An Efficient and Lightweight OpenSHMEM
Implementation

George Kalyvianakis

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Associate Professor Polyvios Pratikakis

Thesis Supervisor: Dr. Nikolaos Kallimanis

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

UNIVERSITY OF CRETE
COMPUTER SCIENCE DEPARTMENT

An Efficient and Lightweight OpenSHMEM Implementation

Thesis submitted by
Georgios Kalivianakis
in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:

Georgios Kalivianakis

Committee approvals:

Dr. Nikolaos Kallimanis
Thesis Supervisor

Polyvios Pratikakis
Assistant Professor, Thesis Advisor

Kwnstantinos Magoutis
Associate Professor, Committee Member

Vassilios Dimakopoulos
Associate Professor, Committee Member

Departmental approval:

Polyvios Pratikakis
Assistant Professor, Director of Graduate Studies

Heraklion, March 2022

An Efficient and Lightweight OpenSHMEM
Implementation

Abstract

The High Performance Computing (HPC) is rapidly gaining momentum, re-
lying on the benefits of the Partitioned Global Address Space (PGAS) model for
optimal results. Numerous languages and libraries have been introduced that lever-
age the PGAS model, with the most widely known being OpenSHMEM. OpenSH-
MEM is a standard specification that introduces a one-sided RDMA capable API
for extensive use in HPC.

In this thesis we design and implement Gmem, an OpenSHMEM implemen-
tation supporting TCP/IP, RoCE and Infiniband networking backed by GSAS, a
very lightweight PGAS API allowing processes spawning on a number of nodes to
communicate in very similar way to shared memory schemantics. Gmem leverages
shared memory for intra-node communications enabling users to fully utilize spa-
cial locality without involvement of the OS or the network adapter. With RDMA
we are also able to perform operations on remote nodes with extremely low latency
and high throughput.

We evaluate G-Mem with the OpenSHMEM implementation of OpenMPI and
MPICH that rely on the Unified Communication X (UCX) framework, for TCP /TP
and Infiniband. In our tests we assess the performance of PUT/GET remote
memory operations, several atomic memory operations and collectives operations.
We find that our implementation is not only on par with our competitors but
in some cases we even achieve greater results. In GET operations, for large size
transfers we achieve 6x lower latency than OpenMPI, and in Atomic operations
1.25x better latency than OpenMPI.

TitAhoc

ITegiandn

Euvyapioticeg

YTous yovel§ pov

Contents

Table of Contents

List of Tables

List of Figures

1 Introduction

1.1

Related Work

2 Architecture

2.1

2.2

2.3

GSAS Architecture
2.1.1 GSAS Extended Functionality
Infiniband
2.2.1 GSAS Communication
Gmem Implementation
2.3.1 Library Setup
2.3.2 Memory Operations
2.3.3 Remote Memory Accesses
2.3.4 Atomic Memory Operations
2.3.5 Collective Operations
2.3.5.1 Barrier & Sync
2.3.5.2 Broadcast L.
2.3.5.3 Collect & fCollect
2354 Reduce oo
2.3.5.5 AlltoAll & AlltoAlls
2.3.5.6 Point-To-Point Synchronization
2.3.5.7 Memory Ordering Routines
2.3.5.8 Distributed Locking Routines

3 Experimental Evaluation

3.1
3.2
3.3
3.4

PUT and GET
Atomic Memory Operations
Collective Operations
Exanet Performance

10
11
14
16
17
18
19
20
21
21
23
24
25
27
27
28
28

3.4.1 Get Operations
3.4.2 Put Operations

3.4.3 Collective Operations

Bibliography

ii

List of Tables

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7

OpenSHMEM API Availability in Gmem and OSHMPI 4
Infiniband Service Types oL 13
Overview of shm_args structure 18
OpenSHMEM Remote Memory Operations 20
OpenSHMEM Atomic Memory Operations 21
OpenSHMEM Atomic Memory Operations 21
OpenSHMEM Atomic Memory Operations 26

OpenSHMEM Locking Routines 29

iii

iv

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

Differences in one/two sided communications in SPMD and PGAS 2
Overview of GSAS architecture. 10
Infiniband Initialization 12
MBox Manager Protocol 14
GSAS Control Packet Structure 15
Gmem Barrier Operation, 23
Gmem Broadcast Operation 24
Gmem Collect Operation 25
Gmem Reduce Operations 26
Gmem AlltoAll Operations 27
Get Latency synchronized with a fence operation 33
Get Throughput synchronized with a fence operation 34
Get Latency synchronized with a barrier operation 35
Get Throughput synchronized with a barrier operation 36
Put Latency synchronized with a fence operation 37
Put Throughput synchronized with a fence operation 38
Put Latency synchronized with a barrier operation 39
Put Throughput synchronized with a barrier operation 39
Atomic Compare and Swap L. 41
Atomic Fetch and ADD L. 42
Atomic ADD 43
Shmem _barrier Performance 44
Shmem _broadcast performance 45
Shmem_collect performance 46
QFDB Get Latency performance 47
QFDB Get throughput performance 48
QFDB Put Latency performance 49
QFDB Put Throughput performance 49
QFDB Collectives Latency performance 50

vi

Chapter 1

Introduction

High Performance Computing (HPC) aims to utilize all the computational re-
sources of a cluster to meet the needs of cutting-edge applications. HPC’s founda-
tions revolve around three main axis, namely computational power, fast network
connectivity and storage. This is mainly achieved by bundling computers together
to form a cluster, allowing them to fully utilize their individual computation capa-
bilities by exchanging data between them almost as fast as a computer can access
its local resources. Since computational power per processing core has limitations
on how fast they can advance such as Moore’s law and Dennard’s scaling, the focus
of HPC has shifted on adding more computational nodes and focusing on efficient
and fast networks to exchange data.

Initially, the dominant programming model to utilize an HPC cluster’s capabil-
ities was the distributed memory model. By utilizing such a programming model,
several processes are spawned on different processing cores of a single or more
computational nodes in a network. Additionally, the distributed model follows
the Single Process - Multiple Data (SPMD) paradigm, where several processes
run the same executable. In the SPMD paradigm, each process receives a unique
identifier on start, allowing the execution path of processes that execute the same
file to diverge. In the distributed memory model each process has its own set of
variables residing in its memory, but has no knowledge of the status of its peer’s
memory. As depicted in Figure 1.1(a), in order to access or modify data resid-
ing on a remote process, it has to communicate with the process in a two-way
communication i.e. one remote process needs to transmit and another to receive.
This two-way communication is mainly done through message passing protocols.
Message Passing Interfaces (MPI), introduce APIs that handle the initialization
and the networking aspects in an application, effectively allowing the programmer
to focus solely on their application. However, these APIs have some limitations.
For example, not all data types and user defined structures can be exchanged di-
rectly, requiring some sort of serialization and de-serialization [23] due to the APIs
restrictions. Moreover, the two-sided nature of MPI forces users to implement
mechanisms in their code to handle requests and data transmissions, as well as to

2 CHAPTER 1. INTRODUCTION

1
NodeO | Nodel NodeO | Nodel
1 1
D D |
v
(a) SPMD two-sided memory (b) PGAS one-sided memory
accesses accesses

Figure 1.1: Differences in one/two sided communications in SPMD and PGAS
In Figure 1.1(a) process A can only access Node’s 1 memory through process B.
In Figure 1.1(b) process A can directly access Node’s 1 memory.

ensure proper timing, which introduces a bigger surface for bugs and inefficient
code. These limitations led to the introduction of the Partitioned Global Address
Space (PGAS) [5] model.

The PGAS programming model is very similar to MPI as a concept, but with
key differences being the memory model and that its communications are one-
sided. In the PGAS model, a number of processes are spawned on a single or more
nodes, running the same application. Again, the SPMD paradigm is utilized but in
this case, the processes are aware of remote shared memory segments. Whenever a
PGAS application is initialized, each process receives information about its peers
shared memory segments locations in the form of remote pointers. By utilizing
these pointers, a process is able to interact with remote memory, i.e. Read/Write
to it, without intervention from the remote process as depicted in Figure 1.1(b).
This is possible because the memory of the application is split in even segments
and distributed among every node. Each process is responsible for a segment
and benefits from very fast accesses to it. At the same time, the remote pointers
that a process possesses, allow for one-sided remote memory operations on its
peers memory. This effectively means that with a simple GET and PUT API,
programmers are able to write intuitive code that can freely access or modify
any shared variable as easily as it would modify a local variable, without special
structures and network functions. This leads to the main factor affecting the PGAS
performance being the network communications and more specifically the latency
of operations. Lower latency means highest throughput of operations. The one-
sided nature of PGAS strongly amortizes this cost but for optimal performance
the underlying network must be chosen properly.

Currently, numerous PGAS languages [7] and API implementations [1, 2, 10,
17, 19, 21] have been developed, that support different underlying networking
protocol and machine architectures. However, this introduces the problem of non-
portable code and inconsistency [20] in runtime behavior between the different

implementations. The need for a standardized API arose that bridges the gap
between different implementations, leading to the conception of the OpenSHMEM
[6] standard. The OpenSHMEM standard aims to designate a general PGAS API,
with strict definitions of functions and behaviors per function that will serve as
a guideline for any implementation. While an implementation can be tailored to
a specific hardware platform or underlying network infrastructure, as long as it
follows the OpenSHMEM specification it can execute any program that uses the
OpenSHMEM API.

In this thesis we introduce Gmem. Gmem is an OpenSHMEM implementa-
tion on top of the GSAS environment [9, 14, 15, 16] a minimal, light-weight PGAS
API. GSAS enables processes running on different nodes to allocate and de-allocate
memory on any participating node and interact with that memory with a very sim-
ple API. Remote processes participating in GSAS are not communicating directly
with each other but instead they make use of a service, called atomic service. An
instance of the atomic service is present in each node and serves as an end point for
requests from either local or remote processes. The atomic service is responsible
for serving requests from processes. These requests include but are not limited to
managing the memory of a node, i.e. handling allocations and de-allocations, and
serving Read and Writes towards that memory. When an atomic service allocates
memory, that memory is made available to local processes via shared memory.
This allows a local GSAS process to directly interact with local parts of the global
address space directly. For remote memory operations, a GSAS process has to
communicate its request to the atomic service of a remote compute node. Upon
receiving this request, the atomic service will either write or read and return the
proper data.

Aside from memory allocation and Reads and Writes, GSAS offers a variety
of more sophisticated functionality. Specifically, it allows for forking of remotes
processes, as well as performing atomic memory operations and synchronization
functions. GSAS allows the forking of processes in a dynamic fashion at any time of
an application’s life cycle. Additionally, GSAS provides a set of atomic primitives
that includes a minimum amount of atomic operations such as, Compare and Swap
(CAS), Atomic Swap (SWAP) and Fetch and Add (FAD).

This thesis is split in two parts. The first part is the design and implementa-
tion of Gmem. Table 1.1 presents an overview of the supported functionality in
our implementation. Based on the OpenSHMEM specification, the memory of a
process is split in local and shared memory segments. All global, static and shared
allocated variables are part of the shared memory and need to be mirrored in each
process and remote accessible in a one-sided communication fashion. Based on
the OpenSHMEM specification, each process needs to have two shared memory
segments. The first contains all the global variables of a program and is named
symmetric memory, while the second is dynamically allocated when a shared allo-
cation operation is called and is named symmetric heap. These segments need to
be known to all participating processes at any time. To ensure this, upon start of
execution, a process allocates the required amount of memory from its local atomic

4 CHAPTER 1. INTRODUCTION

service and proceeds to memory map (MMAP) this memory over its initialed and
uninitialized global data segments. Omnce this is completed, processes exchange
a pointer to this memory in an all-to-all fashion. By sharing the pointer to this
shared memory, any remote process can execute a one-sided Put or Get operation
on the shared data (i.e. to a global variable) of any process. In order to deliver the
one-sided communication, Put and Gets, we leverage the atomic service of GSAS.
When a process wants to perform a Put/Get operation, it communicates its re-
quest to the responsible atomic service. Since the shared memory of each process
is allocated from the atomic service, upon receiving a request, the atomic service
can freely interact with the memory of every local process without interrupting or
synchronizing with it. The symmetric heap allocation works in the same manner
as the symmetric memory.

OpenSHMEM Functionality Availability

Categories ‘ Gmem OSHMPI
Library Setup Available Available
Thread Support N/A Available
Memory Management Available Available
Routines
Communication N/A N/A
management Routines
Remote Memory Access Available Available
Routines
Non-blocking Remote Available Available
Memory Access
Routines
Atomic Memory Available Available
Operations
Collective Routines Available Available
Point-To-Point Available Available
Synchronization
Routines
Memory Ordering Available Available
Routines
Distributed Locking Available Available
Routines
Cache Management N/A Available

Table 1.1: OpenSHMEM API Availability in Gmem and OSHMPI

In addition to the shared memory and Put/Get functionality, our implemen-
tation also provides more sophisticated OpenSHMEM functionality, namely col-
lective operations point to point synchronization and critical region locking mech-
anisms. The collective operations include barriers, one-to-all and all-to-all com-
munication functions. For the barriers, we implement our own protocols that
leverage the new atomic primitives we introduced in addition to the underlying
topology in GSAS, allowing us to deliver a fine tuned solution to our needs. In
the case of the rest of the collectives such as broadcast or collect operations, we
utilize our Put/Get functionality along with our highly efficient barrier to deliver
the requested functionality achieving good performance. Our collective algorithms
have been verified via the Synch [13] framework. The Synch framework provides a
shared-memory oriented testbed for the implementation and testing of concurrent
algorithms. By porting and testing our algorithms in Synch, we are able to validate
their functionality, verifying their results as well as clearing them of serious logical
errors such as deadlocks. Finally, in regards to the locking mechanisms offered
by OpenSHMEM, we have implemented a ticket-lock algorithm that abides by all
the requirements of the standard, namely a first-in-first-out property as well as
fairness.

In order to accommodate for the requirements of OpenSHMEM atomic oper-
ations part of this thesis work has been to extend the existing functionality of
GSAS. Specifically, OpenSHMEM supports all atomic bitwise operations, in both
fetch i.e. return the result, and non-fetch modes. In addition, for all atomic prim-
itives, both 32b and 64b words are supported. GSAS on the other hand, only
supports the Compare and Swap(CAS), Fetch and Add(FAD) and atomic SWAP
operations, for 64b words. Due to GSAS fairly minimal code base, we have en-
riched its functionality to support all aforementioned atomic operations. We have
also added support for CAS and SWAP that transmit back the result value of the
operation instead of a boolean result status that GSAS provides.

Due to the nature of one-sided communications of the OpenSHMEM, the un-
derlying networking setup plays a major role in its performance. In the past, the
Ethernet protocol has been used extensively in HPCs. Ethernet relies on its time
tested TCP and UDP transport protocols. TCP provides out-of-the-box support
for all sorts of applications while UDP serves as a base for the development of
custom network protocols, specifically tailored to an application’s needs. Due to
its low-cost hardware that is already available on every machine as well as its
maturity it has been the go-to solution. However, despite its constant evolution,
it still suffers from limitations due to its immense coupling to operating systems
and backwards compatibility that hinder both its throughput and latency, two of
the most important factors for an efficient cluster. In a typical TCP scenario, the
transmitting process has to generate a kernel interrupt, so that data can be copied
to the network adapter and transmitted. On the receiving side, the adapter will
receive the data, store it and interrupt the kernel. Afterwards, the kernel will
notify the proper process, which will copy the data from the adapter to its own

6 CHAPTER 1. INTRODUCTION

virtual space. The kernel interrupts in combination with the memory copies con-
tribute to increased latency until data from the transmitting process are available
to the receiving end. Furthermore, there is a significant cost in CPU cycles to do
so. This is why state-of-the-art systems have begun shifting away from TCP/IP to
different Remote Direct Memory Access (RDMA) enabled network architectures.

RDMA is a zero-copy technology protocol. Zero copy means that an applica-
tion is able to communicate directly with the network adapter, without any kernel
intervention. This allows it to save and utilize CPU cycles in a more useful man-
ner, minimizing latency and maximizing throughput. Numerous network protocols
have emerged that implement RDMA, with the most widely known being: Internet
Wide Area RDMA Protocol (iWARP), RDMA Over Converged Ethernet (RoCE),
and Infiniband. Both iWARP and RoCE aim to deliver RDMA capabilities over
traditional Ethernet through TCP/IP. In order to do so, special NICs are required
that enable hardware support for RDMA over Ethernet. The main difference be-
tween the two lies on their underlying transport protocol. While both operate on
top of Ethernet, iWARP works through TCP while RoCE works through UDP.
Infiniband relies on its own hardware and network stack to deliver the RDMA
capabilities. Due to its strictly RDMA oriented approach, it is able to mitigate
overheads and bottlenecks caused by the TCP/IP affecting the performance. Al-
though it achieves better performance than iWARP and RoCE, it also has its
drawbacks. Infiniband code differs from traditional socket programming, meaning
that there is a steep initial learning curve. In addition, Infiniband hardware is not
readily available like typical TCP/IP NICs and upgrading existing infrastructure
can be a costly task.

This brings us to the second part of this thesis work, which is the introduction
of Infiniband support in GSAS. The reason behind this is that the GSAS orig-
inal design only supported RDS sockets on top of the TCP/IP protocol for its
communications. The RDS protocol is slowly becoming obsolete and also comes
with security flaws making it disabled by default in most production operating
systems. In addition to this, the RDS sockets are meant to run over Infiniband
and while it is capable of running on top Ethernet, it does so by emulating the
Infiniband environment resulting in significant impact on its performance. GSAS
was designed to provide very low latency for small messages of fixed size. Based
on our observations, supporting only small messages has a negative performance
in our OpenSHMEM implementation. For this reason, we also design and im-
plement a mechanism, namely BULK Transfers, that extends the functionality of
GSAS with two different transmission functions that are used based on the size of
a transfer. More specifically, when a small amount of data need to be transmitted,
our mechanism uses inline packets, while for larger sizes we use regular packets
that support data transfers of up to the Maximum Transmission Unit(MTU) size.

To conclude, in this thesis we introduce Gmem, an OpenSHMEM compliant
implementation. Gmem is built on top of GSAS, a minimal PGAS API in which
we introduce Infiniband support. Gmem is based on the version 1.4 of the Open-
SHMEM specification. We currently support almost every feature of the standard,

1.1. RELATED WORK 7

with the exception of communication contexts and multi-threaded operations. We
verify our implementation with tests supplied by the official OpenSHMEM github
repository [18]. The OpenSHMEM foundation offers a test suite that can be used
to explore the coverage of a potential implementation as well as to verify that it
works as intended. For our evaluations, we compare our implementation against
OSHMPIT [24], the most commonly used and accessible OpenSHMEM implemen-
tation. OSHMPI can be backed by either OpenMPI or MPICH, and we compare
against both, using both TCP/IP and Infiniband as our underlying communica-
tion protocols. In the cases of Infiniband, GET operations achieve 6x times lower
latency. We also achieve 1.25x times better latency in atomic memory operations
for remote operations.

The rest of the thesis is structured as follows: Section 1.1 contains an overview
of related work to this thesis. Section 2 provides in-depth information regarding
our work.Finally, in Section 3 we present our work’s evaluation results.

1.1 Related Work

Cray OpenSHMEMX [22] is a proprietary OpenSHMEM implementation by Cray
Inc. Cray was the first to offer an implementation of the SHMEM model, which
later evolved in the OpenSHMEM. It has also played a major role in the shap-
ing and evolution of the OpenSHMEM standard. Cray’s internal SHMEM API
is specifically designed around DMAPP [4], a customized communication library
used for their in-house developed Gemini and Aries architectures. OpenSHMEMX
aims to bring their SHMEM APT up to code with the OpenSHMEM standard. The
latest versions offers full compliance with the 1.4 version of the standard. Open-
SHMEMX is designed in a modular fashion that allows fine-grained tuning based
on the underlying hardware, networking protocols and applications needs.

Nvidia has its own OpenSHMEM implementation namely NVSHMEM [12].
NVSHMEM is tailored specifically for CUDA enabled Graphics Processor Units
(GPU). Traditionally, GPUs use CUDA and MPI. The CPU utilizes MPI for com-
munications while the GPU is handling the actual computation. This introduces
overheads caused by CPU usage and latency due to CPU to GPU communication.
NVSHMEM’s PGAS spans across GPUs on the cluster enabling direct communi-
cation from one GPU to another with close to zero CPU involvement. By using
special GPU-Kernels (not to be confused with the Kernel in the operating system)
a GPU has interleaving communication and computation. This enables GPUs to
handle both communication and computation without the involvement of the CPU.
Also, the asynchronous one-sided communications implemented per the OpenSH-
MEM specification allow for optimal communication between the GPU threads,
significantly boosting throughput and lowering latency, while also reducing code
complexity.

OSHMPI [11] implements the OpenSHMEM standard based on the MPI-3

8 CHAPTER 1. INTRODUCTION

specification. The MPI-3 specification, introduces improved one-sided commu-
nication compared to its predecessors. It defines a more strict memory model,
with better ordering guarantees as well as remote synchronization allow for more
optimized communications between processes. OSHMPI can be backed by both
OpenMPI and MPICH, two of the most popular opensource MPI implementations.
Both variations can run on top of TCP/IP. However in the case of OpenMPI, the
OpenSHMEM implementation can only be used if the Unified Communication
X (UCX) framework is present. The MPICH variation also requires the UCX
framework but only when the user runs on top of Infiniband. While the end user
experience is the same, the architectures of OpenMPI and UCX are very complex
making it extremely difficult to improve or implement additional features in the
implementation. Moreover, both OpenMPI and UCX accept their own set of pa-
rameters, which most often than not result in collisions that can negatively affect
the performance, making fine tuning a very daunting task.

GASPI [3, 10] is an open source PGAS API, implemented in C, C++ and
Fortran, offering the same benefits of OpenSHMEM without being an OpenSH-
MEM compliant implementation. It is centered around scalability, flexibility and
fault tolerance. GASPI’s one-sided data transfers produce a notification on the
remote side upon completion, allowing users to develop a highly customized code
of computation and communication. It also fully supports RDMA features. It also
abolishes conventional symmetric memory, and opts for a more fine tuning model
where the user can choose where and how the segments of the Global address
space will be spawned. Timeouts of remote operations allow for the discovery of
potential failures while its dynamic modification of the active node sets, allow for
the recovery from failures.

Chapter 2

Architecture

In this thesis, we introduce Gmem, an implementation of the OpenSHMEM stan-
dard. Our implementation is built on top of the Global Address Space(GSAS)
shared memory framework. GSAS follows a Partitioned Global Address Space
(PGAS) shared memory model. A PGAS model provides the participating pro-
cesses with a virtual global address memory space, partitioned evenly between
different nodes. GSAS provides an API that the participating processes use to in-
teract with the global address space memory, as well as with each other. This API
provides functionality to allocate, read, and write memory in any of the nodes,
allowing processes to store data in such a way that memory locality can be fully
utilized. GSAS provides a slim software stack in contrast to other state-of-the-
art alternatives such as OpenMPI and MPICH, which include numerous software
dependencies. Additionally, the OpenSHMEM implementation part of this thesis
introduces Infiniband networking support in GSAS

The architecture section is organized as follows:

1. Section 2.1 presents an overview of GSAS.
2. Section 2.2 explains how we introduce Infiniband communications in GSAS.

3. Section 2.3 explains how we implement the OpenSHMEM Standard in GSAS.

2.1 GSAS Architecture

GSAS is a centralized framework, meaning that every node that is part of it, needs
to have the Atomic Service (AS) running. The Atomic Service is responsible for
managing the memory segment of GSAS in a node, such as the allocation and
de-allocation of memory, as well as forking processes running a GSAS application.
Figure 2.1 shows an overview of GSAS. The instances of Atomic Service are able
to communicate with each other via the underlying network. In addition to this
they can also receive requests directly from a GSAS process. This allows a process
to request data from a memory partition of the global address space residing in a

10 CHAPTER 2. ARCHITECTURE

remote node. Moreover, when an instance of Atomic Service allocates a new block
of memory, that block is also made available to all of its local processes through
shared memory. This allows processes to directly retrieve data residing in their lo-
cal node without having to receive the data through the network stack. In this case
the data are transmitted to the requesting process by a simple memory copy. The
operations provided by the GSAS API are running in user-level, thus avoiding any
kernel involvement, allowing for low latency and fast communication. The perfor-
mance bottleneck of these operations usually lies on the underlying network used
for the communication. The addition of Infiniband (IB) support in GSAS network-
ing protocols, in contrast to the currently supported TCP/IP stack via Reliable
Datagram Sockets (RDS) or User Datagram Protocol (UDP), gives the ability to
utilize a modern and fast network. Infiniband is an open standard interconnect
protocol aiming to provide low latency and high throughput. The main difference
between standard TCP/IP models and IB is that IB is through its Remote Direct
Memory Access (RDMA) semantics. RDMA allows a remote process to transmit
data across a network by talking directly to the network adapter, without having
to utilize operating system, thus limiting kernel-level calls to a minimum. This
reduces the network latency in GSAS boosting its performance.

Node 0 Node 1 Node 2 Node N
App App App App

App App

Atomic Service [Atomic Service] [Atomic Service] Atomic Service
N\ o o .

| Interconnect |

Figure 2.1: Overview of GSAS architecture.
Each application presented utilizes GSAS. Applications running in any node, are
able to communicate with both the remote Atomic Services and all GSAS
application processes.

2.1.1 GSAS Extended Functionality

GSAS original design provides support for the atomic primitives of 64b words. In
addition, the supported atomic primitives are: Compare and Swap (CAS), Fetch
and Add(FAD) and atomic SWAP. Moreover, in the CAS and SWAP operations,
GSAS functionality only provides support for returning a boolean value for the
status of the operation and not the actual value. The OpenSHMEM implemen-
tation supports all atomic primitives, which include fetching/non-fetching bitwise
operations, and based on the API requirements, CAS and SWAP need to return

2.2. INFINIBAND 11

the value to the caller. For this reason we have extended GSAS functionality
with all the required primitives. In GSAS, when an atomic primitive is called,
the caller process prepares a packet containing the type of operation, the address
of the variable to be changed and the desired value, and transmits this packet to
the desired atomic service. When the atomic service receives this packet, it deci-
phers the address and proceed to perform the necessary operation. For the atomic
primitives, the gcc atomic builtins are used. To that end, we have introduced new
type headers for the atomic packets, and enriched the atomic service in order to
properly handle requests.

2.2 Infiniband

Prior to any IB communication, a process needs to setup an IB context containing
all the required resources for the RDMA operations. As depicted in Figure 2.2,
once a process calls the initialization functions, the network adapter will proceed
to create and return a collection of resources back to the process. This collection
consists of three queues. The first two namely, Send Queue (SQ) and Receive
Queue(RQ) are paired together in a construct named Queue Pair (QP). These two
are paired together due to their very similar operation. The third queue is named
Completion Queue Entry (CQE). Once this initialization is complete, the process
can then start posting Work Queue Elements on the adapter. WQESs contain a
buffer allocated on the process memory space, that will be used in order to either
receive data from a remote node or send its data to a remote node. Upon receiving
these elements, the adapter will put them in the proper queue of the QP. In the
case of a receive WQE, when the adapter receives a packet addressed at a specific
process, it will place the received data on the buffer pointed by the first available
WQE in the RQ and consume it. In a send WQE, the adapter will fetch the buffer
location containing the data to be transmitted from the first available WQE of the
SQ and then transmit them. The WQEs are served in a first in first out (FIFO)
order. When a WQE is consumed, a new element is generated and placed on the
CQE. Once a process has posted a WQE, it can only track its progress though
polling the CQE. For security reasons, a process has to initialize a Memory Region
(MR) that is locked with a cryptographic key pair. These MRs need to be tied
to a specific QP. Any memory that the process will be posting as WQEs in a QP
need to be part of the MR tied to that QP.

Similar to traditional networking models such as the TCP/IP protocol stack,
the Infiniband architecture also has its own notion of the transport layer. In the
TCP/IP protocol, an end user can choose whether to make use of connection or
connectionless communication by either TCP or UDP transport modes respec-
tively. Infiniband also supports the concept of a connection based communication
like TCP as well as simple datagram transmission like UDP, which is incorporated
in QPs. Infiniband provides different types of QP configurations, each with its
own properties called Service Types. When a QP is setup, it must be configured

12 CHAPTER 2. ARCHITECTURE

Node Node

@ O) @ O)

Process Process

Initialize >
RDMA SQ RQ
CQE
QP
IB Adapter IB Adapter
To Network To Network

Figure 2.2: Infiniband Initialization

about what type of connection it will support. Only one type is allowed per QP.
These types are organized based on two fundamental attributes, connectivity and
reliability. An end user can choose from any permutation of the two such as: Reli-
able Connection (RC), Unreliable Connection(UC) and Unreliable Datagram(UD).
Table 2.1 presents an overview of the properties for each service Type. Based on
GSAS requirements, in our implementation we make use of the RC type.
Addressing in IB is a bit more complex than the traditional TCP/IP stack.
Instead of a port and an IP address, IB uses a bundle of several information to route
packets. Each network adapter has a unique identifier named Global Identifier
(GID), and each port of the adapter has a unique identifier named Local Identifier
(LID). Moreover, each QP has its own unique Queue Pair Number (QPN). The
address for a send consists of all three aforementioned fields as well as the public key
for the MR of the QP. In addition to this, before any transmission takes place both
sides need to choose a Packet Sequence Number (PSN). The PSN works similar to
TCP’s sequence numbers and is used for capturing potential loss of packets and
re-transmitting said packets. Due to the fact that the QPN, the MR keys and the
PSN are available at runtime before a connection is set up, these data need to be
exchanged between two hosts prior to any data transmission and can not be setup
in advance. There are two possible ways of exchanging this information. The first
one is through the subnet manager provided by IB router hardware. The second
one is using an out of band communication, from a secondary network such as
TCP/IP. Since IB hardware is expensive and might not be always available, we
chose to use the later, and implement a mechanism that works through the usage

2.2. INFINIBAND 13

Properties ‘ Services
Reliable Unreliable Unreliable
Connection Connection Datagram
Errors Detected YES
Packet Delivery
Guaranteed YES NO NO
Packet
Retransmission YES NO NO
Packet Ordering YES NO NO
Error Recovery YES NO NO
Is Alive Check YES NO NO
Connection Setup
Required YES NO NO

Table 2.1: Infiniband Service Types

of TCP/IP’s RDS sockets in order to exchange this information and enable IB
communication.

In the RDS implementation of GSAS, each node has a specific IP and different
ports starting from a common initial number and increment upwards is used for
addressing. For example, if Node 0 has the TP xxx.xxx.xxx.1, then the atomic ser-
vice will listen on that TP and port 9000, while the first GSAS app will listen on the
same IP and port 9001 etc. In the IB specification we use this IP and Port combina-
tion in as a side channel communication mechanism. The side-channel exchange of
IB routing information is implemented as a thread called MBOX Manager (MBM)
in every GSAS application including the Atomic Service. This thread starts run-
ning before any communication takes place to and from any process. The Mbox
Manager is responsible for setting up connections with remote processes as well
as bookkeeping information on every connection established. This information is
stored in a hashtable. This hashtable receives as key the combination of IP and
Port of the remote process and as data a struct containing information for each
connection. Similar to the TCP/IP handshake, we implement a three step pro-
tocol for the initial setup of the IB communications. In our protocol we define
and use 3 types of packets, signaling each step. The three steps are namely INIT
CONNECTION, START CONNECTION and ACK START.

An example of MBM’s operation is as presented in Figure 2.3. In this example
we have two Nodes 0 and 1 with IPs A and B respectively, each belonging on the
same subnet. An instance of the Atomic Service is running in each of the nodes
and listens on port 9000. Also some GSAS is running (let it be M), and it listens
on Port 9001 in node 1. In this scenario process M wants to communicate with
the atomic service in node 0. M enters the INIT CONNECTION step, initializing
its IB resources. It’s MBM then sends a CREATE CONNECTION with all the
required IB information to the MBM of atomic service listening on IP A and port

14 CHAPTER 2. ARCHITECTURE

9000. Upon receiving this message, the MBM of the atomic service in node 0
stores it in a hashtable using as key the source IP and Port (in this case B +
9001) and initializes its own IB resources. Once this step is complete it replies to
the sender an ACK START packet. This packet contains its own IB information.
The initiator then finalizes its IB initialization with the missing information and
stores the information for IP A and port 9000 to its own hashtable. Once this
is complete, M is now able to transmit IB messages to the ASO. This procedure
needs to occur every time a process tries to communicate with a remote process
for the first time. If prior communication has taken place between two processes,
they can retrieve the required information from their personal hashtable. If the
information on the hashtable is outdated for a specific IP and Port key, then the
sender will try to transmit, but will receive an unsucessful CQE. This signals that
the process that was previously listening on that specific IP and Port key is no
longer reachable. In this case it will clear its information from the hashtable and
re-run the MBM protocol to retrieve the new info.

1. M Hashtable 3. M Hashtable

Process M Process M
Infiniband
A +9000 Empty A +9000 Filled
INITIALIZING
| E—

2. ASO Hashtable

Process M
Infiniband

Atomic Service 0
Infiniband

B +9001 Filled

INITIALIZED ‘ ’ 3. ACK START INITIALIZED

Figure 2.3: MBox Manager Protocol

2.2.1 GSAS Communication

In order to access remote segments of the PGAS memory space, GSAS processes
need to communicate with remote nodes. This communication includes special
control packets that are responsible for utility operations such as the allocation
and de-allocation of memory, as well as forking a new GSAS process in a remote
node. In addition to that, GSAS divides accesses to remote memory in three dis-
tinct categories, writes, reads and atomics. The GSAS API provides the WRITE
and READ functions for writing and reading to and from remote areas. Any GSAS
process that wants to modify a remote memory segment has to communicate with

2.2. INFINIBAND 15

the atomic service responsible for that segment. The atomic service operates sim-
ilarly to a server, always looking to serve an incoming request. Due to legacy
reasons the request packet that it expects has a fixed size of 32 Bytes. These 32
Bytes are split in 4 unsigned long integers. The structure of the control packets is
depicted in Figure 2.4. The first integer contains the packet’s header. The header
includes information about the source of the packet and its TYPE. The TYPE
indicates what kind of operation this packet signals. The rest 3 integers are used
for the payload. While this is the structure of packets that the atomic service is
waiting for, GSAS allows bigger size packets to be transmitted. However, these
large packets have the limitation that they can only be transmitted unidirection-
ally, from an atomic service to an application. This introduces the problem that,
while an atomic service can transmit packets as long as the network allows, an
application can only transmit packets of 32B to the atomic service. For example,
when an application performs a READ operation, it sends a control message to the
appropriate instance of atomic service with the TYPE: READ and with payload
the address and size that it wants to read. The atomic service then proceeds to
send back the data in large packets, minimizing the number of packet that will
be sent. However, in the case of WRITE operations an application has to trans-
mit the entirety of the data in packets with only 24 bytes as the payload. This
introduces heavy performance overheads.

0 48 56 64

SENDER ID RESERVED TYPE

DATA O

DATA 1

DATA 2

Figure 2.4: GSAS Control Packet Structure

In contrast to instances of atomic service, processes of a GSAS application
can receive packets of either 32B or 64B size. In both cases the packet is split in
two segments, the header and the payload. The header has a constant size of 8B,
leaving the rest available for the payload. Transmitted packets with size greater
than 32B are only allowed from an atomic service to an application. When an
application wants to conduct a READ, it sends a control packet to the appropriate
atomic service. This packet contains the type READ as well as the address and
length of the data it requests. Upon receiving such a packet, the atomic service
proceeds to send back the requested data, fragmented in packets of at most 64B
size, with a payload capability of 56B. The total number of packets required by

16 CHAPTER 2. ARCHITECTURE

a READ is calculated by the following equation: 1 + [length / payload}, where
length equals the data size and payload indicates the payload available per packet.
One packet is used for the control message and the remaining are used for the
payload data. In a scenario where a process wants to read 1024B of data, the
number of required packets would be 20 packets. Out of these, the first packet
is the control that signals the initiation of the transmission and the remaining
19 are the packets required for the data transmission. In our IB implementation
we are able to optimize GSAS’s READ operations. To do so, we implemented a
new GSAS mechanism called BULKREAD. In addition to the 32B and 64B that
remain for legacy reasons, we also introduce packets that can have a size as big
as the Maximum Transmission Unit (MTU) that the network’s link supports. We
call this packets, bulk packets. This significantly improves our payload amount as
IB’s MTU is 4096B. When an atomic service receives a control message with the
BULK READ type, then that means that the requester is now expecting neither
32B nor 64B, but bulk packets. Following the same previous scenario the required
number of packets now drops from 20 to 2. By lowering the amount of packets,
we are able to better utilize our links capability. In addition to this, both the time
an atomic service takes to serve a request and the time a process spends blocked
waiting for a packet to arrive, are reduced significantly. This effectively means
that an atomic service can serve a higher number of requests in the same amount
of time. It also saves CPU cycles on an application that would previously be lost
blocked on network I/O, that can be now utilized in a more useful manner.

2.3 Gmem Implementation

Any implementation of the OpenSHMEM][6] standard can be divided in the fol-
lowing four areas of interest:

1. Establishing the underlying communication between remote nodes.

2. Introduce an easy to use tool to quickly start an OpenSHMEM program from
any node.

3. Setup the environment.

4. Implement various operations of OpenSHMEM.

Iterating over these briefly, first an underlying communication protocol between
the processes participating in an OpenSHMEM program execution must be estab-
lished. In our case we are building on top of GSAS, which enables communications
between nodes through its own API. The next area is to be able to launch an
OpenSHMEM application from any participating node. This is important because
during this step we set the groundwork for the OpenSHMEM internals initializa-
tion, which are required upon the beginning of the OpenSHMEM code execution.
Lastly, the two final components are the actual implementation of the OpenSH-
MEM API. We split these in two different parts, first the environment, which

2.3. GMEM IMPLEMENTATION 17

consists of the library initialization like naming and addressing of each process as
well as the memory mirroring features of OpenSHMEM called Symmetric Memory.
Lastly, we implement the various API methods for Data transmission, synchroniza-
tion and Atomic Memory Operations (AMO). Out of the 12 functionality categories
specified in OpenSHMEM, our implementation does not provide: Thread Support,
Communication Management Routines and Cache Management. Thread support
is a limitation originating from GSAS. GSAS does not currently support multi-
threaded transmissions between nodes. Cache management is officially deprecated
in the OpenSHMEM specification and was thus not implemented.

The core behind any OpenSHMEM implementation lies within proper library
initialization and the memory model setup. In accordance to the OpenSHMEM
specification, each participating process is named Processing Element (PE). Dur-
ing initialization, each PE is assigned a distinct identifier called Rank. Ranks
begin from 0 and increment linearly. The memory of each PE is split in two seg-
ments the Private Data, and the Remotely Accesible Symmetric Data (Symmetric
Memory). The Private Data encapsulate all the local variables that are only ac-
cessible by each PE. These variables follow the traditional C memory model and
consist of local function variables and any space allocated by the any of the allo-
cation functions such as malloc, calloc and realloc. The Symmetric Memory on
the other hand includes all of the global and static variables and any space allo-
cated (Shared Allocated) by the OpenSHMEM defined allocation functions such as
shmem_malloc. The difference between the two is that the symmetric memory is
accesible by any other PE. This means that at any given moment, a global, static
or Shared Allocated space is available on each PE and have the same name, space
and type. Shared allocations reside in a memory region called Symmetric Heap.
All shared communications in OpenSHMEM are one-sided in nature meaning that
a Symmetric Memory variable might change at any time without the owner know-
ing. Remote modifications to a Symmetric Memory variable can only be executed
through the proper OpenSHMEM library call. Prior to any API function call, the
shmem_init function must called. Shmem_init is responsible for assigning Ranks
to PE’s and also set up the Symmetric Memory.

2.3.1 Library Setup

For proper execution and initialization of an OpenSHMEM program we imple-
ment the GSHRUN tool. This tool takes as arguments the number of PE’s that
participate and the desired executable to run with its arguments. GSHRUN uses
the GSAS API for forking processes on the remote nodes. In GSAS, fork can also
take as an argument a struct, namely shm_args that contains information available
to the forked process. We allocate this struct in GSAS shared memory allowing
any GSAS process to read and write to it. An overview of the shm_args struct is
presented on Table 2.2. The id field is used by forked processes to acquire their
Rank. The PE_slot array has as many elements as running PEs. This array is used
in initialization and in collective operations when PE’s need to exchange remote

18 CHAPTER 2. ARCHITECTURE

addresses in GSAS memory space. The sync_barrier is used for synchronization
between PE’s. GSHRUN forks processes evenly between nodes, and assures that
the Ranks assigned on a node’s PEs are continuous. In a scenario with two nodes
and 4 processes, GSHRUN will spawn 2 processes on each node, and node’s 0
processes will get ranks 0-1 while node’s 1 will get 2-3. In a scenario with 2 nodes
and 5 processes, node’s 0 will receive ranks 0-2 and node 1 ranks 3-4. When a
process gets forked, it calls the shmem_init function. During this, each process will
call a GSAS Fetch and Increment on the ID variable to receive their Rank. After
receiving a Rank, each PE blocks on the sync_barrier. GSHRUN busy-waits on
the ID variable knowing when to move to the next node. Once all PE’s are forked
the sync_barrier is released.

At this stage of the shm_init function, each process calculates the size it re-
quires for its symmetric variables. All global and static variables in a C program
are placed in the initialized and uninitialized data segments. In our implementa-
tion we leverage two symbols exposed by the linker, __data_start and _end. The
addresses of these two, point to the beginning of the initialized data memory seg-
ment of a process and the end of the uninitialized data(bss) respectively. With the
data size known, each PE allocates the required amount of memory from GSAS’s
Atomic Service. It then proceeds to mmap this space over the pages containing
the global and static variables. This enables an Atomic Service to write directly to
a variable without having to go through the PE, thus guaranteeing the one-sided
communication property of the OpenSHMEM standard. Once this is complete
every PE writes the address of the memory returned by GSAS to their respective
PE _slot cell of the PE _slot array that resides on the shm_args struct, thus exchang-
ing their new global segment address with the rest in an all-to-all fashion. Each
PE stores this information in a hashtable using as key the rank for each PE and as
data the address of said PE’s global address space. Once all PE’s have gathered
the information of their peers, a barrier is used again for synchronization. After
this barrier is released shmem_init finishes execution. Shmem_init is a costly op-
eration, but this cost can be considered negligible as this function is run only once
during a programs lifetime.

Struct shm_args
Variable Type
id int
PE_slot uint64_t
sync_barrier GSAS_Barrier

Table 2.2: Overview of shm_args structure

2.3.2 Memory Operations

In order to utilize the Symmetric Memory space of OpenSHMEM, its API provides
functions mirroring the malloc family of functions with the shmem_ prefix. In this

2.3. GMEM IMPLEMENTATION 19

section we present an overview of the shmem_malloc and shmem _free functions.
Shmem_calloc and shmem _realloc are build on top of malloc with minor additions.

As stated in 2.3, any space allocated on the symmetric heap needs to be avail-
able to all processes by the end of the shmem_malloc function. In the shmem_malloc
implementation, the allocation is comprised of three steps. Synchronization be-
tween all PE’s is required to transition between each step and for this reason
the sync_barrier GSAS barrier is reused. In the first step all processes that call
shmem_malloc execute barrier wait as a first instruction. The second step is the
actual allocation of the memory, where all processes allocate memory from their
node’s Atomic Service. To support remote memory accesses by remote processes,
we allocate memory through the Atomic Service. Once the memory is allocated,
each process proceeds to write the pointer to this newly allocated memory on their
respective PE_slot cell. The PE_slot array is part of the shm_args structure pre-
sented on 2.3. Finally, in the third step each PE stores its peers allocated memory.
To do so, every PE reads the PE_slot array, and stores the information to a private
hashtable.

2.3.3 Remote Memory Accesses

OpenSHMEM defines two different categories for remote memory access opera-
tions namely Remote Memory Access Routines and Non-Blocking Remote Mem-
ory Access Routines. The difference between the two is that the former requires
a synchronization call to ensure the data are transmitted to the remote destina-
tion. In our implementation all remote access operations are made through GSAS
READ and WRITE operations. GSAS follows a strict memory model in which, by
the end of a remote memory operation the data are ensured to be available on the
remote destination. This effectively means that in Gmem all the provided opera-
tions are blocking. The functions available for remote operations in OpenSHMEM
are presented in Table 2.3. All of these functions receive the following arguments:

1. The Pe rank. This is the rank of the remote PE from which the data will be
retrieved or transmitted to.

2. The nelems number of elements to be exchanged.

3. The dest address. In a case of Put this is the remote memory address the
data will be send to. For a GET, this is the remote data to be retrieved.

4. Source address. In a GET operation, this is the local address where the data
will be stored. In a PUT operation, this is the local data to be transmitted.

The nelems argument is not available in the single element PUT and GET opera-
tions. In Gmem whenever a remote memory operation is called, the caller searches
the proper hashtable for the remote address using pe as key. Afterwards it calls
the appropriate GSAS API function for the actual transmission.

20 CHAPTER 2. ARCHITECTURE

Function ‘ Description ‘
shmem_put Put a continuous block to remote
shmem _p Put a single element to remote
shmem _iput Put a strided block to remote
shmem_get Get a continuous block from remote
shmem _g Get a single element from remote
shmem _iget Get a strided block from remote
shmem_put_nbi Put a continuous block of memory

without blocking
shmem_get_nbi Get a continuous of block memory
without blocking

Table 2.3: OpenSHMEM Remote Memory Operations

2.3.4 Atomic Memory Operations

In addition to regular remote memory operations, OpenSHMEM also allows for
Atomic Memory Operations. The operations available to OpenSHMEM are pre-
sented on Table 2.4. Each of these operations combine a read and modification
operation in a single step. Each of these functions perform a specific operation
on a variable. This variable can be either local or remote. In the functions con-
taining the fetch keyword, the value of the variable prior to the operation is also
transmitted back to the caller. An atomic operation guarantees that the reading
and modifying a variable will be done in a single step. This effectively means that
an atomic operation will either be fully executed or no executed at all. After an
atomic operation takes place and while the result is being transmitted back to
the caller, a new operation may take place that alters the same variable. This is
acceptable by the atomicity guarantees designated on the OpenSHMEM specifi-
cation. Similar to the Remote Memory Operations, the atomic operations receive
arguments that designate the target address to read/modify, the destination PE
and a value or condition depending on the operation. The target PE and target
address are used to retrieve the proper remote address from the caller’s hashtable.
Afterwards the caller calls the underlying GSAS API for the actual operation to
take place. OpenSHMEM defines more atomic operations than the GSAS original
design allowed. For this reason we have implemented the missing functionality
in GSAS to support all of the OpenSHMEM operations. During a GSAS remote
memory atomic operation, the caller sends a request to the Atomic Service re-
sponsible for the memory that will receive the modification. Upon receiving the
request, the Atomic Service calls the appropriate GCC built-in atomic memory
operation to conduct the operation on the designated memory and transmits the
results back to the caller.

2.3. GMEM IMPLEMENTATION 21

’ Atomic Memory Operations

shmem_atomic_fetch shmem_atomic_set
shmem_atomic_compare_swap | shmem_atomic_swap
shmem_atomic_fetch_inc shmem_atomic_inc
shmem_atomic_fetch_add shmem_atomic_add
shmem_atomic_fetch_and shmem_atomic_and
shmem_atomic_fetch_or shmem_atomic_or
shmem_atomic_fetch_xor shmem_atomic_xor

Table 2.4: OpenSHMEM Atomic Memory Operations

2.3.5 Collective Operations

OpenSHMEM defines a category of operations called collective operations. This
category contains functions that are used for synchronization of a specific set of
PEs. This set is passed as argument to every operation. A collective operation
cannot progress until all PEs in the set call it. OpenSHMEM’s collective operations
are presented on Table 2.5. In the following sections we examine each operation
in depth.

Collective Operations

shmem _barrier_all shmem _barrier
shmem _sync_all shmem _sync
shmem _broadcast shmem _collect
shmem _fcollect shmem _alltoall
shmem _alltoalls shmem_and_to_all
shmem _min_to_all shmem_max_to_all
shmem _sum_to_all shmem _prod_to_all
shmem _xor_to_all shmem_or_to_all

Table 2.5: OpenSHMEM Atomic Memory Operations

2.3.5.1 Barrier & Sync

Both shmem_barrier and shmem_sync have the same functionality of registering a
PE at a barrier and awaiting until all PE’s in the specified set call the operation.
The difference between the two is that barrier ensures completion of previously is-
sued remote memory operations while sync does not. GSAS implements a stricter
memory model, by which all remote memory operations are completed and visible
to the remote side when a remote call is made, thus in our implementation there
is no distinction between the two. These operations are the core behind the rest
collectives, since they are used for the synchronization of the PE’s before a collec-
tive can run. Figure 2.5 demonstrates our shmem_barrier implementation. During
library initialization each PE allocates a shared variable called barrier_slot residing

22 CHAPTER 2. ARCHITECTURE

on its local node’s Atomic Service and shares it with the rest of the PEs. Initially
every barrier_slot is initialized to 0. For the barrier we implement an algorithm
by which the first PE of the set is elected the leader of the barrier. The rest of
the PE’s atomically increment the leaders slot and spin on their own slot. This
grants the benefit that the spinning on one’s slot is done via shared memory and
not through network communication, which would add significant overhead. The
leader monitors his slot and when all participating PE’s have arrived at it proceeds
to unblock each PE by writing to their respective slots. The unblocking of PEs
on the same node is done via shared memory, but for remote PEs network com-
munication is required. With a high number of PE’s in the set and given GSAS
centralized nature where communication to a remote node is only available through
the Atomic service this introduces heavy overheads. For this reason we further ex-
panded the algorithm to also have sub-leaders. A sub-leader is a PE responsible
for unblocking the PEs on its node, while the leader is responsible for unblocking
the sub-leaders. The leader can also be a sub-leader. This makes the unblocking in
a hierarchical fashion, with minimal remote communications. Shmem_barrier_all
and shmem _sync_all functions operate in the exact same manner with the sole
difference that instead of barrier_slot they use their own global_barrier_slot. This
new variable is required to avoid overlapping modifications when a barrier call is
followed by a barrier_all.

2.3. GMEM IMPLEMENTATION 23

Step 1:
FAD Leader

Step 2:
Unblock Sub-Leaders

Step 3:
Unblock Participants

PE 2

Node 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
~N 1 1
% 1 1

| i PEA)
3 ! PE 4 !
=z 1 1
I 1 1
1 1
1 1
> 1 1
1 1
—p 1 1
s 1 1
ko | |
o 1 1
B o 1 1
[J) 1 1

| Eo] | [PEO)
= o 1 PEO 1
() =2 1 1
£ 1 1
= 1 1
%) 1 1
1 1
—_ | 1
1 1
1 1
EE— 1 1
1 1
_— 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Figure 2.5: Gmem Barrier Operation
Shmem _barrier call with an active set of 6 PEs ranging from Rank 0 to 5.
Straight arrows represent remote memory communication, while dashed arrows
shared memory communication.

2.3.5.2 Broadcast

The shmem _broadcast method allows the transmission of data from a PE to all
PEs in a designated set. Since this is a one-to-many transmission we make use of
our the hierarchical approach used in shmem_barrier explained on 2.3.5.1 in order
to avoid excess network communication. In a broadcast, we designate the PE that
will be broadcasting as the leader PE and the PE with the lowest rank in each
node as a sub-leader. The leader can also be a sub-leader. Each PE has an shared
variable, allocated through GSAS called barrier_slot initialized to 0. These slots
are accesible from PEs of the same node through shared memory accesses, and to
remote PEs through network operations. During a broadcast each PE performs an
Atomic Increment operation on the barrier_slot of the leader and proceed to spin
on their own barrier_slot to unblock. The leader monitors this variable and when
all PEs are present, it first broadcasts the data to the sub-leader of each node and
then releases them. In turn, the sub-leaders propagate the data to the PEs in their
node via shared memory and unblock them. This hierarchical approach minimizes
network traffic and reduces load on the Atomic Services.

24 CHAPTER 2. ARCHITECTURE

Step 2:
Broadcast and Unblock
Sub-Leaders

Step 3:
Share Data and Unblock
Participants

Step 1:
FAD Leader

PE 2

Node 1

Figure 2.6: Gmem Broadcast Operation
Shmem_broadcast call with an active set of 6 PEs ranging from Rank 0 to 5.
Straight arrows represent remote memory communication, while dashed arrows
shared memory communication.

! 1

! 1

! 1

! 1

! 1

! 1

L 1

! 1

! 1

! 1

! 1

o~ | !

> ' i

] ! PE 4 !

=2 h !

! 1

—, ! 1

! 1

L 1

— & ! :

© | '

O M !

© ' !

3 o ! .

— q) \ '
i 3 ' PEO Vo pED e

! 1

= =4 H !

(] h !

E : :

(%] L !

! 1

— > ! 1

! 1

! 1

> ! 1

! 1

! 1

! 1

! 1

! 1

! 1

! 1

! 1

1 1

2.3.5.3 Collect & fCollect

The shmem_collect and shmem_fcollect functions concatenate block of data from
all PEs of an active set to an array in each PE. The difference between the two
is that fcollect requires the data to have the same size in all PEs while in collect
each PE can have different data sizes. Since this is an all-to-all operation we can
no longer benefit from our hierarchical approach. Both functions operate in three
steps. Figure 2.7 presents an overview of the collect function. Fcollect operates
in a similar manner. In the first step, when a collect or fcollect call is made,
all PEs block on a barrier. This is required so that all participating PEs start
running on the same time. In the second step, the barrier is released and all PEs
start transmitting the data to the destination buffer on the proper offset on each
PE. Lastly on the third step a second barrier call is required to ensure that all
transmissions have concluded before finishing the function call.

2.3. GMEM IMPLEMENTATION 25

Step 1:
Wait for all PEs

Step 2:
All-to-All Transmission

Step 3:
Wait for all PEs to conclude

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
o~ 1 1
(] 1 1
el 1 1
o 1 1
Z I I
_— 1 1
1 1
— i i
g .g : : .g
= = 1 1 =
IR 5 | 3
£ 3 . E i £
[P4 [1 1 (7]
E e E | | @ E
L= i= 1 1 =
2] (%] 1 1 %]
, i i
1 1
— i i
— “ : :
(Y] } 1
R 1 1
o 1 1
Z I I
1 1
1 1
1 1
1 1

Figure 2.7: Gmem Collect Operation
Shmem collect call with an active set of 6 PEs ranging from Rank 0 to 5.
Straight arrows represent remote memory communication, while dashed arrows
shared memory communication.

2.3.5.4 Reduce

OpenSHMEM defines a set of collective operations used in data reductions across
PEs in an active set. All of the reduction operations are identical in our implemen-
tation with the sole difference of the actual operation commenced. The operations
available are presented in Table 2.6. The functions receive the following argu-
ments: the dest and source arrays, the nelems and the active set. The source
array provides the address from which it will retrieve the data to be reduced. The
dest array contains the address where the reduced results will be stored. Nelems is
used to indicate the number of elements that will be reduced. Figure 2.8 displays
an overview the reduce operations. On entry, reduce operations synchronize all
PEs using a barrier call. When all PEs sync at the barrier, everyone retrieves the
data from the rest PEs and performs the reduction storing the result in their local
dest array. In order to ensure that all PEs have finished the reduction we use a
second barrier before the function call is finished.

26 CHAPTER 2. ARCHITECTURE

Collective Ruduction Operations ‘

shmem_and_to_all
shmem _min_to_all shmem _max_to_all
shmem _sum_to_all shmem _prod_to_all
shmem _xor_to_all shmem _or_to_all

Table 2.6: OpenSHMEM Atomic Memory Operations

Step 1:
Wait for all PEs

Step 2:
Fetch data and Reduce

Step 3:
Wait for all PEs to conclude

Node 2

Shmem_reduce_to_all
Node 0

Shmem_barrier
Shmem_barrier

Node 1

05 690

Figure 2.8: Gmem Reduce Operations
Shmem _collect call with an active set of 6 PEs ranging from Rank 0 to 5.
Straight arrows represent remote memory communication, while dashed arrows
shared memory communication.

2.3. GMEM IMPLEMENTATION 27

2.3.5.5 AlltoAll & AlltoAlls

The shmem_alltoall and shmem_alltoall allow PEs to exchange a fixed amount
of data with the rest PEs of a specific active set. The two functions operate in
a similar manner with the difference that while alltoall exchanges a continuous
block of data, alltoalls exchanges a strided block. The two functions operate in an
all-to-all fashion. Figure 2.9 displays how alltoall operations work. When either
function is called, all PEs need to be synchronized using a barrier call. This ensures
that all PEs have their data ready for the exchange. Once all PEs have arrived
at the barrier, they proceed to retrieve the data from every PE in the set. The
retrieval of the data can be done in two ways. A PE can either write or read the
data to/from the participating PEs. In our implementation we choose to read the
data. This is because the architecture of GSAS does not provide optimized PUT
operations. Finally, when all PEs have exchanged the data, a second barrier is
required to ensure that all PEs have finished before finishing the function call.

Step 1:
Wait for all PEs

Step 2:
GET data

Step 3:
Wait for all PEs to conclude

Node 2

T

Shmem_barrier
Shmem_barrier

Node 1

05 690

Figure 2.9: Gmem AlltoAll Operations
Shmem _alltoall call with an active set of 6 PEs ranging from Rank 0 to 5.
Straight arrows represent remote memory communication, while dashed arrows
shared memory communication.

2.3.5.6 Point-To-Point Synchronization

Given OpenSHMEM’s one-sided communication nature, a PE is oblivious on the
status of its symmetric variables. At any point in time a remote PE might modify
a shared variable on any PE. OpenSHMEM defines two functions that allow PEs

28 CHAPTER 2. ARCHITECTURE

to check whether or not such an event has occured. These two functions are
namely: shmem_wait_until and shmem_test. Both functions receive as arguments
the address of the variable to be compared, a compare operator, and a comparison
value. Both functions operate similarly, with the difference that Shmem_wait_until
blocks until the requested variable has changed according to the compare operation
and value specified, while shmem _test does not. Due to GSAS strict memory
model, changes on remote hosts will be available immediately on the remote side.
This allows the implementation to operate in the same manner as it would in
traditional memory.

2.3.5.7 Memory Ordering Routines

OpenSHMEM provides two functions, namely shmem_quiet and shmem_fence that
affect the ordering of remote operations. Fence is repsonsible for ensuring the
ordering of remote operations. For example a Put operation is guaranteed to
finish before a future one, if a fence call is made between the two. Quiet on
the other hand waits until all previously issued remote operations are finished.
In our implementation we make use of GSAS for all remote operations. GSAS
follows a strict memory model, by which most memory operations are guaranteed
to be performed in-order. Due to this, in our OpenSHMEM implementation both
shmem_fence and shmem_quiet are not required and thus exist as no-op functions.

2.3.5.8 Distributed Locking Routines

Due to the distributed nature of OpenSHMEM, a locking mechanism is defined to
enable mutual exclusion. A shared lock is defined that PEs can acquire in order to
enter critical regions. The specification dictates that the lock can be any symmetric
variable of type long. Additionally, PEs trying to acquire the lock will be served in
a first-come, first-served manner (FIFO) in order to prevent potential starvation of
PEs. The lock API is presented in Table 2.7. All functions receive as argument the
address of the lock variable of type long. Shmem _clear_lock releases a previously
acquired lock. Shmem set_lock blocks until it acquires a lock. Shmem_test_lock
tries to acquire a lock without blocking. In order to ensure the FIFO property of
the lock, we choose to use the ticket lock algorithm. In our implementation we
split the lock variable in two halves. The first one is used as the ticket, and the
second half is used as the now-serving. This is required so that changes in both
variables can be made in a single atomic instruction. In the set_lock function, a
PE first calls a Fetch and Add on the ticket to receive its ticket. It then proceeds
to busy-wait until the now serving is equal to the ticket it owns to enter the critical
region. In the clear_lock function the PE that owns the lock, calls a Fetch and
Add on the now-serving to increment the now-serving and exit the critical region.
The test_lock function can not be completed in a single atomic instruction. When
a PE calls it, it first reads the lock variable. Afterwards, a Compare and Swap
operation is called on the lock, to check if the next ticket to be served is still the

2.3. GMEM IMPLEMENTATION 29

one previously read. If the Compare and Swap succeeds, the PE has acquired the
lock. If not, the function returns.

’ Locking Routines

shmem_clear_lock

shmem _set_lock

shmem_test_lock

Table 2.7: OpenSHMEM Locking Routines

30

CHAPTER 2. ARCHITECTURE

Chapter 3

Experimental Evaluation

For our evaluation, we benchmark the OpenSHMEM implementation of GSAS for
all of its supported network connectivity. We are comparing against OpenMPI
and MPICH that both support OpenSHMEM. For commodity Ethernet, MPICH
provides a native implementation of OpenSHMEM, whilst OpenMPI requires the
Unified Communication X (UCX) framework in order to work. For Infiniband (IB)
they both require UCX. Due to them using the same underlying network stack, we
only compare our IB implementation against OpenMPI and not both. Both MPI
implementations are configured with the default configuration as cloned from their
repositories. UCX is configured via runtime environmental variables. In order for
the testing environments to be as close as possible to Gmem, we disable multi-
railing on UCX, which automatically splits and transmits packets evenly across all
available network devices. In Ethernet connectivity, both MPI implementations
make use of TCP sockets, while GSAS supports RDS and UDP sockets. In IB,
all implementation use the same transport protocol, namely Reliable Connection
Queue Pairs. Furthermore, we conduct our experiments with cpu binding. We
chose to bind our processes to physical CPU cores and not hyperthreads to fully
utilize the CPU core and avoid oversubscribing that can lead to unreliable exper-
iments. We also bind our processes to CPUs in NUMAs closer to our network
adapters to achieve the best possible results.

Our testing environment consists of two servers connected with 1 Gbit Ethernet
via a switch and 50 Gbit IB directly to each other. Both servers are identical,
equipped with 2 Intel CPU Xeon E5-2620 with 12 physical cores and 24 hyper-
threads, running at the 2.6 GHz frequency and 128GB of DDR4 DRAM. The
operating system for both machines is Centos 7 and the kernel is 4.14 with RDS
sockets enabled.

Our tests revolve around:

e Latency and throughput of PUT and GET operations for a variety of sizes
e Latency of atomic operations of 8 Byte WORDs

e Latency of collective operations

31

32 CHAPTER 3. EXPERIMENTAL EVALUATION

e Performance on Exanet

3.1 PUT and GET

In our first experiments, we study the performance of Remote Memory Access
(RMA) operations performance. We measure the throughput average latency of
PUT and GET operations, i.e. GET and PUT. More specifically, we measure
the throughput and latency for PUT and GET operations. We perform 105 GET
(or PUT) operations for variable sizes of transmitted data. This amount of op-
erations and data sizes is large enough to saturate the network, allowing us to
measure the maximum possible performance. We calculate latency as the time
taken for the operations to finish divided by the number of operations. Also,
we calculate throughput as the amount of data transmitted divided by the time
taken. Each operation is followed by a synchronization opearation. We examine
the cases of using shmem_barrier and shmem _fence as synchronization operations.
The shmem_barrier ensures that all processes are synchronized, meaning that in
order for the barrier to be released, all the previously remote memory updates
should be completed. Shmem_fence forces a process to complete all the outstand-
ing remote memory operations. The reason behind the usage of these operations
lies within the OpenSHMEM specification. More specificaly, the OpenSHMEM
specification defines a weak memory model regarding data transmission allowing
an OpenSHMEM implementation to follow a weak or a stronger memory model.
By following a weak/lazy memory model a process is allowed to complete an RMA
operation without completing the transmission of the data. We have observed that
without using a synchronization call the MPICH and OpenMPI implementations,
data are not actually transmitted after a PUT or GET finishes. This is a result of
following a lazy memory model, which leads to their remote memory operations
being buffered and not actually processed until a synchronization call takes place
to flush them. Gmem on the other hand, implements a stronger remote memory
model in which the data are ensured to be transmitted by the end of an RMA
operation.

In Figure 3.1, the latency performance of GET operations synchronized with
Fence operations is measured. The vertical axis of the Figure shows the latency
measured in microseconds (usecs) while the horizontal axis displays the size of data
transfers performed. In the commodity case of Ethernet, we compare GSHMEMs
RDS and UDP implementations with the TCP implementation of OpenMPI and
MPICH. In the IB cases, we compare Gmem against OpenMPI. Delving more
in to the Figure 3.1, we can see that the IB implementation of Gmem is not
only competitive, starting at 1.55 times behind the MPI which uses UCX and
progressively reducing the gap, but for sizes of 64KB and more, we manage to be
almost 6 times better, maintaining a greater and a more consistent latency. This
is a result of OpenMPI’s complex architecture. OpenMPI splits data in packets
called fragments. The maximum size of a fragment is 64KB. When data sizes

3.1. PUT AND GET 33

are greater than 64KB, OpenMPI switches to a more complicated protocol that
introduces overheads causing the performance to drop. Oppositely, Gmem is using
a simpler approach of only having two types of messages. For sizes up to 128B,
we are transmitting inline IB messages. The inline feature is an implementation
extension that is not strictly defined in any specification and its support varies
based on the network adapter’s manufacturers. We chose 128B as our maximum
inline message size, since it is a low enough size that all manufacturers support.
For sizes greater than this, we switch to standard IB messages. For the commodity
Ethernet cases, our implementation falls behind and is only able to stay close to the
MPI implementations for sizes up to 32B. This is due to the limitations of GSAS
design that is being reflected direcly on Gmem. In the Ethernet cases, GSAS was
designed to provide very low latency for small messages up to 64B, with half of
it being our headers and the rest consisting of the actual payload. This explains
the linear increase for sizes of 64B and more, since more than one packet need
to be transmitted. Although we provide a fast path mechanism for sizes of 4KB
and more, explaining the drop at the 4KB mark, it is still unable to keep up with
both MPI implementations. In addition to this, our testing environment does not
support native RDS sockets, which explains RDS being worse than UDP and TCP.
RDS natively is implemented to work over Infiniband. In our implementation we
are forcing it over Ethernet, which leads it to be simulated over TCP sockets,
adding some more overhead on top of it.

Get Fence Latency

¢ gmem_rds

1000000 //"f// ¢ gmem_udp
2

100000 gmem_ib
¢ mpich_tcp
) 10000 o ompi_ tcp
3 1000 : ompi_IB
]
100
10
@ @ 9 Y QR PR Y QR
A A A I Y

Get Sizes

Figure 3.1: Get Latency synchronized with a fence operation

In Figure 3.2 we examine the throughput performance of GET operations syn-
chronized with Fence. The vertical axis of the Figure shows the transmission rate
measured in Megabits per second (Mbps) and the vertical axis contains the size
of transmitted data. In the IB cases, the initial throughput is relatively small,

34 CHAPTER 3. EXPERIMENTAL EVALUATION

something expected since the sizes of transfers is not large enough for the link to
be saturated and hit its cap. We can see that GSHMEMSs throughput is very close
to OpenMPI until the 64KB mark, where it surpasses it. The reason behind the
OpenMPI behavior after 64KB is that it switchs its standard transmission proto-
col, to a more complex one for large packets introducing heavy overhead. Gmem
utilizes 72% of the links capability, peaking at a throughput of 36000 Mbps. We are
not able to fully utilize the link’s capability, since Gmem utilizes a single threaded
atomic service communicating with a single client. In the Ethernet cases, Open-
MPT has better performance utilizing 100% of the links capability. As explained
in 3.1, the Ethernet implementation of GSAS is only optimized for small data
transfers and it’s performance degrades in larger data sizes.

Get Fence Throughput

® gmem_rds

10000 ® gmem_udp
gmem_ib
1000
¢ mpich_tcp
100 ® ompi_tcp
ompi_IB

Mbps

10

Get Sizes

Figure 3.2: Get Throughput synchronized with a fence operation

3.1. PUT AND GET 35

In Figure 3.3 we examine the performance of latency and in Figure 3.4 the
throughput of GET, but in these cases a barrier is used as synchronization op-
eration. We conduct identical measurements consisting of 10 GET operations
for variable sizes. Both figures display similar behavior to the experiments with
fence synchronized operations i.e. Figures 3.1 and 3.2. For all implementations
and different networking protocols, the initial performance is slightly worse com-
pared to experiments performed with the fence counterparts. However, their peak
performance remains the same. The explanation to this lies in the fundamental
difference between the barrier and fence operations. A fence operation takes place
in one node, and it behaves similarly to a memory fence and does not require any
external communication with the other nodes. A barrier on the other hand, re-
quires an all-to-all communication between all processes taking part in it, to signal
their progress before it can be released. This introduces extra network traffic and
synchronization which affects the performance of the actual remote memory op-
erations. For smaller data transmissions this introduces a considerable overhead.
As the data size increases, this cost keeps getting amortized, ultimately becoming
negligible for amounts greater that 32KB, leading to the same results as the fence
experiments.

Get Bar Latency

¢ gmem_rds

1000000 ¢ gmem_udp
gmem_ib
100000 ® mpich_tcp
10000 ¢ ompi_tcp
@ ompi_IB
& 1000
>
100
10

Q ¥ QX Q¥ X R R VW 9w 92w Y ¢ ¢
CEEFFEEEFLFEES

Get Sizes

Figure 3.3: Get Latency synchronized with a barrier operation

36 CHAPTER 3. EXPERIMENTAL EVALUATION

Get Bar Throughput

® gmem_rds

10000 ® gmem_udp
1000 gmem_ib
100 ¢ mpich_tcp
é 10 ® ompi_tcp
= ompi_IB

1

0.1

Get Sizes

Figure 3.4: Get Throughput synchronized with a barrier operation

In the next experiments we measure the performance of PUT operations. Start-
ing with Figure 3.5, we examine the latency of PUT synchronized with a Fence
operation. Similarly to 3.1, the vertical axis displays the latency in microseconds
and the horizontal axis the size of data transfers. As depicted on the Figure,
Gmem falls behind the MPI implemenations, in both IB and Ethernet. The rea-
son behind this is due to its design. More specifically, Gmem is built upon GSAS
which was originally designed to work on top of customized hardware. That lead
to a constraint of the atomic service being able to only receive packets of 32B. Out
of this 32B, 8B are used as our header, leaving 16B as the payload. This is the
reason behind the latency increase from 16B and more, since more than 1 packets
need to be transmitted. Since the Atomic Service is a server handling requests
from clients, it can reply to a request in any number of packets and packet sizes,
but it only listens for requests of a specific format and size. In the case of GET
operations, a client requests from a nodes Atomic Service to receive data. The
Atomic Service upon receiving this request is able to split the requested data in
MTU size packets and transmit them in a burst. In the case of a PUT operation,
a client can not use the M'TU size to transmit to the server and instead is limited
to transmitting packets of 32B size. This leads in an increased number of pack-
ets required that affect negatively both the latency and the throughput. Given
that this is a design constrain, all supported networking protocols of Gmem are
affected, leading to the static latency of Gmem in IB, UDP and RDS as depicted
on the Figure.

3.1. PUT AND GET 37

Put Fence Latency

® gmem_rds
¢ gmem_udp

1000000
gmem_ib
100000)
¢ mpich_tcp
10000 ® ompi_tcp

Usecs

100

10

Put sizes

Figure 3.5: Put Latency synchronized with a fence operation

Figure 3.6 displays the throughput of PUT operations synchronized with fence
operations. Similarly to Figure 3.5, Gmem ’s performance cannot contest against
the OpenMPI implementations due to the its design limitations discussed on 3.5.
Gmem'’s IB implementation is only able to stay on par with OpenMPI up to sizes
of 16B and degrades linearly afterwards. OpenMPT’s latency on PUT operations
is lower than the network’s capability. This phenomenon is due to their optimized
PUT operations, in which they use both multi threaded transmissions as well as
multiple connections per pair of nodes. This behavior to the best of our knowledge
is not configurable in either compile or run time and thus we are not able turn it
off for our evaluations. For the Ethernet cases, Gmem’s design limitation persist
on both UDP and RDS transmissions displaying the same behavior as IB. MPICH
follows a similar fixed sized packet transmission for packets with size less that
512B, and although it starts with a worse performance than Gmem, it manages
to outperform it for packet sizes greater than 128B. OpenMPI’'s TCP manages to
outperform both Gmem and MPICH for all packet sizes.

38 CHAPTER 3. EXPERIMENTAL EVALUATION

Put Fence Throughput

— e o o ® gmem_rds

® gmem_udp

10000
gmem_ib
1000 ® mpich_tcp
¢ ompi_tcp
100 ompi_IB

Mbps

10

Put sizes

Figure 3.6: Put Throughput synchronized with a fence operation

Figures 3.7 and 3.8 depict the latency and throughput of PUT operations
using barrier as their synchronization operation. In the TCP cases, we are able
to perform better than both OpenMPI and MPICH for sizes less than 128B. In
Infinibnnd OpenMPI is constantly ahead of Gmem. However, we observe that in
our implementation, the synchronization method has minor effect on performance
while both MPI implementations are considerably affected. This is because the
OSHMPI relies on the MPI_windows for its symmetric memory, which are part
of the MPI-3 specification and are used to introduce one-sided communications
in MPI. MPI_windows work similar to GSAS memory allocation, in terms that
memory space is allocated and then memory mapped in each process space. A
remote pointer to this memory is exchanged between all processes and is used for
one-sided operations. However, in contrast to GSAS, MPI_windows require some
sort of internal synchronization between operations, which introduces overheads.

3.1. PUT AND GET 39

Put Bar Latency

¢ gmem_rds
¢ gmem_udp

1000000)
gmem_ib
100000 ¢ mpich_tcp
©® ompi_tcp
10000 ® omp|_|B
[}
3
7] 1000
-]
100
10

78 A

Put sizes

Figure 3.7: Put Latency synchronized with a barrier operation

Put Bar Throughput

¢ gmem_rds

10000 ¢ gmem_udp
gmem_ib

1000 ¢ mpich_tcp
® ompi_tcp
100 ©® ompi_IB

Mbps

10

0.1

Put Sizes

Figure 3.8: Put Throughput synchronized with a barrier operation

40 CHAPTER 3. EXPERIMENTAL EVALUATION

3.2 Atomic Memory Operations

Moving on to our next set of experiments, we examine the effectiveness of Atomic
Memory Operations (AMO) defined in the OpenSHMEM standard for the GHSMEM,
OpenMPI and MPICH implementations. We evaluate the Compare and Swap
(CAS), Fetch and Add (FAD) and Atomic Add (AADD) operations. For each
of these operations, we conduct 10 operations both for local and remote nodes,
testing the average latency of each operation. We calculate the latency as the
time taken for all operations to complete, divided by the time taken. Our test-
ing environment is as follows: for the local experiments, we have two processes
running on the same node with one performing the AMO’s to the other. For our
remote experiments, we have two processes running on two different nodes with
one performing AMO’s to the other. We chose 10° as our number of operation, so
that our experiments could run for a sufficient amount of time to provide reliable
results. In contrast to PUT and GET operations, no synchronization is needed
after these operations.

Figure 3.9 displays the results of Compare and Swap AMO. The vertical axis
displays the average latency for each case, measured in microseconds. Our hori-
zontal axis is split in two segments, one containing the results for local and one for
remote operations. In the case where the operation is performed locally, Gmem
manages to achieve extremely low latency regardless of the underlying networking
protocol used. This is due to the fact that in such cases Gmem has a fast path
mechanism that allows it to call the native built-in atomic operations. This is
possible because in GHSMEM, processes that are spawned on the same node are
able to communicate using shared memory semantics. On the other hand, both
MPI implementations seem to lack this feature and their transmission, even in
local mode, is done through sockets transmitting in loopback. This is why it’s
performance varies based on the underlying networking protocol, due to the set
up overhead of the sockets. On the remote cases, Gmem’s IB implementation re-
mains ahead, being 33% better than OpenMPI’s performance. In the commodity
Ethernet cases, our UDP manages to outperform both OpenMPI and MPICH,
while RDS is slighty better than MPICH and worse than OpenMPI. This is due
to the limitation of our testing environment’s RDS usage over Ethernet instead of
its native IB.

3.2. ATOMIC MEMORY OPERATIONS 41

CAS
60 B gmem_rds
52.77 53.28 B gmem_udp
49.05
gmem_ib
B mpich_tcp
40 35.86 = ompi_tcp
® ompi_IB
1]
(8]
Q
4 22.89
20
4.050, .- 3.94
0.040.04
0
Local Remote

Figure 3.9: Atomic Compare and Swap

In Figure 3.10 we measure the performance of the Fetch and Add AMO. The
vertical axis shows the latency measured in usecs. The horizontal axis displays the
various test cases we examine. For our local operations, similarly to 3.9, Gmem
operates better than the MPI implementations, regardless of the underlying net-
working protocol used. Both of the MPI implementations are using sockets for
interprocess communication and are thus suffering from the overheads of initial
setup as well as loopback transmissions. On the remote AMO’s, Gmem’s IB im-
plementation outperforms OpenMPI, achieving 35% better latency. In Ethernet,
Gmem’S UDP implementation achieves lower latency than both MPI implementa-
tions, while RDS has equal performance to MPICH and slightly worse performance
than OpenMPL.

42 CHAPTER 3. EXPERIMENTAL EVALUATION

FAA
97.51
100 B gmem_rds
B gmem_udp
gmem_ib
75 B mpich_tcp
® ompi_tcp
= ompi_IB
&8
8 50
(2]
=)
22.87
25
3.658 g2
0.00.0
0 [1]
Local Remote

Figure 3.10: Atomic Fetch and ADD

Moving forward, Figure 3.10 displays the performance of the Atomic ADD op-
eration. Following 3.9 and 3.10, the vertical axis shows the latency for each test
measured in usecs. The horizontal axis contains the various implementations and
network protocols we examine. In contrast to 3.9 and 3.10, we observe that in the
local cases, OpenMPI achieves better results in both IB and TCP. This is due to
the nature of AADD. AADD operates differently than CAS and FAA. CAS and
FAA require communication to and forth from one node to another, introducing
delays and interrupting optimizations. AADD on the other hand performs one
way communication from one node to another. However, Gmem manages to out-
perform OpenMPI being 8 better in Ethernet transmissions and 6 times better
in IB. On the remote cases, OpenMPI appears to perform better than Gmem’s
implementations, but the results produced are unrealiable. This is because, given
that AADD operates similarly to a PUT, with a one way transmission of data,
OpenMPI is able to perform optimizations that achieve better results than what
the link is actually capable of. As presented on 3.6 OpenMPI uses multiple sock-
ets and threads to transmit packets on a link, greatly reducing latency. These
optimizations cannot be disabled in either compile time or runtime and thus our
comparisons are uneven.

3.3. COLLECTIVE OPERATIONS 43

AADD
60 B gmem_rds
52.63 m gmem_udp
gmem_ib
B mpich_tcp
40 35.87 = ompi_tcp
® ompi_IB
[}
(&
(0]
(2]
>
20
2.8 3.08
0.030.03 0.250.19 0.410.19
0

Local Remote

Figure 3.11: Atomic ADD

3.3 Collective Operations

Finally, we examine the performance of collective operations in OpenSHMEM. For
the collective operations, we evaluate the latency of shmem _barrier, shmem_broadcast
and shmem_collect for different number of participating processes. The maximum
number of processes spawned is 22. We chose our maximum limit to be 22 in order
to only spawn processes in the physical cores of our machines. In our benchmarks,
all processes are initially spawned across our two computational nodes and each
operation runs 10% times with an incrementing amount of processes participating
every time.

Figure 3.12 presents the performance of the barrier operation of the Open-
SHMEM specification. The vertical axis displays the latency of the operation in
usecs. The horizontal axis contains the number of participating processes. In
all implementations evaluated, processes with ranks 0-11 run on node 0, while
ranks 12-22 run on node 1. When running intra-node, up to 11 processes, Gmem
achieves the lowest latency in both TCP/IP and Infiniband cases. For more than
12 processes, we observe a steep increase in latency, in both our implementation
and MPICH. This is due to the fact the interconnect (Infiniband or Ethernet)
is utilized. OpenMPI’s performance appears to be unaffected by remote opera-
tions. Gmem implementation utilizes a mechanism where only one process from
each node synchronizes with the rest of the nodes, allowing for a hierarchical re-
lease of processes waiting at the barrier while limiting costly remote operations
to a minimum. Overall our IB implementation performs 4.5x better when no re-
mote communications are present, and 2x times better when remote operations are

44 CHAPTER 3. EXPERIMENTAL EVALUATION

present compared to OpenMPI over Infiniband. On TCP/IP our implementation
also outperforms both OpenMPI and MPICH.

Shmem_barrier

® gmem_rds @ gmem_ib mpich_tcp ® ompi_tcp ® ompi_IB

100
50

10

Latency

Processes

Figure 3.12: Shmem _barrier Performance

In Figure 3.13 we measure the performance of the broadcast operation. The
vertical axis displays the latency of the operation while the horizontal indicates the
number of processes participating in the operation. There are 22 total processes
that are spawned evenly in both nodes. In a broadcast operation, one process
transmits the same data to every other process of the active set. The number
of data transmitted is 1 integer (4b WORD) per process. Our implementation
utilizes an algorithm that combines the hierarchical barrier with the transmission
of data. This allows us to perform the operation with minimal data transfers with
only one barrier. We observe a steep increase in the latency of our implementation
for 12 processes or more, regardless of the underlying networking protocol. The
same is true for MPICH. This is due to the utilization of the interconnect. Our
hierarchical broadcast implementation allows the leader process (i.e. the process
that broadcasts) to transmit the data to sub-leader process of each node (i.e the
first process of the active set in a specific node). When the sub-leaders receive the
broadcasted data, they proceed to share it with the rest of local processes in their
node via shared memory. This allows us to reduce the number of PUT operations
from N — 1 to M, where N equals the total number of participating process and
M equals the total number of nodes containing participating processes, effectively
lowering our latency. OpenMPI benefits from its very optimized PUT operations,
achieving a 1.5x performance over our implementation when all the processes reside

3.3. COLLECTIVE OPERATIONS 45

on a single node, and a 10x performance when the participating processes span
across 2 nodes.

Shmem_broadcast

® gmem_rds ® gmem_ib mpich_tcp ® ompi_tcp @ ompi_IB

1000

100

10

Latency

Processes

Figure 3.13: Shmem _broadcast performance

Figure 3.14 displays the performance of the collect operation. On the vertical
axis the latency in usecs of the operation is displayed, while the horizontal axis
displays the number of processes participating on the collective operation. The
data transmitted equals to 1 integer per process. In a collect operation, all pro-
cesses exchange data in an all-to-all fashion. Our implementation has the same
performance in both underlying network protocols for up to 11 processes. This
is due to the fact that the operations are performed though shared memory. For
more than 11 processes, remote operations through network take place thus ex-
plaining the spike in the Figure at the point of 12 processes. MPICH operates in a
similar manner. OpenMPI utilizes the network interface even for intranode com-
munication, leading to an increased initial latency, but maintains a more gradual
overall latency increase. Gmem limited performance for more than 11 processes
regardless of the underlying network interconnect is due to its un-optimized Put
operations, that is magnified due to the high number of remote operations required
in an all-to-all operation.

46 CHAPTER 3. EXPERIMENTAL EVALUATION

Shmem_collect

® gmem_rds ©® gmem_ib mpich_tcp ® ompi_tcp ® ompi_IB
1000
500

100
50

Latency

Processes

Figure 3.14: Shmem _collect performance

3.4 Exanet Performance

For the last part of our benchmarks, we evaluate the performance of Gmem on
the Quad FPGA Daughter Boards (QFDB). As part of the ExaNeSt [8] project,
FORTH’s Carv laboratory has implemented a prototype cluster architecture con-
sisting of several QFDB boards, connected through a custom interconnect called
Exanet. GSAS was originally designed and implemented in order to deliver PGAS
capabilities in the QFDB cluster. This architecture contains 32 QFDB boards,
with each board having 4 FPGAs. This evaluation section serves as a proof-of-
concept that Gmem is also supported in the arm-based QFDB boards with Exanet
as our interconnect network. For our benchmarks, we utilize 1 QDFB board con-
taining 4 FPGAs i.e. computation nodes. Each FPGA is equipped with a 4-core
Cortex-A53 CPU running at 950Mhz and 16GB of RAM running at 1600Mhz.
The FPGAs are connected through the Exanet interconnect with a link capacity
of 17 Gbps.

3.4.1 Get Operations

Figures 3.15 and 3.16 display the latency and throughput of Get operations on the
Exanet interconnect. Each figure contains data on operations performed that are
synchronized using shmem_fence and shmem_quiet functions. The vertical axis
presents the latency and throughput of the figures respectively. The latency is
calculated in usecs and the throughput is calculated in Mbps. The vertical axis

3.4. EXANET PERFORMANCE 47

displays the size of the data in both figures. While fence synchronized operations
have a better initial performance, both types of Get gradually converge and per-
form the same for sizes greater than 512B. Fence synchronized operations initially
perfoms better than barrier due to the fact that in our implementation fence is a
no-op function. The reason behind the convergence of the two operations is that, as
the transmitted size grows, the performance impact of the barrier synchronization
becomes negligible and is being amortized. Throughput is inversely proportional
to latency, and for that reason the 3.16 displays a similar behavior, with fence
synchronized operations initially performing slightly better that the barrier.

Get Latency

® Fence Sync @ Barrier Sync

Latency

Figure 3.15: QFDB Get Latency performance

48 CHAPTER 3. EXPERIMENTAL EVALUATION

Get Throughput

® Fence Sync @ Barrier Sync

500 -
"é_ i
= 50 -
&)
S
5]
c
- 5 4

Figure 3.16: QFDB Get throughput performance

3.4.2 Put Operations

In Figures 3.17 and 3.18 we examine the latency and throughput of Put operations
at Exanet interconnect. In these Figures we compare the performance of Put
synchronized with fence against Put synchronized with a barrier operation. In
Figure 3.17, the vertical axis displays the latency measured in usecs, while in Figure
3.18 the vertical axis displays the throughput measured in Mbps. The horizontal
axis displays the size of the Put operations in both Figures. The latency of Put
operations with fence performs slighty better than its barrier counterpart for sizes
up to 128B. This is because in our implementation fence is a no-op operation. For
sizes greater than 128B both test cases converge and display the same behavior.
This is due to the reason that, as the sizes of Put increase, the cost of the barrier
function becomes amortized by the costly network operations. In Figure 3.18
displaying the throughput we observe the same behavior. Fence initially performs
better but for sizes greater than 128B fence and barrier synchronized Puts perform
the same.

3.4. EXANET PERFORMANCE 49

Put Latency

® Fence Sync @ Barrier Sync

500
> 4
e 50 +
[0]
©
— 5

Figure 3.17: QFDB Put Latency performance

Put Throughput
® Fence Sync @ Barrier Sync

100 + -
50 +
5
o
Ny
2 10+
o
= 5T
VRO R RO R R DO
SR I I P NN

Figure 3.18: QFDB Put Throughput performance

3.4.3 Collective Operations

Figure 3.19 displays the performance of collective operations throught the Ex-
anet interconnect. The vertical axis contains the latency of the operations mea-
sured in usecs, while the horizontal axis displays the number of participating pro-
cesses in the operation. The collective operations performed are shmem _barrier,
shmem _broacast and shmem_collect. For this benchmark, we make utilize all 4
FPGA’s computation nodes and a total of 12 processes, 3 in each node. In the

50 CHAPTER 3. EXPERIMENTAL EVALUATION

broadcast operation, a process broadcasts a fixed amount of data with every other
participating process, while in a collect operation all processes exchange a fix
amount of data in an all-to-all fashion. We observe a considerable increase in the
latency of all three operations when the number of processes is 4. This is because
for more than 3 processes, the underlying interconnect is utilized.

Collectives Latency
B Barrier B Broadcast Collect

40 +

Latency

Number of Processes

Figure 3.19: QFDB Collectives Latency performance

Bibliography

[1]

Vikas Aggarwal, Alan D. George, Changil Yoon, Kishore Yalamanchili, and
Herman Lam. Shmem+: A multilevel-pgas programming model for reconfig-
urable supercomputing. ACM Trans. Reconfigurable Technol. Syst., 4(3), aug
2011.

Dan Bonachea and Paul H. Hargrove. Gasnet-ex: A high-performance,
portable communication library for exascale.

Jens Breitbart, Mareike Schmidtobreick, and Vincent Heuveline. Evaluation
of the global address space programming interface (gaspi). In 2014 IEEE
International Parallel Distributed Processing Symposium Workshops, pages
717-726, 2014.

Monika Bruggencate, Cray Inc, and Duncan Roweth. Dmapp -an api for
one-sided program models on baker systems. 02 2022.

Georgel Calin, Egor Derevenetc, Rupak Majumdar, and Roland Meyer. A
theory of partitioned global address spaces. CoRR, abs/1307.6590, 2013.

Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff
Kuehn, Chuck Koelbel, and Lauren Smith. Introducing openshmem: Shmem
for the pgas community. In Proceedings of the Fourth Conference on Parti-
tioned Global Address Space Programming Model, PGAS ’10, New York, NY,
USA, 2010. Association for Computing Machinery.

Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and Wolf-
gang De Meuter. Partitioned global address space languages. ACM Comput.
Surv., 47(4), may 2015.

European Union. ExaNeSt Portal. https://exanest.eu/. Accessed: March
11, 2022.

ExaNode. Design of ExaNoDe Firmware. https://exanode.eu/
wp-content/uploads/2017/04/D3.6.pdf, 2016. Accessed: March 11, 2022.

Daniel Griinewald and Christian Simmendinger. The gaspi api specification
and its implementation gpi 2.0. 2013.

o1

52

[11]

[12]

BIBLIOGRAPHY

Jeff Hammond, Sayan Ghosh, and Barbara Chapman. Implementing opensh-
mem using mpi-3 one-sided communication. 03 2014.

Chung-Hsing Hsu, Neena Imam, Akhil Langer, Sreeram Potluri, and Chris J.
Newburn. An initial assessment of nvshmem for high performance computing.
In 2020 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 1-10, 2020.

Nikolaos D. Kallimanis. Synch: A framework for concurrent data-structures
and benchmarks. Journal of Open Source Software, 6(64):3143, 2021.

Nikolaos D Kallimanis, Nikolaos Chrysos, and Manolis Marazakis. A flexible
& efficient shared memory abstraction with minimal hw assistance.

Nikolaos D Kallimanis, Manolis Marazakis, and Nikolaos Chrysos. Gsas: A
fast shared memory abstraction with minimal hardware support.

Nikolaos D Kallimanis, Manolis Marazakis, and Manolis Skordalakis. Use-
cases for remote memory in the unimem architecture. In ExascaleHPC: the
FEzxaNoDe, ExaNeSt, EcoScale, and EuroEXA projects workshop at HIPEAC,
Manchester, 2018.

Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable remote memory
copy library for distributed array libraries and compiler run-time systems,
volume 1586, pages 533-546. 11 2006.

OpenSHMEM Foundation. OpenSHMEM SOS Test Suite. https://github.
com/openshmem-org/openshmem-examples. Accessed: March 11, 2022.

K Parzyszek, J Nieplocha, and R A Kendall. A generalized portable shmem
library for high performance computing.

Stephen W. Poole, Oscar Hernandez, Jeffery A. Kuehn, Galen M. Shipman,
Anthony Curtis, and Karl Feind. OpenSHMEM - Toward a Unified RMA
Model, pages 1379-1391. Springer US, Boston, MA, 2011.

Mirko Rahn. Gpi - global address space programming interface - experiences
on scalability. In PARCO, 2011.

Naveen Ravichandrasekaran, Bob Cernohous, Dan Pou, and Mark Pagel. In-
troducing cray openshmemx-a modular multi-communication layer opensh-
mem implementation. 01 2019.

Robert Ross, Rob Latham, William Gropp, Ewing Lusk, and Rajeev Thakur.
Processing mpi datatypes outside mpi. volume 5759, pages 42-53, 09 2009.

MIN SI, PAVAN BALAJI, KENNETH J RAFFENETTI, HUI ZHOU, SHIN-
TARO IWASAKI, and DOD. Oshmpi: Open shmem implementation over
mpi, 3 2021.

