
UInify: A Designer Studio for creating UI

Mashups for Ambient Intelligence

Environments

Alexandra Barka

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Professor Constantine Stephanidis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

UInify: A Designer Studio for creating UI Mashups for Ambient
Intelligence Environments

Thesis submitted by
Alexandra Barka

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Alexandra Barka

Committee approvals:
Constantine Stephanidis
Professor, Thesis Supervisor

Panagiotis Tsakalidis
Professor, Committee Member

Margherita Antona
Principal Researcher, Committee Member

Departmental approval:
Antonios Argyros
Professor, Director of Graduate Studies

Heraklion, November 2018

UInify: A Designer Studio for creating UI Mashups for
Ambient Intelligence Environments

Abstract

Over the past decade, there is an accelerating interest in Ambient Intelligent
(AmI) environments, that has resulted in an abundance of “smart” products, ap-
plications and research prototypes, which aim to revolutionize daily human life,
boost productivity and enhance well-being. Given the vast number of currently
available devices and services, it is not possible for developers to build all-inclusive
applications, which will enable users to systematically monitor and control the
variety of physical devices and services that they own.

Instead, users need to either rely on diverse applications from different vendors
to accomplish their goals, or use integration platforms sacrificing functionality and
rich interaction in favor of interoperability. With the emergence of “Internet of
Things”, several mature technologies are available nowadays to develop interactive-
rich user interfaces. Various technologies have been established, that allow the
composition of user interfaces (UIs) by making a “mashup” application, which is a
web page, or applications in general, that combine data and services from existing
interfaces, resulting in the production of functional and rich UIs.

This thesis proposes the UInify design studio, which empowers designers to
compose flexible web applications in real-time. This framework binds, under
a common roof, all the individual user interfaces that control and/or monitor
hardware and software components of a smart environment (e.g. a smart home)
by providing an intelligent user interface [99] developed as a web application
mashup[103, 95]. UInify offers a set of tools allowing designers to combine multiple
individual UIs together and introduces new rich user interface compositions. The
end-users are provided with a single UI through which they can control the intelli-
gent facilities of their surroundings, as well as tailor their surroundings according
to their needs.

After reviewing the relevant motivational state-of-the-art, the high-level ar-
chitecture and the implementation details are elaborated. Several use cases of
composite applications with the proposed system will be described, such as an
application for the Home TV [32] and an Interactive Kitchen Countertop.

Keywords: Ambient Intelligence, Ubiquitous Computing, Human-computer
Interaction, UI Mashups, Smart Environments

UInify: Σχεδιαστική πλατφορμα για την δημιουργία
σύνθετων διεπαφών σε περιβάλλοντα διάχυτης

νοημοσύνης

Περίληψη

Κατά την τελευταία δεκαετία υπάρχει διευρυνόμενο ενδιαφέρον για περιβάλλοντα

Διάχυτης Νοημοσύνης (ΔΝ) που έχει οδηγήσει στην παραγωγή πληθώρας «έξυπνων»

προϊόντων, εφαρμογών, και ερευνητικών πρωτοτύπων, τα οποία στοχεύουν στην βελ-

τίωση της καθημερινότητας των ανθρώπων, στην αύξηση της παραγωγικότητας και

στην αύξηση της ευημερίας και της ποιότητας της ζωής. Δεδομένου του μεγάλου

αριθμού των συσκευών και υπηρεσιών που παρέχονται για αυτά τα περιβάλλοντα, ε-

ίναι αδύνατο για τους προγραμματιστές να δημιουργήσουν ολοκληρωμένες εφαρμογές

που επιτρέπουν στους χρήστες να παρακολουθούν και να ελέγχουν συστηματικά την

ποικιλία των συσκευών και των τεχνητών υπηρεσιών που κατέχουν.

Σήμερα οι χρήστες, είτε χρησιμοποιούν διαφορετικές εφαρμογές από διαφορετικο-

ύς προμηθευτές (με διαφορετική λειτουργικότητα και εμπειρία χρήσης η κάθε εφαρ-

μογή) για να επιτύχουν τους στόχους τους, είτε βασίζονται σε ενοποιημένες πλατ-

φόρμες που θυσιάζουν την λειτουργικότητα και την πλούσια αλληλεπίδραση της εφαρ-

μογής στο βωμό της διαλειτουργικότητας. Παρόλα αυτά, η ανάπτυξη του ‘Διαδίκτυο

των Πραγμάτων’ περιλαμβάνει πλέον αρκετά ώριμες τεχνολογίες για την ανάπτυξη

πλουσίων διαδραστικών διεπαφών. Διάφορες τεχνολογίες που έχουν καθιερωθεί ε-

πιτρέπουν τη σύνθεση διεπαφών δημιουργώντας μια ιστοσελίδα ανάμειξης (mashup
[103, 95]), οι οποίες είναι ιστοσελίδες ή εφαρμογές οι οποίες συνδυάζουν δεδομένα

και υπηρεσίες από ήδη υπάρχουσες διεπαφές με αποτέλεσμα την παραγωγή μιας λει-

τουργικά πλούσιας εφαρμογής για τον τελικό χρήστη.

Η παρούσα εργασία προτείνει τη σχεδιαστική εφαρμογή UInify, η οποία δίνει τη

δυνατότητα στους σχεδιαστές να συνθέτουν, σε πραγματικό χρόνο, ευέλικτες εφαρ-

μογές διαδικτύου. Αυτή η τεχνολογική πλατφόρμα ενοποιεί, κάτω από κοινή στέγη,

τις μεμονωμένες διεπαφές που ελέγχουν ή/και παρακολουθούν το υλικό (Hardware)
και λογισμικό (Software) ενός έξυπνου χώρου (π.χ. έξυπνο σπίτι) με την παροχή μιας

έξυπνης διεπαφής [99], με τη μορφή ιστοσελίδας ανάμειξης [103, 95]. Το UInify είναι

μια τεχνολογική πλατφόρμα, η οποία συνεισφέρει με ένα σύνολο εργαλείων τα οποία

επιτρέπουν στους σχεδιαστές έξυπνων χώρων να εισάγουν νέες πλούσιες συνθέσεις

διεπαφών. Στους τελικούς χρήστες παρέχεται μια ενιαία διεπαφή μέσω της οποίας μπο-

ρούν να παρακολουθήσουν και να ελέγξουν τις ευφυείς εγκαταστάσεις τους ανάλογα

με τις προσωπικές τους προτιμήσεις.

Στο πλαίσιο της εργασίας αυτής γίνεται μια ανασκόπηση της σχετικής βιβλιογρα-

φίας και στη συνέχεια παρουσιάζεται η αρχιτεκτονική, σε υψηλό επίπεδο, καθώς και

οι λεπτομέρειες της υλοποίησης του συστήματος. Στις τελευταίες ενότητες της εργα-

σίας, περιγράφονται διάφορες περιπτώσεις χρήσης του προτεινόμενου συστήματος για

την δημιουργία σύνθετων διεπαφών για ένα έξυπνο σπίτι, όπως για παράδειγμα μια πο-

λυμεσική εφαρμογή για την έξυπνη τηλεόραση του σαλονιού [32] και μια διαδραστική

εφαρμογή για τον πάγκο της κουζίνας.

Λέξεις κλειδιά: Διάχυτη νοημοσύνη, Διάχυτος Υπολογισμός, Αλληλεπίδραση

ανθρώπου-υπολογιστή, Αναμίξεις διεπαφών, ΄Εξυπνα περιβάλλοντα

to the people that made this thesis possible

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

1.1 Overview - Setting the problem . 2

1.2 Thesis structure . 3

2 Literature Review 5

2.1 Ambient Intelligence . 6

2.1.1 AmI overview . 6

2.1.2 AmI definition and directions 7

2.2 AmI in Home Automation . 9

2.2.1 History of Home Automation Controllers 10

2.2.2 Age of connected devices and home automation controllers 12

2.3 Web Application Mashups . 15

2.3.1 Internet of Things . 15

2.3.2 Towards the Web of Things era 16

2.3.3 UI Mashups for Home Automation. 18

2.3.3.1 Overview . 18

2.3.3.2 User Interface Mashups 19

2.3.3.3 Mashups for home automation 20

2.3.4 The curious case of pluggable user interfaces 21

2.4 When Web of Things met HCI . 22

2.4.1 HCI in Mashups . 22

2.5 Discussion . 23

3 System Requirements 25

3.1 The AmI Home environment . 25

3.2 System requirements . 26

3.2.1 Features and Functional Requirements 26

3.3 One UI to bind them all . 32

i

3.4 High-level scope of UInify . 33

3.4.1 High-level requirements . 33

3.4.2 High-level architecture . 34

3.5 UInify MEAN stack 2.0 . 38

3.6 Terminology in UInify . 39

4 System Modeling and Technological Infrastructure 43

4.1 Data Modeling . 43

4.1.1 Overview . 43

4.1.2 UInify entities . 44

4.2 UInify Backend technologies . 52

4.3 UInify Frontend technologies . 57

5 UInify platform 59

5.1 Overview . 59

5.1.1 Register and Login . 59

5.1.2 Dashboard . 60

5.1.3 Main and secondary menus 61

5.2 Applications . 63

5.2.1 Application Repository . 63

5.2.2 Application details . 64

5.3 Compositions . 65

5.3.1 Composition Repository . 65

5.3.2 Composition Details . 67

5.3.3 Introducing a composition 67

5.4 The AMIview editor: Introducing a layout 69

5.5 Utilities . 70

5.5.1 Intelligent Space Repository and Details 70

5.5.2 Profile . 71

5.5.3 Universal Search . 71

6 UInify Use Cases 73

6.1 AMITV Launcher . 73

6.1.1 Requirements . 73

6.1.2 Creating the launcher . 73

6.2 Mobile Home Screen . 74

6.2.1 Requirements . 74

6.2.2 Creating the mobile application 76

6.3 Even more Mashups . 77

6.3.1 Kitchen Countertop . 77

6.3.2 CognitOS : A Student-Centric Environment for a Intelligent
Classroom. 78

ii

7 Evaluation 81
7.1 User-based Interface Evaluation . 81
7.2 The experiment . 82

7.2.1 Preliminaries . 82
7.2.2 The process . 82
7.2.3 Scenarios . 83

7.3 Performance Measurement . 85
7.3.1 Findings per scenario . 85

7.3.1.1 Scenario 1 . 86
7.3.2 Discussion . 95

8 Summary and Future work directions 97
8.1 Summary . 97
8.2 Future Work . 97

8.2.1 Dynamic Rules . 98
8.2.2 Layout builder . 98
8.2.3 UI Mapper . 99
8.2.4 UInify player . 99

Bibliography 101

iii

iv

List of Tables

4.1 The Owner model . 44
4.2 Application model . 46
4.3 Tag model . 47
4.4 Tags model . 48
4.5 Artifact model . 49
4.6 Display artifact requirements . 50
4.7 The Artifact Type model . 50
4.8 The Intelligent Space model . 51
4.9 The Room model . 51
4.10 The Composition model . 51
4.11 Typical Hypertext Transfer Protocol (HTTP) methods used in UInify 52

v

vi

List of Figures

2.1 Computer power can be embedded in a variety of daily objects . . 6

2.2 Change in user-computing ratio through time 7

2.3 Interaction in between AmI and other fields [34] 8

2.4 Different aspects of Ambient Intelligence (AmI) 9

2.5 Ubiquitous computing in an Ambient Intelligence home 10

2.6 (a) ECHO IV home controller in 1966 (b) In the modern age, any
display device can control and monitor an intelligent home 10

2.7 The worldwide interest over time for Home Automation and Smart
Home topics since 1/1/2004 [64]. 12

2.8 Home automation timeline . 13

2.9 The overall picture of IoT (vertical and horizontal markets) [29] . . 16

2.10 The ten most popular Internet of Things applications (2018 ranking
[20]) . 17

2.11 Popular web and technologies and well-known Web mechanisms,
describe the Web of Things . 18

2.12 The four layers of the Web of Things architecture: Accessibility,
Findability, Sharing, Composition. 19

2.13 User Interface model with inter-component communication 20

2.14 HTML UI mashup. A web page has embedded HTML snippets for
displaying contents retrieved from endpoints. 21

3.1 The high-level requirements of UInify 33

3.2 How UIs are imported to UInify 35

3.3 Layout builder and UI mapper . 36

3.4 UInify overall architecture . 37

3.5 UInify MEAN stack 2.0 overall architecture 38

3.6 High-level definition of the artifacts in an intelligent environment . 41

4.1 The document style mongoDB follows 43

4.2 The conceptual data model of UInify platform 45

4.3 A tag as described in UInify . 47

4.4 An application (or composition) tags representation 48

4.5 Representation of the artifact model 49

4.6 Express and Node.js for data retrieval from MongoDB database . . 52

vii

4.7 SPA authentication with jwt tokens 57

5.1 The login form . 60
5.2 The UInify’s platform dashboard 61
5.3 The UInify’s main dashboard menu 61
5.4 The UInify’s secondary menu . 62
5.5 The application repository in tile view 63
5.6 The application repository in list view 64
5.7 The available sorting and filtering components for application repos-

itory . 64
5.8 The “Music” Application has two application components 65
5.9 The “Movie player” Application Component as displayed in Uinify 66
5.10 The Composition repository - tile view 66
5.11 The AMITV composition details 67
5.12 Choosing between intelligent spaces for the composition 68
5.13 The UInify’s editor . 69
5.14 The flow of creating a new composition 70
5.15 The Intelligent Space repository - tile view 71

6.2 A concept layout for “AMITV Launcher” 74
6.1 Creating the “AMITV Launcher” composition 75
6.3 The mobile application as created in UInify 76
6.4 UInify concept in Kitchen Bench application 77
6.5 AmiView creation for CognitOS . 79
6.6 Snapshots from CognitOS applications 79

7.1 Figure for Scenario 7 . 84
7.2 Figure for Scenario 8 . 85
7.3 Execution times for Scenario 1 . 86
7.4 Execution times for Scenario 2 . 87
7.5 Execution times for Scenario 3 . 88
7.6 Execution times for Scenario 4 . 89
7.7 Execution times for Scenario 5 . 90
7.8 Execution times for Scenario 6 . 91
7.9 Execution times for Scenario 7 . 92
7.10 Execution times for Scenario 8 . 93
7.11 Execution times for Scenario 9 . 94
7.12 The System Usability Score of UInify per user 95

viii

Abbreviations

AmI Ambient Intelligence

GUI Graphical User Interface

HCI Human-Computer Interaction

HTTP Hypertext Transfer Protocol

IFTTT If this Then that

IoT Internet of Things

IT Information Technology

VUI Voice User Interface

WoT Web Of Things

WWW World Wide Web

ix

x

Chapter 1

Introduction

The advancements in Information Technology (IT) over the past three decades,
have completely transformed interaction and have steadily increased the users ex-
pectations from technology due to their familiarity with computing devices. With
the emergence of the Internet of Things (IoT) technologies (e.g. sensor networks,
RFID, wireless communications) [61], the World Wide Web (WWW) has become
mature enough to serve as a platform for creating rich interactive applications.
On top of continuous technological advancements, the increasing interest in Ambi-
ent Intelligent (AmI) environments, highlighted the need for appropriate tools to
encapsulate and control a wide range of connected devices and artificial services,
offering smart behaviour by responding to events in such environments (e.g. turn
on the lights when the user enters a room in an intelligent home) under a common
application.

The success of Web 2.0 [80] and Web Of Things (WoT) [66, 65] allowed the
seamless interconnection of real-world objects enhanced with computer technology
to the existing web. Such advancements offer new directions for the development
of intelligent environments in terms of web-based platforms (e.g. HomeWeb: An
application framework for Web-based smart homes [72], meSchup: A Platform
for Programming Interconnected Smart Things [75], IoT-Based Portable Smart
Meeting Space [92] and more). These technological accomplishments (e.g. the
use of client-side scripting languages, the advance of Web Services, the public
APIs) shaped up a new concept, the mashups [103, 95]. Mashup web applications
-and more specifically in the context of this work the UI mashups - are web
applications that integrate interfaces at different levels of the application stack
from different resources on the web.

To that end, this thesis proposes the UInify design studio, which empowers
designers to compose flexible rich user interfaces at real-time. This framework
binds under a common roof all the individual user interfaces that control and/or
monitor the hardware and software components of an intelligent space by providing
an intelligent user interface [99] as a web application mashup [103, 95].

Although this master mainly focuses on home automation paradigms, possible

1

2 CHAPTER 1. INTRODUCTION

applications in other intelligent environments (e.g smart classroom), with ultimate
purpose to be useful in future smart cities, are also explored. Smart cities are a
trending research topic, with multiple projects all over the world, which aim in
three sections: (i) advanced communication technologies to support services for
the administration of the city [111] (ii) Smart and Green Transportation [54] and
(iii) Health-care [28] and Eco-living [110].

1.1 Overview - Setting the problem

An ambient intelligent environment is expected to have multiple display devices
and sensors and to unobtrusively pay attention to users’ in order to understand
users’ intentions and decide system’s actions. A system with this kind of com-
plexity needs a controller or an assistant, to aid the end user with daily tasks.
Many major market players like Amazon and Google have released Voice User
Interface (VUI) controllers. It is common these days that devices like Amazon
Alexa [1], Google home [10] and Amazon Echo show [1] are installed in houses and
offer voice UIs to assist their users (e.g. offer multimedia options). On the other
hand, Apple has released the Home app [3] - a cross-platform iOS application-
which controls the home accessories in a house. Despite the fact that these VUI
controllers work out pretty well, user interfaces that convey visual information are
also important. Additionally, the delivered application should not be restricted by
vendors agreements (e.g. Apple is cooperating with 50 brands [3]).

Today, it is common that a user has at least one mobile device. Recently an
explosive growth of mobile devices has been observed and expected to grow from
an installed base of 15.4 billion devices in 2015 to 30.7 billion devices in 2020
and 75.4 billion in 2025 [81]. Furthermore, all these devices have different charac-
teristics, that designers have to consider in the development of home automation
applications. To that end, it is impossible for designers and developers to build
all-inclusive applications, which will enable users to fully monitor and control the
wide variety of physical devices and artificial services that they own.

The main challenges for home automation controllers will arise from Human-
Computer Interaction (HCI) domain and refer to the application’s usability. A
usable [59, 77] interface has three characteristics, (i) it should be easy-to-use for
the user, making her familiar with the UI, (ii) the users should achieve their ob-
jective easily by using the interface and (iii) it should be easy to remember in the
subsequent visits by the users. It is important to create interactive applications
through the iterative design process that HCI advises. Furthermore, the applica-
tion should offer a complete, unified experience to the end-user. To that end, it is
essential for designers to utilize User-Centered Design (UCD) approaches to define
their functional requirements and to create successful user experiences [100].

The composite UI to be delivered, will be an intelligent User Interface (IUI) [99],
which is a user interface that involves some aspect of computational intelligence.
The created IUI will be the intersection of user preferences, sensor data, and

1.2. THESIS STRUCTURE 3

context from the intelligent space. IUIs arise two main challenges: (i) the vast
amount of information produced, which are a combination of sensor data and
context information and (ii) the reasoning process, where the system can make
deductions about the user.

The core objective of this study is to develop a framework that aids the de-
signers of intelligent spaces to deliver unified experiences to the end users. The
contribution of this framework is a collection of tools, which enable designers to
combine several individual UIs, and introduce new rich User Interface composi-
tions. The end-users are provided with a user interface through which they can
monitor and manage their intelligent facilities. This IUI [99] can evolve over time,
by using mechanisms and computational techniques like artificial intelligence, rea-
soning and machine learning. These composite user interfaces (i) will create inno-
vative and unique interactive experiences for end users and (ii) empower them to
tailor their space according to their requirements.

1.2 Thesis structure

The rest of this master thesis is organized in eight (8) main sections as indicated
in the table of contents:

• The second section will introduce the current state of the art in relevant top-
ics that this thesis is based upon. It will first review the literature regarding
ambient intelligence and its applications. Moreover, it will explore how these
concepts apply in the context of home automation, including a brief historic
reference of this concept. Then some technology advancements will be pre-
sented that lead to the concept of web application mashup. Finally, this
thesis briefly discusses the system from Human-Computer Interaction (HCI)
point of view.

• The third section will present a high-level architecture for UInify. It will
report the functional requirements that were gathered for designing the sys-
tem. Also, it will present the terminology (the vocabulary used in UInify),
and finally an overall high level description of the functionality of the system.

• The fourth chapter will dive into the technical aspects of the platform. It
will illustrate the conceptual model and the representation of the data that
was adopted. Moreover, it will present the details of the implementation of
the full stack application.

• The fifth chapter will describe of the interaction with the system, with a
brief discussion of the components used and the design decisions made for
the platform.

• The sixth section will present several use cases in which UInify can be utilised
to create composite applications in an intelligent space. The first case will

4 CHAPTER 1. INTRODUCTION

present how UInify can be utilized to create an entertainment hub and the
second a mobile phone launcher. Then, we briefly illustrate how the system
can be used for two more complex scenarios, first is for a kitchen countertop
and the second for an intelligent classroom.

• The seventh section will report the evaluation process, the scenarios utilised,
as well as the findings that were obtained.

• Finally, the last chapter will summarize this work and discuss its future
directions.

Chapter 2

Literature Review

Science fiction explored the idea of intelligent spaces decades ago when authors
envisioned interactive homes and artificial intelligent agents capable of operating
the household. Many films, books, and cartoon series have portrayed the home
automation vision, with AI agents, robots, and fully automated houses. Futuristic
domiciles examples have been explored by media in the cartoon series Futurama,
where the writers envisioned the life in the 31st century, the Disney channel movie
Smart house (1999) where an evil artificial agent control over the household, the
movie The Hitchhiker’s Guide to the Galaxy (2005), where the doors have emo-
tions and express them when the people use them, the Iron Man trilogy movies
with the artificial agent Jarvis and plenty other. This section, reviews topics of
theoretical background research relevant to the present work, for the better un-
derstanding of the latest technologies and the deficiencies that this work tries to
overcome. Next, it will explore the concept of web applications mashups, which
is a major component of the implemented system. Finally, some secondary topics
such as the Internet and the Web of things will be also briefly discussed to support
the theoretical background.

The topics that will be investigated are:

• Ambient Intelligence, an overview of the concept, some definitions and the
general features that encompass this topic

• Ambient Intelligence application in the context of home automation

• Home automation applications used to monitor and/or control the intelligent
facilities overview

• Web application Mashups, a concept that allows to create new rich web
application by utilising existing ones

• Internet and Web of things concepts that led to the introduction of mashup
technology

• Human Computer interaction & User centered design

5

6 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Computer power can be embedded in a variety of daily objects

2.1 Ambient Intelligence

2.1.1 AmI overview

Computer Science is a relatively new field of science that has progressed rapidly
over the first decades of its existence. A rapid transformation[34] and continuous
growth [34] has been observed from the starting point of digital machinery that
performed simple calculations, to the point of microcomputers and their integra-
tion to everyday objects, that led to the introduction of several concepts including
Ambient Intelligence (AmI).

The realization of AmI made possible for computer power to be embedded in
objects (Figure 2.1) that are used daily like home appliances (e.g. programmable
kitchenware or robotic hovering machines) [34], vehicles [70] or something as ordi-
nary as a cup of coffee [60].

The evolution and the shift in the availability of computing power per person
[46] are represented in Figure 2.2. Originally, the computers were expensive, with
large volume and not particularly usable. A single computer unit would typically
be utilized by many individuals. As the technology advanced and the market’s
prices dropped dramatically, the computers became more accessible to people.

2.1. AMBIENT INTELLIGENCE 7

Figure 2.2: Change in user-computing ratio through time

Nowadays, one individual typically has access to multiple devices with computer
power [46] (e.g. computers, laptops, mobile or tablets).

Computer science affects every aspect of human life making users’ expecta-
tions grow due to their daily encounter with technological artifacts and innovative
mobile applications1. The decreasing in size of microprocessors, the widespread
availability of computer power and the successful user experience with the devices,
led to the development and broad availability of digital resources [46], which facil-
itated the realization of AmI. AmI refers to electronic environments that they can
sense and be responsive in the presence of humans, and combines multidisciplinary
fields (Figure 2.3) to set new concepts for information processing [25].

The principal intention of AmI is to equip the environment with technology
that operates collectively, using context information and intelligence which is hid-
den (Ubiquitous Computing) in connected devices. This aids to enhance the user
experience through the assistance of natural and intuitive user interfaces [25].
Technology is integrated unobtrusively to common artifacts and utilizes (i) the
distributed information and (ii) the intelligence in this interconnected and
complex system. Sensors are providing valuable information, such as lighting con-
ditions, temperature or vital signs (e.g. heart rate), with devices recording it in the
environment. The intelligence is implemented by a special form of interaction and
algorithms, that are able to identify humans in the environment, their behaviour,
and act and react according to their needs.

2.1.2 AmI definition and directions

Even though the term “Ambient Intelligence” is commonly used, it exists in the
bibliography only since 2001, when the term was used by the European Commission

1In the first quarter of 2018, Android users were able to choose between 3.8 million apps and
Apple’s App Store has about 2 million available apps [104]

8 CHAPTER 2. LITERATURE REVIEW

Figure 2.3: Interaction in between AmI and other fields [34]

[55] referring to a concept for the future of digital systems in the years 2010-
2020, where users and devices will interact through interfaces in real-time and
pro-actively [41]. Despite the widespread use of the term, a formal definition of
AmI doesn’t exist. Many researchers attempted to define the concept and some
worth-mentioning definitions are presented in this section.

In European Commission’s IST Advisory Group in 2001 [55], it is described as:
“A potential future in which we will be surrounded by intelligent objects and in
which the environment will recognize the presence of persons and will respond to
it in an undetectable manner”.Aarts et al. describes the concept as “A developing
technology that will increasingly make our everyday environment sensitive and
responsive to our presence.” in [25].

Maeda et al. in their letter in the January 2006 issue of NTT technical review
and in their revised paper [82] stated that Ambient Intelligence implies intelligence
that is all around us. Cook et al. [46] report it as an emerging discipline that brings
intelligence to our everyday environments and makes them sensitive to people.
Ramos et al. [96] state that AmI deals with ubiquitous computing devices, allowing
users to interact with their environment in an intelligent and unobtrusive way.

In [97] is reported that: “Ambient Intelligence (AmI) is a new research area for
distributed, non-intrusive, and intelligent software systems both from the direction
of how to build these systems as well as how to design the collaboration between
ambient systems”. Finally, Vasilakos and Pedrycz in [109], mention that “In an
AmI environment people are surrounded with networks of embedded intelligent
devices that can sense their state, anticipate, and perhaps adapt to their needs”.

Several more definitions and explanations are available in the literature but

2.2. AMI IN HOME AUTOMATION 9

Figure 2.4: Different aspects of Ambient Intelligence (AmI)

despite the apparent differences, the idea is comparable. In general, an AmI en-
vironment is characterized by five primary features as depicted in Figure 2.4. It
should build upon technological advancements as computer networks, sensors and
sophisticated Machine Learning and artificial intelligence algorithms to enable the
integration of distributing technology in a seamless manner to the environment.
It should also be context-aware [101] and utilize the contextual information of
the user, user location and situation identification. Another important aspect of
such an environment is personalization, by customizing the systems’ features on
users and their behaviours. Furthermore, the concept of adaptation through learn-
ing users preference and acting accordingly as well as the concept of anticipation
through artificial intelligence by predicting users intentions are really important
to these systems [25].

2.2 AmI in Home Automation

Ambient Intelligence is a wide field with many applications. An example of an
environment enriched with ubiquitous technologies is a “Smart Home”. Several
items in a typical house can be augmented with sensors (e.g. oven, fridge, bed) to
gather useful information (sense) in order to process them and find an intelligent
way (reason) for the system to act upon users’ needs (act) (Figure 2.5).

In the next sections the home automation paradigm will be extensively ex-
plored, with main focus on systems that aim to control and monitor the environ-
ment [51]. These tasks (i.e. monitoring and controlling the users’ surroundings)
are challenging and without a suitable approach will cause frustration to users.

10 CHAPTER 2. LITERATURE REVIEW

Figure 2.5: Ubiquitous computing in an Ambient Intelligence home

2.2.1 History of Home Automation Controllers

The idea of connected homes [63, 68, 38] was explored decades ago when authors
envisioned interactive homes that will be able to operate the household digitally.
Although the idea is relatively old, actual implementations mainly developed over
the last few years due to the immense cost of creating such an interactive place.
The first home automation system originated from the past 1966, with the ECHO
IV [22, 6] made by Jim Sutherland. ECHO IV [6] was the first home automation
controller, which if used correctly it could perform limited automation tricks, such
as basic TV and stereo control, run some math and educational programs and
have an alarm clock. The controller (see Figure 2.6) was so large that needed a
lot of space and power to operate, as well as plenty of knowledge to use it.

Figure 2.6: (a) ECHO IV home controller in 1966 (b) In the modern age, any
display device can control and monitor an intelligent home

Home automation began to gain popularity in the early 2000s [69]. At this time,
many attempts were made for implementing such an environment. Orange mobile
network operator [69, 24] focused their research to comprehend the users’ attitude
towards these environments and the social factors that affect the technology use
with their Orange-at-home (2001) project. MIT’s House n project (1999-2000) [23]
is an architectural project that incorporated sensing components in the building

2.2. AMI IN HOME AUTOMATION 11

to implement a ubiquitous home which is responsive to its occupants and develop
innovative user interface home automation applications.

The “Aware Home” (started in 1998) from Georgia Tech [27, 69] is a context-
aware smart environment that assists people in their everyday activities. They
developed several projects associated with the home, such as software that creates
family photo albums, intercom systems, electronic tags for mislaid items (e.g. keys)
and more. Finally, MavHome from the University of Texas [13] enhanced the idea
of the home automation with concepts from artificial intelligence field by creating
smart agents for home.

HomeLab (2004) [50] is a project where scenarios of Ambient Intelligence were
implemented and tested. They mainly focused on creating user experiences using
display technology and avoid to just provide huge amount information.

VERA Z-wave project (2008) [36] presented real-time feedback on power use
and remote and automated control of four appliances through smart plugs. Ad-
ditionally, four types of spaces were identified in homes; communication, work,
private and public entertainment. These spaces, the placement of technology in
them and the users’ relationship with the technology are the main concepts of
this analysis. Another project, the British Gas HIVE (2013) [37] provided remote
control of heating and hot water. This system was having difficulties with boiler
consistency so was only installed in eight homes.

Early research attempts towards implementing a smart home have reported the
technical difficulties of implementing intelligent domestic environments [45]. In this
home paradigm, the computer software plays the role of an intelligent agent that
perceives the state of the physical environment and users and then takes actions
to achieve specified goals. Current research in ambient intelligence aims to allow
devices to interact with other devices and the networking infrastructure without
human control. The intelligent home must also be imbued with an awareness of
the resident context (location, preferences, activities), physical context (lighting,
temperature, house design), and time context (hour of day, day of week, season,
year) [45].

Kamilaris et al. [72] in their HomeWeb (2011), take a web-oriented approach
in the intelligent home project. In their work, they developed a Web-based ap-
plication framework, which supports concurrent interaction with multiple users.
They use the concept of web and physical mashups [65], by exploiting real-world
services offered by physical devices and combining them using the same tools and
techniques of Web mashups [49].

Palanca et al. [91] introduced a system (2018) for goal-oriented, self-adaptive,
smart home environment. In this approach, users are able to interact with the
system by expressing their goals which are interpreted as a set of agent operations
in a way that is transparent to the user. This is suitable for environments where
ambient intelligence and home automation control are combined for the user’s
benefit.

Fogli et al. [58] in their systematic literature review of several tools supporting

12 CHAPTER 2. LITERATURE REVIEW

End-User development configuration for Smart home proposed a conceptual frame-
work for the design and continuous evolution of ambient intelligence environments.
Most of the systems that are reviewed are based on rule-based paradigms, with
visual interfaces for users to compose events, using structures like “if-condition(s)-
then-action(s)” or “when-event(s)-then-action(s)”.

Recent surveys confirm that home automation is an emerging field with a
current revenue of 30 million that will outreach 70 million by 2020, without yet
reaching its full potential [85], which triggers the extended research in order to rev-
olutionize daily human life. Despite the extensive research, most of these projects
lack of focus to the human factor. Most of them ignore that in the end humans
will inhabit these intelligence surroundings, and only test how much technology a
house can have.

2.2.2 Age of connected devices and home automation controllers

Over the past decade, many advances have been achieved regarding the Internet
of Things (IoT) technology, which enables the implementation of actual ambient
intelligent spaces. The interest in smart homes and home automation is shown
in Figure 2.7. There is a growing trend towards Home automation queries [64] in
Google information retrieval service (see Figure 2.7), that is the result of the rapid
introduction of digital technology advancements as well as the plentiful embedded
devices that are being released. These high-tech sensors can measure with high
accuracy the environmental conditions, offering opportunities for intelligent and
context-sensitive behaviour.

Figure 2.7: The worldwide interest over time for Home Automation and Smart
Home topics since 1/1/2004 [64].

In 2010, Nest Labs was invented because of the frustration of their founder for
the limited features in the thermostat devices available [16]. Smart things in 2012
raised $1.2 million on a Kickstarter, by promising to link any connected device
within a house. They provided a mobile application that allows to operate and
monitor the environment. This application works with If this Then that (IFTTT)
recipes to trigger events. They also provided a web-based IDE for developers to
create new rules [19].

2.2. AMI IN HOME AUTOMATION 13

By 2014, several vendors had produced next-generation connected devices with
their individual APIs and mobile applications. Subsequently, a new problem ap-
peared; the operation of different devices had the users to switch between multiple
applications with different functionality among them. Users in order to use their
smart devices had to download multiple applications from different vendors, with
different “look and feel” and functionality, that make the experience rather diffi-
cult and confusing. In addition, the absence of standards on IoT devices, as well as
the heterogeneity on their API protocols used and functionality made the coopera-
tion of devices from diverse vendors impossible [88]. These difficulties emphasized
the necessity for a unified application with a common presentation layer for every
connected device and service.

One of the first unified commercial applications made by Ben Kaufman in 2014,
is “Wink” [21]. Wink brought various smart items onto a small network in order
to manage them under a common presentation layer. Since then many attempts
have been performed for such an umbrella application both in the commercial and
academic sector.

Samsung SmartThings [19], is an indicative commercial example, based on a
smartphone application that is able to monitor and control connected devices in
home. Gideon Smart home[9], is a mobile application that helps user to interact
with and control multiple devices from multiple brands. It uses “Tricks”, a set
of IF/THEN rules to prevent damages, issues or helps user with daily life. They
also provide a chat-bot to control vocally the application and the devices, locally
and remote control of the home, as well as Device discovery. IFTTT [11] is a
commercial application which aids connected devices to communicate with each
other. It can connect with multiple vendors and gain insights from use and build
services to control the home. Control4 [5] is a unified application to orchestrate
the connected devices in order to communication with each other .

Figure 2.8: Home automation timeline

Similarly, in the academic sector, some projects are: SPOT [88] which is a

14 CHAPTER 2. LITERATURE REVIEW

smartphone-based platform to tackle heterogeneity in smart home environments,
HouseGenie [105] a smartphone application for Universal Monitoring and Con-
trolling of Networked Devices in Smart Home, MeSchup [75] which is a mashup
platform for programming interconnected smart things. A ZigBee [62] based home
automation system and Wi-Fi network are integrated through a common home
gateway.

In [76], a standalone, low cost smart home system is presented, which is based
on an Android application, communicating with the micro-web server providing
some complex functionality in the home. The authors in [94] developed a low
cost home controller and monitoring system using an embedded micro-web server,
with IP connectivity for accessing and controlling devices and appliances remotely
using an Android application. All of the previous projects are implying the need
for some unified system platforms.

Cloud-based and multi-vendor applications have also been released with the
promise to connect any device (e.g. IFTTT [11], OpenHab [18], Universal Control
Hub [113] amd An Integrated Cloud-Based Smart Home Management System
with Community Hierarchy [78]), but users are still restricted by the appliances
companies’ partnerships and not sufficient support for programming heterogeneous
devices.

Although research solutions allow more generic applications for the integration
of the devices, they are restricted in auto-generated UIs, not responsive user in-
terfaces for mobile applications which are not able to adjust their views into other
display devices and limited applications that they can only be used as controllers
or user interfaces that have not included user-centered design in their development
cycle [78].

In summary, some of the problems that cause the home automation technology
to be restricted to laboratory projects and narrow device connectivity are:

• The lack of flexibility of the user interface, meaning that existing systems use
one modality (e.g. smartphone) to control and monitor the surroundings.

• The User interface heterogeneity, meaning that systems from various vendors
provide different user interfaces, making it hard to organize them under a
common application.

• The devices APIs’ diversity narrows the interoperability among the devices.
Different vendor devices may not cooperate well in an intelligent home envi-
ronment.

• The cost to acquire a range of these devices.

The above limitations highlighted the need for the intelligent home approaches
to direct into two parallel axes (i) to integrate these smart things under a common
interface, and (ii) to make each connected device and service part of the existing
web in order to offer flexibility for end-users.

2.3. WEB APPLICATION MASHUPS 15

2.3 Web Application Mashups

In this section, first the technology advancements in Internet of Things and Web
Of Things will be discussed. These two topics will introduce the concept of Web
Application Mashups, upon which the proposed system is based on. After a gen-
eral overview of web application mashups, we will dive in UI mashups, which are
mashups for the presentation layer of an application.

2.3.1 Internet of Things

Over the past years, the Internet has exponentially expanded to a global network
serving billions of users [73]. The “Internet of Things” (IoT) [87, 56], describes
the extension of Internet connectivity to everyday objects enriched with sensors.
In other words, IoT transforms these objects into so called “smart”, by utiliz-
ing the underlying technologies [29] (e.g. ubiquitous and pervasive computing,
communication technologies, sensor networks, Internet protocols). A smart object
represents the interface between the physical world and the digital world [57], using
confluent interaction between users and technology.

Smart objects and their tasks establish domain-specific applications (vertical
markets) while ubiquitous computing model application domain-independent ser-
vices (horizontal markets). Figure 2.9 demonstrates how IoT associates every
domain-specific application with domain-independent services, whereas in each
domain sensors and actuators communicate immediately with each other [29].

The term “smart object” describes an embedded system, consisting of a thing
(physical entity) and a component (the computer) that has two purposes: (i)
the system processes the sensor data and (ii) establishes a wireless communication
link to the Internet [73]. For example, an intelligent fridge (physical entity) keeps
track of the availability and the expiration date of the food (Sensor data) as well
as the nearest supermarkets (through internet and gps information) to place an
order when a specified item is below a defined limit.

A study published in [20] tried to distinguish the most successful IoT segments
for 2018. The majority of IoT projects are classified as Smart City (367 projects)
due to current Smart City initiatives started by authorities around the world. The
most popular application is “Smart Traffic”, with projects like parking systems
and traffic monitoring. The second trend in place is connected industry with
265 projects, including equipment monitoring in non-factory environments such
as asset monitoring and remote control of connected types of machinery such as
drills, or even entire mines and oil fields (e.g. Cisco’s connected mining operations
for Rio Tinto in Western Australia). The top ten applications in IoT are in figure
2.10.

Another successful IoT segment is Intelligent Home, with projects that have
attempted to create new applications for intelligent building infrastructure over
the years [61]. One requirement of intelligent home and ambient intelligence, is
that the enhanced devices in the house, are connected to a network in order to

16 CHAPTER 2. LITERATURE REVIEW

Figure 2.9: The overall picture of IoT (vertical and horizontal markets) [29]

reduce the cost and complexity of configuring and using the connected devices.

2.3.2 Towards the Web of Things era

In late 2004, the concept of Web 2.0 [80] began to gain popularity when O’Reilly
Media and MediaLive hosted the first Web 2.0 conference. Web 2.0 encompasses
user-generated content with user interaction and collaboration, ease of use and
interoperability of the website for the end-users [66, 86]. Examples of Web 2.0
applications include blogs, wikis and popular systems such as Google Maps, Face-
Book. The development of Web 2.0 gave the opportunity to use the web as an
application-layer for the IoT devices, the Web of Things (Figure 2.11).

2.3. WEB APPLICATION MASHUPS 17

Figure 2.10: The ten most popular Internet of Things applications (2018 ranking
[20])

This concept simplifies the creation of IoT applications and the seamless in-
tegration of connected devices to the Internet. The WoT architecture reuses suc-
cessful existing web standards used in web for decades (e.g. REST, HTTP, JSON,
WebSockets), to create networks of smart objects [67]. It took several years for
this concept to be accepted in academic cycles and in 2010, the first Restful Ar-
chitecture (see figure 2.12) for the Web of things was proposed.

Over the last few years, many applications have been developed using “Web
of Things” approaches and integrating these concepts in the connected home
paradigm. The main idea is that instead of using the Internet only as a trans-
port protocol, it is proposed to use it as a platform, in order to make smart things
a fundamental part of the Web [66, 65, 67]. “Smart Things” are everyday objects
that can be enhanced digitally, such as embedded devices and sensors, electronic
appliances or artificial services that the house can offer. Every connected smart
thing has its individual user interface, set in a specific URI and all of the interfaces
are composed in an integrated application are called a mashup [65, 72, 102, 71].

In terms of Web Services, a lot of research has been conducted in the area of
Web of Things for the architecture that is most suitable in this kind of context.
The direction recommended is using Rest architectural style recommended for
Web 2.0 Mashup applications implemented by URIs in order to identify resources,
HTTP as a transport protocol and standardized media types such as HTML for
the interface implementation [66, 65, 67, 102].

18 CHAPTER 2. LITERATURE REVIEW

Figure 2.11: Popular web and technologies and well-known Web mechanisms, de-
scribe the Web of Things

2.3.3 UI Mashups for Home Automation.

2.3.3.1 Overview

An interesting topic that is connected with the accelerating development of Web
of Things and Web 2.0 are the web mashups [49]. A web mashup is a web
application that combines data, logic or/and interfaces from multiple sources.
A typical definition of a Mashup by Daniel et al. [49] is: “A mashup is a composite
application developed starting from reusable data, application logic, and/or user
interfaces typically, but not mandatorily, sourced from the Web.”

The typical architecture of a mashup consists of three layers [49, 102, 74]:

• Data Component: Monitors and handles the data that flow in an ambient
environment. Data in this application are sent, stored or received using
JSON format.

• Logic Component: the underlying functionality of the service using RESTful
services.

2.3. WEB APPLICATION MASHUPS 19

Figure 2.12: The four layers of the Web of Things architecture: Accessibility,
Findability, Sharing, Composition.

• Presentation Component: Uses HTML, CSS and Javascript technologies, the
developer can create a user interface created with user-centred approaches

For the ambient intelligent spaces, the term of physical mashups is used. Physical
mashups are composite web application following the typical definition of mashups,
which also involve smart things and virtual web services [65].

2.3.3.2 User Interface Mashups

One of the novelties of mashups is that they can integrate User Interfaces, sourced
from the web to the presentation layer. This category of mashup applications is
described as User Interface (UI) mashups [49]. They are able to combine vari-
ous components at the presentation layer of the application stack while reusing
data and synchronization elements from the involved of the UIs. The output of
this integration is a newly published Web application. This approach is very ben-
eficial when it is expensive to develop a new application, or the user interface
is overly complicated. The resulting applications are mostly client-side appli-
cations since the business logic is concerning how to render and invoke the UI
components. In Figure 2.13 is demonstrated the User Interface mashup model
with inter-component communication and synchronization as described by Florian
Daniel in [49].

This model include three (3) elements: (i) Component Operations, that

20 CHAPTER 2. LITERATURE REVIEW

Figure 2.13: User Interface model with inter-component communication

allow to centrally monitor the components, (ii) UI events, that inform the other
components about state changes and (iii) Shared Memory, that enables the
exchange of data among the components.

A very simplistic form of UI mashups can be implemented with embedded
third-party code (HTML snippets) or online resources within a basic HTML page.
These mashups are called HTML UI mashups (see figure 2.14). This architecture
consists of a HTML page, which may incorporate URI references to entire web
pages, multimedia or other web components. Resources are embedded via iframes.
Server-side technologies and widgets introduce new features to UI mashups. The
UIs can be stored as autonomous widget UIs to a widget repository. Additionally,
composite applications that can be synchronized and share data can be created
with requests to a web server that stores the repository.

2.3.3.3 Mashups for home automation

Mashup web applications for home automation services started to emerge shortly
after the release of the Web 2.0. A commercial Web of Things platform has been
developed by EVRYTHNG software company [7, 33], which offers a digital ecosys-
tem by providing each individual object with a unique active digital identity (ADI).
The platform can connect consumer products and connected devices to the web
with a real-time application, with cloud-to-cloud connectors. Their research in-
cludes three main projects. An IOT Smart Product Platform, where the Internet

2.3. WEB APPLICATION MASHUPS 21

Figure 2.14: HTML UI mashup. A web page has embedded HTML snippets for
displaying contents retrieved from endpoints.

of Things products are connected and managed in real-time. Reactor, an Enter-
prise Rules engine that makes real-time decisions and triggers scripts. And finally,
Security and Access control for the smart objects, data and users and more.

An interesting example of a physical mashup home automation system is Home-
Web [72], a web-oriented application framework with the use of IPv6 and 6LoW-
PAN technologies. A prototype of a framework has also been introduced in [65],
which uses the notions of WoT and mashup technologies. However, these projects
are still under development trying to overcome client-server architecture and dis-
covery of smart things problems.

All of these projects, besides their technical difficulties which are trying to be
solved, are technology dependent without taking into consideration the user. They
lack user-centered design, as well as the ability of personalization. Furthermore,
the users will not only need all these artificial web services and applications but
we have to consider an easy approach to even program their home tailored to their
needs [108, 43].

2.3.4 The curious case of pluggable user interfaces

Despite the fast emerging IoT and WoT technologies, as well as fields such as Ma-
chine Learning and Artificial Intelligence, which are offering context-aware com-
puting mechanisms, home automation is not fully integrated with everyday life.
This is due to the complexity of the applications being developed and more specif-
ically the complexity of their user interfaces, which makes the users frustrated and
unsure of how to operate them.

In this ambient environment, numerous devices are working and cooperating,
each one having its own functionality and an appropriate user interface. It would

22 CHAPTER 2. LITERATURE REVIEW

be impossible for a single programmer to develop such an environment. A unified
native application would be heavily weighted and impossible task even for a team
of skilled programmers. Due to the complexity, the web-oriented approaches (e.g.
mashups) along with pluggable interfaces, appear to be the correct direction in
solving home automation problems [47].

Each one of the appliances’ user interface must be plugged into the unified
application. Also, these interfaces should be easy to use, so as to increase the
usability in this complex environment. This kind of interfaces has been studied
in [112], where the pluggable interfaces for the different underlying services were
exposed by a Universal Control Hub [112], for a set of different display devices
(i.e. controllers). In this work, the authors try to bridge the display devices (UI)
and the individual sensors (functionality). This hub is being applied in the i2home
project [30], where its main goal is to develop technology for the elderly and people
with cognitive impairments.

2.4 When Web of Things met HCI

The aforementioned systems and research work made a significant contribution to
the design and development of applications for the intelligent home. However, the
existing products are mainly focused on controlling devices rather than monitoring
and operating the whole home environment. Current technology concepts are
mature enough for implementing ubiquitous systems, but it seems it is difficult to
incorporate all these notions on a large scale, in order to make intelligent homes
available for the end-users. Moreover, in such an intrusive environment, users must
communicate their needs effectively for the technology to solve their difficulties.
Aaarts et al. highlight the lack of user-centred design in ambient intelligence
environments in [26], revealing that people need a evenhanded approach in which
technology should assist people instead of monitoring their every move.

A user-centred design is a necessity for such a complex and interactive en-
vironment in order to provide the best User Experience with a simple, intuitive
and consistent user interface. The users should be able to solve their own prob-
lems, with the application giving them the opportunity to contribute to their home
software.

2.4.1 HCI in Mashups

As the web transforms to Web 2.0, the way users access content and interact with
each other through web changes. This results to several issues [53, 93] which have
been observed to the usability of the web sites.

The main challenge is how users interact with Web 2.0 applications. Nowadays
the Internet is no longer used only as mean for viewing content, but as a platform
where a user can interact with applications and services. Other challenge can be
the unpredictable behavior of the user and how this affects the user interface [93].

2.5. DISCUSSION 23

The concepts of Mashup web applications and pluggable user interfaces, as well
as concepts from human-computer interaction area such as user-centred design,
inspired the idea for the proposed system. The UInify platform is a framework
that contributes a set of tools, allowing designers to combine multiple individual
UIs together and introduce new rich User Interface compositions. Moreover, end-
users are provided with a single UI, through which they can monitor and control
the intelligent facilities of their surroundings as well as empowering them to tailor
the intelligent facilities according to their preference.

2.5 Discussion

Evidence from the present systematic review confirm that a complex AmI envi-
ronment has various UI applications that need to cooperate and exchange data.
Therefore, in order to aid the designers of smart environments in defining complex
user interface, an approach that incorporates the state-of-the-art technology such
as Web Of Things and UI mashups is required.

Based on our study, a platform with similar functionality as in UInify, which en-
ables the entire design and deployment of a composite user interface, does not exist.
In particular, this work proposes a HTML UI mashup that can embed third-party
code (HTML snippets) of published web applications from the smart home within
a basic HTML page. All these web applications are imported to the database by
the AmI Solertis system [79] developed by FORTH-ICS. The third-party code may
be part of pluggable user interface applications (e.g. Music, Movies), or widgets
of utilities applications (e.g. AmI TV player, Recipe step-by-step guide in kitchen
counter top). The proposed system aims to create compositions that are brand
new applications that incorporate several UIs from the widget repository.

24 CHAPTER 2. LITERATURE REVIEW

Chapter 3

System Requirements

This chapter provides the details regarding the technological components that
comprise the UInify platform. This platform aims to support designers in the
process of building complex user interfaces for their intelligent environments. In
particular, UInify allows (i) the exploration of the available application and ap-
plication components that are available in the intelligent ecosystem as well as (ii)
the exploration and introduction of complex user interfaces, namely Compositions,
through an intuitive editor and finally deploy them as a UI mashup [49].

3.1 The AmI Home environment

Generally, intelligent home residents are expected to manage multiple environ-
ments (e.g. home, office) that incorporate a variety of physical devices (e.g. Lamps,
Thermostats, TV), and artificial services (e.g. Multimedia systems, Kitchen assis-
tants). Each one of these ambient spaces requires to be monitored and controlled
efficiently in a timely manner, regardless of the heterogeneity of its components.
Furthermore, since a conventional user is not expected to have programming expe-
rience, the resulting user interface should be intuitive and simple to use. To achieve
that, the system should follow well-established guidelines used in human-computer
interaction. Furthermore, home surroundings need to observe the overall context
of use (e.g. physical conditions, activity at hand) and should respond according
to the sense-reason-act paradigm (see Figure 2.5); the triggering event could ei-
ther be sensing data or user-oriented commands. To provide the best support
to its users and automate various everyday tasks, an ubiquitous, multimodal and
context-aware system is needed.

UInify facilitates the creation of composite applications for the Intelligent Home
of FORTH-ICS. The web applications are exposed as services through the AmI
Solertis platform [79], which is a system that offers tools, allowing management,
programming, testing, and monitoring of all the individual artifacts of a Smart
Environment. The ambient environment is equipped with a variety of display
devices (e.g. smart phone, tablet, desktop or tangible large screens) that the user

25

26 CHAPTER 3. SYSTEM REQUIREMENTS

could interact with the complex interfaces, that are introduced through UInify.
All the web applications with Graphical User Interface (GUI) are provided by
AmI Solertis, and they expose a set of metadata information, to facilitate the
selection of the appropriate displaying device. The UInify framework can also
assist users to create complex applications for other intelligent environments -
beyond the intelligent home - that are actively under development in FORTH-ICS
(i.e., Intelligent Classroom [31], Smart Greenhouse [39]).

In the rest of this chapter, various technical topics are presented concerning
UInify platform. Firstly, the features and the functional requirements are pre-
sented. Then, the conceptual model to fulfill these requirements, that emerged
from iterations is illustrated. Finally, the architecture as well as a brief discussion
of the technologies used will be presented.

3.2 System requirements

UInify aims in supporting designers of smart environments that need to create an
GUI application that will aggregate multiple user interfaces available in the envi-
ronment. The main objective of the system is the orchestration of the applications
by integrating them in a complex User Interface, namely Composition, that with
the combination of a collection of rules is used to create adaptive, context-aware
and multi-modal user interfaces. UInify is a web application that implements the
above functionality and binds all the individual applications together. The basic
functionality of the system includes:

• Application repository & details

• Composition repository & details

• Introduction of a new composition into the system

3.2.1 Features and Functional Requirements

This section describes the fundamental features and functional requirements [84,
83] that the UInify framework should meet. Functional requirements refer to a
specific behavior and functionality that the UInify platform should have and this
has been solicited through an iterative process, using various collection methods
including brainstorming, personas and scenario building.

1. Login FEATURE

Actors: All registered users

Preconditions: Unauthenticated session

Postconditions: The user is logged in the system in an authenticated
session

3.2. SYSTEM REQUIREMENTS 27

Functional Requirements:

• The user is registered with a valid email and password

• The user provides credentials (email and password) in a form to login

• A valid authenticated session is created

• In case of an error an appropriate message is displayed

2. Logout FEATURE

Actors: All logged in Users

Preconditions: Authenticated session

Postconditions: Unauthenticated session

Functional Requirements:

• The user logs out from the UInify system

• The session stops to be valid

3. Register FEATURE

Actors: All Users

Preconditions: 1. Unauthenticated session 2. The user is not regis-
tered

Postconditions: The user is registered to the system

Functional Requirements:

• The user must provide a valid name

• The user must provide a valid and unique email

• The user must provide a password

• In case of an error an appropriate message is displayed

4. Dashboard FEATURE

Actors: All registered users

Preconditions: Authenticated session

Postconditions: A dashboard with information about the system is
displayed

Functional Requirements:

• Display statistics of UInify

• Display the top ten recent compositions

28 CHAPTER 3. SYSTEM REQUIREMENTS

• Display the top three recent applications

• Display the top three most used applications

5. Application Library FEATURE

Actors: All Super Users / Designers

Preconditions: Authenticated session

Postconditions: List of available applications of the intelligent space

Functional Requirements:

• The application library will provide a list of the imported user interface
applications of the intelligent space for every available screen device

• Each application of the intelligent space should expose whether it is an
application or an application component

• The application Library list displays the number of available applica-
tion components or the screenshots provided for the specific application
component

• The application library will provide sorting (alphabetically) and filter-
ing capabilities

• A search feature is provided in order to search for a specific UI appli-
cation in the intelligent space

6. Application Details FEATURE

Actors: All Super Users / Designers

Preconditions: Authenticated session

Postconditions: The details of the chosen application is displayed to
the user

Functional Requirements:

• The name of the application

• The creator of the application

• An optional description of the application

• The primary tag of the application as well as optional secondary tags

• The list of the application components, if the item is an application,
and the list of the available screenshots if the item is an application
component

3.2. SYSTEM REQUIREMENTS 29

• The developer of the application should provide some information about
the service such as name, description, primary room intended to use
(e.g. the artificial service fridge has as primary room, the kitchen) as
well as the capabilities or sub services, that the main service includes
(e.g. the service ‘Nutrition’ can have subservices as ‘Calories burned
today’, ‘Weekly diet schedule’, ‘Notifications’, ‘Special recipes’).

7. Composition List FEATURE

Actors: All Super Users / Designers

Preconditions: 1. Authenticated session 2. There is no similar/same
Composition

Postconditions: List of available compositions of the intelligent space

Functional Requirements:

• The composition library will provide a list of the created compositions
of the intelligent space for every available screen device

• Each composition of the intelligent space should provide the information
about the room and device that it is intended to be displayed to

• The composition Library list displays the number of available layouts
for a composition

• The details provide the option to create a new composition

• The composition library will provide sorting (alphabetically) and filter-
ing capabilities

• A search feature is provided in order to search for a specific composition
in the intelligent space

8. Composition Details FEATURE

Actors: All Super Users / Designers

Preconditions: Authenticated session

Postconditions: The details of the chosen composition are displayed
to the user

Functional Requirements:

• The name of the composition

• The creator of the composition

• An optional description of the composition

• A primary tag of the composition as well as optional secondary tags

• The list of the available layouts

30 CHAPTER 3. SYSTEM REQUIREMENTS

• The option to create a new layout

• The option to delete the composition

• The details will provide sorting (alphabetically) and filtering capabilities

• A search feature is provided for searching a specific layout in the com-
position

9. Composition Creation FEATURE

Actors: All Super Users / Designers

Preconditions: 1. Authenticated session 2. There is no similar/same
Composition

Postconditions: A new composition is created in the database

Functional Requirements:

• The name for the composition

• The intelligent space for the composition

• The room for the composition

• A primary tag and an optional secondary tag for the composition

• The display device for the composition

10. Intelligent Space List FEATURE

Actors: All Super Users / Designers

Preconditions: Authenticated session

Postconditions: List of the available intelligent space

Functional Requirements:

• The intelligent space library will provide a list of the available AmI
environment space

• Each intelligent space entry should provide its type

• The intelligent space library list displays the number of the available
rooms

• The intelligent space library will provide sorting (alphabetically) and
filtering capabilities

3.2. SYSTEM REQUIREMENTS 31

• A search feature is provided in order to search for a specific intelligent
space in the intelligent space

11. Intelligent Space Details FEATURE

Actors: All Super Users / Designers

Preconditions: Authenticated session

Postconditions: The details of the chosen application are displayed
to the user

Functional Requirements:

• The details provide the name of the intelligent space

• The details provide the available rooms as well as the number of the
compositions in that room

12. Search FEATURE

Actors: All Super Users / Designers

Preconditions: Authenticated session

Postconditions: System displays search result

Functional Requirements:

• The user should be able to search for the application or composition of
her choice Basic Search

• The user types her query in a textbox

• The user clicks a search button or hits the enter key

• The system reads the query as a case insensitive substring

• The system matches the substring with the records in the database

• The system displays the corresponding in the form of a list or a table
Advanced Searchs

• The user can filter the results

• The user can sort the results

13. Profile FEATURE

Actors: All Super Users / Designers

Preconditions: 1. Authenticated session 2. Necessity to view ‘Profile’

32 CHAPTER 3. SYSTEM REQUIREMENTS

Postconditions: The user can view the profile

Functional Requirements:

• The information about the user is displayed

• A list of applications developed by the user are provided (if available)

• A list of compositions developed by the user are provided (if available)

14. AmIView editor FEATURE

Actors: All Super Users / Designers

Preconditions: Authenticated session

Postconditions: Create a template layout for the selected composition

Functional Requirements:

• The user is provided with an editor to create a layout

• The user can add rows to the layout and define their height

• The user can add columns to the layout and define their width

• The layout will be saved in the database after complete the layout

• The user can import web applications to the layout after completing
the creation oftemplate

3.3 One UI to bind them all

Following these guidelines, the envisioned tool aims to serve as a unified system
platform in an ambient environment. UInify adopts ideas from User Interface
Mashup web technologies and User Interface (UI) composition [49, 48], to introduce
a brand new unified application, that incorporates several UI components with a
common presentation layer for all underlying devices and services. Our web-based
approach simplifies the development of the individual applications, making them
totally autonomous and easy to be integrated into the environment.

The designer in order to integrate an application in the intelligent environ-
ment has to design a UI mashup. Typically, those applications are composite Web
applications, where their development requires both external resources (known as
mashup components) and internal integration logic (or mashup logic) [49]. UInify
application integrates two or more pluggable User Interface applications by en-
abling them to interconnect. The application orchestrates these different user
interfaces and combines them into an integrated interface. The system’s ability
to control multiple connected devices offers the opportunity for combining several
input devices and actuators in order to provide control over the overall home.
That allows to the intelligent home to have several distinct software components

3.4. HIGH-LEVEL SCOPE OF UINIFY 33

Figure 3.1: The high-level requirements of UInify

and connected devices interfaces developed by different experts, with the presenta-
tion layer being orchestrated under a common roof. Moreover, in future versions,
UInify could easily allow the end-user to have more control of the environment by
integrating simple programming tools such as Rule-based programming [42] and
IFTTT and Graphical Programming [52], which can help inexperienced users to
program their home like solving a jigsaw puzzle.

This approach has several benefits similar to the benefits of mashup tools [49]
such as:

• End users can contribute to the home software by creating custom interfaces
with several components provided, depending on their needs or create small
applications with triggering action rules for their devices (IFTTT) [49].

• Developers don’t need to start a unified application from scratch, but utilise
the underlying functionality of the separate exposed web applications [49].

• The integration of end users and developers leads to more useful software
products and user satisfaction [49, 48, 35].

• They reduce the cost of developing such an application, because of the in-
volvement of the user in the development stage. This reduces the iterative
experimentation and the end-user evaluation [49, 48, 35].

3.4 High-level scope of UInify

3.4.1 High-level requirements

Before the design and implementation details of UInify platforms are presented, it
is important to have an overview of the high-level requirements of UInify platform
(see Figure 3.1).

34 CHAPTER 3. SYSTEM REQUIREMENTS

Support diverse devices

UInify platform should support multiple stationary and portable devices with di-
verse technical characteristics. These devices are named in the context of the
system “Artifacts”. This is essential in an ambient environment due to the multi-
ple and diverse devices that the end user may own.

Fusion of individual User Interfaces

UInify platform should compose at real-time adaptable interfaces, namely Com-
positions, that unify the individual UIs, which control the hardware and software
components of an intelligent space. The new complex user interfaces should be
deployed “on the fly”, and be ready for use after been created through UInify.

User experience

Uinify should deliver a consistent and concise Look’n’feel across all devices. This
will partially be achieved by UInify through a consistent Look in the Launcher
components. The rest of web applications should follow the style guides that
are provided by the AmI environment to provide the best user experience. The
inconsistent web applications should be rejected and never reach UInify.

User empowerment

The end users should be able to easily customize and create HTML UI mashups
according to their needs. This is achieved through the AmiView editor, where
the user can create the layout by placing the placeholders and then fill them with
web applications that exist in the ecosystem. The end user should be able to
complete this task by her own, without complex instructions or the support of a
programmer.

3.4.2 High-level architecture

The high-level architecture of UInify framework has been driven by the aforemen-
tioned features and functional requirements. It consists of several interconnected
components with specific role in the functionality of the platform as shown in the
figure 3.4 below.

3.4. HIGH-LEVEL SCOPE OF UINIFY 35

Figure 3.2: How UIs are imported to UInify

At first, all the web applications (external to UInify) that belong to the ambi-
ent environment, must pass through the AmI Solertis platform [79], where they are
exposed in the environment as services. From all the services, only the web appli-
cations with graphical user interface are exposed in the UInify platform (see figure
3.3). From all the available services and web applications in the ambient ecosystem
(WA1, WA2,...WAN) only a subset of these (WA1, WA2,...WAK)) are imported to
UInify depending on whether they have or not a graphical representation. UInify
when is notified about a new web application from AmI Solertis, stores a snapshot
of it in the database with the appropriate attributes (as described in Table 4.2 in
Section 4.1.2).

A reference to each imported web application is stored in a mongoDB database,
to present it to the end user in the application repository. The published metadata
of the web application will assist the correct representation of the data in the
system and the proper functioning of the iframes that will form the overall UI
mashup.

The main objective of the application is to create complex user interfaces (or
Compositions) with the aid of two main components (see Figure 3.3). The first
component is the Layout builder, where the end user can build the template
layout for the HTML UI mashup. The layout builder is responsible to create a
template for the device selected, with the appropriate dimensions for the screen.
A set of rules establish that the user can create their design only in the workspace
area. In future versions, with a set of rules, the system will aid the user and suggest
her width and height according to web applications that exist in the ecosystem.

36 CHAPTER 3. SYSTEM REQUIREMENTS

Figure 3.3: Layout builder and UI mapper

The second component is the UI Mapper, where the mapping of layout cell
and web application occurs. In each cell that has been defined in the layout, a
reference to the web application will complete the HTML UI mashups. When
this composition is loaded to the screen, this cell will be inhabited by an HTML
element “iframe”, where it will point to the address that the web application runs.
These two components are linked with each other for the correct designing and
deployment of the composite user interface. UI Mapper can be extended with rea-
soning components in its future versions, where the system will suggest appropriate
applications for the placeholders. It can utilize the artifacts display attributes as
well as the context of the environment to effectively make recommendation of UIs.

3.4. HIGH-LEVEL SCOPE OF UINIFY 37

Figure 3.4: UInify overall architecture

38 CHAPTER 3. SYSTEM REQUIREMENTS

3.5 UInify MEAN stack 2.0

UInify is using a MEAN stack 2.0 [14] architecture to develop the application.
MEAN stack 2.0 is a term used for the applications that are developed with the
classic MEAN stack [14] but they are using Angular 2+ for front-end development.
MEAN is a free and open-source JavaScript software stack for building dynamic,
fast and robust web applications. MEAN comprises of a set of four technologies
stands for: (M) MongoDB [44, 107], the database that will be used , (E) Express.js
[98, 8], (A) Angular 2+ [2], the client-side technology which is a JavaScript library
to render the application, and finally (N) Node.js [106, 17], which is the Javascript
server-side language used for the server logic.

The Overall architecture cycle in UInify platform is illustrated in 3.5

Figure 3.5: UInify MEAN stack 2.0 overall architecture

MongoDB

MongoDB [44, 107] is a free and open-source, cross-platform document-oriented
database program. It is a NoSQL database program, meaning that MongoDB
uses JSON documents with schemata. Also, since MongoDB supports data trans-
fer through JSON format, data transfer from the web application is easy and
economical. Moreover, JSON also allows easy client-server data transmission.

Express

Express [98, 8], is a web application framework for Node.js, released as a free
and open-source software under the MIT License. It is designed for building web
applications and APIs. It also provides routing, view rendering and more.

3.6. TERMINOLOGY IN UINIFY 39

Node.js

Node.js [106, 17] is an open-source, cross-platform JavaScript run-time environ-
ment that executes JavaScript code outside of a browser. Node.js lets developers
use JavaScript for server-side scripting—running scripts to produce dynamic web
page content before the page is sent to the user’s web browser. It is also responsi-
ble to send requests and receive responses, as well as interact with databases and
files.

Angular 2+

Angular [2] is a JavaScript framework that makes it easy to build web single page
applications (SPA). Angular combines declarative templates, dependency injec-
tion, end-to-end tooling, and integrated best practices to solve development chal-
lenges. It empowers developers to build applications that live on the web, mobile,
or the desktop.

Single-page Application (SPA)

A single-page application (SPA) is a web application that interacts with the user
by dynamically rewriting the current page, rather than loading entire new pages
from a server. An Angular application only uses one route (index.html), which
is served through Node.js and dynamically re-renders new context, without never
requesting a second page.

UInify full stack architecture

As illustrated in 3.5, the end user interacts with the front-end components of
UInify platform with a Single Page Application (SPA). This SPA behind the scenes,
performs JSON requests to the backend server, through a REST API, to retrieve
the appropriate information according to users requests. The server then, calls
HTTP methods to retrieve the information from the MongoDB database. The
database responds with the data in JSON format, through the server to the Single
page application. The SPA is responsible for the display of the response to the
end user.

In the next chapter, the front and back-end development process will be dis-
cussed extensively. In addition, details of the implementation will be briefly pre-
sented, as well as snippets of code, to make the development steps easy to under-
stand.

3.6 Terminology in UInify

This section will explain the vocabulary used in UInify application. It will clarify
the words adopted and in context are used.

40 CHAPTER 3. SYSTEM REQUIREMENTS

Applications and Application Component

A major component of UInify studio is the Application Repository. The applica-
tion repository is a library of the available Graphical User Interface (GUI) Ap-
plications that are available in the Intelligent spaces that are introduced in the
environment.

Every Graphical User Interface (GUI) application is considered an autonomous
AmI artifact provided by the technological Framework AmI Solertis [79]. The GUI
applications are exposed as one Application or partial applications called Appli-
cation components that can be used autonomously and in conjunction with other
applications. The Application components must be part of a specific Application.
Both types can be part of a mashup.

Artifacts

In UInify ecosystem every device that is installed in the intelligent environment and
can display a graphical user interface, is considered an artifact. The artifacts have
to provide their specifications to the system in order for correct displaying UIs and
aid to the decision making process. In figure 3.6 are illustrated the artifact classes
that was considered for UInify, as well as their specifications and the interaction
they utilise.

Composition

In UInify context, compositions are the containers for creating a complex user
interface, using one or more pluggable user interfaces. Compositions can have
several amiViews, which are the template layouts created by the designer that
host the interfaces.

AmiView

The user of the UInify system will have to either choose one of the existing or
create a brand new amiView. The AmiViews are the template layouts where the
designer have to make in order to import her application. Basically, they are the
skeleton of the UI mashup.

3.6. TERMINOLOGY IN UINIFY 41

Figure 3.6: High-level definition of the artifacts in an intelligent environment

42 CHAPTER 3. SYSTEM REQUIREMENTS

Chapter 4

System Modeling and
Technological Infrastructure

4.1 Data Modeling

4.1.1 Overview

An important task for the development of UInify was to define a conceptual schema
for the UInify platform. The data are stored in document [15] style (see Figure
4.1) and can be retrieved easily in JSON format. Each database contains collec-
tions which consecutively contain documents. The basic entities of UInify can be
represented as collections (e.g. Composition, Application). Each document can
be different with varying number of fields. The size and content of each document
can be different from each other. The documents store the actual data of the
application (e.g. Document for the complex user interface “Entertainment Hub”
of the collection Compositions).

Figure 4.1: The document style mongoDB follows

UInify uses, MongoDB [44, 107] due the scalability and the freedom that gives

43

44CHAPTER 4. SYSTEMMODELING AND TECHNOLOGICAL INFRASTRUCTURE

in modeling data and relationships between them. The schema does not need to
have a defined structure beforehand and can be changed on the fly.

4.1.2 UInify entities

After the collection of functional and non functional requirements, the basic entities
are extracted. Figure 4.2 shows the logical model in UML style of the database
schema used.

Owner

Owner Entity describes the user of the system. She is the designer of the composite
application (Composition) of the intelligent space. To use UInify platform, the
owner must be registered in the system by providing a valid username, an e-mail
and a password. The owner model fields are described in Table 4.1.

Field Description

id: type: ObjectID The unique ID of the Owner.
name: type: String, required The user name of the Owner.
avatar: type: String The avatar of the Owner.
email: type: String The email of the Owner.
password: type: String The password of the Owner (encrypted).
lastOnline: Date When the Owner was last online.
appsCreated: type: [ObjectID] The applications created by the Owner.
cmpCreated: type: [ObjectID] The compositions created by the Owner.

Table 4.1: The Owner model

Application

The Application entity describes all the GUI components that are imported in
UInify framework. All the imported applications are required to have a set of
metadata in order to correctly display and eventually help in the decision-making
process of the system. Each one of the applications must include some specifica-
tion information to decide in which artifacts it can be displayed into (e.g. screen
resolution, size), along with some additional information such as the orientation,
the sensor requirement, the keyboard requirement.

4.1. DATA MODELING 45

Figure 4.2: The conceptual data model of UInify platform

46CHAPTER 4. SYSTEMMODELING AND TECHNOLOGICAL INFRASTRUCTURE

Field Description

id: type: ObjectID The unique ID of the Application.
name: type: String, required The name of the Application.
dateCreated: type: Date The data Application was created.
creator: type: Owner.ObjectID The creator of the application.
thumbnail: type: String The thumbnail of the application.
description: type: String The description of the application.
tags: type: Tags.ObjectID The primary and secondary tags of the application.
hostname: type: String The hostname where the application runs.
port: type: String The port where the application runs.
url: type: String The url where the application runs under.
AppComponents: type: complex The individual components the application exposes.

Table 4.2: Application model

4.1. DATA MODELING 47

Figure 4.3: A tag as described in UInify

Tags

Additionally, the applications (and/or compositions) have tags. In information
systems, a tag is a keyword that is assigned to a piece of information and helps
to describe an item for searching and filtering purposes. In UInify tags are labels
attached in the applications (and/or compositions) to describe the purpose and
help to filter the applications. Each tag that is stored in the database has an id, a
name, and a color that is used for representation reasons (see figure 4.3 and table
4.3).

Field Description

id type: ObjectID Unique identifier of the tag.
name type: String The name of the tag.
color: type: String The color (in hex) of the tag .

Table 4.3: Tag model

48CHAPTER 4. SYSTEMMODELING AND TECHNOLOGICAL INFRASTRUCTURE

Figure 4.4: An application (or composition) tags representation

Moreover, every application (and/or composition) must be assigned with a pri-
mary tag (see table 4.4 and figure 4.4). Also, the end user can give some optional
secondary tags (4.4), for a better description of the application (and/or composi-
tion).

Field Description

primaryTag type: ObjectID Primary tag assigned to the UI.
secondaryTags: type: [ObjectID] The array of the secondary tags of the UI .

Table 4.4: Tags model

4.1. DATA MODELING 49

Figure 4.5: Representation of the artifact model

Artifact

The Artifact Entity describes the display devices (see figure 4.5) in the smart
environment along with their system specifications. This entity will eventually
assist in the decision making process, by indicating the applications that are eligible
for the display device selected. The artifact model fields are described in Table
4.5. The specifications of display devices that were considered in this phase of the
project, are displayed in Table 4.6.

Field Description

id: type: ObjectID The unique ID of the Artifact.
name: type: String, required The name of the Artifact.
type: type: ArtifactTypes.ObjectID The type of the Artifact.
room: type: Room.ObjectID The room the Artifact is installed.
displayAttributes: (see Table 4.6) The specifications of the Artifact.

Table 4.5: Artifact model

50CHAPTER 4. SYSTEMMODELING AND TECHNOLOGICAL INFRASTRUCTURE

Field Description

resolution: type: Number The resolution of the Artifact.
screenSize: type: String, required The screen size of the Artifact.
physicalSize: type: String The physical size of the Artifact.
orientation: type: String The orientation of the artifact in space.
isWearable: complex Whether the artifact is wearable.
isPortable: complex Whether the artifact is portable.
deadZones: complex The UI zones that cannot accessed by a user.
hasTouchScreen: complex Whether the artifact has a touch screen.
hasSpeakers: complex Whether the artifact needs speakers.
isConnectedWithSensor: complex Whether the artifact needs a sensor.
hasKeyboard: complex Whether the artifact needs a keyboard.
hasMouse: complex Whether the artifact needs a mouse.

Table 4.6: Display artifact requirements

Artifact Types

The Artifact Types is a sub entity that describes the types of the display devices
exist in the smart ecosystem. The main displays devices that are described in
UInify are: Mobile, Tablet, Desktop, and Large Screen. The types can be expanded
in future versions of the system with smart watch display and a categorization of
the Large Screen devices.

Field Description

id: type: ObjectID The unique ID of the artifact type.
type: type: String, required The artifact type (e.g. Large Screen).

Table 4.7: The Artifact Type model

Intelligent Space & Room

The intelligent space and room describe the ambient environment and the specific
parts that the display devices are installed into. One room can have multiple
devices, but a specific device only dominates one room. These models are described
in Table 4.8 and 4.9 respectively.

4.1. DATA MODELING 51

Field Description

id: type: ObjectID The unique ID of the Intelligent Space.
name: type: String, required The name of the Intelligent Space.
type: type: String The type of the Intelligent Space (e.g. Home).
thumbnail: type: String The thumbnail of the Intelligent Space.
description: type: String The description of the Intelligent Space.
date: type: Date The date that the Intelligent Space was created.
rooms: type: [type: Room.ObjectID] The rooms that the intelligent space has.

Table 4.8: The Intelligent Space model

Field Description

id: type: ObjectID The unique ID of the Room.
name: type: String, required The name of the Room.
floor: type: String The floor of the Room.
devices: type: [type: Artifact.ObjectID] The devices that are installed in the Room.

Table 4.9: The Room model

Composition

The composition entity describes the unified mashup (see section 2.3.3 & 3.3)
that is constructed with a set of pluggable UI components. This entity takes into
consideration the required specification of the Application as well as the artifact
specification in order to recommend applications. During the first step of this
process, the user is asked to create a layout through an intuitive editor and then
choose the UIs that can be imported into this mashup. The Composition model
is displayed in Table 4.10.

Field Description

id: type: ObjectID The unique ID of the Composition.
name: type: String, required The name of the Composition.
dateCreated: type: Date The data Composition was created.
creator: type: Owner.ObjectID The creator of the Composition.
thumbnail: type: String The thumbnail of the Composition.
description: type: String The description of the Composition.
tags: type: ObjectID The primary and secondary tags of the Composition.
artifacts: type: ObjectID The artifact that the UI will be displayed into.
amiView: type: complex The layouts that was created for the composition.
stats type: complex Several statistic values that are used into the UInify.

Table 4.10: The Composition model

52CHAPTER 4. SYSTEMMODELING AND TECHNOLOGICAL INFRASTRUCTURE

Figure 4.6: Express and Node.js for data retrieval from MongoDB database

4.2 UInify Backend technologies

UInify is using a MongoDB database to pass data around. Figure 4.6 shows the
starting point, a REST API built with Express and Node.js, which is used to
enable interactions and retrieve data from the database. Express uses typical
HTTP methods as described in table 4.11, in order to get, add or delete the
requested data.

Method Description
GET Retrieve requested data from a specified resource.
POST Send data to a server to create or update a resource.
PUT Send data to a server to create or update a resource.
DELETE Deletes the specified resource

Table 4.11: Typical HTTP methods used in UInify

In order to follow a Model-View-Controller (MVC) architecture in the REST
API, the presentation of the model and the controlling methods had to be sepa-
rated. As the entities and the relationships between them have been established
in the database conceptual model presented previously, the mongoose models can
be created, which is the structure of the data in the databases’ document.

4.2. UINIFY BACKEND TECHNOLOGIES 53

1 const mongoose = require(’mongoose ’);

2
3 const Schema = mongoose.Schema;

4
5 const compositionSchema = new Schema ({

6 name: {type: String , required: true},

7 thumbnail: {type: String , required: true},

8 date: Date ,

9 creator: {type: Schema.Types.ObjectId , ref: ’owner ’ },

10 description: String ,

11 artifact: {type: Schema.Types.ObjectId , ref: ’artifact ’, required:

true },

12 tags: {

13 primaryTag :{type: Schema.Types.ObjectId , ref: ’tag’ },

14 secondaryTags: [{type: Schema.Types.ObjectId , ref: ’tag’ }]

15 },

16 amiview: [{

17 name: String ,

18 thumbnail: String ,

19 layout: {type: Schema.Types.ObjectId , ref: ’layout_template ’ },

20 date: Date

21 }],

22 stats: {

23 useCounter: Number ,

24 lastUsed: Date

25 },

26 });

27
28 module.exports = mongoose.model(’composition ’, compositionSchema , ’

composition ’)

Listing 4.1: Composition model

Models are defined using the Schema interface defined by mongoose [15]. Each
schema maps to a MongoDB collection and defines the shape of the documents
within that collection. Schemas not only define the structure of the document, but
also define document instance methods, static Model methods and document life-
cycle hooks called middleware. By using middleware, such as save, delete or find,
which are functions that have control during execution of asynchronous functions,
mongoose can communicate with the database.

With the aid of models, controllers that fetch the data from database can be
defined. A sample controller for fetching all the Compositions from the database
is presented in Listing 4.2. This logic will be executed when requests received in
“api/compositions”.

54CHAPTER 4. SYSTEMMODELING AND TECHNOLOGICAL INFRASTRUCTURE

1 exports.getCompositions = (req , res , next) => {

2 Composition.find()

3 .populate("creator")

4 .populate ({path: "amiview.layout", model: "layout_template"})

5 .populate ({

6 path: ’artifact ’,

7 populate: {

8 path: ’room’,

9 model: ’room’

10 }

11 })

12 .populate ({

13 path: ’artifact ’,

14 populate: {

15 path: ’type’,

16 model: ’artifact_types ’

17 }

18 })

19 .then(documents => {

20 console.log(documents);

21 res.status (200).json({

22 message: "Compositions fetched successfully!",

23 compositions: documents

24 });

25 });

26 };

Listing 4.2: HTTP request to mongoose for all the Compostions

4.2. UINIFY BACKEND TECHNOLOGIES 55

Server

The server.js (see Listing 4.3) executes the node.js server in a specific port cho-
sen by normalise port function (usually port 3000). Server listens to this port for
HTTP requests.

1 const app = require("./ backend/app");

2 const debug = require("debug")("node -angular");

3 const http = require("http");

4
5 const normalizePort = val => {

6 var port = parseInt(val , 10);

7
8 ...

9 };

10
11 ...

12
13 const onListening = () => {

14 const addr = server.address ();

15 const bind = typeof addr === "string" ? "pipe " + addr : "port " +

port;

16 debug("Listening on " + bind);

17 };

18
19 const port = normalizePort(process.env.PORT || "3000");

20 app.set("port", port);

21
22 const server = http.createServer(app);

23 server.on("error", onError);

24 server.on("listening", onListening);

25 server.listen(port);

Listing 4.3: server.js

Any node web server application will create a web server object. This is done
by using createServer function. the Server object returned by createServer function
is an EventEmitter. When an HTTP request hits the server, node calls the request
handler function in order to deal with the transaction with request and response
objects. The main methods that handle these requests developed in the file app.js
(see Listing 4.4).

56CHAPTER 4. SYSTEMMODELING AND TECHNOLOGICAL INFRASTRUCTURE

1 const express = require("express");

2 const bodyParser = require("body -parser");

3 const mongoose = require("mongoose");

4
5 const compositionRoutes = require("./ routes/composition");

6 ...

7 const layoutsRoutes = require("./ routes/layout");

8
9 const app = express ();

10
11 ...

12
13 app.use(bodyParser.json());

14 app.use(bodyParser.urlencoded ({ extended: false }));

15
16 app.use((req , res , next) => {

17 res.setHeader("Access -Control -Allow -Origin", "*");

18 res.setHeader(

19 "Access -Control -Allow -Headers",

20 "Origin , X-Requested -With , Content -Type , Accept , Authorization"

21);

22 res.setHeader(

23 "Access -Control -Allow -Methods",

24 "GET , POST , PATCH , PUT , DELETE , OPTIONS"

25);

26 next();

27 });

28
29 app.use("/api/compositions", compositionRoutes);

30 ...

31 app.use("/api/layouts", layoutsRoutes);

32
33 module.exports = app;

Listing 4.4: Bundling app in app.js

Bundling app.js

Model, Controllers and routes are bundled together in app.js file (see Listing 4.4).
This file holds the Express app by taking advantage of its features. Furthermore, it
defines the paths used and forwards the requests in the correct route. In addition,
in this file we handle the Cross-Origin Resource Sharing error, that is caused by
the different hosts that the client and the server are into. To resolve this we add
the Headers of “Access-Control-Allow-Origin”, “Access-Control-Allow-Headers”
and “Access-Control-Allow-Methods” in our Http requests to allow several extra
features in the application.

4.3. UINIFY FRONTEND TECHNOLOGIES 57

Figure 4.7: SPA authentication with jwt tokens

User authentication

A simple user authentication component was used in order to restrict the access
in UInify. For this, a simple register and login form was created to store users and
let them sign in the system. The system in order to securely store the password of
the user, uses bcrypt [4]. BCrypt is a JavaScript library which utilise a password
hashing function. It incorporates a salt to protect against rainbow table attacks
and remains resistant due to its mechanisms to brute force attacks.

In UInify the backend (node and angular) are stateless, so to achieve authen-
tication we have to use Javascript Web Token [12] as represented in the figure
4.7. This token is generated in the server upon a successful login. That token
is sent back to the browser, where it can stored in the angular app (in the local
storage).This token is attached in all request (in the request header) and the ap-
plication can identify the user in that way. The validation and the creation of the
token is only possible in the server. Other request that does not have this token
will be rejected.

4.3 UInify Frontend technologies

Today, front end frameworks and libraries that support front-end development are
increasing vastly. Angular which is designed to work with data directly in the front
end while using HTML as a template language, is one of them. Angular CLI, the
command line interface for the Angular makes it easy to create an application that
already works, right out of the box, while following the best practices.

The user interacts with a Single Page Application (SPA). On a SPA, after
the initial page load, no more HTML gets sent over the network. Instead, only
data gets requested from the server (or sent to the server). Therefore, SPAs
increase User Experience by minimizing page reloads and the amount of bandwidth

58CHAPTER 4. SYSTEMMODELING AND TECHNOLOGICAL INFRASTRUCTURE

1 import { Injectable } from ’@angular/core’;

2 import { HttpClient , HttpParams } from ’@angular/common/http’;

3 import { Observable } from ’rxjs’;

4
5 const envPath = ’http :// localhost :3000/ api/’;

6
7 @Injectable ({ providedIn: ’root’})

8 export class ApiService {

9
10 constructor(private _http: HttpClient) {}

11
12 get(path: string , params: HttpParams = new HttpParams ()):

Observable <any > {

13 return this._http.get(envPath + path , { params });

14 }

15
16 put(path: string , body: Object = {}): Observable <any > {

17 return this._http.put(envPath + path , JSON.stringify(body));

18 }

19
20 post(path: string , body: Object = {}): Observable <any > {

21 return this._http.post(envPath + path , body);

22 }

23
24 delete(path): Observable <any > {

25 return this._http.delete(envPath + path);

26 }

27 }

Listing 4.5: Rest method request service

required.

REST method requests service

One of the features of angular are services, where we can enable the communication
with the back end with REST method requests. The service that aids with the
communication is shown in the snippet below.

This service handles all the requests from all the individual services requesting
data, and forwards them to backend which returns the appropriate JSON object
for the request.

Chapter 5

UInify platform

This chapter outlines the details of the various front-end components that have
been implemented in the context of UInify. Next, it will report an overview of
the provided functionality (i.e. Dashboard, menus) as well as the main compo-
nents that the designers interact within the UInify platform, to create UI mashups.
The main components are: (i) Dashboard (ii) Composition Repository and
Details, (iii) Application Repository and Details, (iv) AmiView editor.
Additionally, snapshots of the underlying functionality will be provided to ade-
quately illustrate the interaction with the user.

5.1 Overview

The UInify platform has been designed as an online system supporting intelligent
space designers in delivering complex user interfaces in ambient environments.
UInify aims to offer a simple and intuitive user interface which designers can easily
interact with. Otherwise stated, the ultimate task is to reduce the complexity and
the time that is required to accomplish a design task for a smart environment. This
section will provide information about the basic utilities of the system, namely: (i)
Login and Register, (ii) Menus, (iii) Dashboard, that the user interacts with.
In the following sections, the functionality of the UInify platform, accessible only
by registered users, will be described in detail.

5.1.1 Register and Login

End Users may register to the system in a secure way by selecting the registration
option from the landing page and providing the following information: a username,
an email and a password. Using a similar form (see Figure 5.1), the user must log
in to the system to have access to its functionality.

59

60 CHAPTER 5. UINIFY PLATFORM

Figure 5.1: The login form

5.1.2 Dashboard

The end user is able to navigate to a user-friendly interface, that is a visual dis-
play of data used to monitor and aid in the understanding of the environment.
Furthermore, the UInify platform provides an interactive display that allows users
(i.e., designers) to explore: (a) information about their Compositions (i.e., how
many exist in the ecosystem) (b) information about the graphical user interface
(GUI) applications that are imported in the environment (see Figure 5.2).

In more detail, the end users can view some metrics concerning the current
state of the ambient environment whose data are presented in their personalized
dashboard, such as: the number of: (i) active applications that are exposed from
AmI Solertis, (ii) the total UI rules, user has defined and being used from the
decision making component, (iii) the available compositions that have been created
from UInify and (iii) finally, the number of intelligent spaces UInify is controlling.

On the bottom left side, user can browse through some popular applications and
application components. Firstly, the popular user interfaces, that as the name
indicates are the GUI applications that have been used the most from the end-
users to create compositions and secondly, the recently created user interfaces,
which are the applications that have been recently used in a composition. The user
can interact with both of these components through a carousel component, and
select them to view their details (see section 5.2.2).

On the right side of the page, the user can explore the recent compositions
that have been introduced into the system, in the shape of the table. Every row
starts with the name of the composition (i.e. AmiTV Launcher), the date that
the composition was created, the username of the creator of the composition, the

5.1. OVERVIEW 61

Figure 5.2: The UInify’s platform dashboard

display device that the composition is designed for and finally the compositions’
primary tag.

5.1.3 Main and secondary menus

The system offers an intuitive user interface that categorizes the available func-
tionality of the main components under four menu items in the Dashboard menu
(see Figure 5.3), namely: (i) Dashboard (ii) Compositions (iii) Library (iv)
Ispaces.

Figure 5.3: The UInify’s main dashboard menu

62 CHAPTER 5. UINIFY PLATFORM

Figure 5.4: The UInify’s secondary menu

Dashboard

A dashboard with a visual display of statistics and general information about the
system.

Compositions

A repository with the compositions which have already been deployed in the sys-
tem. The end user can explore the available and create new compositions through
this page.

Library

The applications’ repository, which displays the graphical user interfaces that have
been imported to the system.

Ispaces

The intelligent spaces repository, which displays the ambient intelligent spaces that
have been imported to the system.

Furthermore, the system provides a secondary top menu (Figure 5.4) where the
user can perform some auxiliary actions such as searching, browsing her profile
or logging out the platform.

5.2. APPLICATIONS 63

Figure 5.5: The application repository in tile view

5.2 Applications

The applications are the components identified as a graphical user interface and
have been imported to the system. To that end, UInify provides an exploration
tool to permit to users to browse through the list of available applications (i.e.,
AMI TV, Recipe step-by-step). For each application, the user can view additional
information and screenshots of the available components.

Generally, the GUI applications fall under two categories, the “Applications”
and “Application Components”. The “Applications” (see section 3.6) cat-
egory , can expose several components, namely “Application Components” (see
section 3.6) that can be used independently from the default application (e.g.
the Music Player component of the Music application). To that end, under the
“Applications” items the end user can browse and use in her composition all the
“Application Components” that are exposed from the application’s API.

5.2.1 Application Repository

The end user is able to navigate through the applications and interact with the
introduced GUI in two different views - tile and list view - by selecting the desired
view from the filters menu (see Figure 5.7). For each item of the application
repository, in the tile view, a small characteristic image is provided along with
the important information, namely: the name of the application (or application
component), the number of screenshots and the type of the application (see Figure
5.5). In the list view, a short description of the application is additionally provided
(see Figure 5.6).

64 CHAPTER 5. UINIFY PLATFORM

Figure 5.6: The application repository in list view

Furthermore, in the filter menu several sorting and filtering tools are provided
(see Figure 5.7) for a more refined selection. The end user can sort all the available
applications alphabetically, by date or by usage. Also, the system provides a search
feature for a quick query of the desired application. Finally, the user can filter a
tag or category, which means that she can select the category under which some
application fall into.

Figure 5.7: The available sorting and filtering components for application reposi-
tory

5.2.2 Application details

By selecting a specific item of the list, the user is able to view additional infor-
mation regarding this item including a detailed description of the item and the
creator of the item (see Figure 5.8). In the top bar the end user can view the Title
of the item as well as the associated tags.

After the top bar, there is a section, where the details of the application (or
application component) are displayed. The detail component includes a detailed
description, the creator and the date created. Below details, there is a section with
the available application components (if any exist).

5.3. COMPOSITIONS 65

Figure 5.8: The “Music” Application has two application components

In the “Application Components” section, the end user can see screenshots
(see Figure 5.9) from the component in use. In the future, the system will provide
a demo link where the end user can have the user experience of the exposed
component to decide whether to use it or not.

5.3 Compositions

An important requirement of the UInify platform is the introduction of new com-
plex user interfaces in the intelligent space. Towards this goal, a set of UI com-
ponents was created to to assist in that process, namely the (i) Composition
repository, (ii) Composition details, and (iii) Composition introduction,
which provides the functionality to introduce a new amiView (see next chapter).

5.3.1 Composition Repository

The end user is able to navigate through the compositions repository. The com-
positions are the complex user interfaces that have already been created with the
tool by all registered users. The end user can view the HTML UI Mashups in
two different views - tile and list view - by selecting the desired view from the
filter menu. For each item of the composition repository, in the tile view, a small
characteristic image is provided along with some important information (i.e. dis-
play device, room) (see Figure 5.10). In the list view, a short description of the
application is additionally provided.

66 CHAPTER 5. UINIFY PLATFORM

Figure 5.9: The “Movie player” Application Component as displayed in Uinify

Figure 5.10: The Composition repository - tile view

For each item of the composition repository, in the tile view, a small character-
istic image is provided along with some important information (see Figure 5.10).
In the list view, a short description of the application is also provided. Finally,
a similar filtering component as in the application repository user interface exist,
which helps the user browse the compositions easily by sorting or/and filtering the
list for a more refined selection.

5.3. COMPOSITIONS 67

5.3.2 Composition Details

By selecting a specific composition item from the list, the end user can view some
additional information regarding this item (see Figure 5.11).

Figure 5.11: The AMITV composition details

Additionally, the selected composition item provides a list of the available lay-
outs, namely AmiViews (see Figure 5.11), where the user can browse the different
template layouts that have been created for the specific composition. Finally, the
end user can create a brand new template layout, see the details of an existing one
or delete the selected composition through this detailed interface.

5.3.3 Introducing a composition

The end user can create a new composition through an intuitive interface. The
new composition can be introduced from the composition repository by clicking
the on the top right button (see Figure 5.10).

After pressing this button a pop-up dialogue appears and prompts the user to
select her desired options. Firstly, the user should select the Intelligent Space (see
Figure 5.12) that the composition is intended to used for. In this user interface,
all the intelligent spaces that are imported in UInify are displayed into a tile view.

68 CHAPTER 5. UINIFY PLATFORM

Figure 5.12: Choosing between intelligent spaces for the composition

When the end user selects one of the available intelligent space that has been
imported to the system (i.e. AMIHOME), she redirects to the second step of the
process, which is to select a room from the intelligent space, where the composition
is going to be displayed into. This step is crucial to define the context and the
appropriate web applications that can be displayed. Without this step, the system
wouldn’t be able to identify the room and the activities that take place there, to
offer additional functionality by the reasoning component.

In the final step, the end user has to select a name, a primary tag which is
mandatory and describes the type of the composition, an optional secondary tag
and the specific artifact that the composition is intended to display into. Finally,
the user has to click the Create Composition button and her choices will be saved
into the database.

5.4. THE AMIVIEW EDITOR: INTRODUCING A LAYOUT 69

5.4 The AMIview editor: Introducing a layout

The core feature of the UInify platform is introducing a new layout to a compo-
sition which will be filled with web applications. UInify considers as a layout, the
template user interface structure where the user can import the web applications
into. When the application is deployed, it will be displayed in an HTML iframe tag
with the properties that the user has defined in that step. The application-iframe
mapping in the layout is called, in the UInify context, an AmiView.

In the details of a specific composition, the end user can find a list with the
available amiViews, that already have been introduced to the system (see Figure
5.13). The user can create a new amiView, either by clicking the Create Static
Layout or the “+” button at top of the screen.

Figure 5.13: The UInify’s editor

Furthermore, by selecting a specific amiView from the list, she will be redirected
to the amiView editor (see Figure 5.13). Here, in this preliminary version of the
editor the user can (i) create a template and (ii) add functionality in each layout.

Creating a new template layout

In order to create a new AmiView, the user presses the Create a static layout
button and redirects to the editor. An empty layout, with the aspect ratio of the
screen that the end user chose (scaled down by two), is then created (see Figure
5.13).

The end user can create rows and columns by setting the height and the width
respectively. When the user finishes the layout, she can save it as a template and

70 CHAPTER 5. UINIFY PLATFORM

proceed to the next step where she can add web applications in the cells that are
created. The general flow of creating a composition is depicted in figure 5.14.

Figure 5.14: The flow of creating a new composition

In the future versions of the editor, the edit functionality will be implemented,
where the user can edit an existing amiView, delete its cells or adjust the width
and height of existing ones.

5.5 Utilities

In this section, some extra features that the UInify tool exposes will be described.
These features are: (i) Intelligent Space Repository (ii) Intelligent Space
Details (iii) User Profile, and (iv) Universal Search. These are additional
information that can aid the user in the management of the smart environments.
Intelligent Space repository can offer an overview of the compositions that already
has been deployed in the space. The profile can offer an overview of the users’
activities in the system and finally with the search component the user can query
keywords in the system.

5.5.1 Intelligent Space Repository and Details

Intelligent Space Repository

The end user is able to navigate through the intelligent space repository, which
contains the ambient spaces that have been imported to the UInify system. The
end user can view the repository in two different views - tile (see Figure 5.15) and
list view - by selecting the desired view from the filter menu.

5.5. UTILITIES 71

Figure 5.15: The Intelligent Space repository - tile view

Intelligent Space Details

Moreover, by selecting a specific item from the list, the end user can view some
additional information regarding this space, including the ambient rooms and the
number of composition on each room.

5.5.2 Profile

The user can see her profile, by pressing the “Profile” button in the dropdown
menu in the top bar. In this page, the user can view details about their status and
details, as well as the applications and compositions they created (if any).

5.5.3 Universal Search

The user is provided with a universal search component, where she can query the
available applications, compositions and intelligent spaces.

72 CHAPTER 5. UINIFY PLATFORM

Chapter 6

UInify Use Cases

The scope of this chapter is to demonstrate use cases where UInify can be success-
fully utilised, instead of developing a brand-new application from scratch. Firstly,
this chapter will show the steps needed to build a multimodal and intelligent mul-
timedia hub through the UInify application. Next, it will report two use cases:
a) one to design an interactive application for the kitchen countertop and (b) the
use in monitoring the home from the home screen of a smartphone. Finally, it
will illustrate a use case outside the smart home environment, in the education
domain, and how the functionality of the current system can be expanded to other
areas, with presenting the implementation of CognitOS [90] application through
UInify.

6.1 AMITV Launcher

6.1.1 Requirements

The designer wants to create an application for the living room TV that will serve
as a multimedia hub. This application will provide access to movies, TV, music,
news and Image Gallery, through a launcher. Each one of the links (e.g. music,
TV) in the launcher, will provide access to a full view of the respective component.

• Intelligent Space: AMIHOME

• Room: Living Room

• Artifact: Large Screen (TV1)

• Primary Tag: Entertainment, General

6.1.2 Creating the launcher

In order to create the new UI mashup, firstly the designer should create a compo-
sition or utilize an existing one. For this example, the designer will create a brand

73

74 CHAPTER 6. UINIFY USE CASES

new composition by clicking the appropriate button in the composition repository,
namely ’AMITV Launcher’. The user will be redirected to a pop-up dialogue,
where she can fill in the basic information. Firstly, she will choose as an Intelli-
gent space the AMIHOME environment. In the next dialogue, she will choose the
living room as the room where the composition is intended to be used into. Then,
the name (i.e. AMITV Launcher), the tags (i.e. Entertainment, General) and the
Artifact (i.e. Large screen, TV1) must be filled in. The entire process is illustrated
in Figure 6.1.

In the editor, the designer customizes the layout by adding appropriate place-
holders as desired; she can create the grid, by adding rows and columns (as many
as the chosen display device can fit) and defining their height and width respec-
tively. After completing the template she can save it to template repository, to
reuse it in other compositions. Next, she populates the placeholders with concrete
application components from the application repository. Finally, she can save the
repository in the database.

Figure 6.2: A concept layout for “AMITV Launcher”

6.2 Mobile Home Screen

6.2.1 Requirements

The designer wants to create a mobile application that will assist the user by pro-
viding information and quick access to home control functionality. This application
will provide information about the status of the home, and more specifically about
the status of the security and the safety components (e.g. fire alarm). Moreover,

6.2. MOBILE HOME SCREEN 75

Figure 6.1: Creating the “AMITV Launcher” composition

76 CHAPTER 6. UINIFY USE CASES

Figure 6.3: The mobile application as created in UInify

it will provide an overview of the active devices and a quick communication com-
ponent for the family. Finally, it will provide a quick view of the favourite devices
of the user (see figure 6.3).

• Intelligent Space: AMIHOME

• Room: ALL

• Artifact: Mobile (Mobile1)

• Primary Tag: General

6.2.2 Creating the mobile application

In order to create the new UI mashup, firstly the designer should create a com-
position or utilize an existing one. For this example, the designer will utilize the
composition named “Home Controller”. The process of creating a new composition
is similar to the process that is illustrated in Figure 6.1.

In the editor, the designer customizes the layout by adding appropriate place-
holders as desired. For the mobile applications, the top and bottom parts of the
screen are reserved for menu placements. The user can choose a menu layout from
the left panel for the top and bottom menus (e.g. bottom menu with 4 placehold-
ers for quick actions as in figure 6.3). Also, the user can create the main container
grid, by adding rows and columns (as many as the container can fit) and defining
their height and width respectively.

6.3. EVEN MORE MASHUPS 77

Figure 6.4: UInify concept in Kitchen Bench application

After completing the template she can save it to template repository, to reuse
it in other compositions. Next, she populates the placeholders with concrete ap-
plication components from the application repository. Finally, she can save the
repository in the database.

In future versions of UInify, the user could create multiple screens for one
individual application. UInify will allow the user to make connections from the
respective elements of one screen to the rest of the screens.

6.3 Even more Mashups

6.3.1 Kitchen Countertop

The designer wants to create an ambient application for the Kitchen Countertop.
In this scenario, the application will display the recipes’ application on the coun-
tertop as well as the list of available movies on the wall, to entertain the user while
she cooks. For this scenario, we will consider that the screen is one (countertop
and wall), but in future versions, the interoperability of multiple devices will be
allowed in the system. More specifically, the workspace should include multiple
screens for tasks where the user interacts with more than one devices simultane-
ously within a room. The logic behind this is that all devices are linked to each
other and can display related events at the same time.

• Intelligent Space: AMIHOME

• Room: Kitchen

• Artifact: Bench/Large Screen (Bench Display1)

78 CHAPTER 6. UINIFY USE CASES

• Primary Tag: Utilities

The following concept scenario is an example of the interoperability of the
display devices. Two screens are used: the user prepares a meal in the countertop
by using the recipe step-by-step application (which is displayed through a projector
to the kitchen counter), while in the wall in front of her a movie is playing (through
a diagonal projector). The movie pauses when an event of a skype call is pushed
in the event federation component. If she decides to answer it, the user interface
change and the screen is split in half for movies and Skype call applications.

With the same process, as discussed before a composite user interface for the
kitchen countertop can be introduced in UInify. The user can create a composition
(or use an existing one if it already exists) for the kitchen bench composition (with
similar process as shown in figure 6.1). With the assumption that is mentioned
before, that we consider the countertop and the wall as one screen, the user can
make the layout by adding rows and columns as in the previous examples (see
figure). The figure depicts the composition for the concept scenario.

6.3.2 CognitOS : A Student-Centric Environment for a Intelligent
Classroom.

The designer wants to create a web-based working environment that hosts educa-
tional applications, namely CognitOS [31]. CognitOS is deployed in multitouch-
enabled All-in-One PC which integrates various sensors (e.g. eye-tracker, camera,
microphone).

• Intelligent Space: Smart Classroom

• Room: Intelligent classroom

• Artifact: Desktop

• Primary Tag: Education

More specifically, the desktop application offers four (4) basic virtual items for
accessing the main functionality: (i) a pile of books for the book application
that offers a shortcut to the student’s collection of books (ii) a pile of notebooks
for the notebook application that acts as a shortcut to student’s collection of
assignments, (iii) a personal card that provides access to the profile application
and (iv) a computer monitor for launching the multimedia application.

In its core, the CognitOS application is a web launcher to four different widgets.
This can easily translate into a UI mashup and create it as a composition, with the
information and the process mentioned before (similar with the process followed
in Figure 6.1).

Moreover, the editor can be used to create the actual launcher. This layout
can be created by adding the following placeholders: First, we create two columns.
The right column will be used for the Multimedia application. In the left column,

6.3. EVEN MORE MASHUPS 79

Figure 6.5: AmiView creation for CognitOS

we will create two equal size rows. In the top column, the Book application will be
placed. The bottom left column will be separated into two equal columns. In the
left part, the Profile application will be placed and in the right part, the Notebook
application. The CognitOS AmiView is illustrated in figure 6.5 and the end result
in figure 6.6.

Figure 6.6: Snapshots from CognitOS applications

80 CHAPTER 6. UINIFY USE CASES

The CognitOS example demonstrates the expansion of the UInify uses, out-
side the intelligent home ecosystem. With the proper modulation of the applica-
tions and applications components, composite user interfaces for smart classrooms,
greenhouses, transportation services, hospitals and eventually smart cities will be
easily deployed in the ecosystem.

Chapter 7

Evaluation

The objective of this chapter is to report the outcomes of a preliminary evaluation
that attempted to assess the UInify platform. The main goal of this process is
to evaluate if the system optimizes the design method in intelligent environments.
This section will present (i) the user-based interface evaluation that was followed in
the experiment, (ii) the findings of the experiment and (iii) the preliminary results
regarding the usability of the implemented User Interfaces as extracted from SUS
questionnaires.

7.1 User-based Interface Evaluation

Based on our study, a platform with similar functionality, which enables the entire
design and deployment of a composite user interface, does not exist. In this chapter
the preliminary evaluation will be presented, which helps to assess the platform
and highlight the benefits of using it.

As D.J. Nielsen suggested [89], in the first evaluation iteration, five (5) users
can detect approximately 85% of the problems in the user interface. After the first
iteration with 5 users, most of the usability problems can be fixed in a redesign.
More experiments (at least three (3) according to [89]) can cover the entirety of
the problems. Based on this conclusion, UInify was evaluated by five (5) users,
who were asked to design and deploy a multimedia hub launcher in the living room
of an intelligent home by following nine (9) scenarios.

For the experiment, the following assumptions were made; firstly that all the
web applications used through the UInify platform, are already implemented and
have been exposed as services to the system from AmI Solertis. Furthermore, the
AmI environment and more specifically the Living room has a large screen (TV),
where the composition can be displayed.

In the system evaluation, five (5) users of both genders (2 females and 3 males)
participated. The users belonged to the age group of 25-30. All of the participants
were graduate students in computer science, with different levels of expertise in
ambient intelligent systems. One of them was experts in the domain, three of them

81

82 CHAPTER 7. EVALUATION

had moderate experience and one of them had little experience.

7.2 The experiment

7.2.1 Preliminaries

For the evaluation of a system to be successful, tasks/scenarios should be clear
for the user and allow him to test and evaluate its major functionality. To this
end, nine (9) tasks were decided for the evaluation of the UInify, which drive the
user through a large portion of the system. Prior to the assignment, users were
introduced to the purpose of the system, its capabilities and functions, the target
audience and the process that they are requested to follow. To assist the assessors,
the tasks were also recorded in an electronic presentation to be understandable
and easily available. For the evaluation process, it was requested by the users to
follow some scenarios of different difficulty. Moreover, they were asked to follow the
thinking aloud method and they were encouraged to make comments. Finally, to
better measure the process it was explained that the comments and the completion
time of tasks, were recorded.

7.2.2 The process

The usability test that was conducted, had four stages: (i) the preparation, (ii)
the introduction, (iii) the actual test and (iv) the debriefing session. Initially, the
scenarios for the evaluation were decided. It was important to browse a large
portion of the system for the users in order to have a better understanding of
UInify platform. Before the evaluation phase began, a presentation was created
for the user to read the scenarios. The scenarios and the SUS questionnaire were
given in an electronic format (PowerPoint and Google form respectively).

The computer system was prepared with the UInify in its initial state. The
experiment was conducted remotely with a Skype call. The test users were given
a brief explanation of the purpose of the test. Afterwards, the test procedure was
presented. It was made clear that the test evaluates the software and not the
user. The users were asked to use the method thinking aloud, to make comments
(positive or negative) for the system. Finally, it was explained that some comments
and time will be written down for assessing the system and produce some graphs
for statistical reasons.

During the test itself, the scenarios were read to the users and the experimenter
was helping only when he was asked. After completing the scenarios, users were
asked to fill a System Usability Scale (SUS) [40] questionnaire. The SUS question-
naire includes ten (10) questions with five response options ranging from “Strongly
agree” to “Strongly disagree”. It is a Likert scale, providing a “quick and dirty”,
yet valuable evaluation tool.

Finally, the experiment included a debriefing session during which the users
prompt to give comments regarding the system. They were also asked for what

7.2. THE EXPERIMENT 83

they liked most and whether they would use the system on a daily basis and for
any suggestion that will result in the enhancement of the system.

7.2.3 Scenarios

Each user was requested to complete nine (9) scenarios covering the most impor-
tant functionality of UInify.

Scenario 1

You are a smart environment designer and you have previously registered in UInify
platform.

Login to your account using the following credentials:

• Username: Ami User

• Email: ami@ics.forth.gr

• Password: 123456

Scenario 2

Check in your profile if you created any compositions for the Smart Kitchen? How
many?

Scenario 3

Find the recently created compositions and the most used UIs in UInify.

Scenario 4

You are a designer for ambient environments and you want to create a composition
for the smart living room that will serve as an entertainment hub. You want to
include a Music component, but you don’t know if there is one in the system. For
this component, you need to have a music player. See if such an application exists
in the UInify library.

Scenario 5

Next, you want to know if there is already a composition for a media center for
the Living Room. Browse through the appropriate components of the system to
check if there is a similar composition.

84 CHAPTER 7. EVALUATION

Figure 7.1: Figure for Scenario 7

Scenario 6

You decided that you want to design a launcher for your multimedia hub with
the applications that already exist in the system. You will name it “AMI TV
Launcher”. The display device will be the TV1 of your AMIHOME Living room.
It will be for Entertainment or general use.

Scenario 7

Start designing your AmiViews in the ‘AMI TV Launcher’ Composition (see Figure
7.1). Your launcher will have 3 rows. The first will be narrower with 110px height
and the rest will have height of 215px. Moreover, the second and the third row
should each have 3 columns. Each column will have width of 317px.

Scenario 8

After designing the template, you should proceed to adding applications in the
template (see Figure 7.2). In the cell (2,1) you should add ‘Music’ application. In
the cell (2,2) you should add ‘TV’ application. In the cell (2,3) you should add
‘Movies’ application. In the cell (3,1) you should add ‘News’ application. In the
cell (3,2) you should add ‘Image Gallery’ application. Finally, in the cell (3,3) you
should add ‘Chat’ application. Deploy your application in the system.

7.3. PERFORMANCE MEASUREMENT 85

Figure 7.2: Figure for Scenario 8

Scenario 9

You have an idea about creating a recipe composition of your kitchen counter and
you are interested whether a Recipe composition already exists or applications of
this context have been imported to the system. Query the keyword ‘Recipe’ to
check if any exist.

7.3 Performance Measurement

Each user was requested to complete nine (9) scenarios (see section above) covering
the most important functionality of UInify.

7.3.1 Findings per scenario

In this section, the appropriate quantitative methods used to assess the UInify sys-
tem will be presented. Both graphs that show the execution times of the scenarios
and some worth-mentioning comments of the users will be presented. After the
assessment per scenario, we extract the general problems that need to be revised
in the UInify studio.

86 CHAPTER 7. EVALUATION

7.3.1.1 Scenario 1

are a smart environment designer and you have previously registered in UInify
platform.

Login to your account using the following credentials:

• Username: Ami User

• Email: ami@ics.forth.gr

• Password: 123456

Execution Times

Figure 7.3: Execution times for Scenario 1

Comments
This was an easy scenario to introduce the users to the system. As depicted in
Figure 7.3, they users executed really fast. All users successfully log in to the
system. Only the third user didn’t notice right away that the required field was
e-mail and password and not a username. This may mean that the font size should
be bigger and more noticeable.

7.3. PERFORMANCE MEASUREMENT 87

Scenario 2

Check in your profile if you created any compositions for the Smart Kitchen? How
many?
Execution Times

Figure 7.4: Execution times for Scenario 2

Comments

In general, the users didn’t have a problem with this scenario. Three of the
users (Users 2,3,4 in Figure 7.4), who did the longer time to execute the scenario,
started looking in the composition category (they assumed that in the tiles the
system would mention the creator probably). They all found the profile eventually,
in the right top corner. Some users didn’t notice at first the ’Kitchen’ indicator in
the boxes. One user mentioned that she wanted to click the Username and redirect
to the profile immediately, and not open the dropdown menu.

88 CHAPTER 7. EVALUATION

Scenario 3

Find the recently created compositions and the most used UIs in UInify.
Execution Times

Figure 7.5: Execution times for Scenario 3

Comments

Almost all users tried to search their profile for the recently created compo-
sitions and the most used UIs. Many users browsed to library and compositions
and sorted the results by Date or by Most Used. In the end, all users found these
categories on the Dashboard. Some of the users commented that it was more of a
scenario problem rather than a platform-oriented problem and this is depicted in
execution times in figure 7.5.

7.3. PERFORMANCE MEASUREMENT 89

Scenario 4

You are a designer for ambient environments and you want to create a composition
for the smart living room that will serve as an entertainment hub. You want to
include a Music component, but you don’t know if there is one in the system. For
this component, you need to have a music player. See if such an application exists
in the UInify library.

Execution Times

Figure 7.6: Execution times for Scenario 4

Comments

This scenario was easy for most of the users. They had some difficulty with the
terminology used (Applications - Compositions - AmiViews). Almost every user
used the filtering option provided to find Entertainment applications. All users
found the Music application and the Music Player application component in the UI
library. The user 5, did the longer time (see figure 7.6), due to the fact that tried
to create a composition rather than find the application. The user commented
that she wanted a preview of the application in the creation process.

90 CHAPTER 7. EVALUATION

Scenario 5

Next, you want to know if there is already a composition for a media center for
the Living Room. Browse through the appropriate components of the system to
check if there is a similar composition.

Execution Times

Figure 7.7: Execution times for Scenario 5

Comments

This scenario was relatively easy for the users. All the users browsed to the
composition functionality immediately and checked if the appropriate composition
exists. Some users used the searching functionality of the compositions to find a
media center application. User 2 did the longest time, because she tried to search
the compositions and ’play’ with the keywords. The User 5 first searched for the
composition in UI library and then in Composition repository.

7.3. PERFORMANCE MEASUREMENT 91

Scenario 6

You decided that you want to design a launcher for your multimedia hub with
the applications that already exist in the system. You will name it “AMI TV
Launcher”. The display device will be the TV1 of your AMIHOME Living room.
It will be for Entertainment or general use.

Execution Times

Figure 7.8: Execution times for Scenario 6

Comments

All the users browsed for the composition functionality and pressed the ’+’ but-
ton provided. Users thought that this wizard was intuitive and clear. One user
suggested to include a recommendation system, which will auto-fill the fields and
suggest grids and applications based on the previous compositions and choices of
her. User 2, who did the longest time (see figure 7.8) followed the same process.

92 CHAPTER 7. EVALUATION

Scenario 7

Start designing your AmiViews in the ‘AMI TV Launcher’ Composition (see Fig-
ure 7.1). Your launcher will have 3 rows. The first will be narrower with 110px
height and the rest will have height of 215px. Moreover, the second and the third
row should each have 3 columns. Each column will have width of 317px.

Execution Times

Figure 7.9: Execution times for Scenario 7

Comments

The users had some difficulty with this scenario, as depicted from execution times
in figure 7.9. All users requested more indications and labels to follow the process
of creating AmiViews. They felt unsure in the way that they add columns on the
grid. Some users commented that they wanted to drag and drop already existing
placeholders. They also requested for adjustable components and edit feature if
the save their layout.

7.3. PERFORMANCE MEASUREMENT 93

Scenario 8

After designing the template, you should proceed to adding applications in the
template (see Figure 7.2). In the cell (2,1) you should add ‘Music’ application. In
the cell (2,2) you should add ‘TV’ application. In the cell (2,3) you should add
‘Movies’ application. In the cell (3,1) you should add ‘News’ application. In the
cell (3,2) you should add ‘Image Gallery’ application. Finally, in the cell (3,3) you
should add ‘Chat’ application. Deploy your application in the system.

Execution Times

Figure 7.10: Execution times for Scenario 8

Comments

In this scenario, the users found intuitive the way that they could add an
application to the placeholders. However, they all wanted indications, label or
icons that their application indeed added to the placeholder. The execution times
illustrate this confusion of the users in figure 7.10.

94 CHAPTER 7. EVALUATION

Scenario 9

You have an idea about creating a recipe composition of your kitchen counter and
you are interested whether a Recipe composition already exists or applications of
this context have been imported to the system. Query the keyword ‘Recipe’ to
check if any exist.

Execution Times

Figure 7.11: Execution times for Scenario 9

Comments

All users used the universal search component efficiently. One user thought
to browse the composition repository and search in that page for the requested
composition. The figure 7.11 illustrates the execution times for scenario 9.

7.3. PERFORMANCE MEASUREMENT 95

Figure 7.12: The System Usability Score of UInify per user

7.3.2 Discussion

As the findings suggested, UInify was an easy to use system as indicated by the
users who performed the usability experiment. All the users commented that
the user interface design was very simple and intuitive and that resulted in a
friendly and easy-to-use system. Even for users with a little ambient intelligent
background, it did not take long time to familiarize with the system. That is
an important finding, as the system could be used in its future versions by users
without a technical background.

However, some users had a difficulty to familiarize with the terminology used in
the system. One interesting comment was that the user would prefer the system to
be more personalized to the previous actions and compositions that were created
in the system. Overall, users found that the system was designed with familiar
concepts and did not find something peculiar.

Two main problems were found on the system that needs redesign. Firstly
all users suggested that the editor, that used for AmiView creations, needs better
indications for its basic functionality. Almost every user said that they need a
more flexible grid system as well as indicators for rows and column addition. Two
users suggested a recommendation system in the editor as well as in the overall
system, as it will be helpful to monitor their compositions. The second problem
found was in the UI mapper. Users requested a more clear indication that their
application was added (with text or/and icon) in the placeholders. They also
wanted a preview of the device to check if the application was actually deployed.

The overall opinion of the users was that the UInify was an intuitive tool, with
a pleasant and clear design. All users commented that they would use it if the
appropriate infrastructure was well defined. Moreover, they thought that the UI of
the application was intuitive and found the idea interesting. This is also depicted
by the SUS score of eighty-eight (88) (see figure 7.12) which indicated that the

96 CHAPTER 7. EVALUATION

tool was marked as highly usable.

Chapter 8

Summary and Future work
directions

8.1 Summary

Fifty years ago, a house that aids its residents with daily routine, an office that
assists user for work effectively or a smart class seemed like things that could
only be found in movies using visual effects. All these concepts become reality
with the progression of technology and the realization of Ambient Intelligence.
Ambient environments are complex ecosystems that are expected to have multiple
screens that display the graphical user interface that has been imported into the
system. Given the vast number of devices and services in such environments, it
is impossible for developers to build all-inclusive applications, which will enable
users to thoroughly monitor and control the extensive variety of physical devices
and artificial services that they own.

To that end, this thesis has proposed UInify, a framework that can compose
flexible web applications in real-time that unify under a common roof the individual
GUIs that control and/or monitor the hardware and software components of an
intelligent space (i.e. smart home).

Summing up, from an engineering perspective the UInify framework: (i) intro-
duces a unified user interface made from pluggable web interfaces that exist in the
ecosystem, (ii) store and deploy the compositions as HTML UI mashups, (iii) pro-
vides an editor the designer can create the grid by adding appropriate placeholders
(AmiView).

8.2 Future Work

The UInify platform has many aspects that are worth further research. Firstly,
the system needs some redesign according to the users’ comments that seemed to
converge. UI mapper and Layout builder need a redesign with a more intuitive
editor and labels to guide the users.

97

98 CHAPTER 8. SUMMARY AND FUTURE WORK DIRECTIONS

The process of introducing an AmiView can be more simple by offering a
set of tools. That tools can be resized, zoom-in and zoom-out features for the
placeholders. In addition, different types of placeholders should be created i.e.
placeholder with a title, placeholders for menus, to make the process more fast
and intuitive.

Moreover, the tool can include some simple machine learning algorithms, to
recommend applications, similar composition layouts to users. The evaluation
results showed that UInify Dashboard and all categories in general, can be more
personalized to its user.

8.2.1 Dynamic Rules

One addition to the system could be the creation of amiViews with dynamic rules.
That means, that the UInify could create the amiviews that fit in the context of
the initialization information that the user made. The user can choose from the
available layouts and customize it or use it on the fly. Moreover, the user will be
available while using the system to press a button and change the layout of the
placeholders, if they don’t fit her needs.

In the evaluation experiment, one user that it would be useful when a user
creates compositions to recommend existing layouts and choose between them for
the composition.

8.2.2 Layout builder

UInify’S Layout builder currently is rather limited to one device per AmiView
and should be further extended to support designers to design and deploy more
composite user interfaces. Firstly, the layouts should be expanded and include
more complex shapes than standard size rectangles. It also will help the user to
control their layout if re-sizing and drag-and-drop component will make the editor
even more intuitive and easy-to-use.

The composite designs for such an ambient environment should combine mul-
tiple devices for tasks performed in daily life. Another improvement should con-
sider integrating complex artificial intelligent components to aid the whole process.
These components can suggest to the end-users application component and/or
template layouts to improve the creation of user interface and the overall user
experience.

In the experiment, all users wanted indicators for the Layout Builder for the
row and column addition. One user said that didn’t understand the difference
between colours in addition of rows and columns, and wanted text labels. Fur-
thermore, users suggested undo and redo functionality, drag and drop components
and adjustable rows and columns.

8.2. FUTURE WORK 99

8.2.3 UI Mapper

UInify’s UI Mapper can be improved with the aid of reasoning components. This
reasoning component will limit the options of the applications for the chosen dis-
play device. This filtering will limit the applications with the best-fitted applica-
tions for the placeholder chosen of the AmiView by taking into consideration of
previous preferences of the user, the room that the composition will be deployed,
the context of the application and the artifact limitations (e.g. if the application
needs a Kinect sensor to work correctly and the display device hasn’t got one
installed, this display device is not a match for the application).

In the evaluation experiment, all users suggested that they wanted a label
or/and icon that the application was inserted in the placeholder. They also sug-
gested that the system should recommend applications for the placeholders.

8.2.4 UInify player

The UInify player is a new component that will be essential to the system. This
will be the client that will be installed in every system in the intelligent space of
FORTH-ICS. Its purpose will be to communicate with the UInify studio and it will
present the appropriate composition in every display device. This will provide the
change composition button that is mentioned before, and it will be sent a request
for a new calculation for the recommendation system, in order to provide the user
with a new composition.

100 CHAPTER 8. SUMMARY AND FUTURE WORK DIRECTIONS

Bibliography

[1] Amazon alexa and echo, www.amazon.com.

[2] Angular, http://angular.io.

[3] Apple home application, https://www.apple.com/lae/ios/home/.

[4] bcrypt: Javascript library.

[5] Control4 | home automation and smart control systems, www.control4.com.

[6] The ECHO IV home computer: 50 years later | computer history museum.

[7] Evrythng home, https://evrythng.com/.

[8] Express.js, expressjs.com.

[9] Gideon | smart home.

[10] Google home, https://store.google.com.

[11] Ifttt | https://ifttt.com/.

[12] Introduction to json web tokens.

[13] MavHome: Managing an adaptive versatile home, CSE@UTA.

[14] The mean stack blog.

[15] Mongoose, https://mongoosejs.com/.

[16] Nest: Create a connected home, www.nest.com/uk/.

[17] Node.js, nodejs.org/en/.

[18] Openhab | empowering the smart home https://www.openhab.org.

[19] SmartThings www.smatthings.com.

[20] The top 10 IoT segments in 2018 based on 1,600 real IoT projects - IoT
analytics.

101

102 BIBLIOGRAPHY

[21] Wink | a simpler, smarter home, www.wink.com/.

[22] Electronic computer for home operation (echo): The first home computer.
In IEEE Annals of the History of Computing, volume 16, pages 59–61. 1994.

[23] MIT house n, 2000.

[24] Orange smart house | university of surrey, 2001.

[25] Emile Aarts and Jose Luis Encarnação. Into ambient intelligence. In
Emile HL Aarts and Jose Luis Encarnação, editors, True Visions - The
Emergence of Ambient Intelligence, pages 1–16. Springer, 01 2006.

[26] Emile Aarts and Frits Grotenhuis. Ambient intelligence 2.0: Towards syn-
ergetic prosperity. J. Ambient Intell. Smart Environ., 3(1):3–11, January
2011.

[27] Gregory D Abowd, Aaron F Bobick, Irfan A Essa, Elizabeth D Mynatt, and
Wendy A Rogers. The aware home: A living laboratory for technologies for
successful aging. page 7.

[28] G. Acampora, D. J. Cook, P. Rashidi, and A. V. Vasilakos. A survey on
ambient intelligence in healthcare. Proceedings of the IEEE, 101(12):2470–
2494, Dec 2013.

[29] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash.
Internet of things: A survey on enabling technologies, protocols, and
applications. IEEE Communications Surveys Tutorials, 17(4):2347–2376,
Fourthquarter 2015.

[30] Jan Alexandersson. i2home: Towards a universal home environment for the
elderly and disabled. page 3.

[31] Margherita Antona, George Margetis, Stavroula Ntoa, Asterios Leonidis,
Maria Korozi, George Paparoulis, and Constantine Stephanidis. Ambient
intelligence in the classroom: an augmented school desk. 07 2010.

[32] Nikolaos Anyfantis, Evangelos Kalligiannakis, Achilleas Tsiolkas, Asterios
Leonidis, Maria Korozi, Prodromos Lilitsis, Margherita Antona, and Con-
stantine Stephanidis. AmITV: Enhancing the role of TV in ambient in-
telligence environments. In Proceedings of the 11th PErvasive Technologies
Related to Assistive Environments Conference on - PETRA ’18, pages 507–
514. ACM Press.

[33] L. Atzori, A. Iera, and G. Morabito. From ”smart objects” to ”social ob-
jects”: The next evolutionary step of the internet of things. IEEE Commu-
nications Magazine, 52(1):97–105, January 2014.

BIBLIOGRAPHY 103

[34] Juan Carlos Augusto. Past, present and future of ambient intelligence and
smart environments. In Joaquim Filipe, Ana Fred, and Bernadette Sharp,
editors, Agents and Artificial Intelligence, volume 67, pages 3–15. Springer
Berlin Heidelberg.

[35] Andreas Auinger, Martin Ebner, Dietmar Nedbal, and Andreas Holzinger.
Mixing Content and Endless Collaboration – MashUps: Towards Future Per-
sonal Learning Environments. In Constantine Stephanidis, editor, Universal
Access in Human-Computer Interaction. Applications and Services, volume
5616, pages 14–23. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[36] Lynne Baillie and David Benyon. Place and technology in the home. Com-
puter Supported Cooperative Work (CSCW), 17(2):227–256, Apr 2008.

[37] Nazmiye Balta-Ozkan, Rosemary Davidson, Martha Bicket, and Lorraine
Whitmarsh. Social barriers to the adoption of smart homes. 63:363–374, 12
2013.

[38] Christoffer Björkskog. Human computer interaction in smart homes, 2007.

[39] Manousos Bouloukakis, Christos Stratakis, and Constantine Stephanidis.
Ami garden: Building an iot infrastructure for precision agriculture. vol-
ume 153, pages 69–80.

[40] John Brooke. Sus: A quick and dirty usability scale. Usability Eval. Ind.,
189, 11 1995.

[41] Jean C Burgelman and Yves Punie. Information, society and technology.
In Emile HL Aarts and Jose Luis Encarnação, editors, True Visions - The
Emergence of Ambient Intelligence, pages 17–33. Springer, 01 2006.

[42] Federico Cabitza, Daniela Fogli, Rosa Lanzilotti, and Antonio Piccinno.
Rule-based tools for the configuration of ambient intelligence systems: a
comparative user study. Multimedia Tools and Applications, 76(4):5221–
5241, February 2017.

[43] Jill Cao, Yann Riche, Susan Wiedenbeck, Margaret Burnett, and Valentina
Grigoreanu. End-user mashup programming: Through the design lens. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, pages 1009–1018, New York, NY, USA, 2010. ACM.

[44] Kristina Chodorow and Michael Dirolf. MongoDB: The Definitive Guide.
O’Reilly Media, Inc., 1st edition, 2010.

[45] Diane J. Cook. How smart is your home? 335(6076):1579–1581.

[46] Diane J. Cook, Juan C. Augusto, and Vikramaditya R. Jakkula. Ambient
intelligence: Technologies, applications, and opportunities. 5(4):277–298.

104 BIBLIOGRAPHY

[47] Joëlle Coutaz. User interface plasticity: Model driven engineering to the
limit! In Proceedings of the 2Nd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS ’10, pages 1–8, New York, NY, USA,
2010. ACM.

[48] F. Daniel, J. Yu, B. Benatallah, F. Casati, M. Matera, and R. Saint-Paul.
Understanding ui integration: A survey of problems, technologies, and op-
portunities. IEEE Internet Computing, 11(3):59–66, May 2007.

[49] Florian Daniel and Maristella Matera. Mashups: Concepts, Models and Ar-
chitectures. Springer Publishing Company, Incorporated, 2014.

[50] Boris de Ruyter and Emile Aarts. Ambient intelligence: Visualizing the
future. In Proceedings of the Working Conference on Advanced Visual In-
terfaces, AVI ’04, pages 203–208, New York, NY, USA, 2004. ACM.

[51] Liyanage C. De Silva, Chamin Morikawa, and Iskandar M. Petra. State of
the art of smart homes. Eng. Appl. Artif. Intell., 25(7):1313–1321, October
2012.

[52] Google developers. Blocky | google developers.

[53] Alan Dix and Laura Cowen. HCI 2.0? usability meets web 2.0. page 2.

[54] Soufiene Djahel, Christoph Sommer, and Annapaola Marconi. Guest ed-
itorial: Introduction to the special issue on advances in smart and green
transportation for smart cities. 19(7):2152–2155.

[55] K Ducatel, M Bogdanowicz, F Scapolo, J Leijten, and J-C Burgelman. Sce-
narios for ambient intelligence in 2010. page 58, 2001.

[56] D Evans. The internet of things: How the next evolution of the internet is
changing everything. 1:1–11, 01 2011.

[57] Alois Ferscha, Stefan Resmerita, and Clemens Holzmann. Human computer
confluence. In Proceedings of the 9th Conference on User Interfaces for All,
ERCIM’06, pages 14–27, Berlin, Heidelberg, 2007. Springer-Verlag.

[58] Daniela Fogli, Rosa Lanzilotti, and Antonio Piccinno. End-user develop-
ment tools for the smart home: A systematic literature review. In Norbert
Streitz and Panos Markopoulos, editors, Distributed, Ambient and Pervasive
Interactions, volume 9749, pages 69–79. Springer International Publishing.

[59] Jesse James Garrett. The Elements of User Experience: User-Centered De-
sign for the Web and Beyond. New Riders Publishing, Thousand Oaks, CA,
USA, 2nd edition, 2010.

BIBLIOGRAPHY 105

[60] Hans-W. Gellersen, Michael Beigl, and Holger Krull. The mediacup: Aware-
ness technology embedded in an everyday object. In Hans-W. Gellersen,
editor, Handheld and Ubiquitous Computing, pages 308–310, Berlin, Heidel-
berg, 1999. Springer Berlin Heidelberg.

[61] Neil Gershenfeld, Raffi Krikorian, and Danny Cohen. The internet of things.
291(4):76–81.

[62] Khusvinder Gill, Shuang-Hua Yang, Fang Yao, and Xin Lu. A zigbee-based
home automation system. 55(2):422–430.

[63] Gartner IT Glossary. Glossary for connected home.

[64] trends.google.com Google Trends. Google trends, 2018.

[65] Dominique Guinard. Mashing up your web-enabled home. In Florian Daniel
and Federico Michele Facca, editors, Current Trends in Web Engineering,
volume 6385, pages 442–446. Springer Berlin Heidelberg.

[66] Dominique Guinard and Vlad Trifa. Towards the web of things: Web
mashups for embedded devices. page 8.

[67] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde. From
the internet of things to the web of things: Resource-oriented architecture
and best practices. In Architecting the Internet of Things, pages 97–129.
Springer, Berlin, Heidelberg.

[68] Richard Harper. The connected home: The future of domestic life.

[69] Richard Harper. Inside the Smart Home. Springer-Verlag, 2003.

[70] J. P. Hubaux, S. Capkun, and Jun Luo. The security and privacy of smart
vehicles. IEEE Security Privacy, 2(3):49–55, May 2004.

[71] Yucheng Jin, Chi Tai Dang, Christian Prehofer, and Elisabeth André. A
multi-display system for deploying and controlling home automation. In Pro-
ceedings of the Ninth ACM International Conference on Interactive Tabletops
and Surfaces, ITS ’14, pages 399–402, New York, NY, USA, 2014. ACM.

[72] Andreas Kamilaris, Vlad Trifa, and Andreas Pitsillides. HomeWeb: An
application framework for web-based smart homes. pages 134–139. IEEE.

[73] Hermann Kopetz. Internet of Things, pages 307–323. Springer US.

[74] Agnes Koschmider, Victoria Torres, and Vicente Pelechano. Elucidating
the mashup hype: Definition, challenges, methodical guide and tools for
mashups. page 8.

[75] Thomas Kubitza and Albrecht Schmidt. meSchup: A platform for program-
ming interconnected smart things. 50(11):38–49.

106 BIBLIOGRAPHY

[76] Shiu Kumar. Ubiquitous smart home system using android application.
6(1):33–43.

[77] M. O. Leavitt and B. Shneiderman. Research-Based Web Design & Usability
Guidelines.

[78] Ying-tsung Lee, Wei-hsuan Hsiao, Chin-meng Huang, and Seng-cho T. Chou.
An integrated cloud-based smart home management system with community
hierarchy. 62(1):1–9.

[79] A. Leonidis, D. Arampatzis, N. Louloudakis, and C. Stephanidis. The ami-
solertis system: Creating user experiences in smart environments. pages
151–158, Oct 2017.

[80] Daniel Lewis. What is web 2.0? XRDS, 13(1):3–3, September 2006.

[81] Sam Lucero. Iot platforms: enabling the internet of things. 2016.

[82] Eisaku Maeda, Yasuhiro Minami, Masato Miyoshi, Minako Sawaki, Hiroshi
Sawada, Atsushi Nakamura, Junji Yamato, Takeshi Yamada, and Ryuichiro
Higashinaka. The world of mushrooms: A transdisciplinary approach to
human-computer interaction with ambient intelligence. 4(12):9.

[83] Deborah J. Mayhew. Principles and Guidelines in Software User Interface
Design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[84] Deborah J. Mayhew. The usability engineering lifecycle. In CHI ’99 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’99, pages 147–
148, New York, NY, USA, 1999. ACM.

[85] McKinsey&Company. There’s no place like a connected home.

[86] O’Reilly Media. What is web 2.0.

[87] Dr Miraz, Maaruf Ali, Peter Excell, and Rich Picking. A review on internet
of things (iot), internet of everything (ioe) and internet of nano things (iont),
09 2015.

[88] Mohammad-Mahdi Moazzami, Guoliang Xing, Daisuke Mashima, Wei-Peng
Chen, and Ulrich Herberg. SPOT: A smartphone-based platform to tackle
heterogeneity in smart-home IoT systems. pages 514–519. IEEE.

[89] J Nielsen. Why you only need to test with 5 users. 01 2000.

[90] Anastasia Ntagianta, Maria Korozi, Asterios Leonidis, Margherita Antona,
and Constantine Stephanidis. Cognitos: A student-centric working environ-
ment for an attention-aware intelligent classroom, 07 2018.

BIBLIOGRAPHY 107

[91] Javier Palanca, Elena del Val, Ana Garcia-Fornes, Holger Billhardt,
Juan Manuel Corchado, and Vicente Julián. Designing a goal-oriented smart-
home environment. Information Systems Frontiers, 20(1):125–142, Feb 2018.

[92] Jaimin Patel and Gaurang Panchal. An iot-based portable smart meeting
space with real-time room occupancy. In Yu-Chen Hu, Shailesh Tiwari, Kr-
ishn K. Mishra, and Munesh C. Trivedi, editors, Intelligent Communication
and Computational Technologies, volume 19 of Lecture Notes in Networks
and Systems. Springer Singapore.

[93] Chris J. Pilgrim. Improving the usability of web 2.0 applications. In Pro-
ceedings of the Nineteenth ACM Conference on Hypertext and Hypermedia,
HT ’08, pages 239–240, New York, NY, USA, 2008. ACM.

[94] Rajeev Piyare. Internet of things: Ubiquitous home control and monitoring
system using android based smart phone. 2(1):5–11.

[95] Floyd I. R., Jones M. C., Rathi D., and Twidale M. B. Web mash-ups
and patchwork prototyping: User-driven technological innovation with web
2.0 and open source software. In 2007 40th Annual Hawaii International
Conference on System Sciences (HICSS’07), pages 86–86, Jan 2007.

[96] Carlos Ramos. Ambient intelligence: A state of the art from artificial intel-
ligence perspective. In Jose Neves, Manuel Filipe Santos, and Jose Manuel
Machado, editors, Progress in Artificial Intelligence, pages 285–295. Springer
Berlin Heidelberg.

[97] Jorg Rech and Klaus-Dieter Althoff. Artificial intelligence and software en-
gineering: Status and future trends. OCLC: 248670776.

[98] L. Rick. Express.Js: Guide Book on Web Framework for Node.Js. CreateS-
pace Independent Publishing Platform, USA, 2016.

[99] Edward Ross. Intelligent user interfaces: Survey and research directions.
Technical report, Bristol, UK, UK, 2000.

[100] Carsten Röcker. User-centered design of intelligent environments: Require-
ments for designing successful ambient assisted living systems. page 8.

[101] Albrecht Schmidt. Interactive context-aware systems interacting with ambi-
ent intelligence. pages 159–178, 01 2005.

[102] Manfred Schneps-Schneppe and Dmitry Namiot. About home gateway
mashups. 1(5):1–5.

[103] Ben Shneiderman and Catherine Plaisant. Designing the User Interface:
Strategies for Effective Human-Computer Interaction (4th Edition). Pearson
Addison Wesley, 2004.

108 BIBLIOGRAPHY

[104] Statista. Number of apps available in leading app stores as of 1st quarter
2018.

[105] Yue Suo, Chenjun Wu, Yongqiang Qin, Chun Yu, Yu Zhong, and Yuanchun
Shi. HouseGenie: Universal monitor and controller of networked devices on
touchscreen phone in smart home. pages 487–489. IEEE.

[106] Lambert M. Surhone, Mariam T. Tennoe, and Susan F. Henssonow. Node.Js.
Betascript Publishing, Mauritius, 2010.

[107] MongoDB team. Mongodb, www.mongodb.com.

[108] Kaisa Väänänen-Vainio-Mattila and Minna Wäljas. Towards user-centered
mashups: Exploring user needs for composite web services. In CHI ’11
Extended Abstracts on Human Factors in Computing Systems, CHI EA ’11,
pages 1327–1332, New York, NY, USA, 2011. ACM.

[109] Athanasios Vasilakos and Witold Pedrycz. Ambient Intelligence, Wireless
Networking, And Ubiquitous Computing. Artech House, Inc., Norwood, MA,
USA, 2006.

[110] Hongxu Yin, Ayten Ozge Akmandor, Arsalan Mosenia, Niraj K. Jha,
Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli,
Werner Damm, Thomas A. Henzinger, and Kim G. Larsen. Smart health-
care. 12(4):401–166.

[111] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, and
Michele Zorzi. Internet of things for smart cities. 1(1):22–32.

[112] Gottfried Zimmermann and Gregg Vanderheiden. The universal control
hub: An open platform for remote user interfaces in the digital home. In
Julie A. Jacko, editor, Human-Computer Interaction. Interaction Platforms
and Techniques, volume 4551, pages 1040–1049. Springer Berlin Heidelberg.

[113] Gottfried Zimmermann and Gregg Vanderheiden. The universal control hub:
An open platform for remote user interfaces in the digital home. In Proceed-
ings of the 12th International Conference on Human-computer Interaction:
Interaction Platforms and Techniques, HCI’07, pages 1040–1049, Berlin, Hei-
delberg, 2007. Springer-Verlag.

