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GPU-accelerated Streaming Analytics
Abstract

Streaming analytics is the analysis of huge pools of “in-motion” data, known
as streams. These streams are triggered by a specific event that happens as a
direct result of an action or set of actions, like a financial transaction, a social
post or a website click. Streamed data can originate from various sources such as
Internet of Things (IoT) devices, bank transactions, mobile devices and sensors.
By performing streaming analytics, enables the ability to work faster and stay
ahead in competition.

The above analysis helps organizations to process their data and extract valu-
able informations in order to stay agile and identify new opportunities. Therefore,
this analysis leads to smarter business moves, more efficient operations, higher
profits, happier customers and responsiveness.

In this work, we present a GPU-based solution which can perform analysis
on data in stream or at rest. This solution uses a sentiment-based lexicon and
performs pattern matching operation over the data to extract valuable information
such as sentiment score and frequent used words. This tool can also can track
trends for both short and long term events by manually adjusting the desired time
window intervals. Lastly, our evaluation applies the GPU-based component in
a Quality of Service scenario where we examine the incoming call transcripts of
different call centers and report various insights.






Avdivorn Acdopéveyv oe Por péow Kdptag
INoopixwv

ITepiindn

Streaming analytics elvon 1 avédhuon TepdoTiwV OUddwY «oe xivnom» dedopéva,
YVWO T8 Xt we stream. Autd ta Sedopéva dnuioupyoivTal and €va CUYXEXPWEVO Ye-
YOVOC WG VOl AMOTERECUOL LLUG EVEQYELNC 1) ULAC OELRUS EVERYELWY, OTWE LA YONUOTIXT
GUVOAAOYY), Hal xowvomoinon amd €va UECO XOWVWVIXNC BIXTUWONG 1) HE TO XX HLOC
totooeABag. Autd ta dedopéva tpogpyovta and dldpopec tnyéc omwe IoT cuoxeu-
€¢, Tpamelxég ouVAAAAYES, XvNTd TNAEwva xat awodnthpec. Me tnv avdiuon méve
oE AT To BEBOPEVD, TUPEYETOL 1) BUVATOTNTO YEHYOPNG XUk UTOTEAECUATIXOTERNC
BOUAELdC oA o Vo BLoTnericouy To TEOPBABIGHUO GTOV OVTOY WVICUO.

H rmapoamdve avdiuon Bondder etoupeieg va enc€epyactody Tar SeBoUEVa TOUG Xol
VoL eEQYOUV YPTOHIES TANPOYPORIES Vi VoL THPOLY VEe N} TpoANTTIXES anopdoelc. Autd
odnyel o€ eEUNVOTERES EMLYELONUUTIXES XIVATELS, TO UMOTEAEOUATIXES DPUOTNELOTNTES,
uPNAdTERO XEEBOC, YRTYORY] OVTUTOXPLOT XL LXOVOTIOINUEVOUS TEAJTES.

Ye auth v epyoaoia, mapoustdloupe wa Abar, 1 onola uropel vor avolboeL Oe-
OOMEVA TIOU EVOL AMOUNUEVUEVA GE BIOXO 1) <OE XIVNGT» YPTNOWLOTOLWVTAS TNV XAETa
Yooy, Auth n Aoor yenoipornotel eva Ae&ixd Booioyévo oto cuvalcUnua xou e-
xtehel pla Aettoupyio Toupldopatoc npotinwy oo dedopéva yia vor e€dyel TOAITUIES
TANeoQoplec OTwe apvnTixd 1) YeTixd cuvonoVuato xan enovaiauBavouevee AEels.
To epyalelo pog, Exel TNy BuVATOTNTO Vo ToEAXOAOUTEL Xat vor GUAREYEL TATIEOPOEI-
£C, OE OLApopa YEOVIXS Blao TAUNTY, EiTE Wxpd ElTe PEYAAN, OYETIXA UE TIC OLAPOPES
tdoeic Tou undpyouv Yéoa oe autd ta dedopéva. Téhog, o authv v epyacio aio-
AOYOUUE TNV amOB0GT TOU CUCTAUATOS YOG AV GE EVOL GEVAPLO TIOU EYEL VUL XAVEL UE
v notdtnTa e€unneétnone onou eneepyaldpacte o dedopéva oe por) xa EAyoupE
Ta OLAPOEA ATOTEAEGUOLTAL.






Euvyapioticg

Apywd, Yo Hleha va euyoploTiow Tov emPBAETwY pou, xadnyntr oriflo Ilpa-
TIXAXT, Yl THY TOAOTIUN CUVERYGSIH GTOL TAGLOLOL TG UETATTUYLOXNG UOU TOEElN.
Enfong, 9o Hieha va exppdon v Badid pov euyvwpooivn otov abufoulo pou Ag.
Ywthen Ioovvidn tou you €dwoe v guxatpior var Sovkédiwy oo mAaiola Tou Evpw-
Toix00 €pYOU OTOU XU EXTAREWOO TNV UETATTUYLOXY Mo epyaaio. Autr 1 euxoupla
ue Bordnoe vo eumioution Tic Yvooel pou xon vo e€ehy . H uetamtuylond] pou
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Oa Hieha eniong va euyaploThow Tov AAEEavbpo XaBBonovio, Lepapeiy Mouctd-
xa, Anuriten Kopvixn, T'idpyo Avoryvedmouho adhd xon oho to u€An Tou epyac Tneiou
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Toug.
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Chapter 1

Introduction

Currently we are living in the era of Data driven technologies, multiple sources
such as Iot-devices, sensors, banking transactions and social media are producing
an uncontrollable amount of data. These data are referred as Big Data, which
is a combination of structured, semi-structured and unstructured data. There is
no numerical standard to define Big, but is often characterized by the three Vs:
Variety, Volume and Velocity.

Business domains use these data for all manners of analysis [55, 36, 28], when
are used correctly it helps companies to improve operations, enhance costumer
service, create personalized marketing campaigns and increase profitability in real
life. More specifically, these data analytics is the often complex process of exam-
ining data in motion or at rest to uncover information such as hidden patterns,
correlations, market trends and customer preferences that can help organizations
make informed business decisions.

Although, for businesses to remain competitive, they need technology that de-
livers performance at scale by supporting a wide number of concurrent applications
while consuming large volumes of changing data in order to analyze big data in
motion in real time. To achieve this, they need to implement their analyzing meth-
ods in special streaming processing engines such as Apamal54], Apache Spark[30],
Apache Storm|[31].

Unfortunately, there is no standard method for analyzing these data, various
programming applications using state of the art techniques and tools are being
developed over the time in order to extract useful information. These applications
are often using a combination of techniques such as data integration from multi-
ple sources [11, 17], data mining methods [35, 37, 58], machine learning models
[14], Natural Language Processing (NLP) tools & methods [8, 32, 39] and other
statistical techniques [68, 66] in order to provide more accurate insights.

However, Sentiment Analysis has become a hot-trend topic of scientific and
market research in the field of Natural Language Processing (NLP) and Machine
Learning. This technique can be performed via Lexicon Based or Machine Learning
approach[53]. Since Machine Learning models require a set of well known skills,

1



2 CHAPTER 1. INTRODUCTION

this works focuses in the Lexicon Based approach.

Another reason we are choosing this approach is because several works such
as SocialSent [33] are offering open-source tools to offline generate such sentiment
lexicons from a set of unlabeled data. Thus, by using this lexicon enables the
capability to extract the sentiment value by performing a simple pattern matching
operation.

In this work, we present a GPU-base tool which can perform Sentiment Anal-
ysis both streaming and at rest data. Our solution can analyze the input data and
extract various insights using a GPU-accelerated pattern matching algorithm and
a sentiment based lexicon. Moreover, our development can track trends for both
short and long term events in order to help a company have a better understanding
of the costumers’ tendency.

To test the effectiveness of our work, we applied it in a realistic streaming
scenario. In this scenario we are called to process the incoming call transcripts
from different call centers in order to predict their performance by accumulating
the sentiment score accordingly to their streamed transcripts and provide insights
such as most frequent words and sentiment score in different time windows.

1.1 Motivation

Nowadays, organizations are looking to mitigate risk while making their businesses
more agile and responsive are using big data to transform how problems are viewed
and strategic policies are formed. By embracing the capabilities of big data, they
are able to make more informed decisions that help them gain a competitive edge,
improve overall performance and boost their bottom line. Although, developing
or using state of the art data analytics or fast analytics methods often require a
set of special skills. From our end, we propose a sentiment analysis tool which
uses a massive parallel pattern matching operation performed by the Graphics
Processing Card (GPU). We believe our work is sufficient to help many company
domains in way to process their data either real-time or offline.

1.2 Contributions

The contributions of this work are the following:

e This tool can be used in streaming analytics scenarios and provide accurate
real-time insights which eventually will help decision making.

e Our implementation can track trends for both short and long term events by
manually adjusting the desired time window intervals.

e Offline analysis is another option offered by the current solution.
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e Since the accelerated pattern matching operation is implemented in OpenCL
framework, it is easily executed on the vast majority of data parallel plat-
forms such as CPUs and high-end discrete or integrated GPUs.

1.3 Publications

Parts of the work for this thesis have been used and published in I-BiDaaS Euro-
pean project under grant agreement No. 780787 and also in an open access book.
Specifically, parts of this work are included in the following:

e [-BiDaaS Project. Deliverable D4.2: Distributed event-processing engine,2020[5].
e I[-BiDaaS Project. Deliverable D4.3: Streaming analytics and predictions,2020[6].

e Big Data Value Association Open Access Book,2020 [13].

1.4 Outline

The rest of this dissertation is organized as follows. Chapter 2 presents a brief
background on the implement framework. In this chapter we also provide details
about the sentiment analysis method and the pattern matching operation. Moving
on, Chapter 3 we present our design overview of our component over the Java
Native Interface (JNI) Framework. In addition, in this section we describe the
extra functionalities we needed to implement in order to provide real-time insights.

Chapter 4 describes in detail the development and functionality of our GPU-
based solution along with their challenges. To be specific, this chapter expands
on three sections. The first section describes the challenges we had to face while
the following section describes the implemented native functions. The last section
describes in detail how our work can be utilized in a Quality of Service use case
and how our tool can provide real-time insights using these functionalities.

Chapter 5 contains a thorough evaluation of our component. In the first eval-
uation we compare our component over an CPU-based pattern matching imple-
mentation. The second evaluation provides details about the achieved throughput
along with the accuracy of our model. In the third evaluation we re-evaluate our
model’s accuracy over a domain specific lexicon.

Chapter 6 outlines the limitations of our work and provide some ideas on how
this work can help various machine learning models with their offline training,
Chapter 7 surveys prior work, Chapter 8 summarizes this dissertation and points
out future research directions.

Lastly, Chapter 9 contains integration details with third-party tools and demon-
stration snapshots of our work which was presented publicly.
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Chapter 2

Background

In this section we provide the necessary knowledge about the sentiment analysis
technique we are performing via pattern matching operation and the fundamental
native function framework we used to implement our work.

2.1 Java Native Interface (JNI)

The Java Native Interface (JNI)[45] is a native function programming framework
in Java Development Kit (JDK) that enables Java code running in a Java virtual
machine (JVM) to call and be called by native applications (programs specific to a
hardware and operating system platform) and libraries written in other languages
such as C, C++ and assembly.

JNT is used when there is already a library written in C/C++ language and
we need to use that library in our Java application. Since our pattern matching
operation is already implemented in C side, we used this interface in order to board
the GPU-accelerated code into JVM.

2.2 Sentiment Analysis

Sentiment Analysis examines the problem of studying texts, like posts and reviews,
uploaded by users on forums and electronic businesses, regarding the opinions
they have about a product, service, event or idea. The most common use of this
technique is the classifying a text to a class. Depending on the dataset and the
reason, Sentiment Classification can be binary (positive or negative) or multi-
class (3 or more classes) problem. Also, it is often performed on textual data to
help businesses monitor brand and product sentiment in customer feedback and
understand customer needs.

We are performing this technique via pattern matching operation using as input
a sentiment based lexicon in order to analyze customer feedback and learn what
makes customers happy or frustrated. By delivering the analysis results to the
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business company, they can tailor products and services to meet their customers’
needs.

2.3 Pattern Matching

String pattern matching, also called string searching, is the act of trying to locate
the occurrence of one or more strings (also called patterns or signatures) within a
larger string (e.g. plain-text). String pattern matching, using finite alphabets is a
very common technique in order to locate any occurrence of a string pattern into
a text. For example, when searching for a string pattern P = pipo...p, inside a
text T = t1tg...t, (with lengths n and m accordingly), both characters sequences
form a finite alphabet set A.

One of the most popular algorithms in this field is the Aho-Corasick one which
was invented by Alfred V. Aho and Margaret J. Corasick in 1975 [9]. The Aho-
Corasick algorithm constructs a finite-state machine that resembles a trie with
additional links between the various internal nodes. These extra internal links al-
low fast transitions between failed string matches to other branches of the trie that
share a common prefix. This allows the automaton to transition between string
matches without the need for backtracking and it’s computational complexity is
linear.

For our work, we are using an accelerated version of this algorithm created by
Dimitris Deyiannis [27] and Giorgos Vasiliadis [61, 63, 60]. More information is
provided in the following section.

2.3.1 GPU-acceleration of pattern matching operation

The GPU-accelerated pattern matching operations are offered through an OpenCL
library that supports both string searching and regular expression matching op-
erations. The library provides a C/C++ API for processing incoming records,
and returning any matches found back to the application. The library can be
used transparently by a broad range of applications to offload their costly pattern
matching operations to the GPU, and thus increase their overall performance.

Initially, all patterns are compiled to “deterministic finite automaton” (DFA)
state machines and state transition tables (see Figure 2.1). The user is able to
compile each pattern to a separate DFA, or combine many different patterns to
a single one. The compilation process is performed offline by the CPU, usually
during the initialization phase of the user application. The state table is then
copied and mapped to the memory space of the GPU. At the searching phase,
each thread searches a different portion (i.e., a separate message) of the input
data stream. In order to fully utilize the data-parallel capabilities of the GPU,
the library creates a large number of threads that run simultaneously. The core
processing loop splits the input messages, and distributes them for processing to
different threads.
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Alphabet
b

States

a
1
0
0
1

w N R e
o|lo|~n|o
w| lw|lo|lo|le

Figure 2.1: The DFA state machine and the state transition table for the regular
expression (abc+)+.

During scanning, the algorithm moves over the input data stream one byte
at a time. For each consumed byte, the matching algorithm switches the current
state according to the state transition table. The pattern matching is performed
byte-wise, meaning that we have an input width of eight bits and an alphabet size
of 28 = 256. Thus, each state will contain 256 pointers to other states. The size
of the DFA state transition table is |# States| x 1024 bytes, where every pointer
occupies four bytes of storage. When a final-state is reached, a match has been
found, and the corresponding offset is marked. The format of the state table allows
its easy mapping to the different memory types that modern GPUs offer. Mapping
the state table to each memory yields different performance improvements.

Table 2.1: Sustained PClIe v2.0 Throughput (Gbit/s) for transferring data to a
single GPU, whenincreasing the size of data that are transferred at once

Buffer 1KB | 4KB | 64KB | 256KB | 1MB | 16MB
Host to GPU | 2.04 | 7.12 | 344 42.1 45.7 | 47.8
GPU to Host | 2.03 | 6.70 | 21.1 23.8 246 | 249

Another thing to consider is the transfer of the incoming data to the memory
space of the GPU. A major bottleneck for this operation is the extra overhead,
caused by the PCle bus that interconnects the graphics card with the base system.
Unfortunately, the PCle bus suffers many overheads, especially for small data
transfers. To further improve performance, they use a large buffer to store the
contents of multiple tuples, which is then transferred to the GPU in a single
transaction, every time it gets full. This results in a reduction of I/O transactions
over the PCI Express bus, which further results to increase throughput,as can been
shown in Table 2.1.
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Chapter 3

System Architecture

GPU-accelereted tool consists on native functions specially designed in Java Na-
tive Interface in order to access any high computational device such as GPUs or
GPGPUs and offload the workload to them. In following sections we will illustrate
the design architecture of the GPU-accelerated solution in JVM and describe the
additional functionalities we needed to implement in order to process the incoming
data and provide real time insights.

3.1 Boarding to JVM

The component is designed to run in a JVM but since the accelerated pattern
matching operation is implemented in C side, we need to create a “bridge” which
allows the Java code that runs within the JVM to operate with applications and
libraries written in other languages. Figure 3.1 illustrates the connection example
between the two programming languages using the above interface.

C Side Java Side

r—

T

Virtual Machine

]

Figure 3.1: JNI allows Java code, that runs within the JVM, to operate with
applications and libraries

Ideally our system needs to have three native functions. The first function has
to instantiate the target device via parameters. Since we allocated memory for

9
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the device initialization we also need to create a second function to deallocate the
above memory and free the device. The main payload will be triggered by a third
function which will transfer the available data to the device buffer, executes the
pattern matching operation and return the results back to the main Java program.

3.2 Providing insights

Regarding the I-BiDaaS project we are going to use a NoSQL database which
has build-in fault tolerance mechanisms known as TerracottaDB [7]. The main
concept is to utilize the TerracottaDB as a buffer to temporary store the incoming
streaming data.

Once the incoming data have been written to the TerracottaDB, the “GPU-
broker” process reads them using a separate Consumer instance. The Consumer
instance is responsible to read the entries from the TerracottaDB and store them
back-to-back in an array. The array is passed as an argument in a Java Native
Interface function and copies the entries to the GPU’s buffer. When the buffer is
filled or there no other data present in the database, the pattern matching phase
can start.

In order to utilize our tool as streaming analytics component we need to imple-
ment some additional functionalites. These functionalites will give us the opportu-
nity to process the incoming data in a “rolling window” manner using time-decayed
counters, using this method we will be able to aggregate the incoming data in var-
ious time window intervals. In each time window we perform Word Searching
over the data and compute the Sentiment Score and also report the Word
Frequencies along with Top-Frequent Words.

Figure 3.2 illustrates how the above functionalites are used to provide real-time
insights with a rolled-over window along with time-decayed counters in a ” Quality
of Service in Call Centers” use case. More details can be found in implementation
section (section 4.3).
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Chapter 4

System Implementation

In this section we are going to present and demonstrate the full implementation
details of GPU-accelerated module as well as the challenges we encountered and
the optimizations we performed.

4.1 Challenges & Optimizations

While implementing our JNI-based work we phased additional challenges in order
to gain a better performance from our previous versions. Below we will explain in
detail what challenges we had to phase and how we managed to solve them.

1. Memory alignment in Java vs Memory alignment in C, while dealing with
characters we found that Java characters use a 16-bit representation while C
characters need only 8-bit representation. Our optimization here was to cast
the initial steamed data into Java bytes in order to have a more compatible
form in our Host side (C side).

2. Initialize the GPU once and run it multiple times. As our module starts,
it will generate an Object on Java side which contains the GPU worker
instance (on the C side). While the object is created, a JNI function is also
triggered and allocates the necessary memory needed for the GPU worker
struct. When the worker is ready, we store it’s memory address in a type
Long field in Java’s object. By doing the above method our worker instance
lives as long as the Java object is alive and it’s fully functionable.

3. Multiple memory copies on JNI side. As we have already mentioned above,
a byte array is passed as an argument in the JNI function (C side). The
problem here that arrays in Java is treated as Objects. In order to read each
entry in the origin array we have to first find the length of the array and
then find the corresponding length of each index cell in order to store it into
the host buffer. Our main goal here is to minimize these memory copies in
order to gain better performance.

13
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4.2 Native Functions

The GPU-based module consist on three main native functions, these functions
are createCobject, deleteCobject, workerPayload.

4.2.1 createCobject

This function is called inside the class constructor on our main Java program. More
specifically this function will create a C worker instance and initializes the GPU
parameters which are needed to start the processing. To keep the C instance alive
during Java’s execution time we declared a private long variable with the name
Keep_Instance_Alive, this variable is used to save the instance of our device
instantiation. To access the variable from JNI side we created a function with the
name getPtrField, this function will let us store the C instance (address) into
Java’s stack frame. This mechanism will help us to make multiple GPU executions
without reconfiguring the device each time.

4.2.2 deleteCobject

This function is needed to delete the C instance once the Java program reaches its
end, since we do not have any garbage collector in C we need to manually free the
memory we allocated from GPU and from C side and eventually free the device.

4.2.3 workerPayload

This is the most important one, it takes the input data from Java side and copies
them into the Host Buffer, the host buffer is a simple buffer before we move to
the final copy to GPU’s buffer. Once all the copies are done we need to create
the necessary indices in the buffer so each thread can do its work in the according
offset. Once the indices have been created, the gpu_worker function is triggered.

The above function copies the data from Host Buffer to Device’s Buffer, trig-
gers the matching process and extract the results from the threads. Firstly, we
save the results in an array with the name ReportMatch. This is a C array of in-
tegers which contains all the patterns which were found within the process stage.
This array will return back to Java main program.

4.3 Predicting the Performance of Call Centers

In this section, we present our solution implementation for computing streaming
analytics in call centers. This solution will be utilized by Telefonica Investigation y
Desarrollo (TID), as part of its Quality of Service (QoS) in Call Centers use case, in
order to improve the customer experience. As shown in Figure 3.2, our solution is
able to process the recorded text transcripts, which can originate from different call
centers at real-time. Given the vast amount of data that needs to be processed, we
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are able to demonstrate a faster end-to-end text analytics with GPU acceleration,
and provide different types of analytics (such as sentiment score, word frequencies,
and most frequent words) for different time intervals (e.g., last minute, last hour,
and last day). These analytics can be used for real-time predictions, such as QoS,
and help a company to take appropriate actions in order to better understand or
control a given situation.

4.3.1 Word Searching

As shown in Figure 3.2, our analysis component takes as input the transcripts as
they have been recorded from the corresponding call centers and a lexicon that
contains a list of words and a marking if the word has a positive or a negative
sentiment. In some cases, the words within the lexicon have a weighted score
[46]. Such lexicons can be typically created using machine learning techniques or
manually (e.g., by an expert).

The lexicon is used as an input by our component shown in Figure 3.2, which
extracts the corresponding words and constructs a deterministic finite automaton
(DFA). This DFA is used to find each and every occurrence of them within the
stream of transcripts that is received at real-time from the call centers. This
processing is accelerated using GPUs, and will produce as output a constant stream
of matches (similar to [62, 46, 64]). These matches are then used for two purposes:
(i) to compute a universal sentiment score per call center for each time window
specified, and (ii) to compute the frequency of each word for each time window
specified.

4.3.2 Rolling Analytics

In order to cope with the big amounts of data, many stream processing systems use
the notion of rolling data analysis, in which the results are incrementally updated
(rolled-over) as new data arrives [16, 18]. These systems, typically, maintain only
the data that correspond to specific time-windows (e.g., last minute or last hour)
and produce summary statistics only for these time intervals. The key idea is
to collect a bunch of data for a specific time range and compute the requested
statistics for that data.

It should be noted that the input events can be either synchronous or asyn-
chronous: in the latter case, the events can arrive or stop arriving at any time,
while in the former, the events are arriving periodically. When processing syn-
chronous events, the time window is typically programmed as a special mechanism
that periodically collects a number of tuples for the requested time window inter-
val, which then is further processed in order to compute the desired statistics. In
our solution, we follow a different approach. Each item in the stream processing
pipeline is always coupled with a timestamp that is derived either directly from
the raw data (e.g., if the data files contain a valid timestamp) or at the time it is
received by our system.
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Obviously, computing the desired statistics over a time-window is simple, but
it can lead to huge memory requirements when the incoming data increases or
when it is highly dispersed. As such, they can operate only on small time intervals
(e.g.,up to a couple of minutes), due to the excessive memory requirements. This is
a major constraint for many applications that need to detect long-term behaviors
(e.g., events that occur periodically in an hour-or even in a day-granularity). To
overcome the high memory requirements, there have been many different methods
and data-structures proposed in [44] that can be used to compute various types of
statistics, which do also provide very efficient memory requirements guarantees, at
a cost of precision. For instance, as we explain in more detail below, the majority
of these approaches are probabilistic, hence the provided statistics are approxi-
mate. Obviously, this results in approximation errors in the statistics themselves,
although they do not significantly affect the accuracy of the query results. The
reason is that exactness is not necessary for the types of queries that we process
at real-time, which are related in detecting unusual item trends in the stream or
finding the ranking of the top most active items in the stream. Put shortly, the
role of the real-time view is to monitor interesting behaviors and provide a more
fine-grained dataset for the offline batch processing phase.

To overcome the large memory consumptions of rolling windows, we use the
notion of time-decayed counters [24]. The idea behind this is that the value of a
counter decays automatically over time using a mathematical formula. Exponential
decay is one such popular formula due in part to the relative simplicity with which
simple counters can incorporate exponential decay. In particular, it allows to
continually reduce, to half, the value of the counter over time. As such, we only
keep a simple counter for each feature that is incremented every time we have a
new occurrence, and is also decayed using the following formula:

_ log(2
ent = e~ @4t cnt , wheree = 2.718, a = #(lij)”e’ and dt = teurrent — tprevious

By using this formula, there is no need for manually sliding time windows or
explicitly maintaining rolling counts, as observations naturally decay away over
time. The halflife parameter defines the time required for the counter to reduce
to half of its initial value. In addition, it is designed for heavy writes and sparse
reads, as it implements decay only when necessary or at read time.

Obviously, the counters are not exactly the same as if we have used fixed
time windows, even though are sufficient to exhibit the feature trends and reveal
momentums over time, without requiring to keep large amounts of data (for each
specific time frame), but only a few numbers per feature. In addition, the time-
decayed formula provides lifetime flexibility by adjusting the lifetime accordingly,
in an ad-hoc manner: we can track trends over just a few minutes or hours, as
opposed to more long-term events, in which we are interested in trends over weeks
and months.
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4.3.3 Sentiment Score Computation

In our scenario, we are not interested to compute the sentiment of a certain entity
within a transcript, but rather predict the sentiment out of a whole transcript,
which will then be further aggregated to predict the sentiment of the whole call
center. As such, the sentiment values of the words that have been found in the
text stream of each call center are accumulated into a single score using the math-
ematical formula described in Section 4.3.2. This score is actually the sentiment
score of a specific call center for a given time window, and is actually an indicator
of whether the overall customer sentiment is positive or negative.

To keep the score, we use a separate exponential-decayed counter for each of
the specified time windows. This score is increased by one when a positive word
appears or decreases by one if a negative word appears. In case we use a lexicon
with different weights per word, we add the corresponding weight each time. We
wanted to keep it as simple as it could be, but on the other hand, if a user has
his own dataset with a sentiment score for each word, we can easily use them to
increase/decrease the score accordingly. We would like to add that the score can
be also negative, and this is also realistic since a specific call center might face a
huge amount of complaints for many reasons like long time waiting in line to be
served. Separate scores might take place since more than one call center will be
available in the database along with a percentage score to ideally visualize how
many positive words occurred in this time window. Once the aggregation finishes,
we move to the final step, which is to extract the Top-K words occurring from the
Hashmap aggregation (described in the next section).

4.3.4 Most Frequent Words

Besides the total sentiment score for each call center, we also compute the Top-K
emotion words for each of the selected time windows. These words can be very
helpful, as they give extra context and more details regarding the sentiment score.

To aggregate the occurrences of each of the words found, we use a Hashmap.
The size of the Hashmap in the worst-case scenario will be as large as the whole
lexicon that was fed inside the pattern file. Each entry in the Hashmap is the
form of < word_id, counter>, where word_id is the unique identification of the
word and counter is the corresponding count for this word for a specific time-
window, as described in Section 4.3.1. The use of exponential-decayed counters
allows the user to configure appropriate time-windows as desired (e.g., for the last
minute,hour, day or even week). By doing so, our approach is capable to monitor
the frequencies of each word occurring while processing the incoming transcripts
and increase the frequencies (counters) of each word along with a decay function
to decrease these counters on different time windows.

Every time a specific word appears and it is not present in the Hashmap, a new
entry is created, with the current epoch timestamp (in milliseconds) and acount
value equal to one. If the word exists in the Hashmap, then we only increase
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its counter by one or as many times as the word has been found and update
its corresponding timestamp. This counter helps us to keep track of each words
frequency occurrence.

The aggregated results are published periodically, every few seconds (config-
urable). In order to do that, firstly, we need to decay the counters based on
the current epoch. This step is necessary because word occurrences change asyn-
chronously within different time-windows. In case a specific word has stopped
appearing, its corresponding counter will eventually approach to zero and will be
removed from the Hashmap when exceeding a certain threshold (e.g., 0.00001).
After the counters have been decayed, we sort them by their corresponding fre-
quencies to find the Top-K entries.

1-Minute Window
1

r
{"solemne":"4.66"}
"SentimentScore":76.04

162.58"}]

56406,”Epé(”:1612546433225}

Figure 4.1: The aggregated results for different time windows.

4.3.5 Data Model

The aggregated analytics are produced periodically, every 5-10 seconds(configurable),
using JSON format. The structure is depicted in Figure 4.1 and, as we can see,
we use basic types to represent a single value (e.g., integers, floating point, epoch
times, strings), and arrays for bundled values (e.g., sets and tables). In particular,
each tuple is of the form:

{ccid,Epoch, Time Window Id,Sentiment Score,top K words}

where ccid is the call center id where the entries came from, Epoch the times-
tamp of our processing stage, Time Window Id is which window was processed,
Sentiment Score is the total sentiment score of the specific time window along
with the top-k words occurred.

The use of JSON allows post-processing modules to easily interpret the pro-
duced results using arbitrary schemes for different purposes. Furthermore, each
JSON message can be easily enriched with contextual data. For instance, it can be
extended with other data, or tagged by certain modules in the processing pipeline.



Chapter 5

System Evaluation

In this section we present the performance results of our GPU-based streaming ana-
lytics component. On the first section, we will evaluate our work over a CPU-based
pattern matching algorithm implemented in Java. Moving on, we will present our
preliminary evaluation on an illustrated streaming scenario.

5.1 GPU-based vs CPU-based pattern matching

Once we have implemented our work over the JNI framework we need to test it’s
performance over a CPU-based pattern matching implemented by Robert Bor et
al [20]. This work also uses the Aho-Corasick algorithm and it is fully implemented
in Java.

Both implementations we will have to perform the pattern matching opera-
tion on 100k entries (pairs) and measure the performance with different matching
percentage scenarios. The goal here is to determine which device is more suitable
to use on a large scale amount of data and if the matching percentage affects the
performance of the current device.

Experimental set up: For the evaluation, we acquired a dataset with unique
name/surname pairs, from this dataset we took a small sample of 500 pairs and we
uploaded each pair in TerracottaDB via the Producer instance. Each pair was up-
loaded 200 times in order to reach the desired amount of data for this benchmark.
Both programs are used by a Consumer instance in order to fetch the uploaded
pairs and trigger their payload on the specific device implementation. For this
experiment we used a NVIDIA GPU GTX980 and a Intel Xeon E5-2697 CPU.
In this setup both implementations are called to perform the pattern matching
operation using 60K patterns in 13 different matching scenarios. In each scenario
we will replace N patterns within the 60K input pattern file in order to match the
desired percentage. Each of the scenarios will be executed 100 times for both im-
plementations, then we will sort the execution time values and report the median
of each work on the current benchmark.

Results: Figure 5.1 shows the median values achieved for each implementation in
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Pattern Matching Operation
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Figure 5.1: Computation time performance over the scenarios

each scenario. As we can see our GPU-based implementation is out performing the
CPU-based implementation with a gaining performance starting from 66.28% up
t0 90.84% depending on the matching percentage. Our implementation has almost
a constant time of execution in each scenario, on the other hand the CPU-based
performed better on the first scenario where no matching patterns were present
while having all matching patterns present the performance decreased.
Concluding remarks: This evaluation clearly states that GPU-based pattern
matching is performing better than the CPU-based one, because our GPU-accelerated
pattern matching splits the workload among the threads while the CPU implemen-
tation performs the workload in a serial manner. Performing our experiments in
small set of data the CPU implementation will outperform our implementation
and this is due the memories copies that are needed to be performed in order to
transfer the data to the device. Thus, our implementation works well on large
amount of data.

5.2 Performance of Call Center Evaluation

In this section, we show the performance of our approach for providing real-time
sights regarding the performance of Call Centers. This evaluation will be done in
two parts using a NVIDIA GPU GTX980. In the first part we will evaluate the
time and throughput performance along with the cost of our added functionalities
of our GPU-streaming analytics solution, for this part we will generate synthetic
data which will represent real transcripts streamed by Call Centers. Moving on,
the second part will measure the accuracy of our model over real and labeled data.

Measuring the accuracy of our model will not ended up as expected. Further
examination revealed this is a consequence of the specific lexicon we were provided
with, which is a generic sentiment lexicon. Thus, in the last section we re-evaluate
our model’s accuracy using a domain specific lexicon on a different dataset.
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Token Polarity | STD
acertado 0.708 0.149
admirable 0.906 0.125
improperio -0.542 0.072
inanimado -0.687 0.063
payaso 0.5 0.0

Table 5.1: Lexicon format (Token = Sentiment Word, Polarity = Sentiment Value,
STD = Standard Deviation related with ambiguity of the polarity estimation).

5.2.1 Time & Throughput Performance

Experimental set up: To measure the performance of our work, we created 6
scenarios. Each of the scenario will contain different amount of transcripts which
will needed to be processed and provide the real-time insights. For this evaluation
we were provided with a Spanish lexicon, this lexicon can be found in [1]. Also,
Table 5.1 shows the format of the used Lexicon. More specifically the lexicon
contains more than 8K words along with their sentiment value and will be used
as an input pattern file in our work. To make this scenario more realistic we
will generate synthetic transcripts from a set of words within the lexicon above
and each transcript will represent one the three Call Center. These synthetic
transcripts were generated as follows. For each transcript we randomly selected
500 words from the lexicon provided from above and upload it in TerracottaDB
via the Producer instance. With this set up we will be able to report the amount
of transcripts or words processed by the GPU each second, also by filling each
transcript with words from the input file of patterns we will make this benchmark
more exciting, since the reporting array from the GPU operation will need to
report all of the matching patterns for each transcript which has processed. As
we said from above, the goal here is to measure the performance which can be
achieved from our implementation and the cost of our added functionalities. Each
experiment was conducted 100 times, we sort the values and reported the median.

Results: Figure 5.2 shows the total time of processing the input transcripts and
aggregate the results. The x-axis represents the amount of transcripts along with
the total words in each scenario while y-axis indicates the total time of each of the
operation which takes place. Our implementation consists on 3 main operations,
the first one is the native call which will trigger the pattern matching operation
on the GPU device and return the reporting results, the second operation has to
parse the results and create the corresponding Call Center entity which the data are
coming from. Once the entity is created it then creates three Hashmap instances
in order to store the matched words (patterns) appeared within the transcripts
per minute, hour and day. This operation increases the counter of each matched
word reported from the GPU, updates the words timestamp (epoch) and also
calculates the sentiment score per Call Center entity based on the counters of the
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Streaming analytics operations
20

=
wn

=
o

[ Decay Duration

Time (sec)

B Hashmap Update Duration

u

M Native Call Duration

1K/500K 10K/ 5M 20K/ 10M 50K/ 25M 80K/ 40M SOK/ 45M
Number of Transcripts / Number of Words

Figure 5.2: Breakdown of each of the operations performed during processing call
transcripts

words. Once all the results are accumulated we perform a sorting value operation
in order to announce the Top-K words appearing with in the transcripts. The
last operation will parse the Hashmap above and perform a mathematical decay
function on the counters of each word in each window and also check if the decayed
counter reached the desired threshold so it can be removed.

All the operation timers increase as the input transcripts increase, the most
time consuming operation is updating the Hashmap values along with calculating
the sentiment score for each window timer while on the other hand applying the
decay function in each time window.
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Figure 5.3: Additional overhead added when multiple native calls occur

When performing our measurements we noticed an overhead was added when
we used the native function call. This native function triggers the GPU instance
from C side, in some cases the data will not fit inside the GPU’s buffer at once,
so multiple executions are needed to take place. Figure 5.3 shows the actual GPU
execution time in which was measured in C part, this execution contains all the
memory copies which are performed along with pattern execution and returned
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results. Having multiple native calls adds an overhead to the execution depending
on the number of calls, for example in the last bar-plot where 90k are present the
native call was triggered 7 times while in 80k transcripts only 5 calls are needed to
be made. This overhead is minimal when the native call is needed to be triggered
once, this can be clearly be noticed in the first two bar-plots with 1k and 10k
transcripts.

Processing rate

1K / 500K 10K/ 5M 20K/ 10M 50K / 25M BOK / 40M 90K/ 45M
Number of Transcirpts / Number of Words

=)

wn

i

ra

Throughput (Gbps)
w

-

(=]

Figure 5.4: Throughput achieved over Streaming Analytics scenarios.

Lastly, Figure 5.4 shows the throughput which achieved in each scenario. For

the scenarios which needed more than one execution we sorted the values and
reported the median. As you can see our implementation can achieve almost 5
Gbit/s or in terms of words, the GPU execution can process 45M words per second.
Also having multiple native calls will cause a performance decrease depending on
the number of calls performed.
Concluding remarks: Our evaluation results indicate that our implementation
can provide real-time insights yielding high throughput. The most time consuming
operation is the Hashmap Update operation which consumes a significant amount
of the total time, we plan to optimize as part of our future work.

5.2.2 Accuracy Performance

Experimental set up: In this section we evaluate our solution for computing
sentiment score (described in section 4.4.3) in a specific scenario, using 700 call
transcripts and we used the same sentiment lexicon both provided by TID. The
transcripts are in Spanish language, each of which is of different size. Moreover,
they have been properly anonymized and do not contain any sensitive data, such
as names, addresses, phone numbers, etc. These transcripts came along with their
CSI (Customer Satisfaction Index) value that is based on self-reported feedback.
The CSI values range between 1 and 5; transcripts with CSI=[1, 2] are classified as
negative while transcripts with CSI=[4, 5] are classified as positive. In the given
dataset we did not have any transcripts that were classified as neutral. From our
end we will use the sentiment score of each of the words in the transcripts, the
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lexicon that we use can be found at [1]. In the end we will normalize the sentiment
score to a scale of [1-5], so it can be compared directly with the given CSI. We
conducted three different approaches for this evaluation.

Score Difference (%)
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Figure 5.5: The accumulated number of transcripts for a given percentage differ-
ence.

Results: In our first experiment we accumulate and normalize the sentiment
scores from each transcript and create 20 buckets, each one indicating the per-
centage difference of the sentiment score with the ground truth CSI. In Figure 5.5
x-axis indicates the buckets we described above and y-axis indicates accumulation
of transcripts in each bucket. Most of the transcripts ( 42%) are accumulated
between buckets 5 (20-25%) and 8 (35-40%) while the highest peak is around 30-
35% difference with 118 transcripts. Only 5% of the transcripts are accumulated
between buckets 1 (0-5%) and 2 (5-10%).

In order to have a better understating we took each transcript CSI and subtracted
our GPU CSI that we have acquired. We plotted the above results to a scatter
plot (Figure 5.6), x-axis indicated the transcripts id and y-axis indicates the value
of the above subtraction. We can clearly state that our approach gave a higher
CSI value than the ground truth CSI value in almost 83% of the total transcripts.
For this experiment we have also checked if all of CSI values move in the same di-
rection as the ground truth CSI by using Pearson’s correlation. Using this method
the value which was reported was 0.10, this clearly indicates that our CSI values
do not correlate with the ground truth CSI values.

Since the first experiment didn’t yield good results we contacted a second
experiment but this time instead of trying to compare the GPU sentiment score
to the ground truth CST we will reduce the factors of the problem to two (binary).
We took each transcript given CSI and classified the transcripts with CSI value
>=4 as positive and the rest as negative. Since our approach has a tendency to
give higher values we have to manually find the best threshold to classify each
transcript. The optimal threshold we found was to classify transcripts with >=3.5
as positive and the rest as negative.

For this scenario we will regard a “positive” case as a call transcript that



5.2. PERFORMANCE OF CALL CENTER EVALUATION 25
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Figure 5.6: The actual difference of Sentiment and CSI scores for each of the
transcripts in our dataset.

received a low satisfaction score by the customer, since negative transcripts are
the most critical ones to be successfully discovered and reported. Figure 5.7 is a
confusion matrix showing the overall performance of our model. In this case our
model reported around 75% accuracy.

Confusion Matrix
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Figure 5.7: Confusion matrix of the overall performance.

Another metric we used for this experiment was the adjusted F-scoring method
(see Equation 5.1). The F-score method is a way of combining the precision and
recall of the predictive model and evaluates the binary classification model on
a dataset. The adjusted F-scoring method allows us to weigh precision or recall
more highly. Since negative transcripts are the most critical ones to be successfully
discovered and reported, we use the adjusted F-scoring with parameter b=2 since
recall is more important in this case. The overall F2-score was 25% which is not
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desired.

The third experiment we contacted was a ranking method known as TF-IDF
which is a numerical statistic that is intended to reflect how important a word is to
a document /transcript in a collection or corpus. For this method we had to offline
calculate the IDF (Inverse document frequency) for all the available transcripts in
order to measure how much information a certain matched word/pattern provides.

Once the IDF was calculated we had to calculate the TF (Term Frequency),which
is a raw count of a term in a document. This can be calculated easily from our ap-
proach since our solution reports which and how many matches were found within
a transcript. As a next step, we have to multiply each term’s frequency found
within a corpus with it’s according weight(IDF). Having said that our first ap-
proach was to correlate again the sentiment score with the ground truth CSI value
since more important words, in order to do that we have to multiply the TF-IDF
value with each term’s sentiment score. This experiment didn’t come as expected,
since positive words/patterns were ranked higher than the negative ones.

preccision X recall (14+b%) x TP
(b2 x preccision) + recall (1 +b2) x TP+ (b2 x FN) + FP
(5.1)

Fy=(1+b%) x

Where:

e precision: The number of true positives divided by the number of false
positives plus true positives.

recall: The number of true positives divided by the number of true positives
plus false negatives.

e T'P: The number of true positives classified by the model.
e F'N: The number of false negatives classified by the model.
e F'P: The number of false positives classified by the model.

Concluding remarks: Our preliminary results indicate that the Sentiment
scores computed with the specific lexicon do not correlate with the corresponding
CSI scores. By further manual examination it was revealed that this is a conse-
quence of the specific lexicon used, which is actually a generic sentiment lexicon for
the Spanish language and is biased towards domain-general contexts. Such a lexi-
con cannot provide a useful indication regarding the resulting customer satisfaction
levels; a domain-specific lexicon with appropriately weighted terms tailored for re-
vealing customer satisfaction in the domain of call-centers should be used instead
as input.
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5.3 Evaluation using a domain specific lexicon

In this section we evaluate our proposed idea solution following the guidelines pro-
vided by Andrew L. et al [43] and William L. et al [34]. As their prior works
suggest, having a more tailored lexicon suitable for the specific purpose, will yield
better results.

Experimental set up : We will evaluate our work over a movie review testing
dataset containing near 25k reviews (50% negative and 50% positive) and use as
input pattern file a domain specific lexicon, used by Andrew L [2]. Each of the
reviews has been labeled with a positive or negative indication along with a vari-
ety of features for training a machine learning model. In this experiment we will
regard a “positive” case as a negative movie review, since our goal is to correctly
classify the negative reviews with the help of a more accurate lexicon.
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Figure 5.8: Confusion matrix of the overall performance using domain specific
lexicon.

Results: Figure 5.8 presents the confusion matrix with the overall performance
for binary classification over the dataset. Our model correctly classified 80.28%
“positve” reviews. The overall accuracy reported from our model is 82% while
the original authors accuracy using only the bag of words lexicon was 88%, this
is obviously the main trade-off of our work. Our solution is implemented for ag-
gregating large amounts of data almost real time using only a pattern matching
algorithm and try to classify each review based on the accumulated score according
to the input sentiment lexicon rather than using any more sophisticated methods
used in machine learning models or any other feature vectors. The corresponding
Fl-score for this experiment is 81.92% and the F2-score is 80.92%.

Concluding remarks: Our preliminary results indicate that our proposed idea
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performance is affected by the quality of the lexicon provided. We did not report
better results than Andrew L. et al work due to the simplicity of our model but
having a tailored lexicon can yield better results rather than using a general pur-
pose lexicon. The above experiment shows that our work can be used in both
streaming and offline analysis and provide a good classification of the input data.
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Discussion and Limitations

In this section we will discuss about the limitations of our work along with some
directions where our work can be also useful.

6.1 Hashmap operations

As mentioned in section 5.3, operations performed by the Hashmap structures are
consuming a significant time of execution. This is due to the size of the lexicon
and the frequencies of popular words. One solution to this issue is to allocate
the instances of all Call Centers and create the number of desired time windows
filled with each candidate pattern word and initialize the frequency counter of the
word with zero as the module begins to instantiate the GPU instance. Another
optimization which can be performed is the following, instead of parsing the results
array and increase the words frequency counter by one we can use an array in
order to accumulate the word occurrences and then perform the update operation
in Hashmap, for example if a word is reported N times we will accumulate the
counters within the array and then perform a single update operation within the
Hashmap and reset the corresponding counter with in the array.

Performing the above solutions, will cause a slow start up of our implementation
and a memory overhead but in the end no further allocation will be needed and the
update of the frequency counters will be as many as the unique words reported.

6.2 Framework Overhead

As mentioned in Concluding Remarks section 5.3 regarding the performance eval-
uation, using Java Native Interface and performing multiple native function calls
add an overhead to the execution depending on the number of calls. A solution
to this problem is explore other frameworks or even use a CPU-to-GPU memory
mapping technique such as [12], in order to gain performance and extinguish the
JNI overhead.
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6.3 Model Accuracy

As mentioned in section 5.4, our model’s performance accuracy is strongly affected
by the quality of the input sentiment lexicon since is data agnostic. Such tailored
lexicons are hard to find since special Natural Language Processing (NLP) machine
learning models are needed to create such a lexicon. In many works such as
[67, 25, 49, 42] are using the TF-IDF statistical method to generate these lexicons.
The usual pipeline of such models is as follows, 1) Load the input data and remove
stopwords, 2) Perform the TF-IDF method on the clean data and generate the
embedding weight matrix, 3) Perform Principal Component Analysis (PCA) on
the matrix (Optional), 4) Feed the processed matrix into a classifier model.

From our perspective our implementation can help these models to generate
such lexicons by offloading steps 1 & 2 to the GPU in order to speed up the offline
training of their model using only a general purpose lexicon (without stopwords).
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Related Work

Pattern matching algorithms are highly used in various applications, not only in
computer science (e.g intrusion detection [59, 21, 57], spam filtering [52, 65, 26],
digital forensics [4, 3]) but also in other relevant fields, such as computational
biology, chemistry and nanotechnology. In advance some of the works such as
[22, 23] leveraged pattern matching to sentiment analysis. These works are using
domain specific sentiment lexicons in order to extract the sentiment score as we
do. The main difference of our work is the variety of devices which the pattern
matching operation can be used while their work is only limited to the CPU device.
Exploiting high computational will significantly decrease the total time execution
and increase their processing rate as we shown in our evaluation section.

Using big data analytics to extract the Costumer Satisfaction Index (CSI) is
very important. The Costumer satisfaction index is an attempt to measure how
satisfied customers are with a product or a service. The assumption being that
the more satisfied a customer is the more likely to stay as a customer. This
measurement is applied in many domains such as Manufacturing, Hospitality, but
process each of the costumer reviews will help the provider to identify mainly their
weak spots. Many works such as [71, 41, 56, 69] achieve the above goal by using
Deep learning models boarded on different GPU architectures. Although, all of
the above works are limited to offline analysis while our work can be used for both
streaming and offline analysis.

In the real-time sentiment analysis area, many works are using machine learn-
ing approaches. To begin with, [51] proposed real-time sentiment analysis ap-
proach which uses Multinomial Naive Bayes Algorithm with unigram model and
follow up by SentiWordNet [15] algorithm using POS tags to classify the tweets.
SentiWordNet is similar to the SocialSent tool to offline generate the sentiment
lexicon. Moving on, [38] is also performing sentiment analysis on tweets. This
work extracts semantic and morphological features from various tweets and then
uses a supervised model to classify them. Prakruthi V [48] implemented a scal-
able system implementation for real-time sentiment analysis in Storm. This work
uses a supervised approach to perform analysis on tweets. The primary issue with
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these approaches is that it requires manually labeled training data for achieving
relatively good accuracy.

In [50] they presented a distributed system to perform real-time sentiment
analysis on various social streams. Their work runs atop Apache Storm [31] and
uses a sliding window to process the incoming traffic and for the classification they
are using a fusion of Multinomial Naive Bayes and Hoeffding Tree classifiers to
achieve better results.

G.Amati [19] proposed a scalable Information Retrieval system for near real-
time analytics on social networks. This approach uses a supervised learning tech-
nique that consists in the use of a linear regression to predict and smooth a sen-
timent category size on the basis of a cumulative score of documents. A potential
bottleneck in this works is decoration component. This component decomposes
the incoming traffic extract various information such as timestamps and metadata.
The decorator adds significant overhead in the processing phase and needs to be
adjusted to the current distributed version of the system.

Imane El Alaou [29] developed a novel adaptable approach that aims to extract
people opinion about a specific subject by relying on social media contents. The
proposed technique consists to first building a dictionary of word’s polarity based
on a very small set of positive and negative hashtags related to a given subject,
then, classifying posts into several classes and balancing the sentiment weight by
using new metrics such as uppercase words and the repetition of more than two
consecutive letter in a word. However, the proposed approach still suffers from
some shortcomings. First, it does not distinguish the impact degree of the different
metrics in order to accentuate a feeling. Second, the system is a prototype designed
to assess the ability of automatically constructing dynamic dictionary using small
samples.

In [10] proposed a Sentiment Analysis as a Service (SAaaS) framework that
abstracts sentiments and opinions from multiple social information services, analy-
ses and transforms into meaningful information. The experiments were conducted
with limited data. To be specific, only 404 reviews were used for the evaluation
rather than testing the perfomance over real-time large data.

Similar to our our work, HappyMeter [47] a real-time data processing infras-
tructure to evaluate public sentiment changes in the context of Twitter using a
Bag of Words. This work performance, including ours, are highly dependable to
the quality of the input sentiment lexicon.

Lastly, taking into consideration the growth trend of big data, hardware ven-
dors proposed CPU-GPU integrated architectures that integrate CPU and GPU
on the same chip. This integration provides new opportunities for fine-grained
cooperation between CPU and GPU for optimizing streaming processing. With
this upcoming trend some works are already being developed such as[70, 40]. In
these works they are trying to take advantage of both architectures, and also pro-
vide efficient mechanism for handling dynamic stream queries. We also believe
using integrated GPUs may reduce the data transfer overhead but a combination
of CPUs, integrated GPUs and discrete GPUs working together in order to achieve
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high streaming processing rate. Thus, we will explore this idea in the near future.
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Chapter 8

Conclusions and Future Work

In this section we present a summary of the contributions of this work (section
8.1) and some thoughts on future work (section 8.2).

8.1 Summary of Contributions

In this work, we develop a GPU-accelerated streaming analytics component which
can provide real-time insights from streaming sources such as Call Centers in
order to improve their Quality of Service. More specifically, this component is
implemented in Java Native Interface and uses the GPU in order perform the
simultaneous pattern matching operation over the input data and reports back
the matching results. Using this report we are able to aggregate the data in
various time windows periods and report the sentiment score along with Top-K
words which occurred. In addition, this work can be executed on the vast majority
of dataparallel devices, such as AMD and NVIDIA integrated and discrete GPUs.
Furthermore, we demonstrated our solution to the public, having three different
Call Centers across Spain streaming their call transcripts and induced the insights
in real-time.

8.2 Future Work

Our aim for the future developments is to explore new techniques in order to
avoid the overhead added from the current framework and find more efficient data
storing techniques which will benefit both space and performance. By this way,
we will eventually increase the performance for real-time analytics operations.
Latency is also an additional factor that is extreamly important to take into
conciderations while we are furthuer developing our tool, since in a noumerous of
cases the incoming traffic will cause multiple executions on the GPU device. This
latency is created when only a portion of the incoming traffic can be processed
by the device while the rest are in queue to be processed. This gap must be
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measured and taken into consideration and try to scale our performance using
multiple GPUs.

Another important mechanism we should implement is a scheduling program.
This scheduler will monitor the incoming traffic and decided where the process
should be executed. For example, at a certain point within the day the incoming
traffic will cause underutilized GPU executions since the input data won’t fill the
entire buffer, in this case performing the analysis process on the CPU device will
be preferred.

On a later stage where all the necessary implementations take place we then
need to compare our tool among different state of the art streaming analytics plat-
forms. This step will help us identify the trade-offs when using our tool compared
to existing software.

In addition, as we discussed in Chapter 6, we will try to evaluate the perfor-
mance gained to generate the emended weighted matrix and also use this matrix
as input to a classifier in order to generate domain specific lexicons efficiently.

Finally, we are planning to implement special mechanisms in case of a device
crash to leverage the workload to an available GPU device. By scaling our com-
ponent this way we would gain more perfomance and its tolerance towrdays any
false will be increased.

8.3 Conclusion

The GPU-accelerated component uses a sentiment-based lexicon and performs
pattern matching operation over the data to extract valuable information such as
sentiment score and frequent used words. Also, tool can also can track trends for
both short and long term events by manually adjusting the desired time window
intervals. In addition, our work can be used in many other different domains that
require real-time processing of big volume of data, as well. Moreover, our work
can even be used as an offline analysis tool since some companies prefer to store
their data.

The evaluation shows the performance of our work in a streaming scenario and
shows the performance capabilities using only one device. The performance of
our implementation can achieve almost 5 Gbit/s or in terms of words, the GPU
execution can process 45M words per second. The accuracy of our model is highly
dependable by the quality of the input lexicon.
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Appendix

This work has been funded by the Industrial-Driven Big Data as a Self-Service
Solution (I-BiDaaS)project and was demonstrated live to the public providing real
time sights from three different Telefonica Call Centers across Spain, for this demo
we integrated our component with third party applications. Figure 9.1 shows the
integration with Apama streaming platform and our results have been visualized
by another component. Apama provides a MemoryStore driver for TerracottaDB.

( Apama \
JSON | \ _ |
Data T»{ Parse JSON ’—»‘ Processing ’—>‘ o ’—’—-

‘ Terracota DB ‘

GPU-Accelerated Agaregated [ ]
Pattern Matching agreg
Results . o
Visualization Component
Ul =
=&

Figure 9.1: Integrating GPU-based component with third party applications

JNI

This driver uses the TCStore API to allow Apama to read and write records in
TCStore datasets, which may also be read and written by other Apama correlators
and non-Apama components such as other Software AG products or custom clients
written against the TCStore API. The main concept is to utilize the TerracottaDB
as a buffer between the Apama Stream Processing engine and the GPU.

Once the incoming data have been written to the TerracottaDB, the “GPU-
broker” process reads them using a separate Consumer instance, performs the
pattern matching operation, aggregates the results and then delivers them to the
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visualization component via a universal message passing application.

Telefonica Spain Map

Figure 9.2: Sentiment Score at tg Figure 9.3: Sentiment Score at t;

Figure 9.4: Reporting the performance of the three Call Centers over 5-10 seconds

The following Figures are actual snapshots we that we took when we presented
our work to the public. In this demo real transcripts were streamed over three
different Call Centers and the following results which were reported from our
implementation. Figure 9.4 shows how the sentiment is changing according to the
streamed transcripts for each Call Center.
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Figure 9.5: Sentiment Figure 9.6: Average Sen-
Score changing in one timent Score over hour
minute time window time window

Using the Rolling Window method we are able to provide insights for each
time period per Call Center, Figure 9.5 shows the difference of the sentiment over
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1 minute while Figure 9.6 provides the average sentiment over hour. These results
are referred to a specific Call Center located in Seville. Lastly, Figure 9.7 provides
the Top-10 words which are more frequently used over the three time window
periods.

Seville - Top 10 Words (Sorted by Fregquency)

# Lost Minute Last Hour Last 24h

5§ paz inexorablemente inexorablemente
2 pudi=al enA@rgico enAdrgico
3 lean derrotado derrotado
- indiferencia insensible insensible
B hard confundido atestiguar
6 divergente dark matador
zé aspirar peligrar rupturas

B discriminar matador perjudicial
g boquete latente horda

10 gravemente perjudicial peligrar

Figure 9.7: Top 10 words over the three time windows.
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