
Bayesian Flooding for Image

and Video Segmentation

Elias Grinias

Computer Science Department

University of Crete

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

2009 February

0_frontmatter/figures/logo.eps


Abstract

Image segmentation is one of the fundamental problems in im-

age processing and computer vision. Segmentation is also one of

the first steps in many image analysis tasks. Image understand-

ing systems such as face or object recognition often assume that

the objects of interest are well segmented. Different visual cues,

such as colour and texture in still images and motion in image

sequences, help in achieving segmentation. Segmentation is also

goal dependent, subjective, and hence ill-posed in a general set

up. However, it is desirable to consider generic methods that can

be applied to a large variety of images and can be adapted for

specific applications. This thesis work focuses on developing such

segmentation methods that work on natural images.

Segmentation is based on a statistical framework. Visual feature

description is unified under a statistical point of view. The first

part of the framework proposes a new, block based clustering

method for visual content classification. Starting with the com-

putation of visual cues, statistics of blocks are estimated and a

k-means algorithm is employed for classification of blocks in a

number of classes, using statistical dissimilarity criteria. A novel

distance metric between affine models of optical flow is also de-

scribed. Towards the automation of clustering, a method for com-

puting the number of visual classes as well as a feature selection

procedure are also proposed.

Second part of the framework explores region based segmenta-

tion, given the statistical description of classes. Initial regions

of high confidence per class are determined and two new region



growing algorithms are proposed to expand initial regions. The

strong relation of region growing on statistical surfaces to the

connectivity percolation process is also underlined.

To test the effectiveness of these new techniques, extensive tests

are conducted on the Berkeley segmentation data set and the as-

sociated ground truth, using colour and texture. Furthermore,

segmentation of independently moving objects using interframe

difference and colour as well optical flow based segmentation

in image sequences is also described. Finally, an application is

shown, in which the proposed framework is used for extracting

left ventricle in medical cardiac images.



Per�lhyh
H tmhmatopo�hsh eikìnwn e�nai èna apì ta jemeli¸dh probl matasthn epexergas�a eikìna
 kai th mhqanik  ìrash. Apotele� ep�sh
èna apì ta pr¸ta b mata se pollè
 efarmogè
 an�lush
 eikìna
.Se sust mata katanìhsh
 eikìnwn ìpw
 h anagn¸rish pros¸pwn  antikeimènwn, suqn� g�netai h upìjesh ìti ta antike�mena endi-afèronto
 e�nai kal� tmhmatopoihmèna. Ta di�fora optik� qarak-thristik�, ìpw
 to qr¸ma kai h uf  statik¸n eikìnwn kaj¸
 kaih k�nhsh sti
 akolouj�e
 eikìnwn, bohjoÔn sthn ep�teuxh th
tmhmatopo�hsh
. H tmhmatopo�hsh e�nai èna ìqi kal� orismènoprìblhma, kaj¸
 e�nai gnwstì ìti exart�tai apì thn efarmog  kaito epidiwkìmeno apotèlesma e�nai upokeimenikì. EntoÔtoi
, e�naianagka�o na exetasjoÔn genikè
 mèjodoi pou br�skoun efarmog se meg�lh poikil�a eikìnwn kai mporoÔn na prosarmostoÔn se sug-kekrimène
 efarmogè
. H ergas�a esti�zei sthn an�ptuxh mejìdwntmhmatopo�hsh
 autoÔ tou tÔpou gia efarmog  se fusikè
 eikìne
.H tmhmatopo�hsh bas�zetai se èna pla�sio statistik 
 perigraf 
twn qarakthristik¸n. H perigraf  aut  epitrèpei thn enia�a an-timet¸pish twn qarakthristik¸n apì statistikè
 katanomè
. Stopr¸to mèro
 tou plais�ou prote�netai mia nèa mèjodo
 omadopo�hsh
twn mplok th
 eikìna
 basismènh sto optikì perieqìmeno. Xek-in¸nta
 me ton upologismì twn optik¸n qarakthristik¸n, ektim�-tai h statistik  perigraf  twn qarakthristik¸n twn mplok. Sthsunèqeia, efarmìzetai èna
 k-means algìrijmo
 gia thn taxinìmhshtwn mplok se èna arijmì kl�sewn, qrhsimopoi¸nta
 apost�sei
anomoiìthta
 katanom¸n. Ep�sh
, perigr�fetai mia nèa metrik 



apìstash
 metaxÔ afinik¸n montèlwn optik 
 ro 
. Gia thn au-tomatopo�hsh th
 omadopo�hsh
, prote�nontai mia mèjodo
 upol-ogismoÔ tou arijmoÔ twn kl�sewn, ìpw
 ep�sh
 kai mia teqnik epilog 
 qarakthristik¸n.Sto deÔtero mèro
 tou plais�ou, diereun�tai h tmhmatopo�hsh seperioqè
, me dedomènh th statistik  perigraf  twn kl�sewn. Topr¸to b ma th
 prosèggish
 e�nai o prosdiorismì
 arqik¸n pe-rioq¸n meg�lh
 empistosÔnh
 gia k�je kl�sh, oi opo�e
 epek-te�nontai sth sunèqeia apì dÔo nèou
 algor�jmou
 epèktash
 pe-rioq¸n. Ep�sh
, upogramm�zetai h isqur  sÔndesh pou up�rqeimetaxÔ th
 epèktash
 perioq¸n se statistikè
 epif�neie
 kai thjewr�a di jhsh
.O èlegqo
 th
 apotelesmatikìthta
 twn nèwn teqnik¸n bas�zetaise ektetamèna peir�mata sto gnwstì sÔnolo eikìnwn tou Berke-

ley, b�sei th
 tmhmatopo�hsh
 apì anjr¸pou
 pou sunodeÔounautì to sÔnolo. Epiplèon, perigr�fetai h efarmog  twn teqnik¸nsthn tmhmatopo�hsh antikeimènwn pou kinoÔntai anex�rthta apìthn k�nhsh th
 k�mera
, qrhsimopoi¸nta
 e�te th diafor� fwteinìth-ta
 metaxÔ diadoqik¸n karè video se sunduasmì me to qr¸ma e�tethn optik  ro  pou ex�getai apì diadoqik� karè. Tèlo
, analÔetaih efarmog  tou proteinìmenou plais�ou sthn exagwg  th
 aris-ter 
 koil�a
 se iatrikè
 eikìne
 kardi�
.
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Chapter 1

Introduction

1.1 Problem Formulation

Image segmentation is a key step in many computer vision analysis and

interpretation tasks. Segmentation of colour textured images has become a

necessity for many applications, such as content based image retrieval and

object recognition. Video segmentation is a key step in determining the

motion features, as well as the position and 2D shape of the scene objects.

Such a description may be used either for coding purposes in order to reduce

storage and transmition requirements or for indexing and retrieval purposes

in order to improve the content description and storage reduction of visual

databases. The development of the corresponding international standards

MPEG-4 for coding and MPEG-7 for visual content description, which both

rely on the concept of audio/visual objects, has raised the importance of these

methods [6]. Finding semantic regions is the ultimate goal of segmentation

for image understanding.

Let Λ be the image lattice and IΛ the image data defined on it. The image

segmentation refers to partitioning the lattice into an unknown number M

of meaningful, disjoint regions

Λ = ∪M−1
m=0Rm, Rm ∩ Rl = ∅, ∀m 6= l. (1.1)

The known ambiguity in segmentation problems derives by the term “mean-
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1. Introduction

ingful” in this definition. In low level image processing tasks, an acceptable

segmentation result extracts compact image regions, whose sites are charac-

terized by high similarity according to image cues or the statistical descrip-

tion of derived features. In higher level tasks, towards image understanding,

image regions correspond to semantic objects, that may be described by vi-

sual feature classes and the segmentation task in that case is to localize or

discriminate the objects of interest from their background, in an image or a

video sequence.

Despite the plethora of methodologies for image segmentation, a generic,

admitting some user-tuned parameters, algorithm that addresses the whole

range of segmentation problems and applications does not exist. This is due

to the complexity and ill-posedness of segmentation problems and the fact

that often an unambiguous ground truth does not exist, instead the plausible

result is dependent on subjective interpretation. In light of these consider-

ations, interactive segmentation techniques are also frequently employed [7].

However, referring to segmentation applications, ambiguity is more or less

resolved without the need of user interaction, in segmentation problems of

real life objects, or classes of objects, that are efficiently described by visual

features. The description refers either to the objects themselves or their be-

havior. Known problems of that kind, is frontal human face localization and

independently moving objects localization.

1.2 Relevant Work

Considering image segmentation as an optimization problem we should in-

troduce four kinds of constraints: boundary, shape, region and topology

constraints. Boundary constraints refer to cues presenting significant differ-

ences between neighboring sites belonging to different regions. The objec-

tive could be limited to detect boundaries, without labelling regions. Soft

shape constraints lead to boundary regularization, while hard shape condi-

tions could address specific deformable object localization. In any case an

accurate spatial localization is required. Region constraints refer to pixel

grouping according to class properties. The objective is to obtain regions
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1.2 Relevant Work

uniform and homogeneous with respect to the selected features. Finally,

topology constraints should limit the number of connected components, in

order to eliminate irrelevant segments.

We refer to very few well-known algorithms for illustrating the role of

different constraints in region boundaries localization or image segmenta-

tion. In edge detection [8] only boundary constraints are taken into account,

while contrast constraints can be integrated in region growing techniques [9].

The last category of techniques incorporates soft topology constraints in the

propagation process. Boundary constraints combined with geometric shape

constraints lead to geodesic active contours [10], where a global optimization

method is applied. This approach is generalized in [11] giving a powerful

method, because it introduces and deals with boundary, shape and region

constraints.

However, it should be noticed that, even implicitly, topology is always

taken into account by the algorithms mentioned above and the same holds for

the graph theoretic approaches which, effectively, in the last years, revealed

suitable for efficiently handling the spatial coherence. Visual groupings can

be captured by mapping the perceptual features and coherence constraints to

a graph. Shi and Malik [12] considered image segmentation as a graph parti-

tioning problem in order to obtain perceptual groupings by focusing on local

features and their consistencies in the image data. They used a normalized

cut criterion for measuring both the dissimilarity between the different groups

as well as the similarity within the groups. Felzenszwalb and Huttenlocher

[13] proposed an efficient graph-based method using a minimum spanning

tree (MST) algorithm taking simple greedy decisions, while respecting global

properties for image segmentation. Zabih and Kolmogorov [14] proposed a

segmentation algorithm that operates simultaneously in feature space and in

image space. An energy function is defined on graph and the min cut al-

gorithm provides the optimum spatially coherent grouping. Recently, Ding,

Ma and Chen [15] proposed a connected coherence tree algorithm (CCTA)

for image segmentation, based on the definition of a neighbor coherence cri-

terion.

Also in the last years, Ion, Kropatsch and Haxhimusa [16] have shown the

3



1. Introduction

similarity of the MST construction with the watershed transform, while Fal-

cao et al. [17] considered a minimum-cost path forest in a graph for designing

image processing algorithms taking into account the connectivity with pos-

sible use in image segmentation.

1.3 The Proposed Schema

As it is depicted in Fig. 1.1, the proposed framework in this thesis, may

be roughly separated in two main components, namely, feature extraction

and classification in the visual space, using image data information, and

Bayesian flooding and merging in spatial domain, where the connectivity is

based on the computed features of classes. That way, our method belongs to

techniques that involve global feature space analysis under spatial coherence

constraints, such as that in [18], while our framework achieves these objec-

tives sequentially, in order to regularize the segmentation map by topological

constraints.

Bayesian flooding relates to connectivity percolation theory [19] and is

implemented using region growing (RG). A survey of seeded region growing

algorithms is given in [20]. Merging is the last, post-processing step after

region growing and it is used in order to improve the segmentation result,

based on size, boundary and statistical information of neighboring regions,

that belong to different classes. In the next two Subsections, the parts of our

framework are described respectively, in more detail.

1.3.1 Feature Classification

In the pattern classification framework adopted in our work, the number of

classes, as well as the visual cues selected for region discrimination are ei-

ther provided by user or automatically extracted using novel cluster validity

methods [21]. The extracted features are classified using unsupervised clus-

tering in an image block basis to provide the required stability of classes

features estimation. Referring to Fig. 1.1 and given as input

• the number of classes and
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Final Segmented Image Final Segmented Image 

Pixel distance estimation from each feature class 

PMLFA ILFA

Initial labelling

MRF−based Minimization

Pixel features computation

k−means clustering algorithm on blocks

(Overlapping) Block features computation 

Input Image

Rejection of heterogeneous blocks

Optional step

Clustering

Merging

Feature Selection

Figure 1.1: Flowchart of the proposed segmentation framework.

5

./classification/figs/framework-last-fs.eps


1. Introduction

• the selection of classification and segmentation features,

the derived pixel features are computed. The next step consists of computing

the corresponding features per block and, optionally, rejecting heterogeneous

blocks, since these are likely to cross a boundary between different segments.

Based on the per block features, a distance measure is computed for each

pair of the remaining blocks and a k-means clustering procedure is applied

using these distances.

When features are not selected by user, automatic feature selection takes

place after clustering is performed in the way described above, for a number

of different feature combinations. The best feature combination is selected

using cluster validity and statistical feature selection techniques. Based on

the resulting clustering of best combination, a number of feature classes are

extracted, one per cluster. Pixel based algorithms that follow, effectively rule

out the artifacts in the pixel based accuracy of segmentation results that are

often caused by the block based feature classification.

Depending on the features under consideration, the block based cluster-

ing method may be replaced by mixture decomposition analysis using for

example Expectation Maximization (EM). This approach has been followed

for the statistical description of the interframe difference in change detection

based, object localization.

1.3.2 Graph Theoretic Algorithms and Bayesian Flood-

ing

For a site u ∈ Λ, let ξu be a feature vector extracted by image cues IΛ and

p(ξ) the probability density function (pdf) of it computed over Λ. We sup-

pose as before that the image lattice Λ is decomposed in M disjoint regions

Rm and that, in addition, each region belongs to a class Ck (or k in short)

according to the feature vector ξ. Given the number K of classes, the sta-

tistical description in the feature space, derived by the feature classification
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1.3 The Proposed Schema

method, is given by the mixture

p(ξ) =
K−1
∑

k=0

Pkpk(ξ),

where Pk and p(ξ|k) = pk(ξ) are the corresponding estimates of prior proba-

bility and conditional probability density function (pdf) of class k. According

to the Bayesian rule, the posterior probability of a site to belong to class k

is given by

Pr{k|ξu} =
Pkpk(ξu)

∑K−1
l=0 Plpl(ξu)

, (1.2)

In this thesis, flooding methods are proposed to obtain the partition:

Λ = ∪M−1
m=0 R̂m, R̂m ∩ R̂l = ∅ ∀m 6= l, (1.3)

on lattice Λ, as close as possible to the unknown, original partition given by

Eq. (1.1), based on the computed pdf for each class and using only the infor-

mation of Eq. (1.2) for each site. In that case, wrong labelling in region Rm

belonging to class k, appears exclusively by the Bayesian classification error

caused to class k due to the presence of the other classes, in the feature space.

The effect of this type of error is to disconnect Rm in smaller connected com-

ponents. The purpose of the methods presented herein, is to reconnect the

regions using the statistical information of classes. The formation of a region

by unifying smaller connected components under a statistical point of view

is studied by the well known in computational physics, connectivity percola-

tion theory [19]. Indeed, the image segmentation problem as it is formulated

herein, is a connectivity percolation process. Although percolation theory

describes the problem, an accurate segmentation solution is not guaranteed

without applying topological constraints.

To accurately extract R̂m, probabilistic distances of Pr{k|ξu} are used to

select and label a set of pixels that belong to class k with high confidence, thus

providing an initial map of correctly labelled pixels. Having available the ini-

tial map of correctly labelled pixels, we propose two new flooding algorithms

in order to fill the initial map of decisions, using statistical dissimilarity cri-
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teria. The new algorithms are called Independent Label Flooding Algorithm

(ILFA) and Priority Multi-label Flooding Algorithm (PMLFA) respectively.

Because ILFA is characterized by relaxed shape constraints and not strong

topology constraints, it is followed by a MRF-based minimization algorithm

(ILFMA). PMLFA imposes strong topology constraints and constructs the

segmentation map with linear computational cost to image dimensions.

1.4 Contributions

In the proposed clustering and segmentation schema, treatment of visual

features is unified using their statistical description. Assuming that natural

objects could be described by a characteristic feature distribution, segmenta-

tion using the proposed framework on different visual cues becomes feasible,

either in still images or video, as it is described in subsequent Chapters of

the thesis. Visual features used for segmentation in this thesis are intensity,

colour, texture, interframe differences and optical flow. Considering classi-

fication of visual data, new, robust methods are proposed for automating

statistical clustering as well as the selection of segmentation features. Ro-

bustness of these methods is proved in practice by using them in segmentation

of natural images. Furthermore, a novel distance metric between affine mod-

els of data sets is also defined and used in block based clustering of optical

flow.

Having at hand a confident description of visual classes, implied topology

constraints guide the segmentation process for obtaining semantic regions,

without sacrificing topology flexibility. This is the objective of Bayesian

flooding algorithms described in this thesis. Since, any visual cue may be im-

perfect with respect to semantic content, incorporating topology constraints

in the segmentation process allows for limiting the effect of visual imperfec-

tions. Usage of topological constraints is admitted in such a way that also

allows topological flexibility, while region homogeneity is also preserved.

8



1.5 Thesis Organization

1.5 Thesis Organization

This thesis is organized as follows: in Chapter 2 the feature prototypes ex-

traction technique is presented. In Chapter 3 the relation between image

segmentation and percolation theory is examined. In Chapter 4 the new

flooding algorithms are described in detail. In Chapter 5 we present the

application of algorithms to image segmentation tasks by the fusion of lu-

minance, texture and colour information. The application of the proposed

framework in colour based face detection is also described. In Chapter 6

colour and change detection based flooding segmentation is applied in image

sequences. Furthermore, optical flow segmentation using the novel distance

between affine models of data sets is described in this Chapter. Finally,

in Chapter 7 the application of PMLFA in the crucial task of left ventricle

segmentation in medical images, is presented in detail.
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Chapter 2

Automatic Feature Extraction

Visual features considered for segmentation are intensity, chromaticity, tex-

ture, optical flow and interframe difference either in their own or in combi-

nation. In this Chapter, semi and fully unsupervised clustering of intensity,

chromaticity and texture is described, although, for features, such as inten-

sity and chromaticity, mixture analysis could also be used, if image region

statistics are described by a reliable and tractable mixture model, which,

furthermore, is enough to appropriately separate image regions.

In the general case, clustering is basically performed semi-automatically,

in the sense that a number of parameters has to be provided given the image

data, such as the combination of visual cues or the number of classes that

are present in the image. In order to determine the features of classes, the

image is divided into blocks that may overlap. The block size is related to

the image size and the selected image features. Segmentation features are

computed for each block and, optionally, heterogeneous blocks are rejected,

using an inhomogeneity detection procedure that relies on feature dependent

statistical criteria. A k-means algorithm is used to cluster the remaining

blocks to obtain classes corresponding to region prototypes. The number K

of labels-classes is assumed to be either user given or automatically provided.

To perform clustering automatically, important parameters of classifica-

tion such as the combination of features and the number of classes for each

combination should be considered as decision tasks that guide the cluster-
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2. Automatic Feature Extraction

ing procedure, without user interaction. In what follows, two methods to

automate clustering are described. The first one computes the appropriate

number of classes K, given as input to k-means for a given combination of

features, while the second one selects the best combination of features for

segmentation, after clustering has been performed for all combinations.

Furthermore, we describe in detail the statistical modeling of features as

well as the feature dependent dissimilarity metrics, which are used to classify

image blocks as well as for deciding the number of classes and for selecting

the appropriate visual features. Probabilistic criteria are used to measure the

distance between texture, intensity and colour features of data sets. Finally,

the clustering of blocks to labels is discussed in extent.

However, although clustering refers to visual features of still images in this

Chapter, features that are extracted by image sequences could be considered

for classification as well, using the same, block based clustering technique.

Clustering of optical flow vectors using affine modeling of data sets and a

novel distance metric, is described in detail in Section 6.3, using the block

based method of this Chapter.

2.1 Visual Features

In this Section, the statistical modeling of intensity, chromaticity and texture

visual features is described. Statistical modeling of features is then used

to describe and compare data sets. With the term “data set” we refer to

connected components of sites on the grid, such as blocks, regions or the

whole image, treated as unordered site sets. Sites of any data set are used

to sample its statistical distribution, for the given features.

This way, visual features of data sets are replaced by their probability

density functions. Intensity and chromaticity are described by histograms,

while the statistical modeling of texture derives by known statistical proper-

ties of texture analysis components. In the case of intensity and chromaticity,

a method to automatically compute histogram bins is also described in the

following Subsection.

12
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Original Colour Image

Intensity Chroma channel a Chroma channel b

Details of the 2nd DWF layer

Figure 2.1: Intensity, chromaticity (2nd row) and texture (3nd row) cues for
the colour image of the first row.
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2.1.1 Colour Features

The colour of images is described by the intensity and the chromaticity com-

ponents (a, b) of Lab colour space. This way, the RGB colour image

cΛ = (RΛ, GΛ, BΛ)

is transformed to image

cΛ = (IΛ, (a, b)Λ).

In Fig. 2.1, the extracted cues for the image of the first row are shown.

In the second row of the Figure, the intensity and chromaticity channels

(a, b)Λ of Lab colour space are depicted. For the needs of demonstration,

chromaticity channels have been scaled to the range [0 1] and displayed as

grayscale images.

In order to extract the statistical description of image, intensity IΛ as

well as the chromaticity image (a, b)Λ are quantized using k-means algo-

rithm. Quantization reduces the spatial uncertainty of features and speeds

up the computation of their statistics during clustering. The number of bins

for intensity and chromaticity quantization by k-means is automatically de-

termined using a method which takes under consideration the local standard

deviation of features.

The proposed schema is described for a 1D feature ξ and the same ap-

proach is followed separately in each dimension, in the case of more than

one feature dimensions. The method detects the average step of bins in an

adaptive manner, based on the local spatial distribution of feature values.

The local standard deviation of the feature for each image site s is defined

as

σs =

√

E {ξ2
s} − (E {ξs})

2,

where ξ is the feature of image and E is the mean operator involving the

sites in a disk centered at s. The average step of bins is considered to be the

median µξ of local standard deviation and the number of quantization values

14
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Kξ is given by the equation

Kξ =

⌈

max {ξ} − min {ξ}

µξ

⌉

. (2.1)

Intensity data are quantized in KI bins by Eq. (2.1), according to the

computed average step µI . If the frequency of a bin is lower than a threshold,

it is rejected as statistically negligible and the number of bins KI is decreased

by one. The k-means algorithm that follows, computes the final bin centers

and maps image sites to bins according to their intensity value, using the

city-block distance between samples.

In the case of chromaticity, average steps µa and µb are determined sepa-

rately and Ka, Kb are computed by Eq. (2.1). The 2D chromaticity space is

quantized in

Kab = Ka ·Kb

2D bins. Statistically negligible bins are rejected, as in the case of intensity.

Having available the final number of not rejected bins Kab, the mapping of

sites to bins according to their chromaticity value is performed by k-means,

using the Euclidean distance.

2.1.2 Texture Details

Multichannel filtering approaches for texture analysis have been proposed,

using filter banks of Gabor filters [22, 23] or wavelet packet frame decomposi-

tion [24]. In [5], many different multichannel filtering approaches have been

compared. In our work we mainly use a Discrete Wavelet Frames (DWF)

filter bank [25], which appears to give a good scale-space image analysis.

Texture analysis gives a set of Kζ detail components for image grid Λ,

ζΛ = {ζi,Λ, 1 ≤ i ≤ Kζ}.

Because of their orthogonality, texture details are statistically independent.

Furthermore, it is assumed that the distribution of each component is de-

scribed by a zero mean Gaussian model and thus, only variance σ2
i needs to
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be computed in order to get the statistical description of the ith component,

in a given data set.

Images of the third row in Fig. 2.1 display, from left to right, the verti-

cal, horizontal and diagonal details respectively, of the second layer (scale)

obtained by the DWF texture analysis of the image. As for chromaticity

channels, texture details have been scaled to the range [0 1] and displayed as

grayscale images.

2.2 Dissimilarity Metrics on Data Sets

Several metrics have been proposed in the literature to measure the dissimi-

larity between data sets. Well known statistical metrics are the Mahalanobis,

Bhattacharyya and χ2 metrics [26]. The robust, but in some cases computa-

tionally intensive Mallows distance has also been used in image classification

tasks [27].

In our work, the metric used to measure the dissimilarity between the

statistical description of data sets D1 and D2, described by distributions p1

and p2 respectively, is the Bhattacharyya distance, denoted herein as JB. The

definition as well as the properties of this statistical metric are outlined in

Section A.1 of Appendix. The distance is based on the Bayesian classification

error of distributions p1 and p2, it can be applied on parametric as well as

on non parametric statistical modeling of data and it is computationally

tractable.

An example is given in order to explain how Bhattacharyya distance be-

tween blocks is computed. In image of Fig. 2.2, the division of colour image

of Fig. 2.1 in 32× 32, non overlapping blocks is depicted. Dissimilarity mea-

surement involves the Red and the Blue block of the image. It is assumed

that visual features extracted for the image are intensity, chromaticity chan-

nels and the three texture components of Fig. 2.1. Furthermore, texture

details are assumed zero mean, Gaussian distributed. The last important

assumption made is that the extracted features are statistically independent.

Automatic quantization of intensity and chromaticity for this image (Sub-

section 2.1.1) results in KI = 27 and Kab = 98 bins, respectively. These bins
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Figure 2.2: Division of image in 32× 32 blocks. Yellow lines delineate block
borders. Red and Blue blocks are compared using Bhattacharyya distance
(see text).

are used for sampling intensity and chromaticity pdfs of blocks by the cor-

responding histograms, as it is illustrated in plots (a) and (b) of Fig. 2.3.

Furthermore, variance of the three texture components is also sampled in

each block and the Gaussian distributions per component are shown in plots

(c)-(e) of Fig. 2.2, for the two blocks. Red (blue) coloured pdfs, are those of

Red (Blue) block of Fig. 2.2. The statistical dissimilarity of the two blocks

in that case is the sum of three terms, namely, the Bhattacharyya distance

JB
I between histogram computed distributions of intensity bins, obtained by

Eq. (A.2), the Bhattacharyya distance JB
ab between histogram computed dis-

tributions of chromaticity bins, using once again Eq. (A.2) and finally, the

Bhattacharyya distance JB
ζ in the form of Eq. (A.5), between the correspond-

ing variances of texture components.

When data sets are blocks of the image, problems may arise in the case

of statistical modeling by histograms, due to the sampling of distributions

by bins for the relatively small number of block sites. Thus, the measured

statistical distance between two blocks may be infinite, even if their distri-

butions are similar. This behavior has to be detected and corrected, since

most of the decisions made by the classification schema in this chapter are

based on the distance between blocks.

The solution to this problem comes from the property of Bhattacharyya

17
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Figure 2.3: Intensity, chromaticity and texture components distributions of
red and blue blocks of Fig. 2.2.
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distance, which applies to parametric as well as to non parametric statistical

models. Thus, if the distance between the histograms is infinite, the two

distributions are assumed Gaussians. In that case the mean and variance per

block are computed, assuming statistical independence of feature dimensions

and Bhattacharyya metric in the form of Eq. (A.4) is used to compare the

distributions. This solution is in fact a method to smooth the histograms,

but only when such a process is really necessary.

2.3 Clustering

In this Section, statistical clustering of visual features is discussed in extend.

Clustering problem and the algorithms that have been used are described

in Subsection 2.3.1. Clustering is performed in a block basis, using Bhat-

tacharyya metric to measure the statistical distance between blocks. A k-

means algorithm is used to classify image blocks for a given combination of

features (Subsection 2.3.4), preceded by an optional method to reject het-

erogeneous blocks (Subsection 2.3.3). Towards the full automation of the

classification procedure, a method to automatically determine the number of

classes for each combination is described in Subsection 2.3.2, while a cluster

validity metric to select the best combination of features is presented in Sub-

section 2.3.5. In the first case “Clustering” module of flowchart in Fig. 1.1,

becomes that of Fig. 2.4. This clustering module is used for selecting the

best combination of features.

2.3.1 Clustering Algorithms

The goal of any clustering technique is to obtain a K × n partition matrix

or map U(X) of a data set

X = {x1, x2, . . . , xn} ∈ R
N .

The matrix U represents the partitioning of data in a number K of clusters

{C1, C2, . . . , CK} and the notation U = [ukj] is used to denote the mem-

19



2. Automatic Feature Extraction

Classes Number Determination

(Overlapping) Block features computation 

Rejection of heterogeneous blocks

Optional step

Clustering

k−means clustering algorithm on blocks

Figure 2.4: Flowchart of the proposed clustering framework with automatic
classes number determination.

bership of data vector xj to cluster Ck. In the case of hard partitioning,

ukj = 1 if data sample j belongs to cluster k. Otherwise, ukj = 0. Clustering

algorithms broadly fall in two categories, partitional and hierarchical [28].

The widely used k-means algorithm belongs to the first category, while aver-

age linkage is the hierarchical algorithm, used herein to define an evaluation

metric curve, in order to determine the number of classes.

Average linkage is a non iterative method, which creates an hierarchical,

binary tree T of clusters using distances dij between samples xi and xj for

i, j = 1, 2, . . . n and i 6= j. The leafs of the tree are the data samples which

are considered singleton clusters. In average linkage, the distance of cluster

pairs k and l is given by equation:

D̄kl =
1

nknl

nk
∑

i=1

nl
∑

j=1

dij (2.2)

where nk, nl are the numbers of samples in clusters k, l respectively. Begin-

ning at the lower level of leafs, at each step of the method the two nodes-

clusters with minimum distance are merged and this way, a new node of the

tree is constructed, which represents the newly created cluster that replaces
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2.3 Clustering

the merged pair. The distance of the remaining clusters to the newly cre-

ated one is recomputed as above and merging continues bottom-up in this

manner, until a single cluster comprising all the samples is formed.

2.3.2 Number of Clusters Determination

A crucial parameter of the automatic clustering scheme, is the number of

feature classes K, used in k-means. It is well known in clustering theory

that the number of classes, or clusters, is difficult to be correctly determined

without pre-existing knowledge of the data or the presence of a user with

sufficient knowledge of the domain. Due to these impractical requirements,

several approaches have been proposed in the literature in order to automat-

ically determine a reasonable number of classes for a data set. The method

described below belongs to the “knee locating” methods [29], applied on an

evaluation metric curve, known as evaluation graph. The “knee” of a curve is

loosely defined as the point of maximum curvature. As it is shown in Fig. 2.5,

given the distances between all block pairs, evaluation graph is the outcome

of average linkage, which is given as input to the “knee locating” method in

order to compute the appropriate number of classes.

Average Linkage

Evaluation
Graph

"Knee Locating"

Classes Number

Blocks Distance

Figure 2.5: Flowchart of classes number determination module of Fig. 2.4.

Comparison of m different clustering maps U1, U2, . . . , Um of X, con-

structed by a clustering algorithm, is based on validity measures Vi, (i =

21
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2. Automatic Feature Extraction

1, 2, . . . , m). Vi measures the discrimination achieved by the corresponding

clustering Ui. In the case of average linkage, the validity measure Vi of a

partition Ui in a number i of clusters is given by the average distance of

the two sub-trees, last merged in order to get clustering Ui. Although this

is a greedy computation, it performs reasonably in practice and it is a fast

method to obtain a number of clustering maps. The evaluation graph is the

xy-plot of the evaluation metric values Vi (y-axis) vs. the number of classes

i (x-axis).

The evaluation graph for the clustering of blocks of a colour image using

average linkage, is depicted in the plot of Fig. 2.6. Chromaticity, ab his-

tograms have been used as classification feature and Bhattacharyya distance

JB(pi, pj) is used to measure the dissimilarity dij between block histograms

pi and pj .
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Figure 2.6: Evaluation curve obtained by average linkage for the blocks of
an image, using ab histograms and Bhattacharyya distance between blocks.

The reasonable number of clusters K is determined on the evaluation

graph of T for partitions Ui with i = 2, . . . , m, i.e. excluding the trivial case

of one cluster. In many cases, these curves are noisy and trying to locate the

maximum curvature is a difficult task.

The method described below, is a robust “knee locating” technique. It
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2.3 Clustering

locates the knee as the point of maximum angle between two best-fitted lines

to the curve, taking into account the least square error of that fit, as it is the

case in [29].

Given the graph, first, the line ltot that best fits the overall metric curve Vi,

(i = 2, . . . , m), is computed. If the slope of this line is less than a predefined

threshold, the discrimination between the different clustering maps is low and

thus we set K = 2. Otherwise, for each cluster number i = 3, m− 1, best-fit

lines l−i and l+i are computed in intervals [1, 2, . . . , i] and [i, i+1, . . . , m] using

the corresponding values of Vi. The angle φi, as well as the x-coordinate qi

of the intersection point between the two lines are retained, in each case. In

addition, the sum ei of least square errors e−i and e+i corresponding to each

line fitting is also considered.

To determine the appropriate number of classes, two cluster numbers are

checked as x-coordinate candidates for the knee point on the curve. That

of maximum angle i1 and the number of minimum square error i2. In many

cases the two numbers may be the same. Otherwise, i2 is considered better

candidate if φi2 is large enough, (larger than a threshold) and error ei1 is

significantly greater than ei2 . How large the angle φi2 should be, depends on

the slope of ltot. This way, the knee point location is robustly specified, as

that of a fairly large angle between the lines that best fit the curve.

Furthermore, if we denote as i′ the decision made between numbers i1 and

i2, the exact number of classes is set to K = ⌊qi′⌋+1 if the abrupt change in

metric values appears at ⌊qi′⌋+1, rather than at ⌊qi′⌋. This heuristic locates

the knee of the curve with increased accuracy.

Fig. 2.7 demonstrates the method as it is applied to determine the number

of classes using values V2, V3, . . . , V11 of the evaluation graph in the plot of

Fig. 2.6. Evaluation points are depicted as blue squares in Fig. 2.7. The red

lines in that Figure, are those of maximum angle, indicating that K = 5.

A novel center-based clustering method, proposed in [30], has also been

used for clustering in this work. Given as input the distances between data

point pairs, as other clustering approaches, it reduces clustering to a well

defined (but NP-hard) minimization problem, solved by making use of dual

Linear Programming (LP) relaxation. Under this formulation, the stability
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Figure 2.7: The two lines of maximum angle, indicating the appropriate
number of 5 classes, given the values V2 up to V11 of the evaluation graph in
Fig. 2.6.

of each data point to be selected as cluster center, is defined as an LP based

quantity. Optimization is simultaneously performed over both the cluster

centers and the number of clusters, using the input distances. Thus, when

this algorithm is used herein to determine the number of clusters, the out-

coming clustering map and cluster centers are taken under consideration as

well, avoiding completely k-means clustering.

2.3.3 Rejection of Heterogeneous Blocks

Heterogeneous blocks may optionally determined and rejected in order to

prevent the corruption of the feature classification process (k-means), which

follows. Rejection is based on an edge detection method for blocks, per-

formed separately in block rows and columns. For each block Bi,j in a row

i, the Bhattacharyya distance JB(pi,j−1, pi,j+1) is computed as a measure of

gradient for Bi,j, based on the statistical description pi,j−1, pi,j+1 of blocks

Bi,j−1, Bi,j+1, respectively. The same computation is made in columns. Then,

row (column) blocks are sorted according to their gradient and a user given

percentage of blocks (typically 10%) with the highest gradient determines
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(a) (b) (c)

Figure 2.8: Block rejection (b) and classification (c) for the five regions image
(a).

a cut-off gradient threshold for block rejection. Afterall, maxima suppres-

sion is performed in each row (column) to reject only the blocks with locally

maximum gradient and local maxima above the cut-off threshold.

The procedure is depicted in Figures 2.8, 2.9 for the image of Fig. 2.8(a).

The features used in that case are intensity 1-D histograms and Discrete

Wavelet Frames (DWF) texture analysis [25] of the image up to three lay-

ers. Texture details are assumed to be zero-mean, Gaussian distributed and

uncorrelated, and therefore they are described by the variance of the texture

components. The image is divided in 8×8 blocks and the statistical descrip-

tion of block features is computed. Bhattacharyya distance between blocks

is used to measure the statistical gradient, by summing the distance in the

form of Eq. (A.2) for intensity histograms and the distance in the form of

Eq. (A.5) for the texture details of the block pair. In Fig. 2.9 the frequency

of the row blocks according to their statistical gradient is shown. The dashed

line in that plot corresponds to the cut-off threshold computed by the 10%

of blocks with the highest gradient. In Fig. 2.8(b) the rejected 8 × 8 blocks

are shown on the image.

However, it is noticed that block rejection is used only to demonstrate

the method in that case, since the result of k-means that follows is good even

without applying block rejection.
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Figure 2.9: Frequency of block rows statistical gradient for the five regions

image.

2.3.4 Block Based Feature Clustering

A k-means algorithm is employed for grouping feature vectors and for the

computation of feature prototypes of classes, for a given combination of fea-

tures. Heterogeneous blocks are optionally determined and rejected as de-

scribed in the previous Subsection. The retained blocks are given as input to a

k-means initialization algorithm proposed by Kauffman and Rousseeuw [31].

The initial clustering is obtained by the successive selection of prototype

blocks until K instances have been found, where K is the number of clus-

ters, given by the user or automatically extracted using the method of Subsec-

tion 2.3.2. The first representative block is the most centrally located block

in the feature space. The rest of representative blocks are selected accord-

ing to the heuristic rule of choosing the blocks that promise to have around

them a higher number of the rest of blocks. The output of initialization is a

block-prototype for each class.

Finally, k-means is applied and each block is assigned to its most similar

class. Depending on the statistical description of features, the feature vector
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Figure 2.10: Silhouette plot for the block classification of the five regions

image.

of the most centrally located block (centroid) of each class may be used as

“mean” feature vector, at each iteration of k-means. That way, the features

describing each class are obtained at the end of block clustering.

In Fig. 2.8(c), the clustering of not rejected blocks in five classes, is de-

picted for the five regions image, using centroids of clusters as “mean” feature

vectors. Bhattacharyya distance is used as the distance between instances

in k-means. The efficiency of the proposed approach is demonstrated by the

so called silhouette plot [31] of Fig. 2.10. In that plot, the silhouette value

of not rejected blocks is depicted for each class. Silhouette value indicates

the separability of each block from the blocks of the other classes and ranges

from −1 to 1, i.e. from low to high separability. As a second step of rejec-

tion, blocks with negative silhouette value may also rejected and not used

for feature statistics computation of their class.
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Clustering Maps

Feature Selection

Best Features
Clustering Map

Clustering

Feature Combinations

Figure 2.11: Flowchart of automatic feature selection using clustering mod-
ule of Fig. 2.4. Bold lines indicate that clustering is performed for all feature
combinations.

2.3.5 Feature Selection

A generic method to select among the seven combinations of intensity, chro-

maticity and texture features the best one according to cluster separability,

is described hereafter. We denote each one of the 23 − 1 combinations as a

binary vector b = (bI , bab, bζ). If bξ is zero, the corresponding feature ξ is not

used in the combination. Otherwise, it is used.

The method belongs to the category of cluster validity methods [21, 32,

33], which are used for measuring “goodness” of a clustering result comparing

to other ones which were created by other clustering algorithms, or by the

same algorithm but using different parameter values. Cluster validity is a

hard problem, since the notion of “clusters” is not well defined in the general

case and measuring cluster quality is subjective.

As it is shown in the flowchart of Fig. 2.11, for each combination b of

features, clustering module of Fig. 2.4 is applied to determine the number of

classes Kb, followed by k-means on a block basis to obtain map Ub. Given the

clustering maps for all combinations, feature selection module of Fig. 2.11 is

then used for deciding the best combination of features.
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First step of feature selection consists of computing a separability index

for each feature combination using the combination dependent, statistical de-

scription of blocks and the corresponding clustering map. For each resulting

k-means map Ub, the compactness of each cluster k is measured by the mean

distance in the interior of the cluster

d̄k =
1

nk

nk
∑

i=1

JB(p̄k, pi)

where nk is the number of blocks belonging to cluster k, p̄k denotes the

mean feature vector of the cluster, pi is the feature vector of the ith block

belonging to cluster k and JB is the Bhattacharyya distance between vectors.

The distance between clusters k and l is defined as the average distance D̄kl

between their samples-blocks (Eq. (2.2)). The cluster separability index for

the clustering under consideration is defined as:

SIb =
1

Kb

Kb
∑

k=1

Pk

d̄k

Kb
∑

l=1
l 6=k

D̄kl

where Pk = nk/n and n is the total number of blocks.

In the general case, metric SI is higher for clustering maps with compact,

well separated clusters, giving emphasis to the separability of clusters with

more members or, in other words, with higher Pk. Furthermore, factor 1/Kb

normalizes the contribution of the number of clusters to the index value of

combinations.

After the computation of SI for all combinations, combination b of fea-

tures which leads to the clustering with maximum SIb value is selected as

the best one for segmentation. The statistical description of classes, used by

the flooding algorithms, is computed using this mapping of blocks to clusters

and the features that gave this mapping.

A variant of this method is to decide first if intensity, chromaticity or

both of them are going to be used. Then, given the selected combination of

intensity and chromaticity, the decision of including or not texture with that

combination, could be performed using the cluster validity method described
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above. In this work, to decide the combination of intensity/chromaticity, a

multimodality test is performed. The statistical extend of each colour chan-

nel in Lab colour space is computed, using the maxima of channel histograms.

Statistical extend (or strength) for each channel is defined as the distance

between the first and last histogram maxima or modes. If this distance is

greater than a threshold, the channel is a candidate to participate in combi-

nation, otherwise it is not. Intensity is selected if L channel is a candidate,

while chromaticity participates in combination if a, b or both channels are

candidates. This way, selection of intensity/chromaticity is pixel based and

it is applied without using clustering information. However, due to the sta-

tistical properties of texture details, such a technique is not feasible for the

second decision, i.e. for selecting or not texture.
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Chapter 3

Percolation Theory and Image

Segmentation

In this Chapter, we show that the solution of the image segmentation prob-

lem described in Section 1.3, being considered as a grouping process, could

be viewed as a connectivity percolation process. In the first Section the main

aspects of the connectivity percolation theory are extensively described, while

in the second Section, the main tools of the theory are used in the classifica-

tion context in order to show possible links between the the image segmen-

tation problem and the percolation theory. Furthermore, the strong relation

to the flooding algorithms of the next Chapter is also underlined.

3.1 Critical Connectivity Percolation

We denote as Λinf = {V,E} the infinite 2D regular lattice Z
2, where V is

the set of vertices-sites and E the set of edges-bonds between vertices. We

also assume that vertices are labelled according to the set {0, 1} of labels

by Bernoulli trials with Pr{v = 1} = p and Pr{v = 0} = 1 − p, for each

v ∈ V , 0 ≤ p ≤ 1. Sites belonging to class 1 are considered occupied or open.

Percolation theory [19] states that an infinite or giant connected component

is almost surely formed for label 1 in the random lattice, if, and only if,

p > pc, where pc is the so called critical probability of site percolation. In
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that case, we say that label 1 percolates. In the considered case of 2D lattice,

extensive simulations have shown that pc ≃ 0.59275. In Fig. 3.1, the giant

component of label 1, as well as the tiny in size components of label 0, are

shown for an 8 × 8 lattice, with p = 0.8.

Several estimates have been defined to accurately measure pc and study

the properties of the connected components of the percolating label [34].

Among the known percolation observables Qp are the size of the largest com-

ponent and the average size of the connected components of label 1, as a

function of occupation p ∈ [0 1]. In fact, Qp has to be interpolated in an

increasing set of values of p ∈ [0 1]. Observables like these, necessitate the

implementation of fast algorithms to compute the connected components of

occupied sites at p, since, due to the difficulty of the problem and the lack of

sufficient rigorous mathematical results, Monte Carlo simulations are often

used to measure Qp in L × L lattices of varying dimension L, over a large

number T of iterations. Two well known algorithms in connected compo-

nents computation are those of Hoshen and Kopelman [35] and Newman and

Ziff [36].

Newman and Ziff proposed an, almost linear cost, “73 lines C code”

algorithm, to compute the percolation quantity Qt
pn

of interest for the set

of increasing probabilities pn = n
L2 , n = 0, 1, . . . L2, at each Monte Carlo

iteration t. Beginning at n = 0 with a configuration of L2 unoccupied sites

in the lattice, at each step n > 0 one of the L2 − n + 1 unoccupied sites is

randomly peeked and occupied. The vast improvement is that the connected

components of label 1 are not recomputed from scratch after each occupation,

as it was the case in [35]. Instead, the newly occupied site u is grouped to

its neighboring component, if only one such component exists. In the case

that more than one connected components are in the 4-neighborhood of u,

the components are unified in a new one, including u. Otherwise u is a new

one-element component by itself.

Using “Union/Find” algorithms [37] to perform these operations of site

grouping, the cost for a single Monte Carlo iteration becomes almost linear

to L2. Estimate Qt
pn

is then computed, using the new configuration of the

connected components. The final observable estimate given as output by the
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Monte Carlo simulation is:

Qpn
=

1

T

T
∑

t=1

Qt
pn
,

and Q = {Qp0 , Qp1, . . . Qp
L2} is an interpolated set of the observable curve

through the computation time line n or occupation sequence pn.

As it is noticed by Newman and Ziff, the occupation order could equiv-

alently be obtained by a two steps procedure for each iteration t. The pro-

cedure consists of assigning weights ru ∈ [0 1] randomly for all u in the

finite lattice and sorting the weights in increasing order at each t. Although

that was a common practice before their work, sorting requires O(L2 log2 L
2)

time, which is more than the cost of all the other operations per iteration

t and according to the arguments of many other authors, this technique is

proved to be useless in practice, for critical percolation simulations. Newman

and Ziff proved this argument in practice, giving accurate results for known

observables, as well as for new rigorous mathematical efforts in percolation.

We denote by W (p) the probability of appearance of a spanning compo-

nent, at given concentration p. As spanning we define the component that

spans the finite lattice from the left to right side. The fraction P (p) of the

occupied sites belonging to the spanning component may be considered as

a connectivity or strength measurement of the percolating system. The two

quantities are depicted in the plots of Fig. 3.2(a) and Fig. 3.2(b), respectively,

for three values of L. The fast Monte Carlo algorithm of [36] has been im-

plemented and used for the computation on average of these quantities using

105 iterations. The relation between these curves and linear system size L,

has been extensively studied in the literature. In general, the smooth phase

transitions near pc become more abrupt as L increases, in perfect accordance

with the fact that an abrupt transition phenomenon would be observed, if

we had an infinite system and not the simulations of it by finite size ones.

Average component size is one of the observables used to measure the

percolation threshold and the behavior of the system very close to it. The
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(a) (b)

Figure 3.1: Connected components (a) and giant component (b) for p = 0.8.

mean component size S of the percolating label is defined as [34]

S(p) =

∑

s s
2ns

∑

s sns
(3.1)

where ns is the number of components of size s per lattice site:

ns =
Ns

sL2
=
ps

s
,

and Ns is the number of sites belonging to components of size s. To avoid

the diversion of S above pc due to the presence of the infinite component,

the summation in Eq. (3.1) does not include the largest component. An

alternative definition for the average component size is given by

SS(p) =

∑

s sns
∑

s ns

=

∑

sNs

|S|
, (3.2)

where | · | denotes cardinality and S is the set of components of label 1. The

two different definitions of average size lead to different curves, as it is shown

in the plots (a) and (b) of Fig. 3.3, for L = 512 and 105 iterations. The

largest component has been excluded in all cases. Furthermore, the curve

of the first plot reaches its maximum at pc and the accuracy in estimation

of pc using this heuristic gets finner as both the iterations of Monte Carlo
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Figure 3.2: Probability of the spanning component W (a) and connectivity
P of the occupied sites (b).
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simulation and L increase.
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Figure 3.3: Mean (a) and average (b) component size of the occupied sites.

If we measure the observables defined above for the zero class as a function

of p, we see that the zero class does not survive for p > 1−pc and furthermore

all the corresponding curves of class 0 are in perfect symmetry to those of

1, around the point p = 1 − p = 0.5. The symmetry in behavior of the two

classes, indicates an uncertainty interval for p ∈ (1 − pc, pc). As p increases

in that interval, the average size S0(p) of 0-regions becomes smaller, while

the size S1(p) of 1-regions increases and we have S1(p) > S0(p) for p > 0.5.
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This fact is graphically depicted in the plot of Fig. 3.4, where the probability

P (p) of a pixel to belong to the largest connected component of classes 0 and

1 respectively, as a function of p, is shown for L = 256. We use the same

notation for the spanning and the largest region since, with high probability,

the spanning region is the largest one.
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Figure 3.4: Probability P (p) of the largest connected component of classes
C0 and C1.

Furthermore, the average size of “holes” in the largest component as a

function of p is maximum at pc, due to the topological properties of the

percolating component. It is well known that the backbone is an important

structure of the component. It is formed by the union of all self-avoiding

walks connecting two points of the lattice. The most promising model for

the backbone was introduced by Stanley [38] and is known as the nodes-links-

blobs model. The model is depicted in Fig. 3.5. As we see in this picture,

the backbone consists of a network of nodes connected by “one-dimensional”

links, which are often separated by multi-connected pieces or blobs. Thus, the

backbone may be viewed as a topologically linear string of blobs of all possible

sizes. In general, there are sites that, when removed, split the spanning

component into pieces. Hence, just before pc there are many components of

label 1 with small “holes” in them, which are interconnected through singly

connected edges to form the backbone at pc [34]. Just after pc the average size
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of “holes” in the spanning component is maximum and gradually decreases

for p > pc, as the spanning component becomes a compact region. This

heuristic constitutes one more observable for estimating pc, although it is

harder to be computed by Monte Carlo methods compared to the average

size of components.

Figure 3.5: Topological model of the spanning component at pc, composed
by links which interconnect blobs (shown circular here). The crossing points
of the links (nodes) as well a small number of the dead ends (thin lines) are
also shown.

3.2 Image Segmentation and Connectivity Per-

colation Process

3.2.1 Percolation in a Known Region

We consider the segmentation problem defined in Subsection 1.3. According

to the Maximum A Posteriori (MAP) criterion we may assign the pixel u

to the class that maximizes Eq. (1.2). The labelling according to the MAP

criterion for the five regions image is shown in Fig. 3.6. For this example,

image intensity has been used as classification feature ξ and the pdf of classes

is given by normalized histograms of intensity.
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In Fig. 3.7, the same labelling is depicted in white colour per class. In

each region Rm, the correct labelling is corrupted by the statistical errors

due to the presence of the other classes k 6= m in the feature space. Any site

of region Rm is assigned to a wrong label, if, and only if,

max
k 6=m

p(ξu|k) > p(ξu|m).

This fact is graphically depicted in the plot of Fig. 3.8(a), where the pdf

for an 1D feature space is shown for a class m, together with the curve of

maxk 6=m p(ξu|k) and the area of erroneous classification in the feature space.

The probability of correct labelling in Rm under this setting is:

pm = Pr(Cm|Rm) =

∫

Ξ

p(ξ|m), (3.3)

where

Ξ ≡ {ξ : p(ξ|m) > p(ξ|k), k 6= m}.

The probabilities Pr(Ck|Rm) of erroneous assignments in Rm due to Ck,

are computed the same way for k 6= m. This is the probability of “holes” in

the region and the total probability of erroneous labelling in Rm is

pe =
∑

k 6=m

Pr(Ck|Rm).

Thus, the extend of the perceived error in the region, depends on the spatial

correlation in Λ and the statistical modeling of features in the feature space,

which affect the discrimination capability of the features themselves. The ex-

tend of error is what we observe as black “holes” in the five images of Fig. 3.7.

Furthermore, in each row of Table 3.1, the probability pm = Pr(Cm|Rm) to-

gether with the probabilities of “holes” in Rm, are depicted per class. In each

region the correct class occupies the majority of sites, while the other classes

appear in smaller percentages. In addition, with a closer look at each region,

the majority class is spread in the whole area of the corresponding region, in

many connected components of all sizes compared to the size of Rm.

In fact, what we see in all regions is a snapshot of a connectivity perco-
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3. Percolation Theory and Image Segmentation

Figure 3.6: Labelling to class (a) m = argmax{p(ξ|k)} for the five regions

image example.

Rm Pr(C1|Rm) Pr(C2|Rm) Pr(C3|Rm) Pr(C4|Rm) Pr(C5|Rm)
R1 0.4760 0.0618 0.0535 0.2426 0.1661
R2 0.0427 0.5938 0.0194 0.1288 0.2153
R3 0.0667 0.1477 0.4214 0.1677 0.1965
R4 0.0545 0.0577 0.0205 0.7457 0.1216
R5 0.0269 0.0056 0.0240 0.0386 0.9049

Table 3.1: Probabilities of class appearance per region.

C1 C2 C3 C4 C5

Figure 3.7: First row: map of the sites in which Cm dominates according to
MAP criterion for m = 1, 2, 3, 4, 5. Second row: largest connected component
of Cm in the image. Pink line delineates the boundary of the corresponding
region Rm.
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3.2 Image Segmentation and Connectivity Percolation Process

(a)

(b)

Figure 3.8: (a) Probability density function (pdf) of a class m in an 1D
feature space. The error area for the class, caused by the presence of the other
classes in the feature space, is also depicted in dark blue. (b) The effect of
region reconnection using a percolation process is depicted in gray colour.
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3. Percolation Theory and Image Segmentation

lation process at p = pm, for the majority class m. Using the posteriors of

m, a surface is constructed in Rm with values fm
u = p(m|ξu), ∀u ∈ Rm. In

the absence of other classes, fm
u = 1 and all the sites are classified to label

m in Rm. The introduction of the other classes, lowers the values of fm
u for

some u, due to the overlapping in the feature space as already explained and

when fk
u > fm

u a wrong assignment appears in Rm. If we think of a wrong

assignment as a disconnection of u from its 4-neighbors, then what we see at

p = pm is the “dilution” of Rm after a percentage of 1−p such disconnections

have been applied. As stated by percolation theory, in cases where pm > pc,

a giant region R̂m still remains, as we observe in the images of Fig. 3.7, for

the fifth region of class C5. When pm < pc, the connectivity of Rm is more or

less broken and a giant component is almost surely absent in Rm. To recon-

nect the region, we should perform the percolation process in the opposite

direction, i.e. from p = pm towards p = 1, examining disconnected sites in

decreasing posterior probability. The effect of this process is to move the

decision boundaries displayed in Fig. 3.8(a) towards the error area according

to the Bayesian rule, until the corresponding region retrieves its connectivity.

This effect of boundaries movement is shown in gray in Fig. 3.8(b).

Supposing that the only knowledge available is the posteriors of classes,

we could initiate the percolation process for all classes at p = 0. Doing so,

we are in position to observe a phase transition phenomenon that appears

in Rm, if we group sites to connected components using only the posteriors

of class m, in a way similar to that of percolation simulations. The term

“phase transition” refers to the connection of many small components to a

unique, large one. To be consistent with percolation terminology, for each

site u ∈ Λ, we compute the resistance or height of u as a decreasing function

hm
u = h(p(ξu|m)) of the posterior probability given the class m. This way, a

surface hm
Λ is constructed for each class. To observe the phase transition, the

sites in Rm are sorted in increasing order according to their h value and this

ordering is used to construct the connected components of class m. At each

step n, a site un ∈ Rm is occupied in that order. After each occupation, we

compute the connected components of occupied sites, whose resistance is less

than or equal to hm
un

and we monitor the mean size S of them at occupancy
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3.2 Image Segmentation and Connectivity Percolation Process

pn = n/|Rm|, excluding the size of the largest one. At the occupancy pm
c of

maximum S, a phase transition appears on the lattice and the construction

of a unique, large component for region Rm is detected.

In figures 3.9, 3.10, the detection of the phase transition for regions R3

and R5 respectively is graphically depicted. In plots (a) and (b) of each

figure, the average size S of connected components and the size of the largest

one are respectively shown as a function of occupation. In plots (b), the

phase transition probabilities pm
c , defined to be those of maximum S are also

depicted. Transitions occur at p3
c = 0.58 and p5

c = 0.57. In images (c) and (d)

the largest connected component before and after transition are shown. In

the first example, the heuristic detects that a giant component exists exactly

when it is constructed, while in the second, a large connected component

exists in R5 before it is detected by the heuristic of average size.

The mean size, as well as any other percolation observable, could be

monitored as a function of resistance hm, instead of occupation. In that case

we could monitor the resistance h′m at which the existence of the “giant”

component is detected. In particular, we can interpolate the observable for

a number N of increasing values of h,

{h1, h2, . . . , hN}.

At each step n of the process the connected components of sites u with hm
u ≤

hn are constructed and the observable for hn is computed. The probability

of sites with hm
u ≤ hn is P (hn|m,Rm), where P (h|m,Rm) is the cumulative

distribution function (cdf) of the random variable h given the class m, in

region Rm. Hence, equivalently, we can say that observable is estimated at

occupancies

{P (h1|m,Rm), P (h2|m,Rm), . . . , P (hN |m,Rm)}.

The cdf P (h|m,Rm) for h = 1 − f is depicted in the plot of Fig. 3.11, for

the 3nd region of the five regions image. Probability P (h|m,Rm), that drives

the percolation process, is an estimation of the cdf P (h|m) of the random
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Figure 3.9: Critical connectivity phase transition for the 3nd class in region
R3. In plot (a), the average size S of connected components and in plot (b),
the size of the largest component are depicted as functions of occupation p. In
images (c) and (d) the largest connected component before and after transition
are shown respectively.
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Figure 3.10: Critical connectivity phase transition for the 5th class in region
R5. Description is similar to that of Fig. 3.9.
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3. Percolation Theory and Image Segmentation

variable h given the class m. The cdf of h for each class could be computed in

the feature space as well. Thus, we can detect the unique “giant” component

of Rm after p′ ≃ pc of its sites have been occupied, by constructing the

components of sites u with hm
u ≤ h′m, where h′m is determined by the equation

p′ = P (h′m|m). This approach is described in the next Section, in order to

detect “large” connected components of the classes in the image, without

any knowledge of their location.
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Figure 3.11: Cumulative distribution function of resistance h computed in
region R3 for C3.

3.2.2 Initial “Large” Regions by a Percolation Process

As it is evident by the previous Section, we can retrieve large connected

components of an image region Rm described by class m, if we group sites

to components in decreasing order of their posterior probability. In other

words, percolation process could be used to locate initial regions of high

confidence per class. These initial regions are the parts of image that are

better described by the corresponding class, compared to the other classes.

We describe a procedure to get a large region for each class, using only

the surface hm
Λ , the pdf of classes and the fact that a “giant” connected

component exists or has began to be formed at p′ ≃ pc. Given the surface
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3.2 Image Segmentation and Connectivity Percolation Process

hm
Λ , we construct the connected components of class m until p′ ≃ pc sites

of the regions have been examined in increasing order of their hm value.

Assuming that the resistance hm is a random variable h, the stopping value

h′m of components construction, is determined by the pdf p(h|m) of resistance

h given the class m, which in turn derives by the pdf of features given the

class. Threshold value h′m is computed in the feature space by the equation:

p′ = P (h′m|m) =

∫ h′

m

0

p(h|m)dh ,

where P (h|m) is the cdf of resistance h for class m. In Fig. 3.12, the pdf as

well as the cdf of h3 = 1−f 3 are depicted for C3, together with the computed

stopping value h′3 ≃ 0.61 for p′ = 0.6. If we compare this cdf against the

cdf P (h|3, R3) of Fig. 3.11, we note that the two distributions are almost

similar, a fact that implies the similarity in components construction by the

percolation process. The sites u of image with h3
u < h′3 are shown in white

colour in Fig. 3.13(a). Since the pdf of classes is a normalized histogram of

intensities, the pdf as well as the cdf of h are easily obtained in that case.

The same holds for a resistance that derives by Laplacian distributions of

classes, as it is described in Chapter 6.

In Fig. 3.13(b), the largest components of sites u with hm
u < h′m are

depicted, for each class m, using p′ = 0.6. Components of small size are

considered to be formed due to the error that class m causes to the regions

of the other classes and are ignored. The “largest” component might be con-

sidered as the initial region of high confidence, which could be then grown

by flooding as it is discussed in the next chapter, under the restrictions men-

tioned hereafter. Until now, it is considered that each class corresponds to

one region in the image. Obviously, this assumption does not hold in physical

images. Instead, in many cases more than one large connected components

of a class appear in an image. The procedure described above in order to

extract the largest component per class, could be applied in the case of mul-

tiple regions as well, since the distribution of resistance is the same for each

one of them. What is needed in addition, is a threshold to reject components

that are considered “small”. We demonstrate the method using the color
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Figure 3.12: Probability distribution function (a) and cumulative distribu-
tion function (b) of resistance h computed by the corresponding pdf of class
C3.
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3.2 Image Segmentation and Connectivity Percolation Process

(a) (b)

Figure 3.13: (a) Sites u of image that satisfy h3
u < h′

3 and (b) largest
component of sites satisfying hm

u < h′
m.

image of Fig. 3.14(a). Intensity and the chromaticity coordinates (a, b) of

Lab have been used in that case to classify blocks to four classes, as it is

described in the previous Chapter. The pdfs of classes are computed using

histograms and assuming statistical independence of intensity and chromatic-

ity. In Fig. 3.14(b), the “large” connected components per class are shown,

for hm
u < h′m. Components of size less than the 0.5% of image size have been

rejected as “small”.

Although in these figures almost perfect initial regions are formed, “large”

components cannot be used to initialize the labelling of regions to the corre-

sponding class m, since boundary sites of them, in the form of small or larger

blobs, may be placed in the interior of other neighboring regions, thus affect-

ing the accuracy of labelling from the beginning. The extend of this type of

errors relates exclusively to the spatial correlation of the errors caused in the

feature space from class m to the other classes.

Solutions to this problem are given by the flooding algorithms described

in the next chapter. Obviously, the “large” components constructed by the

percolation process are characterized by the maximum resistance hmax of

their sites. If we define the cost of any path between two sites in the compo-

nent to be the maximum resistance of path sites, then for all paths between

two sites the cost is less than or equal to hmax ≤ h′m. This means that, if
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3. Percolation Theory and Image Segmentation

(a) (b)

Figure 3.14: (a) Color image and (b) large components of acceptable size,
satisfying hm

u < h′
m.

we define a “central” site in the component, the other sites are reached by

this in cost less than or equal to hmax. The flooding process described in the

next Chapter constructs the component beginning at one, or more than one

“centers” of sites that belong to the corresponding class with high confidence,

which are then grown using a distance defined by the same cost.

Unlike the percolation process described in this Section, an initialization

algorithm is described in the next chapter (Section 4.1) that gives initial

“centers” which are placed both into the “large” component and in the inte-

rior of the whole region with high probability, while topological restrictions

imposed by the existence of the neighboring regions may also be applied in

flooding. In fact, all we have to do in order to get initial sites which are surely

(with probability 1) placed on the “large” component and almost surely in

the interior of the region, is to apply the initialization process of Section 4.1

considering only the sites of the “large” component. However, initialization

for flooding could be applied for all sites in the image, without any knowledge

about the large component and this is the approach that has been followed
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herein.
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Chapter 4

Flooding Process for Label

Propagation

In this Chapter, we describe in detail the new flooding algorithms, as well as

their relation to Minimal Spanning Tree (MST) construction and Watershed

methods. The relations of the two last algorithmic approaches have been

presented in [16]. Label initialization is discussed at first in the next Section,

since it is a pre-request for both of the flooding algorithms.

4.1 Label Initialization

The output of label initialization is a set of spatially connected regions of

pixels, which are classified to class l with high confidence, using statistical

tests. For each pixel site s and class l , the distances in a disk ∆r of radius

r are averaged, resulting to the metric:

dSB
l (s) =

∑

z∈∆r

dB
l (s+ z),

with

dB
l (s) = − ln Pr{l|ξ(s)} = − ln

Plpl(ξ(s))
∑K−1

k=0 Pkpk(ξ(s))
,
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4. Flooding Process for Label Propagation

Figure 4.1: Topographic surface for the 4th class of five regions image.

where Pk is the a priori probability of class k, and ξ(s) is the feature vector

at site s. Distance dB
l (s) for the central circular region of five regions image

is shown in Fig. 4.1. Label l = 4 has been assigned to this region by k-

means. The profile of this distance for the row 128 of the image is depicted

in Fig. 4.2. All the classes are assumed equiprobable in this case and only

intensity histograms of classes are used as segmentation features, computed

by the not rejected pixels of Fig. 2.8(c). Therefore, as it is clear by the

two figures, for each l a topographic surface on a discrete grid is defined,

considering 4-connected pixels. The initially labelled pixels are defined to

be at the zero level, while the height of the unlabelled pixels is given by the

Bayesian rule. Indeed, dB
l (s) are always non negative.

After the computation of dSB
l (·) on the surface of all classes, image pix-

els are sorted in ascending order according to that metric and a user given

percentage of the sites with minimum average distance are retained and get

labelled. Initial regions (seeds) obtained this way for the five regions image

using r = 10 are shown in Fig. 4.3. These regions correspond to 1% of the

pixels that belong to the corresponding class according to dSB
l (·).
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Figure 4.2: Profile of (middle) row 128 taken by the topographic surface of
Fig. 4.1.

This method may also be considered as an algorithm to determine initial

regions of high confidence for the construction of minimum spanning tree,

for each label. Indeed, metric dSB
l (s) could be interpreted as the weight of

the spanning subtree, which is constructed using all the pixels of disk ∆r.

Pixels s of minimum dSB
l (s) are placed on topographic valleys of minimum

height, thus constituting the better initialization option for label flooding.

The strong relation between flooding and both of MST construction and

topographic computations is described in the next Subsection.

4.2 A min-max criterion for labelling

It is now assumed that an arbitrary number of pixel regions has been assigned

to visual classes with high confidence. Pixels initialized this way are hard

constrained to belong to the selected class, admitting that the decision is sure

or almost sure. Let S =
⋃K−1

l=0 Sl be the set of initially labelled pixels. For

any unlabelled pixel s we can consider all the paths linking it to a labelled set

55

./classification/images/demo/Pcgp4-prof.eps


4. Flooding Process for Label Propagation

Figure 4.3: Initial regions (seeds) per class for the five regions image.

or region. A path Cl(s) is a sequence of adjacent pixels {s0, . . . , sn}, where

sn = s and all pixels of the sequence are unlabelled, except s0 which has label

l. The cost of a particular path is defined as being equal to the maximum

cost of a pixel classification according to the Bayesian rule and along the

path

max
i=1,...,n

dB
l (si).

Finally, the labelling problem becomes equivalent to search for the short-

est path under the above cost, as we can define the distance of any unlabelled

pixel from the different classes as being the lowest height to climb for reaching

site s,

δl(s) = min
Cl(s)

max
si∈Cl(s)

dB
l (si). (4.1)

Therefore the decisions are topology constrained.

If we consider the graph of unlabelled sites with 4-connections and the

labelled connected components, we can define an edge weight as follows

w(si−1, si) = max(dB
l (si−1), d

B
l (si)).

According to the cycle property applied to the MST of this graph the heaviest

edge of a path belonging to the MST is lighter than the heaviest edge of any

other path connecting two vertices. Therefore paths defined by (4.1) belong

to the MST of the graph defined above and the computation of δl(s) neces-
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4.2 A min-max criterion for labelling

sitates the construction of this MST. Prim’s algorithm, with computational

cost O(N log(N)) [39], could be used.

Under this formulation, the distance computation is one variant of per-

colation process, called Invasion Percolation (IP) [40]. In a variant of the

IP itself, given the surface of resistances h, the percolating label begins to

invent the lattice at a central site in it, following paths of minimum cost,

where the cost is defined by the resistance, exactly as here. The purpose

of the simulation in IP is to determine up to what value of resistance the

“giant” component is formed. The distance function defined in Eq. (4.1) has

to be computed in that case as well, in order to determine this maximum

value of resistance. The connection between the computation of the largest

component in IP and MST is due to Barabási [41]. The extended use of MST

for fast IP simulations, is introduced in [42]. The flooding processes that are

described in the Sections that follow, are IPs with topological constraints.

On the other hand, it is very interesting to remark that the labelling

problem, as posed here, consists of constructing a topographic surface, as

that for finding watershed lines [43]. Hence, we can use a region growing

procedure, like the immersion (flooding) algorithm [44], for computing the

above defined heights and distances and for classifying pixels, taking into

account region features and topology constraints. In Sections 4.3 and 4.4

two algorithms, based on the principle of the min-max Bayesian criterion for

labelling, are presented in detail. The main difference between them is that in

the former topological constraints are limited to the above min-max criterion

and the final labelling is left to a MRF-based minimization method, while in

the second strong topological constraints for labelling are imposed. In both

cases, initial labelled regions of high confidence have to be provided. In our

approach an automatic initialization is performed as described is Section 4.1.
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4. Flooding Process for Label Propagation

4.3 Independent Label Flooding Algorithm

and MRF-Based Minimization

4.3.1 Independent Label Flooding Algorithm

The Independent Label Flooding Algorithm (ILFA) determines the

optimum label as that minimizing δl(s). K independent flooding procedures

are needed and the best label is selected. The algorithm follows the principle

of Region Growing (RG) [9, 45], where however the growing procedure is

used to compute the distances, and not to directly label pixels. Among all

neighboring pixels to the set Sl, that are unlabelled and of unknown distance

from label l, the nearest pixel is found, according to Equation (4.1). Growing

proceeds until no more pixels can be added to the expanding regions, because

their propagating contour reaches only initial pixels with different labels.

The computed distances δ4(·) by ILFA for the 4th class of five regions

image are depicted in Fig. 4.4. The profile of this surface for row 128, is

illustrated in Fig. 4.5. Seed pixels of zero height are also indicated in that

figure. In Fig. 4.6, the labelling of pixels to the class k of minimum dB
l (·)

and δl(·), computed by ILFA are shown in images (a) and (b), respectively.

4.3.2 MRF-Based Minimization

Given the region growing measurements derived in Eq. (4.1), we then propose

to optimize a discrete MRF in order to decide what the final labels should

be. In this manner, we aim at capturing the local interactions between pixels,

which will help us to refine and correct the labels that were assigned during

the previous stage of our algorithm. In general, the problem of optimizing a

discrete pairwise MRF can be formulated as follows: we are given a weighted

graph G (with nodes V, edges E and weights wsz), and we seek to assign a

label ls (from a discrete set of labels L) to each node s ∈ V, so that the

following cost is minimized:

∑

s∈V
δls(s) +

∑

(s,z)∈E
wszd

P (ls, lz). (4.2)
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Minimization

Figure 4.4: Flooding distance surface for the 4th class surface of five regions

image.
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Figure 4.5: Profile of row 128 of the surface in Fig. 4.4.
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4. Flooding Process for Label Propagation

(a) (b)

Figure 4.6: Labelling to class (a) k = argmin{dB
l (s)} and (b) k =

argmin{δl(s)}, where δl(·) is computed by ILFA, for the five regions image
example.

Here, δls(·), d
P (·, ·) determine the singleton and pairwise MRF potential func-

tions respectively.

In our case, the pairwise potentials will be set according to the Potts

function, i.e.:

dP (ls, lz) =







1, ls 6= lz

0, ls = lz
(4.3)

Furthermore, all weights wsz will be set equal to a user-specified constant.

For minimizing the MRF energy in Eq. (4.2), we will make use of the

recently proposed primal-dual method in [46], which casts the MRF opti-

mization problem as an integer program and then makes use of the duality

theory of linear programming in order to derive solutions that are provably

almost optimal. Furthermore, that algorithm proves to be a lot faster than

the state of the art MRF optimization techniques, while it applies to a very

wide class of MRFs.

The labelling result obtained by ILFA followed by MRF based Minimiza-

tion using an 8-neighborhood system, with wsz = 5 in Eq. (4.2), is illustrated

in Fig. 4.7(a) for the five regions example.
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4.4 Priority Multi-Label Flooding Algorithm

(a) (b)

Figure 4.7: Segmentation results using ILFA and MRF based Minimization
(a) and PMLFA (b) for the five regions image example.

4.4 Priority Multi-Label Flooding Algorithm

The Multi-Label Flooding Algorithm (MLFA) imposes strong topol-

ogy constraints. All initially labelled regions are propagated simultaneously.

Hereafter we describe in detail a specific version of this algorithm, called

Priority Multi-Label Flooding Algorithm (PMLFA).

In PMLFA, labels correspond to K classes of features and each class

is represented by one or more spatially connected regions on image plane.

These labelled regions form the initial correctly labelled pixels. Then, the

contour of each initial region is propagated towards the space of unlabelled

image pixels, according to dissimilarity criteria, which are based on the label

and the segmentation features. Contour pixels s are sorted according to their

dissimilarity δl(R)(s) from the label l(R) of regions R they adjoin and at each

step, a group of contour pixels of minimum dissimilarity are set to the label

that most probably belong. Contrary to ILFA, all labels are propagated

simultaneously, and pixels are directly labelled.

In addition, group labelling refers to pixels s, which are placed on re-

gion contours at an instance of the propagation progress and their metric

δl(s) against label l is quite the same. This fact, implies the quantization

of distance metric dB
l (·), which in turn leads to the reduction of spatial re-

dundancy that often appears during growing. Spatial coherence arises when
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4. Flooding Process for Label Propagation

neighboring pixels have almost equal distance value or equivalently, as it is

clear by the definition of dB
l (·), when neighboring pixels have almost equal

posterior probabilities for a class given their feature vector. Furthermore,

two decision thresholds, namely T
high
l and Tlow

l , may be defined on the met-

ric, when dB
l (s) measures the uncertainty of the decision to assign pixel s to

label l. The terms high (resp. low) refer to corresponding probabilities, such

that T
high
l < Tlow

l . Given the thresholds, if dB
l (s) < T

high
l , pixel s belongs to

l with great certainty and should be labelled as soon as it is scanned. On

the opposite, if dB
l (s) > Tlow

l , pixel s unlikely belongs to l and its labelling

should be postponed until eventually, as growing proceeds, a better choice

for s is obtained by the algorithm.

In order to incorporate the behavior just described in region growing

terms, in PMLFA, contour pixels s of classes l that satisfy inequalities dB
l (s) <

T
high
l , (0 ≤ l < K), are inserted in high priority simply connected lists

(HPLl) once they are scanned. Similarly, pixels s for whom dB
l (s) > Tlow

l ,

are inserted in low priority simply connected lists (LPLl). By contrary, the

rest of contour pixels are inserted in normal priority simply connected lists,

denoted as NPLl,i (0 ≤ l < K), each one corresponding to the ith quantiza-

tion interval of dissimilarity criteria values, according to a given quantization

step ∆Q:

i = Q(dB
l ) =

⌊

dB
l − min{dB

l }

∆Q

⌋

(4.4)

In that way, an array of simply connected lists is enough to keep the dissimi-

larity information of pixels, resulting in a sorting procedure which resembles

the non-comparison sorting algorithms (Chapter 8 of [39]). The quantization

intervals as well as the priority decision thresholds are depicted graphically

in Fig. 4.8.

At each step, first the items of HPLl for 0 ≤ l < K (if any) are popped

and assigned to the corresponding label. Otherwise, if high priority lists

are empty, the items of lists NPLl,i of minimum i are popped and get la-

belled. Last, if normal priority lists are empty too, the items of lists LPLl

are examined and processed by the algorithm.

Then, for each safe, popped and labelled pixel z, its unlabelled neighbors
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4.4 Priority Multi-Label Flooding Algorithm

δmin{  } max{  }δ

∆Q
T high T low

Figure 4.8: Quantization of dissimilarity metric and low/high priority thresh-
olds.

are considered and are inserted in the corresponding list if they are not

already in one of them. Safety of z tests the local topology of decisions in

the neighborhood of z, at the time that z is assigned to label k. In the

current implementation, z is assumed as safe pixel, if, and only if, it adjoins

labelled pixels of label k and only of that.

Depending on the application, one of the two or both priority thresh-

olds may not be used, where, in the later case, all the unlabelled pixels are

handled by the normal priority lists. Furthermore, if [min{dB
l },max{dB

l }] is

an interval of interest in the domain of dB
l , we may set T

high
l = min{dB

l },

Tlow
l = max{dB

l } and quantize only that interval.

The computational cost of the proposed algorithm is (subject to a con-

stant factor)

T = ((1 − φ)IQ + φ)NU ,

where NU is the number of initially unlabelled pixels, IQ is the number of

quantization intervals and φ is the percentage of initially unlabelled pixels

that are inserted in low/high priority lists. From Equation (4.4) IQ is a

function of ∆Q and since IQ is kept fixed, the computational time T of

the growing process becomes a linear function of NU only. In addition, the

constant factor of T decreases as φ increases.

In what follows, we describe the labelling of initially unlabelled pixels us-

ing PMLFA, where low and high priority thresholds are used on the dissimi-

larity metric. In order to define priority thresholds T
high
l , Tlow

l and forgetting

for a while the competitive nature of growing, we note that according to

MAP criterion, a pixel s surely belongs to class l, if Pr{l|ξ(s)} > 0.5, while

it does not belong to l, if Pr{l|ξ(s)} < 1
K

. On the other hand, each initially
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4. Flooding Process for Label Propagation

unlabelled pixel si placed on a path τ denoted as

τ = s0 → s1 → · · · → sn,

which connects the seed pixel s0 with the boundary pixel sn of label k,

recursively satisfies the following condition

k = arg min
l

{

max
{si∈τ}

dB
l (si)

}

. (4.5)

Thus, in accordance with the ascertainment made above for the MAP crite-

rion, the final labelling of RG will not change if we set T
high
l = ln 2. Indeed,

if a region of label k reaches pixels s with dB
k (s) < ln 2 during growing, then

those pixels surely belong to class k, without violating Eq. (4.5) and could

be assigned to k as soon as possible. On the opposite, threshold Tlow
l relates

to pixels s that unlikely belong to regions of class l, which reach them dur-

ing growing. This pixel category consists of boundary and hole pixels and

according to the Bayesian criterion, we could set Tlow
l ≥ lnK.

The segmentation result obtained by PMLFA for the five regions image

is shown in Fig. 4.7(b). 50 bins were used for height quantization in ln(50)

intervals. We also set T
high
l = ln(2) and Tlow

l to a high value.
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Chapter 5

Texture and Colour

Segmentation

In this chapter, we describe the application of our general framework to

typical segmentation problems, such as intensity, colour and texture seg-

mentation. In each case, statistical clustering methods are used to obtain

an initial map of high confidence labelled, pixel regions. The probabilistic

dissimilarity metrics for the expanding regions are defined according to the

considered segmentation problem. PMLFA or ILFA followed by MRF based

minimization are applied as the last step of our framework, to give the final

segmentation solution map.

Our general segmentation framework, permits the usage of texture, lu-

minance and colour data either on their own, if the corresponding features

are sufficient to discriminate the classes, or in combination to get improved

segmentation results.

In Section 5.1, the features used for segmentation are described. Segmen-

tation results of the proposed methods on synthetic texture images are given

in Section 5.2. In Section 5.3, the segmentation framework is applied on

the well known Berkeley Segmentation DataSet and performance evaluation

results as well as the results of comparison against freely available segmenta-

tion algorithms are reported. In the last Section of this Chapter, detection

of face colour areas is described using colour histograms and PMLFA.
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5. Texture and Colour Segmentation

5.1 Texture and Colour Analysis

Many segmentation algorithms have been proposed in the recent past in order

to provide efficient tools for colour/texture based region extraction in still

images. In our work we mainly use a Discrete Wavelet Frames (DWF) filter

bank [25], which appears to give a good scale-space image analysis.

Wavelet frames representation decomposes the image into orthogonal tex-

ture components in different scales and orientations. The translation invari-

ance of the representation is a desired property, when quite precise boundary

localization is required. However, in cases where texture analysis in more

orientations is needed, a Gabor filter bank is used herein as well.

Methods that combine texture and colour information for segmentation

have been proposed in the literature [47] using Hue-Saturation-Value colour

space and primitive texture features, which are classified by point-wise ex-

pectation maximization.

Texture analysis gives a set of Kζ detail components for each pixel s,

ζs = {ζi,s, 1 ≤ i ≤ Kζ}. The chromaticity coordinates cs = (as, bs) of the

Lab colour space are used for colour representation, when colour information

is taken under consideration, because this representation has good uniform

colour space properties.

Texture details of each class l, 0 ≤ l < K, are assumed to be zero-mean,

generalized Gaussian distributed and uncorrelated and they are represented

by the variance of the texture components of pixels belonging to label l,

while intensity and colour of the class are represented by 1D and 2D his-

tograms of intensity and chromaticity of classes pixels, respectively. In each

case, the corresponding numbers of histogram bins KI , Kab may be provided

by the user or the method described in Subsection 2.1.1 could be used, to

automatically estimate distributions.

Features of classes are estimated by the feature classification method

described in Chapter 2. Eq. (A.5) is used to measure the statistical distance

of the Kζ high frequency components of texture blocks, while Eq. (A.2) is

used for dissimilarity measurement of intensity or colour features of image

blocks. The block sets obtained by k-means are used for the calculation of
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5.2 Texture Segmentation

the prototype feature vectors, as it is described in Subsection 2.3.4.

5.2 Texture Segmentation

Image (a) (b) (c) (d) (e) (f) (g) (h) (i)
Texture Analysis 3 3 4 4 4 4, 6 3 3 3
Block Dimension 32 32 32 32 32 16 32 16 16
Block Overlapping 16 16 16 16 16 0 16 0 8

Table 5.1: Classification parameters for images from [5] (p. 300)

Image (a) (b) (c) (d) (e) (f) (g) (h) (i) Mean

Error (PMLFA) 0.4% 0.28% 0.41% 0.36% 0.44% 0.44% 0.54% 0.32% 0.49% 0.41%

Error (ILFMA) 0.04% 0.04% 0.07% 0.04% 0.04% 0.1% 0.11% 0% 0.05% 0.05%

Error (MLFM) 1.65% 1.32% 1.36% 1.58% 1.66% 1.72% 1.83% 0.9% 0.87% 1.43%

Table 5.2: Error percentage results on images from [5] (p. 300)

In [48] are reported results of texture classification on nine synthetic tex-

ture mosaics using various techniques mainly based on frame representations.

We illustrate experimental results on these images to evaluate the perfor-

mance of our method.

Intensity and texture are used in unsupervised clustering of the images.

The classification parameters for texture analysis and block dimension and

overlapping extend that are selected in each case are given in Table 5.1. DWF

analysis is used for all images except (f), for which a Gabor filter bank is

employed. Texture scale levels used are shown in Table 5.1 for DWF analysis

and the number of scales and orientations for the Gabor analysis of image (f).

For each image except (f) all the intensity values are used to compute the 1D

intensity histograms. In the case of (f), intensity values are quantized in 180

bins, using k-means. Furthermore, edge based block rejection is performed

only for image (f). In block clustering (Subsection 2.3.4), the most centrally

located block (centroid) of each class is used as “mean” feature vector, at

each iteration of k-means, leading to a great reduction of k-means iterations
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5. Texture and Colour Segmentation

(a) (b) (c) (d) (e)

Figure 5.1: Texture segmentation for the 5 natural textures of the first row.
From the second to fourth row: segmentation results using PMLFA, ILFMA
and MLFM respectively.
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5.2 Texture Segmentation

(less than 5), although computation of centroids makes each iteration more

time consuming.

In a previous work [1], segmentation results were obtained for the texture

images of [48] using Multi-label Fast Marching (MLFM) algorithm. Re-

sults were presented using both unsupervised and supervised features com-

putation. Our results are summarized in Table 5.2 for PMLFA and MRF

based Minimization (ILFMA) and compared to those of MLFM. The orig-

inal images and the corresponding segmentation results are given in Fig-

ures 5.1, 5.2, 5.3 and 5.4.

In all cases 1D histograms of all the intensity values are used to model

the statistics of classes. Initial regions are extracted by the 1% of the pixels

of high confidence per class, using a disk of radius 10 per pixel. Keeping the

initialization percent low, is crucial in order to avoid erroneous segmentation

results from the beginning, specially in the presence of many classes. Fur-

thermore, the results indicate that the new algorithms are insensitive to the

size of seeds. MRF based minimization is performed using an 8-neighborhood

system for all images except (h) and (i), for whom a 4-neighborhood system

is considered. In all cases we set wsz = 5. PMLFA is applied by quantizing

heights in 50 bins of ln(50) intervals and setting T
high
l = ln(2) and Tlow

l to a

high value.

We also give approximate running times in the case of 5 classes images

of Fig. 5.1. The methods are executed on an Intel Centrino 1.6GHz ma-

chine with 1GB RAM, running under Linux 2.6.24OS. The computational

time of the overall framework is mainly consumed by the automatic feature

extraction stage and the most time consuming operations are the distance

computation between block pairs and k-means. The overall running time be-

fore flooding and ILFMA is about 5 − 10 sec. The running time of PMLFA

is less than 0.05 sec and the execution time of ILFA per label is of the same

order, about 0.1 sec. MRF minimization is performed in about 1 second.
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5. Texture and Colour Segmentation

(f) (g)

Figure 5.2: Texture segmentation for 16 natural textures. In second and
third rows: segmentation results using PMLFA and ILFMA respectively.
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5.3 Evaluation on Berkeley Segmentation DataSet (BSDS)

(f) (g)

Figure 5.3: Texture segmentation for 16 natural textures using MLFM [1].

5.3 Evaluation on Berkeley Segmentation Da-

taSet (BSDS)

In this Section, several experiments towards the performance evaluation of

the segmentation framework on natural images are presented. Experiments

were performed on the Berkeley Segmentation DataSet (BSDS) [2]. BSDS

consists of natural colour images, of various degrees of colour and texture

complexity, divided in a “train” (TR) and a “test” (TE) subset. We treat the

two subsets as a unique dataset, since, in the case of clustering and flooding

algorithms, tuning of parameters does not involve any training to a specific

set of images. Furthermore, the freely available ground truth segmentation

maps for each image of BSDS, make possible the performance evaluation of

segmentation results and the comparison against other segmentation algo-

rithms using the supervised metrics of Appendix B. However, performance

evaluation using an unsupervised metric, in the sense that no ground truth

data is required, has been also conducted in Subsection 5.3.1.

The purpose of these tests was twofold: first, to quantitatively measure

the impact of parameter tuning on the accuracy of segmentation results and

second, to determine the performance of the framework when parameter val-
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5. Texture and Colour Segmentation

(h) (i)

Figure 5.4: Texture segmentation for 10 natural textures. From the sec-
ond to fourth row: segmentation results using PMLFA, ILFMA and MLFM
respectively.
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5.3 Evaluation on Berkeley Segmentation DataSet (BSDS)

ues are kept fixed or they are automatically adapted to visual content, using

the techniques of Chapter 2. Hence, in Subsection 5.3.1 supervised clustering

and segmentation are performed in order to determine the sensitivity of the

segmentation framework to parameter tuning. The performance of segmen-

tation when important clustering parameters are automatically computed is

quantitatively evaluated in Subsection 5.3.2. Finally, in Subsection 5.3.3 we

present quantitative comparison results of the proposed segmentation frame-

work against the colour-texture based JSEG [49] algorithm and the colour

based Felzenszwalb and Huttenlocker (FH) [13] algorithm.

Performance evaluation shows that merging is an important step of our

framework, which leads to improved results when segmentation is performed

automatically. Merging methods are performed on the segmentation results

of flooding algorithms. Merging is used to eliminate “holes” whose size is

smaller than a threshold. Such “holes” appear mainly in the segmentation

map of ILFMA and they are merged with their surrounding region. Further-

more, neighboring regions of classes, whose boundary energy is low, are also

merged after “holes” elimination. The aim in that case is to merge neigh-

boring regions of different classes, when no physical boundary really exists

between them. Typically, such boundaries appear due to oversegmentation

of image areas which undergo gradual transitions or, more generally, their

feature description does not follow the statistical modeling of visual data

described herein. Before that, merging of the two regions with minimum

Bhattacharyya distance of their statistical description is also applied, when

this distance is lower than a threshold.

5.3.1 Parameter Determination

In the experiment described in this Subsection, supervised segmentation is

performed, without merging. Segmentation results using intensity, colour

and texture features to characterize classes, are given in Figures 5.5, 5.6. The

classification parameters used in each case are given in Tables 5.3 and 5.4

respectively.

Feature selection in block classification plays an important role in the
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overall system. The result of Fig. 5.5(a) for example, could not be achieved,

without the usage of texture details. On the other hand, since texture anal-

ysis involves computations in a window for each pixel, object boundaries are

sometimes less accurately localized, as it is the case in Fig. 5.5(a). However,

as it shown in the next Subsection, automatic segmentation for the same im-

age gives a more accurate result, because, in that case, intensity is automat-

ically selected as segmentation feature and regions of the clouds are merged

by the boundary based, merging method. Initial regions are extracted by the

5-50% of the pixels of high confidence per class, using a window of dimension

that ranges from 11 to 31 pixels. For each image, the segmentation results

using PMLFA are illustrated. PMLFA is applied by quantizing heights in

50 bins and setting T
high
l = ln(2) and Tlow

l = − ln(0.2). The curves of pink

colour in the images of those Figures, delineate the boundaries between the

regions of classes.

As it is obvious by the results, our effort is to adequately describe general

feature classes which lead in a meaningful region decomposition. Further-

more, in most of results in Fig. 5.5, regions which correspond to objects, or

classes of objects, have been successfully extracted, since the automatically

computed statistics of the selected cues are enough to describe their class as

well as to distinguish them from their background.

Considering the clustering parameters used for each image, less than 10

classes are needed and only 2 different block dimensions are used in practice.

Block dimension relates to image and object size. What varies in each case

is the combination of features used and the parameters of their statistical

description. These observations have been taken under consideration, for

parameter tuning towards the automation of the segmentation framework,

as it is described in the following Subsection.

As BSDS is extensively used in literature, it is possible to compare differ-

ent algorithms, although totally acceptable objective criteria are not really

defined. In a recent article [50], a review of criteria for unsupervised image

segmentation evaluation is presented. The sum of layout and region entropy

is a simple criterion with good properties when applied for fixed number of

regions. Recently Ding, Ma and Chen [15] published results on a subset of
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(a) TE-3096 (b) TE-163085 (c) TE-175043

(d) TE-253027 (e) TE-296059 (f) TE-304034

(g) TE-42049 (h) TE-86016 (i) TE-196073

(j) TR-16052 (k) TR-94079 (l) TR-105053

(m) TR-113016 (n) TR-326038 (o) TR-353013

Figure 5.5: Segmentation results for a part of the Berkeley Segmentation
Dataset [2], using PMLFA. Results (g), (h) and (i) are used in entropy criterion
comparisons.
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5. Texture and Colour Segmentation

(a) TE-69015 (b) TE-78004 (c) TE-86000 (d) TE-302008

(e) TR-100080 (f) TR-198023 (g) TR-198054 (h) TR-374067

(i) TR-15088 (j) TR-198023 (k) TR-60079 (l) TR-163014

Figure 5.6: Segmentation results for the Berkeley Segmentation Dataset
(cont.). Results (i)-(l) are used in entropy criterion comparisons.
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5.3 Evaluation on Berkeley Segmentation DataSet (BSDS)

Image (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o)

Classes 2 3 3 2 3 3 2 2 2 4 3 3 3 2 4

Intensity Bins 256 32 256 32 32 32 16 16 16 32 32 32 32 32 32

Chromaticity Bins 0 64 256 64 32 64 64 64 64 64 64 64 64 64 64

Texture Analysis 1 2 0 3 1 0 1 1 1 3 0 0 0 3 0

Block Dimension 32 32 32 32 32 32 16 16 16 32 32 32 32 32 32

Block Overlapping 16 16 16 16 16 0 8 8 8 16 16 16 16 16 16

Table 5.3: Classification parameters for images of Fig. 5.5.

Image (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Classes 4 5 5 5 4 4 4 4 2 7 3 3

Intensity Bins 32 128 64 16 32 32 32 32 16 16 16 16

Chromaticity Bins 64 256 64 16 64 128 64 64 64 64 64 64

Texture Analysis 0 0 0 2 2 2 1 0 1 1 1 1

Block Dimension 32 32 32 32 32 32 32 32 16 16 16 16

Block Overlapping 0 16 16 16 16 16 16 16 8 8 8 8

Table 5.4: Classification parameters for images of Fig. 5.6.

BSDS shown that their method (CCTA) gives better segmentation on this

subset according to the entropy criterion than that obtained by the normal-

ized cut algorithm [12] and the algorithm of [13]. We give in Table 5.5 our

result and that of [15] on the subset of images where the comparison is pos-

sible. We obtain a better result on 11 over 16 images. C is the number of

regions, as defined in [15] for the CCTA and as the number of the resulting

connected components for our algorithm with K classes.

5.3.2 Performance Evaluation vs. Humans

The proposed methods have been tested against the ground truth maps

given by humans for each image of BSDS. The metrics used for the compar-

ison against human provided maps are: the Probabilistic Rand (PR) index

and Normalized PR (NPR) index, as they are defined by Equations (B.3)

and (B.4) respectively, and the region differencing measures LCE and GCE.

The definitions and the properties of these metrics are given in Appendix B.

For each image, algorithm and metric, the segmentation result of each al-

gorithm is compared against each one of the ground truth results {Sk} that
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Image Image Entropy Number C Entropy Number K Number C Entropy
CCTA Segmentation CCTA PMLFA PMLFA Segmentation PMLFA

3096 4.1849 2 4.3810 2 2 4.3065
14037 4.7252 5 5.3142 4 5 5.1935
24063 5.0626 5 5.6329 4 5 5.4656
55067 4.7245 6 5.0916 6 6 4.9650
60079 4.2383 3 4.6981 3 3 4.6211

118035 4.3159 4 5.1829 3 5 4.5650
119082 5.2815 26 6.6993 9 25 7.1583
135069 3.9342 2 4.1646 2 2 4.0094
159091 5.3569 3 5.5587 3 3 6.0035
167062 3.2160 3 3.5814 3 3 3.3224
176035 5.2215 4 5.6635 4 4 5.8649
198023 4.9806 9 5.6459 7 10 5.8267
241004 4.8029 10 5.7628 6 9 5.6119
253036 5.0771 3 5.2776 3 3 5.2598
271031 4.9824 2 5.1025 2 2 4.9903
374067 4.8794 7 5.6148 4 7 6.0724

Table 5.5: Comparison using the entropy criterion.

have been provided by humans, for the image. The median of metric scores

for set {Sk} is used to measure the performance of the algorithm on that

image.

In the first experiment, which is termed “Case Study I”, the KI and

Kab intensity and chromaticity bins respectively, are automatically computed

using the method of Subsection 2.1.1. DWF texture analysis in one level of

details is performed, since it is found enough for this dataset. Clustering as

well segmentation parameters have been provided by hand in each case.

Compared to the first experiment, in the second one, called “Case Study

II”, the number of classes is automatically determined in addition, by the

method of Subsection 2.3.2. In “Case Study III”, the method described

in [30] is used to automatically obtain clustering maps. Furthermore, au-

tomatic feature selection takes place per image using the second method of

Subsection 2.3.5, and thus, all important parameters of clustering are auto-

matically determined, while all the other parameters are set to values shown

in Table 5.6 for the overall dataset. Automatic selection of features involves

six of the seven combinations of intensity, colour and texture, excluding the

case of selecting texture details on their own. Finally, merging techniques

are applied on the segmentation result of flooding algorithms in that case.

The results of performance evaluation for each experiment are depicted
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Block Dimension 32
Block Overlapping 16
Initialization Disk Radius 10
Initialization Percentage 1%

T
high
l ln(2)

Tlow
l ∞

MRF neighborhood 8
MRF tolerance wsz 2

Table 5.6: Fixed parameter values of block based clustering and Bayesian
flooding algorithms, for “Case Study III”.

in Figures 5.7, 5.8 and 5.9 respectively. In each Figure, comparison results

for PMLFA in subfigure (a) and ILFMA in subfigure (b), are given for the

four metrics PR, NPR, GCE and LCE, in left-right, top-bottom order re-

spectively. The frequency of images at a given metric value is depicted by

the corresponding histogram for each metric. Furthermore, average (mean)

and median performance for each metric over all BSDS images are illustrated

under the histogram.

Performance evaluation against humans shows that the segmentation re-

sults scale well to human perception of regions for this dataset. Furthermore,

the outcome of performance evaluation, indicates that the automatic com-

putation of bins for intensity and colour, sufficiently adapts to image content

and there is no need to be provided by hand for each image. Feature selection

as well as the number of classes are robustly computed by the corresponding

methods, for the majority of images.

It should be noticed that although supervised evaluation metrics permit

the assessment of segmentation results and the comparison between segmen-

tation algorithms, their results are always biased because of the decisions

made during ground truth extraction, often by human operators, as in the

case of BSDS. However, the definition of NPR metric in Appendix B uses

these decisions to judge how well ground truth maps capture the visual con-

tent complexity. In fact, this approach leads to a quantitative estimation of

the hardness of segmentation task per image and hence, NPR metric nor-

malizes Rand Index (RI) values given the complexity of visual content in an

image basis. In that sense, NPR may be considered the more qualitative and
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Figure 5.7: Case Study I: Histogram, mean and median metric values for
the 300 images of BSDS, with automatic computation of KI and Kab intensity
and chromaticity bins respectively and one DWF level of texture details. The
combination of features as well as the number of classes for each image are
given by user.
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Figure 5.8: Case Study II: Histogram, mean and median metric values for
the 300 images of BSDS, with automatic computation of KI and Kab inten-
sity and chromaticity bins respectively and one DWF level of texture details.
In addition, number of classes is automatically computed for the user given
combination of features per image.
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Figure 5.9: Case Study III: Histogram, mean and median metric values for
the 300 images of BSDS, with automatic computation of KI and Kab intensity
and chromaticity bins respectively and one DWF level of texture details. In
addition, feature combination and the number of classes are automatically
computed per image.
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5.3 Evaluation on Berkeley Segmentation DataSet (BSDS)

(a) PMLFA (b) ILFMA JSEG FH
PR 0.8895 0.5008 0.4927 0.3531

NPR 0.4942 -1.3070 -1.3427 -2.0011
GCE 0.0769 0.0850 0.0635 0.0355
LCE 0.0446 0.0593 0.0590 0.0313

Table 5.7: Performance values for the segmentation results of Fig. 5.10.
Expected PR index is greater than 0.78 for all human operators in that case.

explanatory criterion compared to the other three.

The way that NPR metric value scales according to the colour visual con-

tent and the ground truth maps, is explained using the example of Fig. 5.10.

In images (a)-(d) of that Figure, segmentation maps are illustrated in pseu-

docolour for the colour image of the first row, obtained by PMLFA, ILFMA,

JSEG and FH algorithms, respectively. The five ground truth maps are also

depicted in that Figure. Colour content complexity is low for this image

and the expected index of all ground truth maps, given the colour visual

content, is greater than 0.78. High values of expected index indicate that

colour visual content has been captured by human operators. Performance

metric values for all results and metrics are shown in Table 5.7. In that Ta-

ble, high NPR value is achieved by PMLFA result only, while the other three

results are heavily penalized, because they do not agree with the complexity

of visual content in that image. By contrary, according to GCE and LCE

metrics, performance becomes misleadingly better (lower metric values), as

the number of regions in each map increases, since these metrics favour over-

segmentation. This is not the case for PR and thusfore may be considered a

more objective evaluation metric compared to GCE and LCE.

5.3.3 Comparison to Other Segmentation Methods

In this Subsection, the proposed method is qualitatively and quantitatively

compared against the unsupervised segmentation algorithms JSEG and FH.

Considering our framework, comparison results only for “Case Study III”

are illustrated, since clustering and segmentation are fully automatic in that

case.
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TR-15088

(a) PMLFA (b) ILFMA (c) JSEG (d) FH

Five ground truth maps

Figure 5.10: Segmentation results of (a) PMLFA, (b) ILFMA, (c) JSEG and
(d) FH algorithms and ground truth maps for the colour image of the first row.
Results (a) and (b) are of “Case Study III”.
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5.3 Evaluation on Berkeley Segmentation DataSet (BSDS)

Segmentation results of PMLFA and ILFMA of “Case Study III” and of

JSEG and FH methods using their default parameter values, are depicted in

images of Figures 5.11- 5.13. Segmentation maps for each image and algo-

rithm are displayed in pseudocolour in these Figures. In PMLFA and ILFMA

segmentation maps, each colour corresponds to a class, rather than to a re-

gion label. These images are characterized by high diversity of visual content

or gradual transitions and reflections, which, in general, make segmentation

a difficult task. Although gradual transitions of visual cues are not modeled

by our framework, boundary based merging that is applied after PMLFA

and ILFMA, gives the semantically correct segmentation. In fact, boundary

based merging improves the segmentation results in many cases, where there

is no physical boundary between regions of classes. Characteristic examples

of improved segmentation results, after merging has been applied, are those

of images Fig. 5.11(a), Fig. 5.12(b) and Fig. 5.13(b). Considering the other

two algorithms, gradual transitions and reflections are effectively handled by

JSEG, as it shown for example by the corresponding segmentation maps of

Fig. 5.11(a) and Fig. 5.12(a), but this is not always the case for FH. However,

both algorithms usually lead to oversegmentation, specially when they are

applied on images of high visual content diversity, as it is obvious by most

examples presented herein.

Considering our block based clustering method, problems arise in cap-

turing the statistical description of small or thin objects, specially when

their statistical description is similar to that of their background. Thusfore,

extraction of bird from its background in image of Fig. 5.11(b) is a hard seg-

mentation task for our method. However, semantically correct segmentation

is achieved by our framework, even for images of high diversity, if the statis-

tical description of objects, or classes of objects, is enough to discriminate

them from their background. .

Algorithms have been also quantitatively compared, using metrics PR,

NPR, GCE and LCE as before (Appendix B). As in the previous Subsec-

tion, for each image, algorithm and metric, segmentation map S is compared

against each one of the ground truth results {Sk} that is given for the image

by humans. The median of metric scores against humans is used to measure
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(a) TE-3096 (b) TR-28096 (c) TE-42049

Figure 5.11: In each column, in top-down order, original image and seg-
mentation results of PMLFA, ILFMA of “Case Study III”, JSEG and FH
respectively.
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5.3 Evaluation on Berkeley Segmentation DataSet (BSDS)

(a) TR-43070 (b) TE-62096 (c) TE-69040

Figure 5.12: In each column, in top-down order, original image and seg-
mentation results of PMLFA, ILFMA of “Case Study III”, JSEG and FH
respectively.
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5. Texture and Colour Segmentation

(a) TR-108073 (b) TE-175043 (c) TR-314016

Figure 5.13: In each column, in top-down order, original image and seg-
mentation results of PMLFA, ILFMA of “Case Study III”, JSEG and FH
respectively.
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5.4 Colour Based Face Detection

the performance of the algorithm for each image.

Average and median performance per metric for the overall dataset are

given in Tables 5.8 and 5.9 respectively. The first outcome of the comparison

is that the performance of ILFMA is slightly better than that of PMLFA,

since ILFMA not only smooths noisy region boundaries but, in cases as that

of images Fig. 5.11(b) and Fig. 5.12(b), succeeds in describing with increased

accuracy the objects of interest. Compared to the other two segmentation

algorithms, ILFMA gives better average and median performance scores for

PR and NPR, while its performance is worse according to GCE and LCE

metrics. This is an expected result since GCE and LCE favour oversegmen-

tation, which is avoided by our method.

PR NPR GCE LCE
PMLFA 0.7949 0.5308 0.2114 0.1374
ILFMA 0.8027 0.5435 0.2120 0.1367
JSEG 0.7927 0.5219 0.1930 0.1336
FH 0.8016 0.5404 0.1930 0.1309

Table 5.8: Average of performance metrics for the 300 colour images of
BSDS.

PR NPR GCE LCE
PMLFA 0.8296 0.6101 0.2037 0.1278
ILFMA 0.8354 0.6213 0.2117 0.1274
JSEG 0.8296 0.6043 0.1830 0.1265
FH 0.8310 0.6316 0.1810 0.1257

Table 5.9: Median of performance metrics for the 300 colour images of BSDS.

5.4 Colour Based Face Detection

The proposed segmentation schema could be used to determine the existence

or not of regions that belong to a visual class of features. The detection

of that kind could be used to annotate images to the corresponding class.

A recent approach, based on regions detection for video annotation is given
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in [51]. In what follows we describe the application of PMLFA in order to

extract image regions belonging to the class of face colours in YCbCr colour

space. The method could be used as the first stage of a face detection system,

based on the shape and texture of the extracted regions, as it was the case

in [52].

5.4.1 Segmentation Framework for Face Colours De-

tection

The segmentation framework includes

• the feature extraction and classification for each one of the segmenta-

tion classes,

• the labelling of initial pixel regions of high confidence per class using

its statistics and

• the expansion of initial regions of classes by the flooding algorithm to

fill the segmentation map of labels.

This framework is applied on the image in order to compute a binary

segmentation map which represents the image regions in which face colours

are present. Segmentation involves the label 0 of non face colours and the

label 1, which corresponds to the class of face colours in the image. The

feature we use is the colour of pixels c in Y CbCr colour space. We assume

that the distribution of colours in the image is described by the mixture

p(c) = P0p(c|0) + P1p(c|1),

where P0 and P1 are the a priori probabilities of the two hypotheses, which

in our case are set equal to 0.5.

In the case of face colour regions detection, the conditional probability

distributions of the mixture are computed as follows: face colours probability

distribution p(c|1) is represented by the 3D histogram of randomly sampled

pixels in manually selected face areas. In order to compute the probability
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distribution p(c|0) of non face colours and instead of using the assumption

that their colours are uniformly distributed, we first compute the probability

p(c) as 3D colour histogram over all image pixels and then we set

p(c|0) =

{

αp(c), for c : p(c|1) 6= 0

βp(c), otherwise
(5.1)

where 0 ≤ α ≤ 1 is a user given factor and

β =
1 − α

∑

c:p(c|1)6=0 p(c)
∑

c:p(c|1)=0 p(c)
.

We shall illustrate the role of factor α and that of the computed factor β

by a graphical example for one dimensional distributions. In Figure 5.14,

probability distribution functions p(x) and p(x|1) of x are depicted. In order

to compute p(x|0), we lower the values of p(x) in which p(x|1) ≃ 0 by α and

we set p(x|0) = αp(x). Then, we distribute the subtracted probability to x

values for which holds that p(x|1) > 0, by raising them by β, which is always

greater or equal to 1. We set p(x|0) = βp(x) in that case. Factor β makes

the computed function p(x|0) to be a probability distribution function. In

the artificial example of Fig. 5.14, α has been set to 0.3.

Using this heuristic, probabilty p(c(s)|0) of sites s of the image that likely

belong to the class of face colours is lowered, avoiding their classification to

the class of non face colours.

Having available the statistical description of classes, the next step is to

compute a set of spatially connected regions of pixels, which are classified

to classes {0, 1} with high confidence, using statistical tests. We define the

statistical dissimilarity between pixel s and class l by the Bayesian rule:

dB
l (s) = − ln Pr{l|c(s)} = − ln

p(c(s)|l)

p(c(s)|l) + p(c(s)|1 − l)
,

91



5. Texture and Colour Segmentation

0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300

x

p(x|1)

p(x)

p(x|0)

Figure 5.14: Definition of conditional probability distribution functions for
face segmentation.

where c(s) is the colour of s. Then, for each pixel s and class l , the distances

in a window ΠW of dimension (2W+1)2 are averaged, resulting to the metric:

dSB
l (s) =

∑

z∈ΠW

dB
l (s+ z).

Image pixels s with dSB
l (s)/(2W +1)2 < 0.5 are sorted in ascending order

according to that metric and a user-given percentage of the sorted sites with

minimum average distance are retained and get labelled. If for one of the two

classes (usually for the class of face colours) no initial regions are extracted

by the initialization process, the flooding process is cancelled. By contrary, in

the case that both classes are initialized, the initial regions of the two classes

are grown by PMLFA. The output of PMLFA is the map of the face colours

regions in the image. In Fig. 5.15, the initial labelled regions (b) and the

final segmentation result (c) for image (a) are depicted. Labelled pixels are

displayed in black for “non face” and white for the “face” label respectively,

while in gray are shown the initially unlabelled pixels.
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5.4 Colour Based Face Detection

(a) (b) (c)

Figure 5.15: From left to right: original image, initialization and final seg-
mentation map.
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Chapter 6

Video Segmentation

Localization and tracking of video objects constitute critical steps in many

computer vision applications. Features of visual objects are extensively used

in international coding and storage standards MPEG-4 [53, 54] and MPEG-

7 [55], as well as in surveillance vision tasks [56], such as the determination

of patterns of activity [57].

An overview of segmentation tools, as well as of region-based representa-

tions of image and video, are presented in [6]. The video object extraction

could be based on change detection and moving object localization, or on

motion field segmentation, particularly when the camera is moving. Seg-

mentation of image sequences is achieved using techniques mentioned at the

introduction of the thesis, such as Active Contour Models [58], Geodesic Ac-

tive Contours and Level Sets [59], Region Growing [9]. Several methods

have been also proposed for foreground detection in particular, using back-

ground/foreground modelling of changes for cues such as colour, gradients or

motion vectors.

Modelling of changes may be parametric, using for example mixtures

of Gaussian probability density functions [57], or non-parametric using his-

tograms [60, 61]. In [62], we proposed an object localization algorithm in

which change detection is based on Bayesian tests that are applied on the

inter-frame difference, while object localization is improved using the object

colour information in a post-processing step. Change detection segmentation
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was based on the Multi-label Fast Marching algorithm, introduced in [63]

as an application of the general segmentation framework of Bayesian Level

Sets [64].

In this Chapter, three methods are described in order to extract mov-

ing objects in video sequences. In the Section that follows, a segmentation

method based on the change detection and colour cues of pixels is discussed

in detail. In the second method, the change detection statistics are computed

for the uniform in colour image regions instead of the pixels (Section 6.2) and

merging using a modified Seeded Region Growing [9] algorithm is performed

to label colour regions. The last method relies on the statistical descrip-

tion of optical flow information between successive sequence frames and it is

described in detail in Section 6.3.

6.1 Change Detection and Colour based Seg-

mentation

The approach of the Section is based on change detection, while moving

objects discrimination is further supported by the statistical description of

background/foreground colours using histograms. Pixel-based mixture analy-

sis using Expectation-Maximization (EM) is employed to compute the change

detection parameters. Change detection-based probabilistic distances are

then used to determine and label pixels that belong to one of the classes

“changed”/“unchanged” with high confidence.

Having available the data modelling and the initial map of correctly la-

belled pixels, foreground objects are extracted using PMLFA (Section 4.4).

PMLFA completes the labelling of map using statistical, change detection

and colour dissimilarity criteria.

6.1.1 Problem Formulation

In our approach, change detection statistics, in combination with background/foreground

colour information are used for foreground objects detection. The simple
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6.1 Change Detection and Colour based Segmentation

inter-frame gray level difference

d(s) = It+1(s) − It(s)

is considered as change detection, segmentation feature. Let pCD
0 (d) (resp.

pCD
1 (d(s))) be the probability density function of the observed inter-frame dif-

ference under the hypothesis of a pixel to be “unchanged” (resp. “changed”).

These probability density functions are assumed to be zero-mean Laplacian

for both hypotheses (l = 0, 1) [65]:

pCD
l (d(s)) =

λl

2
e−λl|d(s)|. (6.1)

Let P0 (resp. P1) be the a priori probability of the two hypotheses. Then,

the probability density function is given by the mixture

pCD(d(s)) = P0p
CD
0 (d(s)) + P1p

CD
1 (d(s)) (6.2)

In this mixture distribution {Pl, λl, l = 0, 1} are unknown parameters and

are estimated using the EM algorithm, according to the Maximum Likelihood

principle.

Furthermore, the colour coordinates of pixels s, c(s) = (L(s), a(s), b(s))

of the Lab colour space are used for colour modelling. Probability density

functions pC
0 (c(s)), pC

1 (c(s)) of background and foreground colours respec-

tively, are represented by histograms, estimated by the pixels which have

been classified as “unchanged”/“changed”, in the previous change map.

6.1.2 Flooding Process for Label Propagation

6.1.2.1 Label Initialization

An initial map of labelled sites is obtained using change detection only, sta-

tistical tests. The first test detects “changed” pixels with high confidence,

using the threshold [62]:

T1 =
1

λ0
ln

1

PFA
,
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upon the inter-frame difference of each pixel, where PFA is a given small

false alarm probability. Despite the pixel-based initialization of “changed”

class, the initial “unchanged” regions of high confidence are determined using

change detection information in pixels neighborhood. For each pixel s, the

distances in a window ΠW of dimension (2W +1)2 are averaged, resulting to

the metric [62]:

dSB
0 (s) =

∑

z∈ΠW

dCD
0 (s+ z),

where dCD
0 (·) is the Bayesian change detection distance defined for class “un-

changed” in Subsection 6.1.2.2. Then, image pixels are sorted in ascending

order according to that metric and a user-given percentage of the sites with

minimum average distance are retained and get labelled.

6.1.2.2 Flooding Dissimilarity Criteria

A dual type of dissimilarity metrics arises in the case of a two-class segmenta-

tion problem as it is the case of background/foreground discrimination. The

difference of heights (distances) of a pixel s against the two classes (l = 0, 1)

could be then used and measured as

∆dB
l (s) = − ln

(

Pr{l|d(s)}

Pr{1 − l|d(s)}

)

. (6.3)

Assuming that colour and change detection features are independent vari-

ables and ignoring the a-priori probabilities, since they are only estimates

and not a-priori knowledge, Eq. (6.3) becomes the sum of a change detection

term and a colour term:

∆dB
l (s) = − ln

(

pCD
l (d(s))

pCD
1−l(d(s))

)

− ln

(

pC
l (c(s))

pC
1−l(c(s))

)

= dCD
l (s) + dC

l (s). (6.4)

PMLFA is applied using only thresholds T
high
l , for l = 0, 1. These thresh-

olds and quantization step ∆Q of PMLFA are tuned using only the change

detection statistics. If flooding was meant to be based only on the change de-
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6.1 Change Detection and Colour based Segmentation

tection statistics, the dissimilarity of a site s from a label l could be measured

as

DISl(s) =

∑

k 6=l Pr(k(s)|d(s))

Pr(l(s)|d(s))

=

∑

k 6=l p(d(s)|k(s))Pr(k(s))

p(d(s)|l(s))Pr(l(s))
,

or equivalently

dcdl(s) = lnDISl(s)

= ln

∑

k 6=l Pr(k(s)|d(s))

Pr(l(s)|d(s))

= ln(
∑

k 6=l

p(d(s)|k(s))Pr(k(s)))

− ln(p(d(s)|l(s))Pr(l(s))).

In our case of change detection the metric for label 0 becomes

dcd0(s) = ln(p(d(s)|1)P1) − ln(p(d(s)|0)P0)

and under the assumption of Laplacian distributions this gives

dcd0(s) = − ln
λ0P0

λ1P1
+ (λ0 − λ1)|d(s)| (6.5)

and dcd1(s) = −dcd0(s). Since Pl, (l = 0, 1) are only estimates and not

a-priori knowledge, they have been set to 0.5 in the current implementation

of criterion dcd0. Apparently,

dcd0(s) = −α + β|d(s)|, (6.6)

where α = ln λ0

λ1
and β = λ0 − λ1. In Fig. 6.1, dcdl is plotted against |d| for

λ0 = 1.5 and λ1 = 0.05 respectively, for l = 0, 1. As we see, for |d| = α
β

we

get the decision point dcd0 = dcd1 = 0 between the two classes.

The fundamental principle of the new algorithm is that it labels groups of
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6. Video Segmentation

Figure 6.1: Dissimilarity, change detection based, criteria.

yet unlabelled pixels, at each execution step. Group labelling refers to pixels,

which are placed on the neighborhood of already labelled pixels at an instance

of the propagation progress and their metric dcdl against label l is quite the

same. This fact, implies the quantization of dissimilarity metric according to

the specific characteristics of change detection driven propagation. Towards

this direction, by Eq. (6.6) the random variable dcd0(s) is a linear function

of |d| and by Eq. (6.2) the probability density function p(dcd0(s)) is given by

the mixture

p(dcd0(s) = y) = P0p(dcd0(s) = y|static) +

P1p(dcd0(s) = y|mobile), (6.7)

where y ≥ −α. Using Eq. (6.1), holds that

p(dcd0(s) = y|Θ(s) = l) =
λl

β
e−

λl
β

(y+α), y ≥ −α (6.8)
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6.1 Change Detection and Colour based Segmentation

is an exponential distribution for l = 0, 1 and Eq. (6.7) becomes

p(dcd0(s) = y) = P0
λ0

β
e−

λ0
β

(y+α) + P1
λ1

β
e−

λ1
β

(y+α) (6.9)

for y ≥ −α.

Similarly, for y = dcd1(s), we get

p(dcd1(s) = y) = P0
λ0

β
e−

λ0
β

(−y+α) + P1
λ1

β
e−

λ1
β

(−y+α) (6.10)

for y ≤ α. However, since we refer to contour sites, Pk (k = 0, 1) vary during

growing and are not the same for the two labels. Thus, for each label l and

at growing step T , Pk in Equations (6.9), (6.10) are dynamically replaced

by the percentage P T
l,k of sites which are placed on the contour of regions

of label l and according to change detection statistics belong to label k, for

l, k ∈ {0, 1}. This fact does not affect the statistical analysis for dissimilarity

criteria dcdl (l = 0, 1) that follows, since it depends only on the exponential

probability density functions of mixtures, without using percentages P T
l,k. In

Fig. 6.2, the probability density functions of the mixtures of Eq. (6.9) and

Eq. (6.10) respectively, are depicted graphically for l = 0, 1 and λ0 = 1.5,

λ1 = 0.1.

As a consequence, if for a contour pixel s of a “changed” region holds that

dcd1(s) < −α, then s can be labelled as “changed” with high confidence, since

unlikely belongs to an “unchanged” region. Indeed, since

PF (t) = e−
λ0
β

(t+α), t ≥ −α

is the false alarm probability of labelling a pixel as “changed” while it is

“unchanged”, then if we set t1 = −α, for t ≥ −t1 holds that

PF (t) ≤ e−2α
λ0
β ,

which is a fairly small false alarm probability. In Fig. 6.1, certainty limit

y = −α is depicted by the horizontal dashed line. By analogy, a threshold

t0 for labelling contour sites s of “unchanged” regions is set, according to
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Figure 6.2: Probability density functions for dcd0, dcd1.

equation

t0 = −α−
β

λ1
ln(1 − PND),

where PND is a given small probability of not detecting a “changed” pixel.

Thus, contour sites s, which are placed on the border of an “unchanged”

region, with dcd0(s) < t0, can be labelled as “unchanged” with high confi-

dence.

However, a memory term has to be introduced in the dissimilarity cri-

terion of the “changed” class, to cope with the disadvantages in propagate

“changed” regions contours, due to possible uniform areas and imperceptible

motion of moving objects. After all, the dissimilarity metric of contour pixel

s against the “changed” class becomes

δ1(s) = dCD
1 (s) + dC

1 (s) − ρ(s)σ(s), (6.11)

where ρ(s) is the distance of point s from the border of the previous “changed”

mask and σ(s) is an optional sigmoid function of local intensity variance for

amplifying memory factor ρ(s) in homogeneous moving areas. Colour dis-
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6.1 Change Detection and Colour based Segmentation

similarity dC
1 (s) is measured as

dC
1 (s) = − ln

pC
1 (c(s))

pC
0 (c(s))

For clarity, we also set δ0(s) = dCD
0 (s) + dC

0 (s), where dC
0 (s) = −dC

1 (s).

6.1.3 Experimental Results

We present experimental results for well known, benchmark image sequences

as well as for webcam and compressed videos. In Fig. 6.3 we see the steps

of our method, as it is applied on frame (a) of sequence Erik. Initialization

is given in Fig. 6.3(b), where black colour depicts “unchanged” pixels, white

denotes “changed” pixels and gray colour is used to depict the initially un-

labelled pixels. Colour histogram is computed using 32 bins per channel, or

32 × 32 × 32 bins in total, although, depending on the image sequence, no

more than 5000 bins appear in practice. In Figures 6.4, 6.5, the marginal

probabilities pC
0 (L, a), pC

1 (L, a) and pC
0 (L, b), pC

1 (L, b) are depicted respec-

tively, as they are computed by the background and foreground 3D colour

histograms. The coloured surface in those plots, corresponds to background

marginal probabilities pC
0 (·, ·), while the white surface depicts foreground

statistics. As it is evident, colour information improves the discrimination

of the two classes. In Fig. 6.3(c), the foreground detection after the flooding

process, using the change detection and colour cues, is shown.

In Fig. 6.6, foreground detection results for image sequence Mother, are

depicted and in Figures 6.7, 6.8, foreground extraction results for the we-

bcam video Emilio [3] and the MPEG-2 compressed video TV, are shown

respectively. According to the results, the method performs reasonably in

situations of low motion, automatic lighting correction and compression arti-

facts. Its robustness could be further improved by considering a “memory” of

background/foreground colours in a short period of previous frames, instead

of using only the colour statistics of the current frame.
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(a) (b) (c)

Figure 6.3: Initialization (b) and foreground detection (c) for the frame (a)
of image sequence Erik.
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Figure 6.4: Marginal probabilities pC
0 (L, a), pC

1 (L, a).

6.2 Region-level Moving Object Segmentation

by Graph Labelling

6.2.1 Introduction

In a number of video segmentation methods, object extraction is applied on

the spatial partition of the image in homogeneous regions (region-level in-

stead of pixel-level based extraction) in order to reduce the spatio-temporal

redundancy of video images and to speed up and robustify the computa-

tions [66–68]. Video object extraction could be based then on change detec-
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Figure 6.5: Marginal probabilities pC
0 (L, b), pC

1 (L, b).

tion and moving objects localization or on motion field segmentation of the

spatial regions.

We follow the region-level approach in the proposed segmentation sys-

tem which is depicted in Fig. 6.9. The system is divided in three layers

of computation. In the first one (top-down order), the basic segmentation

characteristics are evaluated by the corresponding modules in the order im-

plied by the arrows in Fig. 6.9. Hence, (i) first the change detection mixture

parameters are computed using the pixel inter-frame difference over all the

image pixels, (ii) the colour regions of the current image are extracted and af-

ter that (iii) the region-based change detection statistics are computed using

a region-based change detection feature.

The second level in Fig. 6.9 serves as the intermediate level between the

first and the third one, since it uses the change detection parameters and

colour regions, which have been extracted by the first level in order to pro-

duce an initial labelling, which will be expanded by the third. The top middle

level task is to split the colour regions obtaining sub-regions which can be

labelled as “changed” with high confidence. The pixel-based change detec-

tion statistics are used for this splitting. The second module involves the

labelling of the remaining (sub-) regions as “unchanged” using the region-
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6. Video Segmentation

Figure 6.6: Foreground extraction for image sequence Mother.

Figure 6.7: Foreground detection for Emilio webcam video [3].
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6.2 Region-level Moving Object Segmentation by Graph Labelling

Figure 6.8: Foreground detection for the MPEG-2 compressed video TV.

based statistics of the previous level.

Finally, the last level consists of the initial labels expansion task. The

overall system is explained in detail below beginning with the colour regions

extraction method, since the computation of the pixel-based change detection

statistics is that of [69].

6.2.2 Region Inter-Frame Difference

The first step involves the partitioning R of the image in N homogeneous

colour components, in the Y CbCr colour space. The well known k-means

algorithm is employed to compute the dominant Y CbCr colours, which are

then used to extract colour regions Ri of the image. Denoting by Λ the

overall image points, the following equations hold for the final partition:

Ri ∩Rj = ∅ and Λ =
N
⋃

i=1

Ri (6.12)

The segmentation algorithm is mainly based on change detection. The

appropriate statistics involve not only the inter-frame difference, as was the
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Pixel−based Change Detection 
Parameters Estimation

Colour Regions Extraction

Seeded Region Growing

Parameters estimation

Initialization

Growing

Pixel−based Region Splitting
Initialization of ‘‘Moving’’ Sub−regions

Initialization of  ‘‘Static’’ Sub−regions
using Region−based Statistics

Parameters Estimation
Region−based Change Detection 

Figure 6.9: System framework.
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case in [69], but also the mean of absolute differences of colour regions Ri:

d(Ri) =
1

|Ri|

∑

(x,y)∈Ri

|It(x, y) − It+∆t(x, y)| (6.13)

where |Ri| denotes the cardinality of region Ri and It (resp. It+∆t) is the

intensity frame at time t (resp. t+ ∆t).

As it is described in [69], the two classes of “changed”/“unchanged” pixels

are modeled by two Laplace distributions. Experimental results have shown

that in the case of the mean absolute difference of colour regions, the two

classes of “changed”/“unchanged” regions follow the Gamma distribution.

Let D = {d(Ri), 1 ≤ i ≤ N} denote the mean of gray level differences

of each colour region. The change detection problem consists of determin-

ing a binary label Θ(Ri) for each region Ri of the image. We associate the

random field Θ(Ri) with two possible events, Θ(Ri) = static (“unchanged”

region), and Θ(Ri) = mobile (“changed” region). Let pD|static(d|static) (resp.

pD|mobile(d|mobile)) be the probability density functions of the observed mean

absolute inter-frame region difference under the H0 (resp. H1) hypothesis.

These probability density functions are assumed to be Gamma for both hy-

potheses (l = 0; 1):

p(d(Ri)|Θ(Ri) = l) =
d(Ri)

ale
−

d(Ri)

βl

Γ(al + 1)βal+1
l

Let P0 (resp. P1) be the a priori probability of hypothesis H0 (resp. H1).

Thus the probability density function is given by

pD(d) = P0 pD|0(d|static) + P1 pD|1(d|mobile) (6.14)

In this mixture distribution {Pl, al, βl, l ∈ {0, 1}} are unknown parameters.

The experimental results in our effort for a robust region-based mixture

decomposition, shown that it is sufficient to investigate only integer values

of al (l = 0, 1). Nevertheless, in most cases holds that a0 ≥ a1. These ob-

servations lead us to a straightforward method for the estimation of mixture
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distribution parameters, by evaluating the χ2 criterion between the histogram

of D and the mixture distribution (eq. (6.14)) that is obtained for a finite set

a = {0, 1, . . . , A} of integer values of al, under the restriction that a0 ≥ a1.

Furthermore, the principle of Maximum Likelihood is used to obtain an esti-

mate for Pl and βl, (l = 0, 1), for each investigated pair of a0, a1. The set of

parameters {P̂l, âl, β̂l, l ∈ {0, 1}} which minimizes the χ2 metric is selected

as the better estimate for the mixture distribution of eq. (6.14).

6.2.3 Change Detection using SRG on Regions

In what follows, we describe an extension of the well known Seeded Re-

gion Growing (SRG)[9] algorithm. In the extended algorithm the classes

that are to be grown, are classes of regions instead of pixels and the same

holds for the initially unlabelled items which are regions and not pixels.

This modified algorithm is used to segment the image in the two classes of

“changed”/“unchanged” regions, as it is described below.

6.2.3.1 Initialization

The growing algorithm requires a number of initial correctly labelled items.

In our case, these are the colour regions which may be considered “static” or

“moving” with high confidence. The confidence measurements are performed

in both the pixel and region-based change detection statistics.

The first observation is that some “static” regions may contain a number

of subregions with high inter-frame difference due to their overlapping with

“mobile” regions and thus have to be split further. The splitting is performed

using the pixel-based statistics of change detection. As in [69], the pixels that

may be considered “changed” with high confidence are determined using the

decision threshold:

T1 =
1

λ0
ln

1

PF
,

where PF is the given small false alarm probability and λ0 is the estimated

Laplacian parameter of “unchanged” pixels. Then, the connected “changed”

pixels of each region are grouped to form new regions, which constitute the
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“changed” sub-regions of high confidence. The remaining region pixels are

also grouped in connected sub-regions, leading to a new image partition

R′ = {R′
i, 1 ≤ i ≤M},

where M is the number of image regions. Next, the “unchanged” regions

with high confidence are determined among the non “changed” sub-regions,

using the decision criterion d(R′
i) ≤ T0, where T0 satisfies the equation

PND = Pr{d ≤ T0|mobile},

for a given small probability PND of not detecting a “changed” region.

6.2.3.2 Growing

The modified SRG algorithm is applied on the initial labelled regions in order

to “grow” them. Growing refers now to regions instead of pixels and its effort

is to assign the label “changed” or “unchanged” to the initially unlabelled

regions. Each one of the two labels is grown according to dissimilarity criteria

which are based on the label, the mean absolute difference and the boundary

information of regions.

A label-depended term is set according to the a-posteriori probability

principle. Assuming that the change detection statistics of each label follow

the Gamma distribution, the dissimilarity of a colour region R from a label

l is measured as

DISl(R) =
1

Pr(l(R)|d(R))
(6.15)

Using the Bayes rule

Pr(l(R)|d(R)) =
p(d(R)|l(R))Pr(l(R))

∑

k p(d(R)|k(R))Pr(k(R))

which gives

DISl(R) = 1 +

∑

k 6=l p(d(R)|k(R))Pr(k(R))

p(d(R)|l(R))Pr(l(R))
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Ignoring the constant term in the last equation and taking the logarithm of

the second term gives

dcdl(R) = ln(
∑

k 6=l

p(d(R)|k(R))Pr(k(R)))

− ln(p(d(R)|l(R))Pr(l(R)))

In our case of change detection the metric for label 0 becomes

dcd0(R) = ln(p(d(R)|1)Pr(1))− ln(p(d(R)|0)Pr(0))

and under the Gamma distribution assumption this gives

dcd0(R) = (a1 − a0) ln d(R) + d(R)(
1

β0
−

1

β1
)

+ ln Γ(a1 + 1)Pr(1) + (a1 + 1) lnβ1

− ln Γ(a0 + 1)Pr(0) − (a0 + 1) lnβ0

and dcd1(R) = −dcd0(R). Since Pr(l), (l = 0, 1) are only estimates and not

a-priori knowledge, they have been set to 0.5 in the current implementation

of criterion dcd0.

Furthermore, a boundary term dbdl has been added to the label growing

criterion:

dbd0(R) = −
b0 − b1
√

|R|

and dbd1(R) = −dbd0(R), where b0 (resp. b1) is the common boundary

length between R and the regions that have been labelled as “unchanged”

(resp. “changed”) while | · | denotes the cardinality of its argument. The

effect of the boundary term is to bypass the difficulties that arise in uniform

regions which are parts of moving objects although their mean inter-frame

difference is low. By minimizing dbdl locally, the total common boundary

between the two classes tends to be minimized.

The total dissimilarity δl(R) is then defined as

δl(R) = fdcddcdl(R) + fdbddbdl(R)
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6.2 Region-level Moving Object Segmentation by Graph Labelling

where fdcd is defined as:

fdcd =

{

|R|
100
, if |R| ≤ 5

1, otherwise

and is used to decrease the effect of the “change detection” measurement

in small regions, where mean difference estimation is often insufficient. By

contrary, fdbd is a binary decision factor:

fdbd =

{

1 if |R| ≤ 500

0, otherwise

which implies that large enough regions cannot be treated in the same way

that boundary pixels are used in order to enforce the smoothness of the

boundary between the growing classes. It should be noticed that when fdbd =

0, the overall criterion is solely based on “change detection” statistics, since

the measurements in that case can be considered accurate. Apparently from

the limitations that are imposed in the size of regions above, the criterion

δl(·) tends to give more emphasis to the “change” detection statistics as the

size of regions becomes larger, since the boundary term dbdl(·) decreases with

size. This is an admirable property of the overall criterion which is achieved

without any further tuning.

Furthermore, the distance a(R) between the center of mass of region R

and the boundary of the previous “change” mask has been introduced in

metric δ1(R) which after all becomes:

δ1(R) = dcd1(R) + dbdl(R) − a(R).

This “memory” term is used only for regions that their area was exclusively

included in the “moving” objects of the previous “change” mask. The dis-

tinction between the two labels is justified by the fact that in frames, which

undergo a small motion and contain large uniform background areas, a large

part of the “unchanged” area is labelled at the initialization stage. By con-

trary, the “changed” label is initialized in small regions leading to a mismatch
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for that label at the “growing” stage. Labels are expanded using the SRG

algorithm for regions instead of pixels. For the implementation of SRG a

list that keeps its members ordered according to the dissimilarity criterion

δ(·) is used, traditionally referred to as Sequentially Sorted List (SSL). In

addition, R′ is represented as a set of nodes in a connected undirected graph

called region adjacency graph (RAG). Two nodes gi and gj of the graph are

connected by an edge, if and only if, the corresponding regions Ri and Rj

are adjacent. Finally, we define the set of indices L = L0, . . . , LM to the

class Li = l whose statistics give the minimum δl(·) value for the region R′
i,

(1 ≤ i ≤ N). The complete SRG algorithm is as follows:

S1 Label the initial colour regions of classes 0 and 1 (initialization stage).

S2 Insert all the unlabelled spatial neighbors of the initial regions into the

SSL. If they adjoin both the two classes use as δl(·) that with the

minimum value. Update properly their L value.

S3 While the SSL is not empty:

S3.1 Remove the first region y from the SSL and label it according to

its L label.

S3.2 Test the neighbors of y and update the SSL:

S3.2.1 Add to the SSL neighbors of y which are neither already

labelled nor already in the SSL, according to their value of

δ(·). If they adjoin and the other class, use as δl(·) that with

the minimum value. Update properly their L value.

S3.2.2 Test for neighbors of y which are already in the SSL and

promote them accordingly in the SSL:

S3.2.2.1 if they border on and the other class, insert them in

the SSL using as δl(·) that with the minimum value,

S3.2.2.2 otherwise, insert them using the δl(·) of y’ s label.

Update properly their L value.

Each step of the modified SRG algorithm labels the minimum element-

region of SSL y and a number of tests on yet unlabelled neighbors of y are
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Figure 6.10: Region-based mean absolute inter-frame difference statistics
for frame 42 of the sequence “Mother”.

performed followed by a constant number of insertions and deletions in SSL.

Although in the first implementation [9] the unlabelled items were inserted

only once in the SSL and their δ(·) value was not updated until their labelling,

the computational cost of the modified SRG algorithm that we present still

remains low since (a) SSL is implemented using AVL trees in which the

computational cost of insertions and deletions for M items is O(M logM),

(b) the number of colour regions M is small –a few hundreds– compared

to that of pixels and the number of unlabelled regions is even smaller, (c)

the number of the neighbors of each region is usually in the same order of

the eight neighbors of pixels, when 8-connectivity is considered and (d) the

criterion value dcdl(·) can be computed only once per each unlabelled region

and kept in memory, since it remains unchanged during SRG iterations and

the same holds for the “memory” term a(·) and finally, (e) the dynamically

updated local boundary term dbdl(·) is computed sufficiently in low cost.

6.2.4 Experimental Results

In what follows, we present the results that were obtained by the object de-

tection system for the image sequences “Mother” and “HallMonitor”, which

have been included in the COST testing data set. The camera in both se-

quences is static, while in “HallMonitor” the background is known.

115

./changeColour/plots/mother_mix_042.eps


6. Video Segmentation

Figure 6.11: Initialization (up) and moving objects extraction result (down)
for frame 42 of the sequence “Mother”.
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As we can see in the localization result of Fig. 6.11, “Mother” is char-

acterized by low spatial detail while the two objects move very slowly or do

not move at all during a large number of frames. The large homogeneous

regions together with the low objects movement lead to low discrimination

of the statistics of classes “changed” and “unchanged”, which in turn affects

the efficiency of algorithms that are based on change detection. The pro-

posed system overcomes this difficulty by using regions instead of pixels in

order to initialize the ”unchanged” regions under the Gamma distribution as-

sumption. In Fig. 6.10, ”Measurement” refers to the histogram of the mean

absolute difference of the 2300 regions that were extracted by frame 42 of

“Mother”, while ”Estimation” is the computed mixture of eq. (6.14). The

initially labelled regions for this frame are shown in black (“unchanged”) and

white (“changed”) in the upper image of Fig. 6.11, while the gray regions are

initially unlabelled. The light gray curves depict the boundary of regions.

The memory term a(·) that has been introduced in the change detection part

dcd1(·) of the “changed” class growing criterion retains the moving objects

classification to the “changed” class for a number of frames in which appear

to be stationary. Thus, the objects are extracted efficiently, as it is shown by

the bottom image of Fig. 6.11. The white curves in the images represent the

boundary between the classes “changed” and “unchanged”. However, since

this method relies on change detection in order to determine the moving ob-

jects, the result has to be improved in the case of larger objects motion, in

order to be able to cope with occlusions. For that purpose, the colour based

objects localization method described in [69] may be applied on the output

change detection map of our algorithm.

Finally, in the image of Fig. 6.12 we see the localization result for frame

148 of “HallMonitor”, while the plot of the figure refers to the inter-frame

difference statistics of frame’ s regions. Since the background of the sequence

is known, the curve ”Measurement” of the plot corresponds to the histogram

of region differences between frames 148 and 0. For the same reason, the

bag shown in the bottom result of Fig. 6.12, is bounded as “changed”. The

“growing” of classes is performed without using the “memory” term, because

the shape and the position of the two humans of the sequence changes among
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Figure 6.12: Inter-frame regions mean absolute difference statistics (up)
and moving objects extraction result (down) for frame 148 of the sequence
“HallMonitor”.

frames.

6.3 Optical Flow Based Segmentation

In this Section, segmentation as it is applied on the optical flow, computed

by successive video frames, is described. It is assumed that the optical flow of

regions is better described by affine models. New distance metrics of image

motion data are introduced for affine models, as a special case of a novel,

generic optimization framework of linear mapping models [70]. We describe

below the theoretical background of linear mappings and the way that this

theory is used to define distance metrics upon models of data sets, i.e. blocks
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6.3 Optical Flow Based Segmentation

or regions. The metrics are used to compute the affine parameters of classes

by the block based method of Subsection 2.3.4. Then, sites which belong

to one of the classes with high confidence are determined and the flooding

algorithms are applied to give the final segmentation result.

6.3.1 Linear Mapping Distance Metrics on Data Sets

Given a finite set of data pairs

D = {(xk,yk)}
m
k=1 ∈ S × R

d

where S is an arbitrary set, we seek to model the mapping xk 7→ yk using a

function fw: S → R
d of the form

fw(x) =

n
∑

i=1

β(i)(x)w(i) =













∑n
i=1 β

(i,1)(x)w(i)

∑n
i=1 β

(i,2)(x)w(i)

...
∑n

i=1 β
(i,d)(x)w(i)













.

That is, the model function fw is a linear combination of the n vector valued

basis functions β(i): S → R
d, weighted by the respective scalar parameters

w(i) ∈ R, where β(i,l)(x) in the preceding equation refers to the l-th element

of the basis function β(i)(x). Defining the d × n base matrix B(x) and the

parameter vector w ∈ R
n as

B(x)li = β(i,l)(x)

w = (w(1) w(2) . . . w(n))T

the model function can be expressed in compact form as

fw(x) = B(x)w.

Given a parameter vector w let the error functional ED(w) be defined
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as

ED(w) =
∑

(x;y)∈D

‖y − B(x)w‖2
2.

This is easily recognized as a linear least squares optimization problem.

Adopting the notation

BD =
∑

(x;y)∈D

B(x)TB(x)

ψD =
∑

(x;y)∈D

B(x)Ty

the error functional can be rewritten as

ED(w) =
∑

(x;y)∈D

‖y‖2
2 − 2ψT

D
w + wT

BDw.

There exists an optimal value for the parameter vector w, say w∗
D
, for

which the error functional ED(w) is minimized. The optimal parameter

vector is unique, if, and only if, the symmetric, non-negative definite matrix

BD is non singular. In such a case, w∗
D

is given by the system of normal

equations

BDw∗
D = ψD,

which in turn leads to the equation

ED(w∗
D
) =

∑

(x;y)∈D

‖y‖2
2 − ψT

D
w∗

D

Given two data sets D1, D2 let w1, w2 denote their corresponding optimal

parameter vectors under the same set of basis functions. Let D12 be the

data set resulting by the concatenation of D1, D2 and w12 its optimal pa-

rameter vector. In accordance to the similarity influencing factors previously

mentioned and the potential use of a compatible metric as a region metric

criterion, we consider D1 and D2 to be similar if the error norm of their joint

optimal modelling ED12(w12) is comparable to the error norms of their indi-

vidual optimal models ED1(w1)+ED2(w2). We quantify this by introducing
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the dissimilarity criterion

D12 = ED12(w12) −ED1(w1) − ED2(w2) (6.16)

which is always non negative and expresses the penalty inflicted upon the

overall approximation error by the merging of D1 and D2.

We ultimately define the distance of D1 and D2 to be

JLM =

√

|D1| + |D2|

|D1||D2|
D12 (6.17)

Using the square root of D12 effectively makes the proposed metric to scale

linearly with uniform scaling of the y values. The normalization factor (|D1|+

|D2|)/(|D1||D2|) makes the metric independent of the overall sample density,

while preserving the effect of the individual distributions and the relative

density of the two data sets.

This intuitively defined metric reduces to the very simple analytic expres-

sion

JLM = ‖Ψ12(w2 − w1)‖2, (6.18)

where Ψ12 is a symmetric, positive definite matrix, dependent on the distri-

butions of D1, D2 and D12, which is defined as

Ψ2
12 = R1R

−1
12 R2 Rl =

1

|Dl|
BDl

.

The matrix Rl can be interpreted in the case of a scalar base (d=1) as the

correlation matrix of the basis used, evaluated at all points of Dl. For a

vector valued basis, Rl equals the sum of all cross-correlation matrices be-

tween all n2 ordered pairs of dimensions of the basis used. In either case,

the value of Rl depends only on the x values of the elements of Pl and the

basis used. We conjecture that the matrix Ψ12 conveys all the essential infor-

mation about the distribution of the elements in D1, D2 with respect to the

optimization process used. An interesting observation regarding Eq. (6.18) is

the separation of the distribution information, described by the matrix Ψ12
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and the model information, given by the difference (w1 − w2), which is not

always sufficient to characterize similarity on its own.

6.3.2 Optical Flow Features

Motion based classification is obtained assuming that the optical flow of

clusters is better described by the affine model rather than by a constant 2D

motion vector. Feature classification is obtained by the method described in

Subsection 2.3.4, for block based classification. What differs, is the distance

used to estimate the dissimilarity between data blocks or a block and a feature

class in k-means, since the novel linear mapping distance, described in the

previous Subsection, is used to measure the distance between optical flow

data sets. The affine model used in optical flow segmentation is a simple

linear map from R
2 to R described by the respective basis matrix

Baff (x, y) = [ 1 x y ]

and is the same for each one of the two optical flow vector components vx,

vy of image point s = (x, y). Given two data sets of optical flow vectors D1

and D2 with optimal parameter vectors

w1 = [w1x w1y]
T

and

w2 = [w2x w2y]
T ,

their distance from Eq. (6.16) becomes

D
aff
12 = (w1x − w2x)

T
BD1B

−1
D12

BD2(w1x − w2x) +

(w1y − w2y)
T
BD1B

−1
D12

BD2(w1y − w2y) (6.19)

where

BDm
=

∑

(x,y)∈Dl

Baff (x, y)
TBaff (x, y)

122



6.3 Optical Flow Based Segmentation

for m = 1, 2 and

BD12 = BD1 + BD2 .

Substituting D
aff
12 in Eq. (6.17) we get the distance Jaff used in the case of

affine motion models of classes.

6.3.3 Label Propagation

We describe hereafter, the distance that is used to define the probability of

pixel s as

pl(ξ(s)) = e−dB
l

(s),

which in turn is used to determine initial regions of high confidence and to

measure the dissimilarity criterion in the flooding algorithms.

Label propagation in the case of affine modeling of optical flow classes, is

based on the statistical description of the 2D residual vectors for the least-

squares solution w∗
Dl

that is obtained by the affine modeling for each class.

Following the terminology of Subsection 6.3.1 and given the data set Dl of

class l and the basis function Baff (s) for pixel s = (x, y), we define the

deviation of s from the optimal model induced by Dl as

rl(s) = v(s) − Baff (s)w
∗
Dl

(6.20)

We note, that by the theory of linear mappings, the mean of residuals rs,l

is known to be zero in the case of affine models. We further assume that

the residuals of each class are Gaussian distributed. Then, the minus log-

likelihood distance of a pixel s, with residual feature vector ξ(s) computed

by Eq. (6.20), is given by the special case of Eq. (A.7) for µl = 0:

dB
l (s) =

1

2
ln |Σl| +

1

2
r(s)TΣ−1

l r(s) (6.21)

where Σl in that case, is the covariance matrix of the residuals of class l.
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6.3.4 Experimental Results

Optical flow segmentation has been performed on a subset of the optical

flow, ground truth data of [4]. The dataset has been devised to evaluate

optical flow computation algorithms. For each sequence, ground truth optical

flow for a pair of frames is freely available in this dataset. In Fig. 6.3.4,

the first frame of the pair used for optical flow segmentation is shown per

sequence. Sequences (a) and (b) of Fig. 6.3.4 are characterized by hidden

texture, sequences (c)-(f) are artificially devised synthetic videos and the last

example (g) is a stereo pair.

(a) RubberWhale (b) Dimetrodon (c) Grove2

(d) Grove3 (e) Urban2 (f) Urban3

(g) Venus

The 2D motion field for each pair is shown in the left images of each

row in Figures 6.14 and 6.15 respectively. The mapping of motion vectors

to colours in these images is graphically depicted in Fig. 6.13. Eq. (6.21)

is then used to define the distance of pixels against classes. Based on these

statistical distances, initial regions of high confidence are determined and
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PMLFA and ILFMA are applied to fill the segmentation maps, for each

sequence. Segmentation results are satisfactory, although, in some cases

affine modelling may not be appropriate to describe the optical flow classes.

However, we note that any other model described by the linear mapping

theory, could be used as well. An example of such a model, which has been

used to describe camera motion, is given in [71]. What changes in that case

is the base matrix B(x). As a last remark, linear mapping models could be

used to fit the data of regions that are not described by a constant vector

of features, such as regions of objects that their intensity or colour changes

gradually due to illumination conditions.

Figure 6.13: Mapping of 2D motion vectors to colours.

The segmentation results for each sequence pair using PMLFA and IL-

FMA are displayed in the middle and right images respectively, of Fig-

ures 6.14 and 6.15. Clustering is achieved by the affine modelling of motion

field vectors in an image block basis, using the distance Jaff between data

sets.
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(a) RubberWhale

(b) Dimetrodon

(c) Grove2

(d) Grove3

Figure 6.14: Optical flow segmentation results for the ground truth optical
flow dataset of Fig. 6.3.4 ([4]) using affine modeling. In each row: optical flow
depicted by colours (left image), segmentation result using PMLFA (middle
image) and result using ILFMA (right image), per sequence.

126

./changeColour/flow/RubberWhale/flow10.eps
./changeColour/flow/RubberWhale/resultFF.eps
./changeColour/flow/RubberWhale/resultMRF.eps
./changeColour/flow/Dimetrodon/flow10.eps
./changeColour/flow/Dimetrodon/resultFF.eps
./changeColour/flow/Dimetrodon/resultMRF.eps
./changeColour/flow/Grove2/flow10.eps
./changeColour/flow/Grove2/resultFF.eps
./changeColour/flow/Grove2/resultMRF.eps
./changeColour/flow/Grove3/flow10.eps
./changeColour/flow/Grove3/resultFF.eps
./changeColour/flow/Grove3/resultMRF.eps


6.3 Optical Flow Based Segmentation

(e) Urban2

(f) Urban3

(g) Venus

Figure 6.15: Optical flow segmentation results for the dataset of [4] using
affine modeling (con’t). The description is similar to that of Fig. 6.14.
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Chapter 7

Left Ventricle Segmentation

7.1 Introduction

In the last decades, computer vision, pattern recognition, image processing,

as well as cardiac researchers, have given immense attention to cardiac image

analysis and modelling. A recent review of 3D modelling methods of cardiac

imagery and their applications is found in [72]. Furthermore, an analysis

system based on cardiac Magnetic Resonance (MR) as well as Computed

Tomography (CT) images is presented in [73].

In that framework, several approaches have been proposed for the seg-

mentation of myocardium and endocardium of left ventricle, using low and

middle level cues. Left ventricle segmentation by the combination of edge,

region and shape information is presented in [74] for MR images and the

method is extended to CT images in [75].

In the system presented herein, left ventricle endocardium and myocardium

detection is based on a Bayesian segmentation framework. Image pixels are

initially classified in three classes according to their gray value [75]. The

first class corresponds to air-filled lungs and appears dark, the second is the

class of myocardium with middle gray values and the last is the class of

the blood-filled ventricles with brighter values. Based on the statistical de-

scription of classes by histograms of gray values, the initial regions of high

confidence are determined per class. Then, the initial regions are grown by
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PMLFA. After segmentation, the regions of the third class are interactively

presented to the user, to decide the region of endocardium. The smoothed

convex hull of the selected region is taken as the endocardium region by the

system. The epicardial boundary is then computed using boundary infor-

mation of the region of the segmentation map, which belongs to the class of

myocardium gray values and surrounds the endocardium. Epicardium curve

is computed by applying Weighted Least Squares B-Splines minimization, on

the boundaries of myocardium region. A detailed presentation of splines and

their applications is found in [76].

This chapter is organized as follows: in Section 7.2, the Bayesian segmen-

tation framework as it is applied for the needs of left ventricle segmentation,

is described. In Sections 7.3 and 7.4 the endocardium region processing and

epicardium curve computation are presented respectively. Finally, experi-

mental results are depicted and discussed in Section 7.5 for slices of both

End-Diastole (ED) and End-Systole (ES) phases.

7.2 Bayesian Flooding For Left Ventricle Seg-

mentation

7.2.1 Classification

At first a quantization step is applied, because the feature extraction is based

on block clustering. As the size of block is limited, for obtaining robust

statistical estimations of probability distributions, it is needed to restrict the

number of intensity values. Therefore image intensity I is quantized in L gray

levels using k-means and the L1 distance (“city block”) between level centers

and intensity values of pixels. To deal with intensity noise due to image

acquisition conditions, initial centers of k-means are selected equidistantly in

the range [0, 1, . . . , Iav], where Iav is the smoothed intensity of image.

Having available the result of intensity quantization Iq, the image is di-

vided in non-overlapping blocks and the histogram of quantized intensity is

computed as classification feature, for each block. Then, blocks are grouped
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Figure 7.1: Probability distributions p(I|m) (m = 1, 2, 3) for image (a) of
Figure 7.2.

in K = 3 classes, corresponding to the three classes previously described, us-

ing k-means and the Bhattacharyya distance between block and class center

histograms. Since segmentation of left ventricle is crucial for our method,

k-means is limited on the blocks of the sub-image, which includes the bright

regions fairly near the center of the original image, where left ventricle resides.

The upper and down block coordinates of this sub-image are determined by

statistical criteria upon the pixels of brighter quantization levels.

To get the statistical description for each class m, the normalized his-

togram p(I|m) = pm(I) of intensity values is computed using the blocks that

have been classified to this class by k-means. Here the initial intensity values

are considered as the estimation is obtained from the groups of blocks. The

probabilistic distance between each pixel s and class m is after all defined as:

dB
m(s) = − lnPr{m|I(s)} = − ln

pm(I(s))
∑K−1

k=0 pk(I(s))

Probability distribution functions computed this way for the three classes,

are depicted graphically in Figure 7.1 for the image of Figure 7.2(a).
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(a) (b)

(c) (d)

Figure 7.2: Initial regions map (b) and PMLFA segmentation map (c) for
image (a).

7.2.2 Label Initialization

The output of label initialization is a set of spatially connected regions of

pixels, which are classified to class m with high confidence, using statistical

tests. These tests are based on the pixel distance dB
m defined above, as well

as on a distance computed in the neighborhood of each pixel s. For each

class m, the distances in a disk ∆r of radius r are averaged, resulting to the

metric:

dSB
m (s) =

∑

z∈∆r

gzd
B
m(s+ z),

where gz are the weights of a Gaussian filter. Pixels which belong to class

m with high confidence are those for whom dSB
m (s) is minimum compared to
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the other classes and furthermore

dB
m(s) < Tm,1 or dSB

m (s) < Tm,2

where

Tm,1 = − ln(α1 tanh(0.5median
s∈Ω

{dB
m(s)} − β1) + γ1) (7.1)

Tm,2 = − ln(α2 tanh(0.5median
s∈Ω

{dSB
m (s)} − β2) + γ2) (7.2)

and αi, βi and γi, (i = 1, 2) are predefined constants, while Ω is the image

domain. In the plot of Fig. 7.3, threshold Tm,2 as a function of the median

distance is depicted and a similar function is obtained for Tm,1. As it is

evident by the plot, Tm,i becomes more restrictive as the median distance

gets larger, since the risk of initial labelling for the class m increases with

the median distance of pixels from that class.

 0
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Figure 7.3: Distance threshold Tm,2 as a function of median class distance,
given by Eq. (7.2), for α2 = 0.15, β2 = 1.5 and γ2 = 0.85.

In image (b) of Figure 7.2, the map of initial regions for image (a) of

the figure is depicted. The dark gray regions correspond to the first class

of black gray values, the middle brightness regions are those of myocardium

class, while the white regions are those of the third class that includes the
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7. Left Ventricle Segmentation

bright areas of ventricles. The black regions are those of initially unlabelled

pixels.

7.2.3 Priority Multi-Label Flooding

After initialization each class-label is represented by one or more spatially

connected regions on image plane. These labelled regions form the initial

correctly labelled pixels.

To fill the incomplete mapping of pixels to labels, the contour of each

initial region is propagated towards the space of unlabelled image pixels by

PMLFA. The output of PMLFA is the complete segmentation map, as it is

shown in image (c) of Figure 7.2 for image (a) of the same Figure.

Based on the data set used for tests, Bayesian segmentation succeeds to

extract the region of left ventricle in more than 90% of images, whenever

such a region really exists. The algorithm fails in cases where the size of this

region is small, or not well separated by the surrounding regions due to bad

quality of image acquisition or even because of not detectable physical edges

between left ventricle and the myocardium area.

To automatically detect and correct this type of failure, the intensity and

segmentation map information of previous and next images of the same phase

(ES/ED) with that of the problematic image is considered. We denote as

{I0, I1, . . . , In−1}

the set of n ES or ED intensity images and as

{S0, S1, . . . , Sn−1}

the corresponding segmentation maps. For each image i the region Ri of

the third, brighter class with minimum centroid distance from the center of

image is extracted in each map Si. Then, the intersection between Ri and

Ri+1 is computed and the area of that intersection Ai,i+1 is measured for i =

1, 2, n−1, where n is the number of images. Images i with left ventricle non-

detection are determined whenever Ai,i+1/|Ri| < 0.5 and Ai+1,i+2/|Ri+1| >
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0.5, where | · | denotes pixel cardinality. In the first row of Fig. 7.4, three

successive segmentation maps Si, Si+1 and Si+2 for the same phase of a

patient are depicted. Using the method just described, the map Si containing

the wrongly segmented endocardial region has been successfully detected.

R

R

R R R

(a) Si (b) Si+1 (c) Si+2

R

(d) Corrected map S ′
i

Figure 7.4: First row: three successive segmentation results in the same
phase of a patient. In Si, the endocardial region R has not been correctly
segmented. Second row: the corrected segmentation map for image i.

Once segmentation failure is detected for image i, the segmentation map

Si is corrected using the intensity information of images Ii and Ii+1 together

with the label information of map Si+1. First, the probability distribution

of each class pm,i is considered again for image i as it is defined in Subsec-

tion 7.2.1. Then, the distribution p′m,i+1 is extracted for image Ii+1 using the

regions of map Si+1 in order to map the pixels to the corresponding class

m, for distributions computation. The new corrected distribution p′m,i for i
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(a) Distributions pm,i
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(b) Distributions p′m,i+1 computed by the regions of each class in map Si+1
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(c) Corrected distributions p′m,i

Figure 7.5: Distributions of map correction method for the ith segmentation
result shown in Fig. 7.4(a), for m = 1, 2, 3.
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7.3 Left Ventricle Endocardial Region Detection

(a) (b) (c)

Figure 7.6: User-defined Rendo (a), convex hull of Rendo (b) and smoothed
boundary of convex hull (c) for image (a) of Figure 7.2.

is defined to be the average of pm,i and p′m,i+1 for each class m and the new

corrected segmentation map S ′
i is obtained by simply setting each image pixel

s to the class-label m with maximum p′m,i(s). In the plots Fig. 7.5(a), (b)

the two distributions used to compute the corrected one per class are shown

respectively, for the wrongly segmented image of Fig. 7.4(a). The corrected

distributions p′m,i for image i is shown in Fig. 7.5(c) and the corrected seg-

mentation map S ′
i of Fig. 7.4(a) using this method, is that of Fig. 7.4(d).

7.3 Left Ventricle Endocardial Region Detec-

tion

After segmentation, the user is faced with the segmentation results of the

third class, as it is shown in image of Figure 7.2(d) and has to decide the

region Rendo of left ventricle by a “mouse click” in it. The selected region for

the image (a) of Figure 7.2 is shown in Figure 7.6(a).

Then, after removing “holes”, the system computes the convex hull of

Rendo, since in many cases the dark papillary muscles are not included in

Rendo as it is required by the medical physicians. In image (b) of Figure 7.6,

the convex hull of the region in Figure 7.6(a) is graphically depicted. The

boundary of the corrected, convex region Rendo is then traced and smoothed.
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(a) (b) (c)

(d) (e)

Figure 7.7: Region Repi (a), set B of Repi (b), boundary points b of Bt,
i.e. with τb < Tb (c), points s with τs < Ts (d) and extracted boundary of
epicardium (e) for image (a) of Figure 7.2.

Boundary smoothing is performed by considering the boundary coordinates

b = (x, y) in the convex plane, after subtracting the centroid of Rendo, c =

(xc, yc):

b′ = (x− xc) + i(y − yc).

The Discrete Fourier Transform (DFT) of boundary points b′ is computed

and the high frequency content of spectrum is cut off. By adding c to the

inverse DFT of the low frequency content of spectrum that remains, we get

the spatial coordinates of smoothed boundary for the convex hull Rendo. In

Figure 7.6(c), the smoothed boundary of the final segmentation result for the

left ventricle of the image of Figure 7.2(a) is illustrated.
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7.4 Left Ventricle Epicardial Boundary De-

tection

Detection of the epicardial boundary which surrounds the endocardial area

involves the set of closed boundaries of region Repi, which belongs to the

second class of intensities and surrounds the convex hull of endocardial region

Rendo:

B = {B1, B2, . . . , BN}.

The boundary between Repi and the convex hull of Rendo is not included in

B. In image Figure 7.7(a), the region Repi which surrounds the convex hull

of Rendo is shown and in image Figure 7.7(b) the boundary set B of Repi is

graphically depicted.

Segmentation is performed in two steps. The first one is to determine

the set Bt of boundary segments that are placed in an acceptable distance

from the boundary of the detected endocardium and are adequate to form

the closed boundary of epicardium. This is achieved by excluding from set B

boundary points b whose Euclidean distance τb from the boundary of Rendo

exceeds a predefined threshold Tb. Definition of Tb is based on observations

in the overall, given data set. The boundary set Bt of Repi of Figure 7.7(a),

is depicted in Figure 7.7(c).

Then, epicardial boundary is determined by an algorithm which fits a

cubic spline of weighted minimum square error on the selected boundary

parts. The computation of weights wb for the points b in the truncated set

Bt is based on the median distance MEDτ and variance σ2
τ from MEDτ .

Computation ofMEDτ involves the pixels s in Repi whose Euclidean distance

τs from the boundary of Rendo does not exceed a predefined threshold Ts ≤ Tb.

In Figure 7.7(d), the distance τs of pixels from the boundary of the convex hull

of Rendo is shown for τs < Ts. The convex hull of Rendo is the white region,

while pixels with distance greater than Ts are depicted black. Boundary

set Bt of points is also drawn in white. The histogram of τs for Repi of

Figure 7.7(a) is shown in Figure 7.8. The red bar indicates MEDτ .

MEDτ is a robust estimation of mean Euclidean distance of the left
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Figure 7.8: Histogram of Euclidean distance τ of pixels from the boundary
of Rendo for region Repi of Figure 7.7(a). The red bar delineates the estimated
median value MEDτ .

myocardial area from Rendo, under the presence of segmentation errors and

keeping in mind that a closed physical epicardium boundary does not really

exist. Computation of σ2
τ is restricted to the pixels s of Repi with τs ≤

2 · MEDτ . Estimate σ2
τ is used to progressively factor out the impact of

boundary points b as their distance τb from MEDτ increases. The exact

formula of weights is given by equation:

wb = e
−

(τb−MEDτ )2

σ2
τ . (7.3)

Cubic spline minimization takes place in the polar (θ, ρ) space defined by

the centroid c = (xc, yc) ofRendo. Thus, boundary points are first transformed

to polar coordinates and are sorted according to their value of θ in the range

[−π, π). Boundary data is reproduced in the range [π, 3π), to reduce the

effect of interpolation that is applied by the spline minimization algorithm

on the first and last boundary points. Then, a cubic B-spline curve of t

segments is fitted to the boundary points in the range [−π, 3π), using the

weights defined by Eq. (7.3). The resulting boundary function ρ̂ = f(θ),

θ ∈ [0, 2π], is transformed back to Cartesian coordinates. In Figure 7.9,

the red curve delineates the computed function ρ̂ = f(θ), for θ ∈ [0, 2π].

The transformed boundary points of Figure 7.7(c) are the blue crosses, while

red circles are the knots of cubic polynomial segments. In Figure 7.7(e) the

final boundaries of left ventricle and epicardium are imposed on the image
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Figure 7.9: Cubic B-Spline weighted least squares minimization for the
boundary points of Figure 7.7(c).

of Figure 7.2(a).

7.5 Experimental Results

We present experimental results on MR images for a number of patients

and for both ED and ES phases. In the images of Figure 7.10, the result-

ing boundaries of epicardium and endocardium are depicted for the patient

cases (a)-(e) and for ED (first row) and ES phases (second row) respectively.

Although the acquisition quality and LV shape vary a lot, the LV segmenta-

tion results are stable and accurate. Furthermore, in all cases the papillary

muscles are included in the endocardium region.

The not accurately placed epicardial boundary of case (b) is mainly

caused by the bad slice acquisition which does not permit the correct discrim-

ination between the first class of black and the second class of myocardium

gray values, which in turn leads to the presence of black small blobs into the

myocardium area. As a consequence, computation of MEDτ is inaccurate,

giving miss-leading weights to the boundary points of myocardium. A sit-

uation like that appears rarely and could be avoided with better tuning of
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Figure 7.10: LV segmentation results for 5 patient cases, for ED (first col-
umn) and ES (second column) phases respectively.
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7.5 Experimental Results

image acquisition parameters.

LV segmentation results for the complete testing data set, are found at

http://www.csd.uoc.gr/~grinias/DEMOS/lv_segm.
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Appendix A

Probabilistic Distance Metrics

A.1 Probabilistic Distance Metrics on Data

Sets

The concept of probabilistic distance derives from the error probability e,

which for the two class case is [26]:

Pe =

∫

ξ

min (P1p1(ξ), P2p2(ξ)) dξ ≤
√

P1P2

∫

ξ

√

p1(ξ)p2(ξ)dξ (A.1)

where ξ is the classification feature vector, p1(ξ), p2(ξ) are the conditional

probability density functions p(ξ|1), p(ξ|2) of feature vector and P1, P2 are

the a priori probabilities for the two classes, respectively. The error due to

the overlapping of distributions in feature space is graphically depicted in the

plot of Fig. A.1, for an 1D feature space. The area of error is shown yellow

in that artificial example.

The error probability will be maximum when the integrand is maximized,

that is, when density functions are completely overlapping, and will be zero

when the functions pm(ξ) do not intersect at all, for m = 1, 2. Thus, the

second integral in Eq. (A.1) indicates a measure of the distance between the

two probability density functions. As a consequence, any “distance” measure

J between the two density functions satisfying the conditions

• J ≥ 0,
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• J = 0, when pm(ξ) exactly overlap, and

• J is maximum, when pm(ξ) do not overlap at all

can be used as a feature distance criterion.

Figure A.1: Statistical error between two distributions for an 1D feature x.

Among several known distance measures between probability distribu-

tions, the Bhattacharyya distance is used herein to measure the distance

between two feature classes. Bhattacharyya distance is defined as the nega-

tive logarithm of the rightmost integral in Eq. (A.1). In the case of discrete

random variables the distance has the form

JB(p1, p2) = − ln

(

∑

i

√

p1(i)p2(i)

)

. (A.2)

Furthermore, when the class-conditional probability distributions are Gaus-

sian, i.e.

pm(ξ) =
[

(2π)N |Σm|
]−1/2

exp

{

−
1

2
(ξ − µm)TΣ−1

m (ξ − µm)

}

, (A.3)

where N is the dimension of feature vector, µm and Σm are the mean vector

and covariance matrix of the mth class distribution respectively, the distance

becomes

JB(p1, p2) =
1

4
(µ2−µ1)

T [Σ1+Σ2]
−1(µ2−µ1)+

1

2
ln

[

|1
2
(Σ1 + Σ2)|
√

|Σ1||Σ2|

]

. (A.4)
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Under the assumption of Gaussian distributed and zero mean, uncorrelated

features, Bhattacharyya distance takes the simplified form:

JB(p1, p2) =
1

2

N
∑

i=1

ln
σ2

i,1 + σ2
i,2

2σi,1σi,2
, (A.5)

where σi,m is the standard deviation of the ith feature of classes, for m = 1, 2.

A.2 Probabilistic Distance Metrics on Data

Samples

Taking into consideration all parameters characterizing a feature pattern, a

point belongs to a given class, if its distance from the class is minimal. The

distance is defined using the likelihood function of the class label. The more

probable a class l is, the less the distance is for a given point s, according to

the minus logarithm of the likelihood function:

dB
l (s) = − ln pl(ξ(s)), (A.6)

where ξ(s) is the feature vector of pixel s and pl is the conditional probability

density function of class l for the given features.

If the class-conditional probability distribution of features is Gaussian,

Eq. (A.6) takes the form

dB
l (s) =

1

2
ln |Σl| +

1

2
(ξ(s) − µl)

TΣ−1
l (ξ(s) − µl), (A.7)

where µl and Σl are the mean vector and covariance matrix of the class

distribution. In the case of Gaussian distributed and zero-mean, uncorrelated

features the distance becomes

dB
l (s) =

1

2

N
∑

i=1

(

ξi(s)
2

σ2
i,l

+ ln σ2
i,l

)

, (A.8)

where N is the number of features and σi,l is the standard deviation of the
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ith feature of class l.
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Appendix B

Performance Metrics for

Segmentation

In this chapter, supervised, performance evaluation metrics are described

for segmentation results. The techniques are supervised in the sense that

ground truth maps have to be provided in order to measure the quality of

the segmentation map derived by algorithms.

B.1 Metrics Based on Consistency Error

Consistency error metrics are region differencing measures. According to [2],

given two segmentation maps S1, S2 for the same image, the local refinement

error for site s of image grid Λ is defined as:

E(S1, S2, s) =
|R(S1, s)\R(S2, s)|

|R(S1, s)|
,

where \ denotes set difference, | · | the cardinality of its argument and R(S, s)

is the region to which site s belongs in segmentation map S. Based on the

non symmetric pixel error E, two evaluation metrics are defined in [2]: the

Global Consistency Error, having the analytic form

GCE(S1, S2) =
1

n
min

{

∑

s∈Λ

E(S1, S2, s),
∑

s∈Λ

E(S2, S1, s)

}

(B.1)

149



B. Performance Metrics for Segmentation

and the Local Consistency Error, given by the equation:

LCE(S1, S2) =
1

n

∑

s∈Λ

min {E(S1, S2, s), E(S2, S1, s)}, (B.2)

where n = |Λ|.

GCE metric is stronger than LCE, since always holds that GCE > LCE

for a pair of maps. Furthermore, GCE heavily penalizes undersegmentation,

while does not penalize oversegmentation at all. GCE and LCE range from

0 (highest performance) to 1.

B.2 Probabilistic Rand Index

Denoting as R(S, s) the region of s in map S, as in the previous section, then

given two segmentation maps S1 and S2, we define the event

E=(si, sj) = [R(S1, si) = R(S1, sj) ∧R(S2, si) = R(S2, sj)]

that sites si, sj belong to the same region in each one of S1, S2. Similarly,

we denote as

E6=(si, sj) = [R(S1, si) 6= R(S1, sj) ∧R(S2, si) 6= R(S2, sj)]

the event that the pair of sites belongs to different regions in each map. The

Rand Index (RI) [77] between segmentation maps S1 and S2 is then defined

as:

RI(S1, S2) =
1

(

n

2

)

∑

si,sj

i6=j

[I (E=(si, sj)) + I (E6=(si, sj))],

where I is the identity function. Metric RI is the ratio of number of sites

having the same relationship, i.e. belonging or not belonging to the same

region, in maps S1 and S2.

Based on RI, the Probabilistic Rand (PR) index [78] is a non parametric
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measure defined as:

PR (Stest, {Sk}) =
1

(

n

2

)

∑

i,j
i<j

[cijpij + (1 − cij)(1 − pij)]

where cij denotes the event of a pair of sites i and j belonging to the same

region in the test image Stest and pij are the expected values of site pairs

belonging to the same region. Expected values pij are computed on average

using a set of perceptually correct segmentation maps {Sk}, provided for

example by humans for Stest.

Advantages as well drawbacks of the index have been extensively dis-

cussed in [78]. Its main drawback is that the variation of its value does not

scale well with the difficulties in segmentation, caused to algorithms by the

diversity in visual image content across the images of a dataset. Thusfore,

authors of [78] proposed the normalization of PR index as follows:

(Normalized index) =
(Index) − (Expected index)

(Maximum index) − (Expected index)
,

where expected index is computed in the overall set of perceptually correct

maps for all images and maximum index is set to the maximum value 1 of PR.

Computed this way, the expected index value quantifies the difficulties of the

segmentation task for the overall dataset. However, the variation of visual

content per image is not captured, although often segmentation algorithms

depend exclusively on it and no other knowledge is used.

Based on the same observations, a novel metric is defined using RI. The

first difference is that a probabilistic Rand index is defined between a test

map Stest and ground truth maps {Sk}, as:

PR (Stest, {Sk}) = median
k

{RI(Stest, Sk)} (B.3)

This definition replaces the mean estimator used to compute PR in [78] and

it is in agreement with the fact that a small number of ground truth maps

is often available per image.
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Furthermore, for each image the expected index of PR for each ground

truth map Sk is computed, using maps {Sr} that are derived by the quan-

tization of visual content, in a non systematic way. The method described

below for extracting the maps, applies as is in the case of one-dimensional

features. Principal Components Analysis (PCA) is performed for features

in more than one dimensions, such as colour and the principal axis of max-

imum strength is used to quantize image data in two levels. Quantization

is achieved by applying a cut-off threshold to the cumulative distribution

function (cdf) of the principal axis. The result of quantization is a binary

map. A set of binary maps per image is derived by incrementally varying

the cut-off threshold on the cdf. The connected components of binary maps

represent possible randomly generated maps, denoted as {Sr}, resulting by

the visual content of images.

The method is depicted for the colour image of Fig. B.1(a). The cdf of

the maximum deviation axis after PCA is given in the plot of Fig. B.1(b).

The 9 cut-off thresholds that define the two levels used for the quantization

of the feature axis, are also depicted as red lines in that plot. Each threshold

is defined at cdf values 0.1 × r, for r = 1, 2, . . . , 9 and for each threshold

a segmentation map Sr is obtained. The set {Sr} of segmentation maps is

augmented to include the trivial map of one region consisting of the whole

image. The 9 non trivial segmentation maps derived by the method are

depicted in Fig. B.2, in pseudocolour.

The expected index for each ground truth segmentation Sk is then com-

puted as:

EPR(Sk) = PR (Sk, {Sr}) ,

which is a quantitative metric of how well the ground truth segmentation

map reflects the visual content of the specific image. The normalized PR

index for map Stest, compared to the reference map Sk is given by equation:

NPR (Stest, Sk) =
RI(Stest, Sk) − EPR(Sk)

1 −EPR(Sk)
(B.4)

and measures how better or worse segmentation map Stest is, compared to
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Figure B.1: (a) Original colour image and (b) 9 quantization cut-off thresh-
olds, defined on the cdf of maximum strength axis, which is derived by the
PCA of colour data.

Sk according to the hardness of segmentation task of the given image.

PR value ranges from 0 to 1 (highest performance) and NPR ranges from

−∞ to 1 (highest performance).
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Figure B.2: Visual content related random maps in pseudocolour, generated
for the colour image of Fig. B.1(a)

.
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