University of Crete
Computer Science Department

Improving the Performance of Passive
Network Monitoring Applications

Antonis Papadogiannakis

Master’s Thesis

October 2007
Heraklion, Greece

University of Crete
Computer Science Department

Improving the Performance of Passive
Network Monitoring Applications

Thesis submitted by
Antonis Papadogiannakis

in partial fulfilment of the requirements for the
Master of Science degree in Computer Science

THESIS APPROVAL

Author:

Antonis Papadogiannakis

Committee approvals:

Evangelos P. Markatos
Professor, Thesis Supervisor

Mema Roussopoulos
Assistant Professor

Vasilios A. Siris
Assistant Professor

Departmental approval:

Panos Trahanias
Professor, Chairman of Graduate Studies

Heraklio, October 2007

Abstract

Passive network monitoring is the basis for a multitude steys that support the
robust, efficient, and secure operation of modern computvarks. Traditional
passive network monitoring approaches focus either otivela simple network
traffic measurement and analysis applications, or just &nering packet traces
that are analyzed off-line. However, these approachesaradequate to support
emerging monitoring applications such as intrusion detedystems, detection of
Internet worm outbreaks and accurate traffic charact@izatn addition, most of
these applications would benefit from monitoring data gattheat multiple van-
tage points across the Internet. At the same time, the speemadern network
links increases, Internet traffic gets more complex, andiegijmns more CPU and
memory demanding due to more complex analysis operatioimus, Tthere is a
growing demand for more efficient passive monitoring sire pgerformance of
such applications becomes a critical issue.

In this thesis we present the design, implementation anidpeance evalua-
tion of DIMAPI, a flexible and expressive application pragraing interface for
distributed passive network monitoring. A broad range ohitusing applications
can benefit from DIMAPI to efficiently perform advanced moning tasks over a
potentially large number of passive monitoring sensors.

Also, we present a novel approach for improving the perforceaof a large
class of CPU and memory intensive passive network mongapplications. Our
approach, calletbcality buffering reorders the captured packet stream, before it is
delivered to the application, in a way that results to impbeode and data locality,
and consequently to an overall increase in the packet mimgethroughput and to a
decrease in the packet loss rate. We have implementedtjooaffering within the
widely used i bpcap packet capturing library, which allows existing monitayin
applications to transparently benefit from the reorderatkgtastream without the
need to change application code. Our experimental evaluatiows that locality
buffering improves significantly the performance of pop@gplications.

Supervisor: Professor Evangelos Markatos

[Tepthndn

H rodntieq enontela tng xivnong evog Sixthou UTOAOYIGTOV amoTehel Evay
ONUOVTIXG TORAYOVTA Yiot TNV EEACPANLOT TNG ATOBOTIXNG XU ACQPAUAAS TOU
Aertoupyiog. O tapadooiaxés mpooeyyioeic eotidlouy eite ot aniég yetproelg
%ot OLAAOYY O TATIO TIXWY, EfTE oTNY TAEn xataypagy| TNg xivnong Tou dixthou.
Avutég ol mpooeyyioelg duwg dev elvon emapxeic Yoo va unootnpiZouv Tig Véeg
avdyxeg mou €youv TEoxVPEL, OTwS oLo THUATA Yior aviyvevoT entdécewy, avi-
Y vevon g paydafag e€dniwong worms oto Awdixtuo xon axp3hic Tagvéunon
g xivnong tou Badixtiou avdhoyo UE TIC EQUPUOYES TOU TNV TOPAYOULV.
EmnAiéov, n duvatotnta tautodypovng ETOTTEINS TOAADY SLAPORETIXWY DIXTUWY
oto Awdixtuo Ya ogeholoe apxetd autés Tig e@apuoyeg. Ty (B otryuy, ot
Ty OTNTES TV oUYYPOVWY dXTO®Y auidvouy, 1 xivnon oto AladixTtuo yivetal
ohoéva xat To Tepimhoxn xat oL egupuoYEg yia tadnTiny emonteia BixTOWY Ao
xar o anutixéc oe unoloylouxr woyV. I 6houg toug mapandve Adyoug
UTdEYEL AUEAVOUEYY avdy XN Yid O amodOTIXEC EQUPUOYES EnOTTElag DX TOWY.

Ye authy v epyacia napouctalouue TV oyedluon, vhomoinon xar ol-
AoYNoT wog tpoypauuatio uxhc Biphovnxng, mou ovopdleton DIMAPI,
omolo Tapéyel SUVATOTNTES Yol TNV AVATTUEN EQURUOY MV YIO XATAVEUNUEVY] T
Untixy emonttelar dixtOwy. H Bifhiodfnn avty elvon evéhixtn xou exppac tixy,
OTOTE TPOGHEPEL TNV BUVATOTNTA YL AVATTUEY APXETWY EPUQUOYWY YENO!-
HOTOLWVTAS Amod0TIXE EVal UEYAAO apldUd ETOTTEVOUEV®DY BIXTOWY.

Eniong, nopovoidlovpe wio xavotoua npocéyylon yia v Bektiwon g
anddoong evog UeYdhou edpoug and NdN UTHPYOVUCES EPUPUOYES TTOU ATAUTOUY
onuavtixy urtohoyo Tty wyd. Auvth 1 npocéyyior, mou ovoudleton locality
buffering, avadiatdooel Ty oelpd TwV Tax€Twy O1XTOOL, TEY TA DWOEL CTNY
eqpapuoy” mou VéAel vo ta eneepyao Tel, OUAdOTOWOVTAG Ta "TapoUoLla’ TaxXéTa
€tol Wote va BedTiOvetar 1) TEdoRuoT OTNY UVAUY TOU CUCTAUANTOS XAl VO
emtayOvetar 1 eneepYaoia TwV TUXETOY A0 TNV EQAPUOYYH AOY® UELWUEVWY
cache misses. Thomoljoape aUTHY TNV TPOGEYYIOT OF ULl EVPEWS DIABEBOPEVT)
BBhoUHen i xataypaph Taxétwy dixtiou pe T€Tolo TPOTo WO TE OOES EQPUp-
HOYES TNV YpNoIwomolody Vo Unopoly Vo eToQeANYoly ano TNy TEYVIXY UdS
Ywelc vau ypetao Tel vou xdvouv xoppla ahhayr otov x@dixd toug. H nepapatixd
a&loAoYNoT auTAS TG TEYVIXAS, XPNOWOTOWVTAS TREIS ONUOPIATS EQUPUOYES,
delyver ot pmopel va emithyel onpavTiég BEATIOOE 0TV anddooT Toug.

Enéntne: Kadnyntic Evdyyehog Mapxatog

Acknowledgments

| am deeply grateful to my supervisor, Professor Evangelaskitos, for his valu-
able advice and guidance during all my studies. | am alseefydato Michalis

Polychronakis for his constant support and excellent cadjwa. It is truly a valu-
able experience to work with these people.

Many thanks to Alexandros Kapravelos, who implemented duket loss es-
timation application, and Andreas Makridakis for his hefg avork in the devel-
opment of DIMAPI. | would also like to thank Demetres Antotés and George
Vasiliades who contributed in several parts of this workrdagly appreciate their
help.

My best thanks to my friends and collegues Manos Athanatbsistos Pa-
pachristos, Elias Athanasopoulos, Spiros Antonatos, Dresé&oukis and to all
the past and current members of the Distributed Computiste8ys Laboratory in
ICS/FORTH for their support, usefull comments and feedback

I would also like to thank my friends Nikos Dimaresis, Panosirlakis, Dim-
itris Zeginis, Manolis Kritsotakis, Maria Kalaitzaki andamy others that | do not
mention by name, for their support and for sharing with me¢hgears of my life.

Finally, I would like to thank my parents, Charidimos and &ti&rinh, for their
support, patience and encouragement during all these.years

Vi

1

Contents

Introduction 1
1.1 The Need for Effective Passive Network Monitoring 1
1.2 Contributions 3
1.3 ThesisOutline. 4
DiMAPI: An API for Distributed Passive Network Monitoring 5
2.1 Background: The Monitoring APl 6
2.1.1 Network Flow Abstraction 6
2.1.2 Basic MAPIOperations 8
2.1.3 MAPIImplementation 11
2.1.4 Example of MAPI usage: Link Utilization 13
2.2 NetworkFlowScope 15
2.3 DiMAPIImplementation 17
2.3.1 Communication Agent 18
2.3.2 Communication Protocol 20
233 DIMAPIStub 21
2.3.4 FromPulltoPushModel 23
235 SecurityandPrivacy 26
2.4 Examplesof DIMAPIUsage 27
2.4.1 Web Traffic Byte Counter 27
2.4.2 Covert Peer-to-Peer Traffic Identification 28
2.5 Advantagesof DIMAPI 30
Applications Based on DIMAPI 33
3.1 Passive End-to-End Packet Loss Estimation 34
3.1.1 ExistingTools 34
3.1.2 Passive Packet Loss Measurement Characteristics.... .35
3.1.3 Approach 36
3.1.4 Implementation 37
3.2 Grid Network Monitoring Element 38
Improving the Performance of Packet Processing using Lodiy Buffer-
ing 43
4.1 Our Approach: Locality Buffering 44
4.2 Estimation of Feasibility 46

X CONTENTS

4.3 Implementation withihi bpcap 47
4.3.1 Periodic Packet Stream Sorting 47
4.3.2 Using a Separate Thread for Packet Gathering 9 4
5 Experimental Evaluation 51
5.1 DiMAPI Network-Level Performance 51
5.1.1 Experimental Environment 51
5.1.2 NetworkOverhead 51
5.1.3 Responselatency, 53
5.1.4 Evaluation of Packet Prefetching 55
5.2 Locality Buffering Performance Evaluation 58
5.2.1 Experimental Environment 58
5.2.2 ResultsfromSnort 59
5.2.3 Results from Appmon L. 61
5.24 ResultsfromFprobe 62
6 Related Work 65
6.1 Passive Network Monitoring Tools and Libraries 65
6.2 Distributed Passive Network Monitoring Infrastruetsir. 66
6.3 LocalityBuffering. 67
6.4 Improving the Performance of Packet Capturing 68

7 Conclusion 69

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8
2.9

3.1
3.2

4.1
4.2

5.1

5.2

5.3

5.4
5.5

5.6

5.7

List of Figures

A high-level view of a distributed passive network moriitg in-

frastructure 6
Network flow examples. 7
MAPI Daemon Architecture 12
An example of a network flow scope with multiple sensors 16
Architecture of a DIMAPI monitoring sensor 17
Control sequence diagram for the remote execution dtitaion

mapi createflow) 19
Format of the control messages exchanged between Dilgi&iBI
andmapicomd e 20
Pull model operation and message exchanges in DIMAPI . . . 24
Push model operation and message exchanges in DIMAPI .. . 25
End-to-end architecture for passive packet loss estima 36
Embedding passive network measurements in a Grid Niefvon-

itoring Service e 40
The effect of locality buffering on the incoming packeeam. . . 45
Using an indexing table with a linked list for each pdre packets

are delivered to the application sorted by their destimatiort. . . 48

Total network traffic exchanged during the initialinatiphase, when
applyingland8functions 52
Network overhead incurred using the functiBY¥TE_COUNTER

with polling periods 0.1, 1,and 10seconds 53
Network overhead incurred using the functidASHSAMP with

polling periods 0.1, 1,and 10seconds 53
Completion time formapi read_results() 54
Completion time fomapiget.nextpkt() with pull and push mod-

els for different buffer sizes while replaying at 100 Mbittss . . . 56
Throughput in Mbit/sec famapi get nextpkt() with pull and push

models for different buffer sizes while replaying at 100 Mdgc . 56
Completion time fomapi _get _next _pkt () with pull and push

models while replaying a trace from 10 to 200 Mbit/sec 57

Xi

Xii

LIST OF FIGURES

5.8 Throughput in Mbit/sec fomapi get next pkt () with pull
and push models while replaying a trace from 10 to 200 Mhit/se 57
5.9 Snort’s user plus system time as a function of the buffer for

100 Mbit/straffic. 59
5.10 Snort’s L2 cache misses as a function of the buffer ©izel®0

Mbit/straffic. 59
5.11 Snort’s CPU cycles as a function of the buffer size fdry Mbit/s

traffic. 59

5.12 Idle CPU time as a function of the buffer size for 100 Nibitaffic. 59
5.13 Packet loss ratio of the passive monitoring sensor whening

Snort, as a function of the trafficspeed. 61
5.14 Appmon’s user plus system time as a function of the baffe for

100 Mbit/s traffic. L 62
5.15 Appmon’s L2 cache misses as a function of the bufferfsiz&00

Mbit/s traffic. 62

5.16 Fprobe’s user plus system time as a function of the bsite for
100 Mbit/straffic. L 63

2.1
2.2
2.3

4.1

5.1

List of Tables

Overview of the basic MAPIcalls 8
Overview of MAPIst dl i bfunctions 9
Overview of the MAPI function libraries 10
Snort’s performance using asortedtrace 46

Comparison between the completion timeapi r ead_r esul t s()
and the network Round Trip Time 55

Xiii

Xiv LIST OF TABLES

Introduction

1.1 The Need for Effective Passive Network Monitoring

Over the last few years, we noticed a rapid evolution and travf the Inter-
net. Since the widespread development of DSL broadband ltmmeections,
metropolitan wireless networks and mobile devices witlerdmét connection, the
number of users, hosts, domains, and enterprise netwakaith connected to the
Internet has been growing explosively. Along with the phreeoal growth of the
Internet, the volume and complexity of Internet traffic imstantly increasing, and
faster networks are constantly being deployed. Emergigighfidistributed appli-
cations, such as media streaming, Grid computing and vepulao peer-to-peer
systems for file sharing, demand for increased bandwidthre®eer, the number
of attacks against Internet connected systems continugi®woat alarming rates.

As networks grow larger and more complicated, effectivevoet monitoring
and measurement is becoming an essential function for siaaheling, managing
and improving the performance and security of computer oisv Network traffic
monitoring is getting increasingly important for a largéadnternet users and ser-
vice providers, such as ISPs, NRNs, computer and teleconeation scientists,
security administrators, and managers of high-performamenputing infrastruc-
tures.

Passive traffic monitoring and capturing has been regarsléfteanain solution
for advanced network monitoring and security systems thatiire fine-grained
performance measurements, suchdaep packet inspectioj26]. For instance,
calculating the distribution of traffic among different #ipations has become a
difficult task. Several recent applications use dynamyjcallocated ports, and
therefore, cannot be identified based on a well known portbaininstead, proto-
col parsing and several other heuristics are commonly dgedsearching for an

2 CHAPTER 1. INTRODUCTION

application-specific string in the packets payload [9].cAl¢ intrusion detec-
tion systems, such asnort [45] andbr o [41], need to be able to inspect and
process network packets payload, in order to detect compinteses and worms
at times of emergency, based on attack “signatures” and) winanced pattern
matching algorithms.

However, traditional passive network monitoring appreschre not adequate
for fine-grained performance measurements nor for secappfications. Tradi-
tional approaches to passive network monitoring focuseeitim collecting flow-
level statistics [12], which makes them unsuitable for eggpions that perform
fine-grained operations like deep packet inspection, oualimpficket capture [24],
which significantly increases their operational overhe&lich limitations, i.e.,
too little information provided by flow-level traffic summes versus too much
data provided by full packet capture, demonstrate the nered jportable general-
purpose environment for running network monitoring aggliens on a variety of
hardware platforms. If properly designed, such an envirmneould provide ap-
plications with just the right amount of information theyedke neither more, such
as the full packet capture approaches do, nor less, sucle #swibased statistics
approaches do.

While passive monitoring has been traditionally used ftatieely simple net-
work traffic measurement and analysis applications, orfusgathering packet
traces that are analyzed off-line, in recent years it hasrbecvital for a wide class
of more CPU and memory intensive applications, such as mktwtusion detec-
tion systems (NIDS) [45], accurate traffic categorizati®h and NetFlow export
probes [1] which need to inspect both the headers and theevdaglloads of the
captured packets, a process widely knowd@sp packet inspectioffhe complex
analysis operations of such demanding applications amsl&i®d into an increased
number of CPU cycles spent on each captured packet, whicltesdhe overall
processing throughput that the application can sustaimowttdropping incoming
packets. At the same time, as the speed of modern netwoskilickeases, there is
a growing demand for more efficient packet processing usingneodity hardware
that can keep up with higher traffic loads.

Moreover, traditional passive network monitoring apgiimas are most com-
monly based on data gathered at a single observation paioh &oplications run
locally on the monitoring sensor, which gathers the regqlinéormation and pro-
cesses the captured data. Several emerging applicatiand enefit from moni-
toring data gathered at multiple observation points adfesd$nternet. The instal-
lation of several geographically distributed network ntoning sensors provides a
broader view of the network in which large-scale events @¢d@come apparent.
Recent research efforts [50,52,54] have demonstratea thege-scale monitoring
infrastructure of distributed cooperative monitors camused for building Internet
worm detection systems. Distributed Denial-of-Servidack detection applica-
tions would also benefit from multiple vantage points actbesinternet. Also,
wide-area application (e.g. peer-to-peer systems) débgggn be facilitated by a
distributed monitoring infrastructure. Finally, user niityp necessitates distributed

1.2. CONTRIBUTIONS 3

monitoring due to nomadic users who change locations fratyuacross different
networks.

So, itis clear that distributed network monitoring is bedogmecessary for un-
derstanding the performance of modern networks and foeptiog them against
security breaches. The wide dissemination of a cooperathgsive monitoring
infrastructure across many geographically distributed lagterogeneous sensors
necessitates a uniform access platform, which providesnammm interface for
applications to interact with the distributed monitorirensors.

1.2 Contributions

In the above section we indicate the need for effective passtwork monitoring.
Thus, the motivation of this work is to develop new libraries extend existing
ones, that will facilitate the development of passive neknaonitoring applica-
tions and improve their performance. Also, a complemeng@al is to transpar-
ently improve the performance of existing monitoring apations without need
to altering their code. For performance improvements, @ipasnonitoring li-

brary can build on top of specialized hardware (e.g. DAG £428] or network

processors [28]) in a transparent way for the applicatidiswever, we prefer a
generic user-level technique, for easy deployment, thktsignificantly improve

the packet processing performance of the monitoring agipdic itself using com-
modity hardware.

Our key novel contributions in this thesis are the following

e We present DIMAPI, a flexible and expressive programming&aork for
effective distributed passive network monitoring. DiMA&1ables users to
clearly communicate their monitoring needs to remote passionitoring
platforms. Using existing solutions, likepcap [32] or W nPcap [5], we
would have to fetch all the packets from each remote monigosensor to
the application’s host in order to process them. On the dthed, using
DiMAPI we push more functionality to the monitoring senssice and only
the necessary results are being transfered over the nettiakis much
more effective.

e Furthermore, DIMAPI exploits specialized hardware for nmpng perfor-
mance without any change to the API, so that applicationsable to run
without modifying their code. Also, the monitoring infrastture is effi-
ciently shared among many users, providing better perfocealy grouping
and optimizing their monitoring needs into a single moiitgrdaemon.

e We introduce a scalable and non-intrusive technique basedistributed
passive network monitoring for estimating the real-timeked loss ratio be-
tween different measurement points.

4 CHAPTER 1. INTRODUCTION

e We present a novel technique, calledality buffering that is able to sig-
nificantly improve the performance of a wide class of CPU aremary
intensive passive network monitoring applications, suglngusion detec-
tion systems [45], accurate traffic classification appigret [9] and NetFlow
export probes [1]. The technique is based on adapting thieepatream by
clustering packets with the same destination port, befueg are delivered
to the monitoring application, resulting to improved meynaccess locality
and consequently to an overall performance improvemerheipacket pro-
cessing throughput. We implemented locality bufferinghivitthe widely
usedl i bpcap library, so existing applications can benefit transpayentl
without any changes to their code, and we experimentalljuated it using
three popular passive monitoring tools. The results shbafs for instance,
the Snort intrusion detection system exhibits a 40% inereéashe packet
processing throughput and a 60% improvement in packet &ies r

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2qmis the design and
implementation of DiIMAPI, illustrates some simple exanspté DiIMAPI usage
and discusses the main advantages that it offers. In Chapterdescribe in detail
two real-world applications which take advantage of the aflsBiIMAPI. Chap-
ter 4 outlines the overall approach of locality bufferingdgsresents its detailed
implementation within thé i bpcap packet capture library. Chapter 5 presents
the experimental evaluation of DIMAPI network-level perfance and the ex-
perimental evaluation of locality buffering using thregpptar passive monitoring
tools. Finally, Chapter 6 summarizes related work, and @map concludes the
thesis.

DIMAPI: An API for Distributed Passive
Network Monitoring

The need for elaborate monitoring of large-scale netwodkts/and characteristics
requires the cooperation of many, possibly heterogeneoaositoring sensors, dis-
tributed over a wide-area network, or several collabogafiutonomous Systems
(AS). In such an environment, the processing and correlatfdhe data gathered
at each sensor gives a broader perspective of the state mfdhiéored network, in
which related events become easier to identify.

Figure 2.1 illustrates a high-level view of such a distrdazljpassive network
monitoring infrastructure. Monitoring sensors are dimtted across several au-
tonomous systems, with each AS having one or more monit@amgors. Each
sensor may monitor the link between the AS and the Intersah(AS 1 and 3), or
an internal link of a local sub-network (as in AS 2). An authed user, who may
not be located in one of the participating ASes, can run roanij applications
that require the involvement of an arbitrary number of thailable monitoring
Sensors.

In order to take advantage of information from multiple \eg@ points, dis-
tributed monitoring applications need concurrent accesseveral remote moni-
toring sensors. DIMAPI [49] fulfils this requirement by fhigEting the program-
ming and coordination of a set of remote sensors from wittsingle monitoring
application. DIMAPI enables users to efficiently configunel ananage any set of
remote or local passive monitoring sensors, acting as alevidgde to homoge-
neously use a large distributed monitoring infrastructure

6 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORK RNITORING

Autonomous
Local System 2
Network 1
O

Local
Network 2

Autonomous
System 1

Autonomous

System 3
O Monitoring Sensor

FIGURE 2.1: A high-level view of a distributed passive network ntoring infras-
tructure

2.1 Background: The Monitoring API

DiIMAPI has been designed and realized by building on the kdoing Applica-
tion Programming Interface (MAPI) [42], an expressive ardifile API for pas-
sive network traffic monitoring over a single local monitarisensor. MAPI builds
on a generalized network flow abstraction and offers a stdimal API, flexi-
ble and expressive enough to capture emerging applicagedsa Furthermore,
MAPI applications are able to run with commodity networleiriices or special-
ized network monitoring hardware (e.g., DAG cards [23])hwiit the need to alter
or re-compile their code.

In this section we introduce the main concepts of MAPI, byieléscribe its
most important operations and its implementation. A comepgpecification of
MAPI is provided in the MAPI man pages [2].

2.1.1 Network Flow Abstraction

The goal of an application programming interface is to pilewva suitable abstrac-
tion that is both simple enough for programmers to use, ameedal enough for
expressing complex and diverse monitoring applicatiorifipations. A good API
should also relieve the programmer from the complexitiehefunderlying mon-
itoring platform, while making sure that any features of@gkized hardware can
be properly exploited.

Towards these targets, MAPI builds on a simple, yet powgatostraction: the
network flow A network flow is generally defined assequence of packets that
satisfy a given set of conditiong hese conditions can be arbitrary, ranging from

2.1. BACKGROUND: THE MONITORING API 7

Monitored network traffic

~LUINTZNETATZETINTE N |-
U

\V/

"Incoming web server traffic" "HTTP GET requests" "CodeRed worm"

Packet with destination port 80
7] Packet with destination port 80 containing the string "GET "
B Packet with destination port 80 containing the string "GET /default.ida?NNNNN..."

FIGURE 2.2: Network flow examples.

simple header-based filters to sophisticated protocolyaisahnd content inspec-
tion functions.

Figure 2.2 illustrates the concept of the network flow witmgcexamples. On
the top we see a portion of the monitored network traffic, agldve three different
network flows, each consisting of a subset of the monitorettgia. Network flow
A consists of “all packets with destination p8@”, i.e., packets destined to some
web server. Network flovB comprises “all HTTP GET request packets”, while
C contains only “packets of the CodeRed worm [22]". Note tlnet packets of
network flowB are a subset of, and similarly, CodeRed packets are a subset
of all HTTP GET requests. The network flow abstraction alldarsfine-grained
control of the conditions that the packets of a flow shoultsgat

The approach to network flows in MAPI is therefore fundamigni@ifferent
from existing flow-based models, e.g., NetFlow [12], whiohnstrain the definition
of a flow to the set of packets with the same source and deastini& address and
port numbers within a given time-window. Furthermore, MAJRles the network
flow afirst-class statusflows are named entities that can be manipulated in similar
ways to other programming abstractions, such as sockeiss,pand files. In par-
ticular, users may create or destroy (close) flows, readpkgmor count the packets
of a flow, apply functions to flows, and retrieve other statssfrom a flow, etc. Us-
ing this generalized network flow abstraction, users camesgpa wide variety of
monitoring operations. For instance, MAPI flows allow userslevelop simple
intrusion detection schemes that require content (paylimesgection. In contrast,
traditional approaches to network flows, such as NetFlowdhd IPFIX [43], and
related systems and proposals, do not have the means otlimpvthe advanced
functions required for this task. Going back to the exampleigure 2.2, although
NetFlow could be used to capture several characteristitBeofraffic defined by
network flowA, it is not sufficient for monitoring the traffic of flon8 andC.

8 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORK RNITORING

| MAPI Function Description |

mapi _create fl ow Creates a new network flow
mapi _appl y_functi on | Applies a function to all the packets of a flow
mapi _connect Connects to a flow to start receiving results
mapi _read_results Receives results computed by a function in the
packets of a flow
mapi _get _next _packet | Reads the next packet of a flow

mapi _| oop Invokes a handler function for each of the packgts
of a flow
mapi _cl ose_fl ow Closes a flow

TABLE 2.1: Overview of the basic MAPI calls

2.1.2 Basic MAPI Operations

This section gives an overview of the basic MAPI functionlgsadummarized in
Table 2.1. For a complete list of the available MAPI functipalong with their
detailed descriptions, please refer to [2].

Creating and Terminating Network Flows

Central to the operation of MAPI is the action of creating awaek flow:
int mapi _create_flow char =dev)

This call creates a network flow and returns a flow descriptbthat refers to
it, or -1 on error. By default, a newly created flow consistalbhetwork packets
that go through the monitoring interfackev. The packets of this flow can be
further reduced to those which satisfy an appropriate fdteother condition, as
will be described later.

Besides creating a network flow, monitoring applications/rakso close the
flow when they are no longer interested in monitoring:

int mapi _close_flow(int fd)

After closing a flow, all the structures that have been atledtdor the flow are
released.

Applying Functions to Network Flows

The abstraction of the network flow allows users to treat pckelonging to dif-
ferent flows in different ways. For example, after specifyimhich packets will
constitute the flow, a user may be interestedapturingthe packets (e.g., to record
an intrusion attempt), or in justountingthe number of packets and their lengths
(e.g., to measure the bandwidth usage of an applicationi), samplingthe pack-
ets (e.g., to find the IP addresses that generate most ofatffie)tr MAPI allows

2.1. BACKGROUND: THE MONITORING API 9

| Function Name | Description

BPF_FI LTER Filters the packets of a flow
PKT_COUNTER | Counts the number of packets seen by a network flow
BYTE_COUNTER | Counts the number of bytes seen by a network flow
STR_SEARCH Searches for a string inside the packet payload
TO_BUFFER Stores the packets of a flow for further reading
SAVPLE Samples packets from a flow
HASHSAMP Samples packets from a flow according to a hashing function
TO FI LE Dumps the packets of a flow to a file
ETHEREAL Filters packets using Ethereal display filters
HASH Computes an additive hash over the packets of a flow
BUCKET Divides packets into buckets based on their timestamps
THRESHOLD Signals when a threshold is reached
Bl NOP Adds or subtracts values from two other functions
DI ST Returns the distribution of results from another function
GAP Returns the time delay between two consecutive packets awa fl
PKTI NFO Returns information about a packet
PROTI NFO Returns a specific protocol field
RES2FI LE Stores results from other functions to a file
STARTSTOP Starts and/or stops measurements at a specific time
STATS Returns statistical information about results from otherctions
BURST Returns the histogram of bursts

TABLE 2.2: Overview of MAPIst dl i b functions

users to clearly communicate to the underlying monitoripstesm these different
monitoring needs. To enable users to communicate thesratiff requirements,
MAPI allows the association of functions with network flows:

int mapi _apply function(int fd, char = funct, ...)

The above call applies the functibunct to every packet of the network flow
fd, and returns a relevant function descriptdard. Depending on the applied
function, additional arguments may be passed. Based onetideh and payload
of the packet, the function will perform some computationd anay optionally
discard the packet.

MAPI provides severapredefinedunctions that cover a broad range of stan-
dard monitoring needs through the MAPI Standard Libraydl i b). Several
functions are provided for restricting the packets that wdnstitute a network
flow. For example, applying thBPF_FI LTER function with parametef t cp
and dst port 80" restricts the packets of a network flow denoted by the flow
descriptorf d to the TCP packets destined to p8A, as in flowA of Figure 2.2.
STR.SEARCH can be used to restrict the packets of a flow to only those that ¢
tain a specified byte sequence. Network flddrand C in Figure 2.2 would be
configured by applying botBPF_FI LTER and STR_.SEARCH. Many other func-
tions are provided for processing the traffic of a flow. Suchcfions include
PKT_COUNTER and BYTE_COUNTER, which count the number of packets and

10 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

Function Library

Description |

St andard MAPI Function
Li brary (stdflib)

Basic functionality for most frequently used monitorir
needs

Extra MAPI Function Library
(extraflib)

Set of functions for advanced monitoring needs (g
stream reassembly, regular expression pattern mg
ing, flow data generation)

Tracker MAPI Function
Li brary (trackflib)

Identify application-level traffic (e.g. FTP, Gnutella,

BitTorrent, etc)

MAPI Anonynmi zati on Function
Li brary (anonflib)

Anonymization functions for every protocol/field

Endace DAG Function Library
(dagflib)

Functions intended for better use the capabilities of
DAG capturing hardware

TABLE 2.3: Overview of the MAPI function libraries

bytes of a flow,SAMPLE, which can be used to sample packét8SH, for com-
puting a digest of each packet, aREGEXP, for pattern matching using regular

expressions.

g

.g.
tch-

the

Table 2.2 summarizes the functionssafdl i b with a short description of each
one. For a complete list of the available functionstrdl i b and their description

please refer to [2].

Except from MAPI standard library, several other functidordries are cur-
rently exist in MAPI. They offer capabilities like streamassembly, traffic clas-
sification [9], data anonymization [31] and NetFlow-liketa@lgeneration [12, 43].
Table 2.3 summarizes the function libraries currently npénted in MAPI. More-
over, MAPI users are able to add their own function libradad new specialized
functions for operating on packets.

After applying the desirable list of functions to a networbwi] the user calls

the function

i nt mapi _connect (int fd)

in order to connect to the flow with flow descriptod to start receiving results.

Retrieving Results from Applied Functions

Although these functions enable users to process packdts@npute network
traffic metrics without receiving the actual packets in thdrass space of the ap-
plication, they must somehow communicate their resultk bache application.
For example, a user that has applied the funcBT _COUNTER to a network
flow, will be interested in reading what is the number of paskbat have been
counted so far. This can be achieved by allocating a smalbatrmf memory for
a data structure that contains the results. The functicatsvilil be applied to the
packets of the flow will write their results into this dataustiure. The user who is
interested in retrieving the results will read the datacitme using the following

call:

2.1. BACKGROUND: THE MONITORING API 11

mapi _results_t mapi _read_results(int fd, int fid)

The above call receives the results computed by the functémoted by the
function descriptof i d, which has been applied to the network flba. It returns
a pointer to the result’s data structure:

typedef struct mapi _results {

voi d* res; //Pointer to result data
unsigned long long ts; //timestanp
int size; //size of the results

} mapi _results_t;

Theresfield of this data structure is a pointer to the actual funcgpecific re-
sult data. The results are also provided with a 64-bit tiamagt, that is the number
of microseconds since 00:00:00 UTC, January 1, 1970 (thebeuiwf seconds is
the upper 32 bits). The memory for the results of each fundsallocated once,
during the instantiation of the flow.

Reading Packets from a Network Flow

Once aflow is established, packets belonging to that flow eardd one-at-a-time
using the following blocking call:

struct mapi pkt * nmapi _get next pkt(int fd, int fid)

The above function reads the next packet that belongs tofftbwin order to
read packets, the functiofO_.BUFFER (which returns the relevafit d parameter)
must have previously been applied to the floWd. BUFFER instructs the monitor-
ing system to store the captured packets into a shared mereayfrom where the
user can directly read the packets, supporting this wayi&fticzero-copy packet
capturing platforms [19, 23].

If the user does not want to read one packet at-a-time andbpobiock, (s)he
may register a callback function that will be called when ekega to the specific
flow is available:

int mapi _loop(int fd, int fid, int cnt, nmapi _handl er call back)

The above call makes sure that the handlal | back will be invoked for
each of the nextnt packets that will arrive in the flovd.

2.1.3 MAPI Implementation

Figure 2.3 shows the main modules of MAPI. On the top of theiféigve see a set

of monitoring applications that, via the MAPI stub, comnuaie with the MAPI
daemon: a monitoring process running in a separate adgrass.sThe monitoring
daemon, callearapi d, is responsible for packet capturing and processing. It is

12 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

Monitoring Monitoring Monitoring
Application Application Application
MAPI Stub MAPI Stub MAPI Stub

I N

MAPI Daemon \\‘ /

Packet o cati

Processing ommunication
Thread Thread
Shared Data
Structures
Network Packets
I/0 Bus

~

Monitoring
Interface

FIGURE 2.3: MAPI Daemon Architecture

implemented as a user-level process, instead of a librampexied to an operat-
ing system module, because it lead to faster implementaitiohto a more robust
system.Mapi d is a single process that serve multiple monitoring appbicat in
parallel, so it is possible to perform several performanméntzations and lead to
better performance if compared with stand-alone monigpapplications that are
not based in MAPI.

The daemon, which has exclusive access to the capturedtpackesists of
two threads: one data thread for packet processing, anchoeedtfor the commu-
nication with the monitoring applications.

All active applications and their defined flows are intemaliored in the dae-
mon in a list. Each captured packet is checked by the mainepsing thread
against the defined flow filters. Then, for every flow it belot@yghe packet passes
from every function that have been applied in this flow. Irt thay, the appropriate
actions are made for every packet: counters are incremesdetpling, substring
search, or other functions that are applied, and finally tekgt may be sent to
the application, dumped to disk by the daemon, or droppedutrprototype im-
plementation, filtering is accomplished using thyef fi | t er () function of the
| i bpcap library [36], which applies a compiled BPF filter to captuatkets in
user level.

All communication between the daemon and the monitorindiegdons is
handled by the “communication thread.” This thread coriltdistens for requests
made by the monitoring application through calls of MAPIdtians, and sets up
the appropriate shared data structures. When monitoriplicafions need to read
data, the control thread reads these data from the sharedtdattures and sends

© 00 N oo g~ W N P

W oW oWwRNNNNNNNNNDNER R B B B R R e e
N P O © ® N~ o a0 & W N P O © © N~ o a » W N B O

2.1. BACKGROUND: THE MONITORING API 13

them to the applications. Communication between the MA& sindmapi d is
performed through Unix sockets.

The MAPI stub is the part of the MAPI library that is transpareo the user.
It holds some necessary data structures for the flows tha begn created and
configured and it is responsible to forward each MAPI calivepi d and return
the results back to the user.

2.1.4 Example of MAPI usage: Link Utilization

In this section we present a simple MAPI-based applicatibickvintroduces the
concept of the network flow and demonstrates the basic dbepsrust be taken
in order to create and use a network flow. The following appion periodically
reports the utilization of a network link. It uses two netwdlows to separate the
incoming from the outgoing traffic, and demonstrates hovetdeve the results of
an applied function.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>
#i ncl ude <signal . h>
#i ncl ude <mapi . h>

static void termnate();
int in_fd, out fd;

int main() {
int in_fid, out_fid,
mapi _results_t *resultl, =*result?2;
unsi gned long long *in_cnt, *out_cnt;
unsi gned long | ong in_prev=0, out_prev=0;

signal (SIG NT, term nate);
signal (SIGQUI T, term nate);
signal (SI GTERM term nate);

[+ create two flows, one for each traffic direction */
in fd = napi _create flow("eth0");
out fd = mapi _create_ flow"eth0");
if ((in_fd <0) || (out_fd < 0)) {
printf("Could not create flowmn");
exi t (EXI T_FAI LURE) ;

}

/* separate incom ng from outgoing packets =/
mapi _apply_function(in_fd, "BPF_FILTER",
"dst host 139.91.145.84");
mapi _apply_function(out_fd, "BPF_FILTER',
"src host 139.91.145.84");

33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

64
65

67
68
69
70
71
72
73

14 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

[+ count the bytes of each flow */
in fid = mapi _apply _function(in_fd, "BYTE COUNTER");
out fid = mapi _apply_function(out_fd, "BYTE COUNTER");

/+* connect to the flows =*/

i f(mapi _connect(in_fd) < 0) {
printf("Could not connect to flow %\n", in_fd);
exit (EXI T_FAl LURE)

}

i f(mapi _connect (out_fd) < 0) {
printf("Could not connect to flow %\ n", out_fd);
exit (EXI T_FAI LURE)

}
while(l) { /+ forever, report the |oad */
sl eep(l);
resultl = mapi _read results(in_fd, in_fid);
result2 = mapi _read _results(out_fd, out fid);
in_cnt = resultl->res;
out _cnt = result2->res;
printf("incomng: %2f Mit/s (%|u bytes)\n",
(*in_cnt-in_prev)*8/1000000.0, (*in_cnt-in_prev));
printf("outgoing: %2f Mit/s (%Ilu bytes)\n\n",
(*out _cnt-out _prev)*8/1000000.0, (*out_cnt-out_prev));
in_prev = xin_cnt;
out _prev = xout_cnt;
}
return O;

}

void termnate() {
mapi _close_flow(in_fd);
mapi _cl ose_fl owout fd);
exi t (EXI T_SUCCESS) ;

}

The flow of the code is as follows: We begin by creating two rekaflows
with flow descriptors n_f d andout _f d (lines 21 and 22) for the incoming and
outgoing traffic, respectively, and then we apply the filtaeg will differentiate the
traffic captured by each flow (lines 29— 32). In our case, weitapthe link that
connects the host 139.91.145.84 to the Internet. All inognpackets will then
have 139.91.145.84 as destination address, while all mgguackets will have
this IP as source address. In case that we would monitor aHisikconnects a

2.2. NETWORK FLOW SCOPE 15

whole subnet to the Internet, the host in the filtering caod# should be replaced
by that subnet. For instance, for the subnet 139.91/16, wddadefine the filter
dst net 139.91. 0. 0O for the incoming traffic.

Since we are interested in counting the amount of trafficipgshrough the
monitored link, we apply th8YTE_COUNTER function to both flows (lines 35 and
36), and save the relevant function descriptorsnnf i d andout _f i d for future
reference.

After activating the flows (lines 39-46), we enter the maigpam loop, which
periodically calls tharapi r ead_resul t s() for each flow (lines 52-53) and
prints the incoming and outgoing traffic in Mbit/s, and theher of bytes seen
in each one second interval (lines 57-60). In each iteratio® current value of
eachBYTE_COUNTER function result is retrieved by dereferencing_cnt and
out cnt.

In order to ensure a graceful termination of the program, esxehegistered
the signalsSI G NT, SI GTERM andSI GQUI T with the functiont er mi nat e()
(lines 16-18), which closes the two flows and terminates thegss.

2.2 Network Flow Scope

In order to facilitate the concurrent programming and cowtion of a large num-
ber of remote passive monitoring systems, we have extendgell kb operate in a
distributed monitoring environment. However, MAPI supgdhe creation of net-
work flows associated withsinglelocal monitoring interface, and thus, in MAPI,
a network flow receives network packets that are always ceghtat a single mon-
itoring point.

One of the main novelties of DiIMAPI is the introduction of thetwork flow
scope a new attribute of network flows. In DIMAPI, each flow is assted with
a scope that defines a set of monitoring interfaces whicha@lectively used for
network traffic monitoring. Generally, given an input paickeeam, a network
flow is defined as a sequence of packets that satisfy a givesf senditions. In
MAPI, the input stream of packets comes from a single monigointerface. The
notion of scope allows a network flow to receive packets frenesal monitoring
interfaces. With this definition, the abstraction of thewwk flow remains intact:
a network flow with scope is still a subset of the packets ohaut packet stream.
However, the input packet stream over which the network fiodefined may come
from more than one monitoring points. In this way, when anliappon applies
functions to manipulate or extract information from a natiibow with a scope of
multiple sensors, effectively it manipulates and extrafisrmation concurrently
from all these monitoring points.

In order to support the abstraction of scope in DiIMAPI, thteiiface and im-
plementation ofrapi _cr eat e_f|l ow() function has been extended to support
the definition of multiple remote monitoring interfaces. émrote monitoring in-
terface can be defined ashast : i nt er f ace pair, wherehost is the host

16 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

sensor.uninett.no

"sensor.uninett.no:/dev/dag0, "
"monl.ics.forth.gr:eth0");
mapi_apply_function (fd,

fd = mapi_create_flow(
"BPF_FILTER", "dst port 80");

Packet to port 80

FIGURE 2.4: An example of a network flow scope with multiple sensors

name or IP address of the remote sensor iantler f ace is the device name
of the monitoring interface. The scope of a network flow ismkdi by concate-
nating several comma-separateast : i nt er f ace pairs as a string argument to
mapi creat e_fl ow) . For example, the following call creates a network flow
associated with two monitoring interfaces located at twigd#nt hosts across the
Internet:

fd = mapi _create flow"ml.forth.gr:/dev/dag0, 123.45.6.7:eth2");

In the example of Figure 2.4, a monitoring application aeeat network flow
associated with two remote sensors located in two diffevegeinizationsFORTH
andUNINETT. The user’s monitoring application applies tBeF_FI LTER func-
tion in order to restrict the packets of the flow to only tholsattare destined to
some web server (some code has been omitted for clarity). sudt, the net-
work flow consists of packets with destination port 80 that@ptured from both
UNINETT'S andFORTHS SENsors.

The scope abstraction also allows the creation of flows &sdcwith mul-
tiple interfaces located at the same host. For example,olf@ving call creates
a network flow associated with a commodity Ethernet interfand a DAG card,
both installed at the same monitoring sensor.

fd = mapi _create_flow"ml. abc. org:/dev/dag0, nil.abc.org: ethl");

Note that the scope notation in DIMAPI preserves the sermanfithe existing
mapi create_fl ow) function, ensuring backwards compatibility with exist-
ing MAPI applications. A local network flow can still be credtby specifying one
monitoring interface without prepending a host.

2.3. DIMAPI IMPLEMENTATION 17

Monitoring Sensor

User A
Communication Application 1
Agent (mapicommd) 0P
= | DIMAPI stub
MAPI stub : S
UNIX socket /
shared memory
Monitoring User B
Daemon (mapid)
Application 2
{_’_(/kiptured Packets DIMAPI stub

Monitoring
Interface

FIGURE 2.5: Architecture of a DIMAPI monitoring sensor

2.3 DIMAPI Implementation

Figure 2.5 illustrates the architecture of a monitoringseeithat supports DIMAPI.
The overall architecture includes one or more monitorirtgriaces for captur-
ing traffic, a monitoring daemon, which provides optimizeasgive monitoring
services, a DIMAPI stub, for writing monitoring applicati®, a communication
agent, which facilitates communication with multiple rémononitoring applica-
tions, and finally, the actual monitoring applications.

The host of the monitoring sensor is equipped with one or muooeitoring
interfaces for packet capture, and optionally an additioreéwork interface for
remote access. The latter is the sensor’s “control” interfand ideally it should
be separate from the packet capturing interfaces. Packetsaptured and pro-
cessed byrapi d, as discussed in Section 2.1/8api d is optimized to perform
intensive monitoring tasks at high speeds, exploiting aayres of the underlying
hardware. Local monitoring applications communicatedatiyewith mapi d via a
subset of the DIMAPI stub that is optimized for fast and edfintilocal access.
This is achieved by performing all communication betweearal@pplications and
mapi d via shared memory and UNIX sockets [42].

Remote applications must be able to communicate their imamgt require-
ments to each sensor through the Internet. One possibl@agpifor enabling
applications to communicate with a remote sensor would leddify mapi d to
interact directly with the remote applications through ENMAPI stub. However,
mapi d is a complex part of the software monitoring architecturd enalready

18 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

responsible for handling important “heavy-duty” tasksttas is where all the pro-
cessing of the monitoring requirements of the user apphicattakes place. The
monitoring daemon should keep up with intensive high-spesscket processing.
Extendingnapi d to handle communication directly with remote clients would
probably introduce additional performance overhead. Heunhore, allowing re-
mote clients to connect directly toapi d, which has exclusive access to the cap-
tured packets, may introduce significant security risks.

For the above reasons, we have chosen an alternative désigavbids any
modifications tarapi d, as depicted in Figure 2.5. This is achieved by introducing
anintermediateagent betweemapi d and the remote applications, for handling
all remote communication. ThSommunication Agerftrapi conmd), which runs
on the same host ampi d, acts as a proxy for the remote applications, forwarding
their monitoring requests twapi d, and sending back to them the computed re-
sults. The presence afpi conmd is completely transparent to user applications,
which continue to operate as if they were interacting diyagtth mapi d, only the
DiMAPI stub is aware of the presencerodipi comrmd. Furthermore, the presence
of mapi conmd is also transparent toapi d, sincemapi comnd operates as a
typical local monitoring application.

The DIMAPI stub is responsible to support the DiIMAPI funci&ity in a mon-
itoring application, running completely transparently floe user. At the monitor-
ing sensor side, the DIMAPI functionality is solely implemed bymapi cond,
which is built as a monitoring application that interactsdlly with thermapi d.
This allows for a mor@obustsystem, as communication failures will not result in
failure of the monitoring processes. Furthermore, in treed¢hat the remote mon-
itoring functionality of a sensor is not required any motegan be easily left out
by simply not starting uprapi comd.

In the following sections we look more closely into the opiemand imple-
mentation ofrapi conmd, DIMAPI stub and their communication protocol. We
also examine some privacy and security issues and an diteriaplementation
for getting results from the monitoring sensors that enbgrerformance.

2.3.1 Communication Agent

The communication agent runs on the same host mdthi d and acts as an inter-
mediary between remote monitoring applications aa@i d. Upon the reception
of a monitoring request from the DIMAPI stub of a remote aggtiion, it forwards
the relevant call to the locatapi d, which in turn processes the request and sends
back to the user the computed results, again throughi comrmd. The commu-
nication agent is a simple user-level process implementetbp of MAPI, i.e.,
it looks like an ordinary MAPI-based monitoring applicatio However, its key
characteristic is that it can receive monitoring requesisfother monitoring ap-
plications that run on different hosts and are written witMBPI. This is achieved
by directly handling the control messages sent by the DiM#tBb of remote ap-
plications, and transforming them to the relevant locakcal

2.3. DIMAPI IMPLEMENTATION 19

mapid DiMAPI stub commd DiMAPI stub Application
|
mapi_create_flow(
"sensor:eth0") ;
(1)
[CREATE_FLOW, "etho"]
(2)
mapi_create_flow("etho");
(3)
[CREATE_FLOW, "etho"]
™ (4)
[fd_priv]
(5)
fd_priv
(6)
[fd_priv]
...................................... R
(1)
fd
(8)
%{—)
Monitoring Sensor Internet User's Host

[— function call - — UNIX socket _---- TGP socket |

FIGURE 2.6: Control sequence diagram for the remote executioneofuhction
mapi createfl ow)

The communication agent listens for monitoring requesismfDIMAPI ap-
plications to a known predefined port. Then, it runs into dmite loop, con-
stantly waiting for connections from remote applicatioAsiew thread is spawned
for each new remote application, which thereafter handleb@communication
between the monitoring application andpi conmd. The DiIMAPI stub of the
remote application sends a control message for each DiMARIrsocation to
mapi comrd, which in turn repeats the call, though this time the MAPbsti
mapi comrd will interact directly with themapi d running on the same host.
mapi comd then returns the result to the stub of the remote applicatidwich in
turn returns it to the user.

The message sequence diagram in Figure 2.6 shows the opesthe com-
munication agent in more detail, using a concrete exampileso€ontrol sequence
for an invocation of therapi _cr eat efl ow() call. Initially, a monitoring ap-
plication callsmapi _cr eat e_f | ow() in order to create a network flow at a re-
mote monitoring sensor (step 1). The DiIMAPI stub retrievesIP address of the
sensor and sends a respective control message taftiec omrd running on that
host through a TCP socket (step 2). The message containgtheftthe DIMAPI
call to be executedJREATE_FLOW, along with the monitoring interface that will
be useddt h0). Upon the receipt of the messagapi comd repeats the call to
mapi cr eat e_f | ow(step 3) to the locaimapi d, thus the stub ofrapi commtd
sends the respective message through a UNIX socket (step 4).

Assuming a successful creation of the flompi d returns the flow descriptor
fd_priv of the newly created flow to the stub ofpi conmd (step 5), which
in turn finishes the execution of theapi _creat e_f| ow() call by returning
fd_priv tompi cormd (step 6). The communication agent constructs a cor-

20 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

Total Length Command

fd fid

Timestamp

Data
[—

FIGURE 2.7: Format of the control messages exchanged between Dilgi&yp
andnmapi comrd

responding reply message that contains the flow descrigtat,sends it back to
the DIMAPI stub of the user application (step 7). In case thatnetwork flow is
associated with more than one monitoring sensors, stepar2+épeated for each
sensor of the network flow's scope and the DIMAPI stub of thgliagtion will
receive several flow descriptors, one for each of the mangdnterfaces consti-
tuting the scope of the network flow. Finally, the DiIMAPI stabthe application
generates and returns back to the user a new unique flowfidelftid), and inter-
nally stores the mapping between the received flow descsiffta_pri v) and the
newly created identifier (step 8).

Although at first sight it may seem that the overhead for a DiM&all is quite
high, since it results in several control flow transitiong, siiould stress that most of
the above steps are function calls or inter-process conuation that takes place
on the same host, and thus, incur very small overhead. Thatipes responsible
for the largest part of the cost are the send and receive tipesahrough the TCP
socket (steps 2 and 7), which incur an unavoidable overheatbchetwork latency.
We look in more detail into this issue in Section 5.1.

2.3.2 Communication Protocol

Monitoring applications reside on a host that may be locasedotely from the
monitoring sensors, probably even in a different admiaiste domain. The com-
munication protocol between the monitoring sensors anddhmte applications
is one of the main factors for the performance of a distrithutenitoring applica-
tion. Our design target was to have communication with matioverhead, which
scales well over a large number of monitoring sensors.

The DIMAPI stub encapsulates the communication with theatenmonitor-
ing sensors. In DIMAPI, all communication between the stnd the monitoring
sensors is performed through TCP sockets. DIMAPI stub tjbcalls exchange
control messages withrapi conmd that describe the operation to be executed.
Each message contains all the necessary information fexdgwution of a function
instance. After sending a request, the stub waits for theesponding acknowl-
edgement from the sensor, indicating the successful cdimplef the requested
action, or a specific error in case of failure.

2.3. DIMAPI IMPLEMENTATION 21

The format of the messages exchanged between the DiMAPIastdbthe
mapi comrd is shown in Figure 2.7. Each message has variable lengtloteten
by the fieldTot al Lengt h. The Command field contains the operation type,
sent by the stub toapi commd, or the acknowledgement value for a request that
mapi comrd has processed. It takes values from an enumeration of alages
types that can be exchanged between the stulbrapd conmd. For example, for a
calltomapi _creat ef | ow(), the relevant message sent from the stub will have
a Command value of CREATE_FLOW for a call tomapi _appl y_function()
Command will be APPLY_FUNCTI ON, for a successful create flow the response
will be CREATE_FLOWACK and so on.

The fieldf d is the descriptor of the network flow being manipulateidd is the
descriptor of the applied function instance being maniealaandTi mest anp
is a timestamp of the specific moment that the result includetthie communi-
cation message was produced. Finally, the flgdd a is the only field of vari-
able size, serving several purposes depending on the ¢srgéthe Command
field. For example, when the message is a reply fraapi conmd to a call of
mapi read.resul ts(), it contains the results of an applied function. If it is
a reply of amapi _get _next _pkt call then theDat a filed contains a captured
network packet. If th&Conmand field contains a request sent from the DIMAPI
stub, e.g., to apply some function to a network flow, it camtahe arguments of
the relevant function (e.g. the name of the function to bdiegpmlong with its
arguments).

2.3.3 DIMAPI Stub

In this section we discuss some implementation issuesdiemgpthe DIMAPI stub
on the monitoring application’s side.

Creating and Configuring Network Flows using Multiple Remote Sensors

In order to support the scope functionality, DIMAPI stub teeen extended for
handling communication with many remote sensors concthyrefConsider for

example the following call, which creates a network flow aééndifferent remote
Sensors:

fd = mapi _create flow"sensor. uni nett.no:/dev/dagoO,
non. cesnet.cz: ethO, nonl.ics.forth.gr:eth0");

In order to implement this call, DIMAPI stub communicateshwthe communica-
tion agents running at each of the three remote sensorsisldtbkieved by sending
three separate control messages, one to eaph commd, through three different
TCP sockets. Thus, the following calls will be made by thed¢hagents:

sensor.uninett.no: fd_uninett = mapi _create_flow("/dev/dag0");
non. cesnet . cz: fd cesnet = napi _create flow("eth0");
monl.ics.forth.gr: fd forth = napi _create flow("eth0");

22 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

In the above example, the creation of afistributednetwork flow from the user
application resulted in the creation of thrleeal network flows, one at each of
the three remote sensors. Assuming that the three flows wesmeed successfully,
eachmapi commd will send back to DiIMAPI stub an acknowledgement message
containing the flow descriptor of the flow that it created résho(f d_uni nett,
fd_cesnet, andf d_f ort h, respectively). The DIMAPI stub will generate a
unique flow identifier {d), and will internally store the remote flow descriptors
that it corresponds with. In the above example, the stub stife the mapping

betweerf d and f d_uni nett ,fd_cesnet,fd.forth].
For subsequent calls that manipul&t, such as the following:

int fid = mapi _apply_function(fd, "PKT_COUNTER");

the DIMAPI stub will send to the communication agents of theeé¢ sensors the
following corresponding messages:

sensor. uninett.no: [APPLY_FUNCTION, fd uninett, PKT_COUNTER]
non. cesnet . cz: [APPLY_FUNCTI ON, fd_cesnet, PKT_COUNTER]
monl.ics.forth.gr: [APPLY_FUNCTION, fd forth, PKT_COUNTER]

Since the stub knows each of the remote flow descriptors thadtitutef d, it
can send targeted control messages with the appropriatedéieeriptor for each
mapi cond. DIMAPI stub stores a similar mapping for the function idéet
fi d, and acts in a similar fashion whenever it is manipulated.

Using Communication Threads

Since the monitoring sensors are distributed located cerakdifferent hosts across
the Internet, the time interval between the dispatch of drobmessage and the
receipt of the corresponding reply is not constant, and nesselveral milliseconds
long. For this reason, it is not acceptable to send a conteslsage and waiting
for reply from each remote monitoring sensor one-by-onstekd, the receipt of
incoming messages in DIMAPI stub is implemented using arsé@dcommuni-
cation thread” for each remote monitoring sensor used byppdication (i.e., for
each TCP socket created by the stub). Each communicatieadtis responsi-
ble for receiving the replies of pending MAPI calls from omegnote sensor, and
delivering them to the appropriate function.

A DIMAPI call prepares and sends a control message to eaciving mon-
itoring sensor, and then it blocks by pushing down a semapkariable. The
communication thread waits infinitely in a loop for incomirgplies from the cor-
respondingrapi conmd. When such a reply message arrives, the communication
thread looks up the flow for which it is destined, copies thseiltan a flow-specific
buffer, and “wakes up” the blocked MAPI call by pushing up tteeresponding
semaphore. When the execution of the blocked call resumestrieves the re-
sult from the buffer and processes it accordingly. This enmntation guarantees
that the incoming messages are always delivered to thehzdlsent the relevant
request.

2.3. DIMAPI IMPLEMENTATION 23

Reading Results from Multiple Remote Sensors

While in local MAPI themapi _read_r esul t s() function returns a single in-
stance ofmapi resul t s_t struct (see 2.1.2), in DIMAPI it returns a vector of
mapi resul t st structs, one for each remote monitoring sensor (in the same
order that these sensors had been declaregyn createfl ow().

In order to know the number of the remote monitoring senduas dur net-
work scope consists of, and so the number ofthpi _r esul t s_t instances that
mapi oread.resul t s() will return, we use thenapiLgetscopesize()function:

int mapi _get_scope_size(int fd)

This function takes as a single argument the flow descriptdr raturns the
number of the corresponding monitoring sensors. In caselata MAPI appli-
cation, it returns 1. In this way we provide full compatitjilbetween MAPI and
DiMAPI applications.

Fetching Captured Packets

In DIMAPI, the mapigetnextpkt() returns packets from the monitoring sensors in
a round-robin way, if it is possible. Upon the firstipi _get _next _pkt () call,
the request is forwarded to all the sensors of the scope. &awdor is mapped to
a slot in an internal buffer that stores incoming packetshwize of one packet
per each sensor). Packets from the first sensor go to thelétsipackets from
the second sensor go to the second slot, and so on. The fifsttghat arrives

is delivered to the application, and the correspondingislemptied. Before re-
turning the packet, a ne@ET_NEXT_PKT request is sent only to this sensor. In
case of consequemtapi _get _next _pkt () requests, all slots are checked in a
round-robin way, beginning from the slot that was emptiedhia previous call.
The nextGET_NEXT_PKT request is sent to the sensor whose slot was emptied,
before returning the packet to the application, which essdnat all slots will be
always full, or at least have one pending request.

2.3.4 From Pull to Push Model

The current approach ibi MAPI functions is that the applications (transparently
through the DIMAPI stub) should send a request to the remateitoring sensor
before receiving any results. This operation is similahdefinition ofoull model

in the Distributed Systems theory. Figure 2.8 depicts theratjpn and message
exchanges that occur in the case afepi _get _next _pkt () call. The same
operations are occurred in every MAPI call.

First, the MAPI application sends a request to the commtinicagent. Then,
the communication agent calls locally the correspondingRAunction, using
the localmapi d that runs in the same machine, and gets the results. Fitladly,
communication agent sends the results back to the MAPIleadjn. So, itis clear

24 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

mapi
L . remote
application cmd: get_next_pkt Communication sensor
fd —/ agent
fid
mapi_get_next_pkt(fd, fid);
{ cmd: get_next_pkt_ack A
fd -
packet \/
mapi_get_next_pkt(scope_fd, fid); mapid

FIGURE 2.8: Pull model operation and message exchanges in DIMAPI

to see that the latency of these functions is equal to thenegalork round-trip time
(RTT) between the host where the application runs and theteesensor, because
DiMAPI sends a request to the remote sensor and waits foeponse.

The functions that DIMAPI provides for the creation andialization of a
network flow frapi create_fl ow(), mapi _.appl y_function() and
mapi _connect ()) are called only once per every network flow creation, so
we focus on the functions used for retrieving data from theaitoong sensors:
mapi read.resul t s() and mainlymapi _get _next _pkt () .

For mapi _read_resul t s(), DIMAPI stub waits all the monitoring sen-
sors to respond, so the latency and the throughput will baleguthe RTT of
the slowest remote sensor.iapi _get _next _pkt (), it returns the first packet
that will arrive from any of the monitoring sensors. Furthere, just before re-
turning to the user a packet from a remote sensor, it sendedately a request
for a new packet to this sensor, as a prefetching technigquetder to have the
buffer always full with one packet from every remote sensuit geturns a packet
immediately to the user in the next call, if possible. Soh# user of DIMAPI
callsmapi _get _next _pkt () in a period larger than the fastest host's RTT, the
latency will be just a few milliseconds in every call. Howe\véthe user wants to
call mpi _get _next _pkt () in a smaller period that this RTT, the latency will
be equal to this network RTT. So, even if we can decreasedat@nsome cases
due to the one-packet prefetching technique, the througbipthnis function still
depends on the network RTT of the fastest remote sensor.isTtiig to the usage
of the pull model, which requires one request for receiving packet.

In order to improve the performance of the DIMAPI functionstérms of la-
tency and throughput, we implemented a second approachisiapproach the
monitoring sensor sends results (or packets) back-to-bmtthe remote applica-
tion, without waiting for requestp(sh modgl The application itself is not aware
of this operation, it is handled transparently by the DiMARIb instead. The stub
sends a single request when the application is ready toveeoesults or packets.
In case ofmmapi _read_resul t s() the request contains the time interval that
the application desires to receive new results. frmpi _get _next _pkt (), it

2.3. DIMAPI IMPLEMENTATION 25

mapi remote
application sensor
mapi_get_next_pkt(scope_fd, fid); Communication
agent

get next packets thread

packet
buffer mapi_get_next_pkt(fd, fid);
for cmd: get_next_pkt_ack I A
host1 fd |
fid
* packet
Communication
thread -

mapid

FIGURE 2.9: Push model operation and message exchanges in DiMAPI

contains the number of packets that the stub is willing teikec The results are
buffered in the stub and consecutive calls to these funstigitl be served im-
mediately from the stub, since the results have been phefdfavithout need for
sending any requests to the sensor.

This mechanism for getting results from an applied funcisactivated at the
first call of mapi _r ead_r esul t s for this function, by sending a single request
to themapi conmd defining the time interval that it should ask and propagate ne
results to the stub. Thenmppi comd will create a new thread that will start to pe-
riodically callmapi _r ead_r esul t s using the locahapi d and send the results
back to the application. In the application’s side, the ltssfiom the communica-
tion agent will be received from the respective communicathread that handles
all the communication with this remote host and will be stioi@ a corresponding
buffer. The next calls torapi r ead_r esul t s() from the application will re-
sult to return immediately the results from the buffer thadyt have been stored.
Assuming that the time interval for results generation cagdi in a suitable value,
this approach seems very promising for significant improsetim terms of latency
and throughput for thempi or ead_resul t s() call.

Similarly for mapi _get _next _pkt (), the first call results to a request des-
tined to themapi conmd for fetching a number of packets (defined in the request)
to the application back-to-back. Upon this request arratesapi comrmtd, a new
thread is created asking for packets frampi d and immediately forwards them
to the application’s stub, till the number of requested p&lks reached. Since
the packets will arrive in batches, before the applicatidhagtually ask for them
(prefetching, they must be saved in a buffer located inside the DiIMAPI stith
size equal to the number of packets that were requested.reF&)@ depicts the
operation ofpush modein mapigetnextpkt(). We also call this approach as
packet prefetchingince the stub transparently gets a number of packets before
the application has actually requested these packets. elty subsequent call of
mapi get _next _pkt () the stub will return the next packet from the local buffer
that the packets are stored. When the packet buffer is gedtimpty under a spec-

26 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

ified threshold (e.g. 10%), a new request will be sentapi conmd for starting
again to send a number of packets.

Since the monitoring sensor sends the captured packetsdiately one after
the other, we expect that the throughput will be dramaticiaitreased and since
the stub will return most of the packets to the applicatimmiithe local buffer we
also expect a significant improvement to ttempi _get _next _pkt () latency. In
section 5.1.4 we present an experimental evaluation gbtise modeimplemen-
tation inDi MAPI for mapi _get _next _pkt () . We examine the benefit that this
approach can give for different rates of the monitoringfitafnd while trying sev-
eral sizes for the buffer that holds the packets (equal to tnamy packets will be
prefetched to the application’s stub).

2.3.5 Security and Privacy

Since all communication between user applications andehete sensors will
be made through public networks across the Internet, dpesasures must be
taken in order to ensure tlomnfidentialityof the transferred data. Data transfers
through TCP are unprotected against eavesdropping frami-plarties that have
access to the transmitted packets, since they can recongieu TCP stream and
recover the transferred data that may contain sensitigendtion. For protection
against such threats, any communication between the DiM& and a remote
sensor can be encrypted using the Secure Sockets Layecqr@&sL). For intra-
organization applications, where an adversary cannot hewess to the internal
traffic, encrypted communication may not be necessary, raépg on the policy
of the organization, and could be replaced by plain TCPpforeased performance.

The administrator of each monitoring sensor is responséisl&ssuing creden-
tials to users who want to access the monitoring sensor wiktAPI. The creden-
tials specify the usage policy applicable to that user. Vékena user’s monitoring
application connects to some monitoring sensor and regjtiesicreation of a net-
work flow, it passes the user’s credentials. The monitorenger performaccess
control based on the user’s request and credentials. In this waynedrator del-
egates authority to use that sensor, using public key atitiadon.

In a distributed monitoring infrastructure that promotésring of network
packets and statistics between multiple different parigashanged data should
be anonymizedefore made publicly available for security, privacy, angihess
competition concerns that may arise due to the lack of tretstéen the collaborat-
ing parties. DIMAPI supports an advanced framework for tingaand enforcing
anonymization policies [31]. Since different users andliappons may require
different levels of anonymization, the anonymization feamork offers increased
flexibility by supporting the specification of user and flovesplic policies.

© 0 N o g »~A W N P

W oW W W W NN NN NN NNNDNE B P B R PR R R
52 ® N P O © ©® N o O B~ W N P O © ©® N O o bh W N B O

2.4. EXAMPLES OF DIMAPI USAGE 27

2.4 Examples of DIMAPI Usage

In this section we describe two simple monitoring applmasi built on top of
DIiMAPI. The first is a simple byte counter for web traffic, argtsecond is an
application that detects covert traffic from a specific gegpeer file sharing client.
Note that these are illustrative examples, two more coraggit monitoring appli-
cations that exploit the power of DIMAPI are presented inptha 3.

2.4.1 Web Traffic Byte Counter

The following code illustrates a simple DiIMAPI applicatitimat counts the total
bytes of the packets received by the web servers of multigleitored networks
within a predefined interval.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <mapi . h>

int main() {
int fd;
int fid;
mapi _results_ t =*dres
unsi gned |l ong | ong bytes, total bytes=0;
int i, nunber_of sensors;

/* create a flow using a scope of three nonitoring sensors =/
fd = mapi _create fl ow("sensor. uni nett. no:/dev/ dagoO,
monl.ics.forth.gr:eth0, 123.45.6.7:eth2");
if (fd <0) {
printf("Could not create flowmn");
exit (EXI T_FAI LURE) ;

}

/* keep only packets directed to a web server =/
mapi _apply_function(fd, "BPF_FILTER', "tcp and dst port 80");

/* and just count the bytes x/
fid = mapi _apply_function(fd, "BYTE _COUNTER');

/* connect to the flow */

if (mapi _connect(fd) < 0) {
printf("Could not connect to flow %\ n", fd);
exit (EXI T_FAl LURE)

}

/* get the nunmber of the nonitoring sensors */
nunber of sensors = napi _get _scope_size(fd);

35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52

1
2
3

28 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

sl eep(10);

[+ get the vector with results fromevery sensor =/
dres = mapi _read results(fd, fid);

for (i=0; i<nunber_of _sensors; i++) {
bytes = *(unsigned long | ong*) dres[i].res;
printf("Web bytes in sensor %l: %Ilu\n",i, bytes);
total bytes += bytes;

}

printf("Total bytes to web servers: % lu\n",total bytes);

[+ close the flow */
mapi _cl ose flow(fd);

return O;

The above application operates as follows. We initially riefa network flow
with a scope of three remote monitoring sensors (line 15).enTtwe restrict
the packets of the flow to only those destined to some web sdvyeapplying
the BPF_FI LTER function (line 23). After specifying the characteristicktbe
network flow, we instruct the monitoring system that we arerested in just
counting the number of bytes of the flow, by applying B¥TE_COUNTER func-
tion (line 26). Finally, we activate the flow (line 29). Aft&0 seconds, the ap-
plication reads the result by callingapi _r ead_resul t s() (line 40). The
mapi get _scope_si ze() function gives up the number of the monitoring hosts
that should give results, omepi _r esul t s_t instance per every monitoring sen-
sor. The actual result of trBYTE_COUNTER function for the monitoring sensor
is retrieved frondres]i].resfield. Using a loop we read the bytes of the web traffic
from each monitoring sensor separately and we compute thiebytes by adding
them (lines 42—-46). Our work is done, so we close the network fh order to
free the resources allocated in evempi d (line 51).

2.4.2 Covert Peer-to-Peer Traffic Identification

The second example is an application that identifies coradfi from Gnutella file

sharing clients. Several Gnutella clients offer the cdpgto operate using HTTP
traffic through port 80, thus hiding as normal web traffic, ider to bypass strict
firewall configurations tha aim to block P2P traffic. The fallog code illustrates
how DIMAPI can be used for writing a simple monitoring apption that identifies
file sharing clients joining the Gnutella network using abweeb traffic.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <mapi . h>

© 0w N o g @ b»

2.4. EXAMPLES OF DIMAPI USAGE 29

int main() {
int fd;
int fid;
mapi _results_t =*dres;
unsi gned long | ong pkts, total pkts;
int i, nunber_of sensors;

/* create a flow using a scope of three nonitoring sensors =/
fd = mapi _create_fl ow("sensor. uni nett. no:/dev/dagoO,
monl.ics.forth.gr:eth0, 123.45.6.7:eth2");
if (fd <0) {
printf("Could not create flown");
exit (EXI T_FAl LURE)

}

/* keep only web packets x/
mapi _apply_function(fd, "BPF_FILTER', "tcp and port 80");

/* indicating Guutella traffic =/
mapi _apply_function(fd, "STR SEARCH', "GNUTELLA CONNECT");

/* and just count them =*/
fid = mapi _apply_function(fd, "PKT_COUNTER");

[+ connect to the flow %/

if (mapi _connect(fd) < 0) {
printf("Could not connect to flow %\ n", fd);
exi t (EXI T_FAI LURE)

}

/* get the nunmber of the nonitoring sensors */
nunber of sensors = mapi _get _scope_size(fd);

/* forever, report the nunber of packets x/
while(1l) {
sl eep(60);
dres = mapi _read results(fd, fid);
t ot al _pkt s=0;
for (i=0; i<nunmber_of sensors; i++) {
pkts = *(unsigned long |l ongx) dres[i].res;

printf("Guutella packets in sensor %: %lu\n",i, pkts);
t ot al _pkts+= pkts;
}
printf("Total Gnhutella packets: %Ilu\n",total pkts);
}
return O;

}

30 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

Similarly to the previous example, we initially create avmatk flow with a
scope of three remote monitoring sensors (line 13), andyapp/BPF_FI LTER
function to keep only the packets seemingly destined tooaricg from, a web
server (line 21). Once a file sharing client that wants to eshio the Gnutella net-
work obtains the address of another servant on the netwiasknds a connection
request containing the string\UTELLA CONNECT.” Thus, we use the function
STR_.SEARCH to further restrict the packets of the flow to those contajninis
characteristic string (line 24). After specifying the cheteristics of the network
flow, we instruct the monitoring system that we are intekgtgust counting the
number of packets, by applying tHRKT_COUNTER function (line 27). Finally,
we activate the flow (line 30). At this point, each monitorisgnsor has started
inspecting the monitored traffic for covert Gnutella traffamd keeps a count of
the matching packets. Then, the application periodicalds the result of the
PKT_COUNTER function by callingmapi _r ead_r esul t s() in a infinite loop
(lines 39-49).

2.5 Advantages of DIMAPI

Implementing similar distributed monitoring applicat®rike those presented in
the previous section, using other existing tools and libsagxcept DIMAPI would
have been a much more difficult process, resulting in longdechigher overheads
and overall reduced performance.

One alternative solution is to build these applicationagisolelyW nPcap [5]
orr pcap [32]. Both libraries extend i bpcap [36] with remote packet capture
capabilities, allowing captured packets at a remote hobettransferred to a lo-
cal host for further processing. For example, in order tmtdlie covert Gnutella
packets using one of these libraries, the application héisstaransfer locallyall
the captured web packets, separately from each remoterstreoidentify locally
the Gnutella packets, count them, and finally drop them. Hteep matching op-
eration has to be performed locally sincebpcap does not offer any pattern
matching operation. However, transferring all the web p&clkrom each remote
sensor to the local application incurs a significant netwar&rhead. In case of
many remote interfaces, the scalability of this approaclees it practically infea-
sible. In contrast, DIMAPI enables traffic processing ate@mote sensor, which
allows for sending back only the computed results. In thgecanly thecountof
Gnutella packets is transferred through the network, winictirs substantially less
network overhead.

An other approach would be to use tools ligaort [45] or ngr ep [44],
which allow for pattern matching in the packet payload, fapturing the Gnutella
packets at each remote sensor. At the end-host, we showdddage some scripts
for starting and stopping the remote monitoring applicatiand for retrieving and
collectively reporting the results, through some remotlsduch asssh. How-

2.5. ADVANTAGES OF DIMAPI 31

ever, such custom schemes do not scale well and cannot lofferase of use and
flexibility of DIMAPI for building distributed monitoring pplications.

Furthermore, DiIMAPI exploits any specialized hardwardlalsée at the mon-
itoring sensors, and efficiently shares the monitoringaistiiucture among many
users. The monitoring daemon on each sensor groups andizggithe monitor-
ing operations requested by the users of the system, pngyvitlie same or even
better performance comparedltobpcap [42]. Consequently, using DIMAPI we
can achieve more effective distributed passive networkitoong than with any
other existing tool or library.

32

CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKIONITORING

Applications Based on DIMAPI

Traditionally, passive monitoring tools operate at a deldwantage point in the
network that offers a broad view of the traffic, such as thessdink that connects
an Autonomous System to the Internet. Besides monitoririggdeslink, emerg-
ing applications can benefit from monitoring data gathetedudtiple observation
points across a network [15, 24, 27]. Such a distributed todng infrastructure
can be extended outside the border of a single organizatidrsjgan multiple ad-
ministrative domains across the Internet [49]. In this emvinent, the processing
and correlation of the data gathered at each sensor can gneader perspective
of the state of the monitored network.

Several applications can benefit from such a distributediy@snonitoring in-
frastructure by deriving useful network metrics regarding network conditions
between different domains. These metrics include Roumgl-Time [29], per-
application throughput, packet retransmissions [20]kpaoeordering [37], one-
way delay and jitter, and packet loss ratio [40]. In this thewe focus on the
passive estimation of the packet loss ratio between diffedlemains, which is a
typical application that takes advantage of the use of DiNAdPthe remaining of
this chapter we discuss the advantages of a passive paskemkasurement ap-
proach and we describe in detail the design and implementafithis technique.
Moreover, we present the design of a Grid network monitogtement for pas-
sive monitoring Grid network infrastructures using DiMARhis is also a typical
application that can significantly benefit from DIMAPI.

33

34 CHAPTER 3. APPLICATIONS BASED ON DIMAPI

3.1 Passive End-to-End Packet Loss Estimation

Accurate monitoring of network characteristics, such dayl@acket loss rate, and
available bandwidth, is critical for the efficient manageitrend operation of mod-
ern computer networks. One of the most important networkopmance metrics
is the packet loss ratio. Packet loss occurs when correetitgmitted packets from
a source never arrive at the intended destination. Packetssaally lost due to
congestion, e.g., at the queue of some router, routing @nudl or poor network
conditions that may result to datagram damages. Packeaffisgs significantly
the data transfer throughput and the overall end-to-endeaxiion quality. Conse-
quently, it is desirable to have accurate packet loss meammnts for the network
paths that several services use, in order to timely identfyvork inefficiencies.

Most of the existing techniques for packet loss estimatienbased omctive
network monitoring, which usually involves the injectiohacertain number of
packets into the network for measuring how many of them atg646,47]. Such
active monitoring tools incur an unavoidable network oeawhdue to the injected
probe packets, which compete with the real user traffic.

In contrast to above approaches, in this application weeptes novel real-
time, end-to-end packet loss estimation method based tribdied passivenet-
work monitoring, based on DiIMAPI. Our approach does not addaverhead to
the network since it passively monitors the network traffithaut injecting any
probe packets. At the same time, it estimates almost intiraltheactual packet
loss faced by the active applications. Moreover, it offees¢apability for measur-
ing the loss rates of particular services, allowing for fimained per-application
packet loss estimation, which is important in case differgpplications on the
same path face different degrees of packet loss. The desigtementation and
experimental evaluation of the passive packet loss estmaipplication is pre-
sented in more detail in [40].

3.1.1 Existing Tools

Previous work on packet loss estimation can be broadly odtegl into approaches
based on passive and active network monitoring, with therldtaving a signifi-
cantly larger literature body.

One of the most popular tools for inferring the basic netwcnlracteristics,
such as round-trip time and packet losspisng. Pi ng uses the ICMP protocol
to send probe packets to a target host at fixed intervals, epuatts loss when the
response packets are not received within a specified timedoddowever, ICMP
packets are often rate limited, or blocked, by routers amuvills. An other ac-
tive tool iszi ng [6], which estimates the end-to-end packet loss in one tinec
between two cooperative end hosts, by sending UDP packd®sisson modu-
lated intervals with a fixed mean rat®adabi ng [47] also measures the one-way
packet loss by sending fixed-size packets at specific ifger8ai ng is an active
monitoring tool that measures the loss rate in both forwadi reverse directions

3.1. PASSIVE END-TO-END PACKET LOSS ESTIMATION 35

from a single host to any TCP-based server, by exploiting '§©Bs recovery al-
gorithms [46]. Finally, network tomography using unicasbhes has been used
for inferring loss rates on end-to-end paths [21].

Besides active tools, there also exist methods that usévpasstwork moni-
toring for measuring the TCP packet loss, based on the TE&hsghission mecha-
nism [11]. However, there are several applications, sudh ap, which use UDP
instead of TCP. Techniques for estimating the loss ratedbasehe TCP protocol
are also presented in [7], however they work only in indigltlients and they can-
not be used by other external applications, e.g., for impgvouting or selecting
a replicated server with the best network conditions.

3.1.2 Passive Packet Loss Measurement Characteristics

An inherent property of passive network monitoring is thatlées not disrupt

the existing traffic conditions. This non-intrusive natofepassive measurements
makes them completely invisible on the network. Moreover, assive packet

loss estimation method exhibits several other advantagesaxctive packet loss
measurement techniques, which we discuss in the following.

Real-time measurement of theactual packet loss ratio. The proposed technique
measures the actual packet loss faced by the traffic of areagiplication in
real-time, as it passes through the passive monitors. lraginactive mon-
itoring approaches unavoidably disrupt the current traftie to the probe
packets. Thus, they can measure potential temporary dieetethat may
be caused by the injected traffic.

Scalability. In a large-scale network monitoring infrastructure, it esuable to
measure the end-to-end packet loss between many differsmtirces or do-
mains. In a system withV resources, the number of required end-to-end
measurements grows Wi'(ﬁ(Nz), since, as a general rule, each resource
has a distinct path to any other resource. For active mangpoit is clear
that as the number of resource pairs increases, the injeeti#id incurs a
significant disruption in the network, so usually such measents are per-
formed sequentially, measuring one or a few paths at a timeotrast, a
passive monitoring approach can provide an instant estmat the packet
loss ratio across different paths, independently of themiber.

Per-application measurement.Using appropriate filters, the proposed approach
can measure the packet loss faced only by the traffic of acpéati ser-
vice. This capability is of particular importance for cagesvhich different
services may exhibit different packet loss ratio in the sa@th. This can
happen due to the use of differentiated services, ratdHigrdevices, or
load-balancing configurations.

IP-level measurement. In contrast to techniques that passively estimate the loss
ratio based on properties of the TCP protocol [7,11], ouraggh measures

36 CHAPTER 3. APPLICATIONS BASED ON DIMAPI

Monitoring Point 1 Monitoring Point 2

)

——

Measurement path

— —p» Gathering results
Monitoring Application

FIGURE 3.1: End-to-end architecture for passive packet loss asitim

the packet loss at the IP layer, so it can also work for UDP gr @her
Transport Layer protocol.

Besides the above positive properties, our approach hasetin limitations.
A necessary operational requirement is the presence ofaagiye monitors at the
ends of the measured path. If passive traffic monitoring isfeasible in some
domain, then we should rely on active monitoring tools. Remmnore, the presence
of real traffic in the measured path is mandatory for the djmeraf our approach,
since it measures the packet loss faced by the existingctraffis clear from the
above that our approach is complementary to existing aptigbing techniques,
and both approaches can perfectly coexist.

3.1.3 Approach

We adopt an end-to-end approach for estimating the packstrhtio using two
passive monitors at the two ends. The overall approach st Figure 3.1.
The two monitoring points gather information about the maskpassing through
them. Periodically, this information is sent to a centrgllagation which correlates
these results and estimates the packet loss ratio.

A naive packet loss algorithm in this environment would g@int at both ends
the number of packets in each direction between the two dwpand then period-
ically subtract the number of packets received at the dsstim from the number
of packets that were actually sent, and vise versa. Howthigisimple method has
a major drawback: we cannot accurately synchronize the tatoring points to
count the same window of packets. Suppose that both passiaéars start and
stop counting packets at exactly the same time. When thelycstanting, some
packets are already in transit. These packets were notemaitthe sender side,
but they will be counted at the receiver, so the packet logs véll be underes-
timated. Similarly, when the measurement stops, the irsirgrackets will have
been counted by the sender, but will be missed by the re¢aivdhe packet loss
ratio will be overestimated. A possible solution would bestart and stop the
measurement in the receiver’s monitoring point after aydelase to the network’s
one-way delay. However, this solution is still inaccurate ¢o the network delay

3.1. PASSIVE END-TO-END PACKET LOSS ESTIMATION 37

variability. Even the loss of a single packet can be significe.g., in long haul tcp
connections.

In order to solve the above problem, we take a different agagrdy measuring
the packet loss of eadlow separately. For the TCP and UDP protocolflpav is
defined as a set of IP packets with the same protocol, soudt@estination IP
address, and source and destination port (also known ag@é-t For protocols
that do not support ports, a flow is defined only by the prot@sal source and
destination IP address. A flow is considemgiredif no packet has arrived for
that particular flow within a specified timeout (60 sec in oxperiments). In case
of TCP, a flow can also be considered expired if the connedtierplicitly closed,
i.e., when an RST of FIN packet is seen.

Each of the two monitoring sensors classifies the IP packtiglows, accord-
ing to the above definitions. In periodic time intervals,fbsénsors send statistical
information about the identifieeixpired flowgo the monitoring application. Since
expired flows are well defined, the monitoring application carrelate the statis-
tics gathered at both sensors regardingstimeexpired flow. Thus, for each pair
of statistics regarding the same expired flow, the appboatomputes the packet
loss for that flow based on the difference of the number of gattiat each expired
flow reports. This gives an accurate measurement o&tieal packet loss faced
by the particular traffic flow.

3.1.4 Implementation
Distributed Passive Monitoring Platform

In each measurement point we need a passive traffic momjtptatform for the
identification and collection of the expired flows. We havelemented our proto-
type using MAPI [42], a flexible passive monitoring API. A cotanication agent,
part of the distributed MAPI version [49], is responsible &zcepting monitoring
requests from remote applications and sending back thesgmynding results. Us-
ing this distributed monitoring API (DIMAPI), we are able toanipulate multiple
monitoring sensors from the same application.

Identification of Expired Flows

Every packet is associated with exactly one flow. At eachaetise monitoring
daemon keeps a record for each active flow in a hashtable $oridakup. In
addition to the 5-tuple, a flow record holds the timestampgheffirst and last
packet of the flow. The arrival time of the last packet of thevfle necessary for
deciding whether the flow has expired or not. Finally, therddolds the number
of packets and bytes of the flow, from which we compute the @aakd byte loss
ratios.

For every new packet, the monitoring daemon looks up theespanding flow
record in the hashtable, increases the packet counter, dafzdtiae packet size to

38 CHAPTER 3. APPLICATIONS BASED ON DIMAPI

the existing byte counter value. Also, the timestamp of #% packet is renewed.
In case a flow record is not found, a new one is created.

In order to identify immediately the expired flows, the moniig daemon
maintains a linked list that contains pointers to the flovords in a temporal order.
For every new packet, the timestamp of the last packet in dhesponding flow
record is renewed, and that flow comes first in the linked Wstseparate thread
in the monitoring daemon runs periodically (e.g., every saeond) and finds the
expired flows in the end of that list. Starting from the lagtgof the list, it checks
whether the timestamp of the last packet of that flow is oldantthe specified
timeout, and if so, it removes it from the list and puts it ie #xpired flow list. The
same process is continued until a non-expired flow is fouraially, the monitor-
ing daemon sends the list with the expired flows to the manigoapplication.

Distributed Monitoring Sensor Management

The last component of the architecture is the monitorindiegion. The applica-
tion collects periodically the expired flows from the distried monitoring sensors,
using the DIMAPI functionality, correlates them, and repdhe packet loss ratio
for every pair of sensors. The application uses a hashtsiohglar to the one de-
scribed earlier, for identifying pairs of statistics fronfferent sensors for the same
expired flow. For every matched pair, it subtracts the nunob@ackets that they
measured to compute the packet loss for this flow. Finallyaghplication reports
the total packet loss ratio between pairs of measurementsaind also the packet
loss per every individual flow. It reports the byte loss ratsowell, which can be
also an interesting metric for some applications.

3.2 Grid Network Monitoring Element

Accurate monitoring of network characteristics, such dayd@acket loss rate, and
available bandwidth, is critical for the efficient operatiof modern Grid systems,
which are usually composed of many resources interconthdxtdocal area net-

works or, more often, through the Internet. Network momigrcan be used for
Grid performance debugging, since Grid-enabled apptinatiare highly depen-
dent on network characteristics, and for performing comeptikagnosis when the
applications are not working as expected. Using networkitoing we can usu-

ally find the source of the problem. Also, network monitorocan be used in Grid

systems for resource allocation and scheduling decisions.

Active and passive monitoring can be combined in a Grid Nettonitoring
Element. The main benefit of passive monitoring, comparexttve monitoring,
is its non-intrusive nature. Active monitoring tools, swhthe ubiquitoupi ng,
incur an unavoidable network overhead due to the injectetgppackets, which
compete with the real user traffic. In contrast, passive todng techniques ob-
serve the existing traffic of the monitored link passivelytheut introducing any

3.2. GRID NETWORK MONITORING ELEMENT 39

additional network traffic. Also, passive techniques mezsat real time the ac-
tual performance, while active techniques may measure desmp side effects.
Moreover, using passive monitoring we are able to performapelication mea-
surement or even measurements in the IP level. Active mdmitdools usually
rely on a specific protocol and furthermore they are ofterchdd by firewalls or
rate limited. On the other hand, active tools are usually éasleploy, while pas-
sive monitoring require the installation of passive marsitAlso, active tools use
the desired traffic patterns and inject packets at any tirassiPe measurements re-
quires the presence of real traffic in the measurement pathségjuently, the best
approach seems to combine both active and passive moanitora Grid network
monitoring element. Each approach provides differentstaold probably different
metrics. We should try to use passive monitoring wheneuvsrapplicable, due to
the advantages we discussed above, else we should usemotdes to generate
our own measurement traffic.

Using passive monitoring, we can infer several network attaristics: per-
form Grid traffic categorization and accounting (e.g. findatvpercentage of the
traffic is GridFTP, or find which subnet generates the mogjaing traffic), band-
width estimations, performance debugging of individugdlegations and security
applications (Denial-of-Service attack detection, In&trepidemics and intrusion
detection). So, in a Grid environment, passive monitoriag play an important
role for assessing the status of the Grid infrastructurenectivity and for tak-
ing effective balancing decisions. Grid applications cko denefit from a dis-
tributed passive monitoring infrastructure [49] by usihtpiderive useful network
metrics between different domains. Such metrics includergrothers the net-
work Round-Trip Time [29], application-level RTT [25], papplication through-
put, packet retransmissions [20], packet reordering [8@&-way delay and jitter,
and packet loss ratio [40].

In this section we define how passive network measuremeatsauafigured
inside a grid-wide Network Monitoring Service. This servis based on a Net-
work Monitoring Element (NMElement), which is a Grid elenbéhat concen-
trates the Network Monitoring functionalities of a Grid:aiffers an interface for
measurement requests coming from applications, and aiplogsed interface for
publishing measurements. It has access to a database thaihsathe description
of the domain partitioning of Grid resources, and the pastsattributes of other
NMElements. Finally, the DIMAPI daemons for monitoring acmmmunication
(mapi d andmapi commd) run inside the NMElement. A detailed description of
its functionalities can be found in [14].

The definition of a Network Monitoring session [13] aiminga@ssive network
measurements is composed of the following elements: thtifides of the source
and destination domains, the description of the type ofiserfor which the pas-
sive measurement is requested, and the time period of theumegaent: this can
be historical, most recent, one-shot, or periodic. Certaimbinations of these
attributes are also allowed.

40 CHAPTER 3. APPLICATIONS BASED ON DIMAPI

Domain 1 Domain 2

— - -

FIGURE 3.2: Embedding passive network measurements in a Grid Netwon-
itoring Service

In principle, a measurement is not targeted to a flow betwserspecific hosts:
the domain partitioning should guarantee the significarideeomeasurement for
any pair of hosts in the two domains.

Figure 3.2 illustrates the message exchange between thesdbat participate
to the measurement, as described in the following. Messagesepresented by
arrows, in which the attached numbers are referenced itlogving text. In order
to implement this distributed architecture for passive itosimg and measurements
we employ DIMAPI.

The application that needs the measurement will send a measut request
(2) to one of the the NM services in charge of monitoring the estjlbetween the
two domains. This can be either the source or the destinafitre flow which we
are interested to passively monitor. The information régay the identity of the
NMElement, necessary in order to handle the request, isdirived with a query
(1) to the NM Database attached to a NMElement in the domaineofaljuesting
application.

When the Network Monitoring service receives such requesirst checks
the availability of the module in charge of managing the meament. The infor-
mation is retrieved from an internal registry of availabledules. The next step
consists of verifying the availability of resources dyneatly allocated to monitor-
ing tasks: this information is retrieved by inspecting therent system state (using
ps/netstat like commands).

In case any of the above steps falil, a “resource not availabjgy is returned
to the calling application. This indicates that the meas@®et was not performed,
but does not imply anything about the availability of thepiested resource. The
application will redirect the request to another NMElementwill repeat it using
less demanding parameters. If the measurement is featlilslesuccessive step
consists of locating a peer NMElement: the selection isedwut using the local
NM Database, by querying for the peer NMElement, which isvified by the
(source domain, destination domain) pair.

3.2. GRID NETWORK MONITORING ELEMENT 41

The measurement can be either extracted from a local cacheadéble re-
sults, or actually come from a new measurement. In the fooase, the historical
result is found as indexed by the Network Element, compldeteby measure-
ment attributes indicated in the request of the applicati@therwise, a request
for the activation of the peer module for a passive measunemelelivered to the
peer @) using DIMAPI. In case of a negative reply, this is bouncedkot the
requesting application. Otherwise, the measurement woltged normally. The
peer module will send back the measured data for the passasurement4),
through DIMAPI.

The result of the measurement is finally streamed outsidéllMElement, ei-
ther to the GIS, or to any other publication medtd, @ccording to the available
plugin in the NM Service module. The final step is the delivefyhe result to the
requesting applicatior6j.

42

CHAPTER 3. APPLICATIONS BASED ON DIMAPI

Improving the Performance of Packet
Processing using Locality Buffering

Passive network monitoring is the basis for a multitude aftesys that support
the robust, efficient, and secure operation of modern coenmeétworks. While
passive monitoring has been traditionally used for reddisimple network traf-
fic measurement and analysis applications, or just for gatheacket traces that
are analyzed off-line, in recent years it has also becona fat a wide class of
more CPU and memory intensive applications, such as Netimbrksion Detec-
tion Systems (NIDS) [45], accurate traffic categorizatiéfy fnd NetFlow export
probes [1]. The complex analysis operations of such demgrapplications are
translated into an increased number of CPU cycles spentamazgtured packet,
which reduces the overall processing throughput that tipdicgbion can sustain
without dropping incoming packets. At the same time, as tieed of modern
network links increases, there is a growing demand for mffigient packet pro-
cessing using commodity hardware that can keep up with highftic loads.

A common characteristic that is often found in such momitprapplications
is that they usually perform different operations to diéietr types of packets. For
example, a NIDS applies a certain subset of attack sigretorpackets with des-
tination port 80, i.e., it applies the web-attack signatut@ packets destined to
web servers, it applies a different set of signatures to gtaafestined to database
servers, and so on. Furthermore, NetFlow probes [1], trafitegorization, as
well as TCP stream reassembly, which has become a mandatartyon of mod-
ern NIDS, all need to maintain a large data structure thatshtble active network
flows found in the monitored traffic at any given time. Thus,gackets belonging
to the same network flow, the process accesses the same fastdsdta structure
that corresponds to the particular flow.

43

CHAPTER 4. IMPROVING THE PERFORMANCE OF PACKET PROCESSINGING LOCALITY
44 BUFFERING

In all above cases, we can identifyiarality of executed instructions and data
references for packets of the same type. In this work, weeptes novel tech-
nique for improving packet processing performance by tkidvantage of this
locality property found in many passive monitoring apgiicas. In practice, the
captured packet stream is a mix of interleaved packets sfporeling to hundreds
or thousands of different packet types, depending on thdtored link. Our ap-
proach, calledocality buffering is based on adapting the packet stream in a way
that enhances the locality of the application’s code and amgraccess, and thus
accelerating overall packet processing performance. ifsgly, captured pack-
ets are not sent directly to the monitoring application, ingtead are grouped in
buffers according to their flow, and are sent in “batches”

We have implemented locality buffering In bpcap [36], the most widely
used packet capturing library, which allows for improvirg tperformance of a
wide range of passive monitoring applications written op ¢d | i bpcap in a
transparent way, without the need to alter their code. Tipemxental evaluation
of our prototype implementation with real-world applicats shows that locality
buffering can significantly improve packet processing tigtgout and reduce the
packet loss rate. For instance, the popular Snort IDS exldita 40% increase
in the packet processing throughput, and a 60% improvemepéadket loss rate.
The design, implementation and experimental evaluatiaheiocality buffering
technique are also described in [39].

4.1 Our Approach: Locality Buffering

The starting point of our work is the observation that sdveisidely used pas-
sive network monitoring applications, such as intrusioteckgon systems, perform
almost identical operations for a certain class of packetsle different packet
classes result to the execution of different code paths @uidta accesses to dif-
ferent memory locations. Such packet classes include tbleefsmof a particular
network flow, i.e., packets with the same protocol, sourak destination IP ad-
dresses, and source and destination port numbers, or edenclasses such as all
packets of the same application-level protocol, e.g., @A, FTP, or BitTorrent
packets.

Consider for example a NIDS like Snort [45]. Each arrivinghat is first
decoded according to its Layer 2—4 protocols, then it pattsesgh severgpre-
processors which perform various types of processing according topheket
type, and finally it is delivered to the main inspection ergiwhich checks the
packet protocol headers and payload against a set of aitatktsres. According
to the packet type, different preprocessors may be trigdter instance, IP pack-
ets go through the IP defragmentation preprocessor, whalges fragmented IP
packets, TCP packets go through the TCP stream reassenefplsopessor, which
reconstructs the bi-directional application level netastream, while HTTP pack-
ets go through the HTTP preprocessor, which decodes andatives the HTTP

4.1. OUR APPROACH: LOCALITY BUFFERING 45

(v | I e) [| e ooy -!

-

FIGURE 4.1: The effect of locality buffering on the incoming pack&eam.

protocol fields. Similarly, the inspection engine will ckexach packet only against
a subset of the available attack signatures, according tpge. Thus, packets des-
tined to a Web server will be checked against the subset o&giges tailored to
Web attacks, FTP packets will be checked against FTP atfgoktsires, and so
on.

When checking a newly arrived packet, the correspondingrpoessor(s) code,
signature subset, and data structures will be fetched maCPU cache. Since
packets of many different types will likely be highly intealved in the monitored
traffic mix, different data structures and code will be candliy alternating in the
cache, resulting to cache misses and reduced performaheesaime effect occurs
in other monitoring applications, such as NetFlow colleztar traffic classification
applications, in which arriving packets are classified adiog to the network flow
in which they belong to, which results to updates in a cowadmg entry of a hash
table. If many concurrent flows are active in the monitored,ltheir packets will
arrive interleaved, and thus different portions of the hiaéite will be constantly
being transferred in and out of the cache, resulting to pediopmance.

The above observations motivated us to explore whethegahguthe order in
which packets are delivered from the OS to the monitorindiegjon improves
packet processing performance. Specifically, we speclili@t rearranging the
captured traffic stream in such a way that packets of the stawg are delivered to
the application in “batches” would improve the locality oEmory accesses, and
thus reduce the overall cache miss ratio. This rearrangecagnbe conceptually
achieved by buffering arriving packets into separate “etk one for each packet
class, and emptying each bucket at once, either whenevetsifgl, or after some
predefined timeout since the arrival of the first packet oftiheket. For instance,
if we assume that packets with the same destination port auodrrespond to the
same class, then any interleaved packets destined toediffeetwork services will
be rearranged so that packets to the same service are ddlivack-to-back to the
monitoring application, as depicted in Figure 4.1.

Choosing the destination port number as a class identifikesta good balance
between the number of required buckets and the achievelityo¢adeed, choos-
ing a more fine-grained classification scheme, such as a caiin of the desti-
nation IP address and port number, would require a tremenamount of buckets,
and would probably just add overhead, since most of the egipins of interest to
this work perform (5-tuple) flow-based classification anywat the same time,
packets destined to the same port usually correspond t@the application-level

CHAPTER 4. IMPROVING THE PERFORMANCE OF PACKET PROCESSINGING LOCALITY

46 BUFFERING
| Performance metric | Original trace | Sorted trace |
Throughput (Mbit/sec) 188.39 286.18

Cache Misses (per packet 18.86 2.79
Clock Cycles (per packet) 48,978.76 30,846.89

TABLE 4.1: Snort’s performance using a sorted trace

protocol, so they will trigger the same Snort signatures faneghrocessors, or will
belong to the same or “neighbouring” entries in a network fhash table.

4.2 Estimation of Feasibility

To get an estimation of the feasibility and the magnitudengfriovement that local-
ity buffering can offer, we performed a preliminary expeem whereby we sorted
off-line the packets of a network trace based on the degimaiort number, and
fed it to a passive monitoring application. This corresmotw applying locality
buffering using buckets of infinite size. Details about tlaeé and the experimen-
tal environment are discussed in Section 5.2. We ran SnbttJding both the
sorted, as well as the original trace, and measured thegsiocethroughput (trace
size divided by the measured user plus system time), L2 canibses, and CPU
cycles of the application. Snort was configured with all tieéadlt preprocessors
and signature sets enabled (2833 rules and 11 preprocesEoed_2 cache misses
and CPU clock cycles were measured using the PAPI libraryBich utilizes the
hardware performance counters.

Table 4.1 summarizes the results (each measurement wagee3®0 times,
and we report the average values). We see that sorting se¢eudt significant im-
provement of more than 50% in Snort’s packet processingutjfimput, L2 cache
misses are reduced by more than 6 times, and 40% less CP4 eyeleonsumed.

From the above experiment, we see that there is a signifieaahpal of im-
provement in packet processing throughput using localiffebing. However, in
practice, rearranging the packets of a continuous paciedatcan only be done
in short intervals, since we cannot indefinitely wait to gathn arbitrarily large
number of packets of the same class before delivering thethetamonitoring
application—the captured packets have to be eventualiyedet to the application
within a short time interval (in our implementation, in thilers of milliseconds).
Note that slightly relaxing the in-order delivery of the taed packets results to
a delay between capturing the packet, and actually detigetito the monitoring
application. However, such a sub-second delay does nadlbcaifect the correct
operation of the monitoring applications that we considethis work (delivering
an alert or reporting a flow record a few milliseconds latetotally acceptable).
Furthermore, packet timestamps are compudefbrelocality buffering, and are
not altered in any way, so any inter-packet time dependsmnei@ain intact.

4.3. IMPLEMENTATION WITHIN LI BPCAP 47

4.3 Implementation within | i bpcap

We have chosen to implement locality buffering withinbpcap, the most widely
used packet capturing library, which is the basis for a rudé of passive mon-
itoring applications. Typically, applications read theptaed packets through a
call such apcap_next, one at atime, in the same order as they arrive to the net-
work interface. By incorporating locality buffering witig | i bpcap, monitoring
applications continue to operate as before, taking adgantd locality buffering
in a transparent way, without the need to alter their codén&irlg them with ex-
tra libraries. Indeed, the only difference is that conseeutalls topcap_next or
similar functions will most of the time return packets witletsame destination port
number, depending on the availability and the time con#sainstead of highly
interleaved packets with different destination port nurabe

4.3.1 Periodic Packet Stream Sorting

Inl i bpcap, whenever the application attempts to read a new packetflergugh
a call topcap_next , the library reads a packet from the kernel througheav
call, and delivers it to the application. That is, the padketopied from kernel
space to user space, in a small buffer equal to the maximukepaize, and then
pcap_next returns a pointer to the beginning of the new packet.

So far, we have conceptually described locality bufferisgaaset of buckets,
with packets with the same destination port ending up inkosgime bucket. One
straightforward implementation of this approach would dadtually maintain a
separate buffer for each bucket, and copy each arrivinggbdckts corresponding
buffer. However, this has the drawback that an extra copgdsired for storing
each packet to the corresponding bucket, right after it le@s lfetched from the
kernel throughr ecv.

In order to avoid extra packet copy operations, which inégnicant over-
head, we have chosen an alternative approach. We distingatsveen two differ-
ent phases: the packgatheringphase, and the packdelivery phase. We have
modified the single-packet-sized buffer lof bpcap to hold a large number of
packets, instead of just one. During the packet gatheriragghnewly arrived
packets are written sequentially into the buffer, by insieg the buffer offset in
ther ecv call, until the buffer is full, or a certain timeout has exqur

Instead of arranging the packets into different bucketschviequires an extra
copy operation for each packet, we maintain an indexingcitra that specifies
the order in which the packets in the buffer will be delivetecthe application
during the delivering phase. This indexing structure igsiitated in Figure 4.2.
The index consists of a table with 64K entries, one for eaath ipamber. Each
entry of the table points to the beginning of a linked listtthalds references to
all packets within the buffer with the particular destioatiport. In the packet
delivery phase, traversing each list sequentially, starffom the first non-empty
port number entry, allows for delivering the packets of th#dy ordered according

CHAPTER 4. IMPROVING THE PERFORMANCE OF PACKET PROCESSINGING LOCALITY
48 BUFFERING

Indexing Structure

dst port
0
1

" e e |

65536 I L, —— |

v
dst port: dst port: | dst port: dst port: | dst port:
80 21 80 21 80

Packet Buffer

FIGURE 4.2: Using an indexing table with a linked list for each pdting packets
are delivered to the application sorted by their destimagiort.

to their destination port. In this way we achieve the despacket sorting, while,
at the same time, all packets remain in place, in the initiaimary location where
they had been written byecv, avoiding extra costly copy operations. In the
following, we discuss the two phases in more detalil.

In the beginning of each packet gathering phase the indexziblg is zeroed
usingnmenset . For each arriving packet, we perform a simple protocol daap
for determining whether it is a TCP or UDP packet, and consetiy extract its
destination port number. Then, a new reference for the paskadded to the
corresponding linked list. For non-TCP or non-UDP packatsference is added
into a separate list. The information that we keep for evexrgkpt in each node
of the linked lists includes the packet's length, the predtisiestamp of the time
when the packet was captured, and a pointer to the actuaépdata in the buffer.

Instead of dynamically allocating memory for new nodes ia lihked lists,
which would be an overkill, we pre-allocate a large enougimier of spare nodes,
equal to the maximum number of packets that can be stored toutier. Whenever
a new reference has to be added to a linked list, a spare nqieked. Also, for
fast insertion of new nodes at the end of the linked list, wepka table with 64K
pointers to the tail of each list.

The system continues to gather packets until the bufferrbesdull, or a cer-
tain timeout has elapsed. The timeout ensures that if packeive with a low
rate, the application will not wait too long for receivingethext batch of packets.
We use 100ms as the default timeout in our prototype impléatien, but both the
timeout and the buffer size can be defined by the user. Thenzi#fe and the time-

4.3. IMPLEMENTATION WITHIN LI BPCAP 49

out are two significant parameters of our approach, singeitifieence the number
of sorted packets that can be delivered to the applicati@aah batch. Depending
on how intensive each application is, this number of paattetsrmines the benefit
in its performance. In Section 5.2 we examine the effecttttebhumber of packets
in each batch has on overall performance using three diffgrassive monitoring

applications.

Upon the end of the packet gathering phase, packets can igerddlto the
application following the order imposed from the indexitigusture. For that pur-
pose, we keep a pointer to the list node of the most recentiyeded packet.
Starting from the beginning of the index table, wheneverhglication requests a
new packet, e.g., throughcap_next , we return the packet pointed either by the
next node in the list, or, if we have reached the end of thelisthe first node of
the next non-empty list. The latter happens when all the giaaf the same desti-
nation port have been delivered (i.e., the bucket has beetiea), so conceptually
the system continues with the next non-empty group.

4.3.2 Using a Separate Thread for Packet Gathering

A drawback of the above implementation is that during thekpgathering phase,
the CPU remains idle most of the time, since no packets areeded to the ap-
plication for processing in the meanwhile. Reversely, muthe processing of the
packets that were captured in the previous packet gathparngd, no packets are
stored in the buffer. In case that the kernel’s socket bigfemall and the process-
ing time for the current batch of packets is increased, ibssfble that a significant
number of packets may get lost by the application, in caségbf thaffic load.

Although in practice this effect does not degrade perforceattue to the very
short timeouts used (e.g. 100ms), as we show in Section ®Zan improve
further the performance of locality buffering by employiagseparate thread for
the packet gathering phase, combined with the usage of tfferbunstead of a
single one. The separate packet gathering thread recdigegackets from the
kernel and stores them to thite buffer and also updates its index. In parallel,
the application receives packets for processing from thie theead ofl i bpcap,
which returns the already sorted packets of the secead buffer Each buffer has
its own indexing table.

Upon the completion of both the packet gathering phase afer the timeout
expires or when the write buffer becomes full, and the pelrgdhcket delivery
phase, the two buffers are swapped. The write buffer, whoohis full of packets,
turns to a read buffer, while the now empty read buffer becoanerite buffer. The
whole swapping process is as simple as swapping two pojidiite semaphore
operations ensure the thread-safe exchange of the twa$uffe

50

CHAPTER 4.

IMPROVING THE PERFORMANCE OF PACKET PROCESSINGING LOCALITY
BUFFERING

Experimental Evaluation

5.1 DIMAPI Network-Level Performance

In this section we experimentally evaluate several perémre aspects of DIMAPI.
Our analysis consists of measurements regarding the rletwwarhead and re-
sponse latency, and how these metrics scale as the numblee ghtticipating
monitoring sensors increases.

5.1.1 Experimental Environment

For the experimental evaluation of DIMAPI we used two difiermonitoring sen-
sor deployments. The first deployment consists of 15 mangosensors dis-
tributed inside the internal network of FORTH. All sensorg interconnected
through 100 Mbit/sec Ethernet for the control interfaceclEsensor is equipped
with a second Ethernet interface for the actual passive ar&twonitoring. The
monitored test traffic is generated by replaying a real ndkwaffic trace using
t cpr epl ay [4]. The second deployment consists of four monitoring seno-
cated at four different ASes across the Internet: FORTH Uheersity of Crete
(UoC), the Venizelio Hospital at Heraklion (VHosp), and theiversity of Penn-
sylvania (UPenn). In this deployment, each sensor monlieestraffic passing
through the monitored links of the corresponding orgaiomat

5.1.2 Network Overhead

As discussed in Section 2.3, whenever a monitoring apicahat utilizes remote
sensors calls a DIMAPI function, this results to a messagbange between the
DiMAPI stub and themapi conmd running on each sensor. This procedure poses

51

52 CHAPTER 5. EXPERIMENTAL EVALUATION

50

0—0 1 applied functions

40
-+ 8 applied functions

30 A

20 4

h /
0 T T T T T T

T 1
Y] 2 4 6 8 10 12 14 16
Number of Monitoring Sensors

Network Traffic (KB)

FIGURE 5.1: Total network traffic exchanged during the initialinatphase, when
applying 1 and 8 functions

questions about the overhead and the scalability of thisoagp. In this set of
experiments, we set out to quantify the network overheadiAPI incurs when
used for building distributed monitoring applications.

For the experiments of this section, we implemented a tesitoring applica-
tion that creates a network flow, configures it by applyingesavfunctions, and
then periodically reports some results according to thdiegpgunctions. The
measurements were performed in the 15-sensor FORTH netwibrile the test
application was running on a separate host. Our target isstsare the network
overhead generated by DiMAPI, when using different momtpgranularity. The
generated network traffic was measured using a second lod&ll Mpplication
running on the same host with the test application. Thisllapalication reports
the amount of DiIMAPI control traffic by creating a network flahat captures
all packets to and from the DIMAPI control port. Since it isogdl monitoring
application, it incurs no network traffic.

In the first experiment, we measured the network overheatthéanitialization
of a network flow, as a function of the number of remote momtpsensors consti-
tuting the scope of the flow. The initialization overheadudes the traffic incurred
by both the DIMAPI stub andepi comrd during the creation, configuration, and
instantiation of a network flow. Figure 5.1 shows the amourtadfic generated
during the initialization phase for two variations of thett@pplication, the first
applying only one function, which results to a total of thEgi®AP!I library func-
tion calls for the initialization phase, and the second wipgl 8 functions, a rather
extreme case, resulting to a total of 11 DiMAPI library fuoatcalls.

The incurred traffic grows linearly with the number of monitg sensors, and,
for 15 sensors, reaches about 15 KBytes for the first vanatiad 45 KBytes for
the second. In both cases, the network overhead remainatmvcan be easily
amortized during the lifetime of the application.

In the next experiments we measured the rate of the netwaffictincurred
during the lifetime of the application due to the periodisuks retrieval. After

5.1. DIMAPI NETWORK-LEVEL PERFORMANCE 53

Traffic rate (Kbit/sec)
g

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of Monitoring Sensors Number of Monitoring Sensors

FIGURE 5.2: Network over- FIGURE 5.3: Network overhead in-
head incurred using the functioncurred using the functiotHASHSAMP
BYTE_COUNTER with polling periods with polling periods 0.1, 1, and 10 sec-
0.1, 1, and 10 seconds onds

the initialization phase, the test application constarglyds the new value of the
result by periodically callingrapi _r ead_r esul t s() ata predefined time inter-
val. The measured traffic includes both the control messafjB$MAPI and the
data transferred, across all monitoring sensors. We mddifie test application
to read the number of bytes of a network flow in three diffepgariodic intervals,
and plotted the mean rate of the generated traffic for one Heigure 5.2 shows
the results when applying tHg&YTE_COUNTER function that returns an unsigned
8-byte integer, while Figure 5.3 shows the results whenyapgplthe HASHSAMP
function, that returns a significantly larger data struetddASHSAMP is used to
perform hash-based sampling on the packets of a networkdlugvits results for-
mat is a 36-byte data structure.

In case that the application witBYTE_.COUNTER reads the result in 0.1 sec
intervals, which is orders of magnitude lower than the mimmpolling cycle
allowed by most implementations of the Simple Network Mamagnt Protocol
(SNMP), the generated traffic reaches 295 Kbit/sec, whemgusinetwork flow
with a scope of 15 sensors. However, for periodic intervatmne second or more,
the generated traffic is negligible. When reading the reflHASHSAMP, we see
only a slight increase in the traffic rate due to the largee sizthe produced re-
sults. In all of our experiments the CPU utilization at thel4rost was negligible,
constantly lower than 1%.

5.1.3 Response Latency

In this set of experiments we set out to explore the delay éetwthe call of a
DiMAPI function and the return from the function. Since thedl ©f a DIMAPI

function results to a message exchange with each of the esseaors within the
flow's scope, the return from the function is highly deperndamthe Round Trip

54 CHAPTER 5. EXPERIMENTAL EVALUATION

[
3}

Latency (ms)
=

DURPSEE et

4
23

T T T T T T T .
0 2 4 6 8 10 12 14 16
Number of Monitoring Sensors

FIGURE 5.4: Completion time formapi _r ead_r esul t s()

Time (RTT) of the network path between the host on which thaieation runs

and the remote monitoring sensors. Ideally, the latenegdluiced by DIMAPI stub
should be negligible, and thus the overall latency shouldi@®e to the maximum
RTT of the sensors within the flow’s scope.

We measured the time for retrieving results by callimgi _r ead_r esul t s()
call, using a test application which applies 8TE_COUNTER function and run-
ning it in the FORTH network. The time was measured by geimgydtvo times-
tamps from within the monitoring application right beforadaafter the call to
mapi oread_resul t s(). Inthis way, the measured time includes both the pro-
cessing time of the DiIMAPI stub and that of the remote serssmvell as the
network latency.

Figure 5.4 presents the completion time for the execution af
mapi read.resul ts() call as a function of the number of monitoring sen-
sors in the network flow scope. As the number of sensors isesgdhere is a very
slight increase in the delay for retrieving the result. 8ialt the sensors are located
within the FORTH LAN, the network latency for each monitarisensor is almost
constant and remains very low. Thus, the delay for retrggtire result from 15
sensors also remains very low, below 1 ms.

In order to explore how the network latency affects the defa@iMAPI calls
under more realistic conditions, we repeated the expetingng the second sen-
sor deployment. This network comprises monitoring hostatied in four different
ASes across the Internet, thus the RTT between the end hesé\te application
runs and each monitoring sensor varies considerably.

We report our findings in Table 5.1. The third column showsabieial RTTs
for each sensor, as measured from the end host psing. We measured the delay
of mapi _r ead_r esul t s() forreading results from each monitoring sensor. The
results of Table 5.1 suggest that for each sensor, the delsghtly higher, but
comparable, to the corresponding RTT. Furthermore, whergws network flow
with a scope that includes all the monitoring sensors, tieyds roughly equal to
the delay of the slowest sensor.

5.1. DIMAPI NETWORK-LEVEL PERFORMANCE 55

Network Flow mapi _read_resul ts() Network
Scope delay (ms) RTT (ms)
VHosp 170.58 160.69

UoC 3.26 3.24

FORTH 0.68 0.67
UPenn 283.65 279.22

VHosp, UoC, FORTH, UPenn 285.496 -
TAaBLE 5.1: Comparison between the completion time of

mapi read.resul t s() andthe network Round Trip Time

In order to achieve even lower response latency in gettisgiibnitoring re-
sults, that will not depend on network’s RTT, we can use thehpmodel, as de-
scribed in section 2.3.4. The experiments of the next sectie focused to ex-
amine improvements using the push model in fetching packetse application.
Similar improvements can be achieved in the latencympi _r ead_resul ts
when using this technique.

5.1.4 Evaluation of Packet Prefetching

In the next experiments we examine the improvement that alo> prefetching
approach achieves in DiIMAPI, using the push model as destiibsection 2.3.4.
Instead of requesting from a rematapi conmd one packet each time the appli-
cation calls therapi _get _next _pkt (), the DiIMAPI stub transparently receives
a number of packets thatapi conmd sends back-to-back, stores them in a buffer
and returns them from this buffer to the application in emghi _get _next _pkt ()
call.

For our experiments we used three different computers. Thedne is the
passive monitoring sensor wherapi d andrmapi comd daemons run. Another
computer is used for generating traffic using tlugr epl ay [4] tool, by sending
several times and at different rates a network packet tradeGB size with real
network traffic captured from a passive monitor located atSbhool Network of
Crete. Finally, a third machine is used for running DiMARttepplications. These
computers are all interconnected through a local 1 Gbigssich.

The test applications call theapi _get _next _pkt () function using both
pull and push model implementations. In order to comparé terformance,
we measure the completion time ofmapi _get _next _pkt () call by placing
getti neof day() calls before and afterapi _get _next _pkt (). Moreover,
we count the number of packets and the total bytes that welkdeet@deliver in
the application callingrapi _get _next _pkt () within one second interval using
pull and push models. We run the test applications for 10 tagand report the
average throughput in Mbit/sec as computed from the packeté in bytes.

56 CHAPTER 5. EXPERIMENTAL EVALUATION

220 -
110 4
2170 S g0
g — Pull model § Pull model
) o)
2 -—% Push model (prefetching) 3 Push model (prefetching)
S 2 70
g <
S 120 5
£
> S 501
< g
g =
< 704
- 30 4
20 : : . . 10 T T T r
0 500 1000 1500 2000 0 500 1000 1500 2000
Buffer size (pkts) Buffer size (pkts)

FIGURE 5.5: Completion time for FIGURE 5.6: Throughput in Mbit/sec
mapiget nextpkt() with pull and push for mapigetnextpkt() with pull and
models for different buffer sizes while Push models for different buffer sizes
replaying at 100 Mbit/sec while replaying at 100 Mbit/sec

Examine the Effect of Buffer Size

Firstly we examine the effect that the size of the buffer Wwhiolds the packets
has on the performance. This size is equal to how many paskietse prefetched
to the application’s stub in one batch. Figures 5.5 and Ze6ent the latency and
throughput respectively farapi _get _next _pkt () while replaying the trace at
the constant rate of 100 Mbit/sec and varying the size of tifiebfrom 10 to 2000
packets.

The results show that prefetching significantly reduces latency of a
mapi get _next _pkt () call and increases the number of packets that can be
delivered to the application in one second. The delay drops 200 to 52 mi-
croseconds in case of 100 packets buffer size and to 42 remwods when using
2000 packets buffer, that comprises an improvement of 18xa/6 times respec-
tively. Throughput increases from 22.4 to 81.3 and 99.9 Mdéd in case of buffer
sizes of 100 and 500 packets respectively. This means thet ugding buffer larger
that 500 packets in size, in our setup, we can achieve to fdraththe network
packets frommapi conmmd to the application with the same rate that they reach at
the monitoring interface.

When increasing the buffer size from 500 to 2000 packets vgervk only a
slight improvement in latency and throughput. So, we carsiD0 packets as a
good enough buffer size. If compared to, e.g., buffer siz€GH0 packets, the
application’s stub will need to perform one request every péckets instead every
2000 packets that means just 4 more requests every 2000tpacke

5.1. DIMAPI NETWORK-LEVEL PERFORMANCE 57

o

[=}

o
)

200 A
©0—0C Pull model -0—0 Pull model
“— Push model (prefetching)

N

(=3

o
L

“+— Push model (prefetching)

w

[=}

o

L
=
15
o
L

=

o

o
L

N
8
Throughput (Mbit/sec)

Latency (microseconds)

=
(=}
o
L
3]
o
L

0 T T T T
T T T T
0 50 100 150 200 0 50 100 150 200
Traffic rate at monitoring interface (Mbit/sec)

o

Traffic rate at monitoring interface (Mbit/sec)

FIGURE 5.7: Completion time for FIGURE 5.8: Throughput in Mbit/sec
mapi _get _next _pkt () with pull fornmapi get _next pkt () withpull
and push models while replaying a traceand push models while replaying a trace
from 10 to 200 Mbit/sec from 10 to 200 Mbit/sec

Examine the Effect of Traffic Rate

Next, we vary the traffic generation rate from 10 to 200 Mbit/svhile using 500
packets for the size of the buffer that packets are storetld@rptish model case.
Figures 5.7 and 5.8 presents the results.

We observe that increasing the rate of the generated traffidts to a reduction
on the average latency fomapi _get _next _pkt () call and to an increment of
the throughput for both pull and push models. This is redslensincenapi d
andmapi commd daemons do not block waiting for new packets to arrive in the
monitoring device, which is more possible to happen at |affitr rates. How-
ever, in the pull model we can see that this effect is visillly avhen the rate is
increased from 10 to 50 Mbit/sec. After 50 Mbit/sec, the gedad throughput
of mapi _read_resul t s() remains always constant at about 200 microseconds
and 22 Mbit/sec respectively. The latency is limited to 20@roseconds due to
the network’s RTT, while the maximum throughput that can teieved for pull
model is 22 Mbit/sec. So, at higher rates than 22 Mbit/seg@ifstant amount of
packets will be dropped from the buffer thepi d saves them and will be lost.

On the other hand, using the push model we are not limited fitoennet-
work’s RTT since the packets are sent back-to-back. Theutfimout that we can
achieve using the push model for fetching packets appreattieetraffic rate on
the monitoring interface. For example, for 100 Mbit/sedfitaate at the monitor-
ing interface, therapi conmd sends packets to the application with 100 Mbit/sec
also, while for 200 Mbit/sec traffic rateapi comrd achieves throughput of 185
Mbit/sec. Comparing the two different approaches, the pustel is 4 times faster
at 100 Mbit/sec and 9 times faster at 200 Mbit/sec from thémpoldel. Using the
push modelrapi comd can send up to 185 Mbit/sec without loosing any packet,
while the pull model can transfer packets with rate only up2dvibit/sec.

58 CHAPTER 5. EXPERIMENTAL EVALUATION

5.2 Locality Buffering Performance Evaluation

In this section, we present the experimental evaluationuofprototype imple-
mentation of locality buffering. We deploy the modified vers ofl i bpcap to
three popular passive monitoring applicatio8sior t intrusion detection system,
Appron application for accurate traffic classification and Fprobe féxport tool.
Then we compare their performance using the originddpcap and our locality
buffering implementations.

5.2.1 Experimental Environment

Our experimental environment consists of two PCs intereoted through a Giga-
bit switch. The first PC is used for traffic generation, whistachieved by replay-
ing real network traffic traces at different rates usingpr epl ay [4]. We used

a full payload trace captured at the access link that comreatteducational net-
work with thousands of hosts to the Internet. The trace costh 698,902 packets,
corresponding to 64,628 different network flows, totallmgre than 1 GB in size.

By rewriting the source and destination MAC addresses ipadkets, the gen-
erated traffic can be sent to the second PC, the passive mogigensor, which
captures the traffic and processes it using different mongaapplications. The
passive monitoring sensor is equipped with an Intel Xeofl &Kz processor with
512 KB L2 cache and 512 MB RAM running Debian Linux (kernelsien 2.6.18).
The kernel socket buffer size was set to 16 MB, in order to mize packet loss
due to packet bursts.

We tested the performance of the monitoring application®prof three differ-
ent versions of i bpcap: the original version, our modified version that employs
locality buffering, and a third version with the optimizeacélity buffering ap-
proach that uses a separate thread for storing incomingefsackor each setting,
we measured the application’s user and system time using/fiX t i ne util-
ity. Also, the idle CPU time is computed from the average petage of the CPU
usage that the application’s process has taken. Furtherma measured the L2
cache misses and the CPU clock cycles by reading the CPUrpenfice counters
through the PAPI library [3]. Finally, an important metriwat was measured is the
percentage of packets being dropped byopcap, which usually happens when
replaying the traffic in high rates, due to high CPU utiliati

Traffic generation begins after the application has bediaiad. The applica-
tion is terminated immediately after capturing the lastiqgdof the replayed trace.
All measurements were repeated 10 times, and we report #rage values. We
focus mostly on the discussion of our experiments using tSwndiich is the most
resource-intensive among the tested applications. Haywewealso briefly report
our experiences with Fprobe and Appmon.

5.2. LOCALITY BUFFERING PERFORMANCE EVALUATION 59

50
- g =]
14 [3}
f”i 451 — pcap g
o ©0—0 pcap+LB 5} i
£ Ras 0 p+LB+th d g = peap
E pcap rea 2 ©0—0 pcap+LB
2 407 3 “— pcap+LB+thread
> £ 161
@ ()
5 5
17} IS4
5 35 S |
Q1
.
30 T T T T T T T T 6 T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Locality Buffer size (# packets) Locality Buffer size (# packets)

FIGURE 5.9: Snort’s user plus system FIGURE 5.10: Snort’s L2 cache misses
time as a function of the buffer size for as a function of the buffer size for 100
100 Mbit/s traffic. Mbit/s traffic.

= 58 -
‘D 46000
4
Q —~
s g
5 — pcap 53 4 N
& 41000 4 p o pcap
(=X
= ©0—5 pcap+LB g ©—5 pcap+LB
i} “+— pcap+LB+thread =) Arn
° pcap z pcap+LB-+thread
3 36000 1 o 487
x ()
g =
o
> i
2 31000 4 43
(8}
26000 T T T ! ! ! ! ! 38 T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 10000 12000 14000 16000
Locality Buffer size (# packets) Locality Buffer size (# packets)

FIGURE 5.11: Snort's CPU cycles as FIGURES.12: Idle CPU time as a func-
a function of the buffer size for 100 tion of the buffer size for 100 Mbit/s
Mbit/s traffic. traffic.

5.2.2 Results from Snort

We ran Snort using its default configuration, in which almalsof the available
rule sets and preprocessors are enabled. Snort loaded @833while 11 prepro-
cessors were active.

Initially, we examine the effect that the size of the bufiemihich the packets
are sorted has on the overall application performance. \Wg the size of the
buffer from 100 to 16000 packets while replaying the netwnake at a constant
rate of 100 Mbit/sec. Using a 100 Mbit/sec rate, no packeteweopped. We
do not use any timeout in these experiments for packet gatherAs long as
we send traffic at constant rate, the buffer size determiogs long the packet
gathering phase will last. Figure 5.9 shows the user plugsgytime of Snort for
processing the replayed traffic using the diffedfenbpcap versions. Figures 5.10

60 CHAPTER 5. EXPERIMENTAL EVALUATION

and 5.11 present the per-packet L2 cache misses and clotdsagspectively,
while Figure 5.12 presents the average idle CPU time whi@tSmas running.

We observe that increasing the size of the buffer resultewei user time,
fewer cache misses and clock cycles, and generally to amlbperformance im-
provement. This is because using a larger packet buffersofffetter possibilities
for effective packet sorting, and thus to better memoryllbceHowever, increas-
ing the size from 4000 to 16000 packets gives only a slightavgment. Based on
this result, we consider 4000 packets as optimum bufferisizeir experiments.
For a rate of 100 Mbit/sec, 4000 packets roughly corresporaeht160 millisecond
period at average.

We can also notice that using locality buffering we achievagaificant re-
duction on the L2 cache misses from 23.7 per packet to 10.8nwhking a 4000
packets buffer, which is an improvement of 2.26 times ag&nsrt with the orig-
inal | i bpcap library. Also, Snort’s user time and clock cycles are sigaifitly
reduced, making it faster by more than 40%. Due to the imgtoremory access-
ing locality, the CPU remains idle for a significantly largesrcentage of time.

Comparing our two different implementations, they resalisimilar perfor-
mance in all the metrics measured. The modified versidni dfpcap that uses
a separate thread for storing packets to the buffer seenerfiorm slightly better
than the simple implementation.

We replayed the trace in different rates, from 10 to 300 Mbit/ trying differ-
ent buffer sizes as before for each rate and we concludecttsatime findings. In
all rates, 4000 packets was found as the optimum buffer &lgang this optimum
buffer size, locality buffering results in all rates to arsfgcant reduction on Snort’s
cache misses and user time, similar to the improvement wi$én 100 Mbit/sec
against the original i bpcap. The two implementations have almost equal per-
formance in all cases, with the one using a thread performitiitje better.

Another important metric for evaluating the improvemenoaf technique is
the percentage of the packets that are being dropped in htgh by the kernel
because Snort is not able to process all of the them in thése rin Figure 5.13
we plot the average percentage of packets that are beingettophile replaying
the trace with speeds ranging from 10 to 300 Mbit/sec. We 4€D packets
size for the locality buffer, which was found to be the optirsize for Snort when
replaying this traffic at any rate.

Using the unmodified i bpcap, Snort cannot process all packets in rates
higher than 125 Mbit/sec, so a significant percentage of giacis being lost.
On the other hand, using locality buffering, the packet pssing time is accel-
erated and the system is able to process more packets inrtreetsae interval.
As shown in Figure 5.13, when deploying our locality buffigrimplementations
in Snort, it becomes much more resistant in packet loss.gihbdo loose packets
at 200 Mbit/sec instead of 125 Mbit/sec, which is a 60% improent. Also, at
250 Mbit/sec, our implementation drops 2.6 times less packken the original
I i bpcap. The two different implementations of the locality buffegitechnique

5.2. LOCALITY BUFFERING PERFORMANCE EVALUATION 61

60 - pcap
©—C pcap+LB

504 T pcap+LB+thread
=3
£ 40
X
Q
g
o 304
(0]
Q.
Q.
o 20
a

10 A

0 +o—o T T
0 50 100 150 200 250 300

Replay rate (Mbit/sec)

FIGURE 5.13: Packet loss ratio of the passive monitoring sensomwhening
Snort, as a function of the traffic speed.

achieve almost the same performance, with the thread-bag#ementation hav-
ing slightly less dropped packets.

We do not observe any significant improvement with the thiteeskd imple-
mentation, compared to the simple locality buffering inmpétation, because the
major benefit of our technique is the acceleration of packetgssing due to im-
proving memory access locality. Moreover, in the constaut laigh traffic rates
that we generated in our experiments, the CPU time was retligdiing the packet
gathering phase, since packets were continuously arriingase of bursty traffic,
however, the separate thread would be more resistant tpidigppackets.

5.2.3 Results from Appmon

Appron [9] is a passive network monitoring tool for accurate peplegation traf-
fic identification and categorization. It uses deep-packspéction and packet
filtering for attributing flows to the applications that geste them. We ran App-
mon on top of our modified versions bf bpcap and examined the improvement
that they can offer using different buffer sizes that vagnir100 to 16000 pack-
ets. Figure 5.14 presents the Appmon’s user plus systemanué-igure 5.15 the
per-packet L2 cache misses measured while replaying tbhe &iaa constant rate
of 100 Mbit/sec.

The results show that the Appmon’s performance can be inggroging the
locality buffering implementations. Its cache misses auced from 8.4 to 7.1

62 CHAPTER 5. EXPERIMENTAL EVALUATION

22 A 154

20 137

—_bpcap
©O—0C pcap+LB
18 “—* pcap+LB+thread

— pcap
114 “— pcap+LB
“—< pcap+LB+thread

User+System time (sec)

L2 cache misses (per packet)

14

T T T T T T T T T T T T T T T T)
0 2000 4000 6000 8000 10000 12000 14000 16000 0 2000 4000 6000 8000 1000012000140001600018000
Locality Buffer size (# packets) Locality Buffer size (# packets)

FIGURE5.14: Appmon’s user plus sys- FIGURE 5.15: Appmon’s L2 cache
tem time as a function of the buffer sizemisses as a function of the buffer size
for 100 Mbit/s traffic. for 100 Mbit/s traffic.

misses per packet, when used buffer size of 8000 packetsstad 8% improve-
ment. Thus, the user plus system time is reduced by more tb@nc®mpared
width the originall i bpcap. The optimum buffer size in the case of Appmon,
based on the these results, seems to be around 8000 packetslifférent im-
plementations resulted again to very close performandé, thv first one giving a
little better results this time.

We were also running Appmon when replaying traffic in rateyivg from
10 to 300 Mbit/sec, observing always similar results. SiAppmon does signif-
icantly less processing than snort, no packets were dropp#tese rates. The
output of Appmon remains identical in all cases, which mehas the periodic
packet stream sorting does not affect the correct operafidqppmon’s classifica-
tion process.

5.2.4 Results from Fprobe

Fpr obe [1] is a passive monitoring application that collects t@afftatistics for
each active flow and exports corresponding NetFlow recafésran Fprobe with
our modified versions dfi bpcap and performed the same measurements as with
Appmon. Figure 5.16 plots the user plus system time of thelbgwvariants per
buffer sizes from 100 up to 16000 packets, while replayirgitace at 100 Mbit/sec
rate.

We notice a speedup of about 30% when locality buffering msbéed. The
buffer size that optimizes overall performance is agaiuado8000 packets. We
notice that in Appmon and Fprobe tools the optimum buffee s&zabout 8000
packets, while in Snort 4000 packets size is enough to opdirtie performance.
This happens because Appmon and Fprobe are not so CPUnmtassSnort, so
they require a larger amount of packets to be sorted in oodectiieve a significant
performance improvement. Finally, we observe that theieersf| i bpcap that

5.2. LOCALITY BUFFERING PERFORMANCE EVALUATION 63

— pcap
131 0—0 pcap+LB
“—% pcap+LB+thread

[,
[
I

User+System time (sec)
©
|

~
I

5

T T T
0 2000 4000 6000 8000 10000 12000 14000 16000
Locality Buffer size (# packets)

FIGURE 5.16: Fprobe’s user plus system time as a function of theebsfze for
100 Mbit/s traffic.

uses a separate thread for storing packets gives bettariparice in Fprobe for
some of the buffer sizes, but it is not clear which of theseversions is preferable
in this case. Similar results were observed in all rates®fdplayed traffic.

64

CHAPTER 5. EXPERIMENTAL EVALUATION

Related Work

6.1 Passive Network Monitoring Tools and Libraries

There are several techniques and tools currently avaifabf@ssive network mon-
itoring, which can be broadly categorized into three catiegd26]: passive packet
capturing, flow-level measurements, and aggregate tra#itcstics. These cate-
gories are with decreasing order regarding the offeredtimmality and complex-
ity. For example, flow-level measurements and aggregafféctstatistics can be
provided by packet capturing systems. DiIMAPI belongs tdfitis& category, since
it is capable to perform distributed packet capture and ig@mamote monitor-
ing sensors, but can also offer the latter functionalitiggjplying the appropriate
functions to the network flows.

The most widely used library for packet capturingl isbpcap [36], which
provides a portable API for user-level packet capture. Thepcap interface
supports a filtering mechanism based on the BSD Packet BBgrwhich allows
for selective packet capture based on packet header fieldsl iTopcap library
has been widely used in several passive monitoring apjgitatsuch as packet
capturing [44, 48], network statistics monitoring [17],vil@xport [1, 16] and in-
trusion detection systems [45]. Also, DiIMAPI is implemeahten top ofl i bpcap
for commodity network interfaces. Thus, performance ofations like our lo-
cality buffering technique, which has been implementedhiwit i bpcap, can be
beneficial for all the above tools and libraries.

W nPcap [5] andr pcap [32] extendl i bpcap with remote packet captur-
ing capabilities. Both allow the transfer of captured paslat a single remote host
to a local host for further processing. DIMAPI offers the saemnd more func-
tionality through the scope abstraction faultiple distributed monitoring sensors,
being also much more expressive. Furthermore, by enabiaffictprocessing at

65

66 CHAPTER 6. RELATED WORK

each remote sensor, DIMAPI avoids the considerable neteweekhead of above
approaches since it sends back only the computed results.

CoralReef provides a set of tools and support functions dépturing and an-
alyzing network traces [30].i bcor al provides an API for monitoring applica-
tions that is independent of the underlying monitoring kae. Nprobe [38] is a
monitoring tool for network protocol analysis. Althoughstbased on commodity
hardware, it speeds up network monitoring tasks by usingrdilimplemented in
the firmware of a programmable network interface

Except from packet capture oriented systems, there has digeificant ac-
tivity in the design of systems providing flow-based measmats. Cisco 10S
NetFlow technology [12] collects and measures traffic data per-flow basis. A
drawback of such tools is that they are usually accessibielpnnetwork admin-
istrators who have access rights to network equipment bkeers. Open source
probes likenPr obe [16] offer NetFlow record generation by capturing packests u
ing commodity hardware. DIMAPI shares some goals with thevaldlow-based
monitoring systems, but it has significantly more functidgpa

6.2 Distributed Passive Network Monitoring Infrastruc-
tures

As network traffic monitoring is becoming increasingly in@amt for the oper-
ation of modern networks, several passive monitoring gtftectures have been
proposed.

CoMo [27] is a passive monitoring infrastructure which a#ousers to query
network data gathered from multiple administrative dorsaloy providing a num-
ber of generic query mechanisms. It is based on a numbertabdi®d monitoring
nodes, consisting of the CoMo core processes and a numbseiodefined plug-in
modules. Each one of these nodes is able to answer queried dashe modules
that are plugged-in.

A similar approach is followed by Gigascope [15] that is &ain database for
storing captured network data in a central repository faher analysis using the
GSQL query language. Users are able to implement specigj gperators by fol-
lowing a specific API. Gigascope is able to satisfy fast sem@twork monitoring
needs by serving user’s SQL-like queries, from a databasaditreated from a
single monitoring sensor.

Sprint’s passive monitoring system [24] was installed withe Sprint IP back-
bone network and it was collecting data from different maniitg points into a
central repository for further analysis. However, it conlst support many differ-
ent monitoring applications, and it is not a scalable apgtaas this system was
installed effectively just within the Sprint”s backboneimerk.

All the above infrastructures are mainly based on databagtbspredefined
custom schemas which collect data from distributed sersadsaccept queries
using SQL-like languages from monitoring applications. ohder to implement

6.3. LOCALITY BUFFERING 67

new functionality, new plugins must be written and embediethe monitoring

sensors. If compared to DIMAPI, they do not support any ofdbiecepts of net-
work flow or network scope, and none of these systems proddgsAPI which

will aid the developer to create novel distributed monitgrapplications. DIMAPI

adopts a different approach, providing an API for distialipassive monitoring
applications development instead of supplying with a dadeldor data queries.

Arlos et al. [10] propose DPMI, a distributed passive measant infrastruc-
ture that supports various monitoring equipment within shene administrative
domain. DPMI defines the means of creating a testbed thatowaillide passive
monitoring capabilities from a number of predefined measerd points to data
consumers.

Finally, a lot of work is being done in the area of monitorinighagh perfor-
mance computing systems, such as clusters and Grids. @#Bdjiis a distributed
monitoring system based on a hierarchical design targdtéztlarations of clus-
ters. GridICE [8] is a distributed monitoring tool integedtwith local monitoring
systems with a standard interface for publishing monitpdata. These systems
could utilize at lower levels the functionality offered byNDAPI.

6.3 Locality Buffering

The concept of locality buffering for improving passive wetk monitoring ap-
plications, and, in particular, intrusion detection andvantion systems, was first
introduced by Xinidis et al. [53], as part of a load balandiradfic splitter for mul-
tiple network intrusion detection sensors that operateanalfel. In this work, the
load balancer splits the traffic to multiple intrusion déimT sensors, so that similar
packets (e.g. packets destined to the same port) are pedchgshe same sensor.
However, in this approach the splitter uses a limited nurob&cality buffers and
copies each packet to the appropriate buffer based on fgashiibs destination port
number. Our approach differs in two major aspects. Firsthawge implemented
locality buffering within a packet capturing library, iestd of a separate network
element. To the best of our knowledge, our prototype implgateon within the
libpcap library is the first attempt for providing memory &bty enhancements for
accelerating packet processing in a generic and trandpaagrfor existing passive
monitoring applications. Second, the major improvemeniwfapproach is that
packets are not actually copied into separate localitygosffinstead, we maintain
a separate index which allows for scaling the number of itychuffers up to 64K.

Locality enhancing techniques for improving server perfance have been
widely studied. For instance, Markatos et al. [33] presechiques for improving
request locality on a Web cache, which results to significaprovements in the
file system performance.

68 CHAPTER 6. RELATED WORK

6.4 Improving the Performance of Packet Capturing

Several research efforts [18,19,51] have focused on inmpgdhe performance of
packet capturing through kernel and library modificatiorgolr reduce the num-
ber of memory copies required for delivering a packet to th@ieation. In con-
trast, our approach with locality buffering technique aitmsmprove the packet
processing performance of the monitoring applicationfitdy exploiting the in-
herent locality of the in-memory workload of the applicatio

Conclusion

In this thesis, we presented the design, implementatiomparfdrmance evaluation
of DIMAPI, a flexible and expressive API for building distuted passive network
monitoring applications. One of the main novelties of DIMA® the introduc-
tion of the network flowscope a new attribute of network flows which enables the
creation and manipulation of flows over a set of local and terpassive monitor-
ing sensors. The design of DIMAPI mainly focuses on minimgzperformance
overheads, while providing extensive functionality forradxd range of distributed
monitoring applications.

We have evaluated the performance of DIMAPI using a numberafitoring
applications operating over large monitoring sensor setswell as highly dis-
tributed environments. Our results showed that DiIMAPI leag hetwork over-
head, while the response latency in retrieving monitoriegults is very close to
the actual round trip time between the monitoring applasatind the monitoring
sensors within the scope. Furthermore, using result ankkepacefetching (push
model) we can achieve even lower response times, since wsoafienited from
the network’s round trip time. For instance, we showed thatnmvsending batches
of 500 captured network packets back-to-back from a mangaensor to a mon-
itoring application, it can continue sending captured pé&skip to 185 Mbit/sec,
in a Gigabit network, without loosing any packet. On the othand, the first
implementation (pull model) can transfer packets with oatly up to 22 Mbit/sec.

We also presented a novel distributed passive monitoriolgnique for real
time packet loss estimation between different domains. tétlenique is based on
tracking theexpired flowsat each monitoring sensor. Using DiIMAPI as distributing
monitoring infrastructure, a central monitoring applioatcorrelates the results
from the monitoring sensors and computes the actual paeettio. Our passive
monitoring approach for packet loss estimation is accuaaté reliable, while at

69

70 CHAPTER 7. CONCLUSION

the same time exhibits inherent advantages such as sdglaitl a non-intrusive
nature. This is a typical application relying on the basiMBPI functionality.

Moreover, we introduced locality buffering, a techniqueifaproving the per-
formance of packet processing in a wide class of passiveankt@onitoring ap-
plications by enhancing the locality of memory access. pr@ach is based on
reordering the captured packets before delivering therhdarionitoring applica-
tion, by grouping together packets with the same destingimt. This results to
improved locality for code and data accesses, and constyjieran increase in
the packet processing throughput and to a decrease in thetpass rate.

We described in detail the design and the implementationazlity buffering
within the widely used i bpcap library, and presented our experimental eval-
uation using three representative CPU-intensive passotaring applications.
The evaluation results showed that all applications gaiigr@fscant performance
improvement, while the system can keep up with higher traffieeds without
dropping packets. Specifically, locality buffering resdlto a 40% increase in the
processing throughput of the Snort IDS, while the packet tate was decreased by
60%. Using the original i bpcap implementation, the Snort sensor begins loos-
ing packets when the monitored traffic speed reaches 1259dbjtwhile using
locality buffering, packet loss is exhibited when excegd2®0 Mbit/sec. Fprobe,
a NetFlow export probe, and Appmon, an accurate traffic ifleaon application,
also exhibited a significant throughput improvement, up&3even though they
do not perform as CPU-intensive processing as Snort.

Overall, we believe that implementing locality bufferingthin | i bpcap is
an attractive performance optimization, since it offeghicant performance im-
provements to a wide range of passive monitoring applinativhile at the same
time its operation is completely transparent, without megdo modify existing
applications. DIMAPI implementation for commodity netwdnterfaces is also
based onl i bpcap, so DIMAPI based applications can benefit indirectly from
locality buffering.

Bibliography

[1] fprobe: Netflow probes. http://fprobe.sourceforgé#.ne

[2] MAPI Public Releaseht t p: // mapi . uni nett. no.

[3] Performance application programming interface. Witp:cs.utk.edu/papi/.
[4] Tcpreplay. http://tcpreplay.synfin.net/trac/.

[5] WinPcap Remote Capture. http://ww. wi npcap. or g/ docs/
docs3lbet a4/ htm /group__renote. htm .

[6] A. Adamns, J. Mahdavi, M. Mathis, and V. Paxson. Creatingcalable ar-
chitecture for internet measuremeffEE Network 1998.

[7] M. Allman, W. M. Eddy, and S. Ostermann. Estimating loates with tcp.
ACM Performance Evaluation Revie84(3), December 2003.

[8] S. Andreozzi, N. D. Bortoli, S. Fantinel, A. Ghiselli, ®ubini, G. Tortone,
and M. Vistoli. GridICE: a Monitoring Service for Grid Systs. Future
Generation Computer Systems Jourridl(4):559-571, Apr. 2005.

[9] D. Antoniades, M. Polychronakis, S. Antonatos, E. P. kééns, S. Ubik,
and A. Oslebo. Appmon: An application for accurate per ajapibn traffic
characterization. IProceedings of IST Broadband Europe 2006 Conference
December 2006.

[10] P. Arlos, M. Fiedler, and A. A. Nilsson. A distributed gsve measurement
infrastructure. InProceedings of the 6th International Passive and Active
Network Measurement Workshop (PAM’0Opdges 215-227, 2005.

[11] P.Benko and A. Veres. A passive method for estimatirdyterend tcp packet
loss. InProceedings of IEEE Globecqra002.

[12] Cisco Systems. Cisco IOS Netflowt t p: / / www. ci sco. com war p/
public/ 732/ netflow .

[13] A. Ciuffoletti, A. Papadogiannakis, and M. Polychr&isa Network monitor-
ing session description. IRAroceedings of the CoreGRID Workshop on Grid
Middleware (in conjunction with ISC '07June 2007.

71

72 BIBLIOGRAPHY

[14] A. Ciuffoletti and M. Polychronakis. Architecture ofreetwork monitoring
element. Technical Report TR-0033, CoreGRID Project, katyr2006.

[15] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapeny@lgascope:
a stream database for network applications. Phoceedings of the ACM
SIGMOD international conference on Management of dptages 647-651,
2003.

[16] L. Deri. nProbe.ht t p: / / www. nt op. or g/ nPr obe. ht ni .
[17] L. Deri. ntop.htt p: // www. nt op. or g/ .

[18] L. Deri. Improving passive packet capture:beyond depolling. InPro-
ceedings of SANE004.

[19] L. Deri. ncap: Wire-speed packet capture and transaris$n Proceedings of
the IEEE/IFIP Workshop on End-to-End Monitoring Technisjaad Services
(E2EMON) 2005.

[20] N. G. Duffield and M. Grossglauser. Trajectory Samplfog Direct Traf-
fic Observation. InProceedings of the conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Comigation (SIG-
COMM), pages 271-282, 2000.

[21] N. G. Duffield, F. L. Presti, V. Paxson, and D. F. Towsléyferring link loss
using striped unicast probes. INFOCOM, pages 915-923, 2001.

[22] eEye Digital Security. .ida “Code Red” Wormt t p: / / www. eeye. com
ht M / Resear ch/ Advi sori es/ AL20010717. ht i .

[23] Endace measurement systeni3AG 4.3GE dual-port gigabit ethernet net-
work monitoring cargd2002.ht t p: / / ww. endace. coni .

[24] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski,Fapagiannaki, and
F. Tobagi. Design and Deployment of a Passive Monitoringastfucture. In
Proceedings of the Passive and Active Measurement Workalpop2001.

[25] Y. Fu, L. Cherkasova, W. Tang, and A. Vahdat. EtE: Passivd-to-end Inter-
net service performance monitoring. Rmoceedings of the USENIX Annual
Technical Conferenggages 115-130, 2002.

[26] M. Grossglauser and J. Rexford. Passive traffic measeme for IP opera-
tions. InThe Internet as a Large-Scale Complex Sysfmmges 91-120. 2005.

[27] G. lannaccone, C. Diot, D. McAuley, A. Moore, |. PrathdaL. Rizzo. The
CoMo White Paper, 2004.http://cono. i ntel -research. net/
pubs/ cono. whi t epaper . pdf.

[28] Intel Corporation. Intel IXP1200 Network Processoritglpaper, 2000.

BIBLIOGRAPHY 73

[29] H. Jiang and C. Dovrolis. Passive estimation of tcp btnip times. SIG-
COMM Comput. Commun. Re82(3):75-88, 2002.

[30] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and Kaffyl The
architecture of CoralReef. an Internet traffic monitorirajtware suite. In
Proceedings of the 2nd International Passive and Activevidgt Measure-
ment WorkshopApr. 2001.

[31] D. Koukis, S. Antonatos, D. Antoniades, E. P. Markatrsd P. Trimintzios.
A generic anonymization framework for network traffic. Pnoceedings of
the IEEE International Conference on Communications (IQ@jume 5,
June 2006.

[32] S. Krishnan. rpcaphtt p://rpcap. sourceforge. net/.

[33] E. P. Markatos, D. N. Pnevmatikatos, M. D. Flouris, and® H. Kateve-
nis. Web-conscious storage management for web proba#s=/ACM Trans.
Netw, 10(6):735-748, 2002.

[34] M. L.Massie, B.N. Chun, and D. E. Culler. The Gangliatbisited Monitor-
ing System: Design, Implementation, and Experienearallel Computing
30(7), July 2004.

[35] S. McCanne and V. Jacobson. The BSD Packet Filter: A Neghitecture
for User-level Packet Capture. Proceedings of the Winter 1993 USENIX
Conferencepages 259-270, January 1993.

[36] S. McCanne, C. Leres, and V. Jacobson. libpcap. Laver@&wsrkeley Labo-
ratory, Berkeley, CA. (software available from http://wwepdump.org/).

[37] L. Michael and G. Lior. The effect of packet reorderimga backbone link
on application throughputNetwork, IEEE 16(5):28-36, 2002.

[38] A. Moore, J. Hall, E. Harris, C. Kreibich, and I. Pratt. rékitecture of a
network monitor. InProceedings of the 4th International Passive and Active
Network Measurement Workshadfpril 2003.

[39] A. Papadogiannakis, D. Antoniades, M. Polychrona&is] E. P. Markatos.
Improving the performance of passive network monitoringligations using
locality buffering. InProceedings of the #5Annual Meeting of the IEEE
International Symposium on Modeling, Analysis, and Sitradaof Computer
and Telecommunication Systems (MASCQD8)ober 2007.

[40] A. Papadogiannakis, A. Kapravelos, M. PolychronakspP. Markatos, and
A. Ciuffoletti. Passive end-to-end packet loss estimatawrgrid traffic mon-
itoring. In Proceedings of the CoreGRID Integration Worksha@06.

[41] V. Paxson. Bro: A system for detecting network intruiglar real-time. In
Proceedings of the 7th USENIX Security Symposianuary 1998.

74

[42]

[43]

[44]
[45]

[46]

[47]

[48]
[49]

[50]

[51]
[52]

[53]

[54]

BIBLIOGRAPHY

M. Polychronakis, K. G. Anagnostakis, E. P. Markatas) &. @slebg. De-
sign of an application programming interface for IP networénitoring. In
Proceedings of the®IEEE/IFIP Network Operations and Management Sym-
posium (NOMS)pages 483—-496, April 2004.

J. Quittek, T. Zsehy, B. Claise, and S. Zander. Requemshfor IP Flow In-
formation Export, Oct. 2004. RFC391t t p: / / www. i etf.org/rfc/
rfc3917. txt.

J. Ritter. ngrep — Network grefint t p: / / ngr ep. sour cef orge. net/.

M. Roesch. Snort: Lightweight intrusion detection fatworks. InProceed-
ings of the 1999 USENIX LISA Systems Administration Caméer&lovem-
ber 1999.

S. Savage. Sting: A tcp-based network measurement @ SENIX Sym-
posium on Internet Technologies and Systems (USIESP.

J. Sommers, P. Barford, N. Duffield, and A. Ron. Impravactcuracy in end-
to-end packet loss measurement. Plimceedings of the 2005 conference on
Applications, technologies, architectures, and proteciar computer com-
munications (SIGCOMM)yages 157-168, 2005.

The Tcpdump Group. tcpdumpt t p: / / www. t cpdunp. or g/ .

P. Trimintzios, M. Polychronakis, A. Papadogiannalkis Foukarakis, E. P.
Markatos, and A. Jslebg. DIMAPI: An application programginterface
for distributed network monitoring. IProceedings of the fDIEEE/IFIP
Network Operations and Management Symposium (NORS) 2006.

K. Wang, G. Cretu, and S. J. Stolfo. Anomalous payloadedl worm detec-
tion and signature generation. Rroceedings of the 8th International Sym-
posium on Recent Advances in Intrusion Detection (RA2D)5.

P. Wood. libpcap-mmap. http://public.lanl.gov/cpw/

J. Wu, S. Vangala, L. Gao, and K. Kwiat. An effective dtebture and algo-
rithm for detecting worms with various scan techniques.Piaceedings of
the 11th Network and Distributed System Security Sympd®ildsS) 2004.

K. Xinidis, I. Charitakis, S. Antonatos, K. G. Anagnakis, and E. P.
Markatos. An active splitter architecture for intrusiorted#ion and preven-
tion. IEEE Transactions on Dependable and Secure Compudia(.):31—44,
2006.

C.C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring aadly warning
for internet worms. IfProceedings of the 10th ACM conference on Computer
and communications security (CCBages 190-199, 2003.

