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Abstract

Ergodic theory has been an active area of research in recent decades. Furstenberg’s original
work in the proof of Szemerédi’s theorem was the spark for the development of a whole new research
field, since dynamical methods were then understood to be a potent tool for solving combinatorial
problems. These methods naturally led researchers to ask many follow-up questions and nowadays
we have generalizations of Furstenberg’s results concerning patterns beyond arithmetic progressions
as well as deep theorems describing the structure of measure-preserving systems.

In this thesis, we investigate the problem of convergence of multiple ergodic averages along se-
quences that arise from functions that have polynomial growth and some extra regularity properties,
such as monotonicity and smoothness. Typical examples include the polynomials or the fractional
powers n¢ where ¢ > 0 is not an integer. We show that under some simple assumptions on the
growth rates of the functions we have convergence of multiple ergodic averages along these sequences
in all measure-preserving systems. As a consequence of these results, we derive several combinatorial
applications showing that all subsets of Z with positive density contain patterns of a specific form.
In the case of nilmanifolds, we prove pointwise convergence results for these averages and then use
well-known structure theorems to deduce convergence results for general measure-preserving systems.
Furthermore, we ask the same questions for multiple ergodic averages evaluated along the prime num-
bers and we show that under the same assumptions, the corresponding averages converge and the
limit is the same as the limit of the typical averages along the naturals.

The results of this thesis are contained in the following articles (listed in chronological order):

1) K. Tsinas. Joint ergodicity of Hardy field sequences. Transactions of the American Mathematical
Society, 376:3191-3263, 2023.

2) K. Tsinas. Pointwise convergence in nilmanifolds along smooth functions of polynomial growth.
Ergodic Theory and Dynamical Systems. Published online p:1-46. doi:10.1017/etds.2023.6, 2023

3) A. Koutsogiannis and K. Tsinas. Ergodic averages for sparse sequences along primes. Preprint
2023, arXiv.2309.0493
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Chapter 1

Introduction

In this thesis, we investigate problems concerning the convergence of multiple averages along many
sequences of interest and we derive several combinatorial applications, indicating that positive density
subsets of the integers contain many patterns of a specific form. The idea of using tools from ergodic
theory and dynamical systems can be traced back to Furstenberg [21] who gave a different proof of
the following theorem of Szemerédi [53].

Theorem A (Szemerédi’s theorem). Any positive density subset of N contains arbitrarily long arith-
metic progressions.

In his seminal work [21], Furstenberg established his multiple recurrence theorem for general
measure-preserving systems, which, in conjunction with Furstenberg’s correspondence principle, yields
another proof of Theorem A. In the field of ergodic theory, a measure-preserving system is a proba-
bility space (X, X, u) equipped with an invertible measure-preserving transformation T. This means
that pu(A) = p(T~1A) for any measurable set A. One can also consider a probability space with many
commuting transformations measure-preserving transformations 77, ...,7T; acting on it at the same
time. We then call (X, X, u,T1,...,Tx) a measure-preserving system with k commuting transforma-
tions. In several places throughout the text, we will omit the o-algebra from the notation if there is
no confusion.

First of all, we state the correspondence principle. Assume F C N. Then, we define the upper

density of the set E as the limit
- EN[1,N
d(E) := limsup EN[L N
N—o00 N
and the lower density d is defined similarly with liminf instead of limsup. If these limits coincide,

then we say that the set E has natural density d(FE) equal to the limit.

Theorem B (Furstenberg’s correspondence principle). For any set E C N with positive upper density,
there exist an invertible measure preserving system (X, X, u,T) and a measurable set A C X, such
that d(E) = p(A) and for any ry,...,rx € Z, we have

AEN(E—r)N--N(E=r) > pANTMAN---NT " A).
Theorem C (Furstenberg’s multiple recurrence theorem). Let k be a positive integer, (X, X, u,T) be

a measure-preserving system and let A € X be a set with positive measure. Then, we have

N
S 1 -n —kn
}\lfgilégNng_lu(AmT An---NT7"A) > 0.

In particular, there exists n € N for which pf(ANT"AN---NT~*A) > 0.

Furstenberg’s correspondence principle allows us to translate problems of finding structures in
subsets of N to multiple recurrence problems in dynamical systems, where new analytic tools are
available to tackle the task at hand. Typically, we also want to determine the more difficult question



of whether limits such as those in Theorem C exist or not and, if possible, find an explicit expression
for them. In general, our problems involve the study of the multiple ergodic averages

N
%Z AT M) L fe(T M) (1.1)
n=1

where aj(n),...,ar(n) are sequences of integers and 7' is an invertible measure preserving map on a
probability space (X, X, 1). In this thesis, we will only focus on the limit in the L? sense. Similar ques-
tions can be asked about pointwise convergence of these averages, although the theory and the results
in pointwise convergence are still far behind the knowledge we have on the L? theory. Furthermore,
understanding the L? limiting behavior of the previous averages is sufficient for the combinatorial
applications in almost all cases.

In the case of Theorem C, one has to study the limiting behavior of the averages

N
1
NZT”fl-TQ"fg....-T’f”fk (1.2)
n=1
and then specialize to the case fi = fo=---= fr, = 14.

Furstenberg’s multiple recurrence is sufficient to derive Theorem A, although Furstenberg’s original
work did not determine whether the associated average converges or not. The crux of Furstenberg’s
argument was his deep structure theorem, showing how an ergodic system can be constructed by the
trivial system through a series of extensions (typically, infinitely many) with particular properties.
Using this theorem, one then has to verify that if a system possesses the multiple recurrence property
of Theorem C, then any of the extensions like the ones mentioned above will produce a new system that
still has the multiple recurrence property. Therefore, the multiple recurrence theorem can be lifted
from the trivial system to any general ergodic system and, then, to all measure preserving systems
using a standard ergodic decomposition argument.

Relying on Furstenberg’s structure theorem, many authors provided generalizations of Theorem C
even to systems involving several commuting transformations acting on the same probability space. In
particular, Bergelson and Leibman [3] generalized Theorem C (building on work of Furstenberg and
Katznelson [22] in the case of linear iterates) to polynomials of higher degree.

Theorem D (Bergelson-Leibman theorem). Let k € N, (X, X, u, T1,...,Tx) be a measure-preserving
system with k commuting measure-preserving transformations and let p1, ..., pg be integer polynomials
with zero constant term. Then, there exists a positive integer n, such that

wANT ™M Aan. AT, ™M A) > 0.

Once again, Furstenberg’s correspondence principle allows someone to prove that positive density
subsets of Z contain patterns of the form (m,m + pi(n),...,m + pr(n)). Actually, the fact that we
can allow many distinct transformations 7T} yields combinatorial results for subsets of Z¥.

In 2005, Host and Kra established their famous structure theorem [29]. They show that, for any
k € N, each ergodic system is an extension of a special system, called the “factor of order k” (denoted
by Zj), which in turn is the inverse limit of systems with special algebraic structure, called nilsystems.
The upside of this result is that many problems concerning averages such as (1.1) can be reduced
through a series of analytic methods to determining the limiting behavior only in the case of these
special factors, whose structure is now well understood. For instance, the Host-Kra structure theory
can be used to show convergence of the averages in (1.2) and this was carried out in [29]. Subsequently,
an independent proof of this was given by Ziegler [60]. This theorem has also proven very effective
in handling the case of polynomial iterates. In particular, Leibman [38] proved that the averages in
(1.1) converge in L?(u) in the case where a;(n) are integer polynomials. In this setting, the structure
factors are called characteristic for the polynomial averages. More specifically, we say that a factor
(Y,Y,v,T) ! of the system (X, X, u,T) is characteristic for the averages (1.1), if we have that

N N
1 1
- ar(n) g opar(n) g a1(n) .ok .
HNn§1T Jioo TS Nn§1T EfilY) .. T eu(fk|y)‘L2(m 0

LFor a strict definition of a factor system, we refer the reader to the following chapter.



as N — +oo. In order to make sense of the conditional expectation with respect to a factor, we remark
briefly that there is a correspondence between factors of a system and T-invariant sub o-algebras (cf.
Chapter 2).

The main topic of this thesis is to investigate convergence results along sequences with polynomial-
like behaviour. Some typical examples of sequences that we study are polynomial sequences with real
coefficients or sequences involving fractional powers |n¢]. More generally, we will consider sequences
of the form | f(n)| where f is a function that has polynomial growth? and several more regularity
properties (like, for example, smoothness and monotonicity). Furthermore, we will tackle similar
problems for the same sequences evaluated along the prime numbers. It is generally understood that
the most natural class of functions to study are the functions that belong to a Hardy field.

Let B denote the set of germs at infinity of real valued functions defined on a half-line [z, +0o0].
That means two functions f, g will be considered the same if f(t) = g(t) for ¢ sufficiently large. Then,
(B,+,-) is a ring.

Definition 1.0.1. A sub-field H of B that is closed under differentiation is called a Hardy field. We
will say that a(n) is a Hardy sequence, if for n € N large enough we have a(n) = f(n) for some
function f € H.

We will make some small abuse of language and sometimes also refer to sequences of the form
| f(n)| as Hardy sequences, since the rounding functions will appear several times throughout the
text.

An example of a Hardy field is the field LE of logarithmico-exponential functions. These are defined
on a half line of R by a finite combination of the operations +, —, -, =, exp, log and composition of
functions acting on a real variable ¢ and real constants. This class contains the polynomials p(t), the
fractional powers t¢, as well as functions like tlogt, t(1og 9% and eV? /2.

The problem of determining whether or not multiple ergodic averages with Hardy field iterates
converge has been studied extensively. The simpler case involving one function is well understood
through the work of Boshernitzan, Kolesnik, Quas and Wierdl [7], relying in particular on Bosher-
nitzan’s characterization of when a Hardy sequence is equidistributed modulo 1 [5]. To be more
precise, we have the following theorems.

Theorem E (Boshernitzan). Let the function a € H have polynomial growth. Then, the sequence
a(n) is equidistributed mod 1 if and only if

la(t) — q(t)]

L T = 400 for any polynomial q(t) € Q[t]. (P)

This theorem characterizes when a Hardy sequence is equidistributed modulo 1. One can combine
this with the spectral theorem for unitary operators and (almost) determine whether the averages
in (1.1) converge in the case of k = 1 and when a is not ”essentially” equal to a polynomial. The
polynomial case was also well understood before the investigation of Hardy sequences began and, as
it turns out, there is also one final extra case where convergence still holds. All of the above are
the content of the following theorem, which was proven in [7] by Boshernitzan, Kolesnik, Quas and
Wierdl.

Theorem F. Let H be a Hardy field and a € H be a function of polynomial growth satisfying one of
the following three conditions:
i) we have
L lae) — eq(t)
t—+o0 logt

it) there exist ¢,d € R and q(t) € Z[t] such that

= 400 for all c € R and q(t) € Z[t],

lim |a(t) —cq(t)| =d or

t—+o00

2A function f is said to have polynomial growth, if there exists a positive integer d, such that the ratio % converges

to 0, as t = 4-o00.



i11) there exists an integer m and a positive constant C such that
t +
la(t) = | < Clogt for allt € RY.
m

Then, for any measure preserving system (X, X, u, T) and function f € L*(u), the averages

1 N
S lat)
n=1

converge in L*(p). Furthermore, in cases i) and iii), the limit of the averages is equal to the conditional
expectation E,(f|1(T)), where I(T') is the invariant factor of the system.

If the system is ergodic, then the invariant factor is trivial and the conditional expectation above
is constant and equal to the integral of f. If a function a € H has polynomial growth and does not
satisfy one of the previous three conditions, then we can show that convergence fails for at least one
system.

The previous theorem (as well as Theorem E) implies that the distance of a from real multiples of
integer polynomials is precisely what determines whether the Hardy sequence is good for convergence
in the single iterate case. Namely, the Hardy sequence must be either far away from polynomials
(i.e their distance ”"growing” faster than logt) or very close to polynomials (i.e the distance stays
bounded). The polynomials of the form - for m € Z \ {0} are the only exception to this, since
condition iii) allows the distance to grow slower than logt, but still go to infinity.

In the setting of several iterates, Frantzikinakis proved [13] that for a function a € H of polynomial
growth that satisfies one of conditions i), ii) or iii), the averages

7ZTLaan1 Tka(n fr

converge in L?(u). Using this theorem, he was able to prove a strengthening of Szemerédi’s theorem,
namely that positive density subsets of N contain arbitrarily long arithmetic progressions, where the
step of the progression has the form |a(n)|. In the same article, Frantzikinakis showed that if the
Hardy field functions a, ..., a satisfy certain growth assumptions, then the averages

N
% Sorlalpy |l g
n=1

converge to the product of the integrals in ergodic systems. In addition, he posed a conjecture that
the same result holds under the more general assumption that all linear combinations of the functions
ai,...,ag satisfy condition i) in Theorem F. This condition is natural, in the sense that under this
assumption and Boshernitzan’s equidistribution theorem [5], we can verify this statement for the
simplest systems, namely rotations on finite-dimensional tori. One of our results below verifies this
conjecture.

Our results are separated into three categories. In the first case, we study the behavior of multiple
ergodic averages for collections of Hardy field functions for which we expect convergence to the product
of the integrals. In the following section, we will have to tackle the case where we have convergence
to a limit other than the product of the integrals. In this case, we will rely on the Host-Kra structure
theorem and, therefore, we have to prove convergence for nilsystems, which are the building blocks in
the structure theory. We remark here briefly that we will avoid the study of nilsystems for the results
in Section 1.1 thanks to a recent characterization of ”joint-ergodicity” due to Frantzikinakis [17]. In
the third section of this chapter, we will investigate the previous questions again in the setting where
the sequences are evaluated along the sequence of prime numbers. We shall provide combinatorial
applications of our ergodic theoretic results as well and we will discuss previous results in the literature
in each section below.



1.1 Convergence to the product of the integrals

In order to prove the theorems in this section, we will have to work with Hardy fields H that contain
the Hardy field LE of logarithmico-exponential functions and which are closed under composition and
compositional inversion of functions, when defined. An example of a Hardy field that satisfies the
above property is the Hardy field of Pfaffian functions. All the subsequent results in this section will
be stated under the above assumption. More background on Hardy fields will be presented in the
next chapter, where we also present the definition of Pfaffian functions as well. We denote by CZ[t]
the collection of all real multiples of integer polynomials on some variable t. If aq, ..., a; are general
sequences or functions, we will denote by L(aq,...,ar) C H the set of non-trivial linear combinations
of the functions ay, ..., a; (here H is a vector space over R).

Theorem 1.1.1. [5/, Theorem 1.2] Let H be a Hardy field that contains LE and is closed under
composition and compositional inversion of functions, when defined 3. Assume ay,...,a; € H have
polynomial growth and that every function in L(ai, ...,ax) satisfies

L la) — a()

L e v = 400 for all q(t) € CZ[t] (1.3)

Then, for any ergodic measure preserving system (X, X,u,T) and functions fi,..., fr € L>®(u), the
averages

N
%ZTLm(n)J Fueo - Tla] g, (1.4)
n=1

converge in mean to the product of the integrals [ fi du--- [ fi du.

Remark. The condition on the linear combinations of the functions aq, ..., ar can be substituted by
the following more general assumption: for any real numbers t1, ..., € [0,1), not all of them zero, we
have

N
Jim o S eltalan)] -+ telaw(m)) =0

where we denote e(t) = e*™ (see our notational conventions). This is a necessary and sufficient
condition in order to have convergence to the product of the integrals in every ergodic system. However,

it is difficult to relate this condition with the form the functions must take in Theorem F.

If we do not impose an ergodicity assumption on the system (X, u,T'), then we can show that the
averages in the above theorem converge to the product

Eu(flZr) - .- Eu(frlZr),

where &£,(f|Zr) is again the projection of f to the invariant factor of the system. This follows from
an ergodic decomposition argument.

This theorem generalizes several results in the literature. In the case of real polynomials, Theorem
1.1.1 was established in [34]. As we briefly mentioned in the introduction, this result was established
in [13] in the case where all functions a1, ..., az, have different growth rates and satisfy tVit® < a;(t) <
tNi+l for non-negative integers N; and some £ > 0. More recently, 1.1.1 was established in [4] under a
linear independence condition on the functions aq, ..., ax and on all of their derivatives. It was proven,
however, that if we use a weaker averaging scheme than Cesaro averages, we can establish convergence
results for the corresponding multiple ergodic averages. Finally, Theorem 1.1.1 was established recently
for linear combinations of tempered functions from a Hardy field and real polynomials in [17] (for
functions f belonging to H, the tempered condition is equivalent to the relation t* logt < f(t) < tF*1,
for some non-negative integer k). A case that is not covered in any of the previous results is the pair
(tlogt,t?logt).

A variant of Theorem 1.1.1 for commuting transformations was proven in [14] under more restrictive
conditions, which we will review when we discuss the convergence results along primes. Our methods

3This means that if f, g € H are such that g(t) — +oco, then fog € H and g~ ' € H.

8



fail to extend Theorem 1.1.1 to this case, the main reason being that we cannot establish the required
seminorm estimates as in the single transformation case.

If our only objective is to determine characteristic factors for our averages, we can relax the condi-
tions of Theorem 1.1.1 considerably. More precisely, we have the following theorem which appeared as
a conjecture in [13, Problem 3]. The notion of the Host-Kra factor of a system is somewhat technical
and we postpone it until the following chapter.

Theorem 1.1.2. [5/, Theorem 1.3] Let H be a Hardy field that contains LE and is closed under
composition and compositional inversion of functions. Assume that the functions aq, ...,ar € H have
polynomial growth and satisfy

. a@)]

lim
t—+oo logt

=400 forall 1<i<k

e a(t) - ay(0)
o ai(t) —ay(t)] .

til«rgloo log =400 forall i#j.

Then, there exists a positive integer s such that, for any measure preserving system (X, X, u,T), we

have

N 1 N

ol gy leso g STl ®If Ll F L~

n=1 n=1

o |

where f; = EulfilZs(X)) is the projection of f; to the s-step Host-Kra factor of the system.

Most of the work will be allocated into proving this theorem. The conditions in Theorem 1.1.1
arise from the joint ergodicity criterion of Frantzikinakis, which requires certain trigonometric averages
to vanish. The conditions in the last theorem are necessary (one can consider some weakly-mixing
systems that are not strongly-mixing to see this). Since for weak-mixing systems, the Host-Kra factors
of any order are trivial, we get the following corollary, which extends the results in [1, Theorem 1.2]
where the iterates are polynomials taking integer values on the integers, as well as some of the results
in [2] involving tempered functions.

Corollary 1.1.3. [5/, Corollary 1.4]Let H be a Hardy field that contains LE and is closed under
composition and compositional inversion of functions. Assume that the functions aq, ...,ar € H have
polynomial growth and satisfy

. a@)]

lim
t—+oo logt

=400 forall 1<i<k

" ) — ()
o ag(t) —ay(t)] o,

til«lgloo logt =400 forall i#j.

Then, for any weak-mizing system (X, X, u,T), we have

1

N
lim N;TW”fl e TEOU g = [ [ fd,

where convergence takes place in L?(p).

Finally, we provide some combinatorial applications of our convergence results which follow by
using Furstenberg’s correspondence principle. As a corollary of Theorem 1.1.1, we get the following
multiple recurrence result.

Corollary 1.1.4. [5/, Corollary 1.5] Suppose H and ai,...,ay satisfy the hypotheses of Theorem
1.1.1. Then, for any measure preserving system (X, X, u,T) and any set A C X with u(A) > 0, we

have
N

1
o — —lai(n)] . —lax(m)] A} > k+1
]\}I—Igo T;:l wANT An---NT A) > p(A)F



A similar result was established in [4] with limsup in place of the limit, but under more general
conditions on the functions ay, ..., ax.

Utilizing Furstenberg’s correspondence principle, we can deduce a combinatorial result about large
sets of integers.

Corollary 1.1.5. [54, Corollary 1.6] Let E C N have positive upper density and suppose H and
ai,...,ay satisfy the hypotheses of Theorem 1.1.1. Then,

N
lim inf % Y AEN(E = [a(n)]) NN (E = ax(n)])) = (d(E)* .
n=1

As we mentioned above, a similar result was obtained in [4], which was sufficient to deduce that

there exist infinitely many n € N for which d(EN(E — |ai(n)|)N---N(E — |ak(n)])) > 0.

1.2 Pointwise convergence in nilmanifolds and the case of linearly
dependent iterates

As we discussed in the introduction, a powerful theorem in the study of the averages in (1.1) is the
structure theorem of Host-Kra [29], which can reduce the above problem to studying rotations on
particular spaces called nilmanifolds. A nilmanifold is a homogeneous space X = G/T", where G is
a nilpotent Lie group and I' is a discrete cocompact subgroup. In this sense, nilmanifolds are the
nilpotent analog of finite dimensional tori, which constitute the abelian case of the nilpotent theory.
In this section, our results will focus on determining the distribution of orbits in a nilmanifold along
Hardy sequences.

The reader may observe that there is no mention of nilmanifolds in the results of the previous
section. The reason is that we can bypass the use of the Host-Kra structure theorem by using the
joint ergodicity criterion of Frantzikinakis. In simplistic terms, this joint ergodicity criterion implies
that in the case of convergence to the product of the integrals, we only need to establish convergence
for “abelian” nilmanifolds, which are precisely the finite-dimensional tori. In this case, our linear
independence assumption (1.3) and Theorem E allow for a quick verification of this condition. However,
the joint ergodicity criterion cannot be used when there are linear dependencies between the Hardy
field functions and, therefore, we need to investigate the non-abelian nilmanifolds in this case.

In order to prove the corresponding convergence results for the associated ergodic averages, the
investigation of equidistribution properties for Hardy sequences has been carried out several times
throughout the literature. Theorem E solves the problem in the abelian case.

Suppose now that we are given a nilmanifold X = G/T', where G is a nilpotent Lie group. We are
interested in the behavior of the sequence

v(n) = (k" MIp, . plestlr), (1.5)

where by, ..., by are elements of the group G and ayq, ..., ax are Hardy field functions. Notice that this
is a sequence on the product nilmanifold X*.

The most fundamental equidistribution result in the nilpotent case is due to Leibman [39, 40],
who showed that if the functions aq,...a; are integer polynomials, then we have equidistribution on
a 7subspace” of X (called a subnilmanifold), as long as we restrict the values of n to appropriate
arithmetic progressions. This was an important ingredient in his proof that polynomial ergodic aver-
ages converge in the case of a single transformation [38]. More specifically, we present the following
theorem [39, Theorem B].

Theorem G (Leibman). Let X = G/T" be a nilmanifold and x € X. Consider the sequence
g(n) = b2y (1.6)

in G, where by,..., by € G and q, ..., qr are polynomials with integer coefficients. Then, there exists
Q €N, a closed, connected and rational subgroup H of G and points xo,...,xg-1 € X, such that for
every r € {0,...,Q — 1} the sequence g(Qn + 1)z is equidistributed on the subnilmanifold Hzx,.

10



Using this theorem, Leibman showed that if F': X — C is a continuous function, then the averages

1 N
2 Pl

converge pointwise for all z € X. In addition, he proved that if G is connected, the equidistribution
of the sequence g(n)I" is controlled by the projection of g(n)I' on the ”abelianization” G/[G,G|I" of
G/T’, which is a finite-dimensional torus called the horizontal torus of X.

The next breakthrough in this problem® was made by Green and Tao in [27], who quantified pre-
cisely the behavior of polynomial orbits on nilmanifolds. This new theorem had notable applications
in number theory, most notably in establishing the Gowers uniformity of the W-tricked von Man-
goldt function. As is evident in Leibman’s work, this theorem provides a tight connection between
the equidistribution properties of a polynomial sequence on a nilmanifold with its projection to the
horizontal torus.

We now return to the setting of more general Hardy sequences. In the case k = 1, Frantzikinakis
established [12] that if the function a(t) satisfies (P), then the sequence bz is equidistributed on
the orbit Y = {b"z: n € N} of b for any b € G and x € X. This implies that the distance of a from
rational polynomials is linked to its equidistribution properties, even in the nilpotent case. In the
case of several functions of polynomial growth, he also proved that if ay, ..., a; have pairwise distinct
growth rates and satisfy

ai(t)

tki+1
lim ’ = lim ’
t—+ool thilogt!  t—tool a;(t)

] = oo (1.7)

for some k; € N, then, for any nilmanifold X = G/I" and by, ..., by € G, the sequence

[a1(n)] lak(n)]
(bl ! Tlyeony bk k ij> neN (1.8)
is equidistributed on (byx1),c X - -+ X (Dpwg), o for all @1,..., 25 € X. He conjectured that if the
linear combinations of the functions aq, ..., ai satisfy the more relaxed assumptions of Theorem 1.1.1,

then the sequence in (1.8) is equidistributed on (b7@1)nen X -+ X (bfxk)nen. We remark here that
all of these theorems do not follow from results for general systems (such as Theorem 1.1.1), because
those yield information for the limit in the L?-sense.

Recently, Richter [49] established another equidistribution theorem for Hardy sequences. Assume,
for the sake of exposition, that the underlying Lie group G is connected and simply connected. In this
case, there is a natural way to define the elements b° for b € G and s € R. We also denote

V —span{ai,...,ar} = {clagm)(t) +- cka,(cn’“)(t): ¢ € R, n; e NU{0}}.

Then, Richter proved that if ay,...,ax are chosen so that for any function a € V — span{ay,...,a},
we have that
la(t) — q(t)]

la(t) — q(t)] is bounded or tl}inoo gt — too,

for any polynomial ¢(¢) € R[¢] then, for any commuting elements by, ..., bx € G, there exists a closed,
connected, and rational subgroup H of G and points zo, ...zg—1 in X, such that the sequence

p(@ntn) (@)

is equidistributed on the subnilmanifold Hz, of X for all r € {0,...,Q — 1}.

This theorem is a generalization of Leibman’s theorem to the setting of Hardy seqeunces, imply-
ing that the orbits are equidistributed on a subspace of X, after we pass to appropriate arithmetic
progressions. Using a notion of equidistribution with respect to (weaker) averaging schemes in place

4While their theorem was established under the stronger hypothesis that the underlying nilpotent Lie group G is
connected and simply connected, one can typically reduce to this case in many applications. We will use this reduction
in our arguments as well.
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of Ceséro averages’, Richter weakened the assumptions on ai,...,a; significantly. Lastly, we remark
that while the previous theorem involves the sequences a;(n) instead of [a;(n)| in the exponents, the
statement is in a sense more general since it can be used to prove equidistribution theorems for the
sequences |a;(n)].

In order to state our results, we will assume that we have a fixed Hardy field H that includes the
polynomial functions. Removing this last restriction may be possible, though this would certainly
complicate our arguments. We will make an exception only for Theorem 1.2.3, since we will have to
employ Theorem 1.1.2 that has stronger assumptions on H. We will use the nilmanifolds (bRx) and
(bNx) below, which are defined by

(bRz) = {b5x: s € R}

and similarly for (bNz). We will be able to define (bRz) only under the assumption that the nilpotent
Lie group G is simply connected. While their definition as subsets of X is not ambiguous, it is not
clear that these sets can be equipped with the structure of a nilmanifold (i.e. a homogeneous space on
some nilpotent Lie group). We will prove this assertion in the next chapter and we will keep referring
to them as subnilmanifolds in our theorems for now.

Theorem 1.2.1. [55, Theorem 1.1] Let H be a Hardy field containing the polynomial functions. Let
ai,...,ay be functions in H that have polynomial growth. Assume that there exists® an e > 0, such that
every function a € L(ay, ..., ax) satisfies

L la) = a)

t—+o00 te

= 400 for any polynomial q(t) € Q[t]. (1.9)

Then, we have the following:
(i) For any collection of nilmanifolds X; = G;/T;, elements b; € G; and x; € X;, the sequence

(1) g e )

is equidistributed on the nilmanifold (b\'x1) x - -+ x (bizy).
(i) For any collection of nilmanifolds X; = G;/T'; such that the groups G; are connected, simply
connected, elements b; € G; and x; € X;, the sequence

(65 My, b M)

is equidistributed on the nilmanifold (B%x1) x - -+ x (bRzy).

Remark. We will establish the more general statement that if b1,...,br commute, the sequence
bcfl(n) bt ™ s equidistributed on the nilmanifold bf - - - bRI'. The fact that this is indeed a more
general statement can be seen by passing to the product nilmanifold X7 x - -+ x X. A similar assertion
holds for Theorem 1.2.2 below and we provide more details on this deduction after Proposition 4.2.1.

In contrast to Theorem E, we have the term ¢° in the denominator, which is just out of reach of
the conjectured optimal term logt. As an example, using Theorem 1.2.1, we can prove that for any
elements b1,by € G, the sequence (b} log”F,b§3/2F) is equidistributed on the nilmanifold (b%T, b5T),
assuming that G satisfies the appropriate connectedness assumptions, since we want these elements
to be well defined.

If we have functions that are not linearly independent, then the above theorem fails, as can be
seen by noting that the sequence (n3/ 2 pl/2 p3/2 4ot/ 2) is not equidistributed on T3. However, we
can relax the linear independence condition in Theorem 1.2.1 and still obtain a convergence result:

Theorem 1.2.2. [55, Theorem 1.2] Let H be a Hardy field containing the polynomial functions. Let
ai, ..., ar be functions in H that have polynomial growth. Assume that there exists € > 0, such that
every function a € L(ay, ..., ay) satisfies either
t) —q(t
L latt) — a(0)

t—+o0 te

= 400 for any polynomial q(t) € Q[t], (1.10)

5 A very simple example in the abelian setting is the sequence logn, which is not equidistributed in the standard sense,
but is equidistributed with respect to logarithmic averages.
5The value of € depends only on the initial collection {a1,...,ar}.
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or

the limit  lim a(t) is a real number. (1.11)
t—+o00

Then, we have the following:
(i) For any collection of nilmanifolds X; = G;/T';, elements b; € G;, x; € X; and continuous functions
1y .oy fro with complex values, the averages

N
1 a1 (n .
NZfl(b% 1( )Jxl) .. fk(bk k( )Ja:k)
i=1

converge.
(ii) For any collection of nilmanifolds X; = G;/T; such that the groups G; are connected, simply
connected, elements b; € G;, x; € X; and continuous functions fi,..., fr with complex values, the
averages

N

5 A ) - b )

i=1

converge.

The main difference between Theorems 1.2.1 and 1.2.2 is that we allow for linear dependencies
between the functions aj(t),...,ax(t) in the second case (for example, we may have the functions
(tlogt,t3/2,t3/2 + tlogt)). We will use this theorem and Theorem 1.1.2 to deduce the following.

Theorem 1.2.3. [55, Theorem 1.3] Let H be a Hardy field that contains the field LE of logarithmico-
exponential functions and is closed under composition and compositional inversion of functions (when
defined). Furthermore, assume that the functions ay,...,ar € H are as in Theorem 1.2.2. Then, for
any measure preserving system (X, X, u,T) and any functions fi,..., fr € L (u), the averages

N

1

~ ZTLM(H)J fi .. TlasM] g (1.12)
n=1

converge in L?(u).

Determining the exact limit of the averages is very difficult in this case and relies on understanding
the exact polynomial relations between ay, ..., ax, which can be very complicated in the general setting.

Theorems 1.2.1 and 1.2.2 extend the equidistribution result of Frantzikinakis [12], where the func-
tions ay, ..., a; were assumed to have different growth rates and satisfy the growth condition in (1.7).
On the other hand, our results are complementary to the results in [49], in the sense that each covers
collections of functions that are not covered by the other one. The main new cases that are cov-
ered in our results (in the case k > 2) involve functions satisfying a growth condition of the form
t* < a(t) < t'logt, where ¢ is a positive integer. For instance, we can cover all functions of the form
Zle cit%(logt)%, where a; > 0 and b;,c; € R (assuming, of course, that the linear combinations of
the involved functions satisfy either (1.10) or (1.11)).

As we stated, there are cases covered in the results of [49] that do not follow from the arguments
presented here. These examples concern functions that grow slower than fractional powers t°, such as
the function (logt)# for A > 0 or the function exp(y/Togf). An example that is not covered by Theorem
1.2.2 is the pair of functions (log?t, t%/?), which can be covered by the results in [49]. We remark that
the conjectured optimal restrictions on the functions ai,...,ar in Theorem 1.2.2 are expected to be
that the functions are good for convergence when the system (X, u,7") is any rotation on some torus
T?. A conjecture of Frantzikinakis appears in [15, Problem 22], although the statement needs to be
changed to the following;:

Conjecture 1. Let aq,...,ar be functions in LE (or any other Hardy field) with polynomial growth
such that for all real numbers ty,...,tx € [0,1), the averages

L
~ 2 eltilai(m)] + -+ tiar(n)]) (1.13)

n=1
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converge. Then, for any measure preserving system (X, u,T) and functions fi,..., fr € L*(u), the
averages

N
%ZTLal(n)Jfl Tl g, (1.14)
n=1

converge in L?(p) and, if (X,pu,T) is a nilsystem and the functions fi,..., fr are continuous, then
those averages converge pointwise everywhere.

1.3 Ergodic averages along prime numbers

A general problem in ergodic theory is to prove whether the convergence of the averages (1.1) is still
true, if we restrict the range of summation to the primes. More specifically, we want to determine

whether the averages
1

w(N)

S P TrPg (1.15)

peP: p<N

converge in L?(u) and what is the corresponding limit of these averages. Here, m(IN) denotes the
number of primes less than or equal to N and P is the set of primes. In this section, we will present
results concerning convergence of averages like (1.15) in the case of Hardy sequences and their applica-
tions to combinatorics. It will be clear in the results involving prime numbers, that certain arithmetic
obstructions (related to polynomial functions) force us to consider the set of shifted primes P — 1 (or
P + 1) in place of P to prove multiple recurrence results. A simple example is the set 4Z + 2 which
has positive density, but does not contain a pair of the form (m,m + p) with m € N and p € P.

Historically, the first result concerns the case k = 1 and is due to Sarkozy [50]. Using methods
from analytic number theory, he showed that sets of positive density contain patterns of the form
(m,m + p — 1), where p is a prime. Wierdl [57] established the pointwise convergence result of the
averages (1.15) in the case k = 1 and a1(n) = n and Nair generalized this theorem to polynomials
evaluated at primes [46].

In the case of several iterates, Frantzikinakis, Host, and Kra [19] proved that sets of positive den-
sity contain 3-term arithmetic progressions whose common difference is a shifted prime. They also
showed that the averages in (1.15) converge in the case k = 2, T1 = T and a;(n) = in, i € {1,2}.
Wooley and Ziegler [59] generalized this to the case of systems with a single transformation and where
ai(n), 1 € {1,...,k} are polynomials with integer coefficients. Following that, Frantzikinakis, Host,
and Kra [20] proved that the Bergelson-Leibman theorem (Theorem D) holds along the shifted primes.
In addition, they showed that the averages in (1.15) converge in norm when a;(n) are integer polyno-
mials, conditional to a conjecture that polynomial ergodic averages converge for several commuting
transformations. This last conjecture was subsequently verified by Walsh [56].

Sun obtained convergence and recurrence results in [52] in the case of a single transformation
and sequences of the form i|an|, where i € {1,...,k} with a irrational. Koutsogiannis extended the
convergence result of [20] to real polynomials in [33], obtaining recurrence for polynomials with real
coeflicients rounded to the closest integer. Combinatorial applications along the shifted primes were
derived as well through Furstenberg’s correspondence principle.

A common theme in all of these results was the reliance on tools built by Green and Tao in their
aim to show that primes contain arbitrarily long arithmetic progressions [24]. In particular, a deep
theorem known as the Gowers uniformity of the von Mangoldt function (proven by Green and Tao in
[25] conditional to conjectures that were subsequently verified in [28] and [26]) is very important in
almost all of these results.

Frantzikinakis conjectured that ergodic averages along primes should converge for more general

sequences involving fractional powers n¢, such as Ln?’/ 2J , Ln\/EJ as well as for more general Hardy field

sequences. To be more precise, he conjectured that the averages

1
D A R At (1.16)
7T<N) peP: p<N
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converge in L?(yu) for all positive integers k and all positive non-integers ¢ and that the limit is the
same as the limit of the averages (1.2). When 0 < ¢ < 1, the range of |pf | contains all sufficiently
large integers, so that the multiple recurrence result follows easily. Additionally, the convergence of
the previous averages is known in the case k = 1 since one can use the spectral theorem and the fact
that the sequence {p%a} is equidistributed mod 1 for all non-zero a € R. This last assertion follows
from [51] or [58] when ¢ < 1 and [41] in the case ¢ > 1.

There were significant obstructions to the solution of this problem. One approach would be to
modify the comparison method from [20] (concerning polynomials), but the Gowers uniformity of the
von Mangoldt function is insufficient to establish this claim. The other approach would be to use the
method of characteristic factors, which eventually reduces the task of proving convergence to the case
of nilmanifolds. However, this required some equidistribution results on nilmanifolds for the sequence
|p% |, which were very difficult to establish.

A similar conjecture by Frantzikinakis was made for iterates involving distinct fractional powers,

such as )
T e ]
(V) > f1 Jr
peP: p<N
for distinct positive non-integer ci, ..., ci. Recently, Frantzikinakis [16] verified that these averages
converge in L?(p) to the product of the integrals of the functions fi,..., fx in any ergodic system in

the more general case where the sequences in the iterates are linearly independent fractional polyno-
mials. These methods relied heavily on the use of the joint ergodicity results in [17] and, thus, the
linear independence assumption on the fractional polynomials is necessary. In the same paper, it was
conjectured [16, Problem] that the case of fractional polynomials can be generalized to the larger class
of Hardy field functions.

We present here our main theorems again under the assumption our Hardy field H contains the
polynomial functions. A few results impose additional assumptions on ‘H and we state those when
necessary. These extra assumptions are a byproduct of convergence results along N.

First of all, we will need to introduce the von Mangoldt function, which will be used in place of
the characteristic function of the primes. This is defined by

A(n) = (1.17)

logp , if n = p* for some prime p and k € N
0 , otherwise '

The function A has average 1 by the prime number theorem. Usually, the prime powers with exponents
at least 2 contribute a term of significantly lower order in asymptotics, so A is morally supported on
primes. However, due to the irregularity of the distribution of A in residue classes to small moduli,
one typically considers a modified version of A, called the W-tricked version. To define this, let w be
a positive integer and let W = Hpgw,peIP’p' Then, for any integer 1 < b < W with (b,W) = 1, we
define the W-tricked von Mangoldt function A,,; by

App(n) = MA(I/Vner), (1.18)
’ w
where ¢ denotes the Euler totient function. This modification can be traced back to [24], where Green
and Tao proved that primes contain arbitrarily long arithmetic progressions.

The first theorem will allow us to transfer mean convergence results for Cesaro averages to the
prime setting, by establishing a comparison between standard Cesaro averages and averages weighted
by the W-tricked von Mangoldt function. The proof requires some equidistribution assumption on the
functions a;;, which is characterized through Theorem E.

Theorem 1.3.1. [36, Theorem 1.1] Let H be a Hardy field that contains the polynomial functions.
Let £,k be positive integers and, for all 1 < i <k, 1 < j </, let a;; € H be functions of polynomial
growth such that

lim = 400 for every polynomial q(t) € Qlt], (1.19)
t——+o00

aij(t) —q(t) ‘
logt
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or

t_lgrn laij(t) — q(t)| =0 for some polynomial q(t) € Q[t] + R. (1.20)

Then, for any measure-preserving system (X, X, u,T1,...,Tk) and functions f1,..., fo € L=(u), we
have

=0.

lim limsup max H
w—=+oo N_yioo 1<6<W TN
(b, W)=1 n=1

¢k
Aw,b(n) _ 1) H (HTiLaij(Wner)J)fj o
j=1 i=1

Theorem 1.3.1 is used to derive all of our applications on the primes, at least when combined with
known results for averages along N. We remark that unlike several of the theorems above or in the
literature, there are no linear independence assumptions between the functions a;;, although these
assumptions will be necessary in subsequent theorems. The following result, which is effectively a
corollary of Theorem 1.3.1, exemplifies how the comparison between averaging schemes works.

Theorem 1.3.2. [36, Theorem 1.2] Let H be a Hardy field that contains the polynomial functions. Let
l,k be positive integers, (X, X, u,T1,...,Tx) be a measure-preserving system and fi,..., fr € L= (n).
Assume that for all 1 < i <k, 1 < j < ¥, a;; € H are functions of polynomial growth such that the
following conditions are satisfied:

(a) Each one of the functions a;;(t) satisfies either (1.19) or (1.20).

(b) For all positive integers W, b, the averages

k
1 a n a;e(Wn
~ Z HTL i1 (W +b)J)f . (HTZL ie(W +b)J)fZ (1‘21)

=1

converge in L?(u).
Then, the averages

k
W&V) S (T[T - ([T g, (1.22)
] i=1

converge in L?(p).
Furthermore, if the averages in (1.21) converge to the function F' € L*(u) for all positive integers
W, b, then the limit in L?(u) of the averages (1.22) is equal to F.

In our setting, the fact that we require convergence for sequences along arithmetic progressions is
typically harmless. Indeed, convergence results along N typically follow from a growth condition on the
implicit functions a;; (such as (1.19)) and it is straightforward to check that the function a;;(Wt + b)
satisfies a similar growth condition to a;;(t).

The final part of Theorem 1.3.2 allows us to compute the limit of averages along primes in cases
where we have an expression for the limit of the standard Cesaro averages. This is possible, in rough
terms, whenever the linear combinations of the functions a;; do not contain polynomials or functions
that are approximately equal to a polynomial. The reason for that is that there is no explicit description
of the limit of polynomial ergodic averages in a general measure preserving system unless we have some
total ergodicity assumptions on the system.

1.3.1 Convergence of ergodic averages along primes

The first application is that the averages in (1.2) converge when a(n) is a Hardy sequence and when
we average along primes. The following theorem is a corollary of our comparison and the convergence
results of Frantzikinakis [13]. This provides an affirmative answer to [13, Problem 7], which was stated
only in the special case of fractional powers n¢, c € RT \ N.

Theorem 1.3.3. [36, Theorem 1.3] Let a € H be a function of polynomial growth that satisfies either

a(t) — cq(t)

lim
logt

t—+00

‘ = 400 for every ¢ € R and every q € Z][t], (1.23)
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or

lim |a(t) — cq(t)| = d for some ¢,d € R and some q € Z[t]. (1.24)
t——+00
Then, for any positive integer k, any measure-preserving system (X, X, u, T) and functions f1,..., fr €
L*>°(u), we have that the averages
1
Tla®]) ¢ . pkla®)] 1.25
(V) > fi i (1.25)
peP: p<N

converge in L?(u).
In particular, if a satisfies (1.23), the limit of the averages in (1.25) is equal to the limit in L?(yu)
of the averages

1 N
NZT"fl-...-Tk”fk.
n=1

Remark. The reader may observe that condition iii) in Theorem F is the only one missing above.
However, the proof of Theorem 1.3.1 becomes much more complicated if we allow this case as well.

The following theorem concerns the “jointly ergodic” case for one transformation, which refers to
the setting when we have convergence to the product of the integrals in ergodic systems. Observe
that the assumptions on the Hardy field functions are exactly the same as in Theorem 1.1.1 and
the conclusion is the same apart from the fact that we average along the prime numbers. This
theorem generalizes the theorem of Frantzikinakis [16, Theorem 1.1] and gives a positive answer to
[16, Problem)].

Theorem 1.3.4. [36, Theorem 1.4] Let H be a Hardy field that contains LE and is closed under
composition and compositional inversion of functions, when defined. For a positive integer k., let
ai,...,ar be functions of polynomial growth and assume that every non-trivial linear combination a
of them satisfies

a(t)

tlg-noo W) = 400 for every q(t) € Z]t]. (1.26)

Then, for any measure-preserving system (X, X, u,T) and functions fi,..., fr € L>(u), we have
that

T S rle@lp . rle®lg 2 f (1.27)

N—+o00 7('<N) peP: p<N

where fi == E(f;|Z(T)) = imy_ o0 + Zf:[:l T"f; and the convergence is in L*(p).

We remark that we can also transfer the convergence result of Theorem 1.2.3 to primes.

In the case of several commuting transformations, results on the limiting behavior for averages for
Hardy sequences along N are few. The only known convergence result is due to Frantzikinakis [14,
Theorem 2.3|, which we now transfer to the prime setting. By a shift-invariant Hardy field, we are
referring to a Hardy field such that a(t + h) € H for any h € Z and function a(t) € H.

Theorem 1.3.5. [36, Theorem 1.5] Let k € N, H be a shift-invariant Hardy field that contains the
polynomial functions, ai,...,ar be functions in H with pairwise distinct growth rates and such that
there exist integers d; > 0 satisfying

tdl+1
t—>+oo‘td logt‘ =, ’ =T
Then, for any system (X, X, ,u,Tl, ..., T) and functions fl, ooy fr € L°(n), we have
Nl_i)r_li_loo = Z T[m p)Jf _TkLak(P)Jfk _ fl C fk’

pEP p<N
where f; := E(f;|Z(T})) = imy_ o0 % anl T f; and the convergence is in L*(u).

While there are more restrictions compared to Theorem 1.3.4, we note that Theorem 1.3.5 covers
at least the case of distinct fractional powers, i.e. when a;(t) = t“ for distinct, positive non-integers
Ci-
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1.3.2 Applications to multiple recurrence and combinatorics

In this subsection, we will translate the previous convergence results to multiple recurrence results and
then combine them with Furstenberg’s correspondence principle (Theorem B) to derive combinatorial
applications. Due to arithmetic obstructions arising from polynomials, we have to work with the
set of shifted primes in some cases. In addition, it was observed in [33] that in the case of real
polynomials, one needs to work with the rounding to the closest integer function instead of the floor
function. Indeed, even in the case of sequences of the form [ap(n)+ b], explicit conditions that
describe multiple recurrence are very complicated (cf. [13, Footnote 4]). We will denote by [[z]] the
closest integer to x.
Our first application relates to the averages appearing in Theorem 1.3.3.

Theorem 1.3.6. [36, Theorem 1.6] Let a € H be a function of polynomial growth. Then, for any
measure-preserving system (X, X, u,T), k € N, and set A with positive measure we have the following:
(a) If a satisfies (1.23), we have

lim !
N—+oo m(N)

Z (AN T-l@lAan...N T—k’La(p)JA) > 0.
peP: p<N

(b) If a satisfies (1.24) with cp(0) +d = 0,7 then for any set A with positive measure, the set
{n eN: p(An 7l An...N T—k[[a(n)ﬂA) > 0}

has non-empty intersection with the sets P —1 or P+ 1.
This theorem and Furstenberg’s correspondence principle yield the following corollary.

Corollary 1.3.7. [36, Corollary 1.7] For any set E C N of positive upper density, k € N, and function
a € ‘H of polynomial growth, the following holds:
(a) If a satisfies (1.23), we have

N inf (V)

ST dEN(E - ap)]) NN (E - klalp)])) > 0.

peP: p<N
(b) If a satisfies (1.24) with c¢p(0) +d = 0, then the set

{n eN: J(E N(E—=[lan)]])n---N(E— k[[a(n)]])) > 0}
has non-empty intersection with the sets P —1 or P+ 1.

Specializing to the case where a(n) = n® where c is a positive non-integer, Theorem 1.3.3 and part
(a) of Theorem 1.3.6 provide an affirmative answer to [15, Problem 27].

We remark here that in part (a) of both Theorem 1.3.6 and Corollary 1.3.7 one can evaluate the
function a along the affine shifts ap + b for a,b € Q with a # 0. This follows from the fact that the
function a;(at + b) satisfies (1.23) as well, if a; does. However, the shifts p — 1 and p + 1 are the only
correct ones in part (b) of Theorem 1.3.6 as there are simple counterexamples otherwise.

Now, we state the recurrence result obtained by Theorem 1.3.4.

Theorem 1.3.8. [36, Theorem 1.8] Let k € N, H be a Hardy field that contains LE and is closed
under composition and compositional inversion of functions, when defined, and suppose a1,...,ar € H
are functions of polynomial growth whose non-trivial linear combinations satisfy (1.3). Then, for any
measure-preserving system (X, X, u,T), and set A with positive measure, we have that

1

. “la _la k41
NETOOW Z p(ANT lan®An...AT Lk(p)JA)Z(M(A)) _

peP: p<N

"We have to use an assumption that the polynomial has no constant term, in order to obtain a recurrence result.
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Corollary 1.3.9. [36, Corollary 1.9] For any k € N, set E C N of positive upper density, Hardy field

H and functions a1,...,ar € H as in Theorem 1.5.8, we have
.. - - k+1
lminf 7 Y AENE-ap)])n--N(E-lap)]) > (dE)".
peP: p<N
In particular, we conclude that for any set £ C N with positive upper density and aq,...,a; as

above, the set
{n € N: there exists m € N such that m,m + |a1(n)|,...,m+ |ax(n)| € E}

has non-empty intersection with the set P.
The following is a multidimensional analog of Theorem 1.3.8 and relies on the convergence result
of Theorem 1.3.5.

Theorem 1.3.10. [36, Theorem 1.10] Let k € N, ‘H be a shift-invariant Hardy field and suppose that
ai,...,ar € H are functions of polynomial growth that satisfy the hypotheses of Theorem 1.5.5. Then,
for any system (X, X, u, Ty, ..., Tx) and set A with positive measure, we have that

. 1 _la _la k+1
NETOOW Z ,u(AﬂTlLl(p)JAﬂ-~-ﬂTkLk(p)JA)2(,U,(A)) _
peP: p<N

Lastly, we present the corresponding combinatorial application of our last multiple recurrence
result. Given a set E C Z%, its upper density is given by
- IEN{-N,...,N}¢

d(F) =1l
(E) = mswp =N+ 1)

Corollary 1.3.11. /36, Corollary 1.11] For any k € N, set E C 74 of positive upper density, Hardy
field H and functions ay,...,ar € H as in Theorem 1.3.10 and vectors v1,...,vi € Z%, we have

S dAENE = @) vi) 00 (B = lae)v) = (dE)
peP: p<N

lim inf
NS oo 7(N)

Equidistribution in nilmanifolds

In this part, we present some results relating to pointwise convergence in nilmanifolds along Hardy
sequences evaluated at primes. We have the following theorem that translates results from the setting
of averages along N to primes, similar to Theorem 1.3.2.

Theorem 1.3.12. [36, Theorem 1.12] Let k be a positive integer. Assume that ay,...,ar € H are
functions of polynomial growth, such that the following conditions are satisfied:
(a) For every 1 <i <k, the function a;(t) satisfies either (1.19) or (1.20).

(b) For all positive integers W, b, any nilmanifold Y = H/A, pairwise commuting elements uy, . .., uj
and points y1,...,yx €Y, the sequence
<u|1_a1(Wn+b)Jy17 o 7ul|;ak(Wn+b)Jyk)
is equidistributed on the nilmanifold (ufy:) x -+ x (ulyy).
Then, for any nilmanifold X = G/T, pairwise commuting elements gi,...,gr € G and points
x1,...,2 € X, the sequence
La1(pn)) Lax (pn)] )
Tlyeney x ,
(gl 1 gk k neN

where p,, denotes the n-th prime, is equidistributed on the nilmanifold (g%x1) x - -+ x (g%mk).
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Instead of the “pointwise convergence” assumption (b), one can replace it with a weaker conver-
gence (i.e. in the L?-sense) hypothesis. However, we will not benefit from this in applications, so we
opt to not state our results in that setup.

In the case of a polynomial function, a convergence result along primes follows by combining [26,
Theorem 7.1] (which is the case of linear polynomials) and the fact that any polynomial orbit on a
nilmanifold can be lifted to a linear orbit of a unipotent affine transformation on a larger nilmanifold
(an argument due to Leibman [39]). Nonetheless, in this case, we do not have a nice description for
the orbit of this polynomial sequence.

On the other hand, this theorem is the first result on equidistribution in higher-step nilmanifolds
(along primes) for sequences such as |p |, with ¢ > 1 a non-integer (this was previously unknown even
in the simplest case of one fractional power).

All of the pointwise convergence theorems that we mentioned above can be transferred to the prime
setting. As an application, we have the following corollary of Theorem 1.3.12 and Theorem 1.2.1. The
term invariant under affine shifts refers to a Hardy field H for which a(Wt + ) € H whenever a € H,
for all W,b € N.

Corollary 1.3.13. /36, Corollary 1.13] Let k be a positive integer, H be a Hardy field invariant under
affine shifts, and suppose that ay,...,a € H are functions of polynomial growth, for which there exists
an € > 0, so that every non-trivial linear combination a of them satisfies

o) —alt)| _
=

tl}gloo +oo for every q(t) € Z[t]. (1.28)

Then, for any collection of nilmanifolds X; = G;/T; i = 1,...,k, elements g; € G; and points x; € X;,

the sequence

(gltal(pn)J!Tl’ N ’gkak(pn)JJUk)nEN’

where py, denotes the n-th prime, is equidistributed on the nilmanifold (g7x1) x -+ x (glwzy).

The condition on H is necessary, because we want to apply Theorem 1.2.1 for sequences of the
form a(Wn + b) for all choices of W, b € N. The assumption on H can, in principle, be dropped since
the arguments in our proofs rely on some growth assumptions on the functions a; which also hold for
their shifted versions, but this would complicate the statement and proof of Theorem 1.2.1.

Our corollary implies that the sequence

c1 Ck
(g}pn J:Ela s ’g£p” Jxk)

is equidistributed on the subnilmanifold (gZz1) X - - x (gZz)) of X1 x - - - x X}, for any distinct positive
non-integers ci, ..., ¢; and for all points x; € X;. This is stronger than the result of Frantzikinakis [16]
that establishes convergence in the L2-sense (for linearly independent fractional polynomials). This
result is novel even in the simplest case k£ = 1. Furthermore, we remark that in the case £ = 1 we can
actually replace (1.28) with the optimal condition that a(t) — ¢(t) grows faster than logt, for all ¢(¢)
that are real multiples of integer polynomials, using the results from [12].

Ideas and organization of the proofs

In general, we have a very strong and developed theory in determining convergence of averages like
(1.1), which is the Host-Kra structure theory. This works really well in the case of polynomial se-
quences, because we can use elementary tools such as the Cauchy-Schwarz and van der Corput inequal-
ities to reduce the complexity of the polynomials appearing in the iterates. In very broad terms, this
allows to replace the sequence ¢(n) (where ¢ is a polynomial) with sequences of the form g(n+h)—q(n)
where h is a parameter over which we average. The significant gain of this procedure is that this new
polynomial has smaller degree than the previous one. Thus, after finitely many steps, this process
will terminate and we will be able to bound ergodic averages involving polynomials by an appropri-
ate Host-Kra seminorm (defined in the next chapter), which, on its own, is sufficient to reduce the
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problem to the case of nilmanifolds. In short, there is some sort of induction happening in the case of
polynomials that reduces their degrees after finitely many iterations of this procedure.

In the case of Hardy sequences, our main task is to transfer our initial problem to a setting involving
only polynomial iterates. This can be achieved through Taylor expansion in an appropriate range.
More specifically, the best way to achieve this is to show that if we average over a short interval of the
form [N, N + L(N)] where L(t) is a positive function that grows to infinity slower than linearly, then
we can approximate our Hardy sequence a(n) by its Taylor polynomial in the range [N, N + L(N)].
Of course, this polynomial varies with IV, but the methods of the polynomial case can still be applied
here. If we can bound averages over a narrow range like [N, N + L(NN)], then a very simple argument
shows that this bound holds for averages in the long ranges such as [1, N]. In some cases, we may need
to consider more complicated averaging schemes (i.e considering a double average over the parameter
N as well) but the main principle underpinning these arguments is still the same.

There are several differences regarding the proofs of the results in the three previous sections.
The results in Section 1.1 rely on bounding ergodic averages involving Hardy sequences by Host-Kra
seminorms, which is equivalent to proving Theorem 1.1.2. This is done by repeatedly using the van
der Corput inequality and an induction scheme originally due to Bergelson [1] (called PET induction
in the literature). The remaining theorems of this section follow from these bounds and the joint
ergodicity criterion of Frantzikinakis. The joint ergodicity criterion has two conditions that need to
be verified. The first necessary condition is that our averages are bounded by a Host-Kra seminorm
(which will occupy the bulk of the proof) and an equidistribution (mod 1) assumption on the sequences
involved, which will follow easily from Theorem E.

The results involving convergence on nilmanifolds will be attacked by a reduction to a problem
involving polynomial sequences through Taylor expansion. Since these polynomials vary with the
underlying short interval, we will need a quantitative equidistribution criterion for polynomial orbits
on a nilmanifold, which is already known due to Green and Tao [27]. However, this theorem requires
several technical definitions relating to nilmanifolds, so we have to postpone its statement till the next
chapter.

In order to prove the results along primes, we will use similar approximations as in the case of
averages along N. First of all, we will use some very recent number theoretic input from [44] that
establishes the Gowers uniformity of the von Mangoldt function in short intervals. However, there are
still several complications arising when studuying averages weighted by a von Mangoldt weight, since
the von Mangoldt function is unbounded. This creates some problems when trying to completely elim-
inate the error term of the Taylor polynomials in the iterates so that we can have genuine polynomial
sequences. This is circumevented through a series of equidistribution arguments, which at the end will
allow us to reduce our problem to averages with iterates of the form |px(n)]|, where py are polynomi-
als with real coefficients. If the integer parts were not present, then the argument of Frantzikinakis,
Host, and Kra ([19] and [20]) that handles the case of integer polynomials could be applied. In order
to achieve this, we will pass to an extension of the system (X, X, u, T1,...,T}), wherein the actions T;
are lifted to R-actions (also called measure-preserving flows) and the integer parts are removed. This
argument was used by Koutsogiannis in order to tackle the case of polynomials with real coefficients
and has its origins in [6] and [42].

There are a lot of technical details missing that cannot possibly be fitted in this short discussion.
In particular, the whole inductive procedure that we have to follow below is very complicated and
notationally heavy. For this reason, we have several examples in Chapters 3, 4 and 5, which all handle
very simple cases of the theorems discussed in this chapter. Chapter 3 will concern the proods of all
the results of Section 1.1, Chapter 4 will contain the proofs of Section 1.2 and, lastly, we will include
the proofs of the remaining results of Section 1.3 in Chapter 5.

1.3.3 Notational conventions

Throughout this thesis, we denote with N = {1,2,...}, Z, Q, R, C and P the sets of natural, integer,
rational, real, complex numbers and prime numbers respectively. We denote the one dimensional torus
T = R/Z, the exponential phases e(t) = e*™ while ||z|; = d(x,Z), [[z]], |=], [2], and {z} are the
distance of x from the nearest integer, the nearest integer to x, the greatest integer which is less or
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equal to x, the smallest integer which is greater or equal to x, and the fractional part of x respectively.

We let 14 denote the characteristic function of a set A and |A| is its cardinality. For any integers
a,Q we use the symbol a (Q) to denote the residue class @ modulo Q. Therefore, the notation 1, ()
refers to the characteristic function of the set of those integers, whose residue when divided by @ is
equal to a.

For two sequences ay,b,, we say that b, dominates a, and write a, < b, or a, = o(b,), when
an /by goes to 0, as n — +oo. In addition, we write a,, < by, or a, = O(by,), if there exists a positive
constant C' such that |a,| < C|b,| for large enough n. When we want to denote the dependence of
the constant C' on some parameters hq, ..., hy, we will use the notation a, = Op, . p,(bn). In the
case that b, < a, < b,, we shall write a,, ~ b,,. We say that a,, and b,, have the same growth rate
when the limit of ‘g—:, as n — +oo exists and is a non-zero real number. We use a similar notation and
terminology for asymptotic relations when comparing functions of a real variable t.

Under the same setup as in the previous paragraph, we say that the sequence a,, strongly dominates
the sequence b, if there exists § > 0 such that

(07 5
— >n.
bn,
In this case, we write by << an, or ay > by.® We use similar terminology and notation for functions
on a real variable t.
Finally, for any sequence (a(n)), we will use the averaging notation

to denote averages over a finite non-empty set S. We will typically work with averages over the
integers in a specified interval, whose endpoints may not necesseraly be integers. We will use the
symbol &,(f|Y) to denote the conditional expectation of a function f with respect to the o-algebra
V.

We will use the letters b, g, u,w to denote elements of a Lie group and we will use either bold
letters to indicate vector-valued quantities.

Notation involving cubes

Given a positive integer s, we will denote by [[s]] the set {0, 1}® of ordered s-tuples of zeroes and ones,
which contains 2° elements (which we refer to as cubes). For elements of cube sets [[s]] only, we will
use the notation ¢ instead of bold letters. For convenience, we will write 0, 1 for the elements (0,0, ...0)
and (1,1,...,1) of [[s]] respectively. We will also define |¢| to be the sum of elements of . For a finite
set Y, we will similarly use the notation Yl to denote the set Y2°. Each element h € Y5l can be
represented as h = (h., e € [[s]]) where each h. belongs to Y. For complex numbers z, we define the
operator C¥z, where C¥z := z, if k is an even number and C*z := Z otherwise.

8This notation is non-standard, so we may refer back to this part quite often throughout the text.
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Chapter 2

Background

2.1 Preliminaries on Hardy fields

In this section, we describe some basic properties of Hardy fields. The main advantage when working
with functions in a Hardy field (instead of just the C*° functions) is that any two functions f,g € H
are comparable. That means that the limit

f(t)

oo g(t)

exists (possibly +00) and thus it makes sense to talk about and compare their growth rates. The fact
that the limit exists follows from the fact that H is a field and the fact that every function in ‘H has a
limit. In addition, since every function in our Hardy field has a multiplicative inverse, we can easily
infer that it is eventually monotone and, therefore, has constant sign eventually.

It will be crucial in the proof of the theorems of Section 1.1 to assume that H is closed under
composition and compositional inversion of functions, when defined. More precisely, if f,g € H are
such that tljﬂaoog(t) = +o00, then we have that fog € H and ¢g~! € H. The Hardy field £E does

not have this property. This can be achieved by working with the Hardy field P of Pfaffian functions
[32], which contains £E and satisfies the previously mentioned assumptions. This field can be defined
inductively as follows:

i) Let P; be the set of the smooth functions satisfying the differential equation f' = p(¢, f) for some
polynomial p with integer coefficients.

ii) Let Pk be the set of the smooth functions satisfying the differential equation [’ = p(t, f1, ..., fx) for
some polynomial p with integer coefficients and f; € P; for 1 <i < k — 1. Then P contains all germs
at infinity of the set U2, P;.

From now on, we will assume that H has all the above properties. In the appendix, we have
gathered some lemmas regarding growth rates of functions in H, which will play a crucial role in the
approximations in the following sections.

Finally, we give some definitions for functions whose growth rate is of particular interest.

Definition 2.1.1. We say that a function a € H has polynomial growth if there exists a positive
integer d such that a(t) < t%. The minimal value of d that can be chosen to satisfy this inequality will
be called the degree of a. We say that a has sub-linear growth rate (or is sub-linear), if a(t) < t. We
say that a function a € H has sub-fractional growth rate (or is sub-fractional), if for all § > 0, we
have f(t) < 1.

Functions that are sub-fractional behave differently from super-fractional functions in terms of
the Taylor expansion. That is if we have an interval of the from [N, N + N€¢| where ¢ < 1, then a
simple calculation using the mean value theorem shows that we have that |a(n) — a(N)| = on(1) for
every n € [N, N 4+ N€¢|. Thus, these functions are essentially constant in short intervals of length
approximately N¢. This will create the need to separate these functions from super-fractional in our
iterates.

Some simple examples of sub-linear functions are v/%, eViost and log®(t). Among these, the func-
tions eV™°8? and log®(t) are also sub-fractional, while the first one is not sub-fractional.
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Definition 2.1.2. We will call a function f € H of polynomial growth strongly non-polynomial, if
there exists a non-negative integer d, such that

t < f(t) <t

For example, the functions t*/2 and 1og3(t) are strongly non-polynomial, while the function t? + /£
is not.

2.1.1 Lemmas on growth rates of Hardy sequences

Let us fix a Hardy field H that contains the polynomials. Firstly, we will need a basic lemma that
relates the growth rate of a Hardy field function of polynomial growth with the growth rate of its
derivative. To do this, we recall a lemma due to Frantzikinakis [12, Lemma 2.1], as well as [54,
Proposition A.1].

Lemma 2.1.3. Let a € H satisfy t™™ < a(t) < t™ for some positive integer m and assume that a(t)
does not converge to a non-zero constant ast — +o0o. Then,

a(t)
t(logt)?
Sketch of proof. Firstly, observe that since a(t) goes to either 0 or +c0, L’ Hospital’s rule implies that
1 !/
logla()] . ta(t)
t—oo  logt t—+o0 a(t)

The limit on the right-hand side exists because a(t), a’(t) and ¢ all belong to H. Since ™™ < |a(t)]| <
t™, we conclude that the limit on the left and side is finite. This implies that
a(t)

<1 = dit)< -~

ta'(t)

a(t)
2,7
To prove the remaining inequality, it suffices to show that the limit of W ast — 400 is

infinite. If that is not the case, then we would have

(logla(t)]) < t(llgt)

Integrating this, we deduce that

1
1 t _—
ogla(t)| <« log i +c

for some ¢ € R, which implies that log |a(t)| is bounded, which contradicts the assumption that a(t)
does not converge to a finite limit. O

Observe that if a function a(t) satisfies the growth inequalities in the hypothesis of this lemma,
’TO ;;7: < a'(t) < t™~1. Therefore, we deduce the relations t=™2 <

a'(t) < t™*2 which implies that the function a/(t) satisfies a similar growth condition. Provided that
the function a/(t) does not converge to a non-zero constant as ¢ — 400, the above lemma can then
be applied to the function a/(¢). In particular, we can show that if a function has polynomial growth,
then after sufficiently many differentiations, we will arrive at a function that converges to zero, as
t — +o00.

When a function a(t) is strongly non-polynomial and dominates the logarithmic function log ¢, one
can get a nice ordering relation for the growth rates of consecutive derivatives. This is the content of
the following proposition.

then the function a/(t) satisfies

Proposition 2.1.4. Let a € H be a function of polynomial growth that is strongly non-polynomial
and also satisfies a(t) = logt. Then, for all sufficiently large k € N, we have

1< [a® ()] < [a®HD ()| TF <t
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Remark. The proof of Proposition 2.1.4 establishes the fact that if a satisfies the previous hypotheses,
then the derivatives of a do not converge to a non-zero constant and, thus, always satisfy the conditions
of Lemma 2.1.3.

Proof. The function a has non-vanishing derivatives of all orders, since it is not a polynomial. Let d
be an integer, such that t¢ < a(t) < t4*!. Then, Lemma 2.1.3 implies that |a%*!(¢)| — 0. Therefore,
for any k > d + 1, we have a®)(t) < 1. This gives the leftmost part of the required inequality. In
particular, (d + 1) is minimal among the integers k, for which f(*)(t) converges to 0.

To prove the rightmost inequality of the proposition, it is sufficient to prove that

a(d+1) (t) - tfdfl )

For k > d + 1, the result then follows by successive applications of L’ Hospital’s rule. In the case
d = 0, the above relation also follows easily from L’Hospital’s rule. Therefore, we may assume that
d > 1. Now, since a is strongly non-polynomial, we have that the function a(® (t) goes to infinity. We
will show that

t)
(1) > I 2.1
/) > 2o (2.1)
where g is any one of the functions a,d’, ...,a(¥. The result then will follow by noting that

a(d+1)(t) a(t) 1 1

td—H(lOg t)2d+2 > t(lOg t)2d+2 ~ td—l—l'

Equation (2.1) follows by applying Lemma 2.1.3 and noting that we have |g(¢)| — +oo (namely, g
does not converge to a non-zero constant), since the original function a dominates the function ¢¢.
It remains to establish the middle part, namely that if K > d + 1, then

’a(k+1)(t)|k < ‘a(k) (t)’kJrl‘

However, we have |a*t1(t)|F < |a®)(t)|F/t* by Lemma 2.1.3 and we easily get the conclusion by
combining this relation with the relation =% < a(*)(t) that we established in the previous step. O

This proposition is the first step we use to show that a strongly non-polynomial function a(t) can
be approximated by polynomials in short intervals. Indeed, assume that a positive sub-linear function
L(t) satisfies

_1 _1
la® (@)% < L(t) < |aFD ()| (2.2)
for some sufficiently large k£ € N (large enough so that the inequalities in Proposition 2.1.4 hold). In
particular, this implies that . liin a®**t1(t) = 0 and the convergence is monotone, since a1 (¢) is
—+00

eventually monotone.
Using the Taylor expansion around the point N, we can write

hEa®(N)  mFH kD (e )

a(N +h)=a(N)+hd(N)+---+ A + E+1)

for some &n € [N, N + h]

for every 0 < h < L(N). However, we observe that

hk+1a(k+1)(§N7h) _ L(N)k+l|a(k+1)(N)|
(k+1)! = (k+1)!

= ON(1)7

where we used the fact that |a*+1) ()| — 0 monotonically. Therefore, we have

hFa®) (N
a(N +h) =a(N) +ha' (N)+---+ k'() +on(1),
which implies that the function a(N + h) is essentially a polynomial in h.
The final lemma implies that if the function L(t) satisfies certain growth assumptions, then a
strongly non-polynomial function a(t) will be approximated by a polynomial of some degree k. Namely,

we can always find k € N so that the inequalities (2.2) are satisfied.
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Proposition 2.1.5. Let a € H be a strongly non-polynomial function of polynomial growth, such that
a(t) = logt. Assume that L(t) is a positive sub-linear function, such that 1 < L(t) < t'=¢ for some
e > 0. Then, there exists a non-negative integer k depending on the function a(t) and L(t), such that

|a®) () 7% < L(t) < |a* D ()| 7,

_1
where we adopt the convention that ‘a(k) (t)’ k denotes the constant function 1, when k = 0.

Proof. We split the proof into two cases depending on whether a is sub-fractional or not.

Assume first that a(t) < t° for all § > 0. We will establish the claim for & = 0. This means that
functions that are sub-fractional become essentially constant when restricted to intervals of the form
[N, N + L(N)]. The left inequality is obvious. Furthermore, since a(t) < t°, Lemma 2.1.3 implies that

1
()

which yields the desired result.
Assume now that a(t) = t° for some § > 0. Observe that, in this case, we have that

|a® ()] 7F < [a®+D) (1) |

for k large enough, due to Proposition 2.1.4. We also consider the integer d, such that t¢ < a(t) < t4+1,
This number exists because the function a is strongly non-polynomial.

1 1
If L(t) < ‘a(dﬂ)(t)‘_m then the claim holds for k = d, since ‘a(d) )}_3 <1< L(t).

It suffices to show that there exists k € N, such that L(t ‘a(kﬂ (t)‘ iz} , which, in turn, follows
if we show that L
e < |a<k+1>(t)\‘m (2.3)

for some k € N. We can rewrite the above inequality as a**1(¢) < ¢+ However, since the
function a(t) is strongly non-polynomial and a(t) > logt, the functions a(*) () satisfy the hypotheses
of Lemma 2.1.3 (see also Remark 2.1.1). Therefore, iterating the aforementioned lemma, we deduce
that o)
(k+1) N\
a (t) < th+1°
Hence, it suffices to find k such that a(t) < t*+1) and such a number exists, because the function
a(t) has polynomial growth. O

Remark. The condition L(t) < t17¢ is necessary. For example, if a(t) = tlogt and L(t) = @, then
for any k € N, we can write

Cl hk C2 hk+1

&K
for every 0 < h < N and some numbers C7,Cy € R. However, there is no pOSlthG integer k for

which the last term in this expansion can be made to be negligible since W = NF&+T s for all £ € N.
Essentially, in order to approximate the function ¢logt in these specific short intervals, one would be
forced to use the entire Taylor series instead of some appropriate cutoff.

In the proofs of our results, we will need a version of Proposition 2.1.5 for several functions
simultaneously. However, we will need a different version of this simultaneous Taylor approximation
depending on whether we work with averages along N or with averages along primes. Therefore, we
state and prove these propositions in their corresponding chapters.
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2.2 Background in ergodic theory

2.2.1 Systems, ergodicity and factors

A measure preserving system is a probability space (X, X, pu) equipped with an invertible measure
preserving transformation T. We call a system ergodic, if the only T-invariant functions in L*°(u) are
the constant ones. The system (X, X, u, T) is called weak-mixing, if the product system (X x X, X’ x
X, x u, T xT) is ergodic.

More generally, let G be a group. A measure-preserving G-action on a Lebesgue probability space
(X, X, p) is an action on X by measure-preserving maps 7T, for every g € G such that, for all g1, g2 € G,
we have Ty, 4, = Ty, 0 Ty,. In this thesis, we will only need to consider actions by the additive groups
of Z or R. Throughout the following sections, we will also refer to R-actions as measure-preserving
flows. In the case of Z-actions, we follow the usual notation and write 7" to indicate the map T;,.

We say the system (Y,V,v,S) is a factor of (X, X,u,T) (or that (X,X,u,T) is an extension
of (Y,V,1,5)), if there exist X’ € X, Y’ C Y of full measure that are invariant under 7' and S
respectively and a map p : X’ — Y’ such that v = pop~! and po T(z) = Sop(x) for all z € X',
If p is a bijection, we say that the two systems are isomorphic. A factor of the system (X, X, u,T)
corresponds to a T-invariant sub-o-algebra of X' (in the above example this o-algebra is p~1(})).
Therefore, one can simply think of factors as T-invariant sub o-algebras. From now on, we will often
omit the o-algebra X from the quadruple (X, X', u,T) when there is no confusion.

The o-algebra spanned by T-invariant sets will be called the invariant algebra or the invariant
factor of the system and will be denoted by Z(T"). It is the smallest o-algebra making the T-invariant
functions measurable. A system is ergodic if and only if the invariant factor is trivial.

An eigenfunction of the system (X, pu,T) is a function satisfying the relation T'f = Af almost
everywhere, where A is a complex number. The o-algebra spanned by eigenfunctions is called the
Kronecker factor of the system. Omne can show that a system is weak-mixing if and only if the
Kronecker factor is trivial.

2.2.2 Host-Kra seminorms, structure factors and Gowers norms

Let (X, u, T) be an invertible measure preserving system and let f € L>°(u). We define the Host-Kra
uniformity seminorms inductively as follows:

I llor = [ f du

and, for s € ZT,
25+1

h
WISy = Jim B F T (2.4)

When there is no confusion, we will omit the transformation from the subscripts.

The existence of the limits above was proven in [29] in the ergodic case (for the non-ergodic case,
see [30] for a proof) and it was also established that the || - ||s are indeed seminorms for s # 0. The
seminorms are increasing, which means that for any bounded function f we have ||f|s < [|flls+1
for all s > 0. In the case s = 1, we only have an easier description of the seminorm, namely that
Ll = €. (fIZ(T))l 2, Furthermore, it is easy to prove that [F& fllsrxr < [IfI2,, 7, where F&

denotes the function (z,y) — f(x)f(y) on (X x X, u x pu, T x T).
Expanding the inductive definition above, we infer that the seminorms || f||s take the form

T= i E ... i [ TI certmersheey g 2.5
71l = Hyoboo 0<haSH, " Hiorboo O<h1<H1 y” S dp (25)
£
where we use the notation € = (e1...,¢) for every € € [[k]]. We refer the reader to our notational

conventions for the symbols regarding cubes. We see that there is some sort of cubic structure in these
seminorms. For instance, we have that

4 . hi+h
— I E 1 f Thif . Tha f.Thitha ¢ g
7z =, tim _E o Mm B TR TR S I dp.
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Host-Kra proved that the limits over the parameters hy, ..., hs in (2.5) can be taken to be simultaneous
instead of iterated (for a proof in the ergodic case, see [29]).

The importance of these seminorms lies in the following two properties. Firstly, it was shown by
Host and Kra in the same article that, for all s > 1, the seminorms || f||s,r define a factor Z,_;(X) of
X, which is characterized by the following property:

fLI*(Za(X) <= fllsT = 0.

The factors Zs(X) form an increasing sequence of factors, which follows from the monotonicity prop-
erty of the seminorms. The factor Zy(X) corresponds to the invariant factor of the system, while the
factor Z1(X) is the Kronecker factor of the system, when the system is ergodic. Finally, in the case
of weak-mixing systems, it can be shown that all the factors Zs(X) are trivial.

The second important property of these Host-Kra seminorms hinges on the structure of the Z4(X)
factors, which is contained in the next celebrated theorem of Host and Kra.

Theorem G (Host-Kra[29]). Let (X, u,T) be an ergodic system. Then, the factor Zs(X) is an inverse
limit of s-step nilsystems.

The last property implies that there exists an increasing sequence of T-invariant sub-o-algebras
Zs(n),n € N that span Z, such that the factor Zs(n) is isomorphic as a system to an s-step nilsystem
(we give the exact definition of an nilystem in the next section).

The main strategy in proving convergence results (in the single iterate case) is as follows: we
bound the L?-norm of our averages by the Host-Kra seminorms of all functions involved using the
Cauchy-Schwarz and van der Corput inequalities. This implies that if one of the functions f1, ..., fi in
(1.1) is orthogonal to Zs(X) (for the value of s that the inductive procedure above provides), then our
averages are zero. Thus, if we write each of the functions as the sum of its projections to L?(Z4(X))
and its orthogonal complement, then a telescoping argument implies that we can replace fi,..., fx
by its projections to L?(Zs(X)). In this case, we say that Zs(X) is characteristic for the averages in
question. An example of a theorem of this form is 1.1.2. After this step has been completed then
the structure theorem and a simple approximation argument allow us to reduce our problem to the
case that our system is a nilsystem. Then, one has to prove convergence in this system exploiting the
algebraic structure of the nilsystem.

The Host-Kra seminorms are related to the Gowers norms, introduced by Gowers in his proof
of Szemerédi’s theorem [23]. These are defined typically for sequences along groups and along the
integers with slight modifications. We will mostly need the latter definition in our proofs.

Let N be a positive integer and let f : Zy — C be a function. For any positive integer s, we define
the Gowers uniformity norm || f| ;s z,) inductively by

1P loray = | B 50
and for s > 2,

2571
Us—l(ZN)‘

28 TN
171l = &, IFOSC+ R
A straightforward computation implies that

1
25

ey =(E.E [ cHfn+n-e)”.

EEZ‘?\] NEZN QE{OJ}S
Observe that these seminorms are very similar to the Host-Kra seminorms (our system is Zy with the
shift map Tex =z + 1 ( mod N)).
It can be shown that, for all s > 2, [|-[[7s(z, is @ norm and that
[ llgs@zny < Wfllostr(zy)

for any function f on Zy [30, Chapter 6].
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In the setting of sequences defined along the integers, we can define the Gowers norms analogously.
For any s > 1 and a finitely supported sequence f(n),n € Z, we define the unnormalized Gowers

uniformity norm
L

Us(z) — ( Z Z H C|§|f(n+h‘§)> a (2.6)

h€Z® n€Z £c{0,1}¢

171

and for a bounded interval I C R, we define

171

Us(I) = H]-Il (27)

First of all, observe that a simple change of variables in the summation in (2.7) implies that for
XeZ

£ lls o xmm = 1+ X))

Evidently, we want to compare uniformity norms on the interval [1, H] with the corresponding norms
on the abelian group Zg. To this end, we will use the following lemma, whose proof can be found in
[30, Chapter 22, Proposition 11].

Us[1,H]"

Lemma 2.2.1. Let s be a positive integer and N,N' € N with N’ > 2N. Then, for any sequence
(f(n))nez, we have

1f - 1w
111,m]

Us(Znr)

171

Us[1,N] —

US(Zyr)
We will need a final lemma that implies that the Gowers uniformity norm is smaller when the
sequence is evaluated along arithmetic progressions.

Lemma 2.2.2. Let u(n) be a sequence of complex numbers. Then, for any integer s > 2 and any
positive integers 0 < a < Q — 1, we have

< [u(n)]

(7)1 () ()]
for all integers X >0 and all H > 1.

Us(X,X+H] Us(X,X+H]

Proof. We set ux (n) = u(X+n), so that we can rewrite the norm on the left-hand side as ||ux (n)1, (@) (X+
n)’ Us[1,H]" Observe that the function 1, (gy(n) is periodic modulo @. Thus, treating it as a function
in Zg, we have the Fourier expansion

L) => 1, (Q)(€)€<Z§),

§€Lg

for every 0 < n < Q—1, and this can be extended to hold for all n € Z due to periodicity. Furthermore,

we have the bound 1 ¢ 1
N a
1. @©)] = QHQ)‘ =0

Applying the triangle inequality, we deduce that
1 (X +n)¢
Us[1,H] < Z ‘la (Q)(5)| : HUX(n)e<T>’
€€l

However, it is immediate from (2.6) that the U®-norm is invariant under multiplication by linear
phases, for every s > 2. Therefore, we conclude that

[ux ()1, (@) (X +n) UsiLH] S [ux (n)] Us[1,H] [u(n)| Us(X,X+H]’

which is the desired result. O

Jux ()14 (@) (X + 1)

Us[1,H]

The primary utility of the Gowers uniformity norms is the fact that they arise naturally in com-
plexity reduction arguments that involve multiple ergodic averages with polynomial iterates, just like
the Host-Kra seminorms. We will use them in problems that involve polynomial ergodic averages
weighted by a sequence (a(n))nen in order to bound the averages by the Gowers norm of the weight
a(n). The sequence a(n) will be the modified von Mangoldt function in our applications.
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2.2.3 Joint ergodicity of sequences

Let a;(n), ..., ax(n) be sequences of integers. Following the terminology in [17], we call these sequences
jointly ergodic, if for any ergodic measure preserving system (X, u, T') and functions fi, ..., fr € L>(u),
we have

N
. 1 ai(n ap(n —
NLIIEOON;:lT O f O = [ frdpe s [ fdp,

where convergence takes place in L?(u). We also give the following definitions:

Definition 2.2.3. We say that a collection of sequences aq, ..., ay of integers:
i) is good for seminorm estimates, if for every ergodic system (X, u,T) there exists an s € N, such
that if fi,..., fr € L®(u) and || fells = O for some £ € {1,...,k}, then

N

1
lim — ai(n) ¢, pae(n) £
Wi 2T T =0
n=1
in L?(u).
it) is good for equidistribution, if for all t1,...,t; € [0,1), not all of them zero, we have
| XN
lim — —0.
i k) i) <o

The main result of Frantzikinakis in [17], which we are also going to use is the following:

Theorem H. [17, Theorem 1.1] Let ay,...,ar be a collection of sequences of integers. Then, the
following are equivalent:

i) The sequences ay, ...,aj are jointly ergodic.

it) The sequences ay, ...,ay are good for seminorm estimates and good for equidistribution.

2.3 Background on nilmanifolds

2.3.1 Definitions and basic properties

Here, we present the basic definitions and tools concerning nilmanifolds. We follow the notation and
symbols used in [30] and most of the theorems can be found in this book. The reader that is interested
in the general theory of nilpotent Lie groups can also consult [9].

Let G be a topological group. A subgroup H of a topological group G is called discrete, if there is
a cover of H by open sets of (G, such that each of these open sets contains exactly one element of H.
It is called co-compact if the quotient topology makes G/H a compact space. We call a subgroup with
both of the above properties uniform and we will use the letters I' or A to denote such subgroups.

Let G be a k-step nilpotent Lie group and I' be a uniform subgroup. The space X = G/T is called
a k-step nilmanifold.

Let b be any element in G. Then, b acts on G by left multiplication. Let mx be the image of the
Haar measure of G on X under the natural projection map. Then, mx is invariant under the action
of the element b (and therefore the action of G). If we set T'(¢I") = (bg)T', then the transformation
T is called a nilrotation, and (X, mx,T) is called a nilsystem. If the transformation T is ergodic, we
say that b acts ergodically on the nilmanifold X. It can be proven that b acts ergodically on X if and
only the sequence (b"x),en is dense on X for all z € X (see, for instance, [30, Chapter 11]).

A simple example of a nilsystem is a rotation on T = R/Z, that is the space T with the Lebesgue
measure and the map ¢ — = + a(modl), where a € [0,1]. An example in the non-abelian case is the
Heisenberg system. This is the space

1 R R 1 7 Z
0 1 R / 0 1 Z
0 0 1 0 0 1

In [17], this property is called ”very good for seminorm estimates”.
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where the multiplication is the usual matrix multiplication. This is easily seen to be a 2-step nilman-
ifold. Given any matrix element on the original Lie group we can find an element on the fundamental
domain through the map

1o oz 1 o} {z—alyl)
0 1 y|— 0 1 {y}
0 0 1 0 0 1
1 a ¢
In this case, it can be shown that a rotation by a matrix element 0 1 b is ergodic if and
0 0 1

only if 1,a and b are rationally independent. Furthermore, the Kronecker factor of the system in
this case is the rotation on T? by (z,y) — (z + a,y + b) where addition is done modulo 1. Observe
that the condition that a rotation on the Heisenberg manifold is ergodic is equivalent to the condition
that the induced rotation on the Kronecker factor is ergodic. We will see that this holds for general
nilmanifolds.

Let z, be a sequence of elements on X = G/I'. We say that x,, is equidistributed on X = G/T" if
and only if for every continuous function F': X — C, we have

li E F =|F
Nshoo 1<neN (@n) j dmx
where my is the (normalized) Haar measure of X. We say that x,, is well-distributed on X = G/T" if
and only if for every continuous function F': X — C, we have
li E F = | Fdmx.
N3 oo oy M<n<M4N (zn) j mx
A rational subgroup H is a subgroup of G such that H - ex is a closed subset of X = G/T", where
ex is the identity element of X. Equivalently, HT is a closed subset of the space G. This, also, implies
that H must be closed in G (see [30, Chapter 10, Lemma 14]).
A subnilmanifold of X = G/T is a set of the form Hz, where H is a closed subgroup of the Lie

group G, x € X and such that Hzx is closed in X. Observe that if H is a rational subgroup of G, then
Hex is a subnilmanifold of X.

Horizontal torus and characters

Assume X = G/T" is a k-step nilmanifold with G connected and simply connected and consider the
subgroup G2 = [G, G]. The nilmanifold Z = G/(G2I") is called the horizontal torus of X. We observe
that Z is a connected, compact Abelian Lie group, and thus isomorphic to some torus T¢. For a b € G,
it can be shown that the nilrotation induced by b is ergodic, if and only if the induced action of b on Z
is ergodic. More precisely, we have the following theorem due to Leibman (see the theorem in section
2.17 of [39]). Given an amenable group A and a homomorphism ¢ : A — G, then A acts on X = G/T
by translations (¢(u))(z) = ¢(u)x. This action is called ergodic if the only functions invariant under
the action of A are constant.

Theorem I (Leibman). Let X = G/T" be a connected nilmanifold, A be an amenable group acting on
X and let G° be the connected component of the identity element. Then, the action of A is ergodic if
and only if the induced action on the factor torus [G°, G°]\X is ergodic.

This theorem was proven by Parry [47] in the case of a connected group G. The nilmanifold
[G°, G°]\ X is referred to as the mazimal factor torus of X. It can be shown that the induced action
of an element b on the maximal factor torus is isomorphic to a unipotent affine transformation on a
finite-dimensional torus. This, however, complicates things when G is not connected. However, notice
that when G is connected, then the maximal factor torus is the same as the horizontal torus. Thus,
we have the following corollary.

Corollary 2.3.1. Let X = G/T be a nilmanifold with G connected. Then, the action of b is ergodic
if and only if the induced action on the horizontal torus is ergodic.
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A horizontal character x is a continuous group morphism y : G — C, such that x(g7v) = x(g) for
all v € I'. We observe that x also annihilates G2 and therefore descends to the horizontal torus Z.
Thus, under the natural projection map m, x becomes a character on some torus T¢. We will often
use the notation x o 7 when working in the horizontal torus, while we reserve the letter x to denote
the same character in the original group G.

2.3.2 Nilorbits and Ratner’s theorem

Let G be a connected, simply-connected nilpotent Lie group. It is well known that the exponential
map exp from the Lie algebra of G to G is a diffeomorphism (see, for instance, [9, Theorem 1.2.1]). In
particular, it is a bijection between G and its Lie algebra g. For b € G and t € R we can then define
the element b' as the unique element of G satisfying b® = exp(tL), where L € g satisfies exp(L) = b.
As a corollary of Ratner’s theorem [48], we get the following:

Lemma 2.3.2. Let X = G/T' be a nilmanifold with G connected and simply connected. For any
elements by, ...,b; € I', we have that the set

DEBED = {bl - T g, by € R}

is a subnilmanifold of X = G /T with a representation H/A, for some closed, connected and rational
subgroup H of G that contains the elements b3, ..., b7, for all s € R and A is a uniform subgroup of H.

We call the set {b'I': t € R} the nil-orbit of the element b. We will analogously denote by BT the
set {b"I': n € Z} and bNT' = {b"I": n € N}.
We establish the following lemma, which will be necessary for our proofs.

Lemma 2.3.3. Let X = G/T be a nilmanifold and let by,...,bp € T' be any pairwise commuting
elements. Then, there exists a real number t such that

BRLLORT = (b T g,y € Z).
Proof. We want to find some ¢ € R so that the sequence
dr(n1, .y g) = OO

is equidistributed on the nilmanifold Y = b} . .. bﬂsf. By Lemma 2.3.2, Y has a representation as H/A,
where H is connected, simply connected and rational. Observe that ¢; naturally induces a Z* action
on'Y by (¢¢(n1,...,nx), RA) — b1 bzkthA. It is sufficient to show that this Z*-action is ergodic on
Y, since this implies that Y = {¢:(n)y,n € ZF} for all y € Y. However, using Theorem I, the above
action is ergodic if and only if it is ergodic on the horizontal torus Z of Y, which is homeomorphic to
some torus T?¢. Equivalently, if we denote by (b1, ..., biq) the projection of the point b;I' on Z, then
we need to check whether the sequence

(t(nabig + -+ + nkbga), oy t(mabrg + -+ - + nibrg))

is dense on T. Tt suffices to choose t so that 1/t is rationally independent of any integer combination
of the coordinates b; ;. This completes the proof. O

2.3.3 Polynomial sequences on nilmanifolds

In the proofs of our theorems, we will approximate our Hardy sequences with polynomials. We
define polynomial sequences here, though we work in a more general setting by defining polynomial
sequences through filtrations. We will need this to state the quantitative results on the equidistribution
of polynomial orbits in larger generality.
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Definition 2.3.4. A filtration Ge of degree d on a nilpotent Lie group G is a sequence of closed
connected subgroups

G=GO =g o>G?5...0GW > G+t = ¢,

such that [G(i),G(j)] C G for all 3,5 > 0. The filtration is called rational if all groups G
appearing in the above sequence are rational subgroups of G. A polynomial sequence on G with respect
to the above filtration is a sequence g(n) such that, for all positive integers hy, ..., hy, we have that the
sequence O, ...0h, g takes values in G®) | for all k € N, where 8, denotes the ”differencing operator”
that maps the sequence (g(n))nen to the sequence (g(n + h)(g(n)) ™ )nen-

An example of a filtration is the lower central series of the group G. For our purposes, we will
only need to consider polynomial sequences of the form

w(n) =B e (2.8)

where b; € G for all 1 < i < k and p; are real polynomials. Note that the terms bfi(n) are well
defined, due to our connectedness assumptions. To see that this is indeed a polynomial sequence with
our initial definition, we construct a specific filtration on G. We assume that G is k-step nilpotent
and we also denote the maximum degree among the polynomials p; as d. We consider the filtration
(of degree dk) Go = (G™)g<icgr, where G = G\ija)+1 and G are the commutator subgroups of
G. This is a rational filtration because all commutator subgroups of G are rational (see [30, Chapter
10, Proposition 22] for the proof). Then, the sequence v(n) in (2.8) is a polynomial sequence with
respect to this filtration. We direct the reader to the discussion after [27, Corollary 6.8], where these
last observations were made originally. We will also call the projected sequence v(n)I' on X = G/T" a
polynomial sequence on X.

2.3.4 Quantitative equidistribution

Assume that p(t) is a polynomial. Then, p(n) can be expressed uniquely in the form

d
p(n) = Z a;n’
i=0
for some real numbers a; and d € N. For N € N, we define the smoothness norm?”
le(@(m)llcoeing = o (N il ). 29)

A filtration on a Lie group G gives rise to a basis on its Lie algebra g, which is called a Mal’cev basis
[43]. Mal’cev bases play an essential role in the theory of quantitative equidistribution on nilmanifolds.
Firstly, we give the following definition:

Definition 2.3.5. Let X = G/T be a k-step nilmanifold with a rational filtration Ge = (G®);>q.
Define m = dim(G) and m; = dim(GW). A basis (€1, ...,Em) of the associated Lie algebra g over R is
called a Mal’cev basis adapted to G, if the following conditions are met:

i) For each 0 < j <m —1, b = span(&pq1, ..., &m) s a Lie algebra ideal on g and thus H; = exp(h;)
s a normal Lie subgroup of G.

i) For every 0 <i < k, we have G = H,, ..

iii) Fach b € G can be uniquely written in the form exp(t1&1)... exp(tm&m) for t; € R.

iv) The subgroup I' consists precisely of those elements which, when written in the above form, have
all t; € 7.

2The definition of the smoothness norms is a bit different in [27]. There, the authors write the polynomials in the form
p(n) = Zf:o ai("}) and define the smoothness norm using the same definition as (2.9) (the coefficients a; are different).
However, these definitions give two equivalent norms and, thus, all theorems can be stated for both norms, up to changes
in the absolute constants.
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Suppose that the element b is written in the form exp(t1£1) - - - exp(tm&m). The map ¢ : G — R™
defined by ¢ (b) = (t1,...,t,) is a diffeomorphism from G to R™. The numbers (t1,...,t,,) are called
the coordinates of g with respect to the associated Mal’cev basis. If we consider the Euclidean metric
on R™, we can construct a Riemannian metric dg on G, whose value at the origin is equal to the
Euclidean metric of R™ at the origin (of R™) composed with the inverse map 1 ~!. This metric is
invariant under right translations and induces a metric dx on X = G/T" defined by the relation:

dx (g, hT) = inf{dg(b,¥'),bg' € T, b'/n~' € T'}.

The metric used in [27] is slightly different than the one we consider here, but as the authors remark,
these metrics are equivalent and all theorems hold as well by changing the absolute constants.

The sequence (g(n)I")1<p<n is said to be d-equidistributed on the nilmanifold X = G/T" if and
only if for any Lipschitz function F': X — C, we have that

‘1<£I::<NF( deMX‘ < 5HFHL1p
where F(a) - F(y)|
x) — Fly
Il = [Fle + sup  Z@—FOI

z,yeX, x#y dX (x, y)

We now fix a k-step nilmanifold X = G/T', as well as a positive integer d. We equip it with the
rational filtration G of degree dk that we defined above (after Definition 2.3.4), as well as a Mal’cev
basis adapted to this filtration and the corresponding coordinate map ¢ : G — R™ (m is the dimension
of G). Observe that under this filtration, we have that G(4*Y) = Gy and property ii) in Definition
2.3.5 implies that G2 = Hyp—pm,,,- Thus, the Mal’cev basis induces an isometric identification of the
horizontal torus Z = G /GsI" with the torus T™ ™d+1 equipped with the standard metric.

Let m : X — Z denote the projection map and let x be a horizontal character on G. Consider
an element b € G with coordinates (t1, ..., t;,). Then, by properties iii) and iv) in Definition 2.3.5, we

_>
have that there is some £ = (f1,..., {m—m,, ;) € Z™ ™4+ such that

X © W(b) - Eltl +---+ Emfmd+1tmfmd+1'

Thus, we get a character on the torus T "d+!(written here with additive notation). We can then
define the modulus ||x|| of the character y to be equal to

%
[ —— o0

If v(n) is the polynomial sequence in (2.8) (recall that it is a polynomial sequence with respect to
the filtration G,), then the sequence x o W(v(n)F) is a polynomial sequence on the horizontal torus
Z = Tm~™mda+1, Indeed, if we denote ¢(b;) = (.1, ..., ti.m), then a simple calculation shows that

X)) = x (e (e - o)) =
D1 (n)(gltl,l + -+ em—md+1t1,m—md+1) +---+ pk(n) (gltk,l + -+ Em—md+1tk,m7md+1)a

which makes the fact that x(w(v(n)I')) is a polynomial sequence more evident.

The primary tool that we shall use is the following theorem of Green-Tao which describes the orbits
of polynomial sequences in finite intervals. We present it in the case of our filtration G,, although the
statement holds for any rational filtration. Some quantitative information (specifically relating to the
concepts of quantitative rationality of Mal’cev bases) has been suppressed, since in our applications
the nilmanifold will be fixed and the above condition on the Mal’cev bases is guaranteed if we take §
small enough.

Theorem J. [27, Theorem 2.9] Let d be a non-negative integer, X = G/I' be a nilmanifold with G
connected and simply connected and we equip the nilmanifold X with the Mal’cev basis adapted to
the dk filtration Ge as above. Assume 0 is a sufficiently small (depending only on X,d) parameter.
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Then, there exist a positive constant C = C(X,d) with the following property: For every N € N, if
(v(n))nen s a polynomial sequence with respect to Ge such that the finite sequence (v(n)I')1<p<n 1S
not §-equidistributed, then for some non-trivial horizontal character x (that depends on N and the
sequence v(n)) of modulus ||x|| < 6~C we have

-C
Ix(m (0 (R)T)l oo vy <07,
where w denotes the projection map from X to its horizontal torus.

In order to get a sense of how this theorem works, we refer the reader to Lemma 2.3.7 below which
handles the case of polynomial sequences on tori. An important observation is that the constants
do not depend on the length of the averaging interval and also depend only on the degree of the
polynomial. Thus, we will be able to apply this theorem for polynomial sequences varying with N, as
long as their degrees are kept constant.

2.3.5 Quantitative equidistribution in the abelian case

In the case of polynomial sequences on tori, their equidistribution properties are well understood. If
the polynomial has rational non-constant coefficients, it is straightforward to check that the sequence
of its fractional parts is periodic. For polynomials with at least one non-constant irrational coefficient,
Weyl’s theorem implies that the sequence is well-distributed modulo 1. In the case of Hardy field
functions, we have a complete characterization of equidistribution modulo 1 due to Boshernitzan
(Theorem E).

For the proofs of the results concerning primes, we will need quantitative information for the
equidistribution of our sequences. This is provided through the means of discrepancy.

Definition 2.3.6. Let (uy,)i1<n<n be a finite sequence of real numbers (un)1<n<n and let [a,b] C [0,1]
be an interval. We define the discrepancy of the sequence wu,, with respect to [a,b] by

HnE{l,...,N}Z {UH}E [a7b]}’ _
N

A[&b}(ul,...,uN) = (b—a) . (2.11)

The discrepancy of a sequence is a quantitative measure of how close a sequence of real numbers is
to being equidistributed modulo 1. For example, it is immediate that for an equidistributed sequence
Uy, we have that

lim A -
pm Ay (- un) =0,

for all 0 < a < b < 1. For an in-depth discussion on the concept of discrepancy and the more general
theory of equidistribution on T, we refer the reader to [37]. Our only tool will be an upper bound of
Erdds and Turdn on the discrepancy of a finite sequence. For a proof of this result, see [37, Chapter
2, Theorem 2.5].%

Theorem I (Erd8s-Turan). There exists an absolute constant C, such that for any positive integer
M and any Borel probability measure v on T, we have

B 1~ [om)
sup [1(4) = A(4)| < O+ 3 ).

ACT M m=1 m

where A is the Lebesque measure on T and the supremum is taken over all arcs A of T.
In particular, specializing to the case thatv = N1 Zfil Ofu;y, Where uq, ... up is a finite sequence
of real numbers, we have

1 g &
Ay (s - un) < C(M +3 E’N > e(mun)|) (2.12)
m=1 n=1

for all positive integers M and all 0 < a < b < 1.

3In this book, the theorem is proven for measures of the form v = % Zf\;l 0z, although the more general statement
follows by noting that every Borel probability measure is a weak limit of measures of the previous form.
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It is clear that in order to get the desired bounds on the discrepancy in our setting, we will need
some estimates for exponential sums of Hardy field sequences in short intervals. Due to the Taylor
approximation, this is morally equivalent to establishing estimates for exponential sums of polynomial
sequences. There are several well-known estimates in this direction, the most fundamental of these
being a result of Weyl that shows that an exponential sum along a polynomial sequence is small
unless all non-constant coefficients of the polynomial satisfy a “major-arc” condition. In the case of
strongly non-polynomial Hardy field functions, we will only need to study the leading coefficient of
the polynomial in its Taylor approximation (in the proofs of the results involving primes), which will
not satisfy such a major-arc condition.

Fortunately, Theorem J already provides a sufficiently strong estimate for tori. More precisely, we
have the following:

Lemma 2.3.7. Let 0 < § < 1 and d € N. There exists a positive constant C' depending only on d,
such that if p(z) = agx® + - + ayx + ag is a real polynomial that satisfies

1 N
D) >4,
n=1

then, for every 1 < k < d, there evists ¢ € Z with |q| < 6=, such that N* ||qag|; < 67C.

Again, notice that there is no dependency of the constant on the length of the averaging interval,
or on the implicit polynomial p apart from its degree).

2.3.6 Nilsequences and correlation sequences

An s-step nilsequence is a sequence of the form F(g"z), where X = G/I" is a s-step nilmanifold,
g€ G, x € X and F is a continuous function on X. More precisely, we have the following definition
for nilsequences in several variables.

Definition 2.3.8. Let k, s be positive integers and let X = G/T" be a s-step nilmanifold. Assume that
gi, ..., gk are pairwise commuting elements of the group G, F : X — C is a continuous function on
X and x € X. Then, the sequence

Y(ni,...,nk) = F(gf" ... - gg*x), where ni,...,ny € Z,
1s called an s-step nilsequence in k-variables.

Nilsequences arise naturally when studying the Gowers norms or the Host-Kra seminorms. A deep
theorem of Green, Tao and Ziegler [28] implies that a sequence has a large Gowers norm (of degree s)
if and only if it “correlates” with a s-step nilsequence.

The main tool that we will need is an approximation of general nilsequences by multi-correlation
sequences in the ¢*°-sense. The following lemma is established in [18, Proposition 4.2].

Lemma 2.3.9. Let k, s be positive integers and 1) : ZF — C be a (s—1)-step nilsequence in k variables.
Then, for every e > 0, there exists a system (X, X, u,T1,...,Ti) and functions Fi, ..., Fs on L>®(u),
such that the sequence b(ny,...,ng) defined by

b(ni,...,ng) = IH (Tfjn1 T]f]nk)FJ du, (ni,...,ng) € zF
j=1

with {; = s!/j satisfies
19 = bllgoo 21y < €.

Remark. The definition of nilsequences used in [18] imposed that x = I' and that n € N*. However,
their arguments generalize in a straightforward manner to the slightly more general setting that we
presented above.
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2.4 Background in number theory

In order to prove our results concerning averages over primes, we need some number theoretic input
on the von Mangoldt function A. First of all, we need to show that studying averages over primes and
averages weighted with the von Mangoldt function is the same. The following lemma is a standard
consequence of the prime number theorem and the sparseness of prime powers (we use this argument
in the proof of Corollary 2.4.3 below). For a proof, see, for instance, [30, Chapter 25].

Lemma 2.4.1. For any bounded sequence (a(n))nen in a normed space, we have

, 1 1
N HW(N) > alp)— 5 Do Alma(n)| =0. (2.13)
peP: p<N n=1

Therefore, in order to study ergodic averages along primes, we can replace them with the ergodic
averages over N weighted by the function A(n).

In our theorems, we will use a procedure to bound our ergodic averages over primes with the
Gower norm of the weight Ayyy,. For the modified von Mangoldt function, we will use the following
deep theorem, which was recently established in [44].

Theorem K. [}/, Theorem 1.5] Let € > 0 and assume L(N) is a positive sequence that satisfies the
bounds N3+ < L(N) < N'=¢. Let s be a fized integer and let w be a positive integer. Then, if N is
large enough depending on w, we have that

”Aw,b - 1HU5(N,N+L(N)} = 0w(1) (2.14)
for every 1 < b < W with (by,W) = 1.

The celebrated theorem of Green-Tao on the uniformity of the von Mangoldt function established
the previous theorem for the Gowers norm over the long interval [1, N].

We will need to use the orthogonality of A, ; to polynomial phases in short intervals. This is an
immediate consequence of the U? uniformity in Theorem K in conjunction with an application of the
van der Corput inequality (see Lemma 3.4.3 below) d times until the polynomial phase is eliminated.
Alternatively, one can use Proposition 5.2.1 for a rotation on the torus T to carry out the reduction
to Theorem K.* We omit its proof.

Lemma 2.4.2. Let L(N) be a positive sequence satisfying N3t < L(N) < N'=¢ for some ¢ > 0.
Then, we have that

E A -1 = 0y(1 2.1
%g}%}&/ pSElIg[)t] N§n§N+L(N)( ws(1) )e(p(n))‘ ow(l) (2.15)
b,W)=1 deg p—d

for every N large enough depending on w.

Remark. (i) The error term o,,(1) depends on the degree d, but since this will be fixed in applications,
we suppressed that dependence above.

(7) Quantitative bounds for similar expressions (involving the more general class of nilsequences, as
well) were the main focus in [44], though in that setting the authors used a different weight of the
form A — A%, where A# is a carefully chosen approximant for the von Mangoldt function arising from
considerations of the (modified) Cramer random model for the primes.

Finally, we will also use a corollary of the Brun-Titchmarsh inequality to bound the contribution
of bad residue classes in our ergodic averages by a constant term. For ¢ > 2 and (a,q) = 1, we denote
by m(x,q,a) the number of primes < x that are congruent to a modulo ¢. Alternatively, one could
also use the asymptotics for averages of A in short intervals that were established by Huxley [31], since
L(N) will be chosen to grow sufficiently fast in our applications.

‘Evidently, both statements rely on similar complexity reduction arguments, though Proposition 5.2.1 is stated in
much larger generality involving numerous polynomials.
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Theorem B (Brun-Titchmarsh inequality). We have

2
7T(;U—|—y,q,a)—7r(x,q,a) < Y

= 5@ oa(Z) (2.16)

for every x >y > q.

While we referred to this as the Brun-Titchmarsh inequality, the previous theorem was established
in [45] by Montgomery and Vaughan (prior results contained the term 2+ o(1) in the numerator). We
will need a variant of this theorem adapted to the von Mangoldt function, which follows easily from
the previous theorem and a standard partial summation argument.

Corollary 2.4.3. For every q <y < x, we have

2y log x y .
I<T;x+y " #(q) log(%) (10g:v) (x g m)

n=a (q)

Proof. Consider the function

W(x,q,a): Z 1]P’(n)

1<n<zx
n=a (Q)

as in the statement of Theorem B, defined for all x > 3/2. Let

0(x,q,a) = Z 1p(n)logn, ¥(x,q,a)= Z A(n).

1<n<z 1<n<z
n=a (Q) n=a (Q)
It is evident that
0(z,q,a) — ¥(z,q, a)‘ < > logp<a'loga, (2.17)

pk<z: peP k>2

since there are at most z1/2 prime powers < x and each one of them contributes at most log x in this
sum. Now, we use summation by parts to deduce that

0(z+y,q,a) — 0(x,q,a) = Z Ip(n)logn + O(1) = 7(z +y,q,a)log(z + y)—

r<n<z+y
n=a (Q)
m(z,q,a)log(x + 1) + Z m(n,q, a)(logn —log(n + 1)) +O(1).
z<n<lz+y
n=a (Q)

Using the inequalities logn — log(n + 1) < —(n + 1)~! and log(z + y) < logz + y/x, we deduce that

b +v.0.0) — 0(a.0.0) < log(m(z +y.0.0) — n(x,q.0)) + T LEDY_
n,q,a
Z m(n,¢,a) + o).
n+1
rz<nlz+y
n=a (Q)
Using the estimate 7(z, q,a) < m and Theorem B, we bound the sum in the previous expression
by
2y (z+y)y 1
log & —— " + ( )+O( > 7)+O(1).
¢(q)log() p(q)x log(x +y) v, Oa)logn
n=a (Q)
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Since

Tty z+y
1 dt —+ dt
2 Sfl pTOW =4 : f _193 +f1 5 T0(1) <
r<n<z+y ogn x 0g Og(‘r y) og T e og t
n=a (Q)
Yy Yy
+0(1),
log z (long) (1)
we conclude that
2y 1
0z +y,q.0) — 0(z,q,0) < 20 -+ O(—L) +0(1). (2.18)

= %) log(¥) log

Consequently, if we combine (2.17) and (2.18), we arrive at

2y 1
V(@ +y,q,0) — bz, q,0) < —ot L O(—L) + O(a2 logz),

~ ¢(q) log() log z
as was to be shown. O

Remark. We will apply this corollary for ¢ = W and y > 2%/, Note that for y in this range, the
second error term can be absorbed into the first one.
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Chapter 3

Joint ergodicity of Hardy field
sequences

3.1 The main proposition

In this section, we state the principal result that we will prove in this chapter and which asserts that
the Host-Kra factors of a given system are characteristic for the convergence of the averages (1.4). We
will need to make some small reductions to the original problem and prove several lemmas. The proof
is quite lengthy and heavy notationally. Thus, we also provide some examples that present the main
ideas, while avoiding most of the technicalities.

Proposition 3.1.1. Let H be a Hardy field that is closed under compostion and compostional inversion
of functions, when defined. Assume that the functions ai,as, ...,ar € H have polynomial growth and
suppose that the following two conditions hold:

i) The functions ai, ..., ar, dominate the logarithmic function logt.

ii) The pairwise differences a; — a; dominate the logarithmic function logt for any i # j.

Then, there exists a positive integer s depending only on the functions a1, ..., ay, such that for any
measure preserving system (X, pu,T), functions fi € L>(u) and fon..., fu,n € L™(1), all bounded by
1, with f1 L Z4(X), the expression

E ¢, Tla®lg plea®mlg oo opla®lyg o

su
P 1<n<N

|Cn|§1

(3.1)

L2 ()

converges to 0, as N — +o0.

Remarks. i) It is possible to establish Proposition 3.1.1 under the weaker assumption that only the
functions a1, a; —ag, ..., a1 — ap dominate the logarithmic function, but this requires a few more details
in the proof and is not required for the proof of Theorem 1.1.2.

ii) It may be possible to establish that the number s does not, in fact, depend on the functions
ai,...,ag, but it can be bounded by a function involving the number k of functions and the highest
degree! d of the involved functions. However, we do not concern ourselves here with the optimal value
of s. In particular, we will use polynomial expansions of the functions a1, ..., a; with degrees very large
compared to the number d, which means that any possible dependence on d will be lost in the proof.

It is obvious that Proposition 3.1.1 implies Theorem 1.1.2 (this follows from a standard telescoping
argument). The reason that we work with sequences of functions and the bounded sequence ¢, is
because that will be helpful in some spots to absorb some of the error terms that will appear in the
iterates and also allows us to ”transform” the sequences in the iterates, so that we can reduce our
problem to the case that the first sequence a; has some specific properties depending on the situation
at hand. As an example, we claim that we only need to consider the case when the function aq(t)
has maximal growth in the family {a, ..., ar}. Indeed, suppose that this is not the case. Then, there
exists a function a; for some i € {1,...,k} with a1 < a;. Without loss of generality, assume that the

!This means the smallest integer d, for which a;(t) < t¢ for all 1 < i < k.
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function a; has maximal growth rate. It is sufficient to show that for any sequence of functions gy
with [|gn|[pe(u) < 1, we have

lim E Cn,NjgN Tlai(n)] freon- Ttak(n)Jfk’N du = 0.

1
N—oo 1<n<N

Then, we can choose the function gy to be the conjugate of the average

lax(m)] £ . . plax(n)]
ISE‘ZSNCn,NIT W TR fi N dp

to get our claim. Composing with 7~ 9™ and applying the Cauchy-Schwarz inequality, it is sufficient
to show that

E ¢, T-loMlgy . plai-lam]ly . placml-laml g |
1<n<N ’

=0.
L2(p)
We can write |ai(n)| — |ax(n)] = |ai(n) — ax(n)] + €;n, where the errors e;,, take values in {0, £1}.
Using Lemma 3.2.1 below, the errors can be absorbed by the supremum outside the average and,
therefore, the function that corresponds to f; is equal to a; — ax, which now has maximal growth rate
among the new family of functions. It is also easy to check that the new family satisfies the conditions
of Proposition 3.1.1.

lim sup
N——+oo |Cn‘§1

3.2 Some averaging lemmas

This notion of absorbing the errors that we described above can be made more precise by the next
lemma.

Lemma 3.2.1. Assume that the integers e; , n take values in a finite set S. Then, for any sequences
a; N of integers, complex numbers C;LN bounded in magnitude by 1 and any 1-bounded functions f; N,
we have

1<E<N C;’l,N 71N (n)+e1n N FIN - Tak,N(n)‘f'ek,n,ka,N ks
== L2(p)
sup sup 1<E<N Cn.N Tal,N(n)fLN LN £y TN ()
len, NIST | f2lloo <1500l frlloo <1 SN L2(p)

As a consequence, there exist 1-bounded functions f! y, such that the original expression is bounded
by a constant multiple of the quantity

E oy TN fy y To280) ) oo g

su
p 1<n<N

len, N [<1

+on(1).
L2(w)

Proof. We partition the integers n into a finite number of sets, in which all the quantities e;, v are
constant (as n varies). There are at most |S|¥ such sets. If Ay, ..., Ajg» are these sets, then we have

1<E<NC’/I’L7 Tal,N(n)-‘rEl,n,Nfl,N - Taka(n)_'_ek’”’ka,N <
== L2(u)
Sk
< 1 /I ain(n)tern N T N (n)+ek,n,N <
4 A S
=1 neA;
1
S max a3 hnLa(n) TN fy L TNy ]
1<ig|sie TN = : ’ VL2 ()
|S|* sup sup E N TuNO) o TN gy kN () f :
len, N ISL [ f2lloo <1oesy[[ fil oo <1 HFSTS L2(p)

which is the required result. In the second to last relation, we composed with T~ “.»N  because e, N
is constant when n is restricted to the set A;. ]
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Remark. In the following sections, we will encounter situations where we have some error terms in
the iterates. The above lemma is not applied verbatim to all cases below. However, the reasoning
presented above (i.e. partitioning into sets where the error sequences are constant) can be applied
directly every time to remove these error terms. In particular, we can also show (using the same
arguments) that a similar statement holds for double averages, that is, if I, are a sequence of intervals
with lengths going to infinity, d is a natural number and the error terms e;,, r take values on a finite
set S of integers, then

/ ai, (n)+e ,n, . . Q. (n)+e n, d
1<I7E<RHTL]:€EIrcn7R e LR TR ' Rfk’RHLQ(u) KShd

d
sup E sup E cor Tal’R(")flyR cT2.RM) fo kR £ ,
1 folloo STl flloo <1 ISTSR ey pl<1 H"GIT ' 1209

where we also use the Holder inequality (which gives dependence on the exponent d in the implicit
constants). Therefore, instead of using the same argument repeatedly, we will cite this lemma in such
instances and add a comment when a modified version is required.

The second lemma implies that we can bound our averages over the long intervals [1, N], if we
can obtain bounds over short inervals of the form [r,r 4+ L(r)] for some positive sub-linear function
L(t). Due to several obstructions in the proof, we will have to average over the parameter r as well,
meaning that we will have to use a double averaging scheme in the proof.

Lemma 3.2.2. Let d be a positive integer and consider a two-parameter sequence (ARJI)R%N m a

normed space such that |Agr,|| <1 for all possible choices of R,n € N. Let L(t) € H be an eventually
positive function such that 1 < L(t) <t and assume that

limsup E H AR’an <C
R—+4o00 1Sr<R "r<n<r+L(r)
for some C' > 0. Then, we also have
lim sup H E Agrp } < o/,
R—4oo 1<n<R

Proof. Combining the power mean inequality and the triangle inequality, we can easily deduce that

d d
1SITE§R HTSRSI?—&—L(T)ARJLH = nglrEgR(rgngI}EJrL(r)AR’n)H ’

Therefore, our result will follow if we show that

|E (_E  An)-

A = 1).
1<r<R “r<n<r4+L(r) R’nH or(1)

E
1<n<R

Let u be the compositional inverse of the function t + L(t). Our assumptions on the Hardy field
‘H imply that v € H. In addition, it is easy to check that 1tlier u(t)/t = 1. Now, we have
—+00

R+L(R)

R
1
1§ITE§R( rgnSIErL(r)AR’”) - R(;pR(n)AR’” * an:H Pr(m)Arn)

for some real numbers pr(n). Assuming that n (and thus R) is sufficiently large (so that u(n) is
positive) we can calculate pr(n) to be equal to

1

1
n)=-—————+-+————+o0,(1),
PR = Tl + 1 Iim+1 o
since the number Ag,, appears on the average E if and only if u(n) < r < n. Note that pr(n)

r<n<r+L(r)
is actually independent of R (for n large enough) and therefore, we will denote it simply as p(n) from
now on. We claim that
lim p(n)=1. (3.2)

n—-+o00
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Let us first see how this finishes the proof. Since for n large enough we must have p(n) < 2, we can

easily deduce that
) R+L(R)

= Y p(n)Arn = or(1).
n=R+1
Here, we used the fact that L(¢) < t. In addition, we have

1< 1 &
H*Zp WARn— 5> Aral < 7 D Ip(n) 1,
n=1 n=1

which is also or(1). Combining the above we reach the desired conclusion.
In order to establish (3.2), we observe that L(t) is eventually strictly increasing, and therefore, we

can easily get
n+1 1 J‘
— dt
L(t)+1 L )+ 1
Lu(n)] ®) lu(n)]-1
Thus, it suffices to show that the integrals on both sides of the above inequality converge to 1. It is
straightforward to check that each of these integrals is 0, (1) close to the integral

Therefore, we only need to prove that I, — 1. Using the mean value theorem, we can find a real
number h, € [u(n),n] such that,

n—u(n) _ L(u(n))
L(hy)+1  L(hy) +1

The last equality follows easily from the definition of u. Since L is eventually strictly increasing, we
conclude that I, is smaller than L(u(n))/(L(u(n)) +1) < 1. In addition, we also have

L(u(n))
LR TOESE
1

I, =

The result follows if we show (note that the function «™" is onto in a half line of R)

L(1)

Y O e

However, . . .
L(ulg))) Y1 L+ L(zt))) v1 Lt +(tL)(t)) +ouL).
Using the mean value theorem, we can write
L(t+ L(t)) = L(t) + L(t) L' (2) ,
where x; € [t,t + L(t)]. Thus,
L(ifz'(g(t)) =1+L'(z) =1+0/(1),

since L'(t) < L(t)/t < 1. The result follows. O

Finally, we will use a change of variables lemma very similar to [13, Lemma 5.1], which can be
proven similarly by a standard partial summation argument. It will allows us to bound quantities
evaluated along sub-linear sequences with the same quantity evaluated along the sequence a(n) = n,
which will simplify some expressions significantly.

Lemma 3.2.3. Let (Vr(n))n, ren be a 1-bounded, two-parameter sequence of vectors in a normed space
and let a € H satisfy the growth condition t° < a(t) < t. Then, we have

ljl%riiupH E VR( H < hmsupH <IE<RVR( )H
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3.3 Overview of the proof and examples

Our main objective is to reduce our problem to the study of ergodic averages of some variable poly-
nomials. Therefore, we will first study asymptotic bounds for certain polynomial families in the next
section, since they will be required for the proof of Proposition 3.1.1. This will rely on the van der
Corput inequality and an induction argument on the complexity of the family. The PET induction
argument has been carried out for polynomials in the literature, although our setting necessitates that
the bounds are finitary in nature (and, thus, more complicated). Following that, we need to show
that Hardy field sequences can be simultaneously approximated by Taylor polynomials, which we will
also need to satisfy several nice properties. This will be the content of Section 3.5 In Section 3.6, we
will establish bounds for Hardy sequences of a specific form, namely when the involved functions are
a sum of a sub-linear function and a polynomial. In Section 3.7, we shall reduce the problem to the
case of functions that are a sum of a sub-linear function and a polynomial and finish the proof.

The main idea is that we can approximate the given Hardy functions by Taylor polynomials
(possibly constant) in suitable smaller intervals (with lengths going to infinity). We shall reduce our
problem to proving a statement of the form

2t

]E Cn.R TLpl,'r'(n)J f]. e Tl_pk,r(n)J fk r
nel, ’ ' ’

lim E

=0, (3.3)
R—4001<r<R

L2 ()

where the iterates are variable polynomials and f1, has the form
fip = f1-TO g oploeM]p,

for sub-linear functions b1, ...,bp and hy, ..., hy € L (p).
After this reduction, we bound the innermost average using the results from Section 3.4. More
precisely, we claim that the inner average can be bounded by a quantity of the form

E
me[—M, M|t

[rlotmlg,, . plaemlg, gy

plus some small error terms, where M is a finite integer (independent from the rest of our parameters)

and all the functions g, ; are either fr or fr. In addition, the functions g;(r, m) in the iterates are such
that, for (almost all) m € Z!, they can be written as a sum of a sublinear function plus a polynomial,
which is the special case that we discussed above. Thus, taking first the limit R — —+oo to use
the bounds established in the special case and then taking the limits M — +oo, we shall reach our
conclusion.

3.3.1 Some examples

a) Whenever we use < without indices in this example, we imply that the constants are absolute.
Assume that a(t) = tlogt + log>t, b(t) = tlogt and c(t) = v/t. We want to show that there exists
s € N, such that, if || f||s = 0, then

1<£I::<NT I_n log n+log?® ”J f . T|_n logn| e T\_\/ﬁJ 9

converges to 0 in L? as N — +oo. Here, g; and g2 are arbitrary 1-bounded functions in L>(u). In
view of Lemma 3.2.2, it suffices to show that

Lnlogn+log3 nJ _plnlogn| . L\/EJ 24 _
1§IF§RHr§n§IE+L(r)T rT 9T 92”132(#) 1<IF<RAT (3.4)

converges to 0 as R — +o0, for some sub-linear function L(t) € H and an integer d, both of which we
will choose later.
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Step 1: Reduction to averages of variable polynomials.

We observe that

3 d
A, = ” E  l+h)log(r+h)+log (r+h)Jf L plr+h) log(r+h)] o 7|vrh] 92"12( .
0<h<L(r) H
Now, we can use the Taylor expansion to write
3 h2
(r+ h)log(r +h) = o) + By + h(logr 4+ 1)+ rlogr, for some xp € [r,r + h],
Ty r
and
h? h
Vr+h=-— + ++/r, for some z} € [r,r + h],

8(z},)3/%  2r
for every 0 < h < L(r). Since
h3 L(r)3
— <
S

and
’ h?2 < LQ(T’)
8(1:;1)3/2‘ = 8r3/2’

we conclude that these two last terms are both o,(1), provided that we choose the function L(t) to
satisfy L(t) < t?/3. We also choose L(t) > t'/2, so that both the 2-degree term in the expansion of
(r + h)log(r + h) and the 1-degree term in the expansion of v/r + h are not bounded (for h taking
values in the range [0, L(7)]). In addition, under the above assumptions, we can also show that

log®(r + h) —log3(r)| = o0,(1
Ogglg(r)\ og”(r + h) —log”(r)| = or(1)

using the mean-value theorem. Therefore, we have”

Az B, rlsre e g plfosreenos laine o

2
H0<h]<EL(T) T{%+h(logr+1)+rlog4 (g1 .| log®r] 1) ,T{#JrﬁJ gQHid?(u)? (3.5)

which is an average where the iterates are polynomials in h. The fact that the o,(1) terms can be
discarded follows from Lemma 3.2.1 and will be explained in depth in the formal proof. Note that the
iterates have now become polynomials in the variable h.

Remark. In the proof of Proposition 3.1.1 in Section 3.7, we will choose the function L(t) in order to
have a common polynomial expansion as above. Although in this example this is easily done by hand,
this will be accomplished in the general case using some lemmas and propositions that are proven.

We will use the van der Corput inequality (Lemma 3.4.4):

1 d—1
E Y<i—+ E | E 2 1
‘lgnSN anl” < T \m\§M|1§n§N<an+m’am>| +on(l),
which holds as long as M = o(N).
We will deal with a simpler case here, since (3.5) requires many applications of the van der Corput
inequality and the estimates are quite complicated. We shall find a bound for the average

. 4
lglrESRHOghISEL(r)TLQ JfTH N 1§IrEgRAT ’

where f, = g1 .8’ ()] f.

2In this example, we split and combine the integer parts freely, which is not true in general. In our main proof, we
explain this argument using Lemma 3.2.1.
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Step 2: A change of variables trick and bounds for the polynomial averages

First of all, we can write h = kt\/ﬁj + s, where the integers k, s satisfy 0 < k < L(r)/L@J and
0<s< L\/ﬂj — 1. Then, we have

Rz k2 L@JZ 2k|\/r]s  s?

2r 2r + 2r + 2r

Note that
QkQ{f} LQ(T) .
Var e

If we choose L(t) to satisfy the additional hypothesis L(t) < t3/* (which is vacuous since we already
have the restriction L(t) < t*/3), then we get that the above quantity is o,(1). In this example, we
can take L(t) = t3/° as our sub-linear function (observe that all of the restrictions we imposed above
are satisfied). Therefore, we can use the power mean inequality to deduce that

‘kQ [V

ﬂ
2r -

At<  E_ || ETEme®]p e (3.6)
0<s<|v2r] -1 T1<k< LLJ%

for some linear polynomials p; (k). Denote by Ay, the innermost average in the above relation.
We fix a positive integer parameter M. Applying the van der Corput inequality twice, we deduce
that

A;l’r < % * |mal, |m2\<M’ jfr szlme dp| + or(1),
where the implied constant is absolute (and, in particular, independent of M). We omitted the routine
computations here (the general case is more complicated than this and is handled in Section 3.4). This
bound holds regardless of the choice of the polynomial ps (k) and the only thing that influences this
bound is the highest order coefficient (which is 1 for all values of s, 7).

Using this bound in (3.6) we deduce that

4 1 log® r 2mima log3 r
Ar<<M+|m1Hm2|<MU gr -l ] gy pzmma g ol r] £y qu) 1o, (1).
Remark. It is now clear that we need the outer average over r in the beginning because this last
bound is only useful on average. More generally, this problem will always appear if some of the
functions on the iterates or the differences of two functions in the iterates are sub-fractional and some
others are super-fractional. The sub-fractional functions are essentially constant in the short intervals
and, thus, the bounds we get will depend on these constant values. We average again in order to
handle the sub-fractional functions.

Therefore, the quantity in (3.4) is <

1

+ E ‘
M 1<r<R |my),|me|<M f
1

E E(
M + Imi],|ma|<M 1<r<R »[

(g1 1oLy 2 gy L% ) 1) ] + g (1) =
(g1 - T2 gy) - TUE T (72002 ) dpt| 4 0(1). - (3.7)

Remark. In the proof of the general case, instead of the sub-linear function Llog3 (r)J in the iterates
n (3.7), we may also have functions of the form |u(r)]", where u € # is a sub-linear function and
keZ" (like L\/ﬂg and LTZ/ 3J5). For instance, assume we want to study the limit of the averages

E rlvnte®l g plvnlg
1<n<N

Using Lemma 3.2.2, it suffices to show that

Vr+h(r+h)? VrFh]
1<ITE<R}|O<hI<EL(T)TL Jf TL HLz(
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for some d € N and some sub-linear function L(t) € H. If we choose L(t) appropriately, then we can
write

\/7 \[+ \/»'f‘or(l)

for 0 < h < L(r). Now, using the change of variables h = k|2/7] —|— s, we observe that the leading
coefficient of the polynomial (7 + h)3 in the iterates becomes |[2/7 J . If we proceed similarly as in
step 2 above using repeated applications of the van der Corput inequality, we will arrive at a similar
bound as the one in (3.7), but now the term L2\/ﬂ3 will appear in the iterates.

In order to combat this situation, we need another intermediate step in our proof (this is Step 7
in Section 3.7). We shall use Lemma 3.2.3 that allows us to replace the sub-linear function 21/r by
the identity function a(r) = r. As an example, suppose we want to bound the limit of the averages

E Tl ool

1<r<R

as R — +oo. We rewrite this expression as a function of /r

E Tl ol L],

1<r<R

Then, we can prove that

<C’hmsupH E T°f T LMSJg

hmsupH E 7l Jf TL\[J L] H 12(n) 1<r<R HLQ(M)

R—+oo 1<r<R
for some positive real number C'. Now the functions in the iterates are sub-linear functions and
polynomials, which we are now able to handle (this is the content of Section 3.6).

Step 3: Dealing with the sub-linear function.

In this step, we show that the quantity in (3.7) goes to 0, if we take R — +o0 and then M — +oo.
While steps 1 and 2 of this example correspond to parts of the proof in Sections 3.4.5 and 3.7, this
step corresponds to the proofs in Section 3.6.

We observe that the function log®(r) in the iterates is a sub-linear function. We will show that

li ‘ T2m1m2 . z‘v\‘log3 rJ . T2m1m2 d £ T2m1m2 ) 3.8
Jm B 9) (f Ddu| < If Flls (38)
In addition, the implicit constants do not depend on mj, mg. Assuming that (3.8) holds, we take
the limit as M — 400 (this can be done because all implied asymptotic constants do not depend on
m1,mgy) and we need to show that

lim T2mamse
M—+o00 |m1], |m2\<MWf f”|3

Applying the Holder inequality, we are left with showing that
17 - T2mme f5 =

li
M—+o00|ma|, |m2\<M
Using the definition of the Host-Kra seminorms, this relation reduces to an ergodic average with
polynomial iterates, which is well known to converge to 0 under our hypothesis on the function f
(namely, that || f1]|s = O for some suitable s € N).
We now establish (3.8). It suffices to show that

i ’ T log rJ d
Jim  E g fdu| < 115

for any 1-bounded functions f and g, where the implied constant is absolute. We square the above
expression and apply the Cauchy-Schwarz inequality to bound it by

Llog (r) J
1<I7~E<R ¢-5 Fd(pxp),
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where F:= f® f, G:=g®g and S :=T x T. Then, (3.8) follows if we show

I, E SUFOVF oy < 17

We use Lemma 3.2.2 once more: it suffices to show that

li E sl p 2
msupl| B 2y < 1B

where L(t) € H is sub-linear. Using the Taylor expansion, we can write

SIOgth_ 6logx, — 3log? x,

log?(r + h) = log3(r) + h?,

r 223
where 0 < h < L(r) and zy, € [r,r + h|. If we choose the function L(t) so that

t t

—— < L(t) < —,
log? t ®) logt

we can then deduce that the last term in the above expansion is o,(1). Our problem reduces to

T

2
[log3 (r)+32 log~ 7,

lim sup H E S JFHLQ(#X“) < H\le%,T

r—4oo  0<h<ZL(r)

We have again reduced our problem to finding a bound for an ergodic average with (variable) poly-
nomials. In order to finish the proof, we work similarly as in the previous steps, using the change of
variables trick and one application of the van der Corput inequality (we also need to use the inequality

1702 <z < 1115 7)-
b) In this second example we describe the strategy that will be used in the special case that we

discussed above, that is when our functions are sums of sub-linear functions and polynomials. This case
is covered in full generality in Section 3.6. We consider the triplet of functions in H (t+log®t,¢,1log? t)
and we shall show that there exists s € N so that, if || f]|s = 0, then

1<E< NT [r+log”n) f-T"g - T [1og?n] 92
SN

converge to 0 in mean (g1, g2 are again arbitrary 1-bounded functions).

Step 1: Reducing to the case when all iterates have sub-linear growth.

We start by using Lemma 3.2.2 to reduce our problem to

li E E  Tlrtlee’n] g prg plieg®n] g2 .
Il%ri—si}ingTSRHrgngr—i-L(r) F-T"g 9[12(y = 0 (3.9)

for some sub-linear function L(t) € H. In this example, we will choose the function L(t), so that

log®(n) —log®(r)| = or(1 d log?(n) — log?(r)| = or(1).
Tgnrélfﬁ(r)' og”(n) —log*(r)] = or(1) ~and gn?fﬁ(r)| og”(n) —log™(r)| = o,(1)

For instance, the function L(t) = v/t can easily be checked to satisfy the above. Therefore, if r is very
large, we can write

HTSNSITE_’_L(T)TL”HOE;S n| T - Ttlog2 n| 92HL2(M) _

3 2
||7,<n<I7}j:+L(r)Tn+DOg ey g, s 7”JJFEQ’"92HL2(M)’
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where €; ,,e2, € {0,£1}. We assume here that all the error terms are zero (in the main proof, we
will invoke Lemma 3.2.1 to remove the error terms). Therefore, we want to show that

I E E  prtleg’r]poprg o plles®] g2, =,
}%riilif 1<T<RH1~<n<r+L( ) ! g1 ngLQ(u) 0
Since ||g2]|o, < 1, we reduce our problem to
limsup E || E T (g . llog?r] f)H22 = 0.

R—+4o00 1Sr<Rr<n<r+L(r) L2 (k)

Note that the inner average is a polynomial average in the variable n. We fix a positive integer M
and use the van der Corput inequality to deduce that

n . Llog3 TJ 2 i . L10g3(7‘)J . m . L10g3(r)J
I, By T o T ey < g+ B o 0Dy 7m0 U0y | 40,00,

where the implied constant is absolute. Thus, we want to show that

1

M+ImII§M 1<r<R‘f91 "¢gy) - Tllog®r J(f T™f) du| + op(1)

goes to 0, as R — +o0o and then as M — +oo.

Step 2: Dealing with the sub-linear functions.

Our problem follows by taking the limit as R — 400 and then using the bound

- g - Tgy) - TLeg* )] (. 7.
tmsup B | [ (g7 7"g0) - TUEONG 1) dy| < 17

(3.10)

This was established in the previous example. Using this relation and taking the limit M — +oo
(note that our asymptotic constants do not depend on M), we reach the conclusion.

Since (3.10) follows from the previous example, we will describe our arguments for a more repre-
sentative case. We shall prove that

hmsup“ E Tllog® ntlog? "Jf 7 |log? nJg . Llog*n QQHLz < [ fll4, (3.11)
N—+oo  1SnsN

where the implied constant is absolute. Using Lemma 3.2.2, it suffices to show that

Llog3 n+log? nJ . Llog3 nJ . L10g2 nJ 2 2
1}1{H_1>_S;_1£1<17E<RHT<71<IE+L( )T [T 9T 92ll72(,) < I3

for some sub-linear function L(t) € H. We choose L(t) = t(logt)~3/2. Using similar approximations
as in the first example, we can show that for any 0 < h < L(r)

3log?r

log®(r + h) = log3r 4+ h + o,(1),
while
log?(r + h) = log?r 4 0,(1)

for all 0 < h < L(r). Disregarding the error terms o,(1) in this example, it suffices to show that

3 3log2 r
limsup E H E T{log T J(TUOg%Jf'gl) .TUOgQ?‘ngHiz(#) < [IfI13-

Rstoo 1<r<R0<h<L(r)

Since go is bounded by 1, the above bound follows from

1 3 +hi’)logQTJ
limsup E H E T{Og ' " (TUOgQTJf'gl)HLQ(M) < |IF13.

N——4oo 1Sr<R70<h<L(r)
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This is an average where the iterates are variable polynomials. Working similarly to the previous
example, we can show that

\‘log T‘+h310g r

J (TLlogQTJf . gl)Hi2(u) <

B [T ) ol ) a0,

HOShISEL(r)

Thus, it suffices to show that

limsup B timsup B (g T7g0) - TUE (71 p) | < 1115
M—+o00 IM|[SM R—4o0 1Sr<

Note that we started with three sub-linear functions in the iterates and now we have an average with

only one sub-linear function (our argument in the general case is based on this induction scheme).

The result follows by working similarly to step 3 in the previous example.

3.4 Bounds for polynomial averages

Our main goal in this section is to establish Proposition 3.4.5 below. This will be based on the PET
induction scheme, first introduced by Bergelson [1]. Before stating that proposition, we give some
definitions.

3.4.1 Families of variable polynomials

Assume we are given a family Py = {p1 n, ..., b, v } of essentially distinct (i.e. their pairwise differences
are non-constant polynomials) variable polynomials, such that the degrees of the polynomials in Py
and of their pairwise differences are independent of N (for N large enough). Then, we assign to p1 n
the vector (vy n, ..., kaV), where v1 y is the leading coefficient of p1 y and v; y is the leading coefficient
of p1,v — pjn for j # 1. We denote this by S(p1,n) and call this the leading vector of the family Py
corresponding to p; . We similarly define S(p; ) for every i € {1, ..., k} and call it the leading vector
corresponding to p; y. Let us remark that the leading vector has no elements equal to 0, because we
have assumed that the polynomials are essentially distinct. Finally, we call Py ordered, if the degrees
of the polynomials p; y are non-increasing. In this case, the polynomial p; x has maximal degree and
we call it the leading polynomial. The leading vector of an ordered polynomial family is defined as the
leading vector corresponding to its leading polynomial.

3.4.2 Types of polynomial families

We define the type (d,wg, ..., w;) of the polynomial family, where d is the largest degree appearing in
the polynomials of Py and wj; is the number of distinct leading coefficients of the members of Py with
degree exactly ¢ among all polynomials in the family. Note that for families of variable polynomials,
the value of this vector may depend on the variable N. We order the types by the value of d and then
order types of same degree lexicographically. We observe that a decreasing sequence of types must
eventually be constant. The type of a family is a classical quantity used in the literature when an
induction scheme on polynomial families is required.

3.4.3 Good sequences and nice polynomial families

Now, we define the notion of a nice polynomial family. Namely, we will deal with polynomials whose
coefficients are well-behaved sequences. Our arguments fail to work in the general case where the
coeflicients can be arbitrary sequences.

Definition 3.4.1. a) A sequence (ap)nen of real numbers is called ”good”, if there exists a function
f et with . liin f(t) # 0 such that
—+00




b) Let Pn = {p1,N,...,Pk.N} be a collection of polynomials. The family Py is called nice, if all the
degrees of the polynomials p; y and p; v — p; N are independent of N for N large enough and their
leading coefficients are good sequences, for all admissible values of the i, 7.

Note that any good sequence has a limit (possibly infinite). An example of a good sequence that
2]

is not a Hardy sequence is the sequence , which behaves asymptotically like N/6. In general,

all sequences of the form | f(n)], where the function f € H does not converge to 0 (as t — +00), are

good sequences, while, for example, % is not a good sequence.

ogn
Lemma 3.4.2. The type of a nice polynomial family is well-defined (independent of N ) for N large
enough.

Proof. Assume that two polynomials p; y and p; v of the given family have the same degree s. Let
a;(N),a;(N),a;;(N) be the leading coefficients of p; n,p; nv and p; y — pj N, which are all good se-
quences. The degree of the polynomial p; y — pj n does not depend on N, for N sufficiently large, by
the definition of a nice family. Then, we have either one of the following:

i) If the polynomial p; y—p; v has degree equal to s, then for N large enough, a;;(N) = a;(N)—a;(N) #
0 and therefore the polynomials p; x,p; v have distinct leading coefficients eventually.

ii) If the polynomial p; y — p; v has degree smaller than s, then that means that, for NV large enough,
we have a;(N) — aj(N) = 0 and the polynomials p; v, p; N have equal leading coeflicients eventually.
The claim easily follows. O

3.4.4 The van der Corput inequality

We shall rely heavily on the following variant of the van der Corput inequality in our proofs.

Lemma 3.4.3. For a sequence uy, in a Hilbert space with ||uy| < 1 and a quantity M = o(N), we

have
N 9d—1

1 = d 1
HN nz:() UnH2 <y M + —MSI%LSM IOSnISEN—1<un+m7un> 4 ON(l).

Proof. This follows from the basic van der Corput inequality

N-1
1 1 1/2 M1/2
HN Z% un| < M1/2 + (fMg]%;@gM‘ognéENf1<u"+m’u"> ) N1/2
n—=
by successively squaring and applying the Cauchy-Schwarz inequality. O

We will use this inequality to derive asymptotic bounds for multiple ergodic averages involving
polynomials. The above inequality holds, in particular, when M is a fixed positive integer. We state
here the equivalent result for variable sequences, since this is more consistent with the notation used
in the proof below.

Lemma 3.4.4. For sequences (un N)n,NeN n a Hilbert space with ||u, n|| < 1 and a quantity M =
o(N), we have

2d—1

N-—1
1 2d 1
HN 7;) un,NH <d M + |m|F%M OSnISEN—1<Un+m’N’ un,N> + ON(l).

3.4.5 Bounds of polynomial averages

The remainder of the section will be dedicated to establishing the following proposition:
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Proposition 3.4.5. Let k,d be positive integers and let M be a positive integer parameter. Suppose
W = (d,wyq, ...,w1) is a (d+1)-tuple of positive integers that is also a type for some polynomial family.
Then, there exist positive integers t = t(d,k, W), s = s(d,k, W), a finite set Y = Y (d,k, W) of
integers and integer polynomials in t variables pe j, with € € [[s]] and 1 < j < k, that are at most
linear in each variable®, such that for any ordered nice family of non-constant, essentially distinct
polynomials

Py =A{pi,Ns s Pk, N}

of degree d and type W with leading vector S(Pn) = {u1 N, ...,ur, N}, any increasing sequence Ly —
00, any measure preserving system (X, p,T) and sequences of 1-bounded functions fi N, ..., fx.N, we
have

k

lpin) | f 12
|CnS,11\lfI|)S1 HOSTL]]gLN Cn,N HT f’L,NHLQ(M) <<d,k,w
1
_ E TLA;,N(ITI)J +he |§| d 1 19
M + Z mG[—M,M]t f H (C fl,N) 1 +0N( )7 (3 )

heylisl e€[s]]

where

Acy(m) = Y pej(m)ujy

1<j<k

are real polynomials in m. In addition, we have the following:
i) For € # 0, we have that the polynomial A; n(m) is non-constant.
ii) The polynomials A y(m), € € [[s]] are pairwise essentially distinct.
iii) We have the relation
Ae ny(m) + Ace y(m) = Ap y(m)

for any € € [[s]]. More generally, if c,&' € [[s]] are such that ¢ + €' € [[s]] ¢, then
A n(m) + Ag y(m) = Ao y(m)

iv) For any ¢ € [[s]],if
c1pe,1(m) + ... + cxpe k(m)

is the zero polynomial for some ci,...,cp € R, then we have ¢; = 0 or p.;(m) is the zero polynomial,
for every 1 <i <k.

Remark. The ) means that we take the sum for all choices of h = (h., € € [[s]]) where h. € Y.
heylls]]
In addition, we will make a small abuse of notation and write E to denote the average over

me[—M,M]t
all m € Z! N [~ M, M]".

Remarks. i) The polynomials p. ; are independent of the leading vector {uj n,...,u; n} and are,
more importantly, independent of the variable V.

ii) The existence of the errors h. is merely technical and arises from the floor function in the last
expression inside the integral, since we cannot use Lemma 3.2.1 to remove the error terms in this case.
This will appear in the proof of the case of linear polynomials that follows.

iii) The quantity on(1) depends of course on the values of d and k. It also depends on the value of
the fixed number M. However, this dependence plays no role in arguments of the following sections
(where we will usually take limits first as N — +oo and, then, as M — +o0). For ease of notation,
we will omit all other subscripts for the term ox(1).

iv) The final condition iv) above implies that given a fixed £ € [[s]], if we exclude all the constant
polynomials among the p. ;, the remaining polynomials are linearly independent.

3This means that when regarded as polynomials only in one variable, then they are linear. Examples are p1 (mi,m2) =
my — 2mg and p2(m1, me, m3) = mima — 3ms.
4This means that the i-th entries of €, ¢’ cannot simultaneously be 1, for any admissible value of 4.
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Ignoring the technical parts of the statement, the above proposition asserts that when working with
multiple averages on some polynomials that vary with N, we can instead bound them by the averages
of a polynomial correlation sequence of only the function fi . Even though the new polynomials A. x
have several variables, they only depend on the sequences u1 n, ..., ux,n. Thus, if these sequences have
good limiting behavior, we can take the limits first as N — +o0 and then as M — 400 to get some nice
bounds for the original averages. For instance, in the case where we have a fixed function f; x = fi
and the sequences u; y converge to non-zero real numbers, the above statement can be used to prove
that the lim sup of the ergodic averages in the left-hand side of (3.12) can be bounded by a power of
I fills for some suitable positive integer s. This last assertion follows from minor modifications to the
argument present in [38] to cover the case of real polynomials (instead of just integer polynomials).

Proof of Proposition 3.14 in the linear case. We establish our proposition in the case where all the
polynomials have degree 1. More precisely, assume that p; v (t) = a; nt + bj v where a; y,b; v € R so
that the variables a; y are (eventually) non-zero. The assumption that our polynomials are essentially
distinct implies that the numbers a; x5 and a; n are distinct. The leading vector of Py is the set

{a1 N, a1 N — a2 N, ..., a1, N —agp N}

and these are good sequences by our assumptions.
We induct on k. For k = 1, we apply the van der Corput inequality to get

loc By, enn L il <

E I .TL“I,Nnerl,NerCLl,NJ*£a1,Nn+b1,NJ d ‘ 1.
M \m\SM’()SnSLNCn’NCn—Hn’N hin fin du| 4 on(1)

We rewrite the last quantity as

1

N . plmar | +enm ‘
M \m|gM‘ognIELNC"’NC”+m’NfflyN T fin dp| +on(1),

where e, ., v € {0,%1} (the implied constant is independent of all variables in the above relation).
Let A,y = {n € Z™: 0 < n < Ly and ey ;m v = 2} for z € {0,£1} = Y. Then, the innermost
average can be rewritten as

2o S awentn [ R Tyl < 3| [T wlre gyl

2€Y n€A; Nm z€Y

which, combined with the above, gives the desired result (for constants t = 1 and s = 1, polynomials
p1(m) = may, N and pp(m) = 0 and set Y = {0, £1}).

Now assume that we have proven the result for k—1 (k > 2), with the constants of the proposition
given by t =k — 1 and s = k — 1. Then, we use the van der Corput inequality to get

k
1
H0<n]F2LN Cn,N HTLai,Nn+bi,NJ fz,NHik?(u) <y i + ON(1)+

- =1

k k—1
CrNCrtm, N f HTLai,Nn+bi,NJ+Lmai,NJ +€i,m,n,Nf17N TLai,Nn+bi,NJ fi,N d,u 2 ,

E,
|m|<M10<n<Lyn Pl

which is smaller than

k
\ EM‘O< IEL Cn,NCntm,N jHTL%’N”%“NJ7L“’“N"“’WJﬂm“z‘,NJJrei,m,n,NfLN.
B =1

ok—1

TLai,Nn+bi,NJ*L(lk,NTL‘Fbk,NJm d,u + 1/M + ON(l), (3‘13)
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where we again have €; , » v € {0,%£1}. In the last step, we composed with 7~ [k vnetbi, | inside the
integral.
We have

lasnn+bi v ] — lagnn + b n] = [(asn — apn)n+bin —ben] + €, N

where €; , n € {0,£1}. Therefore, we can rewrite the last expression in (3.13) as

+ E ’ E Cn. NC N
M ' jmieM losn<ry N

k k—1
H f 7l (@i —ak N)Intbin=be N [+€] , x (T N 7 lmaiN | +eimm f, N) dy 2 Con(1).

=1

Then, using the Cauchy-Schwarz inequality and the argument in Lemma 3.2.1, we can bound the
innermost average in the above expression by Og(1) times the quantity

k—1
k-1
Apy = sup E CnNH 7 | (ai,n—ak,n)n+(bi,n — kaJ(f N TLmazNJ'i‘ezmanzN H2L2
len,n|<1 0SnSLy 1 W)
NI =

Now, we use the argument of Lemma 3.2.1 again to deduce that A,, x is bounded by Og(1) times

k—1

sup H E CnNH 7| (ai,n —ak, v )nt(bi, N b, v J(f N - TLmazNJ+Z1le H
sie 01} len |1 OSnSEN i=1
1<i<k-1

2k1

We fix some z = (21,...,2,_1) € {0,£1}*~1. If we take the polynomial that corresponds to
fin- rlmain |+2 f1,n to be the new leading polynomial, then the new leading vector is the set

{ai,n —apN, a1, N — a2 N, ..., Q1N — Q1. N}

By the induction hypothesis, there exists a finite set Y;_1, for which

k—1
|_(flz‘,N—ak,N)"+(bi,N—bk,N)J I \_mai,NJ-i-Zi . 2+t
bl B e IT T N R
1 h
— 4 ‘j H T|_E1<J<k y Peg(mi,mp_1)(a1,N—a; n) |+he
M e[V |m1|7 ’|mk 1<M cellb-1]]
CEl(fry - Tlmawl+a g ) d“‘ +on(1).
Using the identification [[k]] = [[k — 1]] x {0,1}, we can write an ¢ € [[k]] as € = (e1,e2) where

€1 € [[k —1]] and e2 € {0,1}. We also write m = (m,my,...,mj_1). Combining the integer parts, we
rewrite the last integral as

H T{Zg]‘gk—l p’éj(mlV,_,mk_l)((IlyN—aj,N)‘f'p/é,k(m)(ll,NJ+h/§,m C'élfl,N du ,
e€[[k]]]
where
L. p_; is the polynomial p., ; for 1 <j <k —1,

2. the polynomial p’E’ i 1s equal to m when €2 = 0 and is zero otherwise and

3. Wl = he, +hagem, where” hy o m € {0,41,£2}. More importantly, k., takes values in a finite
set Y.

°In particular, hae m is the sum of z; plus the error term appearing by combining |mai, x| with the other integer
part, whenever they both appear. Otherwise, it is zero. Thus, it takes values on a finite set of integers.

54



We observe that

H TLZIS"S]“*1 plé’j(ml""7mk_1)(al’N_aj’NHp,é,k(m)al’NJ+h/§’m C|§|f1,N d,u‘ <
e€([K]]]
Z ’j H T{Zgjgkfl P;j(ml,~~~,mk71)(a1,N—aj,N)+P'§,k(m)al,NJ+hg Clé'fl,N dyal.
hel[Yi]]  e€[[k]]]

Averaging over m,my, ..., mj_; and summing over z € {0, £1}*~1, we have that for the finite set
Y} above, the original expression is bounded by O (1) times

j H T Zissen posmuin[+he (lel g, vy dpu| 4+ oy (1),

Ly

he([Yz]]
where u1 v = a1,ny and u; v = a1,y — ajn. The conclusion follows. ]

Remark. It follows from the above proof that the polynomials A, y in the statement of Proposition
5 have the following form:

A n(ma,...,mg) = € - (Mmug N, ..., MEUE N)

where ”-” denotes here the standard inner product on R¥. Thus, it is straightforward to check that
the polynomials A, n satisfy the conditions i), i), 7i7) and iv) of Proposition 3.4.5. Note that all these
polynomials have degree 1. This will not be the case when working with polynomials of higher degree,
where we may have higher degree terms (like products of the form mims), but they will be linear in
each variable separately.

3.4.6 The PET induction.

For a polynomial py, a family Py and h € N, we define the van der Corput operation (or vdC
operation), by replacing our original family with the family

{pinE+h)—pN(Et),....prn(t+Dh) —pN(t), pin(t) —pN(t),...,prn(t) — pN(t)}

and then removing polynomials of degree 0. We denote this new family by (pn, h)* Py. At first glance,
it is not obvious that this operation is well defined, because the constant polynomials that we discard
may be different for different values of N. We will see that this is not the case for nice polynomial
families below. We will use the vdC operation successively to reduce the ”complexity” of a polynomial
family. Our main observation is that the leading vector of a polynomial family is well behaved under
the vdC operation.

Consider a family of variable polynomials Py = {pi,n,...,px,n} and let the leading vector of Py
corresponding to pi y be

S(PN) = {ul,N, ceey ukw}.

Fix any 1 < 45 < k, as well as the polynomial p;, n, which we denote as py from now on for
convenience. Consider the new polynomial family Py, = (pn,h)* Py that arises from the van der
Corput operation. Here, h ranges over the non-zero integers.

Lemma 3.4.6. Assume that the family Py of degree d is nice and let (u1 N, ..., urN) be its leading
vector corresponding to p1 n. For every choice of polynomial py above and the value of h € Z*, we have
that each element of the leading vector of Py, corresponding to the new polynomial py n(t+h) —pn(t)
has one the following forms: 7

o They are equal to one of the u; Ny for some 2 < i < k.
o They have the form dui yh.

o They are the sum dui yh + u; N for some u; y with @ # 1.
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Proof. Without loss of generality, we will assume that we have taken py = pi v (the case py = p1 n is
very similar). We want to study the leading vector corresponding to the polynomial p n (t+h)—pg n(t).
Therefore, it is sufficient to find the leading coefficients of the polynomials

(pin(t+h) —pen() — (P () — peN(t))
(pin(t+h) —pen() — (pin(t+h) — pen(t))
(pin(t+h) —pen() — (pin(t) — PN ()

for 2 < i < k. The leading coefficient of the first polynomial is always dhu; xy and that satisfies
our required property. The leading coefficient of the second polynomial is always equal to the leading
coefficient of py v (t+h)—p; v (t+h) and this is always equal to the leading coefficient of p1 v (t) —ps,n ()
which belongs to the leading vector. Finally, the leading coefficient of the third polynomial is equal
to the leading coefficient of p; n(t + h) — p; n(t). Note that this polynomial can be rewritten as

(PNt +h) —pin®)) + (L (t) — pin())

The leading coefficient of the first polynomial is equal to dhu y as we established above, while the
second difference has leading coefficient u; ; (by definition). Therefore, the leading coefficient of their
sum is either dhuy n,wu; y or their sum dhuy n + u; v, which concludes the proof. O

Observe that the particular form each element of the new leading vector is independent of N (i.e.
it cannot have the first form for one value of N and then the second form for some other value of
N). This follows from the fact that the type of the original family is independent of N, if N is large
enough. We will now use this lemma to study how the van der Corput operation affects the type of
the original family.

Corollary 3.4.7. Let Py,pn be as above and let d be the degree of the family Py. Then, there exists
a set of integers Y with at most O q(1) elements such that, for every h ¢ Y, the polynomial family
P, = (pn, h)*Pn that arises from the van der Corput operation is nice and its type is independent’
of the value of h.

Proof. We denote by u;; n the leading coefficient of p; , while u;; v denotes the leading coefficient of
pi,N — pjn for i # j. These are all good sequences by the definition of a nice family. Using Lemma
3.4.6, we can prove that the leading coefficients of all the polynomials in Py, and of their differences
can take one of the following forms: 7

i) they are equal to some u;; Ny With i # j,

ii) they have the form ru;; yh for some 1 <r <d or

iii) they have the form ru; yh + u;j n for some 1 < r < d.

We prove that these sequences are good for all except Ogy(1) values of h. For all values of
1<4,j<k(i#j)and 1 <r <d, we consider the set A(i, j,r) of all possible sequences of the above
three forms (not all of them appear as leading coefficients, but this does not affect our argument),
where h is some fixed non-zero integer. There are only finitely many such sets. Note that for h # 0, the
sequences of the first two forms are always good. Now consider a sequence of the form ru; yh+u;j N
There exist functions fi, fo € H, not converging to 0, such that |u; n/fi(N)| = 1+ on(1) and
luij N/ f2(N)| = 1+o0n(1). The function rhfi(t) + fa(t) is obviously an element of H. In addition, for
our fixed r, the relation

lim (rhfi(t) + () = 0

can hold only for at most one possible value of h € Z, which we call a ”bad value”. Then, if h is not
a bad value, we have

t

rui Nh + uij N
rhfi(N) + f2(N)
Indeed, this follows easily because the functions f; and fo are comparable, which also means that all
the sequences involved are comparable. Thus, dividing the numerator and denominator of the above

=1+on(1).

5The type depends only on which polynomial of the initial family we choose to be the polynomial px, as well as the
type of the original family.
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fraction by either fi1(IN) or fo(IN), we easily get the last assertion. In short, we have shown that the
sequence ru;; nh + u;j v is a good sequence for all non-bad values of h. Now, if we take all possible
values of the i, j,r, we conclude that there are at most Og (1) bad values of h.

We have shown that for every non-bad value of h, the family P}, is a nice polynomial family
and, therefore, has a fixed type (independent of N). We show that its ‘Eype does not depend on h. In
order to prove this, we consider two polynomials g1, g2 of Py, of the same degree. We consider some
possible cases: 7
a) If g1 and g2 have the form p; y(t) — pn(t), then whether or not their leading coefficients are equal
depends only on the type of the original family and the choice of py (and not on h).

b) If ¢; has the form p; y(t + h) — pn(t), while g2 has the form p; n(t) — pn(t), then their leading
coefficients can be equal in only two possible cases: if the polynomial py has degree strictly larger
than the degree of both p; v and p; n (this depends only on the choice of py, not on h), or if the
polynomials p; (¢t + h) and p; y(t) have the same degree (bigger than or equal to the degree of py)
and equal leading coeflicients. In the second case, we must have that p; y(t) and p; n(t) have equal
leading coefficients, which depends only on the type of the original family and not on h.

c) If g1 and ¢2 both have the form p; n(t + h) — pn(¢), then the result follows similarly as in the case
a).

The fact that the degrees of the polynomials of the new family and of their differences do not
depend on N and h can also be established easily using the preceding arguments. We omit the
details. O

Proposition 3.4.8. If Py = {p1n,....DkN} is an ordered polynomial family, then there ezists a
polynomial py € Py, such that for all, except at most one value of h € Z, the polynomial family
P],V,h = (pn,h)*Pn has type strictly smaller than the type of Py and its leading polynomial is the
polynomial p1 n(t + h) — pn(t).

Proof. We describe the operation that reduces the type. At each step, we choose a polynomial py € Py
that has minimal degree in the family. For an h € Z, apply the van der Corput operation. This forms
a polynomial family

Py =A{pin(t+h) —pn(t), ... (t+h) —pn(t), piN(t) —pN(E), o pen(t) —pn ()} (3.14)

and choose p1 n(t+h) —pn(t) to be the new leading polynomial. We distinguish between some cases:

a) Assume that the polynomials p; y and py y have distinct degrees. Then, choose pn = pg n,
which by the ”"ordered” assumption has minimal degree. We notice that the polynomial py y(t + h) —
pn(t) has maximal degree in the polynomial family. We check that the type of the polynomial family
is reduced. Indeed, if the degree of py n(t) is d’, then the number w/; is reduced, while all the numbers
w; are left unchanged for ¢ > d'.

b) Suppose the polynomials p; x and py y have the same degree and not all leading coefficients in
the family Py are equal. In particular, we may assume, without loss of generality, that this holds for
the polynomials p; x and py n. Again, choose py = pi n. Then, the polynomial py n(t + h) — pn ()
has maximal degree in the new polynomial family. In addition, the number wy is reduced, which
means that the new family has smaller type than the original.

c¢) Finally, assume that all polynomials have the same degree and the same leading coefficient. We
choose again py = pi,n. The polynomial p; n(t+h) —pn(t) has maximal degree equal to d —1 in Py,
except possibly for one value of h € Z (to see this, we can work similarly as in the proof of Corollary
3.4.7). Also, the family P}, has smaller type than Py, since it has degree at most d — 1. ]

While for a given type W there are infinite types smaller than W, it is straightforward to see that
a decreasing sequence of types is eventually constant. Therefore, the type-reducing operation that we
did above will eventually terminate to a type of degree 1, namely we will reduce our problem to the
linear case, which we have already established. To summarize all of the above, we have the following;:

Corollary 3.4.9. Let Py be a nice polynomial family of degree d, with k polynomials and with type
W. Then, there exists a py € Py, such that the family Py = (pn,h)* Py is nice and has (fived) type
smaller than W for all, except at most Oq (1) values of h.
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Definition 3.4.10. We will call a van der Corput operation (py,h)* Py non-degenerate, if the poly-
nomial py € Py 1is such, that the conditions of Corollary 3.4.9 hold.

Namely, the polynomial py must be chosen, so that the resulting family has type independent of
N, h, provided that N is sufficiently large and h takes values outside a set of at most Oy (1) elements
(here, this notation refers to the same asymptotic constant appearing in the statement of Corollary
3.4.9). In view of the above corollary, we deduce that there always exists a non-degenerate van der
Corput operation. We will denote a non-degenerate van der Corput operation simply by (pn)* Py to
indicate the independence on the parameter h.

We are now ready to finish the proof of Proposition 3.4.5:

Proof of the higher degree case. First of all, we shall explain how we will choose the parameters t, s.
These depend crucially on how the van der Corput operations are used (and there are possibly many
ways in which the successive van der Corput can be carried out), which may lead to ambiguity.

Let W = (d, wg, ..., w1) be the type of the given polynomial family. We say that a triplet (d’, k', W’)
can be reached by the triplet (d,k, W) if there exists a sequence of non-degenerate van der Corput
operations that produces the families

Pin=(qnN)PN,....Pon = (@.N)"Pr-1n,

where the family Py n consists of k" polynomials, has degree d’ and type W'.

Observe that the triplets that can be reached by the original triplet (d, k, W) are finitely many in
number, since there are only finitely many choices (depending on d,k, W) for each polynomial g¢; v
at each step. In particular, they all have degrees at most d, types strictly smaller than W and the
number £’ can be bounded by a function of (d, k, W), since each van der Corput operation at most
doubles the number of polynomials in a family and this operation can occur finitely many times as
well. We also remind the reader that we have already established our claim for all polynomial families
of degree d = 1 and will serve as the base case of our induction).

Let Sq%w be the set of triplets that can be possibly reached by (d, k, W), which is a finite set. We
will use induction by considering that our claim holds for all triplets in Sy w and we will show that
the claim holds for families corresponding to our original family Py that corresponds to the triplet
(d,k, W).

Fix such a triplet (d’, k', W’) and define t(d’', k', W'), s(d', k', W’) to be the numbers appearing in
the statement of Proposition 3.4.5. Namely, if the nice ordered family

QN ={a1,N, - qw N}

has degree d’ and type W', then

2t(d’ k' W’

sup || nNHT % (n szNH <Ld k' W

|Cn,N|§1 0<n<LN

1
TS

heYlls(@ k" W]

[ TI  wlAentmlheclelp v dp| +on(1), (3.15)

e€([s(d" k' \W')]]

me[—M,M)] t(d’ k' W)

where we are being vague on the dependence of the polynomials A, x on the parameters (d', k', W)
and the family () in this relation, since this will not concern us temporarily.
The number ¢(d’, k', W’) is the number of times we apply the van der Corput inequality in order

to bound the left-hand side by the quantity on the right-hand side. Now, we define

ty = max t(d, K, W’

0 — (d’k’W’)eSde ( sy vy )7
which, of course, is a parameter that depends only on (d,k, W). Assume that the number ¢y corre-
sponds to a family (). Then, it is obvious that () can be reached by the original family Py in only

one step. Indeed, if there was a another family in the sequence of van der Corput operations starting
from Py to Qu, then this family would have a strictly larger parameter ¢(-) associated to it than ¢g.
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Assume that the family @y has the triplet (d’, k', W’) associated to it. Although the parameter
to is well defined (and depends only on (d, k, W)), the parameter s(d’, k', W’) may not be, because
there may be another family @)y which has the same value ¢ for the first parameter, but different for
the second. In this case, we simply take Qx to be the one for which the parameter s(d’, k', W) is also
maximized (denote this simply by s from this point onward). Obviously, we have that s depends only

n (d,k, W).

For the family Qu constructed above, we can write Qn = (pn)* Py for some py € Py. Without
loss of generality, assume that py = py n (the case where py = p1 y is similar).

We apply the van der Corput inequality to get

locEs, S DT
- =1

1

2t0

k
lpin(ntm)| ¢ plpin(n) | o
v ImISM‘OgnELN cmm,Ncn,NjH T fin T Fin dp| +on(1). (3.16)

We compose with 77 P¥ ()] in the above integral, so that

k

pi,N(ntm) | ¢ p|pin(n)|F _

OSnIES:LN Cn+m7NCn,NJ‘1_[l TL N JfZ,N TL N Jfl,N d,u —
1=

k
— |pin (ntm) | —lpn(n)] £ plpin(n)|[=lov(M)F o 7, —
OSELN Cn+m,NCn,N f H T fin-T fin dp

=1
k
E Cn—f—m,NWf H TLPi,N(n+m)_PN(n)J +e1,n,i,m,N fin - TLpi,N(n)_PN(n)J +e2n,i, N fin du,
0<n<Ly e
1=

where the numbers ej ,,; m N and ez, ; v take values in the set {0, £1}. We use the Cauchy-Schwarz
inequality and then use Lemma 3.2.1 to bound the absolute value of the last quantity by a constant
(depending only on k) multiple of the expression

k—1
|pi.n (ntm)—pn(n) | ¢ | pin(n)—pN(n) | 77
2 e, eI ot !

7 Lpr,n (nm) —pie e (n) | fl/c,NHLZ(“) + on(1)

for some 1-bounded functions f] x = fi,n, f5 v+ - f5. - Recall that we chose py = pg,v. The family
of polynomials

PN = Ap1in(t+m) = pen(t), o, DN (E+m) — pren (1), prv(t) — e (), s P18 () — prov (1)}

is nice and has (fixed) type W’ < W independent of m for all, except at most Oy (1) values of m € N
(it has the same triplet (d', k', W’) of parameters as the family Qy above). Let @ be this finite set of
"bad” values of m and let

S(P],V,m) = {ull,m,Nv ) u;v’,m,N}
be the leading vector of P]’V’m, where k' < 2k — 1. For all m ¢ @, we use the induction hypothesis to
deduce that

k—1
sup H E ¢ N( H 7PN (ntm)—pn (n) ] fin

T, s
len,n|<1 0SRSLN i=1

TLpi,N(”)—pN(")Jm).

Tka,N(t+m)7pk N fk) NH <<k d Wl

f H T(Zrsicw Pestm >9vm,NJ+hé<c'é'fl,N> du| +ox(1) (3.17)
([s]]

+ Z [ M,M]t

he[[Y m17 L
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for a finite set Yy that depends only on d’, W' and &’ (i.e. d, W and k). We will now set the parameter
t =t(d,k, W) to be simply to + 1.
We also observe that our induction imposes that the polynomials

Ag,N,m(mla ) mt) = Z péj(ml, ceny mt)’LL;,m,N

1<j<k!

are non-constant and pairwise essentially distinct for any (non-zero) values of the leading vector
{u’lm N u;e’,m, ~ ) and that all the polynomials p, ; are at most linear in each variable. In addition,
we claim that

Ac Nm(ma, ...omy) + Agr N (ma, ...,my) = Agp o N(ma, ..., my) whenever e+¢e €l[s]] (3.18)

(we have seen that all of the above are true in the linear case). These are the properties i)-iii) in
Proposition 3.4.5.
All the u; m.n have the form described by Lemma 3.4.6. Therefore, we can write

Pej(ma, ..., mt)u;’m’N = p’lég(m, M, oy ) Ug N +p/27§’£l(m]_, ey M) Ugr N - (3.19)

In order to describe the form of the new polynomials p _ ,, pf . ,, We split into cases depending on the
form of u,,  (cf. Lemma 3.4.6):
a) If u;mN is equal to some uy y for 1 < ¢ <k, then we have pé’g?e, =0 and

pll,g,e(m7 mi, ..., mt) - péj(m17 veey mt)

(thus p} _ ,(ma,...,my) is constant as a polynomial in m).
b) If u},, v is equal to dmuy v (£ = 1), then we have again p, _, = 0 and

p’lél(m,ml, ymy) = dmp; j(ma, ..., my).

¢) In the final case that u;mN = dmuy N +up N for some ¢/ # 1, then we have p/2,§,f/ = pej(mi, ..., my)
and
p’lél(m,ml, ymy) = dmpg j(ma, ..., my).
Therefore, the new polynomials py . ¢ and py . ¢ are at most linear in each of the variables my, ..., m4,
as well as the new variable m. By grouping the terms corresponding to the same uy y, we can rewrite

/
E DPe,r (mb ) mt)urm%N = § QQ,r(m7 M1,y mt)ur,N
1<r<k’ 1<r<k

for some new polynomials g ;.

Claim 1. The new polynomials » 1 ,.<j Ger(, M1, ...y me)ur N satisfy conditions i), ii), iii) and iv)
of Proposition 3.4.5, for any (non-zero) values of the u, y.

Proof of the Claim. The fact that they are non-constant is trivial, since otherwise one of the polyno-
mials

/
E : p@ﬂ”(mlv s mt)ur,m,N
1<r<k/

would be constant, which is at odds with the induction hypothesis. Assume that condition ii) fails for
two £1,€2 € [[s]]. Regarding these two polynomials as polynomials only in (m1,...,m;), (3.19) would
give that the polynomials

Z Pey (M, ..y mi)uy,,, v and Z Pegr (M1, ooy M) Uy s
1<r<k’ 1<r<k’
are not essentially distinct, which is false by the induction hypothesis. Therefore, we have established
both i) and ii).
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Now, we want to prove an analogue of (3.18) for our new polynomials. But this follows by (3.19)
(the new polynomials are just a rewritten form of the A, n). This establishes that the new polynomials
satisfy condition iii) in the statement of Proposition 3.4.5.

Finally, we are going to prove that the new polynomials ¢, ; satisfy condition iv) of Proposition
3.4.5. Fix a € € [[s]]. We will assume that all ¢ ; are non-zero and we will show that they are linearly
independent (if there are identically zero polynomials among the ¢, ;, we proceed similarly by ignoring
these polynomials). It suffices to show that if aq, ..., a; are real numbers, such that

(11Q§71(m,m1, "'7mt) + o+ akqg,k(m7mla ceey mt)

is the zero polynomial, then all the numbers a; are zero. Recalling the form of the ¢, ,, this becomes
a linear combination of the form

a1 Py c(m,mq,...,my) + Z bipei(mi, ..., my) (3.20)
i€lh

for some I; C {1,2,....,k’} and b; € {aa, ...,a;}". In addition, the polynomial P . has the form

dm Z Peji t Z Deji

i€l 1€13

for some o, I3 C {1,2,....,k'} with 1 NI = () and I; N I3 = 0. We argue by contradiction. For m = 0,
the polynomial in (3.20) must be identically zero and this easily yields that all the b; must be zero
and that a1, 15 Pe,i 1s also the zero polynomial. The first relation implies that ao = ... = a = 0
by the induction hypothesis, while the second implies that either a; = 0 (in which case we are done),
or I3 = () (since the p,; are linearly independent by the induction hypothesis). If I3 = (), then (3.20)
implies that the polynomial

ardm Z De,i

icls
is the zero polynomial. This implies that a; = 0 or Iy = (). However, we cannot have Iy = I3 = (),

because that would imply that the polynomial ¢, ; is identically zero, which is absurd (since we assumed
that we have already discarded the zero polynomials among the ¢, ;). Our claim follows. O

Combining all of the above we rewrite (3.17) as
k—1

sup ‘ E Cn,N( H T{I?i,N("'f‘m)—pN(n)J fin- Tl_pi,N(n)_pN(n)JH).

e, n|<1 0SnSLy

=1
_ 2tp+1
Tlrentm—pen®] g 12(n) SdkW
1
- E ‘ TLZISTSI@ Qe (M1 it Y, | Hhe Clel d 1).
M+ Z B f H (C¥'f1n)dp| +on(1)

he[[Yo]] e€[[s]]

We use the above bounds for all —M < m < M in (3.16). The possible error coming from the bad
values of the set @) can be absorbed by an Og;(1/M) term. Finally, we get

k
H E Cn,N H TLpi’N(n)J fz',NHi;(#) <<d,k,W
=1

0<h<Ln
1
2 i E ] [ TL TErsrssternmomuen (gl i -+ on (),
M Im|,|m1l,...,|m¢| <M
he([Yo]] e€|[s]]
which is what we wanted to show. O

"Observe that each one of the numbers as, .., ax appears in the set {b;,i € I} (maybe with multiplicity), because we
have assumed that each polynomial gc ¢, (¢ > 1) is not the trivial polynomial (otherwise, we ignore it).
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3.5 Approximation of Hardy field functions

3.5.1 The sub-classes S(a, k)

We have already established Proposition 2.1.5 that can be used to approximate Hardy sequences in
appropriate short intervals. In the proofs of the main theorems, we need to do the above approximation
for several Hardy field functions in tandem. In order to achieve this, we will need to extend the
aforementioned proposition to hold for several functions.

We introduce some terminology first. Let a € H be a strongly non-polynomial Hardy function such
that a(t) > t°, for some § > 0. Namely, we exclude sub=fractional functions. For such a function a
and k € N sufficiently large (it is only required that a(®)(t) — 0), we define the subclass S(a, k) of H
as

S(a,k) ={g € H : |a® ()75 = g(t) < la*D(e)7FT),

where we recall that the notation g(¢) < f(¢) means that the limit tlim |f(t)/g(t)| is non-zero. Note
—00

that every g € S(a, k) is a sub-linear function, that is g(¢) < ¢. Some very basic properties of the
classes S(a, k) are established in the following lemma.

Lemma 3.5.1. Let a € H be a strongly non-polynomial function with a(t) > t°, for some § > 0.

i) The class S(a, k) is non-empty, for k sufficiently large.

i1) For any 0 < ¢ < 1 sufficiently close to 1, there exists kg € N, such that the function t — t¢ of H
belongs to S(a, ko).

i11) The class S(a, k) does not contain all functions of the form t — t¢, for ¢ sufficiently close to 1.

Proof. 1) This follows immediately from Proposition 2.1.5. We can actually show something stronger,
namely, that if a(t) > t for some 0 < § < 1, then

|+ (4]~ T

a5~

which means that the functions at the "endpoints” of S(a, k) differ by a fractional power. This last
inequality follows by combining the relations

)
> R (3.21)

Ll

ad® @) >tf* D) and oW (t) > 107k

ii) This is contained in Proposition 2.1.5.

iii) It suffices to show that there exists ¢ € [0, 1] such that |a(® (t) ]_% < t¢. For the sake of contradiction,
we assume that this last inequality fails and use the lower bound from Lemma 2.1.3, to deduce that

a(t)

7R s () - —2
®) tklog?F ¢

for every 0 < ¢ < 1. This, implies that a(t) < th(1=) 1og%* ¢ for all 0 < ¢ < 1, which contradicts the
hypothesis that a(t) is not sub-fractional. We remark in passing that this argument also indicates
that the integer k can be made arbitrarily large by choosing ¢ to be sufficiently close to 1. O

In essence, the claim implies that the classes S(f, k) form a ”partition” of the subclass
A={g(t)>1t% 36>0, with g(t) < t'7%}

for some ¢ > 0. That means that any sub-linear function that grows approximately as a (sufficiently
large) fractional power must be contained in the union of the S(a, k). This union however does not
contain functions that are "logarithmically close” to linear functions, such as t(logt)~!. Although
inaccurate, it is instructive to imagine the classes S(a, k) as (disjoint) intervals on the real line. For
example, if S(a, k) = {g(t): vVt < g(t) < t?/3}, then we can think that S(a,k) is represented by the
interval (3, 2).

The following proposition relates the behavior of the subclasses S(a, k) and S(b,¢) for different
functions a,b € H.
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Proposition 3.5.2. For any two functions a(t),b(t) € H as in Lemma 3.5.1 that also satisfy b(t) <
a(t), we have the following:

i) The relation S(a, k) = S(b,k) holds for some k € N if and only if a(t) ~ b(t).

i) If S(a, k) N S(b,€) # O, then k > ¢. In addition, if the function (a(k)(t))fi is contained in
S(b,¢) and a # b, then k> ¢+ 1.

iii) There exist infinitely many pairs of integers (k,?), such that S(a,k) N S(b,£) # 0.

Proof. 1) It is a straightforward application of L’ Hospital’s rule.

ii) Since the given intersection is non-empty, we must necessarily have |b(®) (t)\_% < Ja+D) (t)\_k%l
Suppose that k < ¢, so that we have the inequalities |b(£)(t)|_% = |a(k+1)(t)|_%+l < la® (t)|_%, which
implies that a()(t) < b (t). Because we also have b(t) < a(t), we can easily deduce that a(t) ~
b(t) using the fact that both of these functions are strongly non-polynomial. Thus, the intersection
S(a, k)N S(b, ) is non-empty if and only if k¥ = ¢, which is a contradiction.

For the proof of the second part, we use immediately the fact that k& > ¢, which follows by the first
part. Suppose that k& = [ and we shall arrive at a contradiction. If (a(*) (t))_% € S(b, k), then, we must
have (a(*) (t))_% = (b (t))_%, which implies that b(*)(t) = a(*)(¢). This contradicts the assumption
that a(t) > b(t) (apply L’ Hospital’s rule k times).

iii) For any ¢ close to 1, we can find k, such that the function ¢¢ belongs to S(a, k) (this follows from
the second statement of Lemma 3.5.1) and similarly for the Hardy function b. Then, the intersection
S(a, k) N S(b,¢) is non-empty. Taking ¢ — 1 from below and using the third statement of Lemma
3.5.1, we can find infinitely many such pairs. O

Remark. It is straightforward to generalize the third statement of the above proposition to the case
of k distinct functions aq, ..., a; in H. We will use this observation in our arguments to find a function
L in the intersection of these classes. Note that our previous discussion implies that for such a function
L(t), all the involved functions aq, ..., ar will have a polynomial expansion on intervals of the form
[N, N + L(N)] and this will play a crucial role in our approximations.

3.5.2 The subclasses Sg,,(a, k)

We can similarly define analogs of the classes S(a, k) for functions with small growth rate, that is
sub-fractional functions. Let a € H be a sub-fractional function such that logt < a(t). If & > 1, we
can define the class

Semi(f.k) = {g € H: |fP @)% < g(t) < |f(k+1)(t)|_ﬁ1}‘

The properties of Proposition 3.5.2 proven for the classes S(a, k) are carried verbatim to this new
setting. The major difference is that now every function g € S (f, k) dominates all functions of
the form ¢! for § > 0 (an example is the function ¢/logt). In particular, Sgu(f,k) has trivial
intersection with the classes S(h,¢) defined above for any integers k, ¢ and appropriate functions f, h.

As an example, let us consider a fractional power t® with 0 < § < 1 and two functions f,g € H
such that f(t) > ¢ for some ¢ > 0, while logt < ¢(t) and g is sub-fractional. A typical case is the
pair (t3/2 log?t). We know that if § is close enough to 1, then the function ¢° will belong to S(f, k) for
some k € N. Using approximations similar to the ones in the previous subsection, we can see that the
sequence f(n) becomes a polynomial sequence of degree k on intervals of the form [N, N + N ‘5]. On
the other hand, the sequence g(n), restricted to the same interval, is on(1) close to the value g(INV),
which means that it is ”essentially” constant on this interval. This difference in behavior leads to some
added complexity in our proofs, since some of our functions may be approximated by polynomials,
while other functions become constant.

On the other hand, a function a € H with a(t) < logt, when restricted to intervals of the form
[N,N + L(N)], is ony(1)-close to the value f(N) for any sub-linear function L(t). Functions of this
form always collapse to a constant when restricted to intervals of the above form.

We will not use of the classes Sgpi(a, k) in the main proof. These classes need to be used only
in the case when all the functions in Proposition 3.1.1 are sub-fractional. The arguments are very
similar (and simpler) to the case when we have both sub-fractional and super-fractional functions,
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with the only difference being the initial choice of the short interval. We only mention them in order
to highlight that they share the same properties as the S(a, k).

3.6 The sub-linear plus polynomial case

In this section, we establish a particular case of Proposition 3.1.1, which we shall also use in the general
case in the next section. Let S denote the subset of H that contains the functions with sub-linear
growth rate and P C H denotes the collection of polynomials with real coefficients. Then, we let S + P
denote the collection of functions that can be written as a sum of a function in S and a function in P
(or equivalently, linear combinations of functions in S and P).

Let aq, ..., a; be a collection of functions in & + P. Then, we can write a; = u; + p;, where u; € S
and p; is a polynomial. We will also define the degree and type of the collection a1, as, ..., ar using a
similar notion to the degree and type of a polynomial family defined in the previous section. More
precisely, since we do not impose that the polynomials p, ..., pr are essentially distinct, we choose a
maximal subset of the polynomials p; consisting of non-constant and essentially distinct polynomials
and we define the degree and type of the collection aq,...,ar to be the degree and type of this new
subfamily of polynomials, respectively. Similarly, we define the leading vector of ai,...,a; as the
leading vector of the maximal subfamily that we defined above. We can always choose this maximal
subset to contain the polynomial p;. We define the cardinality of this new maximal subset to be the
size of the collection ay, ..., ag.

Proposition 3.6.1. Let M be a positive integer and let ay, ..., ax be a collection of functions in S + P
with degree d, type W and size k' < k. Let (c1,...,cp) be the leading vector of the family {a, ..., a}.
In addition, assume that a1(t) > logt and ai(t) — a;j(t) > logt for j # 1. Then, there exist positive
integer s,t, a finite set Y of integers and real polynomials p.; in t variables, where ¢ € [[s]] and
1 < j <k, all depending only on d, k', W, such that, for any measure preserving system (X, u,T) and
function f1 € L*(u) bounded by 1, we have

2t
sup sup H E ¢, Ttal(n)Jfl.”_.Tlak(n)Jka oy LAk W
1fall ool il 1 fen]<1  1SREN L)
1
—+ > E T o e g+ on (1) (322)
me[—M,M|t
heylls]l e€|[s]]

where
k/
Ae(m) = Zpg,j (m)c;.
j=1

are pairwise essentially distinct polynomials.

Observe that the iterates inside the seminorm in (3.22) are real polynomials in several variables. We
can take M — +oo and expand these seminorms to arrive at an iterated limit of polynomial averages.
It is possible to bound these averages by a suitable seminorm of the function f; using the results in
[38] and get a simpler bound in (3.22). This necessitates that we substitute the Ogy, 4 w(1) implicit
constant by an Oy, .4, (1) constant and this is insufficient for our purposes in the next section, where
we will have to apply Proposition 3.6.1 for several collections of functions simultaneously. However,
in view of the above discussion, we can deduce the following;:

Corollary 3.6.2. Let ay,...,ar be a collection of functions in S + P such that ai(t) > logt and
ai(t) —a;(t) > logt for j # 1. Then, there exists a positive integer s such that, for any measure
preserving system (X, p, T) and 1-bounded function f1 1 Z4(X), we have

lim sup sup E ¢ Tloa(m)] fioons Ttak(n)Jfk = 0.
N5 |l el <t fen]€1 ngngN n HL2(N)
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We analyze the conditions imposed on the functions ay, ..., ar more closely: write each function a;
in the form a;(t) = u;(t) + pi(t), where u; € S and p; € P. The condition a;(t) > logt implies that
either u(t) > logt or p1(¢) is a non-constant polynomial. Similarly, the second condition implies that
either uy(t) — u;(t) > logt or pi(t) — p;(t) is a non-constant polynomial.

Furthermore, we can make one more reduction. Writing again a;(t) = u;(t) + p;(t) as above and
using the same argument as in the discussion following the statement of Proposition 3.1.1), we may
assume that the function u; has the largest growth rate among the functions u;.

In order to establish the main result of this section, we will also use the following proposition,
which is special case of Proposition 3.6.1.

Proposition 3.6.3. Let ay,...,ar be sub-linear functions in H and assume that all the functions
ap,ai —ag, ...,a1 — ax dominate logt. Then, for any measure preserving system (X, pu, T) and function
fi1 € L*®(un) bounded by 1, we have

lim sup sup sup E ¢, TlaMlyp . oplat]p <k N f1ll2k- (3.23)
N=400 [all gl il 1 e <1 I e iz

Remark. The proof that Proposition 3.6.3 implies Proposition 3.6.1 corresponds to Step 1 in example
b) of this chapter, while the proof of Proposition 3.6.3 corresponds to step 2 of the same example.

Proof that Proposition 3.6.3 implies Proposition 3.6.1. First of all, we write each a;(¢) in the form
u;(t) + pi(t) as we discussed above. Our main tool will be to use Lemma 3.2.2 in order to reduce our
problem to studying averages on small intervals, where the sublinear functions u; will have a constant
integer part.

Suppose that not all of the polynomials py(¢), ..., pk(t) are constant, since that case follows from
Proposition 3.6.3 (that means the family has degree > 1). We can assume, without loss of generality,
that p;(0) = 0 for all i (the constant terms can be absorbed by the functions wu;). Therefore, let
L(t) € H be a sub-linear function to be chosen later. In addition, we choose functions fa n, ..., fz,n SO
that the average in the left-hand side of (3.22) is 1/N close to the supremum. We want to bound

lur(n)+p1(n)| ¢, . olur(n)+pr(n)] 2t
1<r<R |c§}:|pgl TSnSIE—l-L(T‘) Cnr I AT fk’RHLQ(u)

for some integer parameter ¢, which we will choose later to depend only on the quantities d, k', W
(thus, when applying Lemma 3.2.1 below to remove the error terms in the iterates, we will always
have that the implicit constant depends only on d, k', W).

Recall that we have reduced our problem to the case that the function u; has the largest growth
rate among the functions u;. Now, we want to choose the sub-linear function L(t) € H so that the
functions u;(n) restricted to the interval [r,r + L(r)] become very close to the value u;(r). To achieve
this, it suffices to take L(t) € H such that

1< L(t) < (uj (1))~

To see that such a function exists, we only need to show that (u)(t))~! = 1 which follows easily from
the fact that uj(t) < t. Observe that for every i € {1,2,...,k} we must have L(t) < (u}(t))™!, since u;

7
has maximal growth among the functions u;. For every n € [r,r + L(r)], we observe that

uin) —uw(r) <n-—r max u;x .
jus(m) — w(r)| < (n =) e ol ()

Since |u(t)] \( 0, we have that for r large enough
lui(n) — ui(r)] < L(r)ui(r) = o.(1), n € [r,r + L(r)].
Therefore, for r sufficiently large we have

lui(n) +pi(n)] = |uwi(r)] + [pi(n)] + €in,  n € [r,r+ L(r)],
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where e;,, € {0,£1, £2}. Therefore, our original problem reduces to bounding the quantity

lur () +Lpr(n) | +ern £ pluk()]+pe(0) ] +enn 2
1§IrE§R |Su|pS 1 rSnSIE—&—L(r) enr T fi-..-T fi.r|| L2y (3:24)

Using Lemma 3.2.1, we may reduce to the case that the error terms e;, in the iterates are all equal
to zero.

Let S be the set of those i € {1,...,k} for which the polynomial p;(¢) is equal to the polynomial
p1(t). Reordering, if necessary, we may assume that S = {1,...,ko} for some ko < k. Note that the
original condition then implies that ui(¢) — u;(t) > logt for each 2 < i < ky. We rewrite (3.24) as

ko k
lp1(n)] Lui(r)] ¢, Lus () J+Lps(m)] £ )12
ISITESR Sub HrSnSIE:+L(T) o g (HT fZ’R) . H s fl’RHLQ(’u) a
len,r|<1 i=1 i=ko+1
ko k .
S lp1(r+h)) Lui(r)] ¢, Lui(r)]+pi(r+h)] £
1<I7~E<R Sub 0<hI<ELr Cr T2 (HT fir) H T fz,RHLQ(H) <
STSR ey <1 USRS (r) i=1 i=ko+1
ko k .
sup sup ‘ E  chy Tlpi(r+h)] (H plui(r)] fir) H TPi(r+h)] fiHIﬂ 7
LSPSR | ]| ool frll oo <1 lon <1 OSPSL) i=1 i=ko+1 "

(3.25)

where f1 g = f1. We also write F, g := Hfil Tlui(r)] fi,r for brevity.

We can assume that the polynomials p;(r + h) are non-constant (otherwise, we just ignore the cor-
responding iterate in the last average). In addition, we may assume that they are pairwise essentially
distinct, because if two polynomials are equal, we can combine both of these iterates into a single
iterate (this operation does not change the type or leading vector of the given collection of functions).
Note that under these assumptions the family of polynomials

P, = {pl('r + h),Pko-s—l(T + h)a "'apk(T + h)}

is a nice family of polynomials® in the variable h (the leading coefficients of the polynomials and their
pairwise differences are all constant sequences) and has type and leading vector equal to that of the
original collection {p1, ..., pr}. Therefore, we can apply Proposition 3.4.5: there exist positive integers
to and s, a finite set Y of integers and polynomials p, ;j where € € [[s]] and 1 < j < k such that

k
) 2to
sup sup E  chr TLpl(TJrh)JFT,R H TUDZ(7“+h)JfZ.HL2 L dp W
i |l il <1 mlﬂ 0<h<L(r) st )
— TA) [ +he Clel g Py g ( 1), (3.26
ey S T At o, o

heYlls] e€|[s]]

where

Ac(m) = Z Pe,j(m)c;

1<j<k!

and (c1, ..., cg) is the leading vector of the initial family (here we have k' < k — kg + 1).
Using this in (3.25) with ¢t = g (which depends only on d, k', W as we claimed in the beginning),
we deduce that our original average is bounded by Og 1 w (1) times

1

— E

M +1§r§R Z
heyllsl

f H T | Ac(m +h§(c‘§‘Fr,R) dp| +og(1).

me t
e celis])

8There is the possibility that the polynomial p;(n) is constant (and so is the polynomial p1(r 4 h)) or that it does
not have maximal degree (which would prevent the use of Proposition 3.4.5, which was stated for ordered polynomial
families). However, since we have assumed that not all of the polynomials p; are constant, then we can use the same
argument in the discussion after Proposition 3.1.1 (where we reduced our problem to the case that the first function has
maximal growth rate) to replace the polynomial p1 (r+ h) by p1(r+h) —p;(r + h) for a non-constant polynomial p; (r + h)
among pry+1(r + h), ..., pe(r + h).
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Using the definition of F). r, we rewrite this as

fTLm(T)J( H T{Ag(m)JJrhg(Clé\fl))
EGH 1l

HTL“Z 'r)J H T Ae +h5 C\a\fl d#‘ —}—03(1).

e€[s]]

1

— E E

M+1§r§R Z me[—M,M]to
heyllsl]

Now, we consider two cases:

Case 1: Firstly, assume that kg = 1. Then, the above quantity can be rewritten as

1

4 L1 (r)] | Ac(m) | +he (ple|
M +1§I7"E§R Z me|[— MM]to fT H T (C=A) d,u)—i—oR
heylls]] e€l[s]]
1
Tt - [ I wlactlte(cl 1)) dp| + or(1).
neylish ™ g€][s]]

The result follows immediately, since

[ TT rlaemlenecel pyy ap| < ) TT LAl +he (el ) flagsa.
e€([s]] e€([s]]
Case 2: Assume that ky > 1 and we want to bound

Jortm oI rlemleeed )
56[[ 1l

HTLW 11 Tt [ the (Clel g, 2)) dp| + or(1). (3.27)

e€([sl]

1

E
M+1§r§R Z mel- MM]tO
heyllsl

Our original hypothesis implies that the functions u; — u; (where 2 < i < ky) dominate logt. Since u;
was assumed in the beginning to have the biggest growth rate among the functions wu;, we must also
have u;(t) > logt.

We take the limit as R — 400 and rewrite the quantity in (3.27) as

i E lui(r)) [ Ac(m) | +he (ole]
T Bl | e I rm i

ko
[T7 I A= +he Clel f, 1)) du)-
i=2 e€([s]]

Applying the Cauchy-Schwarz inequality, we deduce that

‘ITLUI(T)J H TLA (m) | +he C|e|f1 HT ul(T)J H T m)J+hE(C|e|f R) du‘ <

1<r<R

ee[sl] i=2 ee[[sl]
lui(r A e(m) | +he (el
(2, S8t ETH[”S J+he kel y))
g€|ls

ko 1/2
HSLui(r)J( H SLAé(m)Hhé(C'é'F@R)) d(p x M)) / ’
i= ec[s]]
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where S =T x T, Fi = fi® fi and F, g = fir ® fir.- A final application of the Cauchy-Schwarz
inequality bounds the last quantity by

H E SLu1(r H S (m)]| +h€(C|E|F1 HSLW H S|_A (m) | +hE(C|E|FR Hl/z

1<r<R L2(uxp)”
T €([s]] =2 e€[s]]

Applying Proposition 3.6.3, we deduce that the limsup of this last average is bounded by Oy, (1)
(which is Og(1)) times

I T1 LAt [ the (Il Ry ) g rr < 1] 1T LA the (Il Fy ) g
e€([s]] e€([s]]
Our original problem reduces to bounding
T 2 e B IT sH € B 152 + 0n (1),
hey (=) e€([s]]

which is smaller than

v Z ||| 11 T LAt e (Clel ) i1 7 + 0R (1)

heY(ls] e€([s]]

and the conclusion follows. O

Proof of Proposition 3.6.3. Using the arguments after the statement of Proposition 3.1.1, we may
reduce to the case that a;(¢) has maximal growth rate among aq, ..., aj.
We induct on k. In the base case of the induction, we want to show that

li F Tlai(n)] .
menp w2, Fey T iz < WAl

Due to Lemma 3.2.2, it suffices to show that

li E lea()] < 3.28
Nosr06 e w1 HNSnSN+L(N)C”’N filagy < 11l (329

for some suitable sub-linear function L(t) € H. Since a;(t) > logt, we conclude that
jay ()] < Jaf ()71
by a simple application of L” Hospital’s rule. We choose the function L(t) to satisfy
jay (8) 7" =< L(t) < [af(8)] 2.
Therefore, for every n € [N, N + L(N)], we can write
ai(n) = a1 (N)+ (n — N)a}(N) + on(1),

which in turn implies that, for N sufficiently large, we can write

lai(n)] = Lal(N) +(n— N)a’l(N)J +en.N,
where e, ny € {0, £1}. Substituting this in (3.28), we want to prove that

limsup sup H E cn,NT Lal(NH(n N)a J+6"Nf1”L2(M)<<mf1”‘2-

N—+00 |, y|<1 N<n<N+L(N)

Using Lemma 3.2.1, we can reduce our problem to

limsup ~sup E  cpnT o Mthai(M)] g < |l f1l2-
imeup sup_ B g < A



This bound can be proven using the change of variables trick that we have seen in the first example
in Section 3.1. However, we will establish our assertion with a slightly quicker argument below.

We shall apply the van der Corput inequality. We fix a positive integer M and choose the quantity
My = ||M/d{(N)|]. Tt is easy to check that My < L(N), since L(N)|a}(N)| = +o0o. Therefore, we
can apply the van der Corput inequality to deduce that

HogléEL(N)ch’NTL A Ehai () leL?( <

i E ‘ E 7lan(N)+hay (N) |7 p|an(N)+(htm)ai (N) ] ¢ g 1),
My " Im|<My10<h<L(N) hNCh+mNj fi- fi dp| + on (1)

where the implied constant is absolute (and does not depend on M). We write
la1(N) + (h+m)a)(N)| = [a1(N) + ha} (N)] + |mai(N)| + empnn,

where e, , v € {0,£1}. We rewrite the double average in the middle as
E  GNChimN fﬁ . TLma'l(N)J temhN £ d,u’ <

B
|m|<MnI10<h<L(N)
f T mal(N)J—l—zf dul.

However, note that |ma)(N)| < Myl|a}(N)| < M. Thus, for any z € {0, £1}, we have

2M +1

E ‘ 7T\_ma3(N)J+z d ‘:7 E
" ffl J1du My L PN (

m)| [Ty,

where py(m') = #{m € N: [ma)(N)] = m'}. Since a{(N) — 0, we can easily see that for N large
enough, we must have

1
pn(m’) < ’
ai(N)
Therefore, we have
2M +1 (2M +1)
== - E ) Tm 'tz d ‘ ) .Tm 'tz d ‘<<
oMy + 1jmrent ¥ ffl i du (2My + 1)|a}(N)] |m/|<M ff i dp

T )

\m’\<M ‘

Thus, the square of our original average is O(1) times

> B E T ] on()

2€{0,+1}

for some implied constant that does not depend on the original integer M. Therefore, we take first
N — +o0 and then M — +oo and use the Cauchy-Schwarz inequality to reach the conclusion. This
establishes the base case of the induction.

Now assume the claim has been established for all positive integers less than or equal to k — 1
(for some k > 2). We prove that it holds for k& as well. Since we have assumed that a; has maximal
growth rate, we may reorder the given functions so that we have a1(t) > --- > ax(t). Let ko < k be
the largest integer, such that the function ag, has the same growth rate as a;(¢). This means that all
the functions ay, ..., ay, have the same growth rate. We rewrite our average in (3.23) as

k
| (ai(n)—ay (n)+ar, ()| . lai(n)] £, —
sSup sup T 0 0 fz ' T sz 2 -
1£2llaor sl Frll oo <1 len |<1 1<”<N H 2-:1;:0[“ Fw
k
sup sup ” E 7 Laky (n HT a;i(n) ako(n))J"l‘ei,nfi) H Tlai(n)inHLQ(#) (3.29)

If2llaoseensl il oo ST len] <1 1<nn” i=ko+1
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for some e;, € {0,£1}. Using Lemma 3.2.1, we may reduce our problem to the case that all
the error terms e;, are zero. Note that the function ay,(n) dominates each one of the functions
a1 — kg, -y Gly—1 — Qk,, s well as the functions a;,7 > kyg. Now, we choose sequences of functions
fa,Ns o, fe,n so that the above average is 1/N close to the supremum (we also write fi xy = f1). In
addition, we use Lemma 3.2.2and, thus, it is sufficient to show that

ko
limsup E  sup E ¢, Tl (T rl@m=-anm)] g
Rooo 1SR e, <1 Hrénérwr) ’ (an )

k
[T 7" firll 2 <e Ifillze (3.30)
’i=k20+1

for a sub-linear function L(t) € H that we shall choose momentarily. Namely, we choose the function
L € H to satisfy
Jaky ()] =< L) < laf, ()2

and
L(t) < (' (1)~

for all the functions ¢ of the set A = {a1 — agy, ..., Agy—1 — Qky, Qky+1,---, Ak }- Lo see that such a
function exists, we only need to prove that for any function ¢ € A, we have

(ak, ()™ < (@'(1) 7

and
(aky (1) ™" < Jaj, ()] 712

The first relation follows easily from the fact that ay, dominates all functions in .4 and L’ Hospital’s
rule. The second relation also follows from L’ Hospital’s rule, since logt < ay,(t) < t.

Using similar approximations as in the proof of Proposition 3.6.1, we deduce that for r sufficiently
large, we can write

[Y(n)] = |¥(r)] + ey, for nelr,r+ L(r)]
for every ¢ € A, where ey, € {0,£1}. In addition, we can write
lak ()] = [k, (r) + (n = r)aj, (r)] + eapyn for n € [r,r+ L(r)],

where Capy.n € {0,+1}. Using the argument Lemma 3.2.1 once more to remove the error terms, our
original problem reduces to showing

ko
, g (r)+ha, (1) | | (ai(r)=ae ()] f.
lim sup sup E sup E ch,rT{ ko ko T 0 fi
R=+00 [|fal| s fill oo STLSTSE ey |<1 T OShSL(r) (E )
k
11 TL“i(’")sz‘HLz(M) < [ fill2e- (3.31)
i=ko+1

Since the functions f; are bounded by 1, the last relation follows if we prove that

ko
- \ \ (r)+hat, (r)] ) EARERE)
lim sup sup E sup E ¢ TLakO ko T ko fi
R340 || foll ool il oo STISTSR ey, <1 |0ShSL<T> i (izl Z)HLQ(“)

<k | f1ll2r-

We choose functions fa g, ..., fr,,r S0 that the corresponding average is 1/R close to the supremum.
Write F,. p = HfilTUa"(T)_a’“O(r))J fi,r- We also fix a positive integer M. Repeating the same
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argument as in the base case, we can show that

ag, (r)+hal, (r) 2
0 e 70l <

1
—+ Y ||<MUFTR Tm+zFRdu‘+or1. (3.32)
m

M
z€{0,£1}

Therefore, we have

)-+ha] | (ai(r)—ag ()] .||
sup E sup E cp, TLC”“O ) thag, (r T ko fi) <
1foll ol fill oo <1 ISTSR o, <1 ’0<h<L<> ' H ez
1
~ 4 E ‘ Fop-T™F. 5 d ’ 19 3.33
T e{ozj:}m<M f R R dp| +Og(1) (3.33)
z )

and we want to bound this last quantity by Og(1) times || f1 |2
For a fixed m € [-M, M] and z € {0,+1}, we apply the Cauchy-Schwarz inequality to get

/2
‘IFTR Tm+zFRdu‘<( UFR Tm+ZFRdM‘ )

1<T<R 1<r<R

_ _ 1/2
([ B (FrreFop) (T xT)"*(Fpe Fog) dipx p) - =

1<r<R
( . ko (TXT)Lair “ko J((f ®f ) (TXT)m+Z(f~ ®f7>) d( y ))1/2<
I<r<R -t RS JiR RO [iR X <
ko—1
H1<IF<R H (T'xT) L=k ()] ((sz ® fir) - (T x T)m+z(fz R® fir) )Hi/fuxu
== =1

where f1 g = f1. Note that the functions a1 — ay,, ..., ax—1 — ay, satisfy the hypotheses of Proposition
3.6.3. Therefore, we can apply the induction hypothesis (for kg — 1 < k) to conclude that

ko—1
H1<IF<R H (T x T) |a:(r)—aky (r) | ((H@ fi.r ) - (T x T)m+z(f, R® fl R) )H}//QQMXM Lkg
- = =1

I(Fr ® f1) - (T % T)"(f1 @ FO)llahe—o e

and the last quantity is smaller than || fi - T™% f1[lak,—1,7- Putting this in (3.33), we get

(r)+ha, Lalr —a (T’))J 9
"7 E_sip | B o, 7m0 llei=ar ()] g, <k
[ £2llog el fill oo <1 ESTSE \ch,r\gHOShSL(r) " H i Hmm
1
G 2 E IA-T Al 4 or(1) <
z€{0,£1} Iml<
1
M > 1 - T™F fillak—1,0 + or(1),
2€{0,£1} m L

since kg < k. Taking R — +o0o and then M — 400, we get that it suffices to show that

limsup E |Hf1 T fillok—1 < |||f1|”2k
M—+oc [m|<

for any z € {0,£1}. This follows easily by raising to the 2?*~1-th power and using the Hélder
inequality, as well as the definition of the Host-Kra seminorms. O

71



3.7 The general case of Proposition 3.1.1

In this section we aim to prove main proposition of this chapter. We maintain the notation of Propo-
sition 3.1.1 and we also assume that at least on of the functions aq, ..., ax has super-linear growth. We
also consider the set of functions

S = {al(t),al(t) - az(t), ...,al(t) — ak(t)}

Functions in S dominate log ¢ by our hypothesis. Finally, we assume that not every one of the involved
functions has the form p(t) + g(t), where p € R[t] and g € H is sub-fractional, since this case was
covered in the previous section (it follows from Corollary 3.6.2). In particular, we assume that this
holds for the function aq.

We will use the following decomposition result from [49].

Lemma 3.7.1. [}9, Lemma A.3] Let ay,...,ar, € H have polynomial growth. Then, there exist a
natural number m, functions gi, ..., gm € H, real numbers c; ;, where 1 <i <k and 1 < j < m, and
real polynomials p1, ..., pr such that:

1. g1 <92 < ... < gm,
2. th < gi(t) < thtL for some l; € ZF (i.e. they are strongly non-polynomial) and

3. foralli € {1,2,....k} we have
a;(t) =Y cijgi(t) + pi(t) + on(1).
i=1

Note that the functions g; do not necessarily belong in the set of linear combinations of the ay, ..., aj.
The proof of this lemma can be found in the appendix of [49]. As an example, if we have the pair
{t+13/2 1245/}, then the functions in the above decomposition are {g1, g, p1, po} = {t3/2,15/2 t,%}.

Returning to our original problem, we split the given family of functions into two sets

Ji = {ai: ai(t) <t for all § > 0} and Jo = {a;: 36 > 0 with a;(t) > t°}.
We do the same for the set S of differences:
Si={feS:f(t)y<t’forall d >0} and So={f € S:38>0with f(t) > 1°}.

Observe that the function a; belongs to the sets Jy and Sy due to our assumption in the beginning of
this section.

We will see that the slow-growing functions in sets J; and S; will be approximately equal to a
constant, when we consider averages on small intervals. For the remaining functions, we will use the
Taylor expansion to approximate them. We split the proof into several steps. Steps 1 through 4 of this
proof correspond to step 1 in example a) of section 3.1, while steps 5 and 6 of the proof correspond
to step 2 of the same example. The remaining two steps correspond to step 3 of example a). In Step
8, we will also use the results of the special case of the previous section.

3.7.1 Step 1: Introducing a double averaging

Let L(t) € H be a sub-linear function to be specified later. We can consider a priori functions that
satisfy L(t) < t17¢ for some € > 0 (i.e. we exclude functions like t/logt ). Invoking Lemma 3.2.2, we
see that it is sufficient to prove that

I E E plamiy . oplaml g 1% g 3.34
lf%n—?oliplﬁrﬁRlcjg\pélH?"SnSTJrL(T)Cnn S il 2 (339

for any sequences of 1-bounded functions fa g, ..., fr, g and some positive integer parameter ¢, which will
depend only on the original functions ag, ..., ax. Therefore, when applying Lemma 3.2.1, we can always
assume that the implicit constant (which depends on the exponent 2¢) is an Oy, .. 4, (1) constant.
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We observe that (3.34) follows if we show that

sup E sup E Cron Tl g orlas)] kaQL;(M) (3.35)

1 f2lloo <Lyl filloo <1 ISTER e, <1 r<nsr+L(7)

goes to 0, as R — +o0.

3.7.2 Step 2: Eliminating the small functions of .J;

While in example a) of Section 4 we used the Taylor expansion right at the beginning, it is more
convenient to reverse our steps a bit in the proof.

Assume that the function a; belongs to the set J; (namely, it is a sub-fractional function). Then,
for any n € [r,r + L(r)], we have

lai(n) = ai(r)] = [n = rla;(&)]
for some & € [r,n]. Since |a}(t)| N\, 0, we get
jai(n) — ai(r)] < |L(r)llaj(r)],

which is o,(1). Note that we already assumed that we will eventually choose L € H such that
L(t) < t'7¢, which makes the previous statements valid (see the discussion at the end of the Appendix).
Thus, if r is sufficiently large and n € [r,r + L(r)], we can write |a(n)] = |a(r)] + &, where
ern € {0,1}. Using the argument in Lemma 3.2.1, we absorb the error terms &,, in the supremum
outside of the averages in (3.35).

The iterate corresponding to the function f; has now become constant and we can ignore it. In
conclusion, we have reduced our problem to the case that the set Jj is empty.

3.7.3 Step 3: Concatenating the functions of the set 5

Assume that the function a; — a; belongs to S7. Then, mimicking the arguments of the previous step,
we can write a; = a1 + (a; — a1) where the function a; — a1 is asymptotically a constant in the interval
[r,7 + L(r)]. Then, we can combine the product of all such terms

Tlaly T Tle@ly,

a1—a; €S

into one iterate T'la1(7)] fr (we use again the argument in Lemma 3.2.1 to remove the error terms),
where

fo=f1-TOOIp o700y, (3.36)

where hq, ..., hy are functions in L>°(u) and the functions 6y, ...,6; € H are sub-linear functions that
satisfy
logt < 0;(t) < t°

for all § > 0. In addition, the assumption that the pairwise differences of the functions aq,...,ax

dominate logt¢ implies that
logt < Gz(t) — Hj (t)

for i # j.
Now the original problem reduces to the following: If all the functions aq, ..., a; are such that the
sets J1 and S are empty, then show that the averages

sup sup
[1f2lloos-s 1 fklloo S1{[R1loo s | [heloo <1

E E rlaml o pla@)] g 2 ‘
1SPSR |, 101 renir f Tillz2q,y  (3:37)
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go to 0 as R — +oo, where the function f, is the function in (3.36).

We can repeat the same argument of this step to reduce to the case where a;(t) — a;(t) > t° for
some 6 > 0. Indeed, if the difference a; —a; is sub-fractional, we can combine the iterates corresponding
to these two functions into a single iterate of the form T'%(™]g. for some function g,. In order to
replace g, by a function that does not depend on 7, we move the supremum of the fo, ..., fi inside the
outer average. In conclusion, it suffices to show that

~ 2t
sup E sup sup E cr, Tl £ ople)] g
1B llooseosllhelloo <t YSTSR | fallooens || filloo <1 fernl<1 ‘r§n§r+L<r> o " 1220

(3.38)

goes to 0 as R — +oo, where f, is the function in (3.36) and all differences a; — a; dominate some
fractional power”. Recall that the functions 6; satisfy

logt < 6;(t) < t° for every &> 0

and
logt < Hz(t) - Hj(t).

3.7.4 Step 4: Approximating by polynomials

In this step, we will use the Taylor expansion to replace the functions a; by polynomials in the intervals
[r,7+ L(r)]. First of all, we can use Lemma 3.7.1 in order to write
m
ai(t) = Z ci,j9i(t) + @i(t) + or(1), (3.39)
j=1

where g1 < g2 < ... < g are strongly non-polynomial functions and ¢;(¢) are real polynomials. We
immediately conclude that the function g,, cannot be sub-fractional. Indeed, if that was the case,
then all the functions a; would be a sum of a polynomial plus a sub-fractional function, which is at
odds with our initial assumption.

The o0:(1) terms can be eliminated by using an argument similar to the proof of Lemma 3.2.1. In
addition, we may assume that c¢;,, # 0 (and thus g,, exists in the expansion of a;). This can be
proven by an argument similar to the one in the beginning of Section 3.1 (the same reasoning we used
to reduce our problem to the case that a; has maximal growth rate). Of course, by assuming this new
property, we abandon the assumption that a; has maximal growth rate.

We define

F= {gla agm}
and let A = {g1,...,¢;} C F be the set of functions that satisfy g;(t) < t° for all § > 0 (i.e the
sub-fractional functions). We have that g, ¢ A.
By the reductions in steps 2 and 3, we have that a;(t) > t% for some ¢; > 0 and a similar relation
holds for the differences a; — a;. Therefore, we have the following property:

If i1 # i, we have either ¢;, j # ¢, ; for some j > [, or g;, (t) — ¢, (t) is non-constant. (P)
Now every function g € A satisfies

max n)—g(r)| = or(1

s () = ()] = 0, (1)
by the arguments in the preceding steps. We can use the argument in Lemma 3.2.1 to remove the
error term o,(1) and then substitute each function g € A in the interval [r,r + L(r)] by a constant
(namely, the value of the function ¢ at r). These constants can be absorbed by the supremum of the

9Since our functions ay, ..., ax dominate a fractional power, we can now use the fact that the classes S(a;, k) (defined
and studied in the Appendix) can be well defined in order to approximate all of them by polynomials.
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f2, ..., fr and the use of Lemma 3.2.1. Therefore, we may assume that all functions g, ..., g, dominate
some fractional power t° (equivalently A = () and that property (P) above holds with I = 0.
Since the functions gy, ..., g, dominate some fractional power, the classes

S(gim) = {F € H. (9" ()" = F(1) < (g (1) 71/}

are well defined for n large enough. We remind the reader that these classes and their properties are
all studied in the Appendix and we will use them freely from this point onward.
Let d be a natural number and for every function g € F, we consider the natural number k,, such

that the function ]g,(ff) (t)|75 belongs to the class S(g,kq). This class always exists, if we pick our
number d to be sufficiently large. We immediately deduce that k, < d for every g € F, while kg, = d.

Let g be a positive real number (but not an integer), such that ¢? dominates all functions g1, ..., gm
and the polynomials ¢y, ..., gx. In particular, this implies that, for all 1 < ¢ < m, all derivatives of g;
of order bigger than ¢ go to 0 (as t — +00). This is a consequence of the growth inequalities of 2.1.3.
We make the additional assumption that our integers k, are very large compared to g, which can be
attained if we take our initial number d to be sufficiently large. The inequality k, > 10g will suffice
for our purposes.

Definition 3.7.2. We say that two functions f < g of H have the property Q, if they have the same
growth rate, or if g(t) strongly dominates f(t).

We remind the reader that we say that g(¢) strongly dominates f(¢) and write g(t) >> f(¢), if the

ratio
g(t)

f@)
dominates some fractional power °, § > 0 (see also our notational conventions in the first chapter).

We consider two possible cases:

a) Assume that for every g € F \ {gm}, the functions \gfﬁl) (t)|7é and |g(k9)(t)|7% have the property'’
Q. Then, our selection will be the classes S(g,kq) as they stand. Furthermore, we choose L(t) € H
to be any function that belongs to the intersection of the classes S(g;, kg;) (which is non-empty by
definition). In this case, we call the function g,, our ”special” function. Note that

1

g @O % < 1g ()]s

— Idm

for g # g, in this case.
, _1
b) Assume that the above case does not hold''. Then, among all the functions |g(*s)(¢)|” % for which
1
the property Q fails (in relation to |g£g) (t)]fé), we choose a function g for which [g(¥9)(¢)| % has
minimal growth rate. Then, we choose a function L(t) € H with the following properties:
1

i) If a function § is such, that |§*a)(¢)| % fails to satisfy property Q in relation to ]gg)(t)r% and

has different growth rate than g, then we have

@YD < 1) < @) ()] 5.

Namely, we have L(t) € S(g,k; — 1).
ii) If the function g has the same growth rate as g, then we have k; = k; and the classes S(g, ky)
and S(g, kj) coincide. In this case, we leave the integer kj as is and we will have L(t) € S(g, k3).

iii) The third case is when the function § satisfies property Q in relation to | gﬁg) (t)]‘é. Then, we
leave the the integer S(g, k;) as is and take L(t) € S(g, k).

10An example of functions that fall in this case is the pair (t3/2,tlog t), if we consider their second derivatives. We
can easily check that the ratio of the second derivatives of these two functions raised to the —%—th power grows like the
function ¢t'/4.

1 An example of functions that fall in this second case is the pair (tlogt,tloglogt), if we again consider their second
derivatives. A simple computation yields that the growth rate of the ratio of the involved functions grows like the
function /logt and, thus, they fail property Q.
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_1
The existence of such a function L(t) follows by our minimality assumption on |g(¥9)(¢)| %s. In
this case, g is our ”special” function.
We denote by k:; the new integers that appear after the above procedure.

, a1
Claim 2. For the choice we have made above, the function |2\¥2)(t)|”¥2 satisfies property (Q) in
relation to our special function, for any z € F.

_1
Proof. If we are in case a) above, the functions |g£§l) (t)|_% and |g(*s) (t)| " Fs have the same growth rate
or their ratio dominates a fractional power (for any g € F) and we are done.
In case b), we have a special function g (k; = k;) We consider functions z # ¢ such that

_1 , 1
lg®a) ()| *s and |z(*2)(t)| *: have different growth rates (because otherwise the claim is trivial).
Then there are two possibilities:

e If the original function |g7(g) (t)|7§ and ]z(kz)(t)ré had a ratio dominating a fractional power,
then the claim follows (in this case, we must have k., = k).

e If the original function |z(kz)(t)\_é failed property Q in relation to |g,(g) (t)\_é, then we have
1
g% (#) 70 < [2*)(#)| 7%= (due to minimality)

1
and thus L(t) € S(z,k, —1). We easily see that the functions |g*s)(¢)|” % and |z(kz_1)(t)|7kz1*1 differ
by a fractional power. Indeed, we have a ”gain” of some power t° when passing from S(z, k. — 1) to
1
S(z, k) due to (3.21). Therefore, if the functions \z(kz)(t)]_é and [g(*9) (t)|” Fs were ”close”, then
1
]z(kz_l)(t)rkzl*l and |g(*s)(t)| % differ by a fractional power. O

For convenience, we will use the same notation S(g, k) for the new classes that have been chosen
after the above operation (that is we replace k;, by k).

1
Remark. The above proof also implies that the growth rate of [g(s) ()] * is maximized when g is
the special function.

We denote by g the special function given by our above arguments. For any function g € F, we
use the Taylor expansion around the point r to obtain

g(kg)(r)hkg g(k9+1) (é_m)hkg+1

glr+h)=g(r)+ -+ ] + (g 1 1)1 for some &, € [r,r +m], (3.40)

for all 0 < h < L(r). We observe that the last term is 0,(1) while the second to last term in the above
expansion diverges when h = L(r). Therefore, we have

g(r+h) =prg(h)+o0r(1)

where p; 4 is a polynomial.

3.7.5 Step 5: The change of variables

In this step, we do a change of variables trick. Our purpose is to rewrite the above polynomials in such
a way, that the leading coeflicients are good sequences in order to be able to apply Proposition 3.4.5.
All the work we did in the previous step (namely, making sure that our functions satisfied Property Q)
will ensure that the leading coefficients of our polynomials will be good sequences that either converge
to a (non-zero) real number, or their growth rate is larger than some fractional power. A similar trick
is also used in [13], although the fact that the argument in this article involves essentially only one
Hardy function makes the argument much simpler.
Assume that g is our special function with the polynomial expansion

§%a) (1) ks

g+ h) =)+ 0

+ or(1).
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Every 0 < h < L(r) can be written as

kil |7
S
: gt*a)(r) J
for some integers w, v, where
0<we 10 =D,
|5
3% (r)
and o .
0 <y < )~7~‘7 kg _
: gt*a)(r) |

Note that D, > 1, because L(t) € S(g,kz). We denote by u(r) the function inside the integer part
above, namely, we define

kg
)

k!
ult) = ‘g(k‘g)(t)

which is a (sub-linear) function in . In addition, since we have chosen the numbers k4 to be sufficiently
large, we can ensure that the function v dominates some fractional power (this follows by statement
ii) of Lemma 3.5.1).

We observe that (recall that f, is given by (3.36))

3 .
sup E Chr T[a1(r+h)] fro TLak(rJrh)J i <
[ F2llagoeeosll Fill oo <1 OSASL(T) HLQ(M)
3 .
sup E sup E Chirw Tlaat+h)] g plas(+h)] g ’
ol il <1 1SV o, i<t o Ly 120

(3.41)

where the above bound follows by applying the Hélder and triangle inequalities. We will bound the
innermost average in the norm by a quantity that does not depend on v.

Fix a v as above. For every h = v(mod |u(r)]), we can write each of the polynomials py,(h) in
the previous step as a new polynomial py., 4(w) in the new variable w. We are only interested in the
leading coefficients of the new polynomials. Using (3.40), we see that it is equal to

)
eolr) = T L) = |

¥ |k, (3.42)

Now assume that g € F. The function c4(r) is not a function in the Hardy field H, but we will
prove that it is a good sequence (see Definition 3.4.1). Therefore, we seek to approximate it by a
function in H. The simplest way to achieve this is to define the function d,(t) € H by removing the
floor function:

kg
kg

(kg) =1
g | kgt
dy(t) = :

o(1) k! )g(kg)(t)

It is obvious that c4(r)/dy(r) — 1. However, we have something stronger:

(3.43)

Claim 3. For all g € F, we have
|cg(r) — dg(r)] = or(1).

Proof. We will use the inequality
la° — 5] < cla — bllal°"",

which holds when [b| < |a| and ¢ € N. An application of this inequality reduces the problem to showing
that
1

g% ()| Fa < ,g(kg)(t)y‘ﬁ. (3.44)
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Since L(t) € S(g, kj), it is sufficient to show that

L(t) < |g®o) () T

and now using the fact that L(t) € S(g, kq), our conclusion follows if we prove that

g0 D (0] T < g0 1),

Using the inequality gkt (t) = g(9)(t) /tlog? t in the above equation (we use Lemma 2.1.3 and
the fact that the numbers k, are assumed to be large enough), this reduces to

1—k
2

g% (1) < =" log(t k) ¢, (3.45)

However, recall that we have chosen a non-integer ¢, such that ¢g(t) < t? for all ¢ € F and we have
also chosen k, > 10g — 1. Applying Lemma 2.1.3, we have g(*s)(#) < t97%s and now the claim easily
follows. H

Claim 4. a) We have that the function dgy(t) in (3.43) is a sub-linear function that either satisfies
t¢ < dgy(t) for some € > 0 or converges to a non-zero constant'?.

b) We have the growth relation dy(t) < (§%9)(t)) " and, thus, d, has sub-linear growth.

Proof. Property (Q) implies that d4(t) converges to a non-zero constant, or dominates a fractional
power t0. For the second part, we observe that a simple computation shows that this is equivalent to
(3.44), which has already been established. U

Claim 5. If g, h are distinct functions in the set {gi, ..., gm} such that dy(t) ~ dp(t), then kg # k.

Proof. Assume that we have both k, = kj, and dy ~ dj,. This implies that
g(kg)(t) ~ h(kh)(t)

and L’Hospital’ rule implies that g ~ h. Since g, h have distinct growth rates and are strongly non-
polynomial, this last relation cannot hold and we arrive at a contradiction. ]

We have seen that the functions g1, ..., gm admit a polynomial expansion and, after the change of
variables above, their leading coefficients become sub-linear good sequences. Now, we look how the
leading coefficients of the polynomials ¢1, ..., g; in (3.39) transform after the above change of variables.
Note that g;(r + h) is also a polynomial ¢; ,(h) in the variable h. Writing again

h=wlu(r)] +v

as above, we see that ¢;(r + h) = g;r,(w) where ¢;,, is a real polynomial. It is straightforward to
check that the leading coefficients of the g;,, have the form clu(r)|’, where ¢ € R* and 0 € N*.
These are good sequences, since they are asymptotically equal to

0
kg
M

k3!
C‘ gka) (1)

which is a function in A (and its limit is obviously non-zero).

Now, we recall (3.39). When restricted to the interval [r,r + L(r)], every one of our original
functions a;, where 1 < ¢ < k can be written as a sum of polynomials, whose leading coefficients are
good sequences, plus an o,(1) term. We can eliminate the error terms o,(1) by using the argument in
Lemma 3.2.1 once again. In particular, any one of these good sequences (denote a,) satisfies one of
the following:

a) there exists a sub-linear function ¢ € H, such that a, = ¢(r) +o0,(1) < u(r) and ¢(t) > t for some
6 >0,

12Thus, the leading coefficients ¢, (r) in (3.42) are good sequences.
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b) they have the form ¢|u(r)|’, where ¢ € R and 6 is a positive integer or
c) they converge to a non-zero real number.

We denote the polynomial corresponding to a; as P; ;.,, and we observe that its degree is independent
of r. In view of Property (P), we deduce that the leading coefficient of P; ,.,, — P; .., is either the leading
coefficient of the polynomial ¢; . (t) — gjr(t) (which in this case must be a non-constant polynomial),
or it is equal to the leading coefficient of

m

Rij.r.v(w) - Z (Ci,n - Cj,n)ﬁr,gj,v(w) (346)

n=1

or it is a combination of these two coefficients. In the first case, it has the form b) above and is a
good sequence. In the second case, it is a linear combination of sequences of the form a) or ¢). That
is, there are functions g;, , ..., gi,, where 71, ...,y € {1,2,...,m} such that the leading coefficients of the
polynomials ﬁr,gij o are all sequences of the form a) or ¢) and the leading coefficient of the polynomial
Rjjr v in (3.46) is equal to the leading coefficient of

A
Z (Ciies = Cjia)Prgia v (3.47)

We will use Claim 5: if any two of the polynomials p; 4, ., have the same degree, then their leading
coefficients are sequences with distinct growth rates. Therefore, the leading coefficient of R;; ., is a
linear combination of good sequences with pairwise distinct growth rates and it is straightforward to
see that it is itself a good sequence. Finally, we observe that the final case cannot happen (namely, a
combination of these two coefficients). That is because the degree of the polynomial g; ;. (t) — gjrv(t),
which is equal to the degree of ¢; — gj, is very small compared to the degree of the polynomial in
(3.47), because we chose the degrees kq of the polynomials in the Taylor expansions to be very large
compared to the degrees of the polynomials ¢y, ..., k.

Our original problem reduces to the following (recall (3.41)): for every measure-preserving system
(X, 1, T) and function f; € L (u) with f; L Z5(X) for some § € N, there exists a positive integer
t =t(ay,...,ax) such that:

lim sup E E
R—+o00 [171]loo <L,ows| el loo <1 1<r<R 0<v<|u(r)]-1

sup sup

P v r P, v 2t —
alloo <L [l filloo<1 | o ’ ek . Cwrw TLPLr, (w)Jfr T Prra(w) ] f’fHL2(u) —0, (3.48)
2(lco S Ly || JTE oo > Cw,rv|S WLy

where }
fr=f1-TWOOIp . o7lo0]p, (3.49)
for functions #1, ...,0, € H that satisfy

logt < 6;(t) < t°
logt < 6;(t) — 0;(t) < t° for i# j

for all 6 > 0.
Observe that
sup sup || B cupy TP LR )] 12 <
0SV=Lu(r)] =1 Ifalloo 1ol fillao ST fow, o<1 OSWSDr 70 b
ot
max sup sup E TPl f o P (w) ] .
0SS D) 1 ol S il 1 femal<1 OSED 22

For each r € N, let v, be the value of v for which the above max is attained. Then, the polynomial
family

Pr = {Pl,r,vra cey Pk,’r,vr}
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is a nice polynomial family. Indeed, the degrees of its elements are fixed integers and the leading
coeflicients of the polynomials and of their differences are good sequences irrespective of the value of
vy, as we discussed previously. Therefore, under the above assumptions, we reduce our problem to

lim sup E
R=400 ||y [loo <1, |hel|eo<1 1STSR

Piro @) F o Prror@)] £ 12
sup sup H E  cur T frewrT f’fHL2 =0. (3.50)
1f2lloorllfilloo<1 lew,rl<1 OSWEDr ")
We also choose functions hi g, ..., he,r € L% (1) so that the corresponding average is 1/R close to the
supremum of the Ay, ..., hy. Namely, we want to prove (3.50) where f, is now the function

f1-TOOpy o T,

3.7.6 Step 6: Applying the polynomial bounds

Now, we apply Proposition 3.4.5 for the inner average in the above relation. We have established that
its hypotheses are satisfied. The degree and the type of the polynomial family all depend on the initial
functions a, ..., ar. Therefore, all asymptotic bounds are assumed to depend only on aq, ..., a; and we
omit the indices.

Let us denote the leading vector of the family P, by (u1,, ..., ur,) and recall again here that each
u;,» satisfies one of the following:
a) there exists a sub-linear function ¢;(r) < w(r) that dominates some fractional power, such that
U r = d)l(r) + 07‘(1))
b) they have the form c|u(r)]?, where ¢ € R and 6 is a positive integer or
c) they converge to a non-zero real number.

Fix a positive integer M. There exist integers s, ¢, a finite set Y of integers and polynomials p. ;
(all depending only on the original functions ay, ..., ax), where € € [[s]] and 1 < i < k such that

Pr e (w)] £ LPk T,vr(w” 2!
sup sup H E  cur Tl froo T ka g K
[ falloo <Ll filloo<] lew,r<1 OSWSDr L2w)

- Tl Aer(m)+he (clel £y g (1), (3.51
it 2 e Bnl) I (CEIF,) du + ou(1), (351)

where

Aer(m) = Z Pe,j (M), (3.52)

1<j<k

The polynomials A, are essentially distinct for any value of the u;, and satisfy
Aer(m) + Agep(m) = Ay, (m).

In addition, for an € € [[s]], we have that the non-zero polynomials among the p. ; are linearly
independent.

Applying the bounds of (3.51) to (3.50), we deduce that our original average is bounded by the
quantity

M+ Z me|[— MM]t 1<T<R‘j H TlAer (] the (Clel 7y dp| + o (1) =

heylls) e€[s]]

1 '
Vi + Z mel- MM]t 1<r<R’f H H 7 [ Ac.r (m) | +165( )J+h5(cla\h r) dp| +or(1), (3.53)
hey (s e€([s]] 0<i<e

where we set 0yp(r) = 0 and hg g = f1 for convenience in notation. We may assume without loss of
generality that 0 = 6y(r) < 01(r) < ... < 0y(r). Then, we compose with T~ inside the above
integral and combine the integer parts to obtain that the aforementioned integral is equal to

j H H [ Ac.r (m) | +16; (1) —64( (] +hirthe (Clelp, B dp,

c€l[s]] 0<i<e
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where h;, € {0,£1}. Putting this in (3.53), we want to bound

M Z MMt 1<r<R‘j H H T LAer () J£10:)=0er) herthe Il R) dp| + op(1).
heyllsl] e€[[s]] 0<i<e

Using the argument present in Lemma 3.2.1, we deduce that the last quantity is smaller than a constant
multiple of

7+ Z el MM]t sup

heylsn ™ 171 ] ag sl Pell oo <1

U H H 7| Ae.r () [0 (r)—0(r "+he (Clel ) du| + or(1).

e€[[s]] 0Kt

1<7‘<R

We choose again sequences of functions in place of the Ay, ..., hy, so that the corresponding quantity
is 1/R close to the supremum and we denote them again h; g, ..., hy g for convenience. Note that this
final quantity is essentially has the same form as the one in (3.53), but the function 6y corresponding
to fi now has maximal growth rate among the ;. Therefore, our original problem reduces to finding
a bound for

1

M * Z , mel- MM]t 1<r<R‘j H H TlAer e 41 (T)th(clalh R) d:“" + or(l) (3.54)

heylls e€[[s]] 0<i<e

under the assumption that 0y (t) > 6;(t) > logt for every 1 <i <1—1, 8, =0 and 0;(t) — 6,(t) > logt
for all 7 # j.
We write
Bun(r) = ‘ f H H 7| Aer(m) | +10i(r Mthe (Clelpy g) du‘
e€[[s]] 0<i<L

Taking the limit as R — +o0, our goal is to show that the quantity

——i— Z hmsup E Bmn(r)).
heylis] R—4oc0 1S7SR

goes to 0, as M goes to infinity.

3.7.7 Step 7: Another change of variables trick

Before we proceed with the final details of the proof, we will make a final trick to reduce our problem
to a statement, where the results of Section 3.6 can be applied. We will use Lemma 3.2.3 to achieve
this.

Our main objective is the following: since the sequences u;, of the leading vector can have the
form ¢|u(r)|®, which are tough to handle, we want to use the above lemma to replace these terms
with the terms ¢r®, which are just polynomials. In order to facilitate this, we need to write the entire
integral By, n(r) as a function of |u(r)]. Note that u(r) satisfies the growth condition in the statement
of Lemma 3.2.3. We consider three cases:

i) If the sequence u;, has the form c|u(r)]?, for ¢ € R and ¢ € N*, then it is already written as a
function of |u(r)].

ii) If the sequence w;, converges to a non-zero real number a;, then, we have u;, —a; = 0,(1) and
the constant function a; is already written as a function of |u(r)].

iii) Finally, assume the sequence u;, satisfies the remaining possible condition, namely that there
exists a function ¢; € H satisfying the growth condition

0 < pi(t) < ul(t)

for some ¢ > 0 and such that

ujr = ¢;(r) + op(1).
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Let us assume that ¢;(t) is eventually positive (in the other case, we work with the number —u;,).
We write ¢;(t) = ®;(u(t)), where ®; = ¢; o u™!, which is well defined and thus a function in H '°.
We also have that ®;(t) < ¢ (this follows easily from the fact that ¢;(¢) < u(t)) and we can easily see
that ®;(t) also dominates some fractional power. In addition, we have

[©5(u(t)) — 5(|u®)])] < sup |5 ()] = or(1),
TR, |[u(t)] <z<u(t)
since @ () < ©;(t)/t < 1.
In all three cases above, we have the following: there exists a function w; € H, such that

|ujr — wj([u(r)])] = or(1) (3.55)

and the function w; is either a monomial, or a constant function or a sub-linear (but not a sub-
fractional) function. We write

Acp(m) = Y pey(m)w;(lu(r))) (3.56)

1<j<k

and observe that |A. ,(m) — A, .(m)| = o,(1), for any fixed value of m. Therefore, for r large enough,

we have

| Az (m)]| = {Aé,q(m)J Y- (3.57)

where hj. ., € {0, £1}.

We do the same for the function ;. Indeed, we can use the same arguments as above to deduce
that |0;(t) — ¢ ([u(t)])| = 0i(1), where 9;(t) € H is the function 6;0u~! In addition, since u dominates
some fractional power, we have that «~! has polynomial growth and, therefore, we easily get t& >~
;(t) > logt for all € > 0, that is v; is a (sub-fractional) function. Finally, for r large enough, we can

write

10:(r)] = [¥i(u(r))] + hiy, (3.58)
where b, € {0,+1}.
In view of the above, we have
Z me[—I%/[,M]t 1§I7«E§R Bm’h(r) -
heyY s
Agr(m) | 40! ot [0 (Lu(r) )| +hY  Ahe (olely, ‘
Z [I%/[Mt 1<r<R}j H H rl (C¥hir) du| +or(1) <
heY[[S]] e€|[s]] 0<i<e
A () |41t L L0() )40 he olel ‘2 1/2
Z | el MM]t <1<T<R’j H H Tl (C=hig) dp )
hevlls e€([s]] 0<i<L
+ OR(I)v

where we applied the Cauchy-Schwarz inequality (the or(1) term on the second line exists to account
for small values of r for which (3.57),(3.58) may not hold with error terms in the set {0, £1}). Thus,
we want to bound

TR DL

heyllsl]

/ " 2
€[] 0<i<e

where h()’R = fl-

-1

13Note that u(t) is a positive function by its definition and therefore, goes to +oco. Consequently, u~' also goes to

—+o00.
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Claim 6. Proposition 3.1.1 holds in the case when all the functions w; (defined in (3.55)) are constant
and ¢ = 0.

Proof of the claim. This means that the polynomials flw(m) are actually independent of r and we
write them as A.(m). In addition, there are no functions v; in the iterates of the above quantity.
Finally, the error terms h;’ ,» do not exist in this case. Our problem reduces to finding a bound for

M ’re,m+h§ |§| 2 1/2
+ hZY me[— MM 1<7~<R ‘ f !;[”T (C= f1) dﬂ’ )" +or(1), (3.60)
(S EE||s

/
where h; .

1<r<R‘j H rlistm]t remthe(C clf) du‘

e€([s]]

€ {0,£1}. Note that

3 ‘ f I1 plAsm]+hithe (Clel 1) g

heef0,x1}eells]]  e€ls]]

which implies that the quantity in (3.60) is smaller than O(1) times

7+ Z me[ MM

Y [ls] e€([sl]

Actm <1 (CEI 1) dp] 4 og(1)

for some new, larger finite set Y. The statement follows if we prove that

lim
M—4o00 me[— M Mt

7 [As(m +h§(c\§\f1) dp‘ -0

e€([s]]

for any h. € Z. Note that the polynomials flg (m) are essentially distinct as the statement of Propo-
sition 3.4.5 guarantees. Squaring and applying the Cauchy-Schwarz inequality, we want to prove
that

lim
M—+o0c0 me[—

As(m ""hS(C‘E‘fl) d,u — ()7

e€|[s]]
which can be rewritten as

lim f H §lAe(m J"'}LE(C‘E‘FH) d(p x p) =0,

M—+00 me[— MM]t <iis]

where S = T x T and F; = f; ® fi. This is an average where the iterates are real polynomials and
using [17, Lemma 4.3], we can prove that this last relation holds, provided that ||S"LF}||s 7% = 0, for
some positive integer § that depends only on the polynomials A. (which depend on the original Hardy
field functions ay, ..., ax). However, since ||F1||srxr < || fi |||S+1 o, we get that the statement holds if
the function f; satisﬁes Il fills+1, = 0. This completes the proof of our claim. O

From now on, we assume that either at least one of the functions w; is non-constant, or that £ > 1
and we want to bound the quantity in (3.59). Writing H; p = hj p ® hj r and S =T x T, we observe
that

. <RU H T 7 lder ()bt s Lot D0 e Rl dﬂfz
" 1] 0<i<t

| Ae,r(m) [4R, [0 (lu(r) )] +BY e (plel 17
1<7~<Rj H H st e (CE H R) d(p % i) <

e€[[s]] 0<i<e
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due to the Cauchy-Schwarz inequality. Invoking'* Lemma 3.2.1, we have

Ae,r () [ 1R o+ L (Lu(r) DA e (olel gy,
1<7~<R H H S e DR (CI IHZ,R)HLQ(MXM) Lsyt
e€[[s]] 0<i<e

Ag,r(m) [ +[¥i(Lu(r)]) | +he (olel
sup sup ‘ Cr.mh H H sla (C¥' H;) HL2 ,
lerm,nl<1 || H;|l o, <1 1<T<R ee[[s]] 0<i<e xu)
where Hy = f1 ® f1 and h = (h., e € [[s]]). Note that since both s,¢ depend on the original Hardy
field functions ay, ..., ax, the implicit constant in the last bound depends only on aq, ..., a; (which we
omit from the subscripts).
Putting everything together, we get that

E Bpn )
+h§ y mel- MM]t 1<r<R n(r) +or(1)
h 7+ Z Sup sup
hGY ] } |Crmh|<1 ||I_{<”Z<£
A () |+ [i(Lu(0) D)) +he (clel ) (|12
s [T II sttsrtmlrintenisclelm) |, ) +on).

e€([s] 0<i<t

Now, we choose functions Hi g, ..., Hy g so that the above average (over R) is 1/R close to the supre-
mum. Then, we take the limit as R — 400 and apply Lemma 3.2.3 to deduce that the limsup of this
last quantity is bounded by O,(1) times (which is, of course, Oy, ... q, (1))

Z E thmsup sup
hey (sl me[-M,M]* R—+00 |c; mnl<1

I, E ermn IT 11 SLA=rm ] e el |12

e€([s]] 0<i<t

where we define (recall (3.56))

Acp(m) = D" pej(m)w;(r).

1<j<k

and Hor = f1 ® fi. Finally, we can combine the integer parts in the iterates of the above quantity
(using again Lemma 3.2.1 to remove the error terms). In conclusion, our original average is bounded

by O(1) times

1/2
+ E (hmsup sup Cr,m §lAertm)+uitr J(ClaleR )] ) <
R—+00 |erm|<1 1< <R 6!;[5” oy«z v

1 1/2
— + ( E limsup sup § Az (m)+i(r) C'é‘H~,R )
me[-M,M]' R 5400 |ey.m|<1 1<7"<R Tmselg]] oy«z () 2

(3.61)

by the Cauchy-Schwarz inequality. Note that all implied asymptotic constants above did not depend
on either M or R.

M Note that all the error terms depending on r in the iterates take values on finite sets.
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3.7.8 Finishing the proof

We describe the final step here. Our main observation is that géjr(m) + 1;(r), when viewed as a
function of r, is a sum of sub-linear functions that dominate the function log r and monomials (possibly
of degree 0). Our goal is to use the bounds in Proposition 3.6.1 to deduce our result. However, it is not
immediately obvious that in our case a linear combination of functions of the above form dominates
the logarithmic function logr (the statement in general is false and a counterexample is given by the
pair (log?r + logr,log?r)). We shall establish that this is true for all m € Z* outside of a negligible
set. We recall here that for every large enough r (large enough for w;(r) to be non-zero), the A, ,(m)
are pairwise essentially distinct polynomials in the variable m and in addition satisfy

)

er(m) + Ae . (m) = Ay, (m).

We will use the following lemma:

Lemma 3.7.3. Let p € RY(x) be a non-zero real polynomial of degree d. Then, the set of integer
solutions of the equation

p(m) =0
in [—M, M]" has Oq(M*=1) elements.

Proof. For t =1 it is obvious, since the polynomial has at most d roots. Assume we have proven the
result for ¢ — 1. We can write p(m) in the form

!
p(m, ...,my) = ag(mq, ...,mt_l)mf + o ar(ma, e, my—1)mg + ag(ma, ..., my—1)

for some d’ < d. At least one of the polynomials a;(myq,...,m¢—1) with 1 < i < d’ is not identically
zero and thus has at most Og¢(M'2) zeroes in [—M, M]~1. If (21, ..., x4—1) is not one of these zeroes,
then p(x1,...,x4—1, m;) is non-trivial as a polynomial in the variable m;. Therefore, it is satisfied by no
more than d values of m;. Summing over all tuples (my,...,my_1) € [-M, M]'~!, we get the result. [

Corollary 3.7.4. Let a; < ... < a, be functions in H and let p1(m), ..., pr(m) € RY(x) be non-zero
linearly independent polynomials. Then, for all m € Z' outside a set of density 0, we have that

pi(m)a; + - - + pp(m)ag ~ ai. (3.62)

Proof. Let ay,), ..., ar, be the functions among the a; that have the same growth rate as aj. Then, for
ko < j <k, we can write a;(t) = cjar(t) + bj(t), where ¢; € R* and b;(t) < ai(t). Then, the function
in (3.62) has the same growth rate as the function

(ChoPro (M) + -+ - + crpr(m)) ax(t)

unless of course cg,pr, (M) + - - - + cxpr(m) = 0. However, the linear independence hypothesis implies
that this polynomial is non-zero, and thus the set of of m € Z! for which this last relation holds has
density 0 in Z! by Lemma 3.7.3. The conclusion follows. O

We use this corollary to prove the following:

Claim 7. For all m € Z! outside a set A of density 0, we have that the functions (in the variable r)

Acp(m) +95(r) = Y pey(m)w;(r) + i)

1<j<k

are a sum of a sub-linear function and a real polynomial. In addition, we have that they either dominate
the function logr, or they are a constant function.
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Proof of the claim. We use Corollary 3.7.4 to find a set A C Z! of density zero, so that for m ¢ A, we
have that for any € € [[s]] and any subcollection J of the indices j € {1,2,...,k}, we have that

Z Pe,j (m)wj (T‘) ~ Wmax(J) (’I”),

jeJ

where wyay(s) denotes a function in the collection {wj;,j € J} that has maximal growth rate. We
show that this set A is sufficient for the statement of the claim to hold.

We split the w; into two sets: the set S consists of those functions that are monomials, while
Sy contains the rest (namely the sub-linear functions). Reordering, if necessary, we may assume that
S1 = {wr, ..., wg, } while Sy = {wgyt1, ..., wg}. We write

ko k
Ay (m) = Zpg,j(m)wj (r) + Z Pe.j(m)w;(r). (3.63)
j=1 j=ko+1

For a fixed m ¢ A, the first summand is a polynomial in the variable r (possibly constant), while
the second is a sub-linear function of r. Since the sub-linear functions w; with kg +1 < 57 < k
dominate some fractional power, we deduce that A\w (m) is either a constant function '°, or the sum
of a polynomial and a sub-linear function that dominates some fractional power, since

k

Z p§1j<m)wj(7q) ~ Wmax{ko+1,...,k} (T)
Jj=ko+1

where wyay(s) for S C {1,...,k} is defined above and this is a sub-linear (but not sub-fractional)
function.
In addition, if ¥;(t) # 1e(t) (recall that 1,(t) = 0), we can use the same argument to show that

A\g,r (m) + 9;(r)

is a sum of a sub-linear function that dominates logr and a polynomial (we use the fact that ¢; and
wj (for any j) have distinct growth rates, since the 1); is a sub-fractional function.) O

Let A C Z! be the zero density set given by the above claim. Now, we isolate the iterate
SLAL(m) o (1) (CtHp) in (3.61) and we also assume that m ¢ A. The above proof implies that
the Hardy field function involved in this iterate is a sum of a sub-linear function (that dominates the
logarithm) and a polynomial. In order to apply the results of Section 3.6, we have to show that the
differences of this function with the rest of the functions in the iterates satisfies the same condition.
That is, for every (g,7) # (1,0), we have to show that the function

(A1 (m) + (1)) — (A (m) + 1))

is a sub-linear function plus a polynomial, or is bounded. Rewrite the above as

Ace p(m) + (o (r) — pi(r)).

If ¢ # 0, then we use the fact that ¥y — ¢; > logt and the argument of the previous proof to
establish that

(A\Lr(m) +1o(r)) — (A\w(m) + (1)) > logr

for all m outside a zero density set (which we attach to the set A) and that this function is the sum
of a polynomial and a sub-linear function.

If i = 0, then the above difference is equal to Eéc,,n(m) which is either the sum of a polynomial and
a sub-linear function (that dominates logr), or a constant function of r. We use this characterization

5This is the case when p., ;(m) = 0 for j > ko + 1 and the monomials w; are constant polynomials in the variable r.
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to split [[s]] into two subsets: Ag contains those ¢ € [[s]], for which A\éc,r(m) satisfies the first condition,
while the set A; contains the rest. Note that if € € Ay, then the difference

(A1 (m) + to(r)) = (Azr(m) + (1))
is a (non-constant) polynomial in the variable m and we denote it by c.(m). Thus, we can write
(A\g,r(m) + @Z)O(T)) = (A\Lr(m) + ¢0(7")) — ce(m).

Note that the polynomials c.(m) are essentially distinct, since the ny are essentially distinct.
In view of the above, we rewrite the quantity in (3.61) as

1
7_{_ E hmsu su E C’r‘m SLAIT +1/10 ) cé(m)J C|§|H
M <m€[ M,M]t R—>+o£) |cr,ml|3§1 ‘ Isr<R Egl | "
Ae.r(m r Acr(m i\T 12
H G [ Ae.r(m)+40( )J(CIQIHO) H H G [Aer(m)+4i(r) | (C‘é‘Hi,R)Hm(qu)) . (3.64)
€Ay 1<i<le€([s]]
Note that

[ AL (m) + 6o(r) = com) | = | Apr(m) +¢o(r) | + [cc(m) | + heam,
where he pm € {0, £1}. Thus, we rewrite (3.64) as
L =+ ( E limsup sup H E cm SL r(m)+o(r H clel gl —ee )J+h§*T*mH0)

t
M me[-M,M]" R—t00 |epm|<l L1STSR o

~ ~ 1/2
H G [Ae.r(m) 420 (r) | (C|§|H0) H H G Aer(m)+4i(r) | (C‘é‘Hi’R)HLQ([JX,LL)> /. (3.65)

e€A2 1<i<te€([s]]

Since he ,m take values in {0,+1}, we can use the argument in Lemma 3.2.1 to deduce that

H E ¢rm SLAl,r(m)ero(T)J ( H clel gl —c(m)] +h§,r,mH0)
- €A

HSA” )+to r) ‘E‘Ho H H SA” JHoilr )J(C|§|H¢,R)HL2

c€Ar 1<i<leel[s]]

Z Sup nglqﬂEch;’m SL AL (m)Fo(r) | ( H clel gl —ce(m)] hem B

(nxp) <

heme{0,1} 1erml=<1 ced,
c€A;
11 sty (el ) BINIEE A (m) () (CEH: )| 21
e€As 1<Z<Z§E[[s]]
Thus, our problem reduces to showing that
1
e E 1 E rm L m)+¢0 “5' CE )J"l‘hg,mH
W7 e B e sop B o 8 T st 0
Tml= €A
1/2
As r m + T Ae r + (3
IT sbAertmiu)] i) T H sl Gir )J(clglﬂm)”m(uw)) (3.66)

e€As 1<i<leg([s]]

goes to 0 as M — +oo (that is, our error terms in the iterates do not depend on r now).

In order to be able to apply Proposition 3.6.1, we need to check that the degree, type and size (as
defined in the beginning of Section 3.6) of the given collection of functions in the iterates is constant,
as m ranges over Z!, so that we can use bounds that are uniform in the variable m. Recall (3.63):
the ”polynomial component” of /TE’T(m) + ;(r) is

ko
E pg,j(mw r
Jj=1
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where the functions w;(r) are polynomials. The argument is as follows: for any two real polynomials
p1(m) and p2(m) we must have that they are either equal for all m, or the set of integer solutions
of p1(m) = p2(m) has density zero. Comparing coefficients, it is straightforward to see that outside
a set A’ of density zero, the degree, type and size of the collection of functions in the iterates in
(3.66) is independent of m for any m ¢ A (and they all depend only on the initial Hardy field
functions az, ..., ax). In addition, the elements of the leading vector of this collection are polynomials
in m (we are not concerned with their actual form here). Therefore, we write the leading vector as
(u1(m), ..., us,(m)), where sp < s is the size of the given collection of functions, which does not depend
on m outside our "negligible” set. Furthermore, for m outside a set of density zero (which we attach
to the set A’), we have that all the numbers u;(m), ..., us,(m) are non-zero, and thus we can now
apply Proposition 3.6.1 for all m outside a negligible subset of Z.
Write hy, := (hem, € € A1) and

Fhy, = H clel gl=cetm) | +them g
€A,

Now, for any m ¢ A U A’ we apply Proposition 3.6.1 (note we can have at most 2°(¢ + 1) different
Hardy field functions in the iterates) to deduce that there exist positive integers t',s’, a finite set Y
and polynomials p. ;, where € € [[s']] and 1 < j < s (which depend only on the original functions
ai, ..., a), such that

limsup sup E ¢mS [ ALr(m)-+0(r) clel glmeetm) | Hhem
imowp swp |, B (11 0)

€A
A m r As (1M i\ 2t/
[ stAertmseomlcllmy) T ] slAertmw+wt] (CEH; R)|[ 2y Catomae
g€Az 1<i<t e€][s]]
_ + Z o [7]}]‘:” H S ’(m/,m)J+h§/Fm7hm ”|2S+1(5+1)75'

[s)

heYlls s ™

Here, we have defined
50
= 5 L (m)uy(m).
j=1

Therefore, since the set A U A’ has density zero, we use the Holder inequality to get that the quantity
in (3.66) is <aq,,....a,

Bl 2

hey [s]

m ,m ’ 1/2 1/2
| I slAeo g, hmu\2§+1 wans) A+ ou(1).

m’'e[— MM]t' el

Now, we take the limit as M — 400 and use the power mean inequality to bound the lim sup of
the above quantity by O, .. 4, (1) times a power of

lim sup Z E H sla mm)JJrh’F i ll2541 (041),5-

—~ t/ me[—
M—too, ooy ™ €=M, M] eel[s]

Our result will follow if we show that for any integers h. we have

lim su E S’ (m’,m) | +h, o . _0
M—>+£m re[—-M,M]" me[ MM]t o g ] hm|H2 F1(4+1),5

We substitute Fiy ph,, to rewrite this limit as

lim sup E S m) | +h_s Clel | —ce(m) ] +hem pJ los+1 ety 5 =
M—+o00 m'€[-M,M]* me[~ M 4 g'ﬂ (Egl ) e
lim sup E § LA (' sm) [her [ —ce(m) [ +he.m (clel F) |1, . (3.67
M—+oco m’€[—M,M]t' mée[— MM o y']} Egl ( 0) WQ +1(¢+1),S ( )
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For a fixed m outside all the negligible sets defined above, the polynomials A./(m’, m) are pairwise
essentially distinct, as polynomials in m’. Therefore, they are also essentially distinct as polynomials
in (m’,m). In addition, we have also established that the polynomials ¢.(m) are non-constant and
essentially distinct. Therefore, it is easy to check that the polynomials A, (m’, m)—c.(m) are pairwise
essentially distinct.

We combine the integer parts in the iterates in (3.67) (correcting with some error terms with values
in {0,+1}). Expanding the seminorm in (3.67), we arrive at an iterated limit of polynomial averages.
We also use Lemma 3.2.1 to remove the error terms in the iterates. Using'® [17, Lemma 4.3], we
deduce that the limit in (3.67) is zero under the assumption that ||Ho||q7x7 = 0 for some positive
integer ¢. Since

I Hollgzxr = I1f1 @ fillgrxr < Ifilgs

we deduce that the desired limit is zero if we assume that || fi|q+1,7 = 0. The result follows.
Now that we have established Theorem 1.1.2, we can finish the proof of Theorem 1.1.1.

Proof of Theorem 1.1.1. Note that every 1-good function dominates the logarithmic function logt.
Therefore, if the functions aq, ..., a; are such that every non-trivial linear combination of them stays
logarithmically away from rational polynomials, then the hypotheses of Theorem 1.1.2 are satisfied,
which means that the sequences |a1(n)], ..., |ax(n)| are good for seminorm estimates. Therefore, due
to Theorem H we only need to prove that they are good for equidistribution. This, however, follows
from the equidistribution results in [5] (i.e. Theorem E) and has been established in [17, Proposition
6.3]. O

16This lemma was proven for a specific Fglner sequence (namely [N ]k), but the same argument extends to the general
case. See also [38] for a more detailed proof in the case of integer polynomials.
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Chapter 4

Pointwise convergence in nilmanifolds

4.1 Preparations for the proof

In this section, we provide a specific example, which illustrates the central ideas of the proof of
Theorem 1.2.2 and skips most of the technical details.

In addition, we will collect some lemmas and make some reductions, which will be useful when we
delve into the proof of Theorems 1.2.1 and 1.2.2 in the following sections.

First of all, we present a lemma, which appears in [12, Lemma 3.3] and follows from a simplified
version of the arguments of Lemma 3.2.2. We will use this lemma to reduce our problem of studying
the long averages over an interval [1, N| (like those appearing in Theorem 1.2.2) to averages in short
intervals. Its proof is elementary and so we omit it.

Lemma 4.1.1. Let (a(n))pen be a bounded sequence of complex numbers. Assume that

lim E a(n) =«
N—+00 N<n<N+L(N)

for some positive function L(t) with 1 < L(t) < t. Then, we also have

lim E a(n)=a.
N—~4o0c0 1<n<N

4.1.1 An example of convergence

Assume X = G/T is a nilmanifold with G connected and simply connected. We will show that the

averages
3/2

FOF ) - g(by 8 x)

1<n<N

converge for any x € X, where b1,b3 € G.
Using Lemma 4.1.1, it suffices to show that the averages

/2 nlogn
E b x) - (b1
NS”SNH(N)f( 1 @) g(by )
converge, for some sub-linear function L(t). Passing to the nilmanifold X x X, we see that our problem
reduces to showing that the averages
3/2,n1
Fo pylosny
N<n<N+L(N) Ul )
converge for any nilmanifold X = G//T', commuting elements' b1, by € G and function F' € C(X). Due
to density, we can actually pick F' € Lip(X). We provide more details for this deduction in the next
section (after Proposition 4.2.1).

"When we pass to the product X x X, we have to study the actions of the elements (b1, ec) and (eq, b2), which clearly
commute.

90



Let X’ denote the subnilmanifold blﬁbg%lj of X. By Lemma 2.3.2, this set is indeed a subnilmanifold
of X and has a representation as H/A, with H connected, simply connected and containing all elements

b5 and b5 for any s € R. In this example, we will also assume that X' = b%bgf. In the main proof, we
will use Lemma 2.3.3 to reduce the general case of the theorem to this one.
Using the Taylor expansion around the point N, we can write

3h2 h3 3ht

— + , f e[N,N+h
SN1/2 16N 3/2 12852/2 or some fh [ }

(N + h)3/? = N3/2 4 ;th/2 +

for every 0 < h < L(N). If we choose L(t) to satisfy
Y2 < L) < t°/8

then the last term in the above expansion is smaller than oxy(1), while the second to last term is
unbounded. Similarly, we can write

2 h3

N log(N = Nlog N locN +1)+ — — —
(N + h)log(N + h) og N + h(log +)+2N 632

for some ¢, € [N, N + hl.

If we choose again L(t) to satisfy
Y2 2 L) < £33,

we can show that the last term is ox (1), while the h? term is unbounded. For instance, we can choose
L(t) = t3/5 and both growth conditions that we imposed will be satisfied.

Since the function F' is continuous, we can disregard the highest order terms in the above expansion
since they are both oy (1). Our problem reduces to showing that the averages

3/2, 31 an71/2, _3h%2 B3
E R 2T,

n2
Nlog N+h(log N+1)+35%
0<h<L(N) 2

z)

converge. For the sake of simplicity, we will show that the averages

R3 K2

E FOM7 0N
0<h<L(N) (bf 5 )

converge, since both of these statements follow from the same arguments. For convenience, we will
also assume that x =T
Let § > 0. We consider the finite sequence

R 2

(v(h)T)o<h<r(n) = <blNg/2 bN T

>0§h§L(N)

and we show that, if IV is large enough, then it is d-equidistributed on the subnilmanifold X’ = b?bgﬁ“
of X. It is apparent that v(n)I' is a polynomial sequence in X’. We consider the horizontal torus Z
of X', which is isomorphic to some T? (d € N) and we also let © denote the projection map from X’
to Z. If the given sequence is not d-equidistributed (for a fixed value of N), we can invoke Theorem
J to find a positive constant M = M(X',d) and a non-trivial horizontal character yn of modulus at
most M and such that

v (@ (D) || ooy < M-

Suppose xn descends to the character
(tl, ...,td) — e(kl,Ntl + -4 de\ﬂfd)
on T?, where k1N, ..., kqn are integers. The fact that the modulus is bounded by M implies that

|kin|+ -+ |kan| < M.
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Let us also write w(biI") = (z1, ..., z4) and w(b2I') = (y1, ..., ya)- Then, the last inequality implies that

T B2 &
1=1 i=1

Assume there are infinitely many N for which this holds. Since there are only finitely many
possible choices for the numbers k1 v, ..., kg v above, we conclude that there exists a character x such
that ||x(m(a(h))T)||cecrrnvy < M holds for infinitely many N € N. Then, we rewrite (4.1) (k; are
some integers independent of N) as

h3 d h2 d
HG(W Z kixi + N Z kiyi) HC‘X’[L(N)] =M,
P i1

and this inequality holds for infinitely many V.
The definition of the C°°[L(N)] norms implies that we have the relations

ZZ k;z;
H N§/2 H’]I‘ < M
and

d
j— k@ 7
N)2 H ZZ_& Yi < M.

Iy <

for infinitely many N. Due to our choice of the function L(N), these relations fail for N sufficiently
large unless

d d
Z k;x; € Z and Z k:iyi €.
=1 =1

This implies that y o w(b;I') = x o w(b2I') = 0 and, consequently, we must also have x o w(b"05T") = 0

for any m,n € Z. Since elements of this form are dense in b¥b5T by our initial hypothesis, we get that
x must be the trivial character, which is a contradiction.
In conclusion, we have established that the sequence (v(h)T")o<p<r(n) is d-equidistributed for large

enough N on X’ = bFb5T". The result now follows by sending § — 0. We also notice that the limit of
the averages is IX' F dmx:.

Remark. We describe briefly here why we have to use the ¢° term in (1.10) instead of the conjectured
optimal term log ¢. Assuming we had the functions log? ¢t and t log ¢ in this example, then for any choice
of the sub-linear function L(t) that would give a good polynomial approximation for the function ¢ log,
we would have

log?(N + h) —log? N| = on(1),
o AX |log®(N + h) —log® N| = on(1)

which suggests that the sequence log?n is essentially constant in the small intervals [N, N 4+ L(N)].
If we proceed exactly as in the above argument, the best we can actually show is that

ogZnynlogn og? 002
‘N<n<I]€+L(N)F(b11g b2l ) - IF(bllg Ny) dez(y)} < 5HF(bl1g N)‘

Lip(Y2)

for large enough N, where Yo = bRF and F (bIOg N.) denotes the function y — F (blog Ny) defined
on the nilmanifold Y. However, the Lipschitz norm above is of the order log? N ||F HLip( x> Which
diverges as N — 400, so this bound cannot be useful for any purposes.

Another approach would be to utilize the fact that the parameter M in Theorem J is of the form
690 namely we have bounds that are polynomial in §. Thus, one could allow the parameter & to

vary with N. For instance, establishing a bound of the form (log N)~(2+¢) ‘F plog’ N H

in place
) Lip(Y2) P
of the term & HF(bllOg N)‘ 2+e)

2 (namely, showing that our sequence is (log N)~(*)-equidistributed)

Lip(Y2)

2Tt would actually suffice to obtain this statement for almost all N € N in the sense of natural density.
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on the right-hand side of the above equation leads to a solution to the more general problem. However,
any bound of this type is incorrect in general. Indeed, assume that the horizontal torus of b]§I‘ was T2
and also let (b2 1,b22) € T? denote the image of the element byI" under the projection map. Following
the same approximations as the ones in the example, we would like to show that the finite polynomial
sequence b’j/ NT, where 0 < b < L(N), is (log N)~2+¢)_equidistributed for almost all N € N and for
some suitable sub-linear function L(t) satisfying only L(t) >= t'/2. Then, an application of Theorem .J
implies that if this assertion does not hold, then there exists a positive constant C' and a horizontal
character x of modulus at most log® N, such that

HX(bgz/NF)HCOO(L(N)) < log” N.

Equivalently, there exist integers ki, ko with |k1| + |k2| < log® N such that
k1bo1 + kaba o

2 C
L*(N)|| ~ | <log® N.
Thus, we would get a contradiction if we showed that
Nlog® N
min kiba 1 + kobao| > ————
|k1\,|k2\§1och’ 1021 + kabaal L*(N)

holds for NV in a set of density 1. However, we note that bounds like the above depend on the
diophantine properties of the numbers bs 1, b2 2. Indeed, let us suppose that a = Zz—’; < 1. If we divide

by b2, the last inequality can be rewritten as

Nlog® N

. . Nlog” N
min {k‘la—i—kzg‘ Z b2l L2(N)

|1, k2| <log® N
For a fixed choice of ki, the absolute value is minimized by picking ks to be the nearest integer to
—k1a. Thus, we would need to show that

Nlog® N

it 1elle = 21w

|k1]<log® N
and we can find by 1,b22 € (0,1) for which this inequality fails for all N in a set of positive upper
density. A simpler example that avoids the complicated function on the right-hand side of the last
equation is to show that we can find a € (0,1) for which the inequality min, kol > 277

fails for all N € N in a set of upper density 1. Indeed, we can construct an « € (0,1) such that
limJirnf 22" |lnallp = 0. Thus, there is a sequence g, such that |gmalp < 272" which implies that
n—-+0oo

min |ka|p <272 < 2% for every N with g, < N < 29, Thus, the set of N for which the above
inequality fails has upper density 1.

4.1.2 Decomposing Hardy field functions

In this section, we will prove a decomposition lemma that is similar to 3.7.1 but which is more suitable
for the problem at hand. We consider a Hardy field H that contains the polynomials and let a be a
function in ‘H. We partition H into equivalence classes by the relation f ~ g, which is equivalent to
saying that the limit of f(¢)/g(t) as t — 400 is a non-zero real number. In simple terms, f, g are in
the same equivalence class if and only if they have the same growth rate. We put the zero function in
its own equivalence class.

We will define the strongly non-polynomial growth rate of a function a € H as follows:
i) If a is a strongly non-polynomial function, we define it to be the equivalence class of a.
ii) If @ is not strongly non-polynomial, then it can be written in the form p(t) + x(t), where p(¢t) is
a polynomial and z(t) is a strongly non-polynomial function (or the zero function) with z(t) < p(¢).
Observe that x(t) is a function in H, since our Hardy field contains the polynomials. We define the
strongly non-polynomial growth rate of a as the equivalence class of the function x € H.
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The strongly non-polynomial growth rate is defined for any function ¢ € H. It is well defined,
in the following sense: consider a function a € H like in case ii) above, which has two different
representations as pi(t) + z1(t) and pa(t) + x2(t), where p1,p2 are polynomials, z1,zo are strongly
non-polynomial and z1(t) < p1(t) and z2(t) < p2(t). Then, we must have x1(t) ~ x2(t). An example
where such distinct representations may exist is the function a(t) = 2 + t + t3/2. We can choose
pi(t) = t2,21(t) = t32 + t and po(t) = t? + t,29(t) = t3/2. While x; # zo, these two functions have
the same growth rate.

A simple observation is that, if a function a € H is written in the form p(t) 4+ x(t), where p is
polynomial and z is strongly non-polynomial, then the functions a and x have the same strongly
non-polynomial growth rate (one could alternatively use this remark to present another equivalent
definition of the strongly non-polynomial growth rate).

Finally, we will also say that a € H has trivial growth rate, if tiigrnooa(t) = 0. Recall that we also

included these functions when we defined the strongly non-polynomial functions.
Now that we are have finished presenting the new terminology, we prove the following lemma.

Lemma 4.1.2. Let H be a Hardy field that contains the polynomials and let aq, ..., ar € H be arbitrary
functions. Then, the set L(a1, ..., ax) of non-trivial linear combinations has a basis (g1, ..., Gm, N1, -, he),
where m, £ are non-negative integers, such that the functions hy, ..., hy have the form p;(t)+o:(1), where
pi 18 a real polynomial for every 1 < i < ¢ and g1, ..., gm have distinct and non-trivial strongly non-
polynomial growth rates.

Proof. We can restrict our attention to the case that the functions ay, ..., ax are linearly independent
(otherwise, we pass to a maximal subset of these functions whose elements are linearly independent).
We induct on k. For k = 1, we have nothing to prove. Assume the claim holds for all integers smaller
than k. All functions considered below are implicitly assumed to belong to H.

We may write each of the functions ai,..,ax in the form p;(t) + z;(t) where p; are real polyno-
mials and z;(t) are strongly non-polynomial functions (either one of the functions p;, z; may also be
identically zero). After reordering, we may assume that

z1(t) > xa(t) > -+ > xy(t).

Now, we define the number [ € {0, 1, ..., k} to be the smallest natural number, for which all functions
z141(t), z142(t) and so on have limit zero (as ¢ — 400). If none of the x; have limits going to 0, then
we just set £ = k.

We consider two cases.
i) If the functions 1, ..., z; have distinct growth rates, then we are done. In this case, the functions g;
appearing in the statement are the functions p;(t) 4+ x;(¢) for 1 <4 <[, while the role of the functions
h; is performed by the functions p;(t) 4+ x;(t) for ¢ > [ (observe that for i > [, we have that x;(t) have
trivial growth rate due to the definition of /). The strongly non-polynomial growth rates of the former
set of functions are equal to the growth rates of the functions x1, .., x;, which are pairwise distinct.
ii) Assume now two of the functions among x1, ..., z; have the same growth rate. In particular, let kg
be the smallest integer such that zy, ~ zx,+1 (obviously ko < I) and let » > 1 be the largest integer
such that

Lho ™~ Tho41 ~ "+~ Lho+r-

For ko +1 < i < ko + r, we can write x;(t) = xx,(t) + vi(t), where y;(t) < x;(t). Using this, we can
write ag, (t) = pi, (t) + @, (t) and

ai(t) = (pko(t) + xko(t)) + (pi(t) — pko(t) + yi(t)), for k() +1 < ) < ]{30 + .
Now we apply the induction hypothesis on the collection of functions

{pko-f—l(t) — Pk (t) + yko-i-l(t)? "'7pk0+7"(t) — Pky (t) + yko-‘r?”(t)v
Protr+1(8) + Thor41(8), -y i (t) + 2 (1) }-

This gives a basis (g1, ---, gm, U1, -.-, ug) for this set of functions, with the properties outlined in the
statement. We add the functions p;(t) +z1(t), .., Pk, (t) + x, (t) to the functions g1, ..., gm and add the
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functions® p;(t) + x;(t), | < i < k, to the collection u1, ..., uy. In this way, we construct a basis for the
original collection ay, ..., a; with the asserted properties (if the functions that we have constructed are
not linearly independent, then we can just pass to a subset of these functions that will form a basis).
Indeed, we only have to check that the functions

pl(t) + xl(t>7 "'7pko(t) + wko(t)vgl(wv "'7gm<t>

have distinct strongly non-polynomial growth rates. This follows by noting that the strongly non-
polynomial growth rates of the functions g¢i,..., g, cannot be larger than the growth rates of the
functions y;, which all grow strictly slower than xy,. Thus, the function pg,(t) + zx,(t) has bigger
strongly non-polynomial growth rate than all of the functions g¢1, ..., g;,. Furthermore, the strongly
non-polynomial growth rate of the function p;(t) + z;(t) (1 <1i < ko) is the same as x;(t), and these
are all pairwise distinct by the definition of ky. The claim follows. O

Remark. i) Note that we do not require that the functions ay, ..., a; have polynomial growth in the
above lemma.

ii) A very simple example that illustrates the above decomposition is the following: assume that we
have the functions a;(t) = 2 +t3/2 ay(t) = t3/2, az(t) = 2t3/%2 +t? and ay(t) = t/2 + tlogt +t>. These
four functions are clearly linearly dependent. The above lemma provides the basis (g1, g2, h1), where
g1(t) = t3/2 go(t) = tlogt + t> and hy(t) = t>. The main property (which will be important in the
proof of Theorem 1.2.2) is that the functions g1, g2 have distinct strongly non-polynomial growth rates
(t3/2, tlog t respectively), even though gy grows like 3 (i.e a polynomial).

4.1.3 Simplifying the assumptions on the nilpotent group
Reduction to connected-simply connected Lie groups

Let G be a k-step nilpotent Lie group and let I be a uniform subgroup of G. Then, the space X = G/T’
is called a k-step nilmanifold. The space X may have several representations of the form G/T" (with
possible variance in the degree of nilpotency). Let G° be the connected component of eg in G. If we
assume that G/G° is finitely generated®, then, by passing to the universal cover G of G, it can be
shown that X has a representation G / I where now the underlying group G is simply connected. In
addition, we can argue as in [39, Section 1.11] to deduce that X can be embedded as a subnilmanifold
in some nilmanifold G’ /T, where G’ is a connected and simply connected nilpotent Lie group and every
translation on X has a representation in X’ = G’/I”. This means that for any z € X, b1,...bp € G
and continuous function F : X — C, we can find 2’ € X', b},...,b, € G’ and F' : X’ — C, such that
FO7t .. b)) = FI((0)™ ... (b,)™x) for all ny,...,n, € Z.

Change of base point

For every b € GG, we have that the sequence b"T" is equidistributed in the set {6"I": n € Z}. Therefore,
if g is any other element in G, we have that the sequence b"gI" is equidistributed in the nilmanifold
g{(g~1bg)"T',n € N}. This follows by noting that b"g = g(¢g~'bg)". An analogous relation holds for
the elements of the set (b°¢g)secr, which we define below. This trick, which is called the change of base
point trick, can be used when we want to show that some sequence v(n)z is equidistributed (on some
specific nilmanifold depending on z) in order to change the base point x to T'.

4.1.4 Removing the integer parts

In this part, we will establish a lemma that practically implies that part a) of Theorem 1.2.2 follows
from part b) of the same theorem. The fact that part a) of Theorem 1.2.1 follows from part b) of
the same theorem is precisely the statement of [12, Lemma 5.1], which is proven using very similar

3Recall that x;(t) goes to 0 for I < i < k.
4Without loss of generality we can assume that in our setting, because our results deal with the action of G on finitely
many elements of X.
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arguments to the proof of Lemma 4.1.3 below. If a collection of sequences of real numbers has the
property that the averages

B RO ) - V) (42)

converge for all nilmanifolds X; = G;/T';, elements b; € G;, points z; € X; and continuous functions
fi defined on X;, we will say that this collection is pointwise good for nilsystems. The notation b@Z (n)

makes sense here due to the connectedness assumptions we have imposed on the Lie groups G;.

Lemma 4.1.3. Let ai(n),...,arx(n) be sequences of real numbers that satisfy the following:
a) The collection a1(n), ...,ax(n) is pointwise good for nilsystems.
b) For every 1 <i <k, we have that the sequence (a;(n)Z)nen satisfies one of the following:

1. It is equidistributed on T.

2. It converges to some ¢ = ¢(i) € T different from 0.

8. It converges to 0 and the sequence {a;(n)} — % has a constant sign eventually.
Then, the sequences |a1(n)|, ..., lax(n)] are pointwise good for nilsystems.

Remark. The number % in the third condition is arbitrary since we could have used any number

€ (0,1). We primarily use this condition in the following manner: suppose we have a function f(t),
which converges monotonically to some k € Z as t — +o00. Then, we clearly have || f(t)|/; — 0 and we
also observe that the sequence {f(n)} does not not oscillate between intervals of the form [0, ] and
[1 —e,1) (due to the monotonicity assumption). Thus, the sequence {f(n)} — 2 will indeed have a

constant sign (positive if f increases to k and negative otherwise).

Proof. Let X; = G;/T'; be nilmanifolds with G; connected and simply connected and b; € G;. Let
f1, ..., fr be continuous functions defined on Xi,..., X} respectively. Under the hypotheses of the
lemma on the sequences aj(n), ..., ax(n), we want to show that the averages

lax(n)] .\ . lak(n)]
<y Jrloy 7 @) - S k) (4.3)
converge for any choice of the z; € X;.

Fix some i € {1,2,...,k}. If the sequence a;(n) satisfies the second condition, namely that a;(n)Z
converges to ¢Z (¢ # 0), then, for n sufficiently large, we have

lai(n)] = ai(n) = {c} + on(1).

This implies that I)Z.La"(n)J = bi_{c}b?i (m+on() " Qince the function fi is continuous, we can disregard the
contribution of the 0,(1) term, while the bi_{c} term can be absorbed by the x;. Therefore, we notice
that in this case, we can remove the integer part for the sequence a;(n). An entirely similar argument
demonstrates that the same holds if a;(n) satisfies the third condition.

In order to complete the proof, we will consider below the case that each of the sequences a;(n)Z
is equidistributed on T for convenience (namely, they all satisfy the first condition). Since we can
easily remove the integer parts for those sequences that satisfy the second or third condition as we
did above, the argument below easily adapts to the general setting with some changes in notation.

We rewrite the averages in (4.3) as

1<n<N

k
Hf b {az(n)}baz(n) E H Z b&z(") )

where f, : T x X; — C is the function defined by the relation

(s, gz) = £i(b P ga).
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Let v;(n) be the sequence (a;(n)Z, b?i(n)xi). By our hypothesis, for any continuous functions f/ on
X; = T x X;, the averages of Hle fl(vi(n)) converge. However, note that the functions f; that we are
dealing with may have discontinuities when s becomes close to an integer. Our goal is to approximate
each f; by a continuous function and then use the above observation.

Let € > 0. For every 1 <14 < k, we define a continuous function f;. that agrees everywhere with

f; on [e,1 —¢] x X; and such that f; . is bounded uniformly by 2 ‘ fill . Observe that

o0

|E Fwm)~ E fem)| =<l Y () - fiewn)] <

1<n<N 1<n<N
1<n<N

aj(n)¢le,1—¢]

fi

Fon(l) (4.4)

6 ‘
oo

where the last bound follows from the triangle inequality and the fact that a;(n) is equidistributed

(mod 1), which indicates that the set {n € N: a;(n) ¢ [e,1 — €]} has asymptotic density 2e.
Combining (4.4) with a simple telescoping argument, we deduce that

fi

[e.e]

k k
timsup| B J[Jitwim) = _E_T] ficwim)| < ke]]|
- = =1 =1

N—too 1<n<N -

Since the averages 1<E<N Hle fie(v(n)) converge as N — oo by our hypothesis (the functions involved
<n<

here are continuous), we infer that the averages

k
1<”<N¢131 fi(vi(n))

form a Cauchy sequence and, therefore, converge. The conclusion follows. O

Using the previous lemma, we can establish that the first part of Theorem 1.2.2 follows from the
second part. We postpone this until the next section, where we also prove the second part of Theorem
1.2.2.

4.2 Proofs of the pointwise convergence results

The main tool we are going to utilize in our proof is the quantitative Green-Tao theorem on polynomial
orbits (Theorem J). A technical obstruction in our proof is that among the functions ai,...,a; in
the statement of Theorem 1.2.2, we must separate the polynomial functions from the strongly non-
polynomial ones. We will accomplish this using Lemma 4.1.2.

First of all, we show that the first part of Theorem 1.2.2 follows from the second part. This is
accomplished by using Lemma 4.1.3. We remark again that in part i), there are no connectedness
assumptions made on the groups (;. Nonetheless, our reductions allow us to consider only the case
that the Lie groups G; are connected and simply connected. We implicitly work under this assumption
in the proof below.

Proof of part i) of Theorem 1.2.2, assuming part ii). We will have to confirm that the conditions of
Lemma 4.1.3 are satisfied. Let ai,...,ax € H be as in the statement of Theorem 1.2.2. Condition a)
of Lemma 4.1.3 is satisfied by our hypothesis. Now, we verify the second condition.
Fix some i € {1,2,..,k}. We consider three cases:

i) Assume that the function a;(¢) is such that |a;(t) — ¢(t)| > t* for all polynomials ¢(¢) with rational
coefficients. Then, the sequence a;(n)Z is equidistributed on T (satisfying condition (1)), due to
Theorem E.

ii) Assume that the function a;(t) is such that tliinoo ai(t) = ¢ ¢ Z. Then, the sequence a;(n) satisfies

condition (2) of Lemma 4.1.3.
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iii) Assume that neither of the above conditions is true. Since a;(f) must satisfy (1.11), we deduce
that a;(t) converges to some integer c¢. However, since a;(t) converges to ¢ monotonically (functions
in H are eventually monotone), we deduce that condition (3) of Lemma 4.1.3 is satisfied and we are
done. O

Now we switch our attention to the proof of part ii). Firstly, we will apply Lemma 4.1.2 in order to
replace the original functions aq, ..., ar with a collection of functions that are more manageable. This
will enable us to separate the polynomial functions from strongly non-polynomial ones. In addition,
among the strongly non-polynomial functions, we have to isolate those that are sub-fractional, because
they behave differently when we try to employ the Taylor expansion. This whole process will reduce
Proposition 4.2.1 below to Lemma 4.2.2, which we will then proceed to establish.

Following all these reductions, we use the Taylor expansion to substitute the strongly non-polynomial
functions with polynomials in some small intervals. Now, this reduces the original problem to a quan-
titative equidistribution problem of finite polynomial sequences in a nilmanifold, although the coeffi-
cients of the polynomials vary depending on the underlying short interval. Finally, in Step 3, we use
the quantitative equidistribution results to show that averages of Lipschitz functions in the nilmanifold
over these ”variable” polynomial sequences are very close to an integral over a subnilmanifold, which
ultimately allows us to evaluate the limit of the initial averages.

We make one final reduction: let aq, ..., a; € H be functions as in the statement of Theorem 1.2.2.
Passing to the product nilmanifold, we infer that our problem follows from the following statement:

Proposition 4.2.1. Let X = G/T be a nilmanifold, by,....,by € G are commuting elements and
ai,...,ar € H have polynomial growth. Assume that there exists € > 0, such that every function
a € L(ay,...,ax) satisfies either (1.9) or (1.11). Then, for any x € X and continuous function
F: X — C, we have that the averages

E P p ) (4.5)

1<n<N

converge.

Proof that Proposition 4.2.1 implies Theorem 1.2.2. We want to show that the averages

N
1 ai(n ag(n
=1

converge for all z; € X;, where the nilmanifolds X; = G;/T;, the elements b; and the functions a; € H
are as in the statement of part (ii) of Theorem 1.2.2. We define the continuous function F' on the
product nilmanifold X; x --- x X by the relation

Fy1, k) = filyn) - o - fe(ye)-

We also denote by I;, the element on G x - - - X G, whose i-th coordinate is equal to b;, while all of its
other coordinates are equal to the respective identity element. Observe that the elements b1, ..., by are
pairwise commuting. Finally, let us also denote by x the point (z1, ..., zx) on the product Xj x - - - x Xj.
Then, a simple computation implies that our initial average is equal to

FE™ bk g

1<n<N
and the claim now follows. O
Now, we will reduce Proposition 4.2.1 to the following lemma:

Lemma 4.2.2. Let G/T be a nilmanifold and suppose that uy, ...,us are elements in G, such that

ult BT = u? . WZT. (4.6)
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In addition, assume that the nilmanifold X' = u}..uRT can be represented as G'/I’, where G' is

connected, simply connected and contains all elements uy,...,us. Let sg,s be positive integers and
define the sequence v(n)

ﬁufi(n)ﬁ-xi(n) ﬁ u?i(n)"'xi(n)’ (4.7)
i=1 i=so+1

where:

a) pi,p; are polynomials with real coefficients, such that every non-trivial linear combination of the

polynomials psy+1, ..., Ps s not an integer polynomial,

b) the functions x; are all strongly non-polynomial, the functions x1, ...,xs, are not sub-fractional and

have pairwise distinct growth rates and the functions xs,41,...,Ts are sub-fractional.

Then, for any Lipschitz function F on X' with Lipschitz norm at most 1, the averages

S0 S _
E F<H ufi(n)—i-xi(n) H ut i(n)+xi(n)rl)
i=1

1<n<N .
1=s0+1

converge to the integral fX, F dmx:.

While the statement may seem relatively convoluted at first, the sequence v(n) above has a con-
venient form, so that the Taylor approximation can be used directly.

First of all, we prove that Lemma 4.2.2 implies Proposition 4.2.1. We will rely on Lemma 4.1.2 to
make the required reductions on the Hardy field functions in the iterates and we will also use Lemma
2.3.3 to get the equality (4.6), where uy, ..., us will be some appropriate elements of the Lie group G
(they will be products of powers of the elements b; in Proposition 4.2.1).

Proof that Lemma /.2.2 implies Proposition 4.2.1. Applying Lemma 4.1.2, we can find a basis f1, ..., fs
for the set L(ay,...,ax) of non-trivial linear combinations. The collection of functions fi,..., fs can
be written in the form (g1, ,, ., gm, A1, ..., h¢) where g;, h; are as in Lemma 4.1.2. We will not use this
specific property until a little further below, so as to avoid cumbersome notation. Note that the fact
that fy, ..., fs form a basis indicates that the assumptions on the linear combinations of the a1, ..., ag
in the statement of Proposition 4.2.1 are now transferred to the functions f1, ..., fs.

If we write i

ai(t) =) cijfi(b), (4.8)

J=1

for some real numbers ¢; ;j, then we can rewrite the average in (4.5) as

fi(n) fs(n)
E F s 4.
LB Pl 0) (19)
for some commuting elements uj,...,us € G (here, the fact that the elements by, ..., by commute is
required). We denote

v(n) = u{l(n) . uﬁs("),

which is a sequence in G. We want to establish that the averages of the sequence F'(v(n)z) converge
for all x € X and any continuous function F. If one of the functions fi, ..., fy, is such that the limit
. liin fi(t) is a real number (which can be the case when a linear combination of the original functions
— 400

satisfies (1.11)), we can invoke the continuity of F' to eliminate the corresponding term ulf (™ in the
product and replace it by a constant. Hence, we may assume that all of the functions fi(¢), ..., fs(t)
go to 00, as t — +o0.

Now we use the particular structure of the functions fi,..., fs. The statement of Lemma 4.1.2
implies that the collection of functions fi, ..., fs has the form (g1, ..., gm, b1, ..., he) (clearly, m + ¢ = s)
such that the functions g; can be written in the form p;(¢)+z;(t), where the functions 1 (t), ..., 2, () are
strongly non-polynomial and have pairwise distinct (and non-trivial) growth rates, while the functions
h; can be written in the form p;(t) 4+ y;(t), where y;(t) converges to 0. Here, p; and p; are polynomials
with real coefficients.
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We may rearrange the functions f; so that f; = g; for all 1 < ¢ < m and f; = h;_,, for each
m + 1 < j < s. Rewrite the sequence v(n) as

v(n) = ﬁu?i(n) ) ﬁ ui’;_(:z) — ﬁug’i(")-*-%(”) ) ]ﬁ:wg'i'(”)-i-z,li(n)7
i=1 i=1 =1

=1

where we use the notation w; for the element u;i,, in the last equality. Without loss of generality,
assume that
x1(t) = za(t) = -+ = xp(t) = 1.

Firstly, we need to distinguish between the sub-fractional functions and the ”fast” growing func-
tions among the functions xz;(t) (this will be important later when we use the polynomial expansion).
Thus, let 0 < sg < m be a natural number such that xg,(t) > t° for some ¢ > 0, while x5 4 is a
sub-fractional function. This also implies that all the functions x; for i satisfying sqg+ 1 <1i < m are
sub-fractional since we have arranged the functions so that their growth rates are in descending order.

Once again, we rewrite the sequence v(n) in the form

S0 m 0 _
v(n) = Hu$i(n)+w¢(n) I1 ubi(mF e I1 Wl i),
i=1

i=so0+1 i=1

Because the function F' is continuous, we can discard the functions yi, ..., y¢, since they all converge
to zero. The hypotheses (1.10) and (1.11) on the linear combinations of the remaining functions in
the exponents continue to hold. Indeed, this can be seen by noting that (1.10) and (1.11) still hold
when replacing one of the functions (say a;) by a function of the form a(t) + e(t), with e(t) — 0.
Consequently, we can redefine v(n) to be the sequence

S0 m
v(n) = ufi(n)-i-l‘z‘(n) ut i(n)+zi(n) w;ﬁi(n).
1 11 11

i=so+1 =1

We will now reduce our problem to the case that the polynomials pj(t),...,py(t) are linearly in-
dependent. Due to our hypothesis (namely (1.10),(1.11)), every non-trivial linear combination of
the functions pi(t), ..., pe(t) must satisfy either (1.10) or (1.11). Thus, every linear combination of the
polynomials pi(t), ..., pe(t) is not a polynomial with integer coefficients unless it is the zero polynomial.
If the second case is true, there exist ci,...,c,—1 € R such that

pe=cip1+ -+ co—1po—1-

Then, we have
¢ -1

[Tl = T Cwig ™.

i=1 i=1
If the polynomials p1,...,py_1 are linearly independent, then we are done. Otherwise, we proceed
similarly to eliminate py,_i. After a finite number of steps, we will reach a collection of linearly
independent polynomials.

In view of the above, we are allowed to assume that pi,...,py are linearly independent. Now, we
show that we can reduce to the case that the polynomials pgy+1,...,Pm,D1,...,pr. Indeed, the linear
independence assumption on the polynomials py, ..., py implies that the polynomials pgy41, ..., Pm, D1, ---, De
are linearly independent. To see how this works, observe that if there are real numbers ¢;, d; such that

m—sg l

Z CiPso+i + Z dipg =0,
=1 =1

then the function

m—sq V4 m—sgo
D cisori + Tsori) + Y dibi = Y Ciltsgsi
i=1 i=1 i=1
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is a sub-fractional function that does not converge to 0, since the functions x4,4; are sub-fractional
and have pairwise distinct growth rates. This contradicts our hypothesis (specifically (1.11)) and our
claim follows.

In conclusion, we see that the sequence v(n) can be written in the form

S0 m V4 ~
H u§i(n)+wi(n) H ufi(n)ﬂﬁi(n) H wfi(n), (4.10)
i=1 i=s0+1 i=1

where the functions x; are strongly non-polynomial with distinct growth rates, the functions zy, ..., z,
are not sub-fractional, the functions x4,11,..., x5 are sub-fractional and every non-trivial linear com-
bination of the polynomials ps,+1, ..., Pm, D1, ---, D¢ is not an integer polynomial. We also recall that we
have arranged the functions z; to be in decreasing order with respect to their growth rates.

We can combine the last two factors of this product into one factor to simplify our problem
a bit more. More specifically, we can rewrite the sequence v(n) in the form (we make some mild
modifications in our notation here)

s0 s B
v(n) = Hu:fi(n)-l—ivi(n) H ufi(n)‘i‘ifi(n)’ (4.11)

=1 1=s0+1

where s = m + [, p;,p; are real polynomials, the functions z; are strongly non-polynomial with
distinct growth rates, x1, ..., x5, are not sub-fractional, x4,+1,..., £s are sub-fractional and every non-
trivial linear combination of the polynomials p; is not an integer polynomial. Namely, our functions
satisfy hypotheses a) and b) of Lemma 4.2.2.

In order to establish our assertion, it suffices to show that the sequence v(n)z (where v(n) is as
in (4.11)) is equidistributed on the nilmanifold X’ = ul ... uRz for any 2 € X. We will prove this
in the case © = I since the general case follows from this using the change of base point trick (see
Subsection 4.1.3). In addition, we can invoke Lemma 2.3.3 to find a real number sg, such that X’ =
(ui®)?...(us°)2T. Replacing the functions p;(t) + z;(t) (1 < i < so) by the functions (p;(t) + z:(t)) /so
and p;(t) 4+ z;(t) (so+1 <i < s) by (ps(t) + x(t))/so (the assumptions on the linear combinations of
the functions remain unaffected), we can reduce our problem to the case that X’ = u%...u%f‘.

We want to show that for any continuous function F' from X’ = G'/T” (G’ is connected, simply
connected and TV is a uniform subgroup), the averages

F I’
B Fml)
converge to the integral fX, F dmx. Since Lipschitz functions are dense in the space C'(X’), we may
assume that F' is Lipschitz continuous. In addition, we may assume after rescaling that || F’ HLip( xn < 1.
Now, our claim follows immediately from Lemma 4.2.2.

In the following part, we will prove Lemma 4.2.2. We split the proof into two steps. During
Step 1, we will approximate the functions 1, ..., xs by polynomials in a suitable short interval. Our
goal is to reach an average over a short interval of the form [N, N + L(N)] of a sequence of the
form F(g(n)x), where F is Lipschitz and g(n) is a polynomial sequence on the nilmanifold X’ (the
polynomial sequence will vary with the parameter N). This will be ensured by the results we already
have on the simultaneous Taylor expansion of Hardy field functions. In step 2, we will use Theorem
J to deduce that these averages are close to the integral of F' for large values of V.

All the reductions above allow us to write v(n) in a form that will be appropriate for the application
of the quantitative equidistribution theorem (after we perform the Taylor expansion). When we apply
the Taylor expansion in the first step, the functions 41, ..., s will become approximately constant
and thus the desired equidistribution will be mainly ”affected” by the polynomials pg,1, ..., ps. On the
other hand, the functions 1, ..., zs, will play a meaningful role in the equidistribution of our sequence.
In particular, the presence of the functions z1,...,zs, will imply ”closeness” of our averages to the
integral of the Lipschitz function F', unless the projections of the elements u;, ..., us, on the horizontal
torus are zero. In this second case, condition a) on the polynomials completes the proof. Lastly, the
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"linear independence” condition of the polynomials ps,+41, ..., ps guarantees that the projection of the
sequence v(n) on X’ will be equidistributed on the entire nilmanifold u[{&...u]&ﬂ, since, otherwise, we
would need to pass to some subnilmanifold to guarantee equidistribution (and to an appropriate
arithmetic progression).

Proof of Lemma 4.2.2. Step 1: Approximating by polynomials: Let L(¢) be a sub-linear function
with . liin L(t) = 400 that we will determine later. It suffices to show that the sequence of the averages
—+o00

E F I’ 4.12
N<n<N+L(N) (v(n)T") (4.12)

converges to fX, F dmx, since the conclusion would follow from Lemma 4.1.1. Reordering if necessary,

we assume again that
x1(t) = - = x5 (2).

Let r be a very large natural number compared to the degrees of the polynomials p;,p; and the

degrees of the functions z;(t). If r is sufficiently large, we have that :c(r)( t) =o¢(1)forallie{1,...,s0}.
Assuming again that r is sufficiently large, then for any function L(t) that satisfies

()" < L(t) <

for some ¢/ > 0 and all ¢ € 1,...,5sp, we have that for each i € {1,...,s0}, there is a unique natural
number k; > r so that the sub-class S(x;, k;) contains the function L(t) (this follows from Lemma
3.5.1). The fact that the function L(t) belongs to S(z;, k;) indicates that we have the relations

(.’L'Eki)(t))_l/ki < L(#) _<($§ki+1)(t))_l/(ki+l)' (4.13)

We can guarantee that the numbers k; are also very large compared to the degrees of the polyno-
mials p;, pj; by enlarging the number r in the beginning®.
We use the Taylor expansion for the functions x(t), ..., zs,(t) to write

k; k
i (N
2i(N +h) = 2y(N) 4 - T (k«')

+on(1) = gin(h) +on(1) (4.14)
for 0 < h < L(N). If, on the other hand, we have i > so (namely, in the case where the function x; is

sub-fractional), then

s (N 4 h) = ()| = on (1), (4.15)

In addition, we denote p; n(h) = pi(N + h) and similarly p; y(h) = pi(N + h) for every admissible
value of i. Thus, we rewrite the expression in (4.12) as

S0

FwNHuq’N yipin(h H up‘N (4.16)

E
<h<L(N
O<h<L(N) =1 i=s0+1

i—s0+1 ux’(N) but the
explicit form of this term will not concern us, since we will only require that the element wy belongs

where we discarded the on(1) terms, because F' is continuous. Here, wy = []i_

to the underlying group G’ defining the nilmanifold X’ = uf ... uRT

In conclusion, we have reduced our problem to showing that given the nilmanifold X’ = u ... uR'
(which is also equal to u...uZI"), the averages in (4.16) converge. Here, the polynomials ¢; v are
defined in (4.14) (they are essentially the Taylor polynomials of the Hardy field functions x;), while the
polynomials p; n,pj,n were defined by the relations p; y = p;(IN+h) and pj N = p;j(IN +h), where the
pi, p; are polynomials with real coeflicients. We also recall that the polynomials p; are such that every
non-trivial linear combination of them is not an integer polynomial. Under all these assumptions, we

SFor example, assuming that k; is at least 10 times as large as the maximal degree appearing among the polynomials
pi, p; and 10 times as large as the number s of all existing polynomials would suffice for our arguments.
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will show that the polynomial sequence (restricted to the range 0 < h < L(N)) inside the function F' is
d-equidistributed for N sufficiently large in the following step. We remark that the growth conditions
(4.13) imposed on the function L(¢) will also play a crucial role in this.

Step 2: Using the quantitative equidistribution theorem: Let Z = T% be the horizontal
torus of the nilmanifold X’ = u}...uR[ and let 7 : X’ — Z denote the projection map. Let § > 0

be sufficiently small (in the sense that Theorem J is applicable). We assert that the finite polynomial

sequence

S0 s

qi, N (h)+p; N () pi,n () /)

: ; I 4.1

(Hu’ . H i 0<h<L(N) (4.17)
=1 1=80+1

is d-equidistributed on the nilmanifold X’ for N sufficiently large. If the claim does not hold for a
natural number N, then by Theorem J, there exists a real number® M > 0 and a non-trivial horizontal
character xyn of modulus < M such that

S0 s
i N(R)pin (h i n(h
HXNOW(H“Z N(h)+pi,n () H uf N ( )1“’
i=1 i=so+1

Moo pam < M- (4.18)

Thus, if our prior assertion fails, then the above relation would hold for infinitely many N € N.
Our first goal is to eliminate the dependence of the characters y on the variable N. Note that
the function yy o7 is a character on T of modulus < M and, thus, has the form

(tl, ...,td) — e(kl,Ntl + 4 kd,Ntd)

for ki v € Z with |k1n| + -+ + |kan| < M. We also write m(u;) = (w41, ...,u;q) for the projections
of the elements u; on the horizontal torus. Then, a straightforward computation allows us to rewrite
(4.18) as

S0

He( Z(%‘,N(h) + pi,N(h))(kl,NUi,l +---+ kd7Nui7d)—|—
=1

> Gn) Ui+ + hanuia)) | ey < M- (419)
i=s0+1

Since there are only finitely many choices for the numbers k1 v, ..., kg v, we have that, if our claim
fails, there are ki, ..., kg € Z, so that the inequality

S0

le(> " (qin(h) + pin (R)) (krug + - - + kaquia)+
=1

Z (ﬁi,N(h))(klui,l +---+ kdui,d)) HCOO[L(N)] < M. (4'20)
1=s0+1

holds for infinitely many NV € N. We will also denote the horizontal character corresponding to the
d-tuplet (ki,...,kq) by x. Thus, we have eliminated the dependence of the character y on N.

Denote u; = k1u;1 + - - - + kqui 4. We will show that the above hypotheses imply that all the num-
bers u; equal 0. Thus, suppose that this is not valid and we will reach a contradiction. We consider
two cases:

Case 1: Firstly, suppose that all of the numbers u; with 1 < ¢ < sg are zero, which implies that
the first summand in (4.20) vanishes. Naturally, (4.20) is simplified to

leC > Bin(h)ti)]| goegr oy < M- (4.21)
1=s0+1

5The constant M depends only on 8, the nilmanifold X’ as well as the degrees of the polynomials g;, p;, which are all
fixed in our arguments. The central property we need is that it is independent of the variable N.
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We recall here that we had defined p; n(h) = pi(N + h). Let Q(t) = > 7, ;uipi(t). This is a
linear combination of the polynomials p;(t). However, this linear combination is not a polynomial in
Q[t] due to our assumptions on the polynomials p;(n), unless, of course, all the coefficients u; (for
sp + 1 < i < s) in this combination are zero, which we have supposed to not be the case. Thus, Q(t)
has at least one irrational coefficient (except the constant term) and is equidistributed on T. The
relation (4.21) implies that [le(Q(N + h))| oo ny < M for infinitely many N. It is not difficult to
see by calculating the coefficients in Q(N + h) that this fails for N large enough.

Case 2: Suppose now that at least one of the numbers u; with 1 < i < sg is non-zero Furthermore,
assume [ is a positive integer that is larger than the degrees of the polynomials p; y(h),p; v (h) (for
all admissible values of the indices 7, j) as well as the degrees of the functions x;, but [ is also smaller
than all the numbers k;. Recall that we have picked k; to be very large in relation to the degrees of
the polynomials p;, p; and degrees of the functions z; in the beginning, thus we can find "many” such
numbers [. The fact that [ is larger than the degrees of the functions x; combined with Lemma 2.1.3
implies that xél)(t) — 0, as t — +o0.

For a number [ as above the coefficient of the term h! in the polynomial appearing in (4.20) is
equal to

1< -
ﬂzxz()(N)ui
Ti=1

and, thus, it does not depend on the polynomials p;, p;. Using the definition of the smoothness norms,
(4.20) implies that

1 &

l @ ~

LNl Do (Nl < M
i=1

for infinitely many IV € N. The last inequality becomes

S0
LN 2P (Nya| < i,
i=1

for large enough NV, because all functions z!(¢) go to 0. However, the Hardy field function inside the
absolute value above has the same growth rate as the function ajgl) (t), since the functions zq, ..., x5,
are strongly non-polynomial and have distinct growth rates (recall that x; has the largest growth rate

among the x;), unless, of course, u; = 0. If the latter does not hold, we get

C

}xgl)(N)ﬂﬂ < LN

for infinitely many N and some constant C, which contradicts (4.13). Thus, we eventually deduce
that w3 = kjui + -+ + kquig = 0. Repeating the same argument, we get inductively that u; =
kiu; 1 + - - + kqu; =0 for all 1 <14 < 59, which is a contradiction.

To summarize, we have shown that if the sequence in (4.17) is not d-equidistributed for all large
enough N, then all the numbers u; = kju; 1 + - - -+ kqu; 4 are zero. Equivalently, we have y om(u;) =0
for all 1 <4 < s. This implies that the character x is the trivial character on X’. Indeed, the character
x annihilates all elements u}? ---u}*I", where nq,...,ns € Z and by density of those elements on X’
(recall our assumption that X’ is also equal to the nilmanifold u%...uZT"), x is zero everywhere. This
is a contradiction (the horizontal characters appearing when we applied Theorem J are assumed to be
non-trivial).

In conclusion, we have that the finite polynomial sequence in (4.17) is d-equidistributed for N
sufficiently large. Thus, we conclude that the averages in (4.12) are 0 [|F'(wn-)|[Lipxr) = 0 [1F [l ipcxr)
close to the quantity [y, F(wyz) dmx/(z). The action of wy on X’ preserves the Haar measure of X',
so we get that the last integral is equal to [y, F () dmx/(x). Taking § — 0, we finish the proof. [

Proof of Theorem 1.2.1. As we explained in the previous section (before the statement of Lemma
4.1.3), the first part follows from the second part (see also [12, Lemma 5.1]) and, in turn, this second
part follows using similar arguments as in the proof of Theorem 1.2.2. We only highlight the main
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differences here. All the disparities appear in the part where we reduce Proposition 4.2.1 to Lemma
4.2.2.
a) In (4.9), all the functions fi, ..., fs satisfy (1.10) (there are no functions among the f; that satisfy

tl}inoo |fi(t)] < 00). We also have k = s.

b) We do not have to make the reduction to the case where the polynomials p,...,py are linearly
independent. There cannot be a non-trivial linear combination of them that is zero, because that
would violate (1.10).

¢) The limit of the averages is again [y, F(z) dmy (z), where X' = u}..uRI" by Lemma 4.2.2. We

would like to show that the limit is equal to fX,, Fdm/};, where X" is the nilmanifold b]ﬁ..bﬂ,ff‘. Recall
that each u; is equal to b7"'...b;"* (by (4.8)) and the numbers ¢; ; form an invertible k x k matrix (due

to the linear independence assumption on the original functions aq, ...,ax). Thus, we can also write

/
k c. . . . .
b; = [[;_; u;,"” for some numbers ¢ j (here, we also use that the elements b; are pairwise commuting).
I

j=1"%
Combining the above, we have that b¥..bF = uff..uf and thus the closures of their projections on
G/TI" define the same subnilmanifold. O

4.2.1 Convergence for linearly dependent iterates

Finally, we provide a proof of Theorem 1.2.3. Here, we will use Theorem 1.1.2. Although it will not
be used in the proof, we have to assume below that the Hardy field H that we work with is closed
under composition and compositional inversion of functions, since the seminorm estimates were proven
under this assumption in the previous chapter.

Proof. Using a standard ergodic decomposition argument, we may assume that the system (X, u, T)
is ergodic. We can also rescale the functions f; € L*(u) so that they are 1-bounded. Our first
objective is to apply Theorem 1.1.2 (or rather, the more flexible Proposition 3.1.1), in order to reduce
the problem to the case where the system X is a nilsystem. If the functions ai,...,a; are such that
the conditions of Proposition 3.1.1 are satisfied, then this can be done instantly. If this does not hold,
we have to perform a series of reductions to be able to apply Proposition 3.1.1. We do this in 2 steps:

a) Firstly, assume there exists one function among the a; (say a; for simplicity), which has growth
rate smaller than or equal to logt. Then, using (1.10) and (1.11), we deduce that a; converges
monotonically to some real number ¢ and the integer part of aj(n) becomes a constant. Thus, the
asymptotic behavior of the averages in (1.12) is the same, if we substitute the term Tl with
the term T'¢) f;. Consequently, we only need to show that the averages

laz(n)] lax(n)]
1§£1131§NT fa...T fx

converge in norm. Repeating the same argument, we eliminate all functions a; that grow slower than
logt.

b) Due to the reduction in the previous step, we have a sub-collection of the original functions, so
that all functions in this new set dominate logt. We will denote this collection by a1, ..., ax again, and
our task is to show that the averages

a1 (n)] lax(n)]
BT fi...T I

converge in mean (for all systems). Our next objective is to eliminate pairs of functions, whose
difference grows slower than logt so that we can ultimately apply Proposition 3.1.1.

Assume that two of the functions (say a1, az) are such that their difference is dominated by log ¢.
We observe that the function a;(t) goes to oo as ¢ — 400, since it dominates logt¢. In that case,
the function a;(t) satisfies (1.10) and by Theorem E, the sequence a;(n) is equidistributed (mod 1).
Observe that since a; —ag must satisfy (1.11), we must have as(t) = a;1(t)+c+xz(t), where the function
x(t) € H converges to 0 monotonically and ¢ is a real number. Thus, for ¢t € R sufficiently large we
have

laz(t)] = laa(t) + (t) + ] = Lar(B)] + Le] + () (4.22)
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where ¢(t) € {0,+1, £2} and the value of £(¢) depends on whether the inequalities
{aa(t) + e} +{z()} <1

and
{ar ()} +A{c} <1

hold or not, as well as whether x() is eventually positive or negative.
Define A, = {t € R,e(t) = z} for z € {0,+1,+2}. Then, we see that our multiple averages are
equal to the sum

Z <E< 14.(n) Tlai(n)] (f1 .TLCJ+Zf2) cplesm] o ples®m)] g
2€{0,£1,£2} tsnsh

For a fixed z, we want to show that the corresponding average converges. For n € N large enough, we
will approximate the sequence 14_(n) by sequences of the form F'({ai(n)}), where F is a continuous
function.

We establish this for z = 0 (the other cases follow similarly). Assume that x(¢) decreases to 0
(the other case) is similar, which means that z(¢) is eventually positive and also {z(t)} = =(t) for ¢
sufficiently large. In addition, we can also assume that c¢ is positive. Observe that for t € Ay, we have

laz(8)] = lax(t)] + [¢]

by the definition of Ag. This is equivalent to the inequalities

{aa(t) + e} +{=()} <1
{aa(®)} +{c} <1

which can be condensed into
{ar(®)} +{=()} <1 —{c}, (4.23)
since we assumed for simplicity that z(t) is eventually positive. To summarize, we have shown that

ne Ay <= {ai(n)}+{z(n)} <1-—{c} (4.24)

Let € > 0 be a small number. Since we have that the function z(¢) decreases to 0, we have that
{z(t)} < ¢ for ¢t large enough. Consider the set

A.={neN:{a1(n)} <1—{c}—¢}.
Then, for sufficiently large values of n, we observe that if n € A., then the inequality

{aa(®)} +{z()} <1—{c}

holds as well. Namely, A. C Ap. Let us denote B = [0,1 — ¢ — €] for convenience and observe that

1a.(n) = 15.({a1(n)}).

Now we approximate the function 1p_ by a continuous function in the uniform norm, where 1p_ is
considered a function on the torus T in the natural way. We can define a continuous function on T,
such that F. agrees with 15, on the set”

[e,1—={c} —2e]U[l —{c},1 —¢]

and such that ||F. —1p_||,, < 2. We suppose that ¢ is small enough so that these intervals are well-
defined. Observe that 1p_ is equal to 1 on the first interval of this union and equal to 0 on the second
interval.

"In the case that c is an integer, we make natural modifications to this set. For example, one could define the function
F. so that it agrees with 15, on [e,1 — 2¢]. Basically, we only require the function F. to agree with 15, on a set of
measure 1 — O(¢) for our argument to work.

106



Observe that

A\NAc ={neN: 1—{c}—e<{ai(n)} <1—{c}—{z(n)}} C{n e N: {a1(n)} € [1—{c}—¢,1—{c}]}.

Since the function a;(t) is equidistributed modulo 1, we conclude that the set Ay \ A. has upper
density at most €. Therefore, we have

[ LB Lagln) TE gy 1)y plost gy plostol
B ({ar(n)}) TEOI(f . Tlel oy plastl gy pleslp] <

Taga. () [[1a. = Tana ||, <26 +on(1), (4.25)

1<n <N
E
1<n<N

where we used the fact that 14.(n) = 1p.({a1(n)}) for all n € N, the trivial bound for the values of
n € Ap \ A: and the fact that the set Ay \ Ac has upper density at most €.

We do a similar comparison for the averages weighted by Fr({a1(n)}) and 15 ({a1(n)}). To be
more specific, we reiterate that the functions 1p_ and F. agree on the set

[e,1—{c} —2c]U[l —{c}, 1 —¢].
Accordingly, we have 1p_({a1(n)}) = F-({a1(n)}), unless
{ai(n)} € [0,e) U (1 —{c} —2e,1 —{c}h U1 —¢,1).

Let C. denote the set of n € N for which {a;(n)} belongs to this union. This union has measure 4e,
which implies that the upper density of C. is at most 4e (since aj(n) is equidistributed modulo 1).
Hence, we infer that

H1<TIIE<NF ({al( )}) Tl'al(n” (fl . Tl-Csz) Tl_ad f3 Tl_ak(n)J fk_
. ({ar(m)}) T (1 Tlel ) Tloa gy lorl g

1<n <N

where we utilized the fact that 1p_({a1(n)}) = Fz({ai1(n)}) for all n on the complement of C¢, the
trivial bound for the values of n € C. and the fact that C. has upper density at most 4e.
Combining (4.25) and (4.26), we deduce that

H1§£E<N Ao (n) Tla®I(polel o) plastl g plenm] g
K@NFHM(HJTWWWﬁ-ﬁ“h%TWWWﬁ RO fi ] o, < 102+ on(1). (4.27)

Taking ¢ — 0, we deduce that it is sufficient to verify that the averages

E F({ai(n)}) Tl®I(f .7l o) oplesm] g

1<n<N

converge for any continuous function F' on T. This would imply that the averages

E 1 Tl ... Tlaxm)]
E (™) W1l py) I
converge in norm.
After approximating F' by trigonometric polynomials (in the uniform norm), it suffices to show
that the averages

E e(liar(n)) T OI(f Tl gy) . rlostm] g,

1<n<N

converge in norm for any l; € Z. Note that the function ag(t) has vanished and its role has been
replaced by the sequence e(lya;(n)).
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We repeat this process until we eliminate all pairs of functions, whose difference grows slower than
logt, where at each step our averages are multiplied by a sequence of the form e(l;a;(n)) (I; € Z).
After finitely many iterations, our problem eventually reduces to the following: let ai, ..., a; satisfy
(1.10) or (1.11) and let by, ..., by, be a subset of {ay,...,ax}, so that the functions by, ..., by, satisfy the
hypotheses of Proposition 3.1.1. Then, for any integers 1, ...l;, the averages

e [b1(n)] b (n)]
191?§N€(l1a1(n) + -+ lgag(n) T fi...T fm

converge in L?(u) for all functions f1,..., fin € L®(u).

Now we can apply Proposition 3.1.1 and use a standard telescopic argument to show that the lim-
iting behavior of the above averages does not change if we replace the functions f; by their projections
to the factor Zs(X) (the number s is the one given by Proposition 3.1.1). However, by Theorem G,
the factors Zs(X) are inverse limits of s-step nilsystems. Thus, by another standard limiting argu-
ment, we may reduce to the case that the space X is a nilmanifold and p is its Haar measure, while
the transformation 7" is the action (by left multiplication) of an element g on X. Finally, we can
approximate the functions f; by continuous functions and reduce our problem to the following:

If X = G/T is a nilmanifold with ¢ € G and the functions ay, ..., ag, b1, ..., by, € H are as above,
then for any continuous functions fi, ..., f;, the averages

E e(liar(n) + - + lpar(n)) f1(g ™ z) . fr(gltm M)
1<n<N
converge in mean.

We show that these averages converge pointwise for every x € X. We recall that the functions
b1, ..., by belong to the set {ay,...,ax} (this is the only thing that we will need to use for the rest of
the proof).

First of all, it suffices to show that the averages

E e(hiai(n)+ -+ lkag(n)) fi(g"™z). .. fi(gMa)
1<n<N
converge pointwise, where X = G/T" is such that G is connected, simply connected nilpotent Lie
group (basically, we can remove the integer parts appearing in the iterates). This follows by standard
modifications in the proof of Lemma 4.1.3 (the fact that we have the coefficients e(lyai(n) + --- +
lkag(n)) in the final expression does not affect the argument), so we omit the details.
Now, observe that we can write the above averages in the form

lia1(n)++lgar(n) ~ ~b1(n) ~ b (1) ~
1§711E§NF0(90 T) Fi(g""™z) ... Fx(g i),

where gy = (1r,eq) and § = (11, g) act on the product nilmanifold T x X, the point Z is just (Z,x)
and the functions F; are defined by

Fo(yZ,al') = e(y) and F;(yZ,al') = f;(al') for ¢ > 1.

These are continuous functions on T x X. The functions lya;(t) + - - - + lgag(t), b1 (%), ..., by (t) satisfy
the hypotheses of Theorem 1.2.2 (since the functions aj, ..., a; do) and the result follows. O
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Chapter 5

Proofs for results along primes

5.1 Details of the proof

Our main goal is to use the Taylor expansion to replace our functions with polynomial iterates and
then apply Proposition 5.2.3 below. In order to do this, we need to eliminate the error term of the
approximations, since Proposition 5.2.3 concerns polynomials only.

In the case of strongly non-polynomial functions that also grow faster than some fractional power,
we show that the associated Taylor polynomial py(n) has ideal equidistribution properties. Indeed,
by picking the length L(N) a little more carefully, one gains arbitrary logarithmic powers over the
trivial bound in the exponential sums of py. Consequently, we get that the number of integers
in [N, N + L(N)] for which |a(n)] # |pn(n)] is less than L(N)(log N)~1% (say) and, thus, their
contribution to the average is negligible. Therefore, for all intents and purposes, one can suppose that
the error terms are identically zero.

The situation is different when a function that grows slower than all fractional powers is involved
since these functions are practically constant in these short intervals. For instance, if one has the
function p(t) + log? t, where p is a polynomial, the only feasible approximation is of the form p(n) +
log?n = p(n) + log? N + en(n), where ey(n) converges to 0. While it seems that we do have a
polynomial as the main term in the approximation (at least when p is non-constant), quantitative
bounds on the exponential sums of the polynomial component cannot be established in this case
at all. The main reason is that such bounds depend heavily on the diophantine properties of the
coefficients of p, for which we have no data.

In the case that p is a constant polynomial, we can use the equidistribution (mod 1) of the
sequence log?n to show that in most short intervals [N, N 4+ L(N)], we have Llog2 nJ = Llog2 N J for
all n € [N,N 4 L(N)]. The contribution of the bad short intervals is then bounded using the triangle
inequality and Corollary 2.4.3.

Suppose that the polynomial p above is non-constant. In the case that p has rational non-constant
coeflicients, we split our averages to suitable arithmetic progressions so that the resulting polynomials
have integer coefficients (aside from the constant term) and, thus, the effect of e (n) will be eliminated
when we calculate the integer parts. In the case that p has a non-constant irrational coefficient, we
can invoke the well-distribution of p(n) to conclude that the number of integers of the set

En ={n € [N,N + L(N)]: |p(n) +1log®n]| # |p(n) +log® N|}

is O(eL(N)), for a fixed small parameter ¢ and N large. However, in order to bound the total
contribution of the set Ey, we can only use the triangle inequality in the corresponding ergodic
averages, so we are forced to extract information on how large the quantity

1

m Z Ay p(n)1Ey (n)
N<n<N+L(N)

can be. This can be bounded effectively if the corresponding exponential sums

1
m Z Aw,b(n)e (p(n))

N<n<N+L(N)
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are small. This is demonstrated by combining the fact that the exponential sums of p(n) are small
(due to the presence of an irrational coefficient) with the fact that exponential sums weighted by
Ay p(n) — 1 are small due to the uniformity of the W-tricked von Mangoldt function. The conclusion
follows again by an application of the Erd6s-Turan inequality, this time for a probability measure
weighted by Ay, p(n).

5.1.1 A model example
We sketch the main steps in the case of the ergodic averages

N
% (Aw,b(n) - 1)T\_nlognj fi - TLanQJrlognJ fo- TLlog2 nJ fs. (5‘1)

n=1

where @ is an irrational number. We will show that the L?-norm of this expression converges to 0, as
N — +o00 and then w — +00. Note that the three sequences in the iterates satisfy our hypotheses. In
addition, we remark that the arguments below are valid in the setting where we have three commuting
transformations, but we consider a simpler case for convenience. Additionally, we do not evaluate the
sequences at Wn + b (as we should in order to be in the setup of Theorem 1.3.1), since the underlying
arguments remain identical apart from changes in notation.

We choose L(t) = t%9¢ (actually, any power ¢ with 5/8 < ¢ < 2/3 works here) and claim that it
suffices to show that

E

=0. 2
1<r<R 0 (5 )

L2(u)

E (Amb(n) - 1)T\_nlognj f1 .TLan2+lognJ fy- TLIng n] fg‘
r<n<r+L(r)

This reduction is the content of Lemma 5.4.1. Now, we can use the Taylor expansion around r to
write
(n—7r)?2 (n—r)3

nlogn = rlogr + (logr +1)(n —r) + —
2r 65%%7"

n—r

logn =logr +
52,71,7“

2(” - T) log 53,11,1”

log?n =log?r +
g3,n,r

9

for some real numbers &; ,,» € [r,n] (i = 1,2,3). Our choice of L(t) implies that
3, ;3065

<
- 672

’(nfr) <1

2
651,71,7"

and similarly for the other two cases. To be more specific, there exists a § > 0, such that all the error
terms (the ones involving the quantities &; ) are O(r~9).

Let us fix a small € > 0. Firstly, we shall deal with the third iterate, since this is the simplest one.
Observe that if r is chosen large enough and such that it satisfies {log?r} € (¢,1 — &), then for all
n € [r,r 4+ L(r)], we will have

Llog2 nJ = Llog2 rJ,
since the error terms in the expansion are O(r~?), which is smaller than ¢ for large r. In addition, the
sequence log? n is equidistributed modulo 1, so our prior assumption can fail for at most 3¢R (say)
values of r € [1, R], provided that R is sufficiently large. For the bad values of r, we use the triangle
inequality for the corresponding norm to deduce that their contribution on the average is O(¢R),
which will be acceptable if € is small. Actually, in order to establish this, we will need to use Corollary

2.4.3, though we will ignore that in this exposition. In conclusion, we can rewrite the expression in
(5.2) as

E
1<r<R

E  (Aupln) = 1)Tlmend gy plon®stosn] gy et g |
r<n<r+L(r) ?

pogy O (5.3)
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Now, we deal with the first function. We claim that the discrepancy of the finite sequence

(n —r)?

({7" logr + (logr +1)(n —r) + o )rgnngrL(r)

is OA(logﬂ4 r) for any A > 0. We will establish this in Proposition 5.3.1 using Lemma 2.3.7 and
Theorem 1. As a baby case, we show the following estimate for some simple trigonometric averages:

E 6<(n—r)2))< 1

r<n<r+L(r) 2r - ]ogA r

for r large enough. Indeed, if that inequality fails for some r € N, there exists an integer |g,| <
logO(A) r, such that
qr log?) 7
’ Il <08 I
2rilT = (L(r))?

If r is large enough, we can replace the norm with the absolute value, so that the previous inequality

implies that
o 2r logO(A) r
(L(T» < T
T

However, the choice L(t) = %66 implies that this inequality is false for large r.
In our problem, we can just pick A = 2. Using the definition of discrepancy, we deduce that the
number of integers in [r, 7 + L(r)], for which we have

(n— r)2

Ty e [0, u - )
;

{rlogr + (logr +1)(n —r) +

is O(L(r)log™2r). However, if n does not belong to this set of bad values, we conclude that

=17

|nlogn]| = {rlogr—l—(logr%—l)(n—r)—i— 5
r

since the error terms are O(r~%). Furthermore, since A, ;(n) = O(logr) for n € [r,r + L(r)], we
conclude that the contribution of the bad values is 0,(1) on the inner average. Therefore, we can
rewrite the expression in (5.3) as

o lpr(n)] . Lan2+10g nJ . Llog2 rJ
Bl B (sl = )T O gy fo T fgj pogy T OE For(D), (54)
)2
where p,.(n) =rlogr + (logr + 1)(n —r) + (nzrr)

Finally, we deal with the second iterate. We consider the parameter € as above and set M = 1/e.
Once again, we shall assume that r is very large compared to M. Since a is irrational, we have
that the sequence an? is well-distributed modulo 1, so we would expect the number of n for which
{an? +logr} & [e,1—¢] to be small. Note that for the remaining values of n, we have |an? +logn| =
Lanz + log TJ, since the error term in the approximation is O(r“s). Therefore, we estimate the size of
the set

B :={n € [r,r+ L(r)]: {an®* +logr} € [0,e] U[l — &, 1)}

Using Weyl’s theorem, we conclude that

2 _
rgng]rE+L(r) e(m(an + log 7"))‘ =o,(1). (5.5)

max
1<m<M

Here, the 0,(1) term depends on M = 1/¢, but since we will send » — 400 and then ¢ — 0, this will
not cause any issues. We suppress these dependencies in this exposition.
An application of Theorem I implies that

By

1 &
el <9 — -
T < €+M+mz::1m

E 241
e € ar” £ log))

, (5.6)
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so that |B, | < (¢ + 0,(1))L(r). Additionally, we will need to estimate

! > Awp()1p,(n),

L(T) r<n<r+L(r)

which will arise when we apply the triangle inequality to bound the contribution of the set 1,. However,
we have that
ma E A n2 + lo ‘: 1) + on(1), 5.7
Jmax | B Agp(n)e(m(an? +1ogr) | = ou(1) + 0, (1) (57)
which can be seen by splitting Ay, 5(n) = (Ayp(n) — 1) + 1, applying the triangle inequality and using
Lemma 2.4.2 and (5.5), respectively, to treat the resulting exponential averages. In view of this, we
can apply the Erdés-Turdn inequality (Theorem I) for the probability measure

Z Aw,b(n)é{an2+log r}(s)
r<n<r+L(r)

Z Aw,b(n)

r<n<r+L(r)

v(S) =

as well as Corollary 2.4.3 (to bound the sum in the denominator) to conclude that

1
L(r)

1
> Auwp(n)lp,(n) < e+ o0u(1)log = + 0n(1),
r<n<r+L(r) ¢

Therefore, if we apply the triangle inequality, we conclude that the contribution of the set B, . on the
average over [r,r+ L(r)] is at most O(e 4 0,(1) log % +o0,(1)). This is acceptable if we send R — 400,
then w — +o00, and then € — 0 at the end.

Ignoring the peculiar error terms, we can rewrite the expression in (5.4) as

E

1<r<R

ren (Aw,b(n) — 1)TLpr(n)J fi- TL(m2+logTJ fa- T|_10g2 7| f3HL2(“). (5.8)

Now, the iterates satisfy the assumptions of Proposition 5.2.3 below. This is true for the first iterate
since we have a good bound on the discrepancy and it is also true for the second iterate because the
polynomial an? has an irrational coefficient (so we can use its well-distribution modulo 1). For the
third one, our claim is obvious because we simply have an integer in the iterate. Therefore, we can
bound the inner average by a constant multiple of the norm

[ Awp = 1||U5(r,r+L(r)]

with some error terms that we will ignore here. Finally, we invoke Theorem K to show that the average

E

P e )

converges to 0, which leads us to our desired conclusion.

5.2 Lifting to an extension flow

In this section, we use a trick that allows us to replace the polynomial ergodic averages with similar
ergodic averages over R actions on an extension of the original probability space, removing the rounding
functions in the process.. This argument is implicit in [33] for Cesaro averages, so we adapt its proof
to the setting of short intervals. Firstly, we will need a Gowers norm bound for multiple ergodic
averages with polynomial iterates. The following proposition is due to Frantzikinakis, Host, and Kra
and follows from a PET induction scheme similar to the one we used in Section 3.4.5.
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Proposition 5.2.1. [20, Lemma 3.5] Let k,{ € N, (X, X, u,T1,...,T)) be a system of commuting Z
actions, p; j € Z[t] be polynomials for every 1 < i <k, 1 <j<4¥, fi,...,fr € L>®(u) anda : N = C
be a sequence. Then, there exists s € N, depending only on the mazimum degree of the polynomials
pi,j and the integers k, ¢, and a constant Cs depending on s, such that

S max{l ||a|| sN1J
H1<n<N UU pl] f]‘Lz <C (Ha 1 N]‘ [1 N] ) (59)

US sN N
Remark. (i) The statement presented in [20] asserts that the second term in the prior sum is just
on (1), under the assumption that a(n) < n¢ for all ¢ > 0. However, a simple inspection of the proof
gives the error term presented above. Indeed, the error terms appearing in the proof of Proposition
5.2.1 are precisely of the form

1

N ne[1,N] he[1,N]

I c®amth e

£€{0,1}*

~—

for £ < s — 1, which are the error terms in the van der Corput inequality. Deducing the error term on
(5.9) is then straightforward.

(74) The number s — 1 is equal to the number of applications of the van der Corput inequality in the
associated PET argument and we may always assume that s > 2. In that case, Lemma 2.2.1 and the
bound ||11, 1| ) < 1 implies that we can replace the norm in (5.9) with the term [|al|y«; ni-

US(ZSN
For polynomials p; ;(t) € R[t] of the form

Pig(t) = @ija 1% + - + agjat + aijp,

and (7 s)ser R-actions, we have

n%ij n
Ti,pi,j(n) = (Tz}aij’dij) et (Ti,aij,l> : <E7aij,0>'

Thus, Proposition 5.2.1 implies the following.

Corollary 5.2.2. Let k0 € N, (X, X, p,51,...,5) be a system of commuting R-actions, p; ; € Z[t]
be polynomials for all 1 <i <k, 1 <j<¥ f1,...,fe € L®(u) and a : N — C be a sequence. Then,
there exists s € N, depending only on the maximum degree of the polynomials p; j and the integers k, £
and a constant Cs depending on s, such that

k

¢
H 1<nen 1;[13 i,pi (1 ‘ L2(n) < Cs (Ha 1|

The following proposition allows us to obtain Gowers norm bounds for averages with real polyno-
mial iterates by using a trick to replace our Z%action with a R%action.

UsZon) T N

max{1, ||a||§fo[17sN1}> (5.10)

Proposition 5.2.3. Let k,{¢,d be positive integers and let L(N) be a positive sequence satisfying

Nite « L(N) < N'=¢. Let (X,X,u,T4,...,Ty) be a system of commuting transformations. Then,
there exists a positive integer s depending only on k,0,d, such that for any variable family P =
{pijn:1<i<Ek,1<j </} of polynomials with degrees at most d that, for all i,j, satisfy

b g VS NALIN): {pijn(n)} €16 1)}
d—0+ N—+oo L(N)

—0, (5.11)

we have that for any 0 < § < 1 and functions fi,..., fo € L>®(n)

k

¢
- oy (Rua(®) =1 BRI Jff‘

N<n<N+L
SnsN+ Jj=1li=1

<
12 k.t,d

okL (HA“’ p(n) 1] US(N,N+sL(NY] T Ow(1)> +05(1)(1 + 0w(1)),

for all 1 <b<W, (b,W) =1, where W =[] ,cp. p<iy P-
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Proof. Let X\ denote the Lebesgue measure on [0,1) and we define (as in [33]) the measure-preserving

k k
RFC_action H Sisiie- H Si.s;, on the space Y := X x|0, 1)*, endowed with the measure v := px \F¢,
i=1 i=1
by
L k
HH 1,84 5 $ a1, .- aak‘,laal,%'"7ak2,27"'aa17€7-"aak‘,ﬁ) =
¢k [ |
8'7'+a'7'
TTTIZ 7 {s1a +ara b {sen + arads- o {sre+areds o {ske + arel
j=1i=1
If f1,..., f¢ are bounded functions on X, we define the Y-extensions of f;, setting for every element
k.
(a171, ey Qg 1,012, s5 QF 2, oo A1 0y - - ,ak’g) c [O, 1) :
filz,a1,. . ak1,012, .-, Qk2, ..., Q1 0,-..,a50) = fi(z), 1 <75 <4,

and we also define the function

fo(zyar, .. sap 1,012, ake) = Lo gpre(ans, - ak1,a1,2, - - Ak

For every N <n < N + L(N), we consider the functions (on the original space X)

k k
n) = ([P g (LT s
=1 =1

as well as the functions

bn(n) = fo- ( HHS“SﬂleN(n) HH B9jepieN (1 fz

Jj=1li=1 Jj=1i=1

defined on the extension Y. Here, d;; denotes the Kronecker ¢, meaning that the only terms that do
not vanish are the diagonal ones (i.e., when i = j). For every z € X, we also let
blN(n)(w) = f 6]\/(7’1,)(1', a1,1s---5,0k1,0125 -+, Ak 25+ -, A1 4, - - - ,CLkl) dAk(?
[0,1)k¢

where the integration is with respect to the variables a; ;.
Using the triangle and Cauchy-Schwarz inequalities, we have

ke _
5| wencE gy () Dow()| "<
. i ke Y o 7
"N§n§%+L(N) (Auwp(n) = 1) - (5 (n) bN(n))’LQ(u)+HNSnS%JrL(N) (Auwp(n) 1)bN(n)‘L2(u)'
(5.12)

Using Proposition 5.2.1, we find an integer s € N, depending only on the integers k,¢,d, and a
constant Cy depending on s, such that

H E (Awp(n) — 1)13N(n)H

N<n<N+L(N) <G (HA“’J’ —1

L2(v) US(N,N+sL(N)] T ON(l)) ) (5.13)

where the oy (1) term depends only on the integer s and the sequence Ay, ,(n).
Now we study the first term

(Auolm) = 1) - (b (n) = by ()|

H N<n<N+L(N) L2 ()
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in (5.12). For every z € X and N <n < N + L(N), we have

b () (@) — by () ()] =

I Hfj H ngN ﬁ ﬁﬂ[pi,j,N(n)"Fai,j]m) d\FE|

oo)ke \d=1  i=1

Since all the integrands a; ; are less than or equal than J, we deduce that if all of the implicit polyno-
mials satisfy {p; jn(n)} < 1— 9, we have Ti[pi’j’N(nHai’j] = ﬂ[pi’j’N(n)] forall1 <i<k,1<j </ To
deal with the possible case where {p; j y(n)} > 1 —§ for at least one of our polynomials, we define,
forevery 1 <i <k, 1< 7 </, the set

Bl i={n € [N,N + L(N)J: {pijn(n)} € [1 = ,1)}.
Then, by using the fact that
Loiv.osbustiu. st < DL g
(4,7)€[1,k] % [1,4]
and that 15 (n) = 1;1s1)({pij,n(n)}), we infer that
5N
b () (@) — By (m)(@)| <20 3T p sy Upign ()
(4,9)€[1,k] % [1,4]

for every x € X. In view of the above, using the inequality |Ayp(n) — 1| < Ay p(n) + 1, we deduce
that

E Apap(n) —1)| -1 y <
Nens ke L (V) |(Awp(n) = 1)| - 151y ({pijn(n)})
~-1). y . <
NS”S;{*}H(N) (Awp(n) = 1) - 1p_s1)({pijn(n)}) + QNSHS%JFL(N) 151 {pijn(n)}) <
|E5n

(Runa(m) =1) - Ly ({piguv () +2- T

E
N<n<N+L(N)

Since each polynomial p; ; v satisfies (5 11) for large N and small enough §, the term (and the sum of

finitely many terms of this form) | L(‘SJ\J,V)l

It remains to show that the term

E Awp(n) —1) - 1p_ y
N§n§N+L(N)( o) =1) - 1p sy ({pign(n)})

is as small as we want.

goes to zero as N — oo, then w — oo and finally § — 0. To this end, it suffices to show

E A —1)e2mimpign(m)
N<n<N+L(N) (Aup(n) —1)e
as N — oo and then w — oo for all m € Z\ {0},! which follows from Lemma 2.4.2. O

5.3 Equidistribution in short intervals

We gather here some useful propositions that describe the behavior of a Hardy field function when
restricted to intervals of the form [N, N4+ L(N)], where L(N) grows slower compared to the parameter
N. In our applications, we will typically need the function L(N) to grow faster than N°/% in order
to be able to use the uniformity results in short intervals, but we will not need to work under this
assumption throughout most of this section, the only exception being Proposition 5.3.3 below. We will
also present an example that illustrates the main points in the proof of Theorem 1.3.1 in the following
section.

!This follows by the fact that if f is Riemann integrable on [0, 1) with f[o H f(z) dz = ¢, then, for every € > 0, we can
find trigonometric polynomials g1, g2, with no constant terms, with q1(¢) + ¢ — e < f(t) < g2(t) + ¢ + . We use this for
the function f = 1p1_s1)-
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5.3.1 Eliminating the error terms in the approximations

In the previous chapters, we saw that any Hardy field function can be approximated by polynomials
in short intervals using the Taylor expansion. Namely, if a(t) diverges and L(t) — 400 is a positive
function, such that

a® ()] 7F < L(t) < [a®+) ()| 7T (5.14)
then, for any 0 < h < L(N), we have

hEa®(N) n hEr g+ (¢ 1)
il k1 1)

a(N+h)=a(N+h)=a(N)+---+ =pn(h)+ 0n(h)

for some £ p, € [N, N + h], where we denote

Observe that our growth assumption on L(t) implies that the term 6y (h) is bounded by a quantity
that converges to 0, as N — +o0o. Therefore, for large values of N, we easily deduce that

l[a(N +h)| = [pn(h)] +enp,

where ey, € {—1,0,1}. In order to be able to apply Proposition 5.2.3, we will need to eliminate the
error terms €y 5. We will consider three distinct cases, which are tackled using somewhat different
arguments.

The case of fast-growing functions

Firstly, we establish the main proposition that will allow us to remove the error terms in the case of
functions that contain a "non-polynomial part” which does not grow too slowly. We will need a slight
strengthening of the growth conditions in (5.14), which, as we saw previously, are sufficient to have a
Taylor approximation in the interval [N, N + L(N)].

Proposition 5.3.1. Let A > 0 and let a(t) be a C* function defined for all sufficiently large t € R.
Assume L(t) is a positive sub-linear function going to infinity and let k be a positive integer, such that

1« ]a(k)(t)}_% < L(t) «< }a(’““)(t)\‘ﬁ (5.15)

and such that the function a(k“)(t) converges to 0 monotonically. Then, for N large enough, we have
that, for all 0 < c < d < 1,

Hn € [N,N + L(N)]: a(n) € |c, d]}|
L(N)

=|d—c|+O4(L(N)log ™ N).2 (5.16)

Consequently, for all N sufficiently large, we have that

hFa(F)(N)

la(N +h)] = |a(N) +ha' (N)+ -+ ol

for all, except at most OA(L(N)log=*(N)) values of integers h € [N, N + L(N)].

Proof. Our hypothesis on L(t) implies that there exist 1,2 > 0 such that

L(#)|a® ()] F > 7 and L(#)|a® D ()77 < 722, (5.17)

20One can actually get a small power saving here, with an exponent that depends on k and the implicit fractional
powers in the growth relations of (5.15), though this will not be any more useful for our purposes.
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In addition, the leftmost inequality implies that there exists e3 > 0, such that a(®)(t) <« t=23. Using
the Taylor expansion around the point N, we can write

hka(k)(N) hk+1a(k+1)(£h)

a(N +h) = a(N) + ha'(N) + - - + o + SR for some &, € [N, N + h], (5.18)

for every h € [0, L(N)]. We denote

hFaF)(N)
T
and

B hk+1a(k+1) (gh)
W=

The function a(k“)(t) converges to 0 monotonically due to our hypothesis. Therefore, for sufficiently

large N,

a(k+1) ( N)
(k+1)!

and the quantity €y is strongly dominated by the constant 1 due to (5.17). More precisely, we have

that Oy < N~ (k+Dez,

Let A > 0 be any constant. We study the discrepancy of the finite polynomial sequence (pn (h))o<n<r(n)-
We shall establish that we have

max |0 (1) < ‘(L(N))’““ — O, (5.19)

0<h<L(N

Apea (pv(h)) <alog ™ N

for any choice of the interval [c,d] C [0,1]. To this end, we apply Theorem I for the finite sequence
(pN(h))OShSL(N) to deduce that

LlogA NJ
C 1
A h <= 7‘ E h 2
[c,d]((pN( ))ogth(N)> = UOgA N] +C mzz:l mloshasm e(mpn(h))]|, (5.20)
where C is an absolute constant. We claim that for every 1 < m < UogA N J, we have that

1

E h ’ < 5.21

B cmpn ()] < N (5.21)

provided that NN is sufficiently large. Indeed, assume for the sake of contradiction that there exists
1 <mg< LlogA NJ, such that

1
logA N’

o B clmapn ()] >

5.22
0<h<L(N) (5.22)

The leading coefficient of mopy (h) is equal to

moa®) ()
k! ‘

Then, Lemma 2.3.7 implies that there exists a constant Cj, (depending only on k) an integer ¢ satisfying
lq| <log®“4 N and such that

moa®) og&rA
Hq' : k! (N)qu = lugj(N)J]Z'

The number gmg is bounded in magnitude by log(ck+1)A(N ), so that

‘ moa®) (N)

4 !

< log(CxDA N . N7 = on(1).
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Therefore, for large values of N, we can substitute the circle norm of the fraction in (5.22) with the
absolute value, which readily implies that

k CrLA
¢ moal )(N) < log“** N . LL(N)Jk‘a(k)(NH < k!longAN.
k! LL(N)J*
However, this implies that L(¢) cannot strongly dominate the function (a(k) (t))fi, which is a contra-
diction due to our hypothesis.
We have established that for every 1 < m < LlogA NJ and large N, inequality (5.21) holds.
Substituting this in (5.20), we deduce that

c LlogA NJ 1
A[c,d]<(pN(h))ogh§L(N)> < M +C mZ::l mlogA N’

which implies that
Aloglog N
A[Qd] ((pN(h))ogth(N)> < W.

In particular, since A was arbitrary, we get

1

_— 5.23
logAN ( )

Aled ((pN(h))ogth(N)> <A
This establishes the first part of the proposition.
The second part of our statement follows from an application of the bound on the discrepancy of
the finite polynomial sequence (py(h)). Indeed, we consider the set

Sy = [O,GN] U [1 — Oy, 1),

where we recall that 6y was defined in (5.19) and decays faster than a small fractional power. Then,
if {pn(h)} ¢ Sy, we have [pn(h)+60n(h)] = |pn(h)], as can be seen by noticing that the error term
in (5.18) is bounded in magnitude by €. Now, we estimate the number of integers h € [0, L(N)] for
which {pn(h)} € Sn.

Using the definition of discrepancy and the recently established bounds, we deduce that

[{h € [0, L(N)]: {pn(h)} € [0,0n1}|

L(N) — 0N <a

log? N
for every A > 0. Since the number 0y is dominated by N~(+1De2 this implies that

(b € 0, L)) (pw () € (0,6} €4 23
log”® N
An entirely similar argument yields the analogous relation for the interval [1 — 6y, 1). Therefore, the
number of integers in [0, L(N)] for which {py(h)} € Sy is at most O 4(L(N)log™ N).
In conclusion, since |a(N + h)] = |pn(h)] for all integers not in Sy, we have that the number
of integers which does not satisfy this last relation is O4(L(N)log™ N), which yields the desired
result. O

The above proposition asserts that, for almost all values of h € [0, L(N)], we can write [a(N + h)| =
|pn(h)]. The logarithmic power saving in the statement will be helpful since we are dealing with av-
erages weighted by the sequence A, ;(n) — 1, which has size comparable to log /N on the interval
[N, N + L(N)]. Furthermore, notice that we did not assume that a is a Hardy field function in the
proof. Thus, the conditions in this proposition can be used to prove a comparison result for more
general iterates.
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The case of slow functions

Unfortunately, the previous proposition cannot deal with functions whose only possible Taylor approx-
imations involve only a constant term. This case will emerge when we have sub-fractional functions
since, as we have already remarked, these functions have a polynomial approximation of degree 0 in
short intervals (assuming that L(t) < t17¢). To cover this case, we will need the following proposition
which is practically of a qualitative nature.

Proposition 5.3.2. Let a(t) € H be a sub-fractional function such that a(t) = logt. Assume L(t) is
a positive sub-linear function going to infinity and such that L(t) < t'=%, for some § > 0. Then, for
every 0 < € < 1, we have the following: for all R € N sufficiently large we have |a(N + h)| = |a(N)]
for every h € [0, L(N)], for all, except at most eR values of N € [1, R].

Proof. Observe that for any h € [0, L(N)], we have
a(N + h) = a(N) + ha' (&) (5.24)
for some &, € [N, N + h]. In addition, since a'(t) converges to 0 monotonically, we have
|ha! (&) < L(N)a'(N) < N'7%d/(N) << 1,

where the last inequality follows from Lemma 2.1.3 and the assumption that a(t) is sub-fractional. In
particular, there exists a positive real number g, such that |ha’(£,)] < N9, for all h € [0, L(N)].?

The sequence a(n) is equidistributed mod 1 by Theorem E, since it dominates the function log ¢.
Now, suppose that € > 0, and choose a number Ry such that Ro_2q < /2. Then, for R > Ry, the
number of integers N € [Ry, R| such that {a(N)} € [§,1— 5] is

(R—Rp)(1 —e+o0r(1))
due to the fact that a(n) is equidistributed. For these values of N, we have that
{a(N)} ¢ [0, N U1 = N7*,1],

which implies that for all A € [0, L(N)], we have that [a(N + h)| = |a(N)], as can be derived easily
by (5.24) and the fact that the error term is O(N~9). If we consider the integers N in the interval
[1, Ro] as well, then the number of “bad values” (that is, the numbers N for which we do not have
|a(N + h)] = |a(N)] for every h € [0, L(NN)]) is at most

Ro + (R — Ro)(e + or(1)).

Finally, choosing R sufficiently large, we get that this number is smaller than 2¢R and the claim
follows. O

In simplistic terms, what we have established is that if we restrict our attention to short intervals
[N,N 4+ L(N)] for the natural numbers N, such that {a(N)} € [e,1 — €], then we can just write
|a(N + h)| = |a(N)] for all h € [0,L(N)]. Due to the equidistribution of a(n) mod 1 (which follows
from Theorem E), this is practically true for almost all N, if we take e sufficiently small.

The case of polynomial functions

The final case is the case of functions of the form p(t) + z(t), where p is a polynomial with real
coefficients and z(t) is a sub-fractional function. The equidistribution of the corresponding sequence
will be affected only by the polynomial p when restricted to short intervals. Nonetheless, the techniques
of Proposition 5.3.1 cannot be employed, because we cannot establish quantitative bounds on the
exponential sums uniformly over all real polynomials. Therefore, we will use the following proposition,
which allows us to calculate the integer parts in this case. Unlike the previous two propositions which
can be bootstrapped to give a similar statement for several functions, we establish this one for several
functions from the outset. We do not need to concern ourselves with rational polynomials, since these
can be trivially reduced to the case of integer polynomials by passing to arithmetic progressions.

3We do not actually need this quantity to converge to zero faster than some power of N. The same argument applies
if this quantity simply converges to zero.
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Proposition 5.3.3. Let k, d be positive integers, let 0 < & < 1/2 be a real number and let w € N. We
define W = HpeIP: p<wP andlet 1 < b < W be any integer with (b,W) = 1. Suppose that ay,...,ar € H
are functions of the form p;(t) + x;(t), where p; are polynomials of degree at most d and with at least
one irrational non-constant coefficient, while x;(t) are sub-fractional functions. Finally, assume that
L(t) is a positive sub-linear function going to infinity and such that

5
ts << L(t) < t.*

Then, for every r sufficiently large in terms of w, é, we have that there exists a subset B,
of integers in the interval [r,r + L(r)] with at most Ok(eL(r)) elements, such that for all integers
n € [r,r+ L(r)] \ Bye, we have

[pi(n) + zi(n)] = [pi(n) + x(r)].
Furthermore, the set B, . satisfies

1 1
_ Z Ay p(n)1p, . (n) Kig €+ 0w(1)log ot or(1). (5.25)

L(’I") r<n<r+L(r)

Remark. The o,(1) term depends on the fixed parameters w, e. However, in our applications, we will
send r — +o00, then we will send w — 400, and then € — 0. We shall reiterate this observation in
the proof of Theorem 1.3.1. On the other hand, the 0,(1) term is the same as the one in 2.4.2 and
depends on the degree d of the polynomials, which will be fixed in applications.

Proof of Proposition 5.3.3. Fix an index 1 <4 < k and consider a sufficiently large integer r. Using
the mean value theorem and the fact that |2}(¢)| decreases to 0 faster than all fractional powers by
Lemma 2.1.3, we deduce that

max )\xi(r +h) —x;i(r)] < L(r)|xi(r)] < 1.

0<h<L(r
In particular, there exists 9 > 0 depending only on the functions ay, ..., a; and L(t), such that
max |zi(r +h) — z;(r)] < 7% 5.26
e [+ h) - i (r) (5.26)

for all 1 < i < k. Thus, we observe that if {p;(n) + z;(r)} € (¢,1 — ¢) and r is large enough in terms
of 1/e, then we have that

[pi(n) + zi(n)| = |pi(n) +@:i(r)].

Naturally, we consider the set
Bire={n¢€[r,r+ L(r)]: {pi(n) + zi(r)} € [0,e] U1 —¢,1)} (5.27)

and take B, = By ,.U---UBj .. Now, we observe that the polynomial sequence p; is well-distributed
modulo 1, since it has at least one non-constant irrational coefficient. Therefore, if r is large enough,
we have that the set B;, . has less than 3¢L(r) elements (say). Using the union bound, we conclude
that the set B, . has O(ekL(r)) elements. This shows the first requirement of the proposition.

We have to establish (5.25). We shall set M = LzS*lJ for brevity so that r is assumed to be very
large in terms of M. Since the polynomials p; have at least one non-constant irrational coefficient,
we can use Weyl’s criterion for well-distribution (see, for instance, [37, Theorem 5.2, Chapter 1]) to
conclude that

TSHSITE-&-L(T) e(m(pz(n) + -’Eq,(?“))) ‘ = 07"(1)7

max
1<m<M

for all r sufficiently large in terms of M, as we have assumed to be the case.” On the other hand,

Lemma 2.4.2 implies that

max
1<m<M

E (Awp(n) — 1)e(m(ps(n) + xz(r)))) = 0y(1)

r<n<r+L(r)

4See the notational conventions for the definition of <.
A bound that is uniform over all m € N is in general false, so we have to restrict m to a finite range.
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for r sufficiently large in terms of w. Combining the last two bounds, we deduce that

ISIE%XM rSnSIE:—f—L(T) Ay p(n)e(m(p;(n) + xz(r)))‘ = 0y(1) + or(1). (5.28)

Since we have estimates on the exponential sums weighted by A, (1), we can now make the passage
to (5.25). To this end, we apply Theorem I for the probability measure

> Awp(n)dip;(n) e} (S)
r<n<r+L(r) 6

2. Auwp(n)

r<n<r+L(r)

v(5) =

Setting

Se= > Aup(n)

r<n<r+L(r)

for brevity, we conclude that

Z Aw,b(n)(s{pi(n)eri(r)} ([07 5] U [1 -& 1))

r<n<r+L(r) 1
S, <L 2+ MJF
NN
2w S, o Aupmle(m(pi(n) +zi(r))], (5.29)
m=1 r<n<r+L(r)

where the implied constant is absolute. Applying the bounds in (5.28) and recalling the definition of
B; e, we conclude that

1 M L(r)
> Aus)ls, () < (4 27) S+ 30 = 0u(1) +or(1)
r<n<r+L(r) m=1

< S, + L(r)(0u(1) + 0(1)) log é (5.30)

since M = LaflJ. Finally, we bound S, by applying Corollary 2.4.3 to conclude that

o(W) o(W) 1 2WL(r)logr
Sy = ——= A(n) < -
w Wr+b§n§%+b+WL(r) w <¢(W) log (%)

n=b (W)

O(i(g?“i) +O(r'/? log?“)) < L(r)(1 +on(1)), (5.31)

where we used the fact that L(r) > t5/8 to bound the first fraction by an absolute constant. Applying
this in (5.30), we conclude that

LS Aum)is,. (1) < (14 0,(1) + (0w(1) + 0n(1)) log .
L(T) r<n<r+L(r) <

Finally, we recall that B, = By . U---U B . and use the union bound to get

1 1
Y ooa 1 w(1)1og = + 0,(1),
L(T) w,b(n) Br,s (n) <<k’ € + +0 ( ) Og c + o ( )

r<n<r+L(r)

provided that r is very large in terms of 1/e,w. This is the desired conclusion. O

5The denominator is non-zero if r is large enough.
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5.3.2 Simultaneous approximation of Hardy field functions

In view of Proposition 5.3.1, we would like to show that we can find a function L(t) such that the
growth rate condition of the statement is satisfied for several functions in H simultaneously. This
is the content of the following lemma. We will only need to consider the case where the functions
dominate some fractional power, since for sub-fractional functions, we have Propositions 5.3.2 and
5.3.3 that can cover them adequately. We refer again to our notational conventions for the notation
K.

Proposition 5.3.4. Let £ € N and suppose ai,...,ap € H are strongly non-polynomial functions of
polynomial growth that are not sub-fractional. Then, for all0 < ¢ < 1, there exists a positive sub-linear
function L(t), such that t¢ < L(t) < t'7¢ for some ¢ > 0 and such that, for all 1 < i < {, there erist
positive integers k;, which satisfy

1 < [ ()| TR << L(t) << a0 )| TR

Furthermore, the integers k; can be chosen to be arbitrarily large, provided that ¢ is sufficiently close
to 1.

Proof. We will use induction on ¢. For ¢ = 1, it suffices to show that there exists a positive integer k,

such that the function ‘a(kﬂ)(t) ’_"%1 strongly dominates the function ‘a(k) (t)’_% Then, we can pick
the function L(t) to be the geometric mean of these two functions to get our claim.”

Firstly, note that if we pick k sufficiently large, then we can ensure that (a(*) (t))_% > t¢, which
would also imply the lower bound on the other condition imposed on the function L(t). To see why
this last claim is valid, observe that the derivatives of a satisfy the assumptions of Lemma 2.1.3, so
that we have a®)(t) < t~%a(t). Thus, if d is a positive integer, such that t¢ grows faster than a(t)
and we choose k > % — 1, we verify that our claim holds.

Secondly, we will show that for all kK € N, we have

|a®) (1) 7F < #-2

for some 0 < € < 1, as this relation (with k+1 in place of k) will yield the upper bound on the growth
of the function L(t) that we chose above. This has been already established in point ii) of Lemma
3.5.1.
In order to complete the base case of the induction, we show that for all sufficiently large k, we
have ) .
la® ()| 7F < [a®(t)] .

Equivalently, we prove that
(k1) (4) |~ T
a t
| ( )‘_; > 10 (5.32)
‘a(k)(t)’ k

for some § > 0 that will depend on k. This can be proven as the point i) in Lemma 3.5.1.

Assume that the claim has been established for the integer ¢. Now, let aq,...,apr1 be functions
that satisfy the hypotheses of the proposition. Our induction hypothesis implies that there exists a
function L(t) with t¢ < L(t) < t'=¢ and integers ki, ..., kg, such that

L~

0 ()| 7R << L(t) < [oF @) TFE 1<i<,

Due to Proposition 2.1.5, there exists a positive integer s, such that

_1 s 1
|a£+1 ()] = < L(t) ’ae +1)(t)| st (5.33)

It is straightforward to check that if f <& g, then f <& /fg < g, assuming, of course, that the square root is
well-defined (e.g. when the functions f, g are eventually positive).
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Without loss of generality, we may assume that c is sufficiently close to 1. This implies that the integer

1 1
s can be chosen to be sufficiently large as well, so that the relation ‘agi)l(t)’ F K ‘ ;H t)‘ s+1
holds, as we established in the base case of the induction.

If each function strongly dominates the preceding one in (5.33), then we are finished. Therefore,

_1
assume that L(t) is not strongly dominated by the function ‘aesﬂ)(t){ s+1 (the other case is similar).
Note that for every 1 <14 < /¢, we have that

1

a4 (1) " << [alSHV (6|75

1
(’fi)(t)rkﬁ (by the induction hy-

)

Indeed, since the function L(t) strongly dominates the function

s+1)( )}

pothesis) and L(t) grows slower than the the function !ag 1, this claim follows immediately.

. _1
Among the functions ay, ..., a1, we choose a function for which the growth rate of |a£k1)(t)| ki s
maximized.® Assume that this happens for the index ig € {1,...,£ + 1} and observe that the func-

1 _ _ 1
tion ‘aéil)(t)‘ s+1 strongly dominates ‘agfm)(t)‘ %o because the first function grows faster than
L(t) and L( ) strongly dominates the latter (in the case ig = ¢+ 1, this follows from the fact that

_ 1
\aéi)l(t)\ s \a;“ ()] +).

. 1
Define the function L(t) to be the geometric mean of the functions ‘agfm) (t)‘ klo and ‘afﬂ) ()| 1.

Observe that this function grows slower than the function L(t), since it is strongly dominated by the

1
function ‘agil)(t)‘ s+1 while the original function L(¢) is not. Due to its construction, we deduce

that the function L(t) satisfies

0] < B0 s ol 0]
and 3 L
|l (1) " ® << L(t)

for all 1 <4 < ¢. This is a simple consequence of the fact that E(t) strongly dominates the function
(kig)

‘aio ’ -

maximized. In addition, the function L(t) grows faster than the function L(t), which implies that

_ 1
(t)‘ o and the index iy was chosen so that the growth rate of the associated function is

1
L(t) < L(t) << |a" D ()|~ mer

for all 1 < ¢ < £. The analogous relation in the case ¢ = £ + 1 is also correct, as we pointed out
previously. Therefore, the function z(t) satisfies all of our required properties and the induction is
complete.

Finally, the assertion that the integers k; can be made arbitrarily large follows by enlarging c

1
appropriately and the fact that given a fixed k; € N, the function ‘a(k i+1) (t)‘ ki+1 cannot dominate
all powers t¢ with ¢ < 1, as we displayed in the base case of the induction. O

We can actually weaken the hypothesis that the functions are strongly non-polynomial. The fol-

lowing proposition is more convenient to use and its proof is an immediate consequence of Proposition
=
5.3.4.

Proposition 5.3.5. Let £ € N and suppose a1,...,a; € H are functions of polynomial growth, such
that |a;(t) — p(t)| >> 1, for all real polynomials p(t) and every i € {1,...,€}. Then, for all0 < c <1,
there exists a positive sub-linear function L(t), such that t¢ < L(t) < t'7¢ for some ¢ > 0 and such
that there exist positive integers k;, which satisfy

1l }a,z(kZ)( } k <<<L <<< ‘akJrl (t)‘ ﬁ

_1
8In the case i = £ + 1, we are referring to the function |aiS (t)| s,
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Proof. Each of the functions a; can be written in the form p;(t) + x;(t), where p; is a polynomial with
real coefficients and x; € H is strongly non-polynomial. The hypothesis implies that the functions x;
are not sub-fractional. If k is large enough, then we have agk) (t) = iL'Z(k) (t) for all t € R. The conclusion
follows from Proposition 5.3.4 applied to the functions z;(t), where the corresponding integers k; are
chosen large enough so that the equality a(ki)(t) = l'(ki)(t) holds (that is, larger than the degrees of

% )

the polynomials p;(t)). O

5.4 The main comparison

In this section, we will establish the main proposition that asserts that averages weighted by the
W-tricked von-Mangoldt function are morally equal to the standard Cesaro averages over N. In order
to do this, we will use the polynomial approximations for our Hardy field functions and we will try
to remove the error terms arising from these approximations using Propositions 5.3.1, 5.3.2 and 5.3.3.
Firstly, we will use a lemma that allows us to pass from long averages over the interval [1, N| to shorter
averages over intervals of the form [N, N 4+ L(N)]|. This lemma is very similar to Lemma 3.2.2, the
only difference being the presence of the unbounded weights.

Lemma 5.4.1. Let (A,)nen be a sequence in a normed space, such that ||A,|| < 1 and let L(t) € H
be an (eventually) increasing sub-linear function, such that L(t) > t* for some ¢ > 0. Suppose that w
18 a fized natural number. Then, we have

E (A —1A || < E E Ay —-1)A, 1),
HlST‘SR( w,b(r) ) ~ 1<r<R r§n§r‘+L(r)( 7b(771) ) +OR( )
uniformly for all 1 < b < W with (b, W) = 1.
Proof. Using the triangle inequality, we deduce that

E E (A, —1An>HE E  (Ay,(n)—1)A, ’

1<r<R r§n§r+L(r)( ’b(n) ) — l1<r<R r§n§r+L(r)( ’b(n) ) )

Therefore, our result will follow if we show that

HlSITESR(TSnSI’IE-I—L(T) (Awp(n) - 1)A”> B 1§IP§R(A“”6(T) —1)Ar|| = or(1).

Let u denote the inverse of the function ¢ + L(t), which is well-defined for sufficiently large ¢ due
to monotonicity. Furthermore, it is straightforward to derive that . ligl u(t)/t =1 from the fact that
—+00

t + L(t) also grows linearly. Now, we have

R
(B () = 1)) = ;(;m(n) (Aup(n) = 1) At
R+L(R)
> pr() (Aup(n) — 1)4,)
n=R+1

for some real numbers pr(n), which denote the number of appearances of A4, in the previous expression
(weighted by the term 1/L(r) that appears on each inner average). Assuming that n (and thus R) is
sufficiently large, so that u(n) is positive, we can calculate pr(n) to be equal to

(n) b 2+ on(])

n)——-————— ) _— [0) y

PR L([u(n)]) + 1 Lin)+1 "

since the number A, appears on the average E if and only if u(n) <r < n. Note that pr(n)
r<n<r+L(r)

is actually independent of R (for n large enough) and therefore, we will denote it simply as p(n) from
now on. We have that
lim p(n)=1. (5.34)

n—-+o00

124



This follows exactly as in the proof of Lemma 3.2.2.

Now, we show that
R+L(R)

> p(n)(Awp(n) — 1) Ay = or(1). (5.35)

n=R+1

1

Bounding p(n) trivially by 2 (since its limit is equal to 1) and ||A,|| by 1, we infer that it is sufficient

to show that
1 R+L(R)

= > [Awp(n) = 1] = 0r(1).

n=R+1

Using the triangle inequality and the fact that L(r) < r, this reduces to

R+L (R)

Z Ay p(n) = or(1).

n=R+1

To establish this, we apply Corollary 2.4.3 to conclude that

R+L

Z ¢W) Wn+b):% > A(n) <

n=R+1 W R4+R+b<n<W R+R+b+W L(r)
n=b (W)

d(W) / 2WL(R)log R
iz (

( L(R)
$(W)log (K ~ " Mog(WR+ R +b

)) + O(RY?log R)) = og(1).

This follows from the fact that L(R) < R and that the quantity log R/log(L(R)) is bounded by the
hypothesis L(R) > R°.
In view of this, it suffices to show that

(1).

1 & 1 &
|5 22 ) (Aua(m) = 1) A = £ (Aup(m) — 1)
n=1
We have

1 R 1 R 1 R
| ;p(n) (R () = 1) A = 5 3 (Ausp(n) - <+ ; 1p(n) — 1][Aws(n) — 1],

1 R
= D e(Awp(n) + 1) + or(1),

where the og(1) term reflects the fact that the bound for [p(n) — 1| < € is valid for large values of n
only. It suffices to bound the term
R
£
R Z Ay p(n)
n=1

since the remainder is simply O(g). However, using Corollary 2.4.3 (or the prime number theorem in
arithmetic progressions), we see that this term is also O(¢), exactly as we did above. Sending ¢ — 0,
we reach the desired conclusion. O

Proof of Theorem 1.3.1. We split this reduction into several steps. For a function a € H, we will
use the notation a,,;(t) to denote the function a(Wt + b) and we will need to keep in mind that the
asymptotic constants must not depend on W and b. As is typical in these arguments, we shall rescale
the functions f1,..., f¢ so that they are all bounded by 1.
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Step 1: A preparatory decomposition of the functions

Each function a;; can be written in the form
aij(t) = gi;(t) + pij(t) + qi; ()

where g;;(t) is a strongly non-polynomial function (or identically zero), p;;(t) is either a polynomial
with at least one non-constant irrational coefficient or a constant polynomial, and, lastly, ¢;;(t) is a
polynomial with rational coefficients. Observe that there exists a fixed positive integer Qg for which
all the polynomials g;;(Qon + so) have integer coefficients except possibly the constant term, for all
0 < 59 < Qo. These non-integer constant terms can be absorbed into the polynomial p;;(t). Therefore,
splitting our average into the arithmetic progressions (Qon + sp), it suffices to show that

=0

N
lim limsup max H% > (Awp(Qon+s0) — 1) [ £2(0)

w——+00 1<b<W
N—r+o00 (b,W)=1 n=1 7j=1

l
i

e Laisws(@ontso) |
aij,w,6(Qon+so
(z )5
i=1

for all sy € {0,...,Q0 — 1}. Observe that each one of the functions a;;.,»(Qot + so) satisfies either

(1.19) or (1.20). Since the polynomials g;; . ,(Qon + so) have integer coefficients, we can rewrite the
previous expression as

w—+00 N—4oo 1<b<W
(b,W)=1

N
. . 1
lim lim  max HN Z Ly, (o) (1) (Awp(n) — 1)
n=1

Tt L9850 (1) 4P 0(m) | 1505 (m)
9ij,w,b\")TPijw,b\T Qij,w,b\T
IT(ITz" ’ g

111 pogy =0 (5:30)
Step 2: Separating the iterates
Define the sets
S1={(i,7) € [1,k] x [1,£): gi;(t) < t° for all § > 0 and p;; is non-constant}, (5.37)
and
Sy = {(i,7) € [1,k] x [1,4]: gi;(t) < ° for all § > 0 and p;; is constant}, (5.38)

whose union contains precisely the pairs (4, j), for which g;;(¢) is sub-fractional.

Our first observation is that if a pair (4,j) belongs to S, then the function a;;(t) has the form
9ij(t)+qij(t), where g;; is sub-fractional and g¢;; is a rational polynomial. Thus, (1.19) and (1.20) imply
that we either have that g;;(t) > log(t) or g;;(t) converges to a constant, as ¢ — +o0o0. The constant
can be absorbed into the constant polynomial p;;. In view of this, we will subdivide S further into
the following two sets:

S5 ={(i,7) € Sa: gi5(t) = logt}, (5.39)
Sy ={(,7) € S2: gi(t) < 1}.

Observe that iterates corresponding to pairs (4,j) that do not belong to the union S; U S, U SY
have an expression inside the integer part that has the form g(t) + p(t), where g is a strongly non-
polynomial function that is not sub-fractional. In particular, these functions satisfy the hypotheses
of Proposition 5.3.5. Furthermore, functions that correspond to the set S; have the form p(t) + z(t),
where p is an irrational polynomial and z is sub-fractional, while functions in S} are sub-fractional
functions that dominate logt. We will use Proposition 5.3.3 and Proposition 5.3.2 for these two
collections respectively. Finally, observe that if (¢,7) € S4, then for n sufficiently large, we can write

laij (Qon + s0) ] = ¢ij(Qon + s0) + |¢ij] + €ij.Qontso

where €;; gon+s, € {0, —1} and ¢;; is a constant term arising from the constant (in this case) polynomial
pij- The error term e;; Qon+s, actually exists only if ¢;; is an integer. In particular, we have €;;,Qun+s, =
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0 for all large enough n when g;;(t) decreases to 0 and e;; Qyn+s, = —1 if gi;(t) increases to 0. Therefore,
if we redefine the polynomials g;;(t) accordingly so that both |¢;;] and the error term e;; Qyn+s, (Which
is independent of sp) is absorbed into the constant term, we may assume without loss of generality
that for all n sufficiently large, we have

L9:5(Qon + s0) + pij(Qon + s0)] + qij(Qon + s0) = ¢ij(Qon + s0).

We will employ this relation to simplify the iterates in (5.36), where n will be replaced by Wn + b.
We rewrite the limit in (5.36) as

W—=+00 N_yino 1SOSW
(b,W)=1

N
. . 1
lim limsup max HN nz::l Ly, (o) (1) (Awp(n) — 1)

1
H ( H Etgiij’b(n)erim’b(n)J +4ijwp(n) H J;Lgij,w,b(n)+mj,w,b(n)J Fijw,p(n)
Jj=1 @ (i,j)eSt i: (4,5)€S)
H j—fij,w,b(n) ] H TiLgij,w,b(n)wLpij,w,b(n)J+qz‘j,w,b(n)>fj‘ L2y (5.40)
i: (i,4) €Sy i: (1,§) $1USLUSY '

Step 3: Passing to short intervals

The functions g;;(t) + ps;(t) with (4, j) € S satisfy the assumptions of Proposition 5.3.3, while the
functions g;;(t) + pi;(t) with (4, 5) ¢ S1 U S5 U SY satisfy the assumptions of Proposition 5.3.5 (thus,
each one of them satisfies Proposition 5.3.1 for some appropriately chosen values of the integer & in
that statement). Lastly, the functions of the set S satisfy the assumptions of Propositions 5.3.2. It
is straightforward to infer that, in each case, the corresponding property continues to hold when the
functions g;;(t) 4+ pi;(t) are replaced by the functions gij w.5(t) + Pijw(t). This is a simple consequence
of the fact that if f € H has polynomial growth, then the functions f and f,,; have the same growth
rate.

Let dp be the maximal degree appearing among the polynomials p;;(t). Then, we can find a
sub-linear function L(t) such that

t8 << L(t) < t (5.41)

and, such that there exists positive integers k;; for (i,7) ¢ S1US,USY, for which we have the growth
inequalities

__1
g(]-“j)(t)‘ M« L(t) <«

1
o gyt T (5.42)

Furthermore, we can assume that k;; are very large compared to the maximal degree dy of the polyno-
mials p;;(t), by taking L(t) to grow sufficiently fast. We remark that (5.42) also implies the inequalities

(kiz)

- _ 1
g0 << L) << ot o] (5.43)

for any fixed w, b.
For the choice of L(t) that we made above, we apply Lemma 5.4.1 to infer that it suffices to show
that

A mew max, | S o @ () (Rus(m) =1)

(b,W)=1

E
r<n<r+L(r)

l
H ( H T'I_gij,w,b(n)+pij,w,b(”)J Fijwb(n) H T'Lgij,w,b(”)“’pij,w,b(n” Fij,w,(n)

Jj=1 @ (i,j)€S1 i: (4,5)€S)
H Eqiij’b(n) _ H nng‘j,w,b(n)-ﬁ-mj,w,b(n)J +Qij,w,b(n)>fj’ ) (5.44)
i (4,5) €5y i: (1,5) ¢51US5USy b
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Step 4: Reducing to polynomial iterates and using uniformity bounds

We now fix w (thus W) and the integer b. Suppose that R is sufficiently large and consider the
expression

jw,b,so (R) = E

1<r<R

TSnSI}EJrL(r) Loy (o) (1) (Awp(n) — 1)

l
H ( H TLgij,w,b(")erij,w,b(”)J +ij,w,p(1) . H TLgij,w,b(n)+Pij,w,b(”)J +Qij,w,b(n)‘
% 7
=1 i (i,j)€S i: (4,5)€S%

H T»qij’w’b(n) . H T.Lgij,w,b(n)+pij,w,b(n)J+Qij,w,b(n )f]‘

(2
it (i,5)€SY it (i,§)¢S1USLUSY

<.

4
oy (09)

We will apply Propositions 5.3.1, 5.3.2 and 5.3.3 to replace the iterates with polynomials (with coef-
ficients depending on 7). Due to the nature of Proposition 5.3.2 (namely, that it excludes a small set
of r € [1, R]), we let Eg p denote a subset of {1,..., R}, which will be constructed throughout the
proof and will have small size. We remark that the iterates corresponding to S% have been dealt with
(morally), so we will focus our attention on the other three sets.

Let d be the maximum number among the degrees among the polynomials p;;, ¢;; and the integers
kij. Let ¢ > 0 be a small (but fixed) quantity and we assume that r is large enough in terms of 1/e,
i.e., larger than some Ry = Ry(¢). Observe that if R is sufficiently large, then we have Ry < eR. We
include the “small” r in the exceptional set gy p, so that £g 4, now has at most eR elements. We
will need to bound the expression 7, s, (R) for large R uniformly in b.

Throughout the rest of this step, we implicitly assume that all terms of the form o,(1) or og(1) are
allowed to depend on the parameters w and € which will be fixed up until the end of Step 4. One can
keep in mind the following hierarchy % L w L.

Case 1 : We first deal with the functions in S5. Fix an (4,j) € S5 and consider the function
Gijwb(1) + Pijwp(n) appearing in the corresponding iterate. Observe that due to the definition of .S
in (5.39), the polynomial p;;(t) is constant, so that p;;.,;(t) is also constant. In addition, the function
gij(t) is a sub-fractional function and dominates logt. Therefore, the same is true for the function
Gijwb(t).

We apply Proposition 5.3.2: for all except at most eR values of r € [1, R], we have that

LGijwb(1) + Dijaw ()] = [ Gijwp(T) + Dijawp(r)] for all n € [r,r + L(r)]. (5.46)

For each (i,7) € S, we include the “bad” values of r to the set gy p, S0 that the set Eg yp now has
at most (k¢ + 1)eR elements.

Case 2 : Now, we turn our attention to functions on the complement of the set S; U S5 U S5. The
functions g;; satisfy (5.43) and recall that we have chosen k;; to be much larger than the degrees of
the p;;, so that the derivative of order k;; of our polynomial vanishes. In conclusion, we may conclude
that g;;(t) + pi;(t) satisfies the assumptions of Proposition 5.3.1 for the integer k;; (and the sub-linear
function L(t) that we have already chosen).

Given A > 0, we infer that for all but O (L(r)log™ ) values of n € [r,r + L(r)], we have

L9ijw,6(1) + Pijawp(n)] = [Pijwpr(n)], (5.47)
where p;j (1) is the polynomial

ku (n— )lgz(Jl)w ,(r)

+ Pijwp(n).

~

=0
Additionally, the polynomials p;; p,- satisfy

Hn € [r,r + L(r)]: {Dijwpr(n)} € [1 =9, 1)}‘
L(r)

=54 O0a(log™r) (5.48)
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for any 0 < 1. Practically, this last condition signifies that the polynomials p;; 5, satisfy the equidis-
tribution condition in Proposition 5.2.3, which we shall invoke later.

Case 3 : Finally, we deal with the case of the set S;. Proposition 5.3.3 suggests that there is a
subset By p e of [1r,7 4 L(r)] of size Oy, ¢(eL(r)), such that for every n € [r,r+ L(r)]\ By, pre, we have

[Pijwb(N) + Gijawp(n)] = [Pijawp() + Gijwn(r)]. (5.49)

Additionally, the set By, . satisfies

1 1
0 > Aup()p,,, . (n) <kga &+ ow(l)log ~ +o:(1). (5.50)
r<n<r+L(r)

We emphasize that the asymptotic constant in (5.50) depends only on k, [, d, so that the constant is
the same regardless of the choice of the parameters w, b.

First of all, we apply (5.46) to simplify the expression for 7, s,(R). Namely, for any r ¢ Er 4 p,
we have that the inner average in the definition of 7,4 s, (R) is equal to

)4
i5,w,b(1)FPijw,6(N) | +ij,w,6(N
B @bt ) [T ([ gl msestilasestd
rensrEL) =1 ()ES)

H Tlgij,w,b(7")+Pij,w,b(7‘)J Tijwb(n) H Tgij,w,b(n)'
K3

3
it (1,§) €55 i: (1,§)€SY

H TLgij,w,b(")'i‘pij,w,b(n)J +qij,w,b(n)>fj‘

i

N
i (i,)@S1USLUSY LAw)
Thus, we have replaced the iterates of the set S} with polynomials in the averaging parameter n.

Secondly, we use (5.47) to deduce that for all, except at most O4(k¢L(r)log= ) values of n €
[r,7 + L(r)], the product of transformations appearing in the previous relation can be written as

¢
( H T\_gij,w,b(n)""pij,w,b(n” +4i5,w,6(n) H TLgij,w,b(T)'i'pij,w,b(T)J +qz'j,w,b(”)_
7 %
J=1 i (3,5)€S1 i: (i,5)€S5%
H jjiqiijyb(n) . H I-Zil_ﬁij,w,b(n)J +qij,w,b(n)> f] (551)
iz (i,5)esy i: (4,§)¢S1US,USY

The contribution of the exceptional set can be at most
kllog(Wr + WL(r) +b) - Oa(log™ ),

since each A, 4(n) is bounded by log(Wn + b). Therefore, if we choose A > 2, this contribution is
or(1) and we can rewrite the average over the corresponding short interval as

L
i5,w,b(1)FPijw,b(N) | +ij,w,6(N
LB LAt - ) T (T mlestroestltost)
rensrEL) =1 i (L)ES)

H Tlgij,w,b(7")+Pij,w,b(7“)J +4ij,w,6(n) ) H Tgij,w,b(n)'
K3

3
it (1,§) €55 i: (1,§)€SY

H Tlﬁij,w,b,r(n)J +Qij,w,b(")> f; ’

7
i: (4,5)¢S1USLUSY

S CORCE)

Thus, we have reduced our iterates to polynomial form in this case as well.
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Finally, we follow the same procedure for the set S;. Namely, for all integers n in the interval
[7,7 + L(r)] such that n & By 4, we use (5.49) to rewrite (5.51) as

¢

H ( H glj w, b( )+p’L] w b J+q2] w, b(n) H Tng] w,b T)+p2] w, b( )J +q7,] w, b( )
: 7])651

i (i i: (,§) €5,

H Tiqij’w’b(n) . H EL@j,w,b(”)J +Qij,w,b(n)>fj'
i (i,§)eSy i (1,§)£S1US,USY

The contribution of the set By, . on the average over the interval [r,r 4 L(r)] can be estimated using
the triangle inequality. More specifically, this contribution is smaller than

1
L(rr‘) Z 150 (QO)(n)’vab(n) - 1‘1Bw,b,r,e (n)
r<n<r+L(r)
We bound the characteristic function 1, (q,) trivially by 1, so that the above quantity is smaller than
1 1
TN Z A ( )]'Bwbra( ) + TN Z 1Bw,b,r,s (n) (553)
L(r) L(r)
r<n<r+L(r) r<n<r+L(r)

The second term contributes Oy ¢(¢), since By pr has at most Oy ¢(eL(r)) elements. On the other
hand, we have a bound for the first term already in (5.50). Thus, the total contribution is Oy ¢ (1)
times the expression

1
€+ 0y(1) log - + o-(1).
In view of the above, we deduce that the average in (5.52) is bounded by Oy 4(1) times
]E _ 1 ( T g'L] w, b +p2_7 w b(n)+q1] w, b( )J
r<n<r+L(r) SO(QO)( ) ]ZJ; N (Z];_S[ES1

H TLgij,w,b(T)+pij,w,b( )+ Gijw5(n) | ) H Ti|_qij,w,b n J

7
it (i,§)€Sh i (6,4)€5y

H T'I_ﬁij,w,b( )‘HIU w b J)f]

it (4,5)¢S1US5USY

—|— £+ 0y(1 )logé +o,(1). (5.54)

Here, we moved the polynomials g;; ., back inside the integer parts, which we are allowed to do since
they have integer coefficients.

The polynomials in the iterates corresponding to Si, 55,5, and the complement of S; U S, U SY
fulfill the hypothesis of Proposition 5.2.3. To keep the number of parameters lower, we will apply
this proposition for § = &, where we have assumed that & is a very small parameter. Accordingly, we
assume (as we may) that w and r are much larger than 1 <. To see why the hypotheses are satisfied,
observe that for the first set, this follows from the fact that p;j.;, has at least one non-constant
irrational coefficient (since p;; is non-constant by the definition of Si). Therefore, the number of
integers n € [r,r + L(r)] for which we have

{9ij,0p(1) + Pijwp(n) + Gijwp(n)} € (1 —¢,1)

is smaller than 2¢L(r) for r sufficiently large. At the same time, the result is immediate for the second
and third sets, since the iterates involve polynomials with integer coefficients (except, possibly, their
constant terms). For the final set, this claim follows from (5.48).

In view of the prior discussion, we conclude that there exists a positive integer s, that depends
only on d, k, £, such that the expression in (5.54) is bounded by

gikeulso (Qo) (Auhb(n) - 1)}

Usratan(y) + e 0, (1) 4+ 0-(1)(1 + 0, (1)) +

£+ 0y(1) logé +o0.(1). (5.55)
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Applying Lemma 2.2.2, we can bound the previous Gowers norm along the residue class sg (Qo) as
follows:

1150 (Qo) (Awp(n) — 1) (5.56)

In view of the arguments above, we conclude that, for every r ¢ g, p, the following inequality
holds

oot < 8w = yers sz

E 150(Q0)(n) (Aw,b(n) — 1)

r<n<r+L(r)

l
H ( H T‘Lgij,w,b(n)+pij,w,b(n)J +4ij,w,b(n) . H T‘Lgij,w,b(n)+pij,w,b(n)J 'Hh'j,w,b(n).

=1 i (i)€Ss i (19)€S;
ij,w,b (1) Gijw,b (M) HPigw,6(N) | +ij,w,6(R)
[ = ) B e ragey SR
it (i,5)€SY i (1,7)¢S1US5USY 8

1
e Y (A (1) = Dl psaroy T+ (€7 +1log ~ +o:(1))ou(1) + 0s(1) + or(1).

We apply this estimate to the double average defining 7y, 5 s,(R) in (5.45). This estimate holds for
every r ¢ g and, thus, we need an estimate for the values of r in this exceptional set. In order to
achieve this, we recall that the set g, has at most (2k¢ + 1)eR elements. For each r € Ep 4 p, We
use the triangle inequality to bound the average over the corresponding short interval by

1

- S (AWn+b)+1).
(T) r<n<r+L(r)

n=sg (Qo)

We bound the characteristic function of the residue class n = sy (Qo) trivially by 1 and apply
Corollary 2.4.3 to conclude that this expression is O(1) + o0,(1), using similar estimates as the ones
used in the proof of Proposition 5.3.3 (see (5.31)). Therefore, the contribution of the set Eg yyp is at
most Oy ¢(e) + or(1). Combining all of the above, we arrive at the estimate

Twb,s0(R) Ld ke 5“(

vab(n) — 1)‘

—kl
US(T,T+SL(T)]> +e Ow(1)+

0-(1)(1 + 0w(1)) + 0r(1). (5.57)

L E LI

We restate (5.44) here. Namely, we want to show that

li R) = 1).
I, Jus(R) =00l
(b,W)=1

Applying (5.57), we conclude that for a fixed w, we have

I —kt ( lim E A 1
imsup maxe Jupso(R) Capee™™( lim | B - max [ (Awp(n) —1)]
(b,Ww)=1 (b,W)=1

Us(r,r—i-L(r)]) +

e 0u(1) + 0-(1)(1 + 0y (1)).
Due to Theorem K, we have that

Jmax [ (Auws(n) —1)]
(b,W)=1

Us(rp+L(r)] — Ow (1>

for every sufficiently large r. Thus, we conclude that

limsup max jw,b,so (R) <Ld k0 E_kgow(l) + 06(1)(1 + Ow(l))'
R—+o0 %I;S‘?VS)YI{
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Step 5: Putting all the bounds together

We restate here our conclusion. We have shown that for all fixed integers w and real number 0 < ¢ < 1,
we have

N J4 k
limsup lim  max H]if Z 1s0(Q0) (M) (Awb(n) — 1) H (Hz-;taij,w,b(n)J)fj‘

N— 1<b<wW
Rroeo e (b,W)=1 n=1 j=1 i=1

Kape e Mou(1) +0:(1)(1 + 0u(1)), (5.58)

where we recall that d was the maximum among the integers k;; and the degrees of the polynomials
Pij, ¢ij (all of these depend only on the initial functions a;;). Sending w — +o00, we deduce that the
limit in (5.36) (in view of (5.58)) is smaller than a constant (depending on k, ¢, d) multiple of o.(1).
Sending ¢ — 0, we conclude that the original limit is 0, which is the desired result. O

5.5 Proofs of the remaining theorems
We finish the proofs of our theorems in this section.

5.5.1 Proof of the convergence results

Proof of Theorem 1.3.2. Let (X, X, u,Th,...,T);) be the system and a;; € H the functions in the
statement. In view of Lemma 2.4.1, it suffices to show that the averages

N
_ %ZA HTL‘%I(" HTLCLM
n=1

converge in L?(1). For a fixed w € N, we define W = [Iy<wpep p as usual and let b € N. We define

1 & (Wn+b i Wn+b
L3 HTUM WO (T Tl g,
n:l =1

=1

Let € > 0. Using Theorem 1.3.1, we can find wy € N (which yields a corresponding W) such that

1
AW — E = .
H (Wol) o(Wo) | =, Bwovb(N)} L2 () o) (5.59)
(b,Wp)=1

for all N sufficiently large. Our hypothesis implies that the sequence of bounded functions By, (V)
is a Cauchy sequence in L?(p), which, in conjunction with (5.59), implies that the sequence A(WoN)
is a Cauchy sequence. In particular, we have

[AWoM) = AWoN)| 2,y = O(e),

(w) —

for all N, M sufficiently large. Finally, since
[AWON +b) — A(WoN)|[2(,) = on (1),

for all 1 < b < Wy, we conclude that A(N) is a Cauchy sequence, which implies the required conver-
gence.

Furthermore, if the sequence By, ;,(N) converges to the function F in L?(p) for all w,r € N, then
(5.59) implies that [|A(WoN) — F[|2(,) = O(e), for all large enough N. Repeating the same argument
as above, we infer that A(/N) converges to the function F' in norm, as we desired. O
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Proof of Theorem 1.3.3. Let a € H satisfy either (1.23) or (1.24), k € N, (X, X, u, T') be any measure-
preserving system, and functions fi,...,fr € L%(u). Observe that in either case, the function a
satisfies (1.19) or (1.20). In addition, when a(t) satisfies either of the two latter conditions, then the
function a(Wt + b) satisfies the same condition, for all Wb € N.

Using [13, Theorem 2.1],” we have that, for all W,b € N, the averages

N

1

N § TLa(Wn+b)J fl Co. TkLa(Wn-I—b)j fk
n=1

converge in L?(u). We conclude that the two conditions of Theorem 1.3.2 are satisfied, which shows
that the desired averages converge.

In particular, if a satisfies condition (1.23), we can invoke [13, Theorem 2.2] to conclude that the
limit of the averages

N
1
N Z TLa(Wn+b)J fl R Tk la(Wn+D) | fk
n=1

is equal to the limit (in L?(u)) of the averages

1 N
NZIT"fl-...-T’mfk.

Again, Theorem 1.3.2 yields the desired conclusion. O

Proof of Theorem 1.3.4. We work analogously as in the proof of Theorem 1.3.3. The only difference
is that in this case, we use Theorem 1.1.1 to deduce that, for all W € N, b € N positive integers W
and b, the averages

N
% SO pla Vel g L pla W) g,

n=1

converge in L?(u1) to the product fvl S ﬁ The result follows from Theorem 1.3.2. O
Proof of Theorem 1.5.5. The proof follows identically as the one of Theorem 1.3.4 by using [14, The-
orem 2.3| instead of Theorem 1.1.1. O
5.5.2 Proof of the recurrence results

We prove here the multiple recurrence theorems. In view of the Furstenberg correspondence principle,
the corollaries follow easily.

Proof of Theorem 1.5.6. (a) We apply Theorem 1.3.3 for the functions f; = --- = fr = 14. Since
convergence in L?(y) implies weak convergence, integrating along A the relation

N

1 1

I Tla®ly, . . .7Fle®l1, = lim =S TP, TR

m gy 2 T S DI »
peP: p<N =1

and applying Furstenberg’s multiple recurrence theorem we infer that

I =
N-rtoo T(N)

Z M(A NT-le®lan...n T—kta(p)JA) >0,
peP: p<N

which is the desired result.

9There is a slight technicality here, in that we would need the assumption that the function a(Wn + b) belongs to H
in order to apply Theorem 2.2 from [13], However, the proof in [13] only requires some specific growth conditions on the
derivatives of the function a(Wn + b) (specifically those outlined in equation 26 of that paper), which follow naturally
from the assumption that a € H.
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(b) We write a(t) = cq(t) + (), where ¢q(t) € Z[t], q(0) =0, ¢ € R and &(¢) is a function that
converges to 0, as t — +oo. Using [33, Proposition 3.8], we have that there exists ¢y depending only
on p(A), the degree of ¢ and k, such that

li £ (AN lleamll 4 T—kleam A) > ¢
fminl Z KA neen )z

Now, we consider two separate cases. If ¢ is rational with denominator ) in lowest terms, then for
t sufficiently large, we have |¢(t)| < (2Q)~!. Therefore, we immediately deduce that

[[eq(t) +e(®)]] = [[eq(®)]]-

Thus, we conclude that

- [fea(n)-+e(n)]] ~kllca(m)+e(m)]] 4) >
lim inf Z“ ANT™ An---nT A) > . (5.60)

If ¢ is irrational, then the polynomial cq(t) is uniformly distributed mod 1. Given § > 0, we
consider the set S :={n € N: {¢q(n)} € [6,1 — §]}, which has density 1 — 2J. Therefore, we have

N

‘% Z (AN T—lleam)+eM A4 n... N T—k[[cq(n)-i—a(n)]]A)_

n=1

N
% Z (AN T leamll g oo p=hllea™ll 4)] < 26 + op(1).

Sending § — 0T, we derive (5.60) in this case as well.
Notice that since ¢y depends only on the degree of ¢, we have that

il [[cq(Rn)+e(Rn)]] —klleg(Rn)+e(Rn)]] 4 >
}\1{13_1&2’ Z,uAﬂT An---NT A) > cp,

for all positive integers R. Now, we apply Theorem 1.3.1 with b = 1 and the functions a(- — 1), where
we recall that a(t) = cq(t) + (t) to obtain that for some sufficiently large w, we have

%IE}F%E il Z Awa( A AT leWn)l 4q...N T—kLa(Wn)JA) > ¢/2,

where W is defined as usual in terms of w. Finally, we observe that we can replace the function A(n)
in the previous relation with the function A(n)1lp(n) since the contribution of the prime powers (i.e.
with exponent > 2) is negligible on the average. Therefore, we conclude that

—la(Wn —kla(Wn
}éfgfg—zAwl n)lp(Wn +1)u (AOT LaWn)] Ay ... o pFklal )JA)ZCO/Q,

which implies the desired result. Analogously, we reach the expected conclusion for the set P + 1
instead of P — 1. O

Proof of Theorem 1.3.8. Similarly to the proof of Theorem 1.3.6, we apply Theorem 1.3.4 for the
functions f; = --- = fr = 14. We deduce that

1
i —lax1(p)] K
N1—1>I-Is—loo (V) g p(ANT An---NT flA E(14|Z(T)))" dp. (5.61)
peP: p<N

However, using that the function 14 is non-negative and Hoélder’s inequality, we get

[ 14 (BQAZ) dp > ( [EQAZ@) i) = (u(4)*,

and the conclusion follows. O
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Proof of Theorem 1.3.10. The proof is similar to the proof of Theorem 1.3.8. The only distinction is
made in (5.61), namely we have

: 1 —la1(p)] —Lak(p)] _
N1—1>r—ri-loo 7T(N) Z IU(A(] N Tl AN N Tk Ak) =
peP: p<N

[ Tag B, [Z(T1) - B(La, [T(T))) dp,

where the sets Ag, A1, ..., Ay satisfy the hypothesis. Since each function E(14,|Z(7;)) is T;-invariant,
we deduce that the integral on the right-hand side is larger than

[ £ B(Zm) - B(FTTL)) dp,

where f =1, 7 a,n.A1ée 4, - However, since the function f is non-negative, [8, Lemma 1.6] implies
that

[ 1-EGIZ@m) - B dp > ([ £dn) " = a4y,

and the conclusion follows. O

5.5.3 Proof of the equidistribution results in nilmanifolds

In this final part of this section, we offer a proof for Theorem 1.3.12. The main tool is the approximation
of Lemma 2.3.9.

Proof of Theorem 1.3.12. Let X and g1, ..., 9k, T1,--., Xk be as in the statementthe section?, we offer
a proof for Theorem 1.12. The main tool is the approximation of and let s denote the nilpotency degree
of X. It suffices to show that, for any continuous functions fi,..., fs on X, we have the following:
. La1 lax(p .
NLITOO o 2 Al a) - flgg jﬁ dmy, - [ fidmy,,
pE]P’ p<N Yy
where Y; = (gZx;) for all admissible values of i. We rewrite this in terms of the von Mangoldt function
as
La1 n)] lak(n
Jim Z A(n 1) fulgh f frdmy, - Yj fi dmy, (5.62)
k

where the equivalence of the last two relations is a consequence of Lemma 2.4.1.
Our equidistribution assumption implies that for all W,b € N, we have

N
. 1 a1 (Wn+b ar(Wn—+b
Nl—lg-looNnZl Aulgr™ Nz g ) =Yff1 dmy, - ... Yf i dmy, . (5.63)

We write Y; = G;/T; for some nilpotent Lie groups G; with discrete and co-compact subgroups T';
and denote Y = Y] X -+ X Yj. Define the function F : Y — C by F(y1,...,yx) = fily1) - -« fu(yr)
and rewrite (5.62) as

~La n)] ~lar(n)] = _
Nl_lffoo I Z A(n ! gr " ) = Jde% (5.64)

where g; is the element on the nilpotent Lie group Gp X - - - X Gj, whose i-th coordinate is equal to g; and
the rest of its entries are the corresponding identity elements. Lastly, Z is the point (x1,...,z;) € Y.
Similarly, we rewrite (5.63) as

N
. 1 ~a1 (Wn+b)] ~|ar(Wn+b| ~
Nl—lglooﬁ g F(gi* e gr” z) —demy. (5.65)

135



Therefore, we want to prove (5.64) under the assumption that (5.65) holds for all W,r € N.
We use the notation

N
1 ~lai(n ~|la n ~
AN = < Y AP g ),
n=1
and
1« la1 (Wn+b)] lay (Wn+b)]
L ~la1(Wn ~lag(Wn ~
BW,b(N) = N nE:1 F(gl T g CC)

for convenience.

Let ¢ > 0. Observe that the sequence ¥(n) = F(gi" - ... g,*T) is an s-step nilsequence in k-
variables. We apply Lemma 2.3.9 to deduce that there exists a system (X', X', u,S1,...,S;) and
functions G1,...,Gs € L*(u) such that

‘F@"fl TR —“‘[ (ﬁsfﬂ'”i)ej du‘ <e

j=1 i=1

for all ni,...,n; € Z, where ¢; = (s +1)!/5.
Thus, if we define

s+1

N k st
(V) ::Né“’”fjf:{(i[[ff” "N G; dp,
and

By (N NZJH (Hsg e 65 dp,
n=1

we deduce that |Bwp(N) — By, (V)| < ¢, for all N € N, whereas [A(N) — A'(N)| < e(1+on(1)), by
the prime number theorem.

The functions a, ..., a; satisfy the assumptions of Theorem 1.3.1. Thus, we deduce that if we pick
wp (which provides a corresponding W) sufficiently large and apply the Cauchy-Schwarz inequality,

we will get
N
5 | 2 (st = 1) | H (HS@ )6 du| < e (5.0

(b,Wp)=1 -

for every sufficiently large N € N. In addition, we use (5.65), the inequality | By, »(N) — By, ,(N)| < ¢
and the triangle inequality to infer that for N large enough, we have

’B’WO’Z,(N) - dey’ < 2, (5.67)
Y

for all 1 < b < Wy coprime to W.
Observe that (5.66) implies that for all N sufficiently large, we have

1
‘A/(WON) D) § B{,Vmb(N)‘ < 2¢,
O <h<wy
(b,Wp)=1

and we can combine this with (5.67) to conclude that

’A’(WON) _ demy’ < 4e
Y

for all N sufficiently large. Since |A'(N) — A(N)| < e(1+4 on(1)), we finally arrive at the inequality

)A(WON) ~[F de’ < 6,
Y
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for all large enough N € N. Since |[A(WoN) — A(WoN +b)| = on(1) for all 1 < b < W, we conclude
that
‘A(N) —demY) < 7e,
Y

for all sufficiently large N € N. Sending ¢ — 0, we deduce (5.64), which is what we wanted to
show. O

Proof of Proposition Corollary 1.5.13. The result follows readily from Theorem 1.3.12. The first hy-
pothesis of the criterion is satisfied, since each of the functions a,(t) satisfies (1.28), while condition
(b) follows from Theorem 1.2.1 and our assumption that a;(Wt + b) belongs to H. O]

5.6 More general iterates

In this last section, we discuss how the hypotheses that the functions a;(¢) in the iterates belong to
a Hardy field H can be weakened. The starting point is Proposition 5.3.1, which was established
for general smooth functions, subject to some growth inequalities on the derivative of some particular
order (the integer k in the statement). Unfortunately, one cannot generalize theorems such as Theorem
1.3.4, which involve several functions to a more general class. The main obstruction is that in order
to obtain the simultaneous Taylor expansions, one needs to find a function L(t) (the length of the
short interval) that satisfies a growth relation for all functions at the same time, which is non-trivial
to perform, because we do not know how the derivatives of one function might grow relative to the
derivatives of another function (this is where the assumption that all function belong to the same Hardy
field is crucial). Nonetheless, this is still feasible in the case of one function, such as Theorem 1.3.3,
which leads to Szemerédi-type results.

Proposition 5.6.1. Let a(t) be a function, defined for all sufficiently large t and satisfying |a(t)| —
+00, ast — +00. Suppose there exists a positive integer k for which a is CF*1, a(k+1)(t) converges to
0 monotonically, and such that'’

/5 < o® ()] 7 < |a® D ()| TF < £

Then, for any ¢ € N, measure-preserving system (X, X, u,Th,...,Ty), and functions fi,..., fo €
L*>°(u), we have

N
. . 1 _ 1\pla(Wn+b)) la(Wn+b)] ‘ _
(b,W)=1 n=

We remark that any improvement in the parameter 5/8 in Theorem K will also lower the term to/8
on the leftmost part of the growth inequalities accordingly.

Sketch of the proof of Proposition 5.6.1. We define L(t) to be the geometric mean of the functions

1 1
‘a(k) (t)]"* and |a(k+1)(t)‘_m, which is well-defined for all ¢ sufficiently large. A standard computa-
tion implies the relation

/% <« |a(’“)(t)\‘% <« L(t) <« \a(’““)(t)\"%+1 < t.

Regarding the parameter w as fixed, it suffices to show that

N
: LZ _\lgWnb)] lg(Wn+b)] ‘ _
lzl\fniig)%glb%)év HN 1(Aw7b(n) R frrede I L2(p) = oull).
b,W)=1 n=

10Gee the notational conventions for the notation <.
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This follows if we show that

limsup max H E
N—+400 }bﬁvbvé)l/‘f N<n<N+L(N)

(Awp(n) — 1)LVt g o ple(Wnib)] fg‘ ow(1).

L2 () -

This derivation is very similar to the proof of [13, Lemma 4.3], which was stated only for bounded
sequences. This is proven by covering the interval [1, N| with non-overlapping sub-intervals that have
the form [m, m + L(m)] (for m large enough), where the term of the average on the last set of the
covering is bounded as in (5.35). !

Using Proposition 5.3.1 and the abbreviated notation gy (¢) for the function g(Wt+b), we deduce
that we can write
(n = N)rgip (V)

k!

LgVV,b(n)J = gmb(N) 4+t

for all except at most O(L(N)log™ % N) values of n € [N, N + L(N)]. Furthermore, we also have the
equidistribution assumption of Proposition 5.3.1, which implies that Proposition 5.2.3 is applicable
for the polynomial

k
(n = N)rgiy (V)
k!
appearing in the iterates. The conclusion then follows similarly as in the proof of Theorem 1.3.1, so
we omit the rest of the details. O

QW,b(N)+“’+

An application of the previous comparison is for the class of tempered functions, which we define
promptly.

Definition 5.6.2. Let i be a non-negative integer. A real-valued function g which is (i + 1)-times
continuously differentiable on (ty,00) for some tg > 0, is called a tempered function of degree i (we
write dg = 1), if the following hold:

(a) gD (t) tends monotonically to 0 as t — oo;
Tempered functions of degree 0 are called Fejér functions.

For example, consider the functions
g1(t) = t/%5(100 + sinlog t)3, ga(t) = tY/2°, ga(t) = t'7/2(2 4 cos \/log t). (5.68)

We have that g; and go are Fejér, g3 is tempered of degree 8 (which is not Hardy, see [2]). Every
tempered function of degree i is eventually monotone and it grows at least as fast as t'logt but
slower than ¢'T! (see [2]), so that, under the obvious modification of the definition of a strongly non-
polynomial, tempered functions 7 are strongly non-polynomial. Also, for every tempered function g,
we have that (g(n))nen is equidistributed mod 1.1

In general, it is more restrictive to work with tempered functions than working with Hardy field
ones. To see this, notice that ratios of tempered functions need not have limits, in contrast to the
Hardy field case. For example, the functions ¢g; and g2 in (5.68) are such that g;(¢)/g2(t) has no limit
as t — +o00. This issue persists even when we are dealing with a single function, as ratios that involve
derivatives of the same function may not have a limit either. Indeed, we can easily see that ¢; from

5.68) (which was first studied in [11]) has the property that to (1) does not have a limit as t — +o0.
g1()

The existence of the limit of the latter is important as it allows us to compare (via L’ Hopital’s rule)
growth rates of derivatives of functions with comparable growth rates.

"n particular, this case is much simpler than the method used to establish Theorem 1.3.1, in that we do not have
to consider the more complicated double averaging scheme. In addition, we do not need any assumptions on L(t) other
than it is positive and L(t) < ¢.

2For Fejér functions this is a classical result due to Fejér (for a proof see [37]). The general case follows inductively
by van der Corput’s difference theorem.
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In order to sidestep the aforementioned problematic cases, we restrict our study to the following
subclass of tempered functions (see also [2], [35]).

Let R = {g € CX(RY) : Timy oo L0 € R forall i € NU {0}};

Ti = {g €ER:Fi<a<itl, lmp o D0 = a, limy o0 g (1) = 0};

and T := [J;2, Ti. For example, g2 € Ty and g3 € T3 (g2, g3 are those from (5.68)).

Notice that while the class of Fejér functions contain sub-fractional functions, 7y does not as,

according to [10, Lemma 6.4], if g € T with lim; tglt) _ «, then for every 0 < 8 < a we have

g(t)
t# < g(t).
We will prove a convergence result for the class 7 through an application of Proposition 5.6.1.

Lemma 5.6.3. Let g be a function in T and 0 < ¢ < 1. Then, for all large enough positive integers
k, we have

e < [g® )| 7F <« [gtD ()| TFT <t

Proof. Since g(t) < t%*t! and 0 < ¢ < 1, we have g(t) < t*(=9) for all large enough k € N, which
implies

— 0.

gP(t) _ g(t) ﬁ tg® (t)
t—ck _tk(l—c) J lg(i—l)(t)

1=

1
Hence, (%) (t) <t~ or, equivalently, ¢ < |g(k) (t)rﬁ.
For the aforementioned k’s, let 0 < ¢ < 1 so that t*¢ < g(¢). Since lim;_, 4o tg(—g) ¢ N,
tk(a—1) tha  F g(i—l)(t)

= . . — 0,
g® ) g(t) paley tg(@(t)

tg(k+1>(t)

SO tk(qil) < g(k) (t) As hmt_>+oo W

€ R\ {0}, we get gD (1) < t71gk)(1), so, if we let § = 717,

we have ) ) )
(k+1) ()|~ "1 w1 | gR) (¢)|” T _
lg® ()] * lg® ()] *
completing the proof of the lemma (the rightmost inequality follows by [10]). O

Using Proposition 5.6.1 and [13, Theorem 2.2] we get the following result. More precisely, we use
the fact here that [13, Theorem 2.2] holds for a single function a which has the property that, for
some k € N, a is CF*1, a*t1 () converges to 0 monotonically, 1/t* < a®(t), and o) (¢)|~1/*F <
|a*+1) (£)| =1/ B+ (see comments in [13, Subsection 2.1.5]). We omit its proof as it is identical to the
one of Theorem 1.3.3.

Theorem 5.6.4. Let g € T. For any k € N, measure-preserving system (X, X, u,T), and functions
fi,.- oy fre € L*°(n), we have

N
1 1
li E Tl® ¢ . rklI®] £ - im - E T fy ... Tk .
N 1}2&; m(N) peb <N h T N—)l +oo N n=1 ¢ i 509

where the convergence takes place in L?(1).
As in the Hardy field case, we have the corresponding recurrence result.

Theorem 5.6.5. Let g € T. For any k € N, measure-preserving system (X, X, u,T), and set A with
positive measure, we have

1
y
N-too 7(IN)

Z wANT WP AN .. AT kP 4) > 0.
peP: p<N
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The latter implies the following corollary, which guarantees arbitrarily long arithmetic progressions,
with steps coming from the class of tempered functions evaluated at primes.

Corollary 5.6.6. Let g € T. For any set E C N of positive upper density, and k € N, we have

o 1 7
it oy T AENE- )5 k) >0

Remark. In Theorem 5.6.4, and, thus, in Theorem 5.6.5 and Corollary 5.6.6, the floor function can

be replaced with either the function [-] or the function [[-]]. Furthermore, in each of these results, one
can alternatively evaluate the sequences along the affine shifts ap 4+ b, for a,b € R with a # 0.
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