p, [21, o0])
salary(p, 3,22,24) A —illegal(p, [21, 00]) .

So the public worker must take promotion an increase at time point 22. Thus the next
increase in salary must happen 24 time points after the 22 (resp. 60 months for promotion).

Example 2

Execution of an action may have as indirect effects to disqualify 32 an action which has
already executed.

Assume that the action misdemeanor could refer to the past.

occur(misdemeanor(p), 26, 20)

The time starts at 0 and has the granularity of months. Consider the initial situation

So = {—~take_bonus(p, [0, 00]), take_salary(p, [0, c0]),
—suspended(p, [0, >0]), good_employee(p, [0, o)), millegal(p, [0, >0]),
position(p, 1,0, 36), salary(p,3,0,0)} .

At time point 24 the natural actions grant_promotion and grant_increase execute. Now
the new situation is

S1 = {—~take_bonus(p, [0, 00]), take_salary(p, [0, c0]),
—suspended(p, [0, >0]), good_employee(p, [0, c0]), millegal(p, [0, o0]),
position(p, 2,0,0), salary(p,4,0,0)}.

At time point 26 the action misdemeanor executes and has as effect the public worker be
illegal at time point 20. This mean that the situation must change at time point 20 in the
following;:

81 = {—take_bonus(p, [0, ]), ~take_salary(p, [20, 25]),

take_salary(p, [[0, 20], [25, o0]]), suspended(p,[20,25]),

—suspended(p, [[0, 20], [25, oo]]), good_employee(p, [0, <)), illegal(p,[20,25)),
—illegal(p, [[0, 20], [25, o0]]), position(p,1,20,56), salary(p, 3,20,20)} .

32This means that if we change the past, perhaps the preconditions of some action which has been executed
in the past, become false and thus this action must not have been executed.

132



Now the action grant_promotion and grant_increase cannot execute at time point 24.
They will be executed at time 25 when the suspension ceases . Now the next promotion and
increase must happen 60 and 24 time points after the time point 25.

Example 3

Another problem is the case that an action which could change the belief about the past
leads to an infinite loop. Assume the following execution:

occur(misdemeanor(p), 26,20), occur(take_pardon(p),27,22)

The time starts at 0 and has the granularity of months. Consider the initial situation

So = {—take_bonus(p, [0, 0]), take_salary(p, [0, o0]),
—suspended(p, [0, 00]), good_employee(p, [0, oc]), —illegal(p, [0, o0]),
position(p, 1,0, 36), salary(p, 3,0,0)} .

At time point 24 the natural actions grant_promotion and grant_increase execute. Now
the new situation is

S| = {—take_bonus(p, [0, x]), take_salary(p, [0, oc]),
—suspend(p, [0, 00]), ~good_employee(p, [0, oc]), —illegal (p, [0, oc]),
position(p,2,0,0), salary(p,4,0,0)} .

At time point 26 occurs the action misdemeanor which tells us that the public worker did
something illegal at time point 20. This means that the situation must change at time point
20 to the following:

S| = {—take_bonus(p, [0, oc]), ~take_salary(p, [20, 25]), take_salary(p, [0, 20], [25, 00]]),
suspended(p, [20, 25]), ~suspended(p, [0, 20], [25, ]]),

—good_employee(p, [0, 0]), illegal(p,[20,25]), ~illegal (p, [[0, 20], [25, o0]]),

position(p, 1,20, 56), salary(p,3,20,20)} .

Now the actions grant_promotion and grani_increase cannot execute at time point 24.
They will be executed at time 25. Now the new promotion and increase must happen 60 and
24 time points after the time point 25.

133



Time Axis

26

0 2 27 2 23 % z

occur(take_pardon(p),27,22)

occur(take_pardon(p),27,22) ocour(misdemeanor(p).26,23)

occur(misdemeanor(p),26,20)
(A) (B)

Figure 9: The scenarios of execution

But at time point 27 the action take_pardon executes which tells us that the public worker
ceases to be illegal at time point 22. Now the new situation is

Sy = {~take_bonus(p, [0, 00]), take_salary(p, [20,25]),

take_salary(p, [[0, 20], [25, o0]]), suspended(p,[20,25]),

—suspended(p, [[0, 20], [25, oo]]), good_employee(p, [0, <)), illegal(p,[20,22]),
—illegal(p, [[0, 20], [22, o0]]), position(p,1,20,56), salary(p, 3,20,20)} .

Thus at time point 24 we must execute the natural actions grant_promotion and take_salary.
This means that we must repeat the execution for the time point 22. But at time 26 we will
execute again the action misdemeanor. As we observe the second execution of the action
misdemeanor does not change the truth value of any fluent at time point 20 (because the
fluent illegal is true at time point 20 as we observe in situation S7. The situation S{ ceases
to hold at time point 22). If we evaluate the dynamic rule occur(misdemeanor(p),26,20) D
illegal(p, [20,25]), the natural actions grant_promotion and grant_increase cannot be ex-
ecuted at time point 24. At time point 27 after the execution of the action take_pardon
(occur(take_pardon(p), 27,22) D —illegal(p, [22,25])) the actions grant_promotion and grant_increase
will be executed at time point 24, and so on. Thus we have an infinite loop.

We must repeat the execution from one time point in the past if and only if an action changes
the truth value some fluents (e.g from illegal(p, [20,22]) to —illegal(p, [20,00]) as happened in
the execution of the action take_pardon) and not in the case that only the time intervals at
which some fluents are true(e.g. from illegal(p,[20,22]) to illegal(p, [20,25]) as happened in
the second execution of the action misdemeanor). The above problem arises because the exe-
cution of the actions occur(misdemeanor(p),ts,t) and occur(take_pardon(p),ts,ty) satisfied
the condition #5 < ¢} < t3 < t4. This means that the execution of one action ”intersect” the
execution the other action, as shown in figure 9. The solution to this problem is to reject
the former action whose execution time is smaller than that of the second action which is
executed more recently. In other words, we break the infinite loop by preferring the most recent
information.

134



Example 4

Consider the following execution.

occur(misdemeanor(p),26,23)), occur(take_pardon(p),27,22)

Assume the same initial situation

So = {—~take_bonus(p, [0, 00]), take_salary(p, [0, c0]),
—suspended(p, [0, >0]), good_employee(p, [0, o)), millegal(p, [0, >0]),
position(p, 1,0, 36), salary(p, 3,0,0)} .

Now we have that the natural actions grant_increase and grant_promotion execute at
time point 24. Now the new situation is S] (the same as in the previous example). After the
execution of the action misdemeanor we repeat the execution for the time point 23. Notice
that at time point 23 the situation Sy holds(not the S; which starts to hold from 24), thus the
effects of the misdemeanor change the situation Sy. The new situation at time point 23 is

Sy = {~take_bonus(p, [0, 00]), ~take_salary(p, [23,28]),

take_salary(p, [[0, 23], [28, 0]]), suspended(p,[23,28]),

—suspended(p, [[0, 23], [28, o0]]), —good_employee(p, [0, c]), illegal(p,[23,28]),
—illegal(p, [[0, 23], [28, ]]), position(p,1,23,59), salary(p,3,23,23)}.

At time point 24 we do not execute the two actions. After the execution of the action
take_pardon at time point 27 we repeat the execution for the time point 22( notice that the
effect of the action take_pardon change the situation Sy because the situation S§ starts to hold
from the time point 23). Now the situation at time point 22 is

Sy = {—take_bonus(p, [0, o0)), take_salary(p, [0, oo]),
—suspended(p, [0, 0c]), good_employee(p, [0, x0]),
—illegal(p, [0, 0]), position(p,1,22,58), salary(p,3,22,22)}.

and we execute the two natural actions at time point 24. At time 26 the action misdemeanor
is executed again and we have again the situation S at time 23. Now the two natural actions
do not execute. At time point 27 the action take_pardon executes again and thus we have an
infinite loop.

135



The reasonable way of breaking this loop is to not execute the action misdemeanor for
the second time because the action take_pardon which has the opposite effects is more re-
cent. As we observe the problem occurs because the actions occur(misdemeanor(p),ts,ts)
and occur (take_pardon(p),ts,t}) have opposite effects and t} < t5 < t3 < t4. The last con-
dition means that the action take_pardon ”contains” the action misdemeanor, as shown in
figure 9.B. Notice that again we break the infinite loop by preferring the action which executes
more recently.

In this thesis we propose an algorithm for avoiding the infinite loop by the rejecting the
execution of some actions. As we observed from the above examples the correspondences of
figure 6 cannot represent the correspondence between situations, actions and time in the case
that the effects of the actions refer to the past. This happen because after the execution of
an action which changes the past (at time t) we repeat the execution from the time point (t).
For example consider in the execution of example 3

occur(misdemeanor(p),26,20), occur(take_pardon(p),27,22)

As we observe the following holds before the execution of the action misdemeanor:

start(Sp) =0 end(Sp) =24
start(S]) =24 end(S}) = 26

After the execution of the action misdemeanor

start(So) =0 end(Sp) =20
start(SY) =20 end(S7) =25
start(Sy) =25 end(Se) = 27

At time point 21 we have two different situations Sy and S}. This also happens at time
points 22,23,24,25,26. The correspondences of figure 6 ensuring that at a time point there is
only one situation because the situation axis is linear.

In example 3 before the execution of the actions misdemeanor the action grant_increase
and grant_promotion execute at time point 24, while at time 25 no action take place. After
the execution of the action misdemeanor the action grant_increase and grant_promotion
executed at time point 25, while at time 24 no action takes place. The correspondence of
figure 6 cannot represent that because it can represent only one history of execution while in
example 3 we have two. The problem is the linear action axis.

136



L4 Y SITUATION AXI¢

PP P Py P e P ° PP o TIMEAXIS

: .

> Py ° ACTION AXIS

Figure 10: The correspondence between Time-Actions-Situations

We propose to use branching azes for situations and actions, while the time azis remains
linear (see figure 10). When an action changes the past we start two new linear axes, one for
the situations and one for the actions.

At each time point we believe that one linear line of the situations axis is the real evolution
of the world. This linear line we call actual line.

When an action changes the past there are three main assumptions that we could adopt:

1. An action may change all the fluents in the past.
2. An action may change only some fluents in the past.

3. The past may change but the effects of these changes start to hold from the current
moment.

In the rest of the thesis we study the implications of these three assumptions. First we
must extend the situation calculus to seem our proposes.

5.2 Further extensions to the Situation Calculus

In this section we extend the situation calculus in order to solve the ramification problem in
case that an action could change the belief about the past.

e We define as actual line, a sequence of situations which is believed to be the evolution of
the world up to the current time point, starting at the initial situation.

137



e We define the fluent actual(S,t) which shows that the situation S is on the actual line.
The fluent actual is defined as follows:

— actual(Sy, tp) holds always. Sy is the initial situation and ¢ is the initial time
moment.

— If actual(S,t) holds and at time point ¢ the situation changes without an action
taking place 33 then, if the new situation is S’, then actual(S’,t) is true.

— When occur(a, t,t1) is true and t; >= t then, if actual(S,t1) holds and S’ = do(S, a),
then actual(S’,t1) is true.

— When occur(a,t,t1) is true and ¢; < ¢ then

* for each situation S s.t end(S) = t' < #1, if before the execution of action
a the predicate actual(S,t") is true for ¢ € [start(S),end(S)] then after the
execution actual(S,t") still holds.

* for each situation S s.t start(S) =t} < t1, if end(S) = ¢}, >= t; and before the
execution of action a the predicate actual(S,t") is true for t” € [start(S), end(S)]
then after the execution the following holds: start(S) =t} and end(S) =t —1
and actual (S, t") for all t" € [start(S),t1 — 1].

* for each situation S s.t start(S) =t} > ¢; and before the execution of action
a the predicate actual(S,t") is true for ¢ € [start(S),end(S)] then after the
execution the predicate actual(S,t") is false for each time point ¢”. In that case
for each time point ¢ > ¢; the predicate actual must be estimated again. 3*

o We categorize the fluents into two sets the Fp and Fg. The first set contains the fluent
which cannot change their true value in the past, and the second contains the fluents
which could change their true value in the past.

e We define the predicate ACCEPTANCE(S,t) which shows if the situation S in the time
point ¢ < now is acceptance. If S’ is the situation for which actual(S’,t) is true before
the execution of an action which changes the past then S is acceptable if its different

from S’ does not contain change in the fluents which belong in the Fp. The predicate
ACCEPTANCE defined as follows:

— If an action occur(a, t2,t1) has been executed at time point ¢t and change the past
at time point ¢; then for each time point ¢ s.t t; < t <= now ACCEPTANCE(S,t)
is true if and only if actual(S’,t) is true before the execution of action ¢ and S is
consistent and T = FluentHold(S,t) \ FluentHold(S',t) and T N Fp = () 3°.

Now we explain informal the predicates ACCEPTANCE and actual. Consider figure 11
and assume that the actual line is the top line of the situation axis. Assume that the current

33because some fluent ceases to hold
34With the execution of the algorithm which we propose in the following sections
35this means that there is no change in the fluents of set Fp

138



S1

S3
@
Situation Axis
A
@
S2
5 6 7 8 9
o @ @ @ @ Time Axis

Figure 11: The effects of the past

time point is 10 and an action a; which changes the belief about the past at time point 5 takes
place. As we observe we start to construct a new actual line which is the bottom line of the
situation axis. In order for the execution of the action a; to be acceptable the fluents in Fp
must no change their truth values. This mean that at time points 5 and 6 the situation Sy (in
the new actual line) and the situation S; (in the previous actual line) must contain the same
truth values for all fluents which belong in the Fp. Also at time points 7 and 8 the situation
S2 (in the new actual line) and the situation S3 (in the previous actual line) must contain the
same truth values for all fluents which belong in the Fp. At time point 9 the situation Sy (in
the new actual line) and the situation S3 (in the previous actual line) must contain the same
truth values for all fluents which belong in the Fp. In any opposite case the action must be
rejected and the actual line remains the top line. The predicate Acceptance(Ss,6) is true if
and only if the following hold

[FluentHold(S:) \ FluentHold(S2)|NF, =0

Consider figure 12. Assume that the current time point is 10 and the actual line is the top
line (contain the situations Sy, Sgg, S1,S3. As we observe the following hold

start(Sy) =0 end(Sp) =4
start(Spp) =4 end(Sp) = 6
start(S1) =6 end(S3) =7
start(S3) =7 end(S3) =10

~— ~—

Assume the execution occur(ai, 10,5). As we observe the action a; change the belief about
the past (at time point 5). Thus we must construct the new actual line. The constructing
of the new actual line conclude there step (as seen in the formal definition).

139



9 st S3

0
° ¢ ° °
Situation Axis
S2 A4
@
0 ... 4 5 6 7 8 9 Time Axis
@ @ @ @ @ @

Figure 12: The branching axes

step 1
For the situation Sy the following holds:

start(Sp) =0 < end(Sy) =4 <5

This means that the situation Sy is in the new actual line 36.
step 2
For the situation Syy the following holds:

start(Spp) =4 < 5 < end(Spy) = 6

This means that in the time interval that situation Spg hold happen the change of the past.
The end of the situation Sy change end(Sgg) = 5. The situation Sy is in new actual line
in the time interval [4,5]. At time point 5 must be producing a new situation such that its
contains the effects of action a;.

step 3

For the situations S; and S5 the following hold:

start(S1) =6 > 5
start(S3) =7>5

36The changes happen after the end of the situation Sp. Thus the past does not change in the time interval
in which the situation Sy holds.

140



The new actual line does not contain the situations S, S3 because their start is after the
change of the past and thus we must product new situation which contains the effects of the
action a;. These new situations are the Sy, S4 such that start(S2) = 5.

5.3 Fluent Dependencies

This section describe an algorithm that discovers dependencies between fluents in the case
that an action change the belief about the past There is necessarily to be distinction between
the future and the past. This happened because some fluent cannot change truth value in the
past. More specifically a fluent can affect another fluent in the future but not in the past. For
changes the future the algorithm is same as presented in the section 4.1.1.

In the past only the fluent which belong in the set Fs can change their truth value. In
order to achieve that we modify the algorithm as follows:

1. For each f € Gy, f' € Ky, where Gy D K is a specified constraint then
(a) if the fluent f' & Fp then add the pair (f, f') € I.
2. For each f € Gy, f' € Ky, where Gy = Ky is a specified constraint do

(a) If f can change its truth value as the direct effect of an action and f’ ¢ Fp, then
add (f, f') in I.

(b) If f' can change its truth value as direct effect of an action and f ¢ Fp then add
(f',f)in I.

5.4 Production of Static Rules

As we have already seen the binary relation I is defined twice, first is the case that the effects
refer to the future, and second is the case that the effects refer to the past. The set of the
static rules will be produced from the set of integrity constraints and from the binary relation
1, so the set of static rules is not the same in the two above cases. Thus we construct two
binary relation Ipypre and Ipgs: and two set of static rules Rpysyre and Rpgst-

An action may change the future and the past too, but this happens in different executions
(e.g occur(take_pardon(p,24,21) and occur(take_pardon(p,24,25)). If an action changes the
past at time point ¢ < now then in the time interval [¢,now) we evaluate the set of static
rules Rpgs. At each time ¢t > now we evaluate the set of static rules Rpytyre-

Notice that in this paper we do not consider the combination of the concurrent execution
of actions, some of which refer to the past and some to the future. Such a combination poses
difficult problems which will be addressed in future work.

141



5.5 Case 1: Change in the past may affect all the fluent

In this case

Fp=1
Fy=F
Acceptance(S,t) = TRUE,

where F' is the set of fluent. Because all fluents may change its true value in the past the
predicate Acceptance is always true 37. Also there is one set of static rules which is evaluated
regardless of whether the effects of an action change the future or the past. Thus the set
of static rules is the same as we have presented in the section 4. We propose the following
algorithm which returns a consistent situation at each time point(the ramification problem).

Algorithm 1 for constructs a consistent situation

1. At each time point at which some action which changes the truth value of some fluents
at the time point # in the past is executed, do: Evaluate the dynamic rule which refers
to this action, evaluate the static rules (until no change occurs) and set E = {(S1,t'},
where S; is the new situation at the smallest time point ¢ to which the effects of the
action referred.

2. Repeat the execution for the smaller time point ¢’ above. Every time an action is exe-
cuted, add it to the set E;. At every time ¢” that change situation into a new situation
Sy do:

e If the tuple (S2,t") is already in E then call the rejection algorithm and go on
without the action which it rejected.

e Else go on until no change occurs

3. At each time point at which no action is executed which change the past do: Evaluate
the dynamic rule (if some action executed). Evaluate the static rules until no change
occurs.

Notice that the set E contains the situations which are produced as effects of the change of
past. This helps us to understand when there is infinite loop, which happens when we product
the same situation at the same time point. In that case three are two same pair (5,¢) in the
set £. The set E; contains the action which take place after the execution of action which
change the past. Thus when there is infinite loop we must reject one action which is in the set
E;. This is achieved by the following algorithm.

The algorithm for the rejecting actions.

3TNotice that the predicate Acceptance ensure that the fluents which belong to the set of Fp do not change
their truth value in the past.

142



1. If in the set of actions F; there are two actions a1, as such that
a1 D fi([tl, 11]) and ag D ﬁfi([tz,té]) and
occur(aq,ts,t1) and occur(asg,tys,t2) and
to < 11 < t3 < t4 then reject the ay.

2. Else reject the action which executed more recently in the current time moment.

Example 1 (continued)

We have the execution

occur(misdemeanor(p), 20, 20), occur(take_pardon(p),24,21)

The time starts at 0 and the granularity of months. Consider the initial situation:

So = {~take_bonus(p, [0, 00)), take_salary(p, [0, 00]),
—suspended(p, [0, 00]), good_employee(p, [0, oc]), —illegal (p, [0, o0]),
position(p, 1,0, 38), salary(p,3,0,2)}.

At time point 20 the action misdemeanor executes and the new situation becomes

S1 = {—~take_bonus(p, [0, x]), "take_salary(p, [20, 25]),

take_salary(p, [[0, 20], [25, o0]]), suspended(p, [20,25]),

—suspended(p, [[0,20], [25, 00]]), —good_employee(p,[0, <)), illegal(p,[20,25]),
—illegal(p, [[0, 20], [25, ]]), position(p, 1,20, 58), salary(p,3,20,22)}.

At time point 22 is the time that public worker could take increase and promotion. This
cannot happened because s/he is illegal. At time point 24 the situation is

81 = {—take_bonus(p, [0, 00]), ~take_salary(p, [20, 25]), take_salary(p, [[0, 20], [25, 00]]),
suspended(p, [20, 25]), ~suspended(p, [[0, 20], [25, o0]]),

—good_employee(p, [0,0]), illegal(p,[20,25]), ~illegal(p, [[0,20], [25, o0]]),

position(p, 1,24, 62), salary(p,3,24,26)} .

Suppose that at time point 24 the public worker takes pardon which means that for the

time 21 the public worker stops to be assumed illegal(occur(take_pardon(p),24,21)). Now we
repeat the execution for the time point 21. The new situation at time point 21 is

143



S = {—take_bonus(p, [0, 00]), "take_salary(p, [20,25]), take_salary(p, [[0, 20], [25, c0]]),
suspended(p, [20, 25]), —suspended(p, [[0, 20], [25, c0]]),

—good_employee(p, [0, 00]), illegal(p,[20,21)), —illegal(p, [[0,20], [21, o0]]),
position(p,1,21,59), salary(p,3,21,23)}.

At time point 22 the following static rule will be evaluated:

position(p, 1,22,60) A —suspended(p, [21, 0c]) D position(p,2,22,0)
salary(p, 3, 22,24) A\ —suspended(p, [21, 00]) D salary(p,4,22,0).

Now the new situation is

S] = {~take_bonus(p, [0, o0]), ~take_salary(p, [20,25)),

take_salary(p,[[0,20], [25, >0]]), suspended(p,[20,25]),

—suspended(p, [[0, 20], [25, oo]]), —good_employee(p, [0, <)), illegal(p,[20,21)),
—illegal(p, [[0,20], [21, o<]]), position(p,2,22,0), salary(p,4,22,0)}.

At time 24 the action take_pardon(occur(take_pardon(p),24,21)) executes again but it
does not change the past because the public worker is not illegal at time point 21. This means
that the algorithm do not repeat the execution from the time point 21 but it go on at time
point 25.

Example 3 (continued)

occur(misdemeanor(p),26,20)), occur(take_pardon(p),27,22)
The time start at 0 and the time has the granularity of months. Consider the initial

situation

So = {—~take_bonus(p, [0, 00]), take_salary(p, [0, c0]),
—suspended(p, [0, 00]), good_employee(p, [0, oc]), —illegal (p, [0, o0]),
position(p, 1,0, 36), salary(p,3,0,0)} .

At time point 24 the actions grant_promotion and grant_increase will be evaluated. Now
the new situation is S7. At time point 26 occur the action misdemeanor which tell us that

144



the public worker done something illegal at time point 20. This means that the situation must
change at time point 20 in the situation S7. Now we add (S7,20) in to the set E and the action
misdemeanor in to the set F;.

E ={(8{,20)} E; = {misdemeanor}

But at time point 27 executed the action take_pardon which tell us that the public worker
stop to be illegal at time point 22. Now the new situation is the S,.

Sy = {~take_bonus(p, [0, 00]), —take_salary(p, [20,25]),

take_salary(p, [[0, 20], [25, o0]]), suspended(p,[20,25]),

—suspended(p, [[0, 20], [25, o0]]), good_employee(p, [0, <)), illegal(p,[20,22]),
—illegal(p, [[0, 20], [22, 0]]), position(p,1,20,56), salary(p,3,20,20)} .

We add the pair (52,22) in to the set E and the action take_pardon in to the set Ej.

E ={(5,20),(52,22)}  E; = {misdemeanor,take_pardon}

We repeat the execution from the time point 22 and at time point 24 must execute the
actions grant_promotion and take_salary. But at time 26 we must execute again the action
misdemeanor. We known that occur(misdemeanor(p),26,20)) D illegal(p, [20,25]). But at
time point 20 the situation S7 holds and in that situation the fluent illegal is true at time
point 20, because illegal(p, [20,25]) € SY. This mean that the action misdemeanor does not
change the belief about the past thus the algorithm does not evaluate the above dynamic rule.

Example 4 (continued)

occur(misdemeanor(p), 26,23)), occur(take_pardon(p),27,22)

Consider the same initial situation as the previous example.

So = {—~take_bonus(p, [0, 00]), take_salary(p, [0, o)),
—suspended(p, [0, >]), good_employee(p, [0, o)), ~illegal(p, [0, >0]),
position(p, 1,0, 36), salary(p, 3,0,0)} .

145



Now we have that the actions grant_increase and grant_promotion are executed at time
point 24. The new situation is the S7.

S = {—take_bonus(p, [0, x)), take_salary(p, [0, ]),
—suspended(p, [0,00]), —good_employee(p, [0, x0]),
—illegal(p, [0, ¢]), position(p,2,22,0), salary(p,4,22,0)}.

After the execution of the action misdemeanor we repeat the execution for the time point

23. The new situation at time point 23 is SY

S = {—take_bonus(p, [0, oc]), ~take_salary(p, [23, 28]),

take_salary(p, [[0, 23], [28, 0]]), suspended(p,[23,28]),

—suspended(p, [[0, 23], [28, oo]]), —good_employee(p, [0, 0]), illegal(p,[23,28]),
—illegal(p, [[0, 23], [28, ]]), position(p,1,23,59), salary(p,3,23,23)}.

We add the (S%,23) into E and the misdemeanor into E;.

E ={(89,23)} E; = {misdemeanor}
At time point 24 we do not executed the two natural actions. After the execution of the

action take_pardon at time point 27 we repeat the execution for the time point 22. Now the
situation at time point 22 is Ss.

Sy = {—take_bonus(p, [0, 00]), ~take_salary(p, [20,25]),
take_salary(p,[[0,20], [25, 0]]), suspended(p,[20,25]),

—suspended(p, [[0, 20], [25, o0]]), good_employee(p, [0,00]), illegal(p,[20,22]),
—illegal(p, [[0, 20], [22, 0]]), position(p,1,20,56),salary(p,3,20,20)} .

Now we add the (take_pardon,22) into E and the take_pardon into E;.

E ={(55,23),(52,22)}  E; = {misdemeanor,take_pardon}

We repeat the execution from the time point 22 and at time point 24 must execute
the actions grant_promotion and take_salary. But at time 26 we execute again the action

146



Situation Axis

6 8

4 5 7 Time Axis
e @ @ @ @ @

‘@

Figure 13: The effects in the past

misdemeanor. Now the new situation at time point 23 is the S5. But (S9,23) € E. Thus we
must call the rejection algorithm. This algorithm found that £y = {misdemeanor, take_pardon}
and

occur(misdemeanor(p), 26,23)) D illegal(p, [23,28])
occur(take_pardon(p),27,22) D —illegal(p, [22, c0])

As we observe the 22 < 23 < 26 < 27. This mean that the algorithm rejects the action
misdemeanor(p). This means that we do not execute the action misdemeanor(p) for a second
time, so the infinite loop is broken.

Now we present two formal results for the above algorithm.

Theorem 5.1 The above algorithm always returns a consistent situation in the case that some
instantaneous action could change all the beliefs about the past.

Proof: Let ¢ be the earliest time at which a change occurs. We must ensure that there is a
sequence of consistent situations from ¢ until the current time point.

Assume that an action a takes place in the time point #; and changes the belief about the
past in the time point ¢ < ¢;. In that case we can assume without loss of generality that we
take the sequence of situations from ¢y (the start of time) until ¢, and the action a will be
executed at time point ¢ and its effects start to hold from this time point. 3® Now it is suffices
to prove that all situations from the time point ¢ until the current point are consistent.

38This means that the predicate occur(a,t1,t) is ”equivalent” to the predicate occur(a,t,t). For example
consider in the figure 13 and assume that the current time point is 10 and the actual line is the top. We execute
the action occur(a1,10,5). Then the new actual line contains the situations So, Soo until the time point 5. This
means that in the time before 5 the old and new actual line is the same. At time point 5 the effects of actions a;
start to hold. Between time points 5 and 10 we must estimate the new actual line (S, S4). This is equivalent
to the execution occur(a1, 5,5) in the situation Sqo, because the actual line will be the same.

147



As we observe the algorithm at each step (steps 1,2,3) evaluates the static rules until no
change occur. The three steps (together) cover all time points. So it is enough to prove that
if an integrity constraint is not satisfied at a time point then there is a static rule which is
executable and after its execution the integrity constraint will be satisfied.

Suppose that at time point ¢’ (¢ < ¢’ < t1) the algorithm returns a situation S. Assume
that integrity constraint Law; is not satisfied in situation S, and let its CNF be C1 A .... A Cy,.
Then one of the C4,....,C, is false. Assume that C; = f1 V .... V f, is false. Then all fluents
fj»j = 1,..m are false. Assume that f; and f, are two of these for which (fx, fp) € I (by the
theorems 4.1 and 4.2 there is at least one such pair). Then for the algorithm of the production
of static rules (steps 3 and 4) we have that for f, it must be the case that: G, (t',L) = G'(..) v
(=Afitj,5 =1,..m,j # p). If all fluents f;,j = 1,..m are false then (= A f;,j =1,..m,j #p)
is true. Thus Gy, (t') is true. This means that the static rule Gy, (#,L) D fp(L) must be
evaluated and thus, f, is true. A contradiction.

The proof is similarly with case of sequential execution of action when the action could
change only the current and future situation 4.1, if we do the assumption that an action a
take place in the time point #; and change the belief about the past in the time point ¢ < #;
is equivalent with an action that executed at point ¢ and its effects start to hold for that time
point. This assumption does change the effects of the actions. But the algorithm use the
knowledge that the action change the belief about the past in order to accept or reject it. The
above theorem shown that if the algorithm terminates then return a consistent situation. Now
we must prove that the algorithm avoid the infinite loops.

Theorem 5.2 The above algorithm terminates always.

Proof: In order to prove that the algorithm does not go into infinite loops we must prove
that:

1. first the execution of static rules returns a consistent situation in a finite number of steps.
2. second the repeat of the execution of actions ( from a time point in the past until now)

terminates.

Proof 1

Assume that at time unit ¢ the algorithm does not terminate. Then, there must be an
infinite loop. Assume that S is the initial situation at time ¢. Then, there is a non terminating
sequence SP, S}, ......SF, ... 3°

39The transition from one situation to the next happens after the evolution of one or more static rules.

148



In this proof the term ”situation” means the truth value of the fluents. Thus the transition
from one situation to the next happen only when a fluent changes its truth value. “°. Notice
that because a static rule is evaluated only when the corresponding fluent is false, it is not
possible that a static rule G(¢,¢') D f(t') evaluated when the fluent f is true in the point .
The static rule will be evaluated when f becomes false. Thus the transition from one situation
to the next occurs only when fluent f changes from f to —f.

If F is the number of fluents then there are 2f different situations Thus in the above
sequence, there are two identical situations because of the infinite loop. Without loss of
generality we assume S! = SF, 1 < k.

Thus in the sequence S, ...., SF there is at least one fluent f which changes from f to —f
and eventually becomes f again.

Assume that f’ is one such fluent, and consider the static rules associated with it.

G(t,t') O f'(L)
B(t,t") > = f(L")
L/ N L” # @

First suppose that f’ holds. Then we must evaluate the rule B(¢,t") D —f’ and afterwards
the G(t,t") D f'. Then one of the following holds:

e At time ¢ the proposition G A B must be true. But the conditions G and B are mutually
exclusive. A contradiction.

e There is a sequence of static rules as the theorem 4.5 describes. In that case the integrity
constraints are unsatisfiable. A contraction (the initial situation satisfies all integrity
constraints).

Proof 2

Assume that the algorithm executes an infinite sequence of actions. Let this happen after
the execution of action a at time point ¢; which changes the past at time point ¢t. This mean
that there is a sequence of consistent situations (S, t), (S}, #!)......(SF, t¥)..... The step 1 of the
algorithm adds the pair (S}, t) to the E and the action a to E;. Each time ' that the situation
change to the new situation S, step 2.a add the pair (S’,#') to E. Also, when an action take
place, step 2 adds it to E7. Thus all the above sequence of pairs is in E.

All the actions executed in the time interval [t,%1] suppose that the earliest reference in
the past is t°. Then t° < t',....#" < ¢;. An infinite loop can only happen if some action is
executed in the same situation infinite times, since the number of action is finite. This means

40This mean that each Si = FluentHold(Sm,t), for a temporal situation S,

149



that there is (Sj,#!) = (Sm,t™). In that case the second time that the tuple (S;, ) is produced
the algorithm will reject the execution because the same tuple exists twice in the set £. In
that case the algorithm rejects the execution of an action (from the set E;) and repeats the
execution without the specific action. This process is repeated until no infinite loop occurs.

5.6 Case 2: only some fluent could change in the past

In that case is more complex because we must distinguish between fluents that may change in
the past, and fluents that change future only. For example, we might specify

Fp = {position, take_bonus}
Fg = {illegal, suspended, good_employee,

take_salary, salary}

Now we must product two different sets of fluent dependencies, one for each category of
fluents. In our example, the first is:

Iryture = {(illegal, suspended), (suspended,—take_salary),
(—suspended, ~take_bonus), (good_employee, —take_bonus),

(—good_employee, take_salary), (—suspended,take_salary)}

The second referred in the past

Ipast = {(illegal, suspended), (suspended,—take_salary),
(mgood_employee, take_salary), (—suspended, take_salary)}

Now the algorithm of product static rules return two sets, one for the future effects and
one for the past effects 41.

Rpyture = {illegal(p, L) D suspended(p, L),

suspended(p, L) D —take_salary(p, L),

—suspended(p, L1) A good_employee(p, Ls) D take_bonus(p, L1 N Ly)),
—good_employee(p, L) D —take_bonus(p, L),

—suspended(p, L) D take_salary(p, L)}

“1The algorithm of producing of static rules is the algorithm which we present in the section 4.1.1 This
algorithm depends on the set I. Given different inputs (e.g Ipast, IFuture), it Will be return different sets of
static rules.

150



and

Rpast = {illegal(p, L) D suspended(p, L),
suspended(p, L) D —take_salary(p, L),
—suspended(p, L) D take_salary(p, L)}

IPast - IFuture

RPa,st g RFuture

always hold because all fluents can change their truth value in the future thus all fluents
"participate” in the producing of the sets Ipymre and Rpypure (set of static rules). Only
some fluents can change their truth value to the past. Only these fluents can ”participate”
in the producing of the set Ipgs: and Rpsst. Thus for each pair (f, f') € Ipsst we have that
(f, 1) € Ipyture while for each pair (f1, f2) € Ipyture such that f1 or fo cannot change its truth
value to the past we have that (f1, f2) & Ipasi- Steps 3 and 4 of the algorithm for producing
the static rules the number of static rules depend from the set of fluent dependencies I. For
each pair in [ there is a corresponding static rule. Thus the set Rpypyre 18 superset of Rpgst.

We must extend algorithm which present in the previous section in order to solve the ram-
ification problem in this case. The algorithm returns a sequence of consistent new situations.

Algorithm 2 for constructing a consistent situation

1. At each time point at which some action is executed and changes the truth value of some
fluents in the past do:

(a) Execute the dynamic rule which refers to this action, execute the static rules which
belong to the set Rp,s, set E = {(S1,t')}, where S; is the new situation at the
smallest time point t’ to which the effects of the action refer. Then:

i. If Acceptance(Si,t') holds then go on
ii. Else reject the execution of the action.

(b) Repeat the execution from the earliest time point to which the effects of the action
refer. Every time that an action ¢ must be executed

¢ if it has as direct effect to change a fluent which belong in the set F'p then reject
the action

e e¢lse add the action to the set Ej.

Every time ¢” that change situation into a new situation Sy do

151



i. If Acceptance(S2,t") holds then add (S3,t”) to E else call the algorithm of
rejection of an action.
ii. Else if the pair (Sy,t"”) there is already in E then call the algorithm for rejecting
actions and go on without the action which is rejected.
iii. Else go on until no change occurs

2. At each time point at which some action which does not change the past executes do:
Execute the dynamic rule which refer to this action, execute the static rules with belong
the set Ry4yre until no change occurs.

3. At each time point ¢ > now execute the static rules of Ry, until no change occur.

The algorithm for the rejecting actions was presented in the previous section

Example 3 (continued)

occur(misdemeanor(p),26,20), occur(take_pardon(p),27,22)

The time start at 0 and the time has the granularity of months. Assume the initial situation

So = {—~take_bonus(p, [0, 00]), take_salary(p, [0, c0]),
—suspended(p, [0, >0]), good_employee(p, [0, o)), millegal(p, [0, >0]),
position(p, 1,0, 36), salary(p,3,0,0)} .

At time point 24 the natural actions grant_promotion and grant_increase executes. Now
the new situation is

S = {—take_bonus(p, [0, <)), take_salary(p, [0, a]),
~suspended(p, [0, 0a]), ~good_employee(p, 0, col), —illegal(p, [0, o)),
position(p,2,0,0), salary(p,4,0,0)}.

At time point 26 occurs the action misdemeanor which tell us that the public worker did
something illegal at time point 20. So the situation must change at time point 20 as follows:

S| = {~take_bonus(p, [0, o0]), ~take_salary(p, [20,25)), take_salary(p, [0, 20], [25, 0o]]),
suspended(p, [20, 25]), ~suspended(p, [0, 20], [25, 0]]),

—good_employee(p, [0,0]), illegal(p,[20,25]), ~illegal(p, [[0, 20], [25, o0]]),

position(p, 1,20, 56), salary(p, 3, 20,20)} .

152



Now the actions grant_promotion and grant_increase cannot be executed at time point 24.
They will be executed at time 25 which referred in the past. But if the action grant_promotion
executed at time point 25 despite at 24 the fluent position € Fp change value in the past ( the
change happens at time point 24 at which before the execution of the action misdemeanor the
public worker has taken promotion and thus was one position greater while after the execution
does not take promotion and remains in same position). In order to avoid this we must
reject the execution of action misdemeanor. This must be because the action misdemeanor
disqualifies the action grant_promotion which change the truth value of a fluent which belong
in the set Fp.

The above algorithm does that because after the execution of action misdemeanor at time
24 the situation is the S7. Before the execution of action misdemeanor at time 24 the situation
is 1 and S\ S} = {position} C Fp. This mean that the predicate ACCEPTANCE(SY,24) =
FALSE. Thus the algorithm reject the execution of action occur(misdemeanor(p),26,20).

Example 2 (continued)

Consider now the following execution

occur(take_pardon(p), 26, 20)

The time start at 0 and the time has the granularity of months. Assume the initial situation

So = {—take_bonus(p, [0, oc]), —take_salary(p, [0, 21]), take_salary(p, [21, o0])
suspended(p, [0,21]), ~suspended(p, [21, 00]), "good_employee(p, [0, <)), illegal (p, [0, 26]),
—illegal(p, [26, 0]), position(p, 1,0, 36), salary(p, 3,0,0)} .

At time point 21 the static rules which correspondence to the fluents suspended, ~take_salary
will be evaluated and the new situation is:

Sy = {—take_bonus(p, [0, d]), ~take_salary(p, 21, 26]), take_salary(p, [26, oc])
suspended(p, [21, 26]), ~suspended(p, [26, o0]), ~good_employee(p, [0, <)), illegal (p, [0, 26)),
—illegal(p, [26, ]), position(p, 1,0, 36), salary(p, 3,0,0)} .

At time point 24 the actions grant_promotion and grant_increase cannot execute. At time
point 26 the action take_pardon execute and change the past at time point 20 (at situation
So). The new situation at time point 22 is:

153



8] = {—take_bonus(p, [0, o0]), take_salary(p, [21, 0]),
—suspended(p, [21, oo]), ~good_employee(p, [0, o0]), —illegal (p, [20, o0]),
position(p, 1,22, 58), salary(p, 3,22,22)} .

Now at time point 24 the preconditions of actions grant_promotion and grant_increase
hold, but the action grant_promotion cannot be executed because it changes the truth value
of fluent position which cannot change value in the past. Thus only the action grant_increase
will be executed. Now the new situation at time point 24 is

S1 = {—~take_bonus(p, [0, x]), take_salary(p, 21, c0]),
—suspended(p, [21, o0]), ~good_employee(p, [0, o0]), millegal (p, [20, o)),
position(p, 1,24, 60), salary(p,4,24,0)} .

Assume the same execution, but the initial situation

So = {—take_bonus(p, [0, 00]), take_salary(p, [0, 21]), take_salary(p, [21, oo])
suspended(p, [0,21]), —suspended(p, [21, 0o]), good_employee(p, [0, o0)), illegal (p, [0, 26]),
—illegal(p, [26, x0]), position(p, 1,0, 36), salary(p, 3,0,0)} .

The difference is that now the fluent good_employee holds. At time point 21 the static
rules which corresponded to the fluents suspended, —take_salary will be evaluated and the
new situation is:

\ = {~take_bonus(p, [0, ]), =take_salary(p, [21,26]), take_salary(p, [26, x))
suspended(p, [21, 26]), ~suspended(p, [26, >0]), good_employee(p, [0, 0]), illegal(p, [0, 26]),
—illegal(p, [26, 0]), position(p, 1,0, 36), salary(p, 3,0,0)} .

At time point 24 the actions grant_promotion and grant_increase cannot execute. At time
point 26 the action take_pardon executes and changes the past at time point 20. The new
situation at time point 22 is

81 = {—take_bonus(p, [0, 0]), take_salary(p, [21, ]),
—suspended(p, [21, o0]), good_employee(p, [0, cc]), illegal (p, [20, o)),
position(p, 1,22, 58), salary(p, 3,22,22)} .

154



After the execution of the static rules Rp,s: the situation becomes:

n

1 = {-take_bonus(p, [0, x0]), take_salary(p, [22, x0]),
—suspended(p, [22, >0]), good_employee(p, [0, xx]), —illegal (p, 22, o)),
position(p, 1,22, 58), salary(p, 3,22,22)} .

This situation is not consistent because the following integrity constraint

—suspended(..) A\ good_employee D take_bonus(...)

is violated. Thus we must reject the execution of the action take_pardon. Notice that in the
set Rpyture there is the static rule —suspended(L;) A good_employee(Ls) D take_bonus(LiNLs)
which is executable in the situation S7’. By the theorem 4.4 we have that when a static rule is
executable in a situation then this situation is inconsistent. We use that in order to describe
a way in order to find these inconsistent situations. The following algorithm discover the
inconsistent situations.

Algorithm for checking consistency of a situation

1. After the completion of the execution of static rules in set Rpgs¢ do

(a) In the produced situation try to evaluate the rules which belong in the set Rpyiure \
RPast-
(b) If at least one rule evaluates then the situation is inconsistent.

(c) Else it is consistent.

This algorithm is executed every time that the previous algorithm returns a situation. If
it returns an inconsistent situation the predicate Acceptance become false.

Theorem 5.3 The above algorithm discovery all inconsistent situations.

Proof: Assume that a situation S is inconsistent but the algorithm returns ”consistent”.

Then there must be an integrity constraint Law; which does not hold in S. Assume that
Law; = Cy A ... A Cy. Then at least one of the C4,...,C, must be false. Assume that C; is
false and Cj = f1 V...V fp,. Thus f is false for each I = 1,...,m. By the theorems 4.1 and
4.2 we have that there is at least one pair (fg, fp) € I and C; = fr V fp V C;-. There are two
cases. First f, € Fg. Then by the steps 3 and 4 of the algorithm of production of static rules
we have that: Gy, (t,..) = G'V (= A fi(t;,j = 1,.m,j # p) and Gy, (t,..) D fp € Rpasi- If

155



all fluents f;,j = 1,..m are false then (= A fj,7 = 1,..m,j # p) is true. Thus Gy, (1) is true.
This means that the static rule G, (t,..) D fp(..) must be evaluated (before the calling of the
consistency checking algorithm) and thus, f, is true. Thus C; is true and Law; is satisfied. So
the situation return the algorithm 2 is not inconsistent. A contradiction.

Second case is f, € Fp. Then the rule (Gy,(t) D fp) € Rpast- Then by the steps 3 and
4 of the algorithm of production of static rules we have that: Gy, (t) = G'V (= A f;(t;,j =
1,..m,j # p). If all fluents f;,j = 1,..m are false then (= A f;,j = 1,..m,j # p) is true. Thus
Gy,(t,..) is true (at time point ¢). So that the rule is executable in the situation S but the
algorithm 2 did not evaluate it is not belong to the set Rpyst. This rule belongs to Rpysyre-
Thus (Gy,(t,-) D fp(t,-)) € (RFuture \ Rpast)- The algorithm discovery the above static rule

is executable in S and returns inconsistency. A contradiction 2.

Now we must prove that the algorithm which present in the previous section together
with the above algorithm always terminate in a finite number of steps and return a consistent
situation.

Theorem 5.4 The algorithms always return a consistent situation

Proof: The above algorithm discover all the inconsistent situations. The algorithm in the
previous section before return a situation call the algorithm for discovery the inconsistent
situations. This mean that cannot return a inconsistent situation. If a situation is inconsistent
then it call the algorithm of rejection actions.

Theorem 5.5 The algorithms 2 always returns a consistent situation

Proof: The above algorithm discover all the inconsistent situations which the algorithm 2
returns. The algorithm 2 before accept a situation call the consistency checking algorithm
which discovery all inconsistent situations. This mean that cannot accept an inconsistent
situation.

Theorem 5.6 The algorithms terminate in a finite number of steps.

The proof is similarly with the theorem 5.2.

156



S2
3 4
. . SITUATION AXIS
S5 . S6 virtual execution
0 .. 3 4 5 6 7 8 9 10 11
o o o o o o o o @ o TIME AXIS

0
o

ACTIONS AXIS

Figure 14: The scenarios of execution

5.7 Case 3: the effects of changes of the past start to hold from the current
time point

First we explain this case using an abstract example.

Consider in the figure 14. Assume that the top line is the evolution of the world and at
the time point 11 the action ay takes place changes the past at the time 3. The evolution of
the world before the execution of the action as is

start(Sp) =0 end(Sp) =3
start(S1) =3 end(S1) =5
start(S2) =5  end(S2) =7
start(Ss) =7

Now we evaluate the dynamic rule which corresponds to the action as (at the point 3).
Then we evaluate the static rules until the current time point 11. Notice that we do not re-
execute the action a1 at time point 5. The new situation at time point 11 is S;. Now we have
that end(S3) = 11 and start(Ss) = 11. The situations S5 and Sg after the end of ”virtual”
execution” do not exists. The evolution of the world after the evolution is

start(Sp) =0 end(Sy) =3
start(S1) =3 end(S1) =5
start(S2) =5 end(S2) =7

42We have assume that the algorithm return consistent

157



start(S3) =7 end(S3) =11
start(Sy) = 11

As we observe the effects of the action ag start to hold from the current time point (time
point 11), while it does not change the evolution of the world in the past (the situations S
and Sg after the end of ”virtual” execution” does not exists).

In this case no fluent changes its truth value in the past. As we already explained we create
a "virtual” sequence of situations from a time point in the past until the current time point
but we adopt only the last as current situation. We assume the past situations as they were
before the execution of the action which gives us information about the past. Notice that in
order to create the ”virtual” sequence of situations we execute all the static rules. This happen
because we adopt only the last situation thus none fluent change its truth value in the past.
The important in this case is to produce a consistent situation which starts to hold from the
current time point and encapsulates the effects which create if we change the past.

In this case it is not necessary to assume that the situation and action axis are branching.
The linear correspondence of figure 6 is sufficient. This happens because first we do not change
the situation in the past but in the current time point, and second we do not re-execute actions
in the past.

Consider the last execution of the previous chapter. In that execution the action occur(
take_pardon(p),26,22) has been rejected because it has as consequence an inconsistent situa-
tion. Now we do not reject this action because we may execute all static rules and produce a
consistent situation for the time point 26.

Example 2 (continued )

occur(take_pardon(p), 26, 20)

The initial situation.

So = {~take_bonus(p, [0, x]), ~take_salary(p, [0,21]), take_salary(p, 21, o))
suspended(p, [0,21]), —suspended(p, [21, o0]), good_employee(p, [0, oc)), illegal (p, [0, 26]),
—illegal(p, [26, 0]), position(p, 1,0, 36), salary(p, 3,0,0)} .

At time point 21 the static rules which corresponded to the fluents suspended, —~take_salary
will be evaluated and the new situation is:

\ = {—take_bonus(p, [0, ]), ~take_salary(p, 21, 26]), take_salary(p, [26, o0])
suspended(p, [21,26]), ~suspended(p, [26, >0]), good_employee(p, [0, 0]), illegal(p, [0, 26]),
—illegal(p, [26, x]), position(p, 1,0, 36), salary(p, 3,0,0)} .

158



At time point 24 the actions grant_promotion and grant_increase cannot execute. At time
point 26 the action take_pardon executes and changes the past at time point 20. The new
situation at time point 22 is

81 = {—take_bonus(p, [0, 0]), take_salary(p, [21, ]),
—suspended(p, [21, o0]), good_employee(p, [0, cx]), —illegal (p, 22, o)),
position(p, 1,22, 58), salary(p, 3,22,22)} .

Now we can execute all the static rules and the final situation will be

S1 = {take_bonus(p, [22, 0]), take_salary(p, [21, o)),
—suspended(p, [21, 00]), good_employee(p, [0, 0]), nillegal(p, [20, o)),
position(p, 1,22, 58), salary(p, 3,22,22)} .

The difference from the two above cases is that there we had start(S;) = 22, while now we
want to find a situation S s.t if none action executed from time point 22 until now (26), then
S1 is the situation in 26. Thus at time point 26 the new situation is

So = {take_bonus(p, [22, ]), take_salary(p, [21, 0]),
—suspended(p, [21, o0]), good_employee(p, [0, oc]), —illegal (p, [20, o)),
position(p, 1,26, 62), salary(p,3,26,26)} .

As we observe at time point 26 the actions grant_promotion and grant_increase must be
executed. Thus the new situation is

So = {take_bonus(p,[22, x]), take_salary(p, 22, ]),
—suspended(p, [22, o0]), good_employee(p, [0, 0a]), —illegal (p, 22, 00]),
position(p, 2,26,0), salary(p,4,26,0)}.

We want an algorithm which produces the current consistent situation. The following
algorithm addresses the ramification problem in the last case.

Algorithm 3 for producing a consistent situation
1. If an action (occur(a,t,t1)) which changes the past (¢; < t) is executed then

159



a) Execute the dynamic rule at situation S s.t Actual(S,t;).
b

)
)
c) At each time point until the current time point execute the static rules.
)
)

(
(b) Execute the static rules in the new situations until no change occurs.
(
(d
(e) Set Actual(S’,1t).

Return the last situation S’.

2. Else execute the dynamic rule and afterwards the static rules until no change occurs.
In this case there is no case of infinite loops because we do not re-execute the actions.

Theorem 5.7 The above algorithm return a consistent situation in the case that the action
change the belief about the past but the effect start to hold from the current time point.

Proof: Assume that the algorithm returns an inconsistent situation.

So there is an integrity constraint which is not satisfied. Assume that integrity constraint
Law; is not satisfied in one situation. Assume that the CNF of this law is C1 A.... AC},. Then
it must be the case that one of the C1,...., C, is false. Assume that C; = f1 V....V f,, is false.
Then all fluents f;,7 = 1,..m are false. Then by the theorems 4.1 and 4.2 there are fluents fj
and fp, such that (fx, fp) € I and C; = fiV f, V C}. Then by the steps 3 and 4 of the algorithm
of production of the static rule we have that: Gy, (t,..) = G'V (= A fj(t;,j = 1,.m,j #p). If
all fluents f;,j = 1,..m are false then (= A f;,j = 1,..m,j # p) is true. Thus Gy, (t,..) is true.
This means that the static rule Gy, (t,..) D fp(...) must be evaluated and thus, f, is true. This
will happen because at each step of the above algorithm we evaluate the static rules until no
change occurs. Thus at each time point we evaluate the static rules until no change occur. A
contradiction.

160



6 Conclusions and Future Work

6.1 Summary of Contribution

In this thesis we examined three infamous problems the frame, the ramification and the
qualification problems in temporal databases. We concentrated on the ramification problem.

The ramification problem in temporal databases has many different views depending on the
assumptions one makes. Almost all solutions which have been proposed for the ramification
problem are based on the persistence of fluents assumption. This means that nothing changes
except if an action takes places. This assumption simplifies the solution of the ramification
problem, but it is quite restrictive, because in a temporal reasoning setting the persistence
of fluents is unreasonable. This happens because when time considerations are imported, one
action could have as effect that the fluent f holds for ¢ time points after the execution of
an action. The solutions which are based on the idea of the persistence of fluents cannot
encapsulate effects like the above. To achieve this, we must specify the time point of an action
execution, as well as the duration of its effects. But this has two major disadvantages. First,
if some other action cancels the no persistent effect then the corresponding action must be
cancelled. Second, the number of actions may greatly increase because we must define one
action for each non-persistent effect of each action( e.g. if each action has two non-persistent
effects then if A is the number of actions we need 2 X A extra actions). Thus the complexity
increases significantly.

In order to address the ramification problem in temporal databases we propose an extension
to the situation calculus for encapsulating time. We propose a new representation of fluents
to be able to encapsulate the non-persistent effects of actions. More specifically, each fluent f
is represented as f(L), which means that fluent f is true in the time intervals contained in the
list L. Each element of the list L is a time interval [a,b],a < b. The list L is an ordered list.

In a temporal context, we need to describe the direct and indirect effects of an action not
only in the immediately resulting next situation but, possibly, for many future situations as
well. This means that the world being modelled may change from one situation to another
while the direct and/or indirect effects of actions still hold. Also, in this time span other
actions may occur leading to many different situations.

We addressed the ramification problem in temporal database for the following cases:

e Sequential execution of the actions. In this case, we propose a linear correspondence
between actions-time-situations as shown in figure 6 of section 3. There are three different
assumptions in this case:

— The effects of the action start to hold for the next time point. We propose an
algorithm which solves the ramification problem in this case.

161



— The effects of an action start to hold after some time points. In this case, there
is the problem that an action may cancel the effects of another action before them
starting to hold. We extended the algorithm which we have proposed for the first
case.

— The actions have duration. In this case, the effects must be determined with refer-
ence to the start, the end and the duration of the actions. If all direct and indirect
effects can be described by reference to the start and the end of the action then
we can assume that one action with duration is equivalent to two instantaneous ac-
tions: one for the start and one for the end. In this case, the dynamic rules must be
defined for the instantaneous actions. Usually the duration of an action is unknown
before its end. So we cannot describe the direct and indirect effects of an action
with reference to the start and to the end. For each action we propose a natural
action which ”refreshes” the effects of the action when they cease to hold.

Additionally to the above, some effects of the action could depend on the duration
of the action. This means that if one action could produce some effects after it has
complete a time points of continuous execution. In the opposite case, it does not
produce these effects. We proposed a new extension of the algorithm.

e Concurrent execution of two or more actions

— The effects of the action start to hold for the next time point. In this case, instan-
taneous actions execute concurrently. The direct and indirect effects of an action
do not start necessarily from the next time moment. This means that two or more
actions cannot necessarily be executed concurrently even if their preconditions hold.
It must be determined that the direct and indirect effects of these actions are con-
sistent not only in the next time moment but in the future, as well. Also we must
ensure that all direct effects of all actions executing concurrently hold. This means
that it is not possible for one action to cancel the effects of other actions which ex-
ecute concurrently. If there is not consistent situation which encapsulates all direct
and indirect effects of the actions, we reject the execution. We propose an algorithm
for the solution of the ramification problem in that case.

— The effects of action start to hold after some time points. In that case we must
address all issues as in the case of sequential action execution and additionally
we must ensure the consistency between the effects of the actions which executed
concurrently. There is also the case that the effects of the actions are inconsistent
in a time point in the future. We propose an algorithm for the solution of the
ramification problem in that case.

— The actions have duration. In that case we must ensure all things which we referred
to in the case of sequential action execution and all things which we referred to in
the previous case. The new algorithm, which we propose for that case, solves the
ramification problem for all previous cases.

162



e An action can change the beliefs about the past. The linear correspondences of figure 6
of section 3 cannot represent the correspondence between situations, actions and time in
the case that the effects of the actions refer to the past. This happens because after the
execution of an action which changes the past we repeat the execution from the time point
(in the past) to which the effects of the action referred. Thus, we need branching axes for
the situations and actions. The time axis remains linear. We propose the correspondence
appearing in figure 10 of section 6. When an action changes the past we start two new
linear axes: one for the situations and one for the actions. As we may observe, each time
there is a linear line in the branching axis of situation which is the "actual” line. This
line contains the situations which are the history up to time point t. Because we repeat
the execution of actions after an action changes the beliefs about the past there is the
problem of infinite loops. We distinguished three cases and provided a solution in each
one of them:

— When an action could change the values of all the fluents in the past. In that case
the only problem is that of infinite loops.

— When an action could change the value of only some fluents in the past. In that
case, we must distinguish between the set Fp of fluents which cannot change their
truth value in the past and the set Fs of fluents which could change their truth
value in the past.

In addition to the above problem, we must ensure that the fluents which belong in
Fp do not change their value in the past. We solved this case by expanding the
algorithm which was appropriate for the first case.

— When an action could change the value of all the fluents in the past but the effects
affect only the current situation. In this case it is not necessary to assume that the
situation and action axes are branching. The linear correspondence of figure 6 is
appropriate. This happens because we do not change the situation in the past but
in the current time point and because we do not re-execute actions in the past.

6.2 Future Work

As future work we intend to address the ramification problem in the case that two or more
action execute concurrently and their effects refer to the past or to the future. Consider the
following execution

occur(grant_bonus(p),10,7)
occur(bad_grade(p), 10,11)

These action have as direct effects

163



take_bonus(p, [[7,0]]), bad_employee(p,[[11,0]]),

respectively. This is consistent but there is the following static rule

bad_employee(p, [[11, co]]) D —take_bonus(p, [[11, co]])

Finally the following

take_bonus(p, [[7,o0]]) A —take_bonus(p, [[11, cc]])

must hold. Now there are two choices. First to reject the execution of two actions and
second to accept

take_bonus(p, [[7,11]]) A —take_bonus(p,[[11, o0]])

In the latter case, there is the problem of determining in which situation executed the
dynamic rules and how we construct the actual line between the earlier time point in the past
(which some action referred to) and the time point in the future. For example, we executed
first the action which referred in the past and afterwards the action which referred in the
future, etc.

Also as future work we want to examine the ramification problem in the case when the
effects of actions are non-deterministic. For example assume the example with the public
worker and assume that there is a new action grant_accolade which has as direct effects to
take bonus or take a pardon but not both of them. Consider the following execution

occur(misdemeanor(p), 8)
occur(grant_accolade(p), 10)
occur(grant_promotion(p),11)

If the action grant_accolade, which takes place at time point 10, has as direct effect to
grant pardon to the public worker p then the action grant_promotion executes at time point
11. Otherwise, if it has as direct effect to grant bonus to the public worker p then the action
grant_promotion cannot execute at time point 11.

A case in which the effects of actions are non-deterministic is in robotics. The movements
and the actions of some robot could be non-deterministic. For example assume that a robot
move all things from the room to the room B. The robot can move the things with many
different ways.

164



6.3 Conjectural

The ramification problem is of great importance to database systems. Database users and
designers may not known exactly all the indirect effects of their transactions. This means that
the users/designer can execute a transaction which has as result to violate the integrity con-
straints. Thus, we need an automatic way which determines the indirect effects of transactions
and enables the verification of constraints.

A solution to the ramification problem permits to the designers to realize the effects of
their design. For example a transaction can produce an inconsistent situation or can produce
a situation which contains undesirable indirect effects. This means that the designers can
discover erroneous specifications. This discovery is very difficult or impossible to be done
manually. The solution of the ramification problem admir to the designers to understand the
effects of their transactions and redesign the database if this is necessary.

The solution to ramification problem is necessary in databases because it enables the design
of correct, reliable and consistent databases. All the solutions to the ramification problem in
conventional databases are based on the idea of the persistence of fluents. This means that
nothing changes until an action takes place. In conventional databases the persistence of
fluents hold. Thus these solutions are satisfactory for the non temporal databases. The above
solutions cannot produce automatically the non persistent effects. If such effects exists, they
have to be described manually. This is very difficult and impractical in the large databases with
complex transactions. In temporal databases the predicate and function values can change as
time progresses without any action taking place. Thus the above solutions cannot solve the
ramification problem in temporal databases.

We suggest a new solution to the ramification problem which based in the situation calculus.
In order to acheive that we extented the situation calculus. The extended situation calculus
encapsulate the time and provide a way for description of the actions and situations over
the time. Also this extension permit us to describe the non-persistence effects. Our solution
produce all effects (persistence and non-persistence) of actions automatically. This mean that
our solution address the ramification problem in temporal databases.

165



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

J. B. Amsterdam. Temporal reasoning and narrative conventions. In J. F. Allen, R.
Fikes, and E. Sandewall, editors, Proceedings of International Conference on Principles
of Khowledgwe Representation and Reasoning(KR), pages 15-21, Cambridge, MA 1991.

Andrew B. Baker. Nonmonotonic reasoning in the frameworke of situation calculus. Arti-
ficial Intelliegence, 49:5-23, 1991.

Alessandro Artale and Enrico Franconi.A computational account for a description logic of
time and action. 4th International Conference on Knowledge Representation and Reasoning
(KR’94), Morgan Kaufmann, San Mateo CA, May 1994.

Alessandro Artale and Enrico Franconi. Hierarchical Plans in a Description Logic of Time
and Action. 1995 International Workshop on Description Logics (DL’95), Rome, Italy, June
1995. Also IJCAT'95 workshop on The Next Generation Of Plan Recognition Systems,
August 1995.

Alessandro Artale and Enrico Franconi (1998). A Temporal Description Logic for Reasoning
about Actions and Plans. Journal of Artificial Intelligence Research (JAIR) Vol. 9, pages
463-506, December 1998.

Alessandro Artale and Enrico Franconi (1999). Representing a Robotic Domain using Tem-
poral Description Logics. Journal of Artificial Intelligence for Engineering Design, Analysis
and Manufacturing (ATEDAM), special Issue on Temporal Logic in Engineering, Vol. 13,
No. 2, April 1999.

Andrew B. Baker. Nonmonotonic reasoning in the framework of situation calculus. Artificial
Intelligence Journal, 49:5-23,1991.

Chitta Baral and Michael Gelfond. Representing concurrent actions in extended logic pro-
gramming. In R. Bajcsy, editor, Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 866-871, Chambery, France, August 1993. Morgan
Kaufmann.

Chitta Baral and Jorge Lobo. Defeasible specifications in actions theories. In M. E. Pollack,
editor, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 1441-1446, Nagoya, Japan, August 1997. Morgan Kaufmann.

[10] Chitta Baral and Michael Gelfond and Alessandro Provetti. Representing actions. Laws,

observations and hypothesis. Journal of Logic Programming, 31(1-3):201-243, 1997.

[11] Daniel G. Bobrow, editor. Artificial Intelligence 13. Special Issue on NonMonotonic Rea-

soning. 1980.

[12] A. Borgida, J. Mylopoulos and R. Reiter. On the Frame Problem in Procedure Specifica-

tions. IEEE Transactions on Software Engineering, 21(10), Oct. 1995, pp.785-798.

166



[13] Gerhard Brewka and Joachim Kertzberg. How to do things with worlds: On formalizing
actions and plans. Journal of Logic and Computation, 3(5):517-532, 1993.

[14] Sven-Erik Bornscheuer and Michael Thieslscher. Explicit and implicit inderminism. Rea-
soning about uncertain and contradictory specifications of dynamic systems. Journal of
Logic Programming, 31(1-3): 119-155, 1997.

[15] Sven-Erik Bornscheuer and Michael Thieslscher. Representing concurrent actions and solv-
ing conflicts. In B. Nebel and L. Dreschler-Fischer, editors, Proceedings of the German
Annual Conference on Artificial Intelligence (KI), Volume 861 of LNAI, pages 16027, Saar-
brucken, Germany, September 1994. Springer.

[16] K. Clark. Negation as failure. Logic and Data Bases, 1978.

[17] Marie-Odile Cordier and Pierre Siegel. A temporal revision model reasoning about world
change. In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of the International
Conference on Prnciples of Khowledge Representation and Reasoning(KR), pages 732-739,
Cambridge, MA, 1992. Morgan Kaufmann

[18] Mark Denecker, Daniele Theseider Durpe, and Kristof Van Belleghem. An inductive def-
inition approach to ramifications. Electronic Transactions on Artificial Intelligence, 1998.

[19] J. P. Denecker and Danny de Schaub. Representing incomplete Khowledge in abductive
logic programming. Journal of Logic and Computation, 5(5):553-577, 1995.

[20] Patrick Doherty, Joakim Gustafsson, Lars Karlsson, and Jonas Kvarnstrom. TAL Tem-
poral action Logics language specification and tutorial. Linkoping Electronic Articles in
Computer and Information Science, 1998.

[21] C. Elkan. Reasoning about action in the first order logic. In Proceedings of the Conference
of the Canadian Society for Comptutational Studies of Intelligence (CSCSI), pages 221-227,
Vancouver, Canada, May 1992.

[22] Joseph J. Finger. Exploiting Constraints in Design Sythesis. Phd thesis, Standford Uni-
versity, CA, 1987.

[23] R. Fikes and N. J. Nilsson, STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189-208, 1971.

[24] Bertram Fronhofer. The Action-as-Implication Paradigm. CS Press Munchen, 1996.

[25] A. Fusaoka. Situation Calculus on a Dense Flow of Time. Proceedings of the AAAI Na-
tional Conference on Artificial Intelligence, pages 633-638, 1996

[26] Hector Geffner. Causal theories for nonmonotonic reasoning. In Proceedings of the AAAI
National Conference on Artificial Intelligence, pages 524-530, Boston, MA, 1990.

[27] Hector Geffner. Deafult Reasoning: Causal and Conditional Theories. MIT Press, 1992.

167



[28] Michael Gelfond and Valdimir Lifshitz. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing, 9:365-385, 1991.

[29] Michael Gelfond and Valdimir Lifshitz. Representing Actions in Extended Logic Program-
ming. In K. Apt, editor, Proceeding of the International Joint Conference and Symposium
on Logic Programming (IJCSLP), pages 559-573, Washington, 1992. MIT Press.

[30] Michael Gelfond and Valdimir Lifshitz. Representing actions and change by logic pro-
grams. Journal of Logic Programming, 17:301-321, 1993.

[31] Michael Gelfond and Valdimir Lifshitz. Action Languages. Electronic Transactions on
Artificial Intelligence, 1998.

[32] Giuseppe De Giacomo, Yves Lesperance, and Hector Levesque. Reasoning about con-
current execution, prioritized interrupts, and exogenous actions in the situation calculus.
In Proceedings of the Fifteenth International Joint Conference on AI (IJCAI’97), pages
1221-1226, Nagoya, August 1997.

[33] Giuseppe De Giacomo, Yves Lesperance, and Hector Levesque. ConGolog, a concurrent
programming language based on the situation calculus. Artificial Intelligence, 121(1-2):109-
169, 2000

[34] M. Ginsberg and D. Smith. Reasoning about action I: A possible words approach. Artificial
Intelligence, 35:165-195, 1988.

[35] M. Ginsberg and D. Smith. Reasoning about action II: A possible words approach. Arti-
ficial Intelligence, 35:311-342, 1988.

[36] Enrico Giunchiglia, G. Neelekantan Kartha, and Vladimir Lifschitz. Actions with indirect
effects (extended abstract). In C. Boutiller and Goldszmidt, editors, Extending Theories
of Actions: Formal Theory and Practical Applications, Volume SS-95-07 of AAAI Spring
Symposia, pages 80-85, Stanford University, March 1995. AAAT Press.

[37] E. Giunchiglia, N. Kartha and V. Lifschitz, Representing action: indeterminacy and ram-
ifications, Artificial Intelligence, Vol. 95, 1997, pp. 409-443.

[38] Enrico Giunchiglia. Determining ramifications in the situation calculus. In L. C. Aiello, J.
Doyle, and S. Shapiro, editors, Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR), pages 76-86, Cambridge, MA, November
1996. Morgan Kaufmann.

[39] E. Giunchiglia and V. Lifschitz, Action languages, temporal action logics and the situation
calculus, in Working Notes of the IJCAI-99 Workshop on Nonmonotonic Reasoning, Action,
and Change, 1999.

[40] E. Giunchiglia and V. Lifschitz, An action language based on causal explanation: prelim-
inary report, in Proc. AAAI-98, 1998, pp. 623-630.

168



[41] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain and H. Turner, Nonmonotonic causal
theories, Artificial Intelligence, to appear.

[42] Moises Goldszmidt and Judea Pearl. Qualitative probabilities for default reasoning, belief
revision, and causal modeling. Artificial Intelligence, 24(1-2):57-112, 1996.

[43] J. Gustafon. Extending Temporal Action Logic for Ramification and Concurency, Thesis
No 719 of Linkoping Studies in Science and Technology, 1998.

[44] J. Gustafon. Embrancing occlusion in specifying the indirect effects of actions. In L.C.
Aiello, J.Doyle, and S. Shapiro, editors, Proceedings of the International Conference on
Principles of Knowledge Representation and Reasonin (KR), pages 87-98, Cambridge, MA,
November 1996. Morgan Kaufmann.

[45] A. Haas. The Case for Domain-Specific Frame Axioms. In F. Brown, editor. The frame
problem in artificial intelligence. Proceedings of the 1987 workshop, pages 343-348, Los
Altos, California.

[46] D. Hanks, S. McDermott. Nonmonotonic logic and temporal projection. Artificial Intelli-
gence, 1987.

[47] Steffen Holldobler and Josef Schneeberger. A new deductive approach to planning. New
Generation Computing, 8:225-244, 1990.

[48] Steffen Holldobler and Hans-Peter Storr. Complex plans in the fluent calculus. In S. Holl-
dobler, editor, Intellectics and Computational Logic. Kluwer Academic, 1999.

[49] Steffen Holldobler and Michael Thielscher. Computing change and specificity with equa-
tional logic programs. Annals of Mathematics and Artificial Intelligence programs with
equality. Journal of Logic Programming, 1(3):211-223, 1984.

[50] Christoph S. Herrman and Michael Thielsher. Reasoning about continuous processes. In
B. Clancey and D. Weld, editors, Proceeding of AAAI National Conference on Artificial
Intelligence, pages 639-644. Portland, OR, August 1996, MIT Press.

[51] Steffen Holldobler and Josef Schneeberger. A new deductive approach to planing. New
Generation Computing, 8:225-244,1990.

[52] A.C. Kakas, R.S. Miller and F. Toni, E-RES: Reasoning about Actions, Events and Ob-
servations, in Proceedings of LPNMR2001, pp- 254-266, Springer Verlag, 2001.

[63] Antonis Kakas and Rob Miller, A Simple Declarative Language for Describing Narratives
with Actions, The Journal of Logic Programming, Vol 31(1-3) (Special Issue on Reasoning
about Action and Change), pages 157-200, Elsevier, 1997.

169



[54] G. Neelakantan Kartha and V. Lifschitz. Actions with indirects effects. In J. Doyle, E.
Sandewall, and P. Torasso, editors, Proceedings of the International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR), pages 341-350. Bonn, Germany,
May 1994. Morgan Kaufmann.

[65] G. Neelakantan Kartha. Soundeness and completeness theorems for three formalizations
of actions. In R. Bajscy, editors, Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 724-729, Chambery, France, August 1993. Morgan
Kaufmann.

[56] G. Neelakantan Kartha. Two counterexamples related to Baker’s approach to the frame
problem. Artificial Intelligence, 69(1-2):379-391, 1994.

[57] M. Koubarakis, Foundations of Temporal Constraint Databases, Ph.D. thesis, Computer
Science Division, Dept. of Electrical and Computer Engineering, National Technical Uni-
versity of Athens, February 1994

[58] M. Koubarakis, Tractable Disjunctions of Linear Constraints: Basic Results and Appli-
cations to Temporal Reasoning, Theoretical Computer Science, Vol. 266, pages 311-339,
September 2001.

[59] R.A. Kowalski. Database updates in the event calculus. Journal of Logic Programming,
1992.

[60] J. Lee and V. Lifschitz, Describing additive fluents in action language C+, in Proc. IJCAI-
03

[61] V. Lifshitz. On the logic of causal explanation. Artificial Intelligence, 451-465, 1997.

[62] V. Lifshitz. Towards a metatheory of action. In J.F. Allen, R. Fikes, and E. Sandewall,
editors, Proceedings of the International Conference on Principles of Knowledge Represen-
tation and Reasoning, pages 376-386, Cambridge, MA, 1991.

[63] V. Lifshitz. Frames in the space of situations, Artificial Intelligence, 46:365-376, 1990.

[64] V. Lifshitz. Restricted monotonicity. In Proceedings of the AAATI National Conference on
Artifical Intelligence, pages 432-437, Washington DC, July 1993.

[65] V. Lifschitz,Two components of an action language, Annals of Mathematics and Artificial
Intelligence, Vol. 21, 1997, pp. 305-320.

[66] V. Lifschitz, Situation calculus and causal logic, in Proceedings of the Sixth International
Conference on Principles of Knowledge Representation and Reasoning, 1998, pp. 536-646.

[67] V. Lifschitz, Action languages, answer sets and planning, in The Logic Programming
Paradigm: a 25-Year Perspective, Springer Verlag, 1999, pp. 357-373.

170



[68] F. Lin. Embracing causality in specifying in the indirect effects of actions. In Proceedings
of International Joint Conferrence of Artificial Intelligence, 1995.

[69] F. Lin. Embracing causality in specifying in the indeterminate effects of action. In Pro-
ceedings of American Assocition for Artificial Intelligence, 1996.

[70] F. Lin and R. Reiter. How to progress a database (and why) I: Formal foundations. In
In Proc. Fourth International Conference on Principles of Knowledge Representation and
Reasoning (KR-94), 1994.

[71] F. Lin and R. Reiter. How to progress a database II: The strips connection. In In Proc.
IJCAI-95, 1995.

[72] F. Lin and R. Reiter. Rules as actions: A situation calculus semantics for logic programs.
Journal of Logic Programming, Special issue on Reasoning about Action and Change,
31:299-330, 1997.

[73] F.Lin and Y. Shoham. Provably correct theories of action. Journal of ACM, 42(2):293-320,
1995.

[74] F. Lin and Y. Shoham. On non-forgetting and minimal learning. In N. Asher, K. Korta,
and J. Ezquerro, editors, To appear in Proc. of the 1993 International Coll. on Cognitive
Science. Kluwer Academic Publishers, 1996.

[75] Fangzhen Lin. Applications of the situation calculus to formalizing control and strategic
information: The Prolog cut operator. In Proceedings of IJCAI-97, pages 1412-1418, 1997.
(IJCAI-97 Distinguished Paper Award).

[76] Fangzhen Lin and Hector J. Levesque. What robots can do: Robot programs and effective
achievability. Artificial Intelligence, 101:201-226, 1998.

[77] Fangzhen Lin and Ray Reiter. State constraints revisited. Journal of Logic and Compu-
tation, 4(5):655-678, 1994.

[78] Sheila A. Mcllraith. A closed-form solution to the ramification problem (sometimes). In In
Proceedings of the IJCAT’97. Workshop on Nonmonotonic Reasoning, Action and Change
(NRAC-97), 1997.

[79] Sheila A. Mcllraith. Explanatory diagnosis: Conjecturing actions to explain obsevations.
In In Proceedings of the Eighth International Workshop on Principles of Diagnosis (DX’97),
pages 69-78, 1997.

[80] Sheila A. Mcllraith. Representing actions and state constraints in model-based diagnosis.
In In Proceedings of the National Conference on Artificial Intelligence (AAAI-97), pages
43-49, 1997.

171



[81] J. McCarthy and P.J. Hayes. Some philophical problem from the standpoint of artificial
intelligence. In B. Meltzer and D. Mitchie, editors, Machine Intelligence 4, pages 463-502.
American Elsevier, New York, 1969.

[82] N. McCain and Hudson Turner. A causal theory of ramifications and qualifications. In C.
S. Mellish, editor, Proceedings of the International Joint Conference on Artifical Intelligence
(IJCAI), pages 1978-1984, Montreal, Canada, August 1995.

[83] N. McCain and Hudson Turner. A causal theory of action and change. Proceedings of the
A AAT National Conference on Artifical Intelligence, 1997.

[84] Rob Miller and Murray Shanahan. The Event Calculus in Classical Logic - Alternative
Axiomatisations. Linkping Electronic Articles in Computer and Information Science, 4(16),
1999.

[85] J. Mylopoulos, V. Chaudhri, D. Plexousakis, A. Shrufi and T. Topaloglou, Building knowl-
edge base management systems, The VLDB Journal, May 1995.

[86] Nikos Papadakis and Dimitris Plexousakis. Action Theories in Temporal Databases. Pro-
ceedings of the 8th Panhellenic Conference on Informatics, pp. 254-264, Cyprus, Nov. 2001.

[87] Nikos Papadakis and Dimitris Plexousakis. The Ramification and Qualification Problems
in Temporal Databases. Proceedings of the 2th hellenic Conference on AT, pp. 18-30 Lecture
Notes on Artificial Intelligent vol 2308, 10-11 April 2002, Thessaloniki, Greece.

[88] Nikos Papadakis and Dimitris Plexousakis. Action with Duration and Constraints: The
Ramification problem in Temporal Databases. 14th IEEE International Conference on Tools
with Artificial Intelligent, pages 83-90, 4-6 November 2002 , Washington D.C.

[89] Nikos Papadakis and Dimitris Plexousakis. Action with Duration and Constraints: The
Ramification problem in Temporal Databases. International Journal on Artificial Intelli-
gent, special issue, first issue 2004.

[90] Nikos Papadakis and Dimitris Plexousakis. Addressing the Ramification Problem in Tem-
poral Context: The Case of Concurrent Actions. International Conference on Tools with
Artificial Intelligent, pages 545-551. 3-5 November 2003 , Sacramento USA.

[91] E. Pednault. ADL: Exploring the Middle Ground between STRIPS and the Situation
Calculus. In R.J. Brachman, H. Levesque, and R. Reiter, editors, Proceedings of the First
International Conference on Principles of Knowledge Representation and Reasoning (KR’
89), pages 324-332. Morgan Kaufmann Publishers, Inc., San Mateo, California, 1989.

[92] J. Pearl. Embrancing causality in default reasoning. Artifical Intelligence, 1998.

[93] J. Pearl. Causation, action and counterfactuals. Proceedings of the Sixth Conference on
Theoritical Aspects of Rationality and Khowledge, 1996.

172



[94] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA, 1988.

[95] J. Pearl. A probabilistic calculus of actions. In R. Lopez de Mantaras and D. Poole, editors,
Proceedings of the conference on Uncertainty in Artificial Intelligence (UAI), pages 454-462,
San Mateo, CA, 1994, Morgan Kaufmann.

[96] Peppas, Pavlos and Wayne Wobcke: On the Use of Epistemic Entrenchment in Reasoning
about Action. Presented at: European Conf on Artificial Intelligence, 1992. Venue: Vienna,
Austria, 3.8-7.8. Proceedings published by John Wiley and Sons.

[97] Dimitris Plexousakis: Integrity Constraint and Rule Maintenance in Temporal Deductive
Knowledge Bases. Proc. of the 19th International Conference on Very Large Data Bases
(VLDB), pages 146-157, August 1993.

[98] Dimitris Plexousakis: Compilation and Simplification of Temporal Integrity Constraints.
International Workshop on Rules in Database Systems (RIDS), Athens, Greece, September
25 - 27, 1995.

[99] Dimitris Plexousakis. Maintenance of Integrity Constraints in Temporal Deductive Knowl-
edge Bases. Phd Thesis, Dept. of Computer Science, Univ. of Toronto, Jan. 1996.

[100] Dimitris Plexousakis, John Mylopoulos: Accomodating Integrity Constraints During
Database Design. Proceedings of EDBT 1996, pages 497-513

[101] J. Pinto. Temporal Reasoning in the Situation Calculus. Ph.D. Thesis, Dept. of Computer
Science, Univ. of Toronto, Jan. 1994.

[102] J. Pinto and R. Reiter. Temporal Reasoning in Logic Programming: A Case for the
Situation Calculus. Proc. 10th Int. Conf. on Logic Programming, Budapest, Hungary, June
21-24, 1993.

[103] Javier Pinto. Occurrences and narratives as constraints in the branching structure of the
situation calculus. Journal of Logic and Computation, 8:777-808, 1998.

[104] R. Reiter A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.

[105] R. Reiter. Natural Actions, Conccurrency and Continous Time in the Situation Calculus,
KR’ 96, pages 2-13, 1996.

[106] R. Reiter and Y. Zheng. Scheduling in the situation calculus: A case study. Annals of
Mathematics and Artificial Intelligence. Special issue on logic programming, nonmonotonic
reasoning and action, 1996.

[107] Ray Reiter. The frame problem in the situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. In Vladimir Lifschitz, editor, Artificial In-
telligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy,
pages 359-380. Academic Press, San Diego, CA, 1991.

173



[108] Ray Reiter. Proving properties of states in the situation calculus. Artificial Intelligence,
64:337-351, 1993.

[109] Ray Reiter. Sequential, temporal golog. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixth International Conference (KR’98), pages 547-556,
Trento, Italy, 1998.

[110] Ray Reiter. Narratives as programs. In A. G. Cohn, F. Giunchiglia, and B. Selman,
editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh
International Conference (KR2000), San Francisco, CA, 2000. Morgan Kaufmann.

[111] Ray Reiter. On knowledge-based programming with sensing in the situation calculus.
ACM Transactions on Computational Logic (TOCL), 2(4):433-457, October 2001.

[112] Raymond Reiter. The projection problem in the situation calculus: A soundness and
completeness result, with and application to database updates. In Proceedings of the First
International Conference on AI Planning Systems, pages 198-203, College Park, Maryland,
June 15-17 1992.

[113] Raymond Reiter. Knowledge in Action. Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, 2001.

[114] E.Sandewall. Systematic assessment of temporal reasoning methods for use in au-
tonomous systems. In B. FronHofer, editor, Workshop on Reasoning about Action and
Change at IJCAI, pages 21-36, Chambery, August 1993.

[115] E.Sandewall. The Representation of Knowledge about Dynamic Systems. Oxford Uni-
versity Press 1994.

[116] E.Sandewall. The range of applicability of some non-monotonic logics for stict inertia.
Journal of Logic Computation, 4(5):581-615,1994.

[117] E.Sandewall. Reasoning about actions and change with ramification. In Computer Sci-
ence Today, volume 1000 of LNCS. Springer, 1995.

[118] E.Sandewall. Assesments of ramification methods that use static domain constraints.
Proceeding of International Conference on Principles of Knowledge Representation and
Reasoning, 1996.

[119] E.Sandewall. Cognitive robotics logic and its metatheory: Features and fluents revised.
Linkoping Electronic Articles in Computer and Information Science, 1998.

[120] K. Stergiou and M. Koubarakis, Backtracking Algorithms for Disjunctions of Temporal
Constraints, Artificial Intelligence, Vol. 120 (1) (2000) pp. 81-117.

[121] E. Ternovskaia. Automata Theory for reasoning about action. In Proceeding of Interna-
tional Joint Conference on Artificila Intelligent, 1999.

174



[122] M. Thielsher. Challenges for Action Theories (Book), 2000, Springer Verlag.

[123] M. Thielsher. An analysis of systematic approaches to reasoning about actions and
change. In P. Jorrand and V. Sgurev, editors, International Conference on Artificial In-
telligence: Methodology, Systems, Applications (AIMSA), pages 195-204, Sofia, Bulgaria,
September 1994. World Scientific.

[124] M. Thielsher. Ramification and causality. Artifical Intelligence, 89(1-2):317-364, 1997.

[125] M. Thielescher. Reasoning about actions: Steady versus stabilizing state constraints.
Artifical Intelligence, 104:339-355, 1988.

[126] M. Thielescher. Continuous processes in Fluent Calculus. In Hybruid Systems and Al:
Modeling and Control of Discrete + Continuous Systems, Volume SS-99-05 of AAAI Spring
Symposia, pages 186-191, Standrord University, March 1999. AAAT Press.

[127] M. Thielescher.Nondeterministic actions in the fluent calculus: Disjunctive state update
axioms. In S. Holldobler, editor, Intellectics and Computational Logic. Kluwer Academic,
1999.

[128] M. Thielescher. Causality and the qualification problem. In L. C. Aiello, J. Doyle, and S.
Shapiro, editors, Proceedings of the International Conference on Principles of Khowledge
Representation and Reasoning (KR), pages 51-62, Cambridge, MA, November 1996. Mor-
gan Kaufmann.

[129] M. Thielscher. Qualified ramifications. In B. Kuipers and B.Wbber, editors, Proceedings
of the AAAT National Conference on Artificial Intelligence, pages 466-471, 1997

[130] M. Thielscher. From Situation Calculus to Fluent Calculus: State update axioms as a
solution to the inferentila frame problem. Artificial Intelligence, 1999.

[131] M. Winslett. Reasoning about action using a possible models approach. In Proceeding
of the AAAT National Conference on Artifical Intelligence, pages 89-93, Saint Paul, MN,
August 1988.

[132] Choong-Ho Yi. Towards the assesment of logics for concurrent actions. In D. M. Gab-
bay, editor, Proceedings of the International Conference on Formal and Applied Practical
Reasoning (FAPR), volume 1085 of LNAI, pages 679-690, Bonn, Germany, June 1996.
Springer.

[133] Alvaro del Val and Yoan Shoham. Deriving properties of belief update from theories
of action(II). In R. Bajscy, editors Proceeding of the International Joint Conference on
Artifical Intelligence (IJCAI), pages 732-737, Chambery, France, August 1993. Morgan

Kaufmann.

[134] Yan Zang and Norman Y. Foo. Reasoning about persistence: A theory of actions. In R.
Bajscy, editor, Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 718-723, Chambery, France, August 1993. Morgan Kaufmann.

175



[135] Yan Zang. Compiling cauasality into action theories. In Proceeding of the Symposium on
Logical Formalization of Commonsense Reasoning, pages 26-270. Stanford, CA, January
1996.

176



