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Abstract

Passive network monitoring is the basis for a multitude of systems that support the
robust, efficient, and secure operation of modern computer networks. Traditional
passive network monitoring approaches focus either on relatively simple network
traffic measurement and analysis applications, or just for gathering packet traces
that are analyzed off-line. However, these approaches are not adequate to support
emerging monitoring applications such as intrusion detection systems, detection of
Internet worm outbreaks and accurate traffic characterization. In addition, most of
these applications would benefit from monitoring data gathered at multiple van-
tage points across the Internet. At the same time, the speed of modern network
links increases, Internet traffic gets more complex, and applications more CPU and
memory demanding due to more complex analysis operations. Thus, there is a
growing demand for more efficient passive monitoring since the performance of
such applications becomes a critical issue.

In this thesis we present the design, implementation and performance evalua-
tion of DiMAPI, a flexible and expressive application programming interface for
distributed passive network monitoring. A broad range of monitoring applications
can benefit from DiMAPI to efficiently perform advanced monitoring tasks over a
potentially large number of passive monitoring sensors.

Also, we present a novel approach for improving the performance of a large
class of CPU and memory intensive passive network monitoring applications. Our
approach, calledlocality buffering, reorders the captured packet stream, before it is
delivered to the application, in a way that results to improved code and data locality,
and consequently to an overall increase in the packet processing throughput and to a
decrease in the packet loss rate. We have implemented locality buffering within the
widely usedlibpcap packet capturing library, which allows existing monitoring
applications to transparently benefit from the reordered packet stream without the
need to change application code. Our experimental evaluation shows that locality
buffering improves significantly the performance of popular applications.

Supervisor: Professor Evangelos Markatos
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Per�lhyhH pajhtik  epopte�a th k�nhsh enì diktÔou upologist¸n apotele� ènanshmantikì par�gonta gia thn exasf�lish th apodotik  kai asfal  touleitourg�a. Oi paradosiakè prosegg�sei esti�zoun e�te se aplè metr seikai sullog  statistik¸n, e�te sthn pl rh katagraf  th k�nhsh tou diktÔou.Autè oi prosegg�sei ìmw den e�nai eparke� gia na uposthr�xoun ti nèean�gke pou èqoun prokÔyei, ìpw sust mata gia an�qneush epijèsewn, an�-qneush th ragda�a ex�plwsh worms sto Diad�ktuo kai akrib  taxinìmhshth k�nhsh tou diadiktÔou an�loga me ti efarmogè pou thn par�goun.Epiplèon, h dunatìthta tautìqronh epopte�a poll¸n diaforetik¸n diktÔwnsto Diad�ktuo ja ofeloÔse arket� autè ti efarmogè. Thn �dia stigm , oitaqÔthte twn sÔgqronwn diktÔwn aux�noun, h k�nhsh sto Diad�ktuo g�netaioloèna kai pio per�plokh kai oi efarmogè gia pajhtik  epopte�a diktÔwn ìlokai pio apaitikè se upologistik  isqÔ. Gia ìlou tou parap�nw lìgouup�rqei auxanìmenh an�gkh gia pio apodotikè efarmogè epopte�a diktÔwn.Se aut n thn ergas�a parousi�zoume thn sqed�ash, ulopo�hsh kai ax-iolìghsh mia programmatistik  biblioj kh, pou onom�zetai DiMAPI, hopo�a parèqei dunatìthte gia thn an�ptuxh efarmog¸n gia katanemhmènh pa-jhtik  epopte�a diktÔwn. H biblioj kh aut  e�nai euèlikth kai ekfrastik ,opìte prosfèrei thn dunatìthta gia an�ptuxh arket¸n efarmog¸n qrhsi-mopoi¸nta apodotik� èna meg�lo arijmì epopteuìmenwn diktÔwn.Ep�sh, parousi�zoume mia kainotìma prosèggish gia thn belt�wsh thapìdosh enì meg�lou eÔrou apì  dh up�rqouse efarmogè pou apaitoÔnshmantik  upologistik  isqÔ. Aut  h prosèggish, pou onom�zetai locality
buffering, anadiat�ssei thn seir� twn pakètwn diktÔou, prin ta d¸sei sthnefarmog  pou jèlei na ta epexergaste�, omadopoi¸nta ta "parìmoia� pakètaètsi ¸ste na belti¸netai h prìsbash sthn mn mh tou sust mato kai naepitaqÔnetai h epexergas�a twn pakètwn apo thn efarmog  lìgw meiwmènwn
cache misses. Ulopoi same aut n thn prosèggish se mia eurèw diadedomènhbiblioj kh gia katagraf  pakètwn diktÔou me tètoio trìpo ¸ste ìse efar-mogè thn qrhsimopoioÔn na mporoÔn na epofelhjoÔn apo thn teqnik  maqwr� na qreiaste� na k�noun kamm�a allag  ston k¸dik� tou. H peiramatik axiolìghsh aut  th teqnik , qrhsimopoi¸nta trei dhmofil  efarmogè,de�qnei oti mpore� na epitÔqei shmantikè belti¸sei sthn apìdosh tou.Epìpth: Kajhght  Eu�ggelo Markato
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1
Introduction

1.1 The Need for Effective Passive Network Monitoring

Over the last few years, we noticed a rapid evolution and growth of the Inter-
net. Since the widespread development of DSL broadband homeconnections,
metropolitan wireless networks and mobile devices with Internet connection, the
number of users, hosts, domains, and enterprise networks that are connected to the
Internet has been growing explosively. Along with the phenomenal growth of the
Internet, the volume and complexity of Internet traffic is constantly increasing, and
faster networks are constantly being deployed. Emerging highly distributed appli-
cations, such as media streaming, Grid computing and very popular peer-to-peer
systems for file sharing, demand for increased bandwidth. Moreover, the number
of attacks against Internet connected systems continues togrow at alarming rates.

As networks grow larger and more complicated, effective network monitoring
and measurement is becoming an essential function for understanding, managing
and improving the performance and security of computer networks. Network traffic
monitoring is getting increasingly important for a large set of Internet users and ser-
vice providers, such as ISPs, NRNs, computer and telecommunication scientists,
security administrators, and managers of high-performance computing infrastruc-
tures.

Passive traffic monitoring and capturing has been regarded as the main solution
for advanced network monitoring and security systems that require fine-grained
performance measurements, such asdeep packet inspection[26]. For instance,
calculating the distribution of traffic among different applications has become a
difficult task. Several recent applications use dynamically allocated ports, and
therefore, cannot be identified based on a well known port number. Instead, proto-
col parsing and several other heuristics are commonly used,like searching for an

1



2 CHAPTER 1. INTRODUCTION

application-specific string in the packets payload [9]. Also, recent intrusion detec-
tion systems, such assnort [45] andbro [41], need to be able to inspect and
process network packets payload, in order to detect computer viruses and worms
at times of emergency, based on attack “signatures” and using advanced pattern
matching algorithms.

However, traditional passive network monitoring approaches are not adequate
for fine-grained performance measurements nor for securityapplications. Tradi-
tional approaches to passive network monitoring focus either on collecting flow-
level statistics [12], which makes them unsuitable for applications that perform
fine-grained operations like deep packet inspection, or in full packet capture [24],
which significantly increases their operational overhead.Such limitations, i.e.,
too little information provided by flow-level traffic summaries versus too much
data provided by full packet capture, demonstrate the need for a portable general-
purpose environment for running network monitoring applications on a variety of
hardware platforms. If properly designed, such an environment could provide ap-
plications with just the right amount of information they need: neither more, such
as the full packet capture approaches do, nor less, such as the flow-based statistics
approaches do.

While passive monitoring has been traditionally used for relatively simple net-
work traffic measurement and analysis applications, or justfor gathering packet
traces that are analyzed off-line, in recent years it has become vital for a wide class
of more CPU and memory intensive applications, such as network intrusion detec-
tion systems (NIDS) [45], accurate traffic categorization [9], and NetFlow export
probes [1] which need to inspect both the headers and the whole payloads of the
captured packets, a process widely known asdeep packet inspection. The complex
analysis operations of such demanding applications are translated into an increased
number of CPU cycles spent on each captured packet, which reduces the overall
processing throughput that the application can sustain without dropping incoming
packets. At the same time, as the speed of modern network links increases, there is
a growing demand for more efficient packet processing using commodity hardware
that can keep up with higher traffic loads.

Moreover, traditional passive network monitoring applications are most com-
monly based on data gathered at a single observation point. Such applications run
locally on the monitoring sensor, which gathers the required information and pro-
cesses the captured data. Several emerging applications would benefit from moni-
toring data gathered at multiple observation points acrossthe Internet. The instal-
lation of several geographically distributed network monitoring sensors provides a
broader view of the network in which large-scale events could become apparent.
Recent research efforts [50,52,54] have demonstrated thata large-scale monitoring
infrastructure of distributed cooperative monitors can beused for building Internet
worm detection systems. Distributed Denial-of-Service attack detection applica-
tions would also benefit from multiple vantage points acrossthe Internet. Also,
wide-area application (e.g. peer-to-peer systems) debugging can be facilitated by a
distributed monitoring infrastructure. Finally, user mobility necessitates distributed
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monitoring due to nomadic users who change locations frequently across different
networks.

So, it is clear that distributed network monitoring is becoming necessary for un-
derstanding the performance of modern networks and for protecting them against
security breaches. The wide dissemination of a cooperativepassive monitoring
infrastructure across many geographically distributed and heterogeneous sensors
necessitates a uniform access platform, which provides a common interface for
applications to interact with the distributed monitoring sensors.

1.2 Contributions

In the above section we indicate the need for effective passive network monitoring.
Thus, the motivation of this work is to develop new libraries, or extend existing
ones, that will facilitate the development of passive network monitoring applica-
tions and improve their performance. Also, a complementarygoal is to transpar-
ently improve the performance of existing monitoring applications without need
to altering their code. For performance improvements, a passive monitoring li-
brary can build on top of specialized hardware (e.g. DAG cards [23] or network
processors [28]) in a transparent way for the applications.However, we prefer a
generic user-level technique, for easy deployment, that will significantly improve
the packet processing performance of the monitoring application itself using com-
modity hardware.

Our key novel contributions in this thesis are the following:

• We present DiMAPI, a flexible and expressive programming framework for
effective distributed passive network monitoring. DiMAPIenables users to
clearly communicate their monitoring needs to remote passive monitoring
platforms. Using existing solutions, likerpcap [32] or WinPcap [5], we
would have to fetch all the packets from each remote monitoring sensor to
the application’s host in order to process them. On the otherhand, using
DiMAPI we push more functionality to the monitoring sensorsside and only
the necessary results are being transfered over the network, that is much
more effective.

• Furthermore, DiMAPI exploits specialized hardware for improving perfor-
mance without any change to the API, so that applications areable to run
without modifying their code. Also, the monitoring infrastructure is effi-
ciently shared among many users, providing better performance by grouping
and optimizing their monitoring needs into a single monitoring daemon.

• We introduce a scalable and non-intrusive technique based on distributed
passive network monitoring for estimating the real-time packet loss ratio be-
tween different measurement points.
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• We present a novel technique, calledlocality buffering, that is able to sig-
nificantly improve the performance of a wide class of CPU and memory
intensive passive network monitoring applications, such as intrusion detec-
tion systems [45], accurate traffic classification applications [9] and NetFlow
export probes [1]. The technique is based on adapting the packet stream by
clustering packets with the same destination port, before they are delivered
to the monitoring application, resulting to improved memory access locality
and consequently to an overall performance improvement in the packet pro-
cessing throughput. We implemented locality buffering within the widely
usedlibpcap library, so existing applications can benefit transparently
without any changes to their code, and we experimentally evaluated it using
three popular passive monitoring tools. The results shows that, for instance,
the Snort intrusion detection system exhibits a 40% increase in the packet
processing throughput and a 60% improvement in packet loss rate.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 presents the design and
implementation of DiMAPI, illustrates some simple examples of DiMAPI usage
and discusses the main advantages that it offers. In Chapter3 we describe in detail
two real-world applications which take advantage of the useof DiMAPI. Chap-
ter 4 outlines the overall approach of locality buffering and presents its detailed
implementation within thelibpcap packet capture library. Chapter 5 presents
the experimental evaluation of DiMAPI network-level performance and the ex-
perimental evaluation of locality buffering using three popular passive monitoring
tools. Finally, Chapter 6 summarizes related work, and Chapter 7 concludes the
thesis.



2
DiMAPI: An API for Distributed Passive

Network Monitoring

The need for elaborate monitoring of large-scale network events and characteristics
requires the cooperation of many, possibly heterogeneous,monitoring sensors, dis-
tributed over a wide-area network, or several collaborating Autonomous Systems
(AS). In such an environment, the processing and correlation of the data gathered
at each sensor gives a broader perspective of the state of themonitored network, in
which related events become easier to identify.

Figure 2.1 illustrates a high-level view of such a distributed passive network
monitoring infrastructure. Monitoring sensors are distributed across several au-
tonomous systems, with each AS having one or more monitoringsensors. Each
sensor may monitor the link between the AS and the Internet (as in AS 1 and 3), or
an internal link of a local sub-network (as in AS 2). An authorized user, who may
not be located in one of the participating ASes, can run monitoring applications
that require the involvement of an arbitrary number of the available monitoring
sensors.

In order to take advantage of information from multiple vantage points, dis-
tributed monitoring applications need concurrent access to several remote moni-
toring sensors. DiMAPI [49] fulfils this requirement by facilitating the program-
ming and coordination of a set of remote sensors from within asingle monitoring
application. DiMAPI enables users to efficiently configure and manage any set of
remote or local passive monitoring sensors, acting as a middleware to homoge-
neously use a large distributed monitoring infrastructure.

5
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Internet

Autonomous
System 1

Autonomous
System 3

Autonomous
System 2Local

Network 1

Local
Network 2

Monitoring Sensor

User

FIGURE 2.1: A high-level view of a distributed passive network monitoring infras-
tructure

2.1 Background: The Monitoring API

DiMAPI has been designed and realized by building on the Monitoring Applica-
tion Programming Interface (MAPI) [42], an expressive and flexible API for pas-
sive network traffic monitoring over a single local monitoring sensor. MAPI builds
on a generalized network flow abstraction and offers a standardized API, flexi-
ble and expressive enough to capture emerging application needs. Furthermore,
MAPI applications are able to run with commodity network interfaces or special-
ized network monitoring hardware (e.g., DAG cards [23]) without the need to alter
or re-compile their code.

In this section we introduce the main concepts of MAPI, briefly describe its
most important operations and its implementation. A complete specification of
MAPI is provided in the MAPI man pages [2].

2.1.1 Network Flow Abstraction

The goal of an application programming interface is to provide a suitable abstrac-
tion that is both simple enough for programmers to use, and powerful enough for
expressing complex and diverse monitoring application specifications. A good API
should also relieve the programmer from the complexities ofthe underlying mon-
itoring platform, while making sure that any features of specialized hardware can
be properly exploited.

Towards these targets, MAPI builds on a simple, yet powerful, abstraction: the
network flow. A network flow is generally defined asa sequence of packets that
satisfy a given set of conditions. These conditions can be arbitrary, ranging from
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Monitored network traffic

"Incoming web server traffic" "HTTP GET requests" "CodeRed worm"

Packet with destination port 80

P containing the string "GET "acket with destination port 80

Packet with destination port 80 containing the string "GET /default.ida?NNNNN..."

A B C

FIGURE 2.2: Network flow examples.

simple header-based filters to sophisticated protocol analysis and content inspec-
tion functions.

Figure 2.2 illustrates the concept of the network flow with some examples. On
the top we see a portion of the monitored network traffic, and below three different
network flows, each consisting of a subset of the monitored packets. Network flow
A consists of “all packets with destination port80”, i.e., packets destined to some
web server. Network flowB comprises “all HTTP GET request packets”, while
C contains only “packets of the CodeRed worm [22]”. Note that the packets of
network flowB are a subset ofA, and similarly, CodeRed packets are a subset
of all HTTP GET requests. The network flow abstraction allowsfor fine-grained
control of the conditions that the packets of a flow should satisfy.

The approach to network flows in MAPI is therefore fundamentally different
from existing flow-based models, e.g., NetFlow [12], which constrain the definition
of a flow to the set of packets with the same source and destination IP address and
port numbers within a given time-window. Furthermore, MAPIgives the network
flow afirst-class status: flows are named entities that can be manipulated in similar
ways to other programming abstractions, such as sockets, pipes, and files. In par-
ticular, users may create or destroy (close) flows, read, sample, or count the packets
of a flow, apply functions to flows, and retrieve other statistics from a flow, etc. Us-
ing this generalized network flow abstraction, users can express a wide variety of
monitoring operations. For instance, MAPI flows allow usersto develop simple
intrusion detection schemes that require content (payload) inspection. In contrast,
traditional approaches to network flows, such as NetFlow [12] and IPFIX [43], and
related systems and proposals, do not have the means of providing the advanced
functions required for this task. Going back to the example of Figure 2.2, although
NetFlow could be used to capture several characteristics ofthe traffic defined by
network flowA, it is not sufficient for monitoring the traffic of flowsB andC.
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MAPI Function Description

mapi_create_flow Creates a new network flow
mapi_apply_function Applies a function to all the packets of a flow

mapi_connect Connects to a flow to start receiving results
mapi_read_results Receives results computed by a function in the

packets of a flow
mapi_get_next_packet Reads the next packet of a flow

mapi_loop Invokes a handler function for each of the packets
of a flow

mapi_close_flow Closes a flow

TABLE 2.1: Overview of the basic MAPI calls

2.1.2 Basic MAPI Operations

This section gives an overview of the basic MAPI function calls, summarized in
Table 2.1. For a complete list of the available MAPI functions, along with their
detailed descriptions, please refer to [2].

Creating and Terminating Network Flows

Central to the operation of MAPI is the action of creating a network flow:

int mapi_create_flow(char *dev)

This call creates a network flow and returns a flow descriptorfd that refers to
it, or -1 on error. By default, a newly created flow consists ofall network packets
that go through the monitoring interfacedev. The packets of this flow can be
further reduced to those which satisfy an appropriate filteror other condition, as
will be described later.

Besides creating a network flow, monitoring applications may also close the
flow when they are no longer interested in monitoring:

int mapi_close_flow(int fd)

After closing a flow, all the structures that have been allocated for the flow are
released.

Applying Functions to Network Flows

The abstraction of the network flow allows users to treat packets belonging to dif-
ferent flows in different ways. For example, after specifying which packets will
constitute the flow, a user may be interested incapturingthe packets (e.g., to record
an intrusion attempt), or in justcountingthe number of packets and their lengths
(e.g., to measure the bandwidth usage of an application), orin samplingthe pack-
ets (e.g., to find the IP addresses that generate most of the traffic). MAPI allows
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Function Name Description

BPF_FILTER Filters the packets of a flow
PKT_COUNTER Counts the number of packets seen by a network flow
BYTE_COUNTER Counts the number of bytes seen by a network flow
STR_SEARCH Searches for a string inside the packet payload
TO_BUFFER Stores the packets of a flow for further reading
SAMPLE Samples packets from a flow
HASHSAMP Samples packets from a flow according to a hashing function
TO_FILE Dumps the packets of a flow to a file
ETHEREAL Filters packets using Ethereal display filters
HASH Computes an additive hash over the packets of a flow

BUCKET Divides packets into buckets based on their timestamps
THRESHOLD Signals when a threshold is reached

BINOP Adds or subtracts values from two other functions
DIST Returns the distribution of results from another function
GAP Returns the time delay between two consecutive packets in a flow

PKTINFO Returns information about a packet
PROTINFO Returns a specific protocol field
RES2FILE Stores results from other functions to a file
STARTSTOP Starts and/or stops measurements at a specific time

STATS Returns statistical information about results from other functions
BURST Returns the histogram of bursts

TABLE 2.2: Overview of MAPIstdlib functions

users to clearly communicate to the underlying monitoring system these different
monitoring needs. To enable users to communicate these different requirements,
MAPI allows the association of functions with network flows:

int mapi_apply_function(int fd, char * funct, ...)

The above call applies the functionfunct to every packet of the network flow
fd, and returns a relevant function descriptorfid. Depending on the applied
function, additional arguments may be passed. Based on the header and payload
of the packet, the function will perform some computation, and may optionally
discard the packet.

MAPI provides severalpredefinedfunctions that cover a broad range of stan-
dard monitoring needs through the MAPI Standard Library (stdlib). Several
functions are provided for restricting the packets that will constitute a network
flow. For example, applying theBPF FILTER function with parameter"tcp
and dst port 80" restricts the packets of a network flow denoted by the flow
descriptorfd to the TCP packets destined to port80, as in flowA of Figure 2.2.
STR SEARCH can be used to restrict the packets of a flow to only those that con-
tain a specified byte sequence. Network flowsB andC in Figure 2.2 would be
configured by applying bothBPF FILTER andSTR SEARCH. Many other func-
tions are provided for processing the traffic of a flow. Such functions include
PKT COUNTER and BYTE COUNTER, which count the number of packets and
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Function Library Description

Standard MAPI Function
Library (stdflib)

Basic functionality for most frequently used monitoring
needs

Extra MAPI Function Library
(extraflib)

Set of functions for advanced monitoring needs (e.g.
stream reassembly, regular expression pattern match-
ing, flow data generation)

Tracker MAPI Function
Library (trackflib)

Identify application-level traffic (e.g. FTP, Gnutella,
BitTorrent, etc)

MAPI Anonymization Function
Library (anonflib)

Anonymization functions for every protocol/field

Endace DAG Function Library
(dagflib)

Functions intended for better use the capabilities of the
DAG capturing hardware

TABLE 2.3: Overview of the MAPI function libraries

bytes of a flow,SAMPLE, which can be used to sample packets,HASH, for com-
puting a digest of each packet, andREGEXP, for pattern matching using regular
expressions.

Table 2.2 summarizes the functions ofstdlibwith a short description of each
one. For a complete list of the available functions instdlib and their description
please refer to [2].

Except from MAPI standard library, several other function libraries are cur-
rently exist in MAPI. They offer capabilities like stream reassembly, traffic clas-
sification [9], data anonymization [31] and NetFlow-like data generation [12, 43].
Table 2.3 summarizes the function libraries currently implemented in MAPI. More-
over, MAPI users are able to add their own function librariesand new specialized
functions for operating on packets.

After applying the desirable list of functions to a network flow, the user calls
the function

int mapi_connect(int fd)

in order to connect to the flow with flow descriptorfd to start receiving results.

Retrieving Results from Applied Functions

Although these functions enable users to process packets and compute network
traffic metrics without receiving the actual packets in the address space of the ap-
plication, they must somehow communicate their results back to the application.
For example, a user that has applied the functionPKT COUNTER to a network
flow, will be interested in reading what is the number of packets that have been
counted so far. This can be achieved by allocating a small amount of memory for
a data structure that contains the results. The functions that will be applied to the
packets of the flow will write their results into this data structure. The user who is
interested in retrieving the results will read the data structure using the following
call:



2.1. BACKGROUND: THE MONITORING API 11

mapi_results_t * mapi_read_results(int fd, int fid)

The above call receives the results computed by the functiondenoted by the
function descriptorfid, which has been applied to the network flowfd. It returns
a pointer to the result’s data structure:

typedef struct mapi_results {
void* res; //Pointer to result data
unsigned long long ts; //timestamp
int size; //size of the results

} mapi_results_t;

Theresfield of this data structure is a pointer to the actual function specific re-
sult data. The results are also provided with a 64-bit timestamp, that is the number
of microseconds since 00:00:00 UTC, January 1, 1970 (the number of seconds is
the upper 32 bits). The memory for the results of each function is allocated once,
during the instantiation of the flow.

Reading Packets from a Network Flow

Once a flow is established, packets belonging to that flow can be read one-at-a-time
using the following blocking call:

struct mapipkt * mapi_get_next_pkt(int fd, int fid)

The above function reads the next packet that belongs to flowfd. In order to
read packets, the functionTO BUFFER (which returns the relevantfid parameter)
must have previously been applied to the flow.TO BUFFER instructs the monitor-
ing system to store the captured packets into a shared memoryarea, from where the
user can directly read the packets, supporting this way efficient zero-copy packet
capturing platforms [19,23].

If the user does not want to read one packet at-a-time and possibly block, (s)he
may register a callback function that will be called when a packet to the specific
flow is available:

int mapi_loop(int fd, int fid, int cnt, mapi_handler callback)

The above call makes sure that the handlercallback will be invoked for
each of the nextcnt packets that will arrive in the flowfd.

2.1.3 MAPI Implementation

Figure 2.3 shows the main modules of MAPI. On the top of the Figure we see a set
of monitoring applications that, via the MAPI stub, communicate with the MAPI
daemon: a monitoring process running in a separate address space. The monitoring
daemon, calledmapid, is responsible for packet capturing and processing. It is
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FIGURE 2.3: MAPI Daemon Architecture

implemented as a user-level process, instead of a library connected to an operat-
ing system module, because it lead to faster implementationand to a more robust
system.Mapid is a single process that serve multiple monitoring applications in
parallel, so it is possible to perform several performance optimizations and lead to
better performance if compared with stand-alone monitoring applications that are
not based in MAPI.

The daemon, which has exclusive access to the captured packets, consists of
two threads: one data thread for packet processing, and one thread for the commu-
nication with the monitoring applications.

All active applications and their defined flows are internally stored in the dae-
mon in a list. Each captured packet is checked by the main processing thread
against the defined flow filters. Then, for every flow it belongsto, the packet passes
from every function that have been applied in this flow. In that way, the appropriate
actions are made for every packet: counters are incremented, sampling, substring
search, or other functions that are applied, and finally the packet may be sent to
the application, dumped to disk by the daemon, or dropped. Inour prototype im-
plementation, filtering is accomplished using thebpf filter() function of the
libpcap library [36], which applies a compiled BPF filter to capturedpackets in
user level.

All communication between the daemon and the monitoring applications is
handled by the “communication thread.” This thread constantly listens for requests
made by the monitoring application through calls of MAPI functions, and sets up
the appropriate shared data structures. When monitoring applications need to read
data, the control thread reads these data from the shared data structures and sends
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them to the applications. Communication between the MAPI stub andmapid is
performed through Unix sockets.

The MAPI stub is the part of the MAPI library that is transparent to the user.
It holds some necessary data structures for the flows that have been created and
configured and it is responsible to forward each MAPI call tomapid and return
the results back to the user.

2.1.4 Example of MAPI usage: Link Utilization

In this section we present a simple MAPI-based application which introduces the
concept of the network flow and demonstrates the basic steps that must be taken
in order to create and use a network flow. The following application periodically
reports the utilization of a network link. It uses two network flows to separate the
incoming from the outgoing traffic, and demonstrates how to retrieve the results of
an applied function.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <signal.h>
5 #include <mapi.h>
6

7 static void terminate();
8 int in_fd, out_fd;
9

10 int main() {
11 int in_fid, out_fid;
12 mapi_results_t *result1, *result2;
13 unsigned long long *in_cnt, *out_cnt;
14 unsigned long long in_prev=0, out_prev=0;
15

16 signal(SIGINT, terminate);
17 signal(SIGQUIT, terminate);
18 signal(SIGTERM, terminate);
19

20 /* create two flows, one for each traffic direction */
21 in_fd = mapi_create_flow("eth0");
22 out_fd = mapi_create_flow("eth0");
23 if ((in_fd < 0) || (out_fd < 0)) {
24 printf("Could not create flow\n");
25 exit(EXIT_FAILURE);
26 }
27

28 /* separate incoming from outgoing packets */
29 mapi_apply_function(in_fd, "BPF_FILTER",
30 "dst host 139.91.145.84");
31 mapi_apply_function(out_fd, "BPF_FILTER",
32 "src host 139.91.145.84");
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33

34 /* count the bytes of each flow */
35 in_fid = mapi_apply_function(in_fd, "BYTE_COUNTER");
36 out_fid = mapi_apply_function(out_fd, "BYTE_COUNTER");
37

38 /* connect to the flows */
39 if(mapi_connect(in_fd) < 0) {
40 printf("Could not connect to flow %d\n", in_fd);
41 exit(EXIT_FAILURE);
42 }
43 if(mapi_connect(out_fd) < 0) {
44 printf("Could not connect to flow %d\n", out_fd);
45 exit(EXIT_FAILURE);
46 }
47

48 while(1) { /* forever, report the load */
49

50 sleep(1);
51

52 result1 = mapi_read_results(in_fd, in_fid);
53 result2 = mapi_read_results(out_fd, out_fid);
54 in_cnt = result1->res;
55 out_cnt = result2->res;
56

57 printf("incoming: %.2f Mbit/s (%llu bytes)\n",
58 (*in_cnt-in_prev)*8/1000000.0, (*in_cnt-in_prev));
59 printf("outgoing: %.2f Mbit/s (%llu bytes)\n\n",
60 (*out_cnt-out_prev)*8/1000000.0, (*out_cnt-out_prev));
61

62 in_prev = *in_cnt;
63 out_prev = *out_cnt;
64 }
65

66 return 0;
67 }
68

69 void terminate() {
70 mapi_close_flow(in_fd);
71 mapi_close_flow(out_fd);
72 exit(EXIT_SUCCESS);
73 }

The flow of the code is as follows: We begin by creating two network flows
with flow descriptorsin fd andout fd (lines 21 and 22) for the incoming and
outgoing traffic, respectively, and then we apply the filtersthat will differentiate the
traffic captured by each flow (lines 29– 32). In our case, we monitor the link that
connects the host 139.91.145.84 to the Internet. All incoming packets will then
have 139.91.145.84 as destination address, while all outgoing packets will have
this IP as source address. In case that we would monitor a linkthat connects a
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whole subnet to the Internet, the host in the filtering conditions should be replaced
by that subnet. For instance, for the subnet 139.91/16, we would define the filter
dst net 139.91.0.0 for the incoming traffic.

Since we are interested in counting the amount of traffic passing through the
monitored link, we apply theBYTE COUNTER function to both flows (lines 35 and
36), and save the relevant function descriptors inin fid andout fid for future
reference.

After activating the flows (lines 39–46), we enter the main program loop, which
periodically calls themapi read results() for each flow (lines 52–53) and
prints the incoming and outgoing traffic in Mbit/s, and the number of bytes seen
in each one second interval (lines 57–60). In each iteration, the current value of
eachBYTE COUNTER function result is retrieved by dereferencingin cnt and
out cnt.

In order to ensure a graceful termination of the program, we have registered
the signalsSIGINT,SIGTERM, andSIGQUITwith the functionterminate()
(lines 16–18), which closes the two flows and terminates the process.

2.2 Network Flow Scope

In order to facilitate the concurrent programming and coordination of a large num-
ber of remote passive monitoring systems, we have extended MAPI to operate in a
distributed monitoring environment. However, MAPI supports the creation of net-
work flows associated with asinglelocal monitoring interface, and thus, in MAPI,
a network flow receives network packets that are always captured at a single mon-
itoring point.

One of the main novelties of DiMAPI is the introduction of thenetwork flow
scope, a new attribute of network flows. In DiMAPI, each flow is associated with
a scope that defines a set of monitoring interfaces which are collectively used for
network traffic monitoring. Generally, given an input packet stream, a network
flow is defined as a sequence of packets that satisfy a given setof conditions. In
MAPI, the input stream of packets comes from a single monitoring interface. The
notion of scope allows a network flow to receive packets from several monitoring
interfaces. With this definition, the abstraction of the network flow remains intact:
a network flow with scope is still a subset of the packets of an input packet stream.
However, the input packet stream over which the network flow is defined may come
from more than one monitoring points. In this way, when an application applies
functions to manipulate or extract information from a network flow with a scope of
multiple sensors, effectively it manipulates and extractsinformation concurrently
from all these monitoring points.

In order to support the abstraction of scope in DiMAPI, the interface and im-
plementation ofmapi create flow() function has been extended to support
the definition of multiple remote monitoring interfaces. A remote monitoring in-
terface can be defined as ahost:interface pair, wherehost is the host
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FIGURE 2.4: An example of a network flow scope with multiple sensors

name or IP address of the remote sensor andinterface is the device name
of the monitoring interface. The scope of a network flow is defined by concate-
nating several comma-separatedhost:interface pairs as a string argument to
mapi create flow(). For example, the following call creates a network flow
associated with two monitoring interfaces located at two different hosts across the
Internet:

fd = mapi_create_flow("m1.forth.gr:/dev/dag0, 123.45.6.7:eth2");

In the example of Figure 2.4, a monitoring application creates a network flow
associated with two remote sensors located in two differentorganizations,FORTH

andUNINETT. The user’s monitoring application applies theBPF FILTER func-
tion in order to restrict the packets of the flow to only those that are destined to
some web server (some code has been omitted for clarity). As aresult, the net-
work flow consists of packets with destination port 80 that are captured from both
UNINETT’s andFORTH’s sensors.

The scope abstraction also allows the creation of flows associated with mul-
tiple interfaces located at the same host. For example, the following call creates
a network flow associated with a commodity Ethernet interface and a DAG card,
both installed at the same monitoring sensor.

fd = mapi_create_flow("m1.abc.org:/dev/dag0, m1.abc.org:eth1");

Note that the scope notation in DiMAPI preserves the semantics of the existing
mapi create flow() function, ensuring backwards compatibility with exist-
ing MAPI applications. A local network flow can still be created by specifying one
monitoring interface without prepending a host.
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FIGURE 2.5: Architecture of a DiMAPI monitoring sensor

2.3 DiMAPI Implementation

Figure 2.5 illustrates the architecture of a monitoring sensor that supports DiMAPI.
The overall architecture includes one or more monitoring interfaces for captur-
ing traffic, a monitoring daemon, which provides optimized passive monitoring
services, a DiMAPI stub, for writing monitoring applications, a communication
agent, which facilitates communication with multiple remote monitoring applica-
tions, and finally, the actual monitoring applications.

The host of the monitoring sensor is equipped with one or moremonitoring
interfaces for packet capture, and optionally an additional network interface for
remote access. The latter is the sensor’s “control” interface, and ideally it should
be separate from the packet capturing interfaces. Packets are captured and pro-
cessed bymapid, as discussed in Section 2.1.3.Mapid is optimized to perform
intensive monitoring tasks at high speeds, exploiting any features of the underlying
hardware. Local monitoring applications communicate directly with mapid via a
subset of the DiMAPI stub that is optimized for fast and efficient local access.
This is achieved by performing all communication between local applications and
mapid via shared memory and UNIX sockets [42].

Remote applications must be able to communicate their monitoring require-
ments to each sensor through the Internet. One possible approach for enabling
applications to communicate with a remote sensor would be tomodify mapid to
interact directly with the remote applications through theDiMAPI stub. However,
mapid is a complex part of the software monitoring architecture and is already
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responsible for handling important “heavy-duty” tasks, asthis is where all the pro-
cessing of the monitoring requirements of the user applications takes place. The
monitoring daemon should keep up with intensive high-speedpacket processing.
Extendingmapid to handle communication directly with remote clients would
probably introduce additional performance overhead. Furthermore, allowing re-
mote clients to connect directly tomapid, which has exclusive access to the cap-
tured packets, may introduce significant security risks.

For the above reasons, we have chosen an alternative design that avoids any
modifications tomapid, as depicted in Figure 2.5. This is achieved by introducing
an intermediateagent betweenmapid and the remote applications, for handling
all remote communication. ThisCommunication Agent(mapicommd), which runs
on the same host asmapid, acts as a proxy for the remote applications, forwarding
their monitoring requests tomapid, and sending back to them the computed re-
sults. The presence ofmapicommd is completely transparent to user applications,
which continue to operate as if they were interacting directly with mapid, only the
DiMAPI stub is aware of the presence ofmapicommd. Furthermore, the presence
of mapicommd is also transparent tomapid, sincemapicommd operates as a
typical local monitoring application.

The DiMAPI stub is responsible to support the DiMAPI functionality in a mon-
itoring application, running completely transparently for the user. At the monitor-
ing sensor side, the DiMAPI functionality is solely implemented bymapicommd,
which is built as a monitoring application that interacts locally with themapid.
This allows for a morerobustsystem, as communication failures will not result in
failure of the monitoring processes. Furthermore, in the case that the remote mon-
itoring functionality of a sensor is not required any more, it can be easily left out
by simply not starting upmapicommd.

In the following sections we look more closely into the operation and imple-
mentation ofmapicommd, DiMAPI stub and their communication protocol. We
also examine some privacy and security issues and an alternative implementation
for getting results from the monitoring sensors that enhance performance.

2.3.1 Communication Agent

The communication agent runs on the same host withmapid and acts as an inter-
mediary between remote monitoring applications andmapid. Upon the reception
of a monitoring request from the DiMAPI stub of a remote application, it forwards
the relevant call to the localmapid, which in turn processes the request and sends
back to the user the computed results, again throughmapicommd. The commu-
nication agent is a simple user-level process implemented on top of MAPI, i.e.,
it looks like an ordinary MAPI-based monitoring application. However, its key
characteristic is that it can receive monitoring requests from othermonitoring ap-
plications that run on different hosts and are written with DiMAPI. This is achieved
by directly handling the control messages sent by the DiMAPIstub of remote ap-
plications, and transforming them to the relevant local calls.
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FIGURE 2.6: Control sequence diagram for the remote execution of the function
mapi create flow()

The communication agent listens for monitoring requests from DiMAPI ap-
plications to a known predefined port. Then, it runs into an infinite loop, con-
stantly waiting for connections from remote applications.A new thread is spawned
for each new remote application, which thereafter handles all the communication
between the monitoring application andmapicommd. The DiMAPI stub of the
remote application sends a control message for each DiMAPI call invocation to
mapicommd, which in turn repeats the call, though this time the MAPI stub of
mapicommd will interact directly with themapid running on the same host.
mapicommd then returns the result to the stub of the remote application, which in
turn returns it to the user.

The message sequence diagram in Figure 2.6 shows the operation of the com-
munication agent in more detail, using a concrete example ofthe control sequence
for an invocation of themapi create flow() call. Initially, a monitoring ap-
plication callsmapi create flow() in order to create a network flow at a re-
mote monitoring sensor (step 1). The DiMAPI stub retrieves the IP address of the
sensor and sends a respective control message to themapicommd running on that
host through a TCP socket (step 2). The message contains the type of the DiMAPI
call to be executed (CREATE FLOW), along with the monitoring interface that will
be used (eth0). Upon the receipt of the message,mapicommd repeats the call to
mapi create flow (step 3) to the localmapid, thus the stub ofmapicommd
sends the respective message through a UNIX socket (step 4).

Assuming a successful creation of the flow,mapid returns the flow descriptor
fd priv of the newly created flow to the stub ofmapicommd (step 5), which
in turn finishes the execution of themapi create flow() call by returning
fd priv to mapicommd (step 6). The communication agent constructs a cor-
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FIGURE 2.7: Format of the control messages exchanged between DiMAPI stub
andmapicommd

responding reply message that contains the flow descriptor,and sends it back to
the DiMAPI stub of the user application (step 7). In case thatthe network flow is
associated with more than one monitoring sensors, steps 2–7are repeated for each
sensor of the network flow’s scope and the DiMAPI stub of the application will
receive several flow descriptors, one for each of the monitoring interfaces consti-
tuting the scope of the network flow. Finally, the DiMAPI stubof the application
generates and returns back to the user a new unique flow identifier (fd), and inter-
nally stores the mapping between the received flow descriptors (fd priv) and the
newly created identifier (step 8).

Although at first sight it may seem that the overhead for a DiMAPI call is quite
high, since it results in several control flow transitions, we should stress that most of
the above steps are function calls or inter-process communication that takes place
on the same host, and thus, incur very small overhead. The operations responsible
for the largest part of the cost are the send and receive operations through the TCP
socket (steps 2 and 7), which incur an unavoidable overhead due to network latency.
We look in more detail into this issue in Section 5.1.

2.3.2 Communication Protocol

Monitoring applications reside on a host that may be locatedremotely from the
monitoring sensors, probably even in a different administrative domain. The com-
munication protocol between the monitoring sensors and theremote applications
is one of the main factors for the performance of a distributed monitoring applica-
tion. Our design target was to have communication with minimal overhead, which
scales well over a large number of monitoring sensors.

The DiMAPI stub encapsulates the communication with the remote monitor-
ing sensors. In DiMAPI, all communication between the stub and the monitoring
sensors is performed through TCP sockets. DiMAPI stub library calls exchange
control messages withmapicommd that describe the operation to be executed.
Each message contains all the necessary information for theexecution of a function
instance. After sending a request, the stub waits for the corresponding acknowl-
edgement from the sensor, indicating the successful completion of the requested
action, or a specific error in case of failure.
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The format of the messages exchanged between the DiMAPI stuband the
mapicommd is shown in Figure 2.7. Each message has variable length, denoted
by the fieldTotal Length. TheCommand field contains the operation type,
sent by the stub tomapicommd, or the acknowledgement value for a request that
mapicommd has processed. It takes values from an enumeration of all message
types that can be exchanged between the stub andmapicommd. For example, for a
call tomapi create flow(), the relevant message sent from the stub will have
a Command value ofCREATE FLOW, for a call tomapi apply function()
Command will be APPLY FUNCTION, for a successful create flow the response
will be CREATE FLOW ACK and so on.

The fieldfd is the descriptor of the network flow being manipulated,fid is the
descriptor of the applied function instance being manipulated, andTimestamp
is a timestamp of the specific moment that the result includedin the communi-
cation message was produced. Finally, the fieldData is the only field of vari-
able size, serving several purposes depending on the contents of theCommand
field. For example, when the message is a reply frommapicommd to a call of
mapi read results(), it contains the results of an applied function. If it is
a reply of amapi get next pkt call then theData filed contains a captured
network packet. If theCommand field contains a request sent from the DiMAPI
stub, e.g., to apply some function to a network flow, it contains the arguments of
the relevant function (e.g. the name of the function to be applied along with its
arguments).

2.3.3 DiMAPI Stub

In this section we discuss some implementation issues regarding the DiMAPI stub
on the monitoring application’s side.

Creating and Configuring Network Flows using Multiple Remote Sensors

In order to support the scope functionality, DiMAPI stub hasbeen extended for
handling communication with many remote sensors concurrently. Consider for
example the following call, which creates a network flow at three different remote
sensors:

fd = mapi_create_flow("sensor.uninett.no:/dev/dag0,
mon.cesnet.cz:eth0, mon1.ics.forth.gr:eth0");

In order to implement this call, DiMAPI stub communicates with the communica-
tion agents running at each of the three remote sensors. Thisis achieved by sending
three separate control messages, one to eachmapicommd, through three different
TCP sockets. Thus, the following calls will be made by the three agents:

sensor.uninett.no: fd_uninett = mapi_create_flow("/dev/dag0");
mon.cesnet.cz: fd_cesnet = mapi_create_flow("eth0");
mon1.ics.forth.gr: fd_forth = mapi_create_flow("eth0");



22 CHAPTER 2. DIMAPI: AN API FOR DISTRIBUTED PASSIVE NETWORKMONITORING

In the above example, the creation of onedistributednetwork flow from the user
application resulted in the creation of threelocal network flows, one at each of
the three remote sensors. Assuming that the three flows were created successfully,
eachmapicommd will send back to DiMAPI stub an acknowledgement message
containing the flow descriptor of the flow that it created remotely (fd uninett,
fd cesnet, andfd forth, respectively). The DiMAPI stub will generate a
unique flow identifier (fd), and will internally store the remote flow descriptors
that it corresponds with. In the above example, the stub willstore the mapping
betweenfd and [fd uninett, fd cesnet, fd forth].

For subsequent calls that manipulatefd, such as the following:

int fid = mapi_apply_function(fd, "PKT_COUNTER");

the DiMAPI stub will send to the communication agents of the three sensors the
following corresponding messages:

sensor.uninett.no: [APPLY_FUNCTION, fd_uninett, PKT_COUNTER]
mon.cesnet.cz: [APPLY_FUNCTION, fd_cesnet, PKT_COUNTER]
mon1.ics.forth.gr: [APPLY_FUNCTION, fd_forth, PKT_COUNTER]

Since the stub knows each of the remote flow descriptors that constitutefd, it
can send targeted control messages with the appropriate flowdescriptor for each
mapicommd. DiMAPI stub stores a similar mapping for the function identifier
fid, and acts in a similar fashion whenever it is manipulated.

Using Communication Threads

Since the monitoring sensors are distributed located on several different hosts across
the Internet, the time interval between the dispatch of a control message and the
receipt of the corresponding reply is not constant, and may be several milliseconds
long. For this reason, it is not acceptable to send a control message and waiting
for reply from each remote monitoring sensor one-by-one. Instead, the receipt of
incoming messages in DiMAPI stub is implemented using a separate “communi-
cation thread” for each remote monitoring sensor used by theapplication (i.e., for
each TCP socket created by the stub). Each communication thread is responsi-
ble for receiving the replies of pending MAPI calls from one remote sensor, and
delivering them to the appropriate function.

A DiMAPI call prepares and sends a control message to each involving mon-
itoring sensor, and then it blocks by pushing down a semaphore variable. The
communication thread waits infinitely in a loop for incomingreplies from the cor-
respondingmapicommd. When such a reply message arrives, the communication
thread looks up the flow for which it is destined, copies the result in a flow-specific
buffer, and “wakes up” the blocked MAPI call by pushing up thecorresponding
semaphore. When the execution of the blocked call resumes, it retrieves the re-
sult from the buffer and processes it accordingly. This implementation guarantees
that the incoming messages are always delivered to the call that sent the relevant
request.
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Reading Results from Multiple Remote Sensors

While in local MAPI themapi read results() function returns a single in-
stance ofmapi results t struct (see 2.1.2), in DiMAPI it returns a vector of
mapi results t structs, one for each remote monitoring sensor (in the same
order that these sensors had been declared inmapi create flow().

In order to know the number of the remote monitoring sensors that our net-
work scope consists of, and so the number of themapi results t instances that
mapi read results()will return, we use themapi get scopesize()function:

int mapi_get_scope_size(int fd)

This function takes as a single argument the flow descriptor and returns the
number of the corresponding monitoring sensors. In case of alocal MAPI appli-
cation, it returns 1. In this way we provide full compatibility between MAPI and
DiMAPI applications.

Fetching Captured Packets

In DiMAPI, the mapi get next pkt() returns packets from the monitoring sensors in
a round-robin way, if it is possible. Upon the firstmapi get next pkt() call,
the request is forwarded to all the sensors of the scope. Eachsensor is mapped to
a slot in an internal buffer that stores incoming packets (with size of one packet
per each sensor). Packets from the first sensor go to the first slot, packets from
the second sensor go to the second slot, and so on. The first packet that arrives
is delivered to the application, and the corresponding slotis emptied. Before re-
turning the packet, a newGET NEXT PKT request is sent only to this sensor. In
case of consequentmapi get next pkt() requests, all slots are checked in a
round-robin way, beginning from the slot that was emptied inthe previous call.
The nextGET NEXT PKT request is sent to the sensor whose slot was emptied,
before returning the packet to the application, which ensures that all slots will be
always full, or at least have one pending request.

2.3.4 From Pull to Push Model

The current approach inDiMAPI functions is that the applications (transparently
through the DiMAPI stub) should send a request to the remote monitoring sensor
before receiving any results. This operation is similar to the definition ofpull model
in the Distributed Systems theory. Figure 2.8 depicts the operation and message
exchanges that occur in the case of amapi get next pkt() call. The same
operations are occurred in every MAPI call.

First, the MAPI application sends a request to the communication agent. Then,
the communication agent calls locally the corresponding MAPI function, using
the localmapid that runs in the same machine, and gets the results. Finally,the
communication agent sends the results back to the MAPI application. So, it is clear
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FIGURE 2.8: Pull model operation and message exchanges in DiMAPI

to see that the latency of these functions is equal to the realnetwork round-trip time
(RTT) between the host where the application runs and the remote sensor, because
DiMAPI sends a request to the remote sensor and waits for the response.

The functions that DiMAPI provides for the creation and initialization of a
network flow (mapi create flow(), mapi apply function() and
mapi connect()) are called only once per every network flow creation, so
we focus on the functions used for retrieving data from the monitoring sensors:
mapi read results() and mainlymapi get next pkt().

For mapi read results(), DiMAPI stub waits all the monitoring sen-
sors to respond, so the latency and the throughput will be equal to the RTT of
the slowest remote sensor. Inmapi get next pkt(), it returns the first packet
that will arrive from any of the monitoring sensors. Furthermore, just before re-
turning to the user a packet from a remote sensor, it sends immediately a request
for a new packet to this sensor, as a prefetching technique, in order to have the
buffer always full with one packet from every remote sensor and returns a packet
immediately to the user in the next call, if possible. So, if the user of DiMAPI
callsmapi get next pkt() in a period larger than the fastest host’s RTT, the
latency will be just a few milliseconds in every call. However, if the user wants to
call mapi get next pkt() in a smaller period that this RTT, the latency will
be equal to this network RTT. So, even if we can decrease latency in some cases
due to the one-packet prefetching technique, the throughput of this function still
depends on the network RTT of the fastest remote sensor. Thisis due to the usage
of the pull model, which requires one request for receiving one packet.

In order to improve the performance of the DiMAPI functions in terms of la-
tency and throughput, we implemented a second approach. In this approach the
monitoring sensor sends results (or packets) back-to-backto the remote applica-
tion, without waiting for requests (push model). The application itself is not aware
of this operation, it is handled transparently by the DiMAPIstub instead. The stub
sends a single request when the application is ready to receive results or packets.
In case ofmapi read results() the request contains the time interval that
the application desires to receive new results. Formapi get next pkt(), it
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FIGURE 2.9: Push model operation and message exchanges in DiMAPI

contains the number of packets that the stub is willing to receive. The results are
buffered in the stub and consecutive calls to these functions will be served im-
mediately from the stub, since the results have been prefetched, without need for
sending any requests to the sensor.

This mechanism for getting results from an applied functionis activated at the
first call of mapi read results for this function, by sending a single request
to themapicommd defining the time interval that it should ask and propagate new
results to the stub. Then,mapicommdwill create a new thread that will start to pe-
riodically callmapi read results using the localmapid and send the results
back to the application. In the application’s side, the results from the communica-
tion agent will be received from the respective communication thread that handles
all the communication with this remote host and will be stored to a corresponding
buffer. The next calls tomapi read results() from the application will re-
sult to return immediately the results from the buffer that they have been stored.
Assuming that the time interval for results generation can be set in a suitable value,
this approach seems very promising for significant improvement in terms of latency
and throughput for themapi read results() call.

Similarly for mapi get next pkt(), the first call results to a request des-
tined to themapicommd for fetching a number of packets (defined in the request)
to the application back-to-back. Upon this request arrivesat mapicommd, a new
thread is created asking for packets frommapid and immediately forwards them
to the application’s stub, till the number of requested packets is reached. Since
the packets will arrive in batches, before the application will actually ask for them
(prefetching), they must be saved in a buffer located inside the DiMAPI stub with
size equal to the number of packets that were requested. Figure 2.9 depicts the
operation ofpush modelin mapi get next pkt(). We also call this approach as
packet prefetchingsince the stub transparently gets a number of packets before
the application has actually requested these packets. In every subsequent call of
mapi get next pkt() the stub will return the next packet from the local buffer
that the packets are stored. When the packet buffer is getting empty under a spec-
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ified threshold (e.g. 10%), a new request will be sent tomapicommd for starting
again to send a number of packets.

Since the monitoring sensor sends the captured packets immediately one after
the other, we expect that the throughput will be dramatically increased and since
the stub will return most of the packets to the application from the local buffer we
also expect a significant improvement to themapi get next pkt() latency. In
section 5.1.4 we present an experimental evaluation of thepush modelimplemen-
tation inDiMAPI for mapi get next pkt(). We examine the benefit that this
approach can give for different rates of the monitoring traffic and while trying sev-
eral sizes for the buffer that holds the packets (equal to howmany packets will be
prefetched to the application’s stub).

2.3.5 Security and Privacy

Since all communication between user applications and the remote sensors will
be made through public networks across the Internet, special measures must be
taken in order to ensure theconfidentialityof the transferred data. Data transfers
through TCP are unprotected against eavesdropping from third-parties that have
access to the transmitted packets, since they can reconstruct the TCP stream and
recover the transferred data that may contain sensitive information. For protection
against such threats, any communication between the DiMAPIstub and a remote
sensor can be encrypted using the Secure Sockets Layer protocol (SSL). For intra-
organization applications, where an adversary cannot haveaccess to the internal
traffic, encrypted communication may not be necessary, depending on the policy
of the organization, and could be replaced by plain TCP, for increased performance.

The administrator of each monitoring sensor is responsiblefor issuing creden-
tials to users who want to access the monitoring sensor with DiMAPI. The creden-
tials specify the usage policy applicable to that user. Whenever a user’s monitoring
application connects to some monitoring sensor and requests the creation of a net-
work flow, it passes the user’s credentials. The monitoring sensor performsaccess
control based on the user’s request and credentials. In this way, administrator del-
egates authority to use that sensor, using public key authentication.

In a distributed monitoring infrastructure that promotes sharing of network
packets and statistics between multiple different parties, exchanged data should
be anonymizedbefore made publicly available for security, privacy, and business
competition concerns that may arise due to the lack of trust between the collaborat-
ing parties. DiMAPI supports an advanced framework for creating and enforcing
anonymization policies [31]. Since different users and applications may require
different levels of anonymization, the anonymization framework offers increased
flexibility by supporting the specification of user and flow specific policies.
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2.4 Examples of DiMAPI Usage

In this section we describe two simple monitoring applications built on top of
DiMAPI. The first is a simple byte counter for web traffic, and the second is an
application that detects covert traffic from a specific peer-to-peer file sharing client.
Note that these are illustrative examples, two more complicated monitoring appli-
cations that exploit the power of DiMAPI are presented in chapter 3.

2.4.1 Web Traffic Byte Counter

The following code illustrates a simple DiMAPI applicationthat counts the total
bytes of the packets received by the web servers of multiple monitored networks
within a predefined interval.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <mapi.h>
4

5 int main() {
6 int fd;
7 int fid;
8 mapi_results_t *dres;
9 unsigned long long bytes, total_bytes=0;

10 int i, number_of_sensors;
11

12 /* create a flow using a scope of three monitoring sensors */
13 fd = mapi_create_flow("sensor.uninett.no:/dev/dag0,
14 mon1.ics.forth.gr:eth0, 123.45.6.7:eth2");
15 if (fd < 0) {
16 printf("Could not create flow\n");
17 exit(EXIT_FAILURE);
18 }
19

20 /* keep only packets directed to a web server */
21 mapi_apply_function(fd, "BPF_FILTER", "tcp and dst port 80");
22

23 /* and just count the bytes */
24 fid = mapi_apply_function(fd, "BYTE_COUNTER");
25

26 /* connect to the flow */
27 if (mapi_connect(fd) < 0) {
28 printf("Could not connect to flow %d\n", fd);
29 exit(EXIT_FAILURE);
30 }
31

32 /* get the number of the monitoring sensors */
33 number_of_sensors = mapi_get_scope_size(fd);
34
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35 sleep(10);
36

37 /* get the vector with results from every sensor */
38 dres = mapi_read_results(fd, fid);
39

40 for (i=0; i<number_of_sensors; i++) {
41 bytes = *(unsigned long long*) dres[i].res;
42 printf("Web bytes in sensor %d: %llu\n",i, bytes);
43 total_bytes += bytes;
44 }
45

46 printf("Total bytes to web servers: %llu\n",total_bytes);
47

48 /* close the flow */
49 mapi_close_flow(fd);
50

51 return 0;
52 }

The above application operates as follows. We initially define a network flow
with a scope of three remote monitoring sensors (line 15). Then, we restrict
the packets of the flow to only those destined to some web server, by applying
the BPF FILTER function (line 23). After specifying the characteristics of the
network flow, we instruct the monitoring system that we are interested in just
counting the number of bytes of the flow, by applying theBYTE COUNTER func-
tion (line 26). Finally, we activate the flow (line 29). After10 seconds, the ap-
plication reads the result by callingmapi read results() (line 40). The
mapi get scope size() function gives up the number of the monitoring hosts
that should give results, onemapi results t instance per every monitoring sen-
sor. The actual result of theBYTE COUNTER function for the monitoring sensori
is retrieved fromdres[i].resfield. Using a loop we read the bytes of the web traffic
from each monitoring sensor separately and we compute the total bytes by adding
them (lines 42–46). Our work is done, so we close the network flow in order to
free the resources allocated in everymapid (line 51).

2.4.2 Covert Peer-to-Peer Traffic Identification

The second example is an application that identifies covert traffic from Gnutella file
sharing clients. Several Gnutella clients offer the capability to operate using HTTP
traffic through port 80, thus hiding as normal web traffic, in order to bypass strict
firewall configurations tha aim to block P2P traffic. The following code illustrates
how DiMAPI can be used for writing a simple monitoring application that identifies
file sharing clients joining the Gnutella network using covert web traffic.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <mapi.h>



2.4. EXAMPLES OF DIMAPI USAGE 29

4

5 int main() {
6 int fd;
7 int fid;
8 mapi_results_t *dres;
9 unsigned long long pkts, total_pkts;

10 int i, number_of_sensors;
11

12 /* create a flow using a scope of three monitoring sensors */
13 fd = mapi_create_flow("sensor.uninett.no:/dev/dag0,
14 mon1.ics.forth.gr:eth0, 123.45.6.7:eth2");
15 if (fd < 0) {
16 printf("Could not create flow\n");
17 exit(EXIT_FAILURE);
18 }
19

20 /* keep only web packets */
21 mapi_apply_function(fd, "BPF_FILTER", "tcp and port 80");
22

23 /* indicating Gnutella traffic */
24 mapi_apply_function(fd, "STR_SEARCH", "GNUTELLA CONNECT");
25

26 /* and just count them */
27 fid = mapi_apply_function(fd, "PKT_COUNTER");
28

29 /* connect to the flow */
30 if (mapi_connect(fd) < 0) {
31 printf("Could not connect to flow %d\n", fd);
32 exit(EXIT_FAILURE);
33 }
34

35 /* get the number of the monitoring sensors */
36 number_of_sensors = mapi_get_scope_size(fd);
37

38 /* forever, report the number of packets */
39 while(1) {
40 sleep(60);
41 dres = mapi_read_results(fd, fid);
42 total_pkts=0;
43 for (i=0; i<number_of_sensors; i++) {
44 pkts = *(unsigned long long*) dres[i].res;
45 printf("Gnutella packets in sensor %d: %llu\n",i, pkts);
46 total_pkts+= pkts;
47 }
48 printf("Total Gnutella packets: %llu\n",total_pkts);
49 }
50

51 return 0;
52 }
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Similarly to the previous example, we initially create a network flow with a
scope of three remote monitoring sensors (line 13), and apply theBPF FILTER
function to keep only the packets seemingly destined to, or coming from, a web
server (line 21). Once a file sharing client that wants to connect to the Gnutella net-
work obtains the address of another servant on the network, it sends a connection
request containing the string “GNUTELLA CONNECT.” Thus, we use the function
STR SEARCH to further restrict the packets of the flow to those containing this
characteristic string (line 24). After specifying the characteristics of the network
flow, we instruct the monitoring system that we are interested in just counting the
number of packets, by applying thePKT COUNTER function (line 27). Finally,
we activate the flow (line 30). At this point, each monitoringsensor has started
inspecting the monitored traffic for covert Gnutella traffic, and keeps a count of
the matching packets. Then, the application periodically reads the result of the
PKT COUNTER function by callingmapi read results() in a infinite loop
(lines 39–49).

2.5 Advantages of DiMAPI

Implementing similar distributed monitoring applications, like those presented in
the previous section, using other existing tools and libraries except DiMAPI would
have been a much more difficult process, resulting in longer code, higher overheads
and overall reduced performance.

One alternative solution is to build these applications using solelyWinPcap [5]
or rpcap [32]. Both libraries extendlibpcap [36] with remote packet capture
capabilities, allowing captured packets at a remote host tobe transferred to a lo-
cal host for further processing. For example, in order to count the covert Gnutella
packets using one of these libraries, the application has tofirst transfer locallyall
the captured web packets, separately from each remote sensor, then identify locally
the Gnutella packets, count them, and finally drop them. The pattern matching op-
eration has to be performed locally sincelibpcap does not offer any pattern
matching operation. However, transferring all the web packets from each remote
sensor to the local application incurs a significant networkoverhead. In case of
many remote interfaces, the scalability of this approach renders it practically infea-
sible. In contrast, DiMAPI enables traffic processing at each remote sensor, which
allows for sending back only the computed results. In this case, only thecountof
Gnutella packets is transferred through the network, whichincurs substantially less
network overhead.

An other approach would be to use tools likesnort [45] or ngrep [44],
which allow for pattern matching in the packet payload, for capturing the Gnutella
packets at each remote sensor. At the end-host, we should have to use some scripts
for starting and stopping the remote monitoring applications and for retrieving and
collectively reporting the results, through some remote shell such asssh. How-
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ever, such custom schemes do not scale well and cannot offer the ease of use and
flexibility of DiMAPI for building distributed monitoring applications.

Furthermore, DiMAPI exploits any specialized hardware available at the mon-
itoring sensors, and efficiently shares the monitoring infrastructure among many
users. The monitoring daemon on each sensor groups and optimizes the monitor-
ing operations requested by the users of the system, providing the same or even
better performance compared tolibpcap [42]. Consequently, using DiMAPI we
can achieve more effective distributed passive network monitoring than with any
other existing tool or library.
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3
Applications Based on DiMAPI

Traditionally, passive monitoring tools operate at a selected vantage point in the
network that offers a broad view of the traffic, such as the access link that connects
an Autonomous System to the Internet. Besides monitoring a single link, emerg-
ing applications can benefit from monitoring data gathered at multiple observation
points across a network [15, 24, 27]. Such a distributed monitoring infrastructure
can be extended outside the border of a single organization and span multiple ad-
ministrative domains across the Internet [49]. In this environment, the processing
and correlation of the data gathered at each sensor can give abroader perspective
of the state of the monitored network.

Several applications can benefit from such a distributed passive monitoring in-
frastructure by deriving useful network metrics regardingthe network conditions
between different domains. These metrics include Round-Trip Time [29], per-
application throughput, packet retransmissions [20], packet reordering [37], one-
way delay and jitter, and packet loss ratio [40]. In this thesis, we focus on the
passive estimation of the packet loss ratio between different domains, which is a
typical application that takes advantage of the use of DiMAPI. In the remaining of
this chapter we discuss the advantages of a passive packet loss measurement ap-
proach and we describe in detail the design and implementation of this technique.
Moreover, we present the design of a Grid network monitoringelement for pas-
sive monitoring Grid network infrastructures using DiMAPI. This is also a typical
application that can significantly benefit from DiMAPI.

33
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3.1 Passive End-to-End Packet Loss Estimation

Accurate monitoring of network characteristics, such as delay, packet loss rate, and
available bandwidth, is critical for the efficient management and operation of mod-
ern computer networks. One of the most important network performance metrics
is the packet loss ratio. Packet loss occurs when correctly transmitted packets from
a source never arrive at the intended destination. Packets are usually lost due to
congestion, e.g., at the queue of some router, routing problems, or poor network
conditions that may result to datagram damages. Packet lossaffects significantly
the data transfer throughput and the overall end-to-end connection quality. Conse-
quently, it is desirable to have accurate packet loss measurements for the network
paths that several services use, in order to timely identifynetwork inefficiencies.

Most of the existing techniques for packet loss estimation are based onactive
network monitoring, which usually involves the injection of a certain number of
packets into the network for measuring how many of them are lost [6,46,47]. Such
active monitoring tools incur an unavoidable network overhead due to the injected
probe packets, which compete with the real user traffic.

In contrast to above approaches, in this application we present a novel real-
time, end-to-end packet loss estimation method based on distributedpassivenet-
work monitoring, based on DiMAPI. Our approach does not add any overhead to
the network since it passively monitors the network traffic without injecting any
probe packets. At the same time, it estimates almost in real-time theactualpacket
loss faced by the active applications. Moreover, it offers the capability for measur-
ing the loss rates of particular services, allowing for fine-grained per-application
packet loss estimation, which is important in case different applications on the
same path face different degrees of packet loss. The design,implementation and
experimental evaluation of the passive packet loss estimation application is pre-
sented in more detail in [40].

3.1.1 Existing Tools

Previous work on packet loss estimation can be broadly categorized into approaches
based on passive and active network monitoring, with the latter having a signifi-
cantly larger literature body.

One of the most popular tools for inferring the basic networkcharacteristics,
such as round-trip time and packet loss, isping. Ping uses the ICMP protocol
to send probe packets to a target host at fixed intervals, and reports loss when the
response packets are not received within a specified time period. However, ICMP
packets are often rate limited, or blocked, by routers and firewalls. An other ac-
tive tool iszing [6], which estimates the end-to-end packet loss in one direction
between two cooperative end hosts, by sending UDP packets atPoisson modu-
lated intervals with a fixed mean rate.Badabing [47] also measures the one-way
packet loss by sending fixed-size packets at specific intervals. Sting is an active
monitoring tool that measures the loss rate in both forward and reverse directions
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from a single host to any TCP-based server, by exploiting TCP’s loss recovery al-
gorithms [46]. Finally, network tomography using unicast probes has been used
for inferring loss rates on end-to-end paths [21].

Besides active tools, there also exist methods that use passive network moni-
toring for measuring the TCP packet loss, based on the TCP retransmission mecha-
nism [11]. However, there are several applications, such astftp, which use UDP
instead of TCP. Techniques for estimating the loss rate based on the TCP protocol
are also presented in [7], however they work only in individual clients and they can-
not be used by other external applications, e.g., for improving routing or selecting
a replicated server with the best network conditions.

3.1.2 Passive Packet Loss Measurement Characteristics

An inherent property of passive network monitoring is that it does not disrupt
the existing traffic conditions. This non-intrusive natureof passive measurements
makes them completely invisible on the network. Moreover, our passive packet
loss estimation method exhibits several other advantages over active packet loss
measurement techniques, which we discuss in the following.

Real-time measurement of theactual packet loss ratio. The proposed technique
measures the actual packet loss faced by the traffic of an active application in
real-time, as it passes through the passive monitors. In contrast, active mon-
itoring approaches unavoidably disrupt the current trafficdue to the probe
packets. Thus, they can measure potential temporary side effects that may
be caused by the injected traffic.

Scalability. In a large-scale network monitoring infrastructure, it is desirable to
measure the end-to-end packet loss between many different resources or do-
mains. In a system withN resources, the number of required end-to-end
measurements grows withO(N2), since, as a general rule, each resource
has a distinct path to any other resource. For active monitoring, it is clear
that as the number of resource pairs increases, the injectedtraffic incurs a
significant disruption in the network, so usually such measurements are per-
formed sequentially, measuring one or a few paths at a time. In contrast, a
passive monitoring approach can provide an instant estimation of the packet
loss ratio across different paths, independently of their number.

Per-application measurement.Using appropriate filters, the proposed approach
can measure the packet loss faced only by the traffic of a particular ser-
vice. This capability is of particular importance for casesin which different
services may exhibit different packet loss ratio in the samepath. This can
happen due to the use of differentiated services, rate-limiting devices, or
load-balancing configurations.

IP-level measurement. In contrast to techniques that passively estimate the loss
ratio based on properties of the TCP protocol [7,11], our approach measures
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FIGURE 3.1: End-to-end architecture for passive packet loss estimation.

the packet loss at the IP layer, so it can also work for UDP or any other
Transport Layer protocol.

Besides the above positive properties, our approach has also certain limitations.
A necessary operational requirement is the presence of two passive monitors at the
ends of the measured path. If passive traffic monitoring is not feasible in some
domain, then we should rely on active monitoring tools. Furthermore, the presence
of real traffic in the measured path is mandatory for the operation of our approach,
since it measures the packet loss faced by the existing traffic. It is clear from the
above that our approach is complementary to existing activeprobing techniques,
and both approaches can perfectly coexist.

3.1.3 Approach

We adopt an end-to-end approach for estimating the packet loss ratio using two
passive monitors at the two ends. The overall approach is shown in Figure 3.1.
The two monitoring points gather information about the packets passing through
them. Periodically, this information is sent to a central application which correlates
these results and estimates the packet loss ratio.

A naive packet loss algorithm in this environment would justcount at both ends
the number of packets in each direction between the two domains, and then period-
ically subtract the number of packets received at the destination from the number
of packets that were actually sent, and vise versa. However,this simple method has
a major drawback: we cannot accurately synchronize the two monitoring points to
count the same window of packets. Suppose that both passive monitors start and
stop counting packets at exactly the same time. When they start counting, some
packets are already in transit. These packets were not counted at the sender side,
but they will be counted at the receiver, so the packet loss ratio will be underes-
timated. Similarly, when the measurement stops, the in transit packets will have
been counted by the sender, but will be missed by the receiver, so the packet loss
ratio will be overestimated. A possible solution would be tostart and stop the
measurement in the receiver’s monitoring point after a delay close to the network’s
one-way delay. However, this solution is still inaccurate due to the network delay
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variability. Even the loss of a single packet can be significant, e.g., in long haul tcp
connections.

In order to solve the above problem, we take a different approach by measuring
the packet loss of eachflow separately. For the TCP and UDP protocols, aflow is
defined as a set of IP packets with the same protocol, source and destination IP
address, and source and destination port (also known as a 5-tuple). For protocols
that do not support ports, a flow is defined only by the protocoland source and
destination IP address. A flow is consideredexpiredif no packet has arrived for
that particular flow within a specified timeout (60 sec in our experiments). In case
of TCP, a flow can also be considered expired if the connectionis explicitly closed,
i.e., when an RST of FIN packet is seen.

Each of the two monitoring sensors classifies the IP packets into flows, accord-
ing to the above definitions. In periodic time intervals, both sensors send statistical
information about the identifiedexpired flowsto the monitoring application. Since
expired flows are well defined, the monitoring application can correlate the statis-
tics gathered at both sensors regarding thesameexpired flow. Thus, for each pair
of statistics regarding the same expired flow, the application computes the packet
loss for that flow based on the difference of the number of packet that each expired
flow reports. This gives an accurate measurement of theactual packet loss faced
by the particular traffic flow.

3.1.4 Implementation

Distributed Passive Monitoring Platform

In each measurement point we need a passive traffic monitoring platform for the
identification and collection of the expired flows. We have implemented our proto-
type using MAPI [42], a flexible passive monitoring API. A communication agent,
part of the distributed MAPI version [49], is responsible for accepting monitoring
requests from remote applications and sending back the corresponding results. Us-
ing this distributed monitoring API (DiMAPI), we are able tomanipulate multiple
monitoring sensors from the same application.

Identification of Expired Flows

Every packet is associated with exactly one flow. At each sensor, the monitoring
daemon keeps a record for each active flow in a hashtable for fast lookup. In
addition to the 5-tuple, a flow record holds the timestamps ofthe first and last
packet of the flow. The arrival time of the last packet of the flow is necessary for
deciding whether the flow has expired or not. Finally, the record holds the number
of packets and bytes of the flow, from which we compute the packet and byte loss
ratios.

For every new packet, the monitoring daemon looks up the corresponding flow
record in the hashtable, increases the packet counter, and adds the packet size to
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the existing byte counter value. Also, the timestamp of the last packet is renewed.
In case a flow record is not found, a new one is created.

In order to identify immediately the expired flows, the monitoring daemon
maintains a linked list that contains pointers to the flow records in a temporal order.
For every new packet, the timestamp of the last packet in the corresponding flow
record is renewed, and that flow comes first in the linked list.A separate thread
in the monitoring daemon runs periodically (e.g., every onesecond) and finds the
expired flows in the end of that list. Starting from the last entry of the list, it checks
whether the timestamp of the last packet of that flow is older than the specified
timeout, and if so, it removes it from the list and puts it in the expired flow list. The
same process is continued until a non-expired flow is found. Finally, the monitor-
ing daemon sends the list with the expired flows to the monitoring application.

Distributed Monitoring Sensor Management

The last component of the architecture is the monitoring application. The applica-
tion collects periodically the expired flows from the distributed monitoring sensors,
using the DiMAPI functionality, correlates them, and reports the packet loss ratio
for every pair of sensors. The application uses a hashtable,similar to the one de-
scribed earlier, for identifying pairs of statistics from different sensors for the same
expired flow. For every matched pair, it subtracts the numberof packets that they
measured to compute the packet loss for this flow. Finally, the application reports
the total packet loss ratio between pairs of measurement points and also the packet
loss per every individual flow. It reports the byte loss ratioas well, which can be
also an interesting metric for some applications.

3.2 Grid Network Monitoring Element

Accurate monitoring of network characteristics, such as delay, packet loss rate, and
available bandwidth, is critical for the efficient operation of modern Grid systems,
which are usually composed of many resources interconnected by local area net-
works or, more often, through the Internet. Network monitoring can be used for
Grid performance debugging, since Grid-enabled applications are highly depen-
dent on network characteristics, and for performing complete diagnosis when the
applications are not working as expected. Using network monitoring we can usu-
ally find the source of the problem. Also, network monitoringcan be used in Grid
systems for resource allocation and scheduling decisions.

Active and passive monitoring can be combined in a Grid Network Monitoring
Element. The main benefit of passive monitoring, compared toactive monitoring,
is its non-intrusive nature. Active monitoring tools, suchas the ubiquitousping,
incur an unavoidable network overhead due to the injected probe packets, which
compete with the real user traffic. In contrast, passive monitoring techniques ob-
serve the existing traffic of the monitored link passively, without introducing any
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additional network traffic. Also, passive techniques measures at real time the ac-
tual performance, while active techniques may measure temporary side effects.
Moreover, using passive monitoring we are able to perform per application mea-
surement or even measurements in the IP level. Active monitoring tools usually
rely on a specific protocol and furthermore they are often blocked by firewalls or
rate limited. On the other hand, active tools are usually easy to deploy, while pas-
sive monitoring require the installation of passive monitors. Also, active tools use
the desired traffic patterns and inject packets at any time. Passive measurements re-
quires the presence of real traffic in the measurement path. Consequently, the best
approach seems to combine both active and passive monitoring in a Grid network
monitoring element. Each approach provides different tools and probably different
metrics. We should try to use passive monitoring whenever itis applicable, due to
the advantages we discussed above, else we should use activeprobes to generate
our own measurement traffic.

Using passive monitoring, we can infer several network characteristics: per-
form Grid traffic categorization and accounting (e.g. find what percentage of the
traffic is GridFTP, or find which subnet generates the most outgoing traffic), band-
width estimations, performance debugging of individual applications and security
applications (Denial-of-Service attack detection, Internet epidemics and intrusion
detection). So, in a Grid environment, passive monitoring can play an important
role for assessing the status of the Grid infrastructure connectivity and for tak-
ing effective balancing decisions. Grid applications can also benefit from a dis-
tributed passive monitoring infrastructure [49] by using it to derive useful network
metrics between different domains. Such metrics include among others the net-
work Round-Trip Time [29], application-level RTT [25], per-application through-
put, packet retransmissions [20], packet reordering [37],one-way delay and jitter,
and packet loss ratio [40].

In this section we define how passive network measurements are configured
inside a grid-wide Network Monitoring Service. This service is based on a Net-
work Monitoring Element (NMElement), which is a Grid element that concen-
trates the Network Monitoring functionalities of a Grid: itoffers an interface for
measurement requests coming from applications, and a plug-in based interface for
publishing measurements. It has access to a database that contains the description
of the domain partitioning of Grid resources, and the persistent attributes of other
NMElements. Finally, the DiMAPI daemons for monitoring andcommunication
(mapid andmapicommd) run inside the NMElement. A detailed description of
its functionalities can be found in [14].

The definition of a Network Monitoring session [13] aiming topassive network
measurements is composed of the following elements: the identifiers of the source
and destination domains, the description of the type of service for which the pas-
sive measurement is requested, and the time period of the measurement: this can
be historical, most recent, one-shot, or periodic. Certaincombinations of these
attributes are also allowed.
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FIGURE 3.2: Embedding passive network measurements in a Grid Network Mon-
itoring Service

In principle, a measurement is not targeted to a flow between two specific hosts:
the domain partitioning should guarantee the significance of the measurement for
any pair of hosts in the two domains.

Figure 3.2 illustrates the message exchange between the agents that participate
to the measurement, as described in the following. Messagesare represented by
arrows, in which the attached numbers are referenced in the following text. In order
to implement this distributed architecture for passive monitoring and measurements
we employ DiMAPI.

The application that needs the measurement will send a measurement request
(2) to one of the the NM services in charge of monitoring the request between the
two domains. This can be either the source or the destinationof the flow which we
are interested to passively monitor. The information regarding the identity of the
NMElement, necessary in order to handle the request, is firstretrieved with a query
(1) to the NM Database attached to a NMElement in the domain of the requesting
application.

When the Network Monitoring service receives such request,it first checks
the availability of the module in charge of managing the measurement. The infor-
mation is retrieved from an internal registry of available modules. The next step
consists of verifying the availability of resources dynamically allocated to monitor-
ing tasks: this information is retrieved by inspecting the current system state (using
ps/netstat like commands).

In case any of the above steps fail, a “resource not available” reply is returned
to the calling application. This indicates that the measurement was not performed,
but does not imply anything about the availability of the inspected resource. The
application will redirect the request to another NMElement, or will repeat it using
less demanding parameters. If the measurement is feasible,the successive step
consists of locating a peer NMElement: the selection is carried out using the local
NM Database, by querying for the peer NMElement, which is identified by the
(source domain, destination domain) pair.
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The measurement can be either extracted from a local cache ofavailable re-
sults, or actually come from a new measurement. In the formercase, the historical
result is found as indexed by the Network Element, complemented by measure-
ment attributes indicated in the request of the application. Otherwise, a request
for the activation of the peer module for a passive measurement is delivered to the
peer (3) using DiMAPI. In case of a negative reply, this is bounced back to the
requesting application. Otherwise, the measurement will proceed normally. The
peer module will send back the measured data for the passive measurement (4),
through DiMAPI.

The result of the measurement is finally streamed outside theNMElement, ei-
ther to the GIS, or to any other publication media (5), according to the available
plugin in the NM Service module. The final step is the deliveryof the result to the
requesting application (6).
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4
Improving the Performance of Packet

Processing using Locality Buffering

Passive network monitoring is the basis for a multitude of systems that support
the robust, efficient, and secure operation of modern computer networks. While
passive monitoring has been traditionally used for relatively simple network traf-
fic measurement and analysis applications, or just for gathering packet traces that
are analyzed off-line, in recent years it has also become vital for a wide class of
more CPU and memory intensive applications, such as NetworkIntrusion Detec-
tion Systems (NIDS) [45], accurate traffic categorization [9], and NetFlow export
probes [1]. The complex analysis operations of such demanding applications are
translated into an increased number of CPU cycles spent on each captured packet,
which reduces the overall processing throughput that the application can sustain
without dropping incoming packets. At the same time, as the speed of modern
network links increases, there is a growing demand for more efficient packet pro-
cessing using commodity hardware that can keep up with higher traffic loads.

A common characteristic that is often found in such monitoring applications
is that they usually perform different operations to different types of packets. For
example, a NIDS applies a certain subset of attack signatures to packets with des-
tination port 80, i.e., it applies the web-attack signatures to packets destined to
web servers, it applies a different set of signatures to packets destined to database
servers, and so on. Furthermore, NetFlow probes [1], trafficcategorization, as
well as TCP stream reassembly, which has become a mandatory function of mod-
ern NIDS, all need to maintain a large data structure that holds the active network
flows found in the monitored traffic at any given time. Thus, for packets belonging
to the same network flow, the process accesses the same part ofthe data structure
that corresponds to the particular flow.
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In all above cases, we can identify alocality of executed instructions and data
references for packets of the same type. In this work, we present a novel tech-
nique for improving packet processing performance by taking advantage of this
locality property found in many passive monitoring applications. In practice, the
captured packet stream is a mix of interleaved packets corresponding to hundreds
or thousands of different packet types, depending on the monitored link. Our ap-
proach, calledlocality buffering, is based on adapting the packet stream in a way
that enhances the locality of the application’s code and memory access, and thus
accelerating overall packet processing performance. Specifically, captured pack-
ets are not sent directly to the monitoring application, butinstead are grouped in
buffers according to their flow, and are sent in “batches”

We have implemented locality buffering inlibpcap [36], the most widely
used packet capturing library, which allows for improving the performance of a
wide range of passive monitoring applications written on top of libpcap in a
transparent way, without the need to alter their code. The experimental evaluation
of our prototype implementation with real-world applications shows that locality
buffering can significantly improve packet processing throughput and reduce the
packet loss rate. For instance, the popular Snort IDS exhibited a 40% increase
in the packet processing throughput, and a 60% improvement in packet loss rate.
The design, implementation and experimental evaluation ofthe locality buffering
technique are also described in [39].

4.1 Our Approach: Locality Buffering

The starting point of our work is the observation that several widely used pas-
sive network monitoring applications, such as intrusion detection systems, perform
almost identical operations for a certain class of packets,while different packet
classes result to the execution of different code paths and to data accesses to dif-
ferent memory locations. Such packet classes include the packets of a particular
network flow, i.e., packets with the same protocol, source and destination IP ad-
dresses, and source and destination port numbers, or even wider classes such as all
packets of the same application-level protocol, e.g., all HTTP, FTP, or BitTorrent
packets.

Consider for example a NIDS like Snort [45]. Each arriving packet is first
decoded according to its Layer 2–4 protocols, then it passesthrough severalpre-
processors, which perform various types of processing according to thepacket
type, and finally it is delivered to the main inspection engine, which checks the
packet protocol headers and payload against a set of attack signatures. According
to the packet type, different preprocessors may be triggered. For instance, IP pack-
ets go through the IP defragmentation preprocessor, which merges fragmented IP
packets, TCP packets go through the TCP stream reassembly preprocessor, which
reconstructs the bi-directional application level network stream, while HTTP pack-
ets go through the HTTP preprocessor, which decodes and normalizes the HTTP
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FIGURE 4.1: The effect of locality buffering on the incoming packetstream.

protocol fields. Similarly, the inspection engine will check each packet only against
a subset of the available attack signatures, according to its type. Thus, packets des-
tined to a Web server will be checked against the subset of signatures tailored to
Web attacks, FTP packets will be checked against FTP attack signatures, and so
on.

When checking a newly arrived packet, the corresponding preprocessor(s) code,
signature subset, and data structures will be fetched into the CPU cache. Since
packets of many different types will likely be highly interleaved in the monitored
traffic mix, different data structures and code will be constantly alternating in the
cache, resulting to cache misses and reduced performance. The same effect occurs
in other monitoring applications, such as NetFlow collectors or traffic classification
applications, in which arriving packets are classified according to the network flow
in which they belong to, which results to updates in a corresponding entry of a hash
table. If many concurrent flows are active in the monitored link, their packets will
arrive interleaved, and thus different portions of the hashtable will be constantly
being transferred in and out of the cache, resulting to poor performance.

The above observations motivated us to explore whether changing the order in
which packets are delivered from the OS to the monitoring application improves
packet processing performance. Specifically, we speculated that rearranging the
captured traffic stream in such a way that packets of the same class are delivered to
the application in “batches” would improve the locality of memory accesses, and
thus reduce the overall cache miss ratio. This rearrangement can be conceptually
achieved by buffering arriving packets into separate “buckets,” one for each packet
class, and emptying each bucket at once, either whenever it gets full, or after some
predefined timeout since the arrival of the first packet of thebucket. For instance,
if we assume that packets with the same destination port number correspond to the
same class, then any interleaved packets destined to different network services will
be rearranged so that packets to the same service are delivered back-to-back to the
monitoring application, as depicted in Figure 4.1.

Choosing the destination port number as a class identifier strikes a good balance
between the number of required buckets and the achieved locality. Indeed, choos-
ing a more fine-grained classification scheme, such as a combination of the desti-
nation IP address and port number, would require a tremendous amount of buckets,
and would probably just add overhead, since most of the applications of interest to
this work perform (5-tuple) flow-based classification anyway. At the same time,
packets destined to the same port usually correspond to the same application-level



46
CHAPTER 4. IMPROVING THE PERFORMANCE OF PACKET PROCESSING USING LOCALITY

BUFFERING

Performance metric Original trace Sorted trace

Throughput (Mbit/sec) 188.39 286.18
Cache Misses (per packet) 18.86 2.79
Clock Cycles (per packet) 48,978.76 30,846.89

TABLE 4.1: Snort’s performance using a sorted trace

protocol, so they will trigger the same Snort signatures andpreprocessors, or will
belong to the same or “neighbouring” entries in a network flowhash table.

4.2 Estimation of Feasibility

To get an estimation of the feasibility and the magnitude of improvement that local-
ity buffering can offer, we performed a preliminary experiment whereby we sorted
off-line the packets of a network trace based on the destination port number, and
fed it to a passive monitoring application. This corresponds to applying locality
buffering using buckets of infinite size. Details about the trace and the experimen-
tal environment are discussed in Section 5.2. We ran Snort [45] using both the
sorted, as well as the original trace, and measured the processing throughput (trace
size divided by the measured user plus system time), L2 cachemisses, and CPU
cycles of the application. Snort was configured with all the default preprocessors
and signature sets enabled (2833 rules and 11 preprocessors). The L2 cache misses
and CPU clock cycles were measured using the PAPI library [3], which utilizes the
hardware performance counters.

Table 4.1 summarizes the results (each measurement was repeated 100 times,
and we report the average values). We see that sorting results to a significant im-
provement of more than 50% in Snort’s packet processing throughput, L2 cache
misses are reduced by more than 6 times, and 40% less CPU cycles are consumed.

From the above experiment, we see that there is a significant potential of im-
provement in packet processing throughput using locality buffering. However, in
practice, rearranging the packets of a continuous packet stream can only be done
in short intervals, since we cannot indefinitely wait to gather an arbitrarily large
number of packets of the same class before delivering them tothe monitoring
application—the captured packets have to be eventually delivered to the application
within a short time interval (in our implementation, in the orders of milliseconds).
Note that slightly relaxing the in-order delivery of the captured packets results to
a delay between capturing the packet, and actually delivering it to the monitoring
application. However, such a sub-second delay does not actually affect the correct
operation of the monitoring applications that we consider in this work (delivering
an alert or reporting a flow record a few milliseconds later istotally acceptable).
Furthermore, packet timestamps are computedbefore locality buffering, and are
not altered in any way, so any inter-packet time dependencies remain intact.
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4.3 Implementation within libpcap

We have chosen to implement locality buffering withinlibpcap, the most widely
used packet capturing library, which is the basis for a multitude of passive mon-
itoring applications. Typically, applications read the captured packets through a
call such aspcap next, one at a time, in the same order as they arrive to the net-
work interface. By incorporating locality buffering withinglibpcap, monitoring
applications continue to operate as before, taking advantage of locality buffering
in a transparent way, without the need to alter their code or linking them with ex-
tra libraries. Indeed, the only difference is that consecutive calls topcap next or
similar functions will most of the time return packets with the same destination port
number, depending on the availability and the time constraints, instead of highly
interleaved packets with different destination port numbers.

4.3.1 Periodic Packet Stream Sorting

In libpcap, whenever the application attempts to read a new packet, e.g., through
a call topcap next, the library reads a packet from the kernel through arecv
call, and delivers it to the application. That is, the packetis copied from kernel
space to user space, in a small buffer equal to the maximum packet size, and then
pcap next returns a pointer to the beginning of the new packet.

So far, we have conceptually described locality buffering as a set of buckets,
with packets with the same destination port ending up into the same bucket. One
straightforward implementation of this approach would be to actually maintain a
separate buffer for each bucket, and copy each arriving packet to its corresponding
buffer. However, this has the drawback that an extra copy is required for storing
each packet to the corresponding bucket, right after it has been fetched from the
kernel throughrecv.

In order to avoid extra packet copy operations, which incur significant over-
head, we have chosen an alternative approach. We distinguish between two differ-
ent phases: the packetgatheringphase, and the packetdeliveryphase. We have
modified the single-packet-sized buffer oflibpcap to hold a large number of
packets, instead of just one. During the packet gathering phase, newly arrived
packets are written sequentially into the buffer, by increasing the buffer offset in
therecv call, until the buffer is full, or a certain timeout has expired.

Instead of arranging the packets into different buckets, which requires an extra
copy operation for each packet, we maintain an indexing structure that specifies
the order in which the packets in the buffer will be deliveredto the application
during the delivering phase. This indexing structure is illustrated in Figure 4.2.
The index consists of a table with 64K entries, one for each port number. Each
entry of the table points to the beginning of a linked list that holds references to
all packets within the buffer with the particular destination port. In the packet
delivery phase, traversing each list sequentially, starting from the first non-empty
port number entry, allows for delivering the packets of the buffer ordered according
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FIGURE 4.2: Using an indexing table with a linked list for each port,the packets
are delivered to the application sorted by their destination port.

to their destination port. In this way we achieve the desiredpacket sorting, while,
at the same time, all packets remain in place, in the initial memory location where
they had been written byrecv, avoiding extra costly copy operations. In the
following, we discuss the two phases in more detail.

In the beginning of each packet gathering phase the indexingtable is zeroed
usingmemset. For each arriving packet, we perform a simple protocol decoding
for determining whether it is a TCP or UDP packet, and consequently extract its
destination port number. Then, a new reference for the packet is added to the
corresponding linked list. For non-TCP or non-UDP packets,a reference is added
into a separate list. The information that we keep for every packet in each node
of the linked lists includes the packet’s length, the precise timestamp of the time
when the packet was captured, and a pointer to the actual packet data in the buffer.

Instead of dynamically allocating memory for new nodes in the linked lists,
which would be an overkill, we pre-allocate a large enough number of spare nodes,
equal to the maximum number of packets that can be stored in the buffer. Whenever
a new reference has to be added to a linked list, a spare node ispicked. Also, for
fast insertion of new nodes at the end of the linked list, we keep a table with 64K
pointers to the tail of each list.

The system continues to gather packets until the buffer becomes full, or a cer-
tain timeout has elapsed. The timeout ensures that if packets arrive with a low
rate, the application will not wait too long for receiving the next batch of packets.
We use 100ms as the default timeout in our prototype implementation, but both the
timeout and the buffer size can be defined by the user. The buffer size and the time-
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out are two significant parameters of our approach, since they influence the number
of sorted packets that can be delivered to the application ineach batch. Depending
on how intensive each application is, this number of packetsdetermines the benefit
in its performance. In Section 5.2 we examine the effect thatthe number of packets
in each batch has on overall performance using three different passive monitoring
applications.

Upon the end of the packet gathering phase, packets can be delivered to the
application following the order imposed from the indexing structure. For that pur-
pose, we keep a pointer to the list node of the most recently delivered packet.
Starting from the beginning of the index table, whenever theapplication requests a
new packet, e.g., throughpcap next, we return the packet pointed either by the
next node in the list, or, if we have reached the end of the list, by the first node of
the next non-empty list. The latter happens when all the packets of the same desti-
nation port have been delivered (i.e., the bucket has been emptied), so conceptually
the system continues with the next non-empty group.

4.3.2 Using a Separate Thread for Packet Gathering

A drawback of the above implementation is that during the packet gathering phase,
the CPU remains idle most of the time, since no packets are delivered to the ap-
plication for processing in the meanwhile. Reversely, during the processing of the
packets that were captured in the previous packet gatheringperiod, no packets are
stored in the buffer. In case that the kernel’s socket bufferis small and the process-
ing time for the current batch of packets is increased, it is possible that a significant
number of packets may get lost by the application, in case of high traffic load.

Although in practice this effect does not degrade performance due to the very
short timeouts used (e.g. 100ms), as we show in Section 5.2, we can improve
further the performance of locality buffering by employinga separate thread for
the packet gathering phase, combined with the usage of two buffers instead of a
single one. The separate packet gathering thread receives the packets from the
kernel and stores them to thewrite buffer, and also updates its index. In parallel,
the application receives packets for processing from the main thread oflibpcap,
which returns the already sorted packets of the secondread buffer. Each buffer has
its own indexing table.

Upon the completion of both the packet gathering phase, i.e., after the timeout
expires or when the write buffer becomes full, and the parallel packet delivery
phase, the two buffers are swapped. The write buffer, which now is full of packets,
turns to a read buffer, while the now empty read buffer becomes a write buffer. The
whole swapping process is as simple as swapping two pointers, while semaphore
operations ensure the thread-safe exchange of the two buffers.
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5
Experimental Evaluation

5.1 DiMAPI Network-Level Performance

In this section we experimentally evaluate several performance aspects of DiMAPI.
Our analysis consists of measurements regarding the network overhead and re-
sponse latency, and how these metrics scale as the number of the participating
monitoring sensors increases.

5.1.1 Experimental Environment

For the experimental evaluation of DiMAPI we used two different monitoring sen-
sor deployments. The first deployment consists of 15 monitoring sensors dis-
tributed inside the internal network of FORTH. All sensors are interconnected
through 100 Mbit/sec Ethernet for the control interface. Each sensor is equipped
with a second Ethernet interface for the actual passive network monitoring. The
monitored test traffic is generated by replaying a real network traffic trace using
tcpreplay [4]. The second deployment consists of four monitoring sensors lo-
cated at four different ASes across the Internet: FORTH, theUniversity of Crete
(UoC), the Venizelio Hospital at Heraklion (VHosp), and theUniversity of Penn-
sylvania (UPenn). In this deployment, each sensor monitorslive traffic passing
through the monitored links of the corresponding organization.

5.1.2 Network Overhead

As discussed in Section 2.3, whenever a monitoring application that utilizes remote
sensors calls a DiMAPI function, this results to a message exchange between the
DiMAPI stub and themapicommd running on each sensor. This procedure poses
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FIGURE 5.1: Total network traffic exchanged during the initialization phase, when
applying 1 and 8 functions

questions about the overhead and the scalability of this approach. In this set of
experiments, we set out to quantify the network overhead that DiMAPI incurs when
used for building distributed monitoring applications.

For the experiments of this section, we implemented a test monitoring applica-
tion that creates a network flow, configures it by applying several functions, and
then periodically reports some results according to the applied functions. The
measurements were performed in the 15-sensor FORTH network, while the test
application was running on a separate host. Our target is to measure the network
overhead generated by DiMAPI, when using different monitoring granularity. The
generated network traffic was measured using a second local MAPI application
running on the same host with the test application. This local application reports
the amount of DiMAPI control traffic by creating a network flowthat captures
all packets to and from the DiMAPI control port. Since it is a local monitoring
application, it incurs no network traffic.

In the first experiment, we measured the network overhead forthe initialization
of a network flow, as a function of the number of remote monitoring sensors consti-
tuting the scope of the flow. The initialization overhead includes the traffic incurred
by both the DiMAPI stub andmapicommd during the creation, configuration, and
instantiation of a network flow. Figure 5.1 shows the amount of traffic generated
during the initialization phase for two variations of the test application, the first
applying only one function, which results to a total of threeDiMAPI library func-
tion calls for the initialization phase, and the second applying 8 functions, a rather
extreme case, resulting to a total of 11 DiMAPI library function calls.

The incurred traffic grows linearly with the number of monitoring sensors, and,
for 15 sensors, reaches about 15 KBytes for the first variation and 45 KBytes for
the second. In both cases, the network overhead remains low,and can be easily
amortized during the lifetime of the application.

In the next experiments we measured the rate of the network traffic incurred
during the lifetime of the application due to the periodic results retrieval. After
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FIGURE 5.3: Network overhead in-
curred using the functionHASHSAMP
with polling periods 0.1, 1, and 10 sec-
onds

the initialization phase, the test application constantlyreads the new value of the
result by periodically callingmapi read results() at a predefined time inter-
val. The measured traffic includes both the control messagesof DiMAPI and the
data transferred, across all monitoring sensors. We modified the test application
to read the number of bytes of a network flow in three differentperiodic intervals,
and plotted the mean rate of the generated traffic for one hour. Figure 5.2 shows
the results when applying theBYTE COUNTER function that returns an unsigned
8-byte integer, while Figure 5.3 shows the results when applying theHASHSAMP
function, that returns a significantly larger data structure. HASHSAMP is used to
perform hash-based sampling on the packets of a network flow,and its results for-
mat is a 36-byte data structure.

In case that the application withBYTE COUNTER reads the result in 0.1 sec
intervals, which is orders of magnitude lower than the minimum polling cycle
allowed by most implementations of the Simple Network Management Protocol
(SNMP), the generated traffic reaches 295 Kbit/sec, when using a network flow
with a scope of 15 sensors. However, for periodic intervals of one second or more,
the generated traffic is negligible. When reading the results ofHASHSAMP, we see
only a slight increase in the traffic rate due to the larger size of the produced re-
sults. In all of our experiments the CPU utilization at the end-host was negligible,
constantly lower than 1%.

5.1.3 Response Latency

In this set of experiments we set out to explore the delay between the call of a
DiMAPI function and the return from the function. Since the call of a DiMAPI
function results to a message exchange with each of the remote sensors within the
flow’s scope, the return from the function is highly dependent on the Round Trip
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Time (RTT) of the network path between the host on which the application runs
and the remote monitoring sensors. Ideally, the latency introduced by DiMAPI stub
should be negligible, and thus the overall latency should beclose to the maximum
RTT of the sensors within the flow’s scope.

We measured the time for retrieving results by callingmapi read results()
call, using a test application which applies theBYTE COUNTER function and run-
ning it in the FORTH network. The time was measured by generating two times-
tamps from within the monitoring application right before and after the call to
mapi read results(). In this way, the measured time includes both the pro-
cessing time of the DiMAPI stub and that of the remote sensor,as well as the
network latency.

Figure 5.4 presents the completion time for the execution ofa
mapi read results() call as a function of the number of monitoring sen-
sors in the network flow scope. As the number of sensors increases, there is a very
slight increase in the delay for retrieving the result. Since all the sensors are located
within the FORTH LAN, the network latency for each monitoring sensor is almost
constant and remains very low. Thus, the delay for retrieving the result from 15
sensors also remains very low, below 1 ms.

In order to explore how the network latency affects the delayof DiMAPI calls
under more realistic conditions, we repeated the experiment using the second sen-
sor deployment. This network comprises monitoring hosts located in four different
ASes across the Internet, thus the RTT between the end host where the application
runs and each monitoring sensor varies considerably.

We report our findings in Table 5.1. The third column shows theactual RTTs
for each sensor, as measured from the end host usingping. We measured the delay
of mapi read results() for reading results from each monitoring sensor. The
results of Table 5.1 suggest that for each sensor, the delay is slightly higher, but
comparable, to the corresponding RTT. Furthermore, when using a network flow
with a scope that includes all the monitoring sensors, the delay is roughly equal to
the delay of the slowest sensor.
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Network Flow mapi read results() Network
Scope delay (ms) RTT (ms)

VHosp 170.58 160.69
UoC 3.26 3.24

FORTH 0.68 0.67
UPenn 283.65 279.22

VHosp, UoC, FORTH, UPenn 285.496 -

TABLE 5.1: Comparison between the completion time of
mapi read results() and the network Round Trip Time

In order to achieve even lower response latency in getting the monitoring re-
sults, that will not depend on network’s RTT, we can use the push model, as de-
scribed in section 2.3.4. The experiments of the next section are focused to ex-
amine improvements using the push model in fetching packetsto the application.
Similar improvements can be achieved in the latency ofmapi read results
when using this technique.

5.1.4 Evaluation of Packet Prefetching

In the next experiments we examine the improvement that the packet prefetching
approach achieves in DiMAPI, using the push model as described in section 2.3.4.
Instead of requesting from a remotemapicommd one packet each time the appli-
cation calls themapi get next pkt(), the DiMAPI stub transparently receives
a number of packets thatmapicommd sends back-to-back, stores them in a buffer
and returns them from this buffer to the application in eachmapi get next pkt()
call.

For our experiments we used three different computers. The first one is the
passive monitoring sensor wheremapid andmapicommd daemons run. Another
computer is used for generating traffic using thetcpreplay [4] tool, by sending
several times and at different rates a network packet trace of 1 GB size with real
network traffic captured from a passive monitor located at the School Network of
Crete. Finally, a third machine is used for running DiMAPI test applications. These
computers are all interconnected through a local 1 Gbit/secswitch.

The test applications call themapi get next pkt() function using both
pull and push model implementations. In order to compare their performance,
we measure the completion time of amapi get next pkt() call by placing
gettimeofday() calls before and aftermapi get next pkt(). Moreover,
we count the number of packets and the total bytes that we are able to deliver in
the application callingmapi get next pkt()within one second interval using
pull and push models. We run the test applications for 10 minutes and report the
average throughput in Mbit/sec as computed from the packet’s size in bytes.
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push models for different buffer sizes
while replaying at 100 Mbit/sec

Examine the Effect of Buffer Size

Firstly we examine the effect that the size of the buffer which holds the packets
has on the performance. This size is equal to how many packetswill be prefetched
to the application’s stub in one batch. Figures 5.5 and 5.6 present the latency and
throughput respectively formapi get next pkt() while replaying the trace at
the constant rate of 100 Mbit/sec and varying the size of the buffer from 10 to 2000
packets.

The results show that prefetching significantly reduces thelatency of a
mapi get next pkt() call and increases the number of packets that can be
delivered to the application in one second. The delay drops from 200 to 52 mi-
croseconds in case of 100 packets buffer size and to 42 microseconds when using
2000 packets buffer, that comprises an improvement of 3.85 and 4.76 times respec-
tively. Throughput increases from 22.4 to 81.3 and 99.9 Mbit/sec in case of buffer
sizes of 100 and 500 packets respectively. This means that when using buffer larger
that 500 packets in size, in our setup, we can achieve to forward all the network
packets frommapicommd to the application with the same rate that they reach at
the monitoring interface.

When increasing the buffer size from 500 to 2000 packets we observe only a
slight improvement in latency and throughput. So, we consider 500 packets as a
good enough buffer size. If compared to, e.g., buffer size of2000 packets, the
application’s stub will need to perform one request every 500 packets instead every
2000 packets that means just 4 more requests every 2000 packets.
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FIGURE 5.7: Completion time for
mapi get next pkt() with pull
and push models while replaying a trace
from 10 to 200 Mbit/sec
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Examine the Effect of Traffic Rate

Next, we vary the traffic generation rate from 10 to 200 Mbit/sec while using 500
packets for the size of the buffer that packets are stored in the push model case.
Figures 5.7 and 5.8 presents the results.

We observe that increasing the rate of the generated traffic results to a reduction
on the average latency for amapi get next pkt() call and to an increment of
the throughput for both pull and push models. This is reasonable sincemapid
andmapicommd daemons do not block waiting for new packets to arrive in the
monitoring device, which is more possible to happen at low traffic rates. How-
ever, in the pull model we can see that this effect is visible only when the rate is
increased from 10 to 50 Mbit/sec. After 50 Mbit/sec, the delay and throughput
of mapi read results() remains always constant at about 200 microseconds
and 22 Mbit/sec respectively. The latency is limited to 200 microseconds due to
the network’s RTT, while the maximum throughput that can be achieved for pull
model is 22 Mbit/sec. So, at higher rates than 22 Mbit/sec a significant amount of
packets will be dropped from the buffer thatmapid saves them and will be lost.

On the other hand, using the push model we are not limited fromthe net-
work’s RTT since the packets are sent back-to-back. The throughput that we can
achieve using the push model for fetching packets approaches the traffic rate on
the monitoring interface. For example, for 100 Mbit/sec traffic rate at the monitor-
ing interface, themapicommd sends packets to the application with 100 Mbit/sec
also, while for 200 Mbit/sec traffic ratemapicommd achieves throughput of 185
Mbit/sec. Comparing the two different approaches, the pushmodel is 4 times faster
at 100 Mbit/sec and 9 times faster at 200 Mbit/sec from the pull model. Using the
push model,mapicommd can send up to 185 Mbit/sec without loosing any packet,
while the pull model can transfer packets with rate only up to22 Mbit/sec.
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5.2 Locality Buffering Performance Evaluation

In this section, we present the experimental evaluation of our prototype imple-
mentation of locality buffering. We deploy the modified versions oflibpcap to
three popular passive monitoring applications:Snort intrusion detection system,
Appmon application for accurate traffic classification and Fprobe flow export tool.
Then we compare their performance using the originallibpcap and our locality
buffering implementations.

5.2.1 Experimental Environment

Our experimental environment consists of two PCs interconnected through a Giga-
bit switch. The first PC is used for traffic generation, which is achieved by replay-
ing real network traffic traces at different rates usingtcpreplay [4]. We used
a full payload trace captured at the access link that connects an educational net-
work with thousands of hosts to the Internet. The trace contains 1,698,902 packets,
corresponding to 64,628 different network flows, totallingmore than 1 GB in size.

By rewriting the source and destination MAC addresses in allpackets, the gen-
erated traffic can be sent to the second PC, the passive monitoring sensor, which
captures the traffic and processes it using different monitoring applications. The
passive monitoring sensor is equipped with an Intel Xeon 2.40 GHz processor with
512 KB L2 cache and 512 MB RAM running Debian Linux (kernel version 2.6.18).
The kernel socket buffer size was set to 16 MB, in order to minimize packet loss
due to packet bursts.

We tested the performance of the monitoring applications ontop of three differ-
ent versions oflibpcap: the original version, our modified version that employs
locality buffering, and a third version with the optimized locality buffering ap-
proach that uses a separate thread for storing incoming packets. For each setting,
we measured the application’s user and system time using theUNIX time util-
ity. Also, the idle CPU time is computed from the average percentage of the CPU
usage that the application’s process has taken. Furthermore, we measured the L2
cache misses and the CPU clock cycles by reading the CPU performance counters
through the PAPI library [3]. Finally, an important metric that was measured is the
percentage of packets being dropped bylibpcap, which usually happens when
replaying the traffic in high rates, due to high CPU utilization.

Traffic generation begins after the application has been initiated. The applica-
tion is terminated immediately after capturing the last packet of the replayed trace.
All measurements were repeated 10 times, and we report the average values. We
focus mostly on the discussion of our experiments using Snort, which is the most
resource-intensive among the tested applications. However, we also briefly report
our experiences with Fprobe and Appmon.
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FIGURE 5.9: Snort’s user plus system
time as a function of the buffer size for
100 Mbit/s traffic.

Locality Buffer size (# packets)

0 2000 4000 6000 8000 10000 12000 14000 16000

L2
 c

ac
he

 m
is

se
s 

(p
er

 p
ac

ke
t)

6

11

16

21

26

pcap
pcap+LB
pcap+LB+thread

FIGURE 5.10: Snort’s L2 cache misses
as a function of the buffer size for 100
Mbit/s traffic.
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FIGURE 5.11: Snort’s CPU cycles as
a function of the buffer size for 100
Mbit/s traffic.
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FIGURE 5.12: Idle CPU time as a func-
tion of the buffer size for 100 Mbit/s
traffic.

5.2.2 Results from Snort

We ran Snort using its default configuration, in which almostall of the available
rule sets and preprocessors are enabled. Snort loaded 2833 rules, while 11 prepro-
cessors were active.

Initially, we examine the effect that the size of the buffer in which the packets
are sorted has on the overall application performance. We vary the size of the
buffer from 100 to 16000 packets while replaying the networktrace at a constant
rate of 100 Mbit/sec. Using a 100 Mbit/sec rate, no packets were dropped. We
do not use any timeout in these experiments for packet gathering. As long as
we send traffic at constant rate, the buffer size determines how long the packet
gathering phase will last. Figure 5.9 shows the user plus system time of Snort for
processing the replayed traffic using the differentlibpcap versions. Figures 5.10
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and 5.11 present the per-packet L2 cache misses and clock cycles respectively,
while Figure 5.12 presents the average idle CPU time while Snort was running.

We observe that increasing the size of the buffer results to lower user time,
fewer cache misses and clock cycles, and generally to an overall performance im-
provement. This is because using a larger packet buffer offers better possibilities
for effective packet sorting, and thus to better memory locality. However, increas-
ing the size from 4000 to 16000 packets gives only a slight improvement. Based on
this result, we consider 4000 packets as optimum buffer sizein our experiments.
For a rate of 100 Mbit/sec, 4000 packets roughly correspond to an 160 millisecond
period at average.

We can also notice that using locality buffering we achieve asignificant re-
duction on the L2 cache misses from 23.7 per packet to 10.5, when using a 4000
packets buffer, which is an improvement of 2.26 times against Snort with the orig-
inal libpcap library. Also, Snort’s user time and clock cycles are significantly
reduced, making it faster by more than 40%. Due to the improved memory access-
ing locality, the CPU remains idle for a significantly largerpercentage of time.

Comparing our two different implementations, they result to similar perfor-
mance in all the metrics measured. The modified version oflibpcap that uses
a separate thread for storing packets to the buffer seems to perform slightly better
than the simple implementation.

We replayed the trace in different rates, from 10 to 300 Mbit/sec, trying differ-
ent buffer sizes as before for each rate and we concluded to the same findings. In
all rates, 4000 packets was found as the optimum buffer size.Using this optimum
buffer size, locality buffering results in all rates to a significant reduction on Snort’s
cache misses and user time, similar to the improvement observed in 100 Mbit/sec
against the originallibpcap. The two implementations have almost equal per-
formance in all cases, with the one using a thread performinga little better.

Another important metric for evaluating the improvement ofour technique is
the percentage of the packets that are being dropped in high rates by the kernel
because Snort is not able to process all of the them in these rates. In Figure 5.13
we plot the average percentage of packets that are being dropped while replaying
the trace with speeds ranging from 10 to 300 Mbit/sec. We used4000 packets
size for the locality buffer, which was found to be the optimal size for Snort when
replaying this traffic at any rate.

Using the unmodifiedlibpcap, Snort cannot process all packets in rates
higher than 125 Mbit/sec, so a significant percentage of packets is being lost.
On the other hand, using locality buffering, the packet processing time is accel-
erated and the system is able to process more packets in the same time interval.
As shown in Figure 5.13, when deploying our locality buffering implementations
in Snort, it becomes much more resistant in packet loss. It begins to loose packets
at 200 Mbit/sec instead of 125 Mbit/sec, which is a 60% improvement. Also, at
250 Mbit/sec, our implementation drops 2.6 times less packets than the original
libpcap. The two different implementations of the locality buffering technique
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FIGURE 5.13: Packet loss ratio of the passive monitoring sensor when running
Snort, as a function of the traffic speed.

achieve almost the same performance, with the thread-basedimplementation hav-
ing slightly less dropped packets.

We do not observe any significant improvement with the thread-based imple-
mentation, compared to the simple locality buffering implementation, because the
major benefit of our technique is the acceleration of packet processing due to im-
proving memory access locality. Moreover, in the constant and high traffic rates
that we generated in our experiments, the CPU time was not idle during the packet
gathering phase, since packets were continuously arriving. In case of bursty traffic,
however, the separate thread would be more resistant to dropping packets.

5.2.3 Results from Appmon

Appmon [9] is a passive network monitoring tool for accurate per-application traf-
fic identification and categorization. It uses deep-packet inspection and packet
filtering for attributing flows to the applications that generate them. We ran App-
mon on top of our modified versions oflibpcap and examined the improvement
that they can offer using different buffer sizes that vary from 100 to 16000 pack-
ets. Figure 5.14 presents the Appmon’s user plus system timeand Figure 5.15 the
per-packet L2 cache misses measured while replaying the trace at a constant rate
of 100 Mbit/sec.

The results show that the Appmon’s performance can be improved using the
locality buffering implementations. Its cache misses are reduced from 8.4 to 7.1
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FIGURE 5.14: Appmon’s user plus sys-
tem time as a function of the buffer size
for 100 Mbit/s traffic.
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FIGURE 5.15: Appmon’s L2 cache
misses as a function of the buffer size
for 100 Mbit/s traffic.

misses per packet, when used buffer size of 8000 packets, that is a 18% improve-
ment. Thus, the user plus system time is reduced by more than 30% compared
width the originallibpcap. The optimum buffer size in the case of Appmon,
based on the these results, seems to be around 8000 packets. Our different im-
plementations resulted again to very close performance, with the first one giving a
little better results this time.

We were also running Appmon when replaying traffic in rates varying from
10 to 300 Mbit/sec, observing always similar results. SinceAppmon does signif-
icantly less processing than snort, no packets were droppedin these rates. The
output of Appmon remains identical in all cases, which meansthat the periodic
packet stream sorting does not affect the correct operationof Appmon’s classifica-
tion process.

5.2.4 Results from Fprobe

Fprobe [1] is a passive monitoring application that collects traffic statistics for
each active flow and exports corresponding NetFlow records.We ran Fprobe with
our modified versions oflibpcap and performed the same measurements as with
Appmon. Figure 5.16 plots the user plus system time of the Fprobe variants per
buffer sizes from 100 up to 16000 packets, while replaying the trace at 100 Mbit/sec
rate.

We notice a speedup of about 30% when locality buffering is enabled. The
buffer size that optimizes overall performance is again around 8000 packets. We
notice that in Appmon and Fprobe tools the optimum buffer size is about 8000
packets, while in Snort 4000 packets size is enough to optimize the performance.
This happens because Appmon and Fprobe are not so CPU-intensive as Snort, so
they require a larger amount of packets to be sorted in order to achieve a significant
performance improvement. Finally, we observe that the version of libpcap that
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FIGURE 5.16: Fprobe’s user plus system time as a function of the buffer size for
100 Mbit/s traffic.

uses a separate thread for storing packets gives better performance in Fprobe for
some of the buffer sizes, but it is not clear which of these twoversions is preferable
in this case. Similar results were observed in all rates of the replayed traffic.
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6
Related Work

6.1 Passive Network Monitoring Tools and Libraries

There are several techniques and tools currently availablefor passive network mon-
itoring, which can be broadly categorized into three categories [26]: passive packet
capturing, flow-level measurements, and aggregate traffic statistics. These cate-
gories are with decreasing order regarding the offered functionality and complex-
ity. For example, flow-level measurements and aggregate traffic statistics can be
provided by packet capturing systems. DiMAPI belongs to thefirst category, since
it is capable to perform distributed packet capture and manage remote monitor-
ing sensors, but can also offer the latter functionalities by applying the appropriate
functions to the network flows.

The most widely used library for packet capturing islibpcap [36], which
provides a portable API for user-level packet capture. Thelibpcap interface
supports a filtering mechanism based on the BSD Packet Filter[35], which allows
for selective packet capture based on packet header fields. Thelibpcap library
has been widely used in several passive monitoring applications such as packet
capturing [44, 48], network statistics monitoring [17], flow export [1, 16] and in-
trusion detection systems [45]. Also, DiMAPI is implemented on top oflibpcap
for commodity network interfaces. Thus, performance optimizations like our lo-
cality buffering technique, which has been implemented within libpcap, can be
beneficial for all the above tools and libraries.

WinPcap [5] andrpcap [32] extendlibpcap with remote packet captur-
ing capabilities. Both allow the transfer of captured packets at a single remote host
to a local host for further processing. DiMAPI offers the same and more func-
tionality through the scope abstraction formultipledistributed monitoring sensors,
being also much more expressive. Furthermore, by enabling traffic processing at

65
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each remote sensor, DiMAPI avoids the considerable networkoverhead of above
approaches since it sends back only the computed results.

CoralReef provides a set of tools and support functions for capturing and an-
alyzing network traces [30].libcoral provides an API for monitoring applica-
tions that is independent of the underlying monitoring hardware. Nprobe [38] is a
monitoring tool for network protocol analysis. Although itis based on commodity
hardware, it speeds up network monitoring tasks by using filters implemented in
the firmware of a programmable network interface

Except from packet capture oriented systems, there has beensignificant ac-
tivity in the design of systems providing flow-based measurements. Cisco IOS
NetFlow technology [12] collects and measures traffic data on a per-flow basis. A
drawback of such tools is that they are usually accessible only by network admin-
istrators who have access rights to network equipment like routers. Open source
probes likenProbe [16] offer NetFlow record generation by capturing packets us-
ing commodity hardware. DiMAPI shares some goals with the above flow-based
monitoring systems, but it has significantly more functionality.

6.2 Distributed Passive Network Monitoring Infrastruc-
tures

As network traffic monitoring is becoming increasingly important for the oper-
ation of modern networks, several passive monitoring infrastructures have been
proposed.

CoMo [27] is a passive monitoring infrastructure which allows users to query
network data gathered from multiple administrative domains, by providing a num-
ber of generic query mechanisms. It is based on a number of distributed monitoring
nodes, consisting of the CoMo core processes and a number of user defined plug-in
modules. Each one of these nodes is able to answer queries based on the modules
that are plugged-in.

A similar approach is followed by Gigascope [15] that is a stream database for
storing captured network data in a central repository for further analysis using the
GSQL query language. Users are able to implement special query operators by fol-
lowing a specific API. Gigascope is able to satisfy fast simple network monitoring
needs by serving user”s SQL-like queries, from a database that is created from a
single monitoring sensor.

Sprint’s passive monitoring system [24] was installed within the Sprint IP back-
bone network and it was collecting data from different monitoring points into a
central repository for further analysis. However, it couldnot support many differ-
ent monitoring applications, and it is not a scalable approach as this system was
installed effectively just within the Sprint”s backbone network.

All the above infrastructures are mainly based on databaseswith predefined
custom schemas which collect data from distributed sensorsand accept queries
using SQL-like languages from monitoring applications. Inorder to implement
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new functionality, new plugins must be written and embeddedin the monitoring
sensors. If compared to DiMAPI, they do not support any of theconcepts of net-
work flow or network scope, and none of these systems providesany API which
will aid the developer to create novel distributed monitoring applications. DiMAPI
adopts a different approach, providing an API for distributed passive monitoring
applications development instead of supplying with a database for data queries.

Arlos et al. [10] propose DPMI, a distributed passive measurement infrastruc-
ture that supports various monitoring equipment within thesame administrative
domain. DPMI defines the means of creating a testbed that willprovide passive
monitoring capabilities from a number of predefined measurement points to data
consumers.

Finally, a lot of work is being done in the area of monitoring of high perfor-
mance computing systems, such as clusters and Grids. Ganglia [34] is a distributed
monitoring system based on a hierarchical design targeted at federations of clus-
ters. GridICE [8] is a distributed monitoring tool integrated with local monitoring
systems with a standard interface for publishing monitoring data. These systems
could utilize at lower levels the functionality offered by DiMAPI.

6.3 Locality Buffering

The concept of locality buffering for improving passive network monitoring ap-
plications, and, in particular, intrusion detection and prevention systems, was first
introduced by Xinidis et al. [53], as part of a load balancingtraffic splitter for mul-
tiple network intrusion detection sensors that operate in parallel. In this work, the
load balancer splits the traffic to multiple intrusion detection sensors, so that similar
packets (e.g. packets destined to the same port) are processed by the same sensor.
However, in this approach the splitter uses a limited numberof locality buffers and
copies each packet to the appropriate buffer based on hashing on its destination port
number. Our approach differs in two major aspects. First, wehave implemented
locality buffering within a packet capturing library, instead of a separate network
element. To the best of our knowledge, our prototype implementation within the
libpcap library is the first attempt for providing memory locality enhancements for
accelerating packet processing in a generic and transparent way for existing passive
monitoring applications. Second, the major improvement ofour approach is that
packets are not actually copied into separate locality buffers. Instead, we maintain
a separate index which allows for scaling the number of locality buffers up to 64K.

Locality enhancing techniques for improving server performance have been
widely studied. For instance, Markatos et al. [33] present techniques for improving
request locality on a Web cache, which results to significantimprovements in the
file system performance.
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6.4 Improving the Performance of Packet Capturing

Several research efforts [18,19,51] have focused on improving the performance of
packet capturing through kernel and library modifications which reduce the num-
ber of memory copies required for delivering a packet to the application. In con-
trast, our approach with locality buffering technique aimsto improve the packet
processing performance of the monitoring application itself, by exploiting the in-
herent locality of the in-memory workload of the application.



7
Conclusion

In this thesis, we presented the design, implementation andperformance evaluation
of DiMAPI, a flexible and expressive API for building distributed passive network
monitoring applications. One of the main novelties of DiMAPI is the introduc-
tion of the network flowscope, a new attribute of network flows which enables the
creation and manipulation of flows over a set of local and remote passive monitor-
ing sensors. The design of DiMAPI mainly focuses on minimizing performance
overheads, while providing extensive functionality for a broad range of distributed
monitoring applications.

We have evaluated the performance of DiMAPI using a number ofmonitoring
applications operating over large monitoring sensor sets,as well as highly dis-
tributed environments. Our results showed that DiMAPI has low network over-
head, while the response latency in retrieving monitoring results is very close to
the actual round trip time between the monitoring application and the monitoring
sensors within the scope. Furthermore, using result and packet prefetching (push
model) we can achieve even lower response times, since we arenot limited from
the network’s round trip time. For instance, we showed that when sending batches
of 500 captured network packets back-to-back from a monitoring sensor to a mon-
itoring application, it can continue sending captured packets up to 185 Mbit/sec,
in a Gigabit network, without loosing any packet. On the other hand, the first
implementation (pull model) can transfer packets with rateonly up to 22 Mbit/sec.

We also presented a novel distributed passive monitoring technique for real
time packet loss estimation between different domains. Thetechnique is based on
tracking theexpired flowsat each monitoring sensor. Using DiMAPI as distributing
monitoring infrastructure, a central monitoring application correlates the results
from the monitoring sensors and computes the actual packet loss ratio. Our passive
monitoring approach for packet loss estimation is accurateand reliable, while at
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the same time exhibits inherent advantages such as scalability and a non-intrusive
nature. This is a typical application relying on the basic DiMAPI functionality.

Moreover, we introduced locality buffering, a technique for improving the per-
formance of packet processing in a wide class of passive network monitoring ap-
plications by enhancing the locality of memory access. Our approach is based on
reordering the captured packets before delivering them to the monitoring applica-
tion, by grouping together packets with the same destination port. This results to
improved locality for code and data accesses, and consequently to an increase in
the packet processing throughput and to a decrease in the packet loss rate.

We described in detail the design and the implementation of locality buffering
within the widely usedlibpcap library, and presented our experimental eval-
uation using three representative CPU-intensive passive monitoring applications.
The evaluation results showed that all applications gain a significant performance
improvement, while the system can keep up with higher trafficspeeds without
dropping packets. Specifically, locality buffering resulted to a 40% increase in the
processing throughput of the Snort IDS, while the packet loss rate was decreased by
60%. Using the originallibpcap implementation, the Snort sensor begins loos-
ing packets when the monitored traffic speed reaches 125 Mbit/sec, while using
locality buffering, packet loss is exhibited when exceeding 200 Mbit/sec. Fprobe,
a NetFlow export probe, and Appmon, an accurate traffic classification application,
also exhibited a significant throughput improvement, up to 30%, even though they
do not perform as CPU-intensive processing as Snort.

Overall, we believe that implementing locality buffering within libpcap is
an attractive performance optimization, since it offers significant performance im-
provements to a wide range of passive monitoring applications, while at the same
time its operation is completely transparent, without needing to modify existing
applications. DiMAPI implementation for commodity network interfaces is also
based onlibpcap, so DiMAPI based applications can benefit indirectly from
locality buffering.
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