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Abstract

The following work considers a possible violation of fermionic statistics, in other words,
the violation of Pauli’s exclusion principle.

We begin by laying the mathematical foundation of the violation, by introducing a
ϕ-parameter, so as to quantify the violation. We then introduce an algebra to replace the
fermionic one. Combining these, we relate them to already known experimental results.

We finish by establishing a framework, in order to measure ϕ under a new experimental
setup and compare to previous work on the problem.
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Chapter 1

Introduction

A rather interesting chapter in physics, is that of atomic spin-exchange collisions. With a
plethora of applications, from nuclear physics to medical imaging, the range from experi-
mental to theoretical work, is unbounded.

It does not come as a surprise, the fact that the Pauli exclusion principle, should play
an important role in the formulation and evaluation of such scattering processes. For the
most part, the existing theoretical work, considers the initial states as uncorrelated, mostly
in order to simplify the problem. Hence, we do not, as of yet, have a complete picture of
such collisions.

In order for one to study such scattering processes, or any process containing fermions
for that matter, a very specific assumption is made. The exclusion principle itself, is
assumed to be true. Such a statement might seem to hold as fact, but until now there
exists no theoretical framework to fully explain why nature should use either bosons or
fermions. It is possible, as we shall discuss below, to have a continuum of representations,
apart from the symmetric and antisymmetric, that we are, for the most part, fond of.

On this issue, a number of experiments [1, 2, 6, 3] have been performed, in order to
test the principle itself.

In the following work, we begin the process of formulating theoretically the problem,
combining and extending existing knowledge on the subject. Our goal is to test the princi-
ple, via a mathematical model on atomic spin-exchange collisions. If the principle breaks
down, it should slightly change the expected theoretical result of the scattering process
between two atoms.

In our study, we focus on systems with one external electron, also known as a valence
electron. We will also be focusing on initially uncorrelated scattering states. Both of these
simplifications can be generalized, with the latter being a rather hard problem. Therefore,
the hydrogen atom suffices as the atom of choice, to formulate the theoretical background,
so as to be able to extend the theory in later works.

The final part of such a work, should be the comparison between this and existing
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experimental data on the violation of the Pauli exclusion principle. On this front, we
provide the mathematical correspondence between the to be performed experiment from
our work and the aforementioned existing results.
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Chapter 2

The ϕ-parameter

Consider a Hilbert space :
H = HA ⊗HB

with |ψ⟩ ∈ H an element of the vector space, such that :

|ψ⟩ = |ψA⟩ ⊗ |ψA⟩ (2.1)

, where |ψA⟩ ∈ HA,|ψB⟩ ∈ HB.

Let B(H) be a vector space acting on H. Consider an element P ∈ B(H), defined by
the action :

P : B(H)×H → H (2.2)

P : |ψA⟩ ⊗ |ψB⟩ → |ψB⟩ ⊗ |ψA⟩+ ϕ |ψA⟩ ⊗ |ψB⟩ (2.3)

, where ϕ ∈ R is a small parameter, |ϕ| ≪ 1.
It is convenient to deconstruct P, by defining Q∈ B(H) such that :

Q : B(H)×H → H (2.4)

Q : |ψA⟩ ⊗ |ψB⟩ → |ψB⟩ ⊗ |ψA⟩ (2.5)

and thus write P as follows :
P = Q+ ϕ1 (2.6)

with 1 being the identity element of B(H). We now provide a few useful identities :

Q† = Q , P† = P

P†P = P2 = (1 + ϕ2)1+ 2ϕQ

(1− P)(1− P)† = (1− P)2 = 2(
ϕ2

2
− ϕ+ 1)1+ 2(ϕ− 1)Q

4



Suppose for a moment that ϕ = 0, then by use of (2.3) we can write down an anti-
symmetric element of H, by the action of the operator 1√

2
(1 − P) on H. Naturally, this

is equivalent to saying that we are considering some fermion in the theory. Therefore the
addition of the ϕ-parameter via (2.3), changes the fermionic algebra.

Consider the algebra1.
aia

†
j − qa†jai = δij (2.7)

This is a generalization of the classical Bose and Fermi algebras ( CCR and CAR ) cor-
responding to q = 1 and q = −1 respectively. In Appendix A, we show that relation
(2.7) has a Hilbert space realization for q ∈ (−1, 1), providing a positive norm. Here we
are specifically interested in q + 1 ≈ 0, meaning a small violation of the anticommutation
algebra, which in turn means that a small violation of the Pauli exclusion principle (PEP)
exists.

The parameter ϕ, which represents the aforementioned small violation of the fermionic
statistics, can be written in terms of q as :

q = −2(
1

2
− ϕ) , ϕ≪ 1 (2.8)

ϕ =
1

2
(1 + q) (2.9)

Consider two identical q-particles and the vectors |ψa⟩ , |ψs⟩2. Then we write the density
operator :

ρ =
1 + q

2
|ψs⟩ ⟨ψs|+

1− q

2
|ψa⟩ ⟨ψa| (2.10)

Hence, if no violation exists, ϕ = 0, the density operator is of the usual fermionic type.
For us to be able to compare our results with the rest of the community on PEP

violations, we note the usual convention made to experimentally test the principle. Usually

the parameter β2

2 is used, so as to relate it to the probability of violating the fermi statistics.

Specifically, according to (2.10), by use of β2

2 , we expect a density operator of the form :

ρ =
β2

2
|ψs⟩ ⟨ψs|+

1

2
(1− β2) |ψa⟩ ⟨ψa| (2.11)

Equating to (2.10), we conclude that :

β2

2
=

1

2
(1 + q) = ϕ (2.12)

We make use of the Ramberg-Snow bound[4], stating that :

0 ≤ β2

2
≤ 1, 7 · 10−26

1In appendix A we formulate the necessary mathematical framework of the q-algebra.
2s for symmetric and a for antisymmetric.
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, which in turn implies :
0 ≤ ϕ ≤ 1, 7 · 10−26 (2.13)

Concluding, in the following chapter we lay down the necessary theoretical framework,
so as to follow up with an experiment to determine ϕ and compare the result to (2.13).
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Chapter 3

Mathematical Formulation

Consider two atoms, each formed by a nucleus ni and an electron ei, i = 1, 2, respectively.
Assume, in the context of this work, that both atoms are in the ground state. Both nuclei
have the isospin degrees of freedom, apart from the usual spin degrees of freedom, carried
by the electrons. In the following work, we denote asms the spin projection of each electron
and mI the isospin projection of either nucleus. We also write the ket :

|ei, nj⟩ , i, j = 1, 2

, to denote on which nucleus is either electron bounded to. Additionally, the vector :

|ni, k⃗i⟩ , i = 1, 2

denotes the momentum of the center of mass of either bound state, as we take the mass of
the nuclei to be much larger than that of the electrons.

3.1 Total Density Operator

Let H be a Hilbert space, containing the vectors describing the states in our problem.
Assume B(H) to be an acting space on H, containing the operators we are interested in.
Let HA and HB be subspaces of H, such that :

H = HA ⊗HB

B(H) = B(HA)⊗ B(HB)

Consider |ei, nj⟩ ∈ HA and |ek, nl⟩ ∈ HB, with i, j, k, l = 1, 2 , i ̸= k , j ̸= l. We assume

that ∄W (1)
q ,W

(2)
q ,W

(3)
q ,W

(4)
q ∈ C such that :

|ei, nj⟩ =
∑
q1,q2

W (1)
q1 W

(2)
q2 |ϵi,q1⟩ ⊗ |ϵj,q2⟩
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|ek, nl⟩ =
∑
q1,q2

W (3)
q1 W

(4)
q2 |ϵk,q1⟩ ⊗ |ϵl,q2⟩

, with |ϵi,q1⟩ ∈ HA,e , |ϵj,q2⟩ ∈ HA,n , |ϵk,q1⟩ ∈ HB,e , |ϵl,q2⟩ ∈ HB,n, where

HA = HA,e ⊗HA,n

HB = HB,e ⊗HB,n

We now have the foundations to define the system’s density operator. Let σinit ∈ B(H)
be defined as :

σinit ≡
∫

d3ki d
3k′iu(k⃗i)u

∗(k⃗′i)( |n1, k⃗i;n2,−k⃗i⟩ ⟨n1, k⃗′i;n2,−k⃗′i|)⊗ (|e1, n1⟩ ⟨e1, n1|)

⊗ (|e2, n2⟩ ⟨e2, n2|)⊗ ρ(n1, e1, n2, e2)

(3.1)

, with the integrals over the initial momenta and u(k⃗i), u
∗(k⃗′i) ∈ C.

For our purposes, we assume that a vector ∈ HA ⊗HB, is separable, therefore the particle
density operator, ρ(n1, e1, n2, e2) ∈ B(H), is separable :

ρ(n1, e1, n2, e2) = ρA(n1, e1)⊗ ρB(n2, e2) (3.2)

, with ρ(n1, e1) ∈ B(HA) and ρ(n2, e2) ∈ B(HB). Hence, the system’s density operator
assumes the form :

σinit ≡
∫

d3ki d
3k′iu(k⃗i)u

∗(k⃗′i)( |n1, k⃗i;n2,−k⃗i⟩ ⟨n1, k⃗′i;n2,−k⃗′i|)⊗ (|e1, n1⟩ ⟨e1, n1|)

⊗ (|e2, n2⟩ ⟨e2, n2|)⊗ ρA(n1, e1)⊗ ρB(n2, e2)

(3.3)

In addition, we will be imposing the normalization conditions :∫
d3ki u

∗(k⃗i)u
(k⃗i) = 1

Tr{ρA} = 1 Tr{ρB} = 1

3.2 Indistinguishable Electrons

The transformation law of σinit, to some σfin, is :

σinit →
(1e − Pe)√

2
S
(1e − Pe)

†
√
2

σinit
(1e − Pe)

†
√
2

S†
(1e − Pe)√

2
(3.4)
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, where the index e indicates that the corresponding operator acts on the subspace of H
concerning electrons. Moreover, the S operator, as seen in (3.4) is simply the evolution
operator. Defining the parameters :

α ≡ ϕ2

2
− γ , γ ≡ ϕ− 1 (3.5)

, somewhat simplifies the relations. Trivially (3.4), takes the form :

σinit → (α1e − γQe)SσinitS
†(α1e − γQe) (3.6)

We now begin the procedure of integrating over the n2 degrees of freedom, so as to find
σfin(e, n1), meaning the density operator for distinguishable nuclei :〈
mIms

∣∣σfin(n1, e)∣∣m′
Im

′
s

〉
=

∑
m′′

I ,m
′′
s

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i) ⟨n1,mI , k⃗f , e1,ms;n2,m
′′
I ,−k⃗f , e2,m′′

s |

(α1e − γQe)SσS
†(α1e − γQe) |n1,m′

I , k⃗f , e1,m
′
s;n2,m

′′
I ,−k⃗f , e2,m′′

s⟩
(3.7)

In order to make the calculations simpler, we define the integrals:

(I) ≡ α2
∑

m′′
I ,m

′′
s

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)⟨SσS†⟩ (3.8)

(II) ≡ γ2
∑

m′′
I ,m

′′
s

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)⟨QSσS†Q⟩ (3.9)

(III) ≡ −αγ
∑

m′′
I ,m

′′
s

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)⟨[QSσS† + SσS†Q]⟩ (3.10)

Therefore (3.7) becomes :〈
mIms

∣∣σfin(n1, e)∣∣m′
Im

′
s

〉
= (I) + (II) + (III) (3.11)

We proceed, by calculating relations (3.8)-(3.10).
Substituting (3.1) into (3.8), we get :

(I) = α2
∑

m′′
I ,m

′′
s

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)Sd(k⃗f , k⃗i)S
∗
d(k⃗f , k⃗

′
i)
〈
mIms

∣∣ρA∣∣m′
Im

′
s

〉 〈
m′′

Im
′′
s

∣∣ρB∣∣m′′
Im

′′
s

〉
(3.12)

, where we have defined the S-matrix element :

Sd(k⃗f , k⃗i) ≡ ⟨n1, k⃗f , e2;n2,−k⃗f , e1|S |n1, k⃗i, e2;n2,−k⃗i, e1⟩ (3.13)
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The integral term of (3.12) is related to a scattering amplitude, as many that will follow
in the work, via the phase shift method of scattering theory[9]. For now we simply state
this fact1 and define :

Ad =

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)Sd(k⃗f , k⃗i)S
∗
d(k⃗f , k⃗

′
i) (3.14)

, with Ad describing the scattering procedure, where no electron exchange takes place
between the nuclei. Then (3.12) reduces to :

(I) = α2Ad

〈
mIms

∣∣ρA∣∣m′
Im

′
s

〉
(3.15)

, where we have used the normalization condition of ρB.
Similarly relation (3.9), by defining the following :

St(k⃗f , k⃗i) ≡ ⟨n1, k⃗f , e2;n2,−k⃗f , e1|S |n1, k⃗i, e1;n2,−k⃗i, e2⟩ (3.16)

At =

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)St(k⃗f , k⃗i)S
∗
t (k⃗f , k⃗

′
i) (3.17)

, with At describing the scattering procedure, where electron exchange takes place between
the nuclei, can be written as :

(II) = γ2At

∑
m′′

I ,m
′′
s

〈
mIm

′′
s

∣∣ρA∣∣m′
Im

′′
s

〉 〈
m′′

Ims

∣∣ρB∣∣m′′
Im

′
s

〉
(II) = γ2At

〈
mIms

∣∣Trs{ρA} ⊗ TrI{ρB}
∣∣m′

Im
′s
〉

(3.18)

Finally, in order to tackle (3.10), we define the coefficient :

As =

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)Sd(k⃗f , k⃗i)S
∗
t (k⃗f , k⃗

′
i) (3.19)

Hence (3.10) takes the form :

(III) = −αγ[As

∑
m′′

I ,m
′′
s

〈
mIms

∣∣ρA∣∣m′
Im

′′
s

〉 〈
m′′

Im
′′
s

∣∣ρB∣∣m′′
Im

′
s

〉
+

A∗
s

∑
m′′

I ,m
′′
s

〈
mIm

′′
s

∣∣ρA∣∣m′
Im

′
s

〉 〈
m′′

Ims

∣∣ρB∣∣m′′
Im

′′
s

〉
]

(3.20)

In Appendix B, we prove that :
At +Ad = 1

As +A∗
s = 0

1In Appendix B, we show exactly that relation.
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, which goes to show that we can write the matrix element as :

As = iAs,exch (3.21)

, with As,exch describing spin exchange. Accordingly (3.20) simplifies to :

(III) = −iαγAs,exch

〈
mIms

∣∣ρA(1I ⊗ TrI{ρB})− (1I ⊗ TrI{ρB})ρA
∣∣m′

Im
′
s

〉
(III) = −iαγAs,exch

〈
mIms

∣∣[ρA,1I ⊗ TrI{ρB}]
∣∣m′

Im
′
s

〉
(3.22)

We are now in a position to put everything back together in (3.11) :〈
mIms

∣∣σfin(n1, e)∣∣m′
Im

′
s

〉
=α2Ad

〈
mIms

∣∣ρA∣∣m′
Im

′
s

〉
+ γ2At

〈
mIms

∣∣Trs{ρA} ⊗ TrI{ρB}
∣∣m′

Im
′s
〉

− iαγAs,exch

〈
mIms

∣∣[ρA,1I ⊗ TrI{ρB}]
∣∣m′

Im
′
s

〉
Simply by focusing on the density operators we get the final result, for indistinguishable
electrons and distinguishable nuclei, after integrating out the n2 degrees of freedom 2:

σfin(n1, e) = α2(1−At)ρA + γ2AtTrs{ρA} ⊗ TrI{ρB} − iαγAs,exch[ρA,1I ⊗ TrI{ρB}]

Since we are considering ϕ≪ 1 we can approximate α to first order in ϕ as : α ∼ −γ.
Consequently :

σfin(n1, e) = γ2(1−At)ρA+γ2AtTrs{ρA}⊗TrI{ρB}+ iγ2As,exch[ρA,1I ⊗TrI{ρB}] (3.23)

3.3 Indistinguishable Nuclei - Electrons

This time the transformation law of σinit, to some σfin(n, e), assumes the form :

σinit →
1

8
(1e − Pe)

2(1n − Pn)
2SσinitS

†(1e − Pe)
2(1n − Pn)

2

σinit → (α1e − γQe)(α1n − γQn)SσinitS
†(α1e − γQe)(α1n − γQn) (3.24)

We now separate (3.25) in three parts :

(I) ≡ α2[1n(α1e − γQe)SσS
†(α1e − γQe)1n] (3.25)

(II) ≡ γ2[Qn(α1e − γQe)SσS
†(α1e − γQe)Qn] (3.26)

(III) ≡ −αγ[Qn(α1e − γQe)SσS
†(α1e − γQe)1n+

1n(α1e − γQe)SσS
†(α1e − γQe)Qn]

(3.27)

2Following a similar calculation, we get a similar result by integrating over the n1 degrees of freedom.
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Notice that (3.25) is relation (3.23) multiplied by a factor of α2, while (3.26) is that after
integrating over n1 instead of n2, times a γ2 factor. We therefore only need to calculate
(3.27).

〈
mIms

∣∣σfin(n, e)∣∣m′
Im

′
s

〉
=

1

2

∑
m′′

I ,m
′′
s

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)⟨(I + II + III)⟩ (3.28)

focusing on the third integral :

J =
1

2

∑
m′′

I ,m
′′
s

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)⟨III⟩ (3.29)

Define :

AI =

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)Sd(k⃗f , k⃗i)S
∗
t (−k⃗f , k⃗′i) (3.30)

A(1)
Is =

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)Sd(k⃗f , k⃗i)S
∗
d(−k⃗f , k⃗′i) (3.31)

A(2)
Is =

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)St(k⃗f , k⃗i)S
∗
t (−k⃗f , k⃗′i) (3.32)

Using (3.30)-(3.32), relation (3.29) expands as :

J =− α3γ

2
AI

〈
mIms

∣∣ρA(Trs{ρB} ⊗ 1s)
∣∣m′

Im
′
s

〉
− α3γ

2
A∗

I

〈
mIms

∣∣(Trs{ρB} ⊗ 1s)ρA
∣∣m′

Im
′
s

〉
− αγ3

2
AI

〈
mIms

∣∣ρB(Trs{ρA} ⊗ 1s)
∣∣m′

Im
′
s

〉
− αγ3

2
A∗

I

〈
mIms

∣∣(Trs{ρA} ⊗ 1s)ρB
∣∣m′

Im
′
s

〉
+
α2γ2

2
A(1)

Is

〈
mIms

∣∣ρAρB∣∣m′
Im

′
s

〉
+
α2γ2

2
A(1)∗

Is

〈
mIms

∣∣ρBρA∣∣m′
Im

′
s

〉
+
α2γ2

2
A(2)

Is

〈
mIms

∣∣TrIs,2{PeρA ⊗ ρBPn}
∣∣m′

Im
′
s

〉
+
α2γ2

2
A(2)∗

Is

〈
mIms

∣∣TrIs,2{PnρA ⊗ ρBPe}
∣∣m′

Im
′
s

〉
(3.33)

In Appendix B, we prove that :
AI +A∗

I = 0

A(1)
Is +A(2)

Is = 0

Hence (3.33) becomes :

J =− α3γ

2
AI

〈
mIms

∣∣[ρA,Trs{ρB} ⊗ 1s]
∣∣m′

Im
′
s

〉
− αγ3

2
AI

〈
mIms

∣∣[ρB,Trs{ρA} ⊗ 1s]
∣∣m′

Im
′
s

〉
− α2γ2

2
A(2)

Is

〈
mIms

∣∣[ρAρB + ρBρA − TrIs,2{PeρA ⊗ ρBPn + PnρA ⊗ ρBPe}]
∣∣m′

Im
′
s

〉
12



Since AI +A∗
I = 0, we can write the matrix element as :

AI = iAI,exch

, with AI,exch describing the isospin exchange. Thus (3.33) is ultimately reduced to :

J =− αγ

2
iAI,exch

〈
mIms

∣∣(α2[ρA,Trs{ρB} ⊗ 1s] + γ2[ρB,Trs{ρA} ⊗ 1s])
∣∣m′

Im
′
s

〉
− α2γ2

2
A(2)

Is

〈
mIms

∣∣[ρAρB + ρBρA − TrIs,2{PeρA ⊗ ρBPn + PnρA ⊗ ρBPe}]
∣∣m′

Im
′
s

〉
(3.34)

Relation (3.29) then takes the form :

σfin(n, e) =
α4

2
(1−At)ρA +

α2γ2

2
AtTrs{ρA} ⊗ TrI{ρB} − i

α3γ

2
As,exch[ρA,1I ⊗ TrI{ρB}]

+
γ4

2
(1−At)ρB +

α2γ2

2
AtTrs{ρB} ⊗ TrI{ρA} − i

αγ3

2
As,exch[ρB,1I ⊗ TrI{ρA}]

− i
αγ

2
AI,exch(α

2[ρA,Trs{ρB} ⊗ 1s] + γ2[ρB,Trs{ρA} ⊗ 1s])

− α2γ2

2
A(2)

Is [ρAρB + ρBρA − TrIs,2{PeρA ⊗ ρBPn + PnρA ⊗ ρBPe}]

Again approximating α to first order in ϕ , α ∼ −γ, we get3 :

σfin(n, e) =
γ4

2
(1−At)ρA +

γ4

2
AtTrs{ρA} ⊗ TrI{ρB} − i

γ4

2
As,exch[ρA,1I ⊗ TrI{ρB}]

+
γ4

2
(1−At)ρB +

γ4

2
AtTrs{ρB} ⊗ TrI{ρA} − i

γ4

2
As,exch[ρB,1I ⊗ TrI{ρA}]

+ i
γ4

2
AI,exch([ρA,Trs{ρB} ⊗ 1s] + [ρB,Trs{ρA} ⊗ 1s])

− γ4

2
A(2)

Is [ρAρB + ρBρA − TrIs,2{PeρA ⊗ ρBPn + PnρA ⊗ ρBPe}]
(3.35)

3.4 Cross-Sections

Concluding our calculation, we take the ratios of cross sections obtained from the A-
coefficients we defined, so as to provide a way of experimentally checking the PEP violation
we considered.

From Appendix B, we know that :

σt ∼ At (3.36)

3TrIs,2{}runs over the spin and isospin projections of n2
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σs,exch ∼ As,exch (3.37)

In order to distinguish the cross sections from each calculation, we give the index (D) and
(I), for distinguishable and indistinguishable respectively.
Therefore, we compare the first line of (3.35) to result (3.23) :

σDt
σIt

≈ γ2At
1
2γ

4At
=

2

γ2
=⇒ σDt

σIt
≈ 2

γ2
(3.38)

σDs,exch

σIs,exch
≈

γ2As,exch
1
2γ

4As,exch

=
2

γ2
=⇒

σDs,exch

σIs,exch
≈ 2

γ2
(3.39)

We now approximate γ2 to lowest order in ϕ2, to finally get :

σDt
σIt

≈ 2

1− 2ϕ
≈ 2(1 + 2ϕ+O(ϕ2)) (3.40)

σDs,exch

σIs,exch
≈ 2

1− 2ϕ
≈ 2(1 + 2ϕ+O(ϕ2)) (3.41)

14



Chapter 4

Conclusion

Concluding, we have managed to lay the groundwork to test a possible PEP violation
under a future experiment, as well as establish a framework, upon which, one can expand
the above work. We see the result obtained in [5], changes by a factor of γ2, referring to
(3.35). We have provided a simple ratio test, between the cross sections of different atoms
to atoms of the same kind, so as to measure an upper bound of the ϕ−parameter violation
of the exclusion principle.

An immediate generalization, would be that of disallowing the separation of ρ(e1, n1, e2, n2),
leading to the analysis of a fully entangled problem. Leastwise, it should be noted that in
its current form, the q-algebra is valid only at the level of non-relativistic physics. Apart
from that, any kind of generalization aims to construct similar A-coefficients, to that of
the above work, so as to calculate the ratio of cross-sections and measure the upper bound
of ϕ.

Closing, the connection between this work and previous experimental results, has been
established, which is valid for any generalization of the work in chapter 3.
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Appendix A

Hilbert Space realization of
q-algebra

[7, 8, 10] Theorem. Define a Hilbert space H embedded with an inner product :

⟨·, ·⟩ : H×H → R

Consider an element Mq ∈ GL(n,R). If q ∈ (−1, 1), the matrix Mq is positive definite,
such that the algebra over R, has a Hilbert space realization for q in this range.

Proof.

Let Ψk ∈ H, such that Ψk = a†k1 ...a
†
kn
Ψ0,∀n ≥ 0 and each n-tuple of indices k. Then

under the normalization condition ⟨Ψ0,Ψ0⟩ = 1, we have :

⟨Ψk,Ψk⟩ = q (A.1)

Now define an element in GL(n,R) as :

Mq ≡ ⟨Ψk,Ψr⟩ (A.2)

Relation (A.2) vanishes if k is not a permutation of r, therefore H is the direct sum of
infinitely many finite dimensional spaces, indexed by all unordered n-tuples. It therefore,
suffices to prove the positive definiteness of these.

Consider an element π ∈ Sn, then according to (A.1), we conclude :

⟨Ψπ(1)...π(n),Ψ1...n⟩ = qi(π) (A.3)

, where i(π) denotes the number of inversions of π. Therefore for σ, π ∈ Sn, we need to
prove that :

Mq(σ, π) = qi(σ
−1π) (A.4)
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is positive definite for q ∈ (−1, 1). For this to hold true, it suffices to prove that Mq is
non-singular in (−1, 1). We therefore calculate det{Mq}.

Let π ∈ Sn and σ ∈ Sn−1, then for 1 ≤ k ≤ n, ∃ρk = (1, ..., k−1, n, k, k+1, ..., n−1) ∈ Sn

such that π = σ ◦ ρk, with k = π−1(n). Thus by the work in [10], we define :

an =
∑
π∈Sn

qi(π)π = [
∑

σ∈Sn−1

qi(π)σ] ◦ [
n∑

k=1

qn−kρk] (A.5)

Define :

βn =
n∑

k=1

qn−kρk (A.6)

Then combining the two relations we conclude that :

an = an−1βn (A.7)

Therefore (A.7) in terms of matrices can be written as :

Aq,n = (Aq,n−1 ⊗ 1)Bq,n (A.8)

, with Bq,n = qn−k, if σ−1 ◦ π = ρk for some 1 ≤ k ≤ n, else it is zero. Taking the
determinant, we find :

det{Aq,n} = (det{Aq,n−1})n det{Bq,n} (A.9)

This goes to show that we can prove the theorem, by use of induction on Bq,n. We also
note that :

Mq = Aq,n

We write βnγn = δn−1, where :1

γn = (1− qn−1ρ1)(1− qn−2ρ2)...(1− qρn−1)

δn = (1− qn+1ρ1)(1− qnρ2)...(1− q2ρn−1)

Therefore :

det{Bq,n} =
det{∆q,n−1}
det{Γq,n}

=

∏n−1
k=1(1− qk(k+1))

n!
k+1∏n

k=1(1− qk(k+1))
n!
k

det{Bq,n} =
n−1∏
k=1

(1− qk(k+1))
n!

k(k+1) (A.10)

By induction, (A.9) and (A.10) provide us with the proof of the theorem :

det{Mq} =
n−1∏
k=1

(1− qk(k+1))
n!(n−k)
k(k+1) (A.11)

Which shows that Mq is non-singular ∀q ∈ C, except for the roots of unity {n2 − n},
meaning that for q ∈ R, the algebra has no peculiarities.

1For a deeper understanding of the proof the reader should examine [10]
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Appendix B

A-coefficients

B.1 A−identities

In this section, we prove some of the relations used in the work. Let :

1 =

∫
d3kf [ |n1, k⃗f ;n2,−k⃗f ⟩ ⟨n1, k⃗f ;n2,−k⃗f |]⊗

[|e1, n1; e2, n2⟩ ⟨e1, n1; e2, n2|+ |e1, n2; e2, n1⟩ ⟨e1, n2; e2, n1|]
(B.1)

be the identity element. We begin by proving : At +Ad = 1

At +Ad =

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)Sd(k⃗f , k⃗i)S
∗
d(k⃗f , k⃗

′
i)

+

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)St(k⃗f , k⃗i)S
∗
t (k⃗f , k⃗

′
i)

=

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)[Sd(k⃗f , k⃗i)S
∗
d(k⃗f , k⃗

′
i) + St(k⃗f , k⃗i)S

∗
t (k⃗f , k⃗

′
i)]

=

∫
d3ki d

3k′i u(k⃗i)u
∗(k⃗′i)

〈
n1, k⃗i, e2;n1,−k⃗i, e1

∣∣∣S1S†∣∣∣n1, k⃗′i, e2;n1,−k⃗′i, e1〉
=

∫
d3ki d

3k′i u(k⃗i)u
∗(k⃗′i)δ(k⃗i − k⃗′i)

=

∫
d3ki u(k⃗i)u

∗(k⃗i)

= 1
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We now continue on with the proof of : As +A∗
s = 0

As +A∗
s =

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)Sd(k⃗f , k⃗i)S
∗
t (k⃗f , k⃗

′
i)

+ [

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)Sd(k⃗f , k⃗i)S
∗
t (k⃗f , k⃗

′
i)]

∗

=

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)[Sd(k⃗f , k⃗i)S
∗
t (k⃗f , k⃗

′
i) + S∗

d(k⃗f , k⃗
′
i)St(k⃗f , k⃗i)]

=

∫
d3ki d

3k′i u(k⃗i)u
∗(k⃗′i) ⟨n1, k⃗′i, e2;n2,−k⃗′i, e1|n1, k⃗i, e1;n2,−k⃗i, e2⟩

Assuming that the initial states have no overlapping, we get :

As +A∗
s = 0

In a similar manner we get :

AI +A∗
I = 0

Now the final proof is :

A(1)
Is +A(2)

Is =

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)Sd(k⃗f , k⃗i)S
∗
d(−k⃗f , k⃗′i)

+

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)St(k⃗f , k⃗i)S
∗
t (−k⃗f , k⃗′i)

=

∫
d3kf d

3ki d
3k′i u(k⃗i)u

∗(k⃗′i)[Sd(k⃗f , k⃗i)S
∗
d(−k⃗f , k⃗′i) + St(k⃗f , k⃗i)S

∗
t (−k⃗f , k⃗′i)]

=

∫
d3ki d

3k′i u(k⃗i)u
∗(k⃗′i) ⟨n1, k⃗′i, e1;n2,−k⃗′i, e2|S†1S |n1, k⃗i, e1;n2,−k⃗i, e2⟩

=

∫
d3ki d

3k′i u(k⃗i)u
∗(k⃗′i) ⟨n1, k⃗′i, e1;n2,−k⃗′i, e2|n1,−k⃗i, e1;n2, k⃗i, e2⟩

= 0

Since the nuclear wave packets do not overlap.

B.2 Scattering Process - Phase shifts

In this section, we show how to relate the A-coefficients to the corresponding scattering
cross-sections, we are interested in. We will be focusing on At, as the work is exactly the
same for any of them.

We know, from non-relativistic scattering theory in quantum mechanics that we can
expand, the S-matrix elements as [5]:

Sd(k⃗f , k⃗i) =
1

k2i
δ(|⃗kf | − |⃗ki| )

∑
l,m

eiδl cos(δl)Ym∗
l (k̂f )Ym

l (k̂i) (B.2)
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St(k⃗f , k⃗i) =
i

k2i
δ(|⃗kf | − |⃗ki| )

∑
l,m

eiδl sin(δl)Ym∗
l (k̂f )Ym

l (k̂i) (B.3)

Therefore, using (B.2) in the definition of At, we get :∫
d3ki d

3k′i
u(k⃗i)u

∗(k⃗′i)

kik′i
δ(ki − k′i)

∑
l,m

eiδl sin2(δl)Ym∗
l (k̂f )Ym

l (k̂i) (B.4)

Using the rectangular function Π(k), we suppose u(k⃗) to be :

u(k⃗) =
L

π
√
ϵ
Π(kx)Π(ky)Π(kz − k0) (B.5)

, where L is directly proportional to the lateral spread of the wave packet, on the xy-plane,
and ϵ is the energy. Using relation (B.5), we provide a closed form for At.

By use of the summing theorem of spherical harmonics, as well as (B.5), we conclude
that :

At =
1

4π2L2k20

∑
l

(2l + 1) sin2(δl) (B.6)

But from scattering theory, for example [9], we know that :

σt =
1

k20

∑
l

(2l + 1) sin2(δl) (B.7)

Concluding, we see that :
σt = 4πL2At (B.8)

An equivalent line of reasoning gives us the rest of the cross-sections.
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