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Abstract

We prove the existence and uniqueness of weak solution of the initial boundary value
problem for a stochastic mass conserved Allen-Cahn equation with nonlinear diffusion
together with a homogeneous Neumann boundary condition in an open bounded domain
of R™ with a smooth boundary. We suppose that the additive noise is induced by a
Q-Brownian motion.

We decompose our original problem into two problems: a nonlinear stochastic heat
equation with homogeneous initial condition, and a stochastic nonlocal reaction diffusion
equation with nonlinear reaction but without the noise term. We will prove the existence
of solution for these two problems by applying a Galerkin method, which amounts to
establishing suitable a priori estimates that we need to get weak compactness of the
approximate solution, namely convergence along a subsequence to a limit. The main
problem is then to identify the limit of the diffusion term and the reaction term, which we
do by means of the so-called monotonicity method. We also prove the uniqueness of the
weak solution.






Ilegiandm

Yty mapovoa epyacio YeReTdue TNV UToeEn xan wovadixdTnTa aoPevidy AOoEWY Yol TO
apyx6 cuvoptaxd TedBAnua otoyactixic Allen-Cahn e&iowong pe dwthenon walac xou un
Yeauuxg didyuong Ue odoyeveic cuvoplaxéc cuvirixec Neumann oe evo avolyTo QeoypéVo
oUVolo pe opard abvopo. O npocietindg YopuBog amotehelton and plor Q-Brownian xivnon.

AmocuviéTtouye To apynd Yog TEOBANUA o€ U0 TEOBAAUATA: OE ULl A1) YEOUULXT| O TOY -
otxn e€lowon VepuodTNTOC UE OUOYEVY| dEYIXT] XATAC TUOT, XL OE L0 GTOYACTIXY| U1 TOTUXT
eglowon avtidpaong dudyuong pe un yeouwxh avtidpoon ohkd ywele tov dpo Yopifou.
Anodeixvboupe tny Unapdn Aoong yio autd tar 800 TEOBAAUTA UE TNV EQUPUOYY) Ui LedOd0U
Galerkin, 1 onola tooduvouel ue TV amodeln XATIAANADY €X TV TEOTERWY EXTUNTEWY YL
Vo ETTOYOVUE ooVEVY] CUUTAYELXL Yo TNV XoTd TEOGEYYLIoT AOom, ONAadr) cUYXAoY WaC
unooxoloudlog oe éva 6plo. To xbplo mEéPAnua téte elvan va mpoodloplcouuye To Oplo
TOU GPOL BLIYLONS XAl TOLU OPOU AVTIBEACTC, TOU XAVOUUE UECK NG AeYOUevNS Uedodou
povotoviog. Amodewvboupe eniong T wovadixotnTa g actevic Adorng.
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Chapter 1

Introduction

1.1 The problem

We study the initial boundary value problem for the stochastic nonlocal reaction-diffusion
equation with nonlinear diffusion together with null-flux boundary condition in an open
bounded domain of R™ with smooth boundary and additive noise which induced by a
Q-Brownian motion. This is the stochastic mass conserved Allen-Cahn equation which is
mentioned in [7],

0 1 ow
B = ANV + £0) - o [ fddat T we D 20,
ot Dl /5 ot

(P) A(Vy) v =0, on 9D x RY,
o(x,0) = o), r €D,

where D is an open bounded set of R™ with a smooth boundary 9D, v is the outer normal
vector to D and ¢, is the initial function such that ¢, € L%(D).

We suppose that the nonlinear function f is a smooth function which satisfies the
following properties:

(F;) There exist positive constants C; and C5 such that

fla+b)a < —Cqa?P + f5(b), |fo(b)| < Cy(b2P 4 1), for all a,b € R.

(Fy) There exist positive constants C5 and 673 such that

|f(s)] < Csls — M|?P=t 4 C3(M)

(F3) There exists a positive constant C, such that

f(s) < Cy.
2p—1
We will check in the Appendix A that the function f(s) = Z b,.s" with by, 1 <
r=0

0,p > 2 satisfies the properties (F;) — (F3).
We also assume that A = V_ ¥(v) : R® — R™ for some strictly convex function
Ve bl (ie U(v) € CHR™) and V¥(v) is Lipschitz continuous) satisfying
A(0) =V¥(0) =0,¥(0)=0
{ (0) (0) (0) (L.1)

ip=v] < e,

Loo([Rn ;[Rnxn)
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for some constant ¢; > 0. We remark that (1.1) implies that
|A(a) — A®)] < Cla—b (12)

for all a,b € R™, where C' is a positive constant, and that the strict convexity of ¥ implies
that A is strictly monotone, namely there exists a positive constant C, such that

(A(a) — A(b))(a —b) = Cola —b]?, (1.3)
for all a,b € R™.

Remark. If A is the identity matriz, the nonlinear diffusion operator —div(A(Vu)) reduces
to the linear operator —Au.

1.2 Physical Background

The Allen-Cahn equation, also called Model A in the theory of dynamics of critical phe-
nomena, is a reaction-diffusion equation of mathematical physics which describes the pro-
cess of phase separation in multi-component alloy systems, including order-disorder tran-
sitions. It is a second-order nonlinear parabolic partial differential equation and describes
the evolution of a non-conserved order field during anti-phase domain coarsening. It is
closely related to the Cahn-Hilliard equation, which is a fourth-order nonlinear parabolic
partial differential equation and describes the process of phase separation of a conserved
order field. It was first introduced in 1979 by John W. Cahn and Sam Allen in their work
[2], in material science to study the behavior of an interface separating two different iron
and aluminium alloys. In the last thirty years, Allen-Cahn equation has been widely used
in many complicated moving interface problems in material science, fluid dynamics, image
analysis and mean curvature flow.

S/ ,': phase A

phase B

.

phase A ™

Figure 1.1: Binary mixture.

The deterministic equation (i.e., when Z3¥ = 0) in the case of linear diffusion with A
being the identity matrix, namely
oL 1
—=A - — dx, eD,t>0,
5 = Avt fle) ’D‘/Df(@ T, >
was first studied by Rubinstein and Sternberg [11] as a model for phase separation in a

binary mixture. The well-posedness and stabilization of the solution for large times for
the corresponding Neumann problem

Jy 1

9% _ _ = >
o = A0+ 1)~ oy [ fleuin, weD, ez
Ve-v=0, on 0D x RT,
90<$70> = @0(33)’ x €D,



were proved by Boussaid, Hilhorst and Nguyen [5]. They assumed that the initial function
was bounded in L°° (D) and proved the existence of the solution in an invariant set using
a Galerkin approximation together with a compactness method.

Alikakos, Chen and Fusco [1] analyzed the problem’s long-time dynamics and estab-
lished existence of stable sets of solutions corresponding to the motion of a small, almost
semicircular interface (droplet) intersecting the boundary of the domain and moving to-
wards a point of locally maximal curvature. Later, Bates and Jin [4] established the
existence of a global invariant manifold of droplet states using the approximation given in
[1].

A singular limit of the stochastic mass conserved equation with linear diffusion, i.e.,

0 1 ow
SOZA@‘*‘f(SD)—’m/f(SO)de"‘(%, reD, t>0,
D

ot
Ve v =0, on 9D x R,
¢(2,0) = po(2), z €D,

has been studied by Antonopoulou, Bates, Blomker and Karali, [3], to model the motion
of a droplet.

The interfacial evolution process corresponding to a second order mass conserved Allen-
Cahn equation shares many properties with the fourth order Cahn-Hilliard equation as
discussed [11]. Da Prato and Debussche proved the existence and the uniqueness of the
solution of a stochastic Cahn-Hilliard equation [6] with an additive space-time white noise.
Funaki and Yokoyama [8] derive a sharp interface limit for a stochastically perturbed mass
conserved Allen-Cahn equation with a sufficiently mild additive noise.

In (1), the unknown ¢ denotes the evolution of the concentration one of the species
of the alloy, known as the phase state between materials. For a binary mixture, of two
components A and B, with concentration ¢ 4 (x,t) and ¢ g(z, t) respectively, we can assume
that p 4 (z,t) + @ g(z,t) = 1, and therefore only use one concentration for the description:

¢A(x7t) = So(xﬂl’) and ¢B(x7t) =1- (P(xvt)'

Within this context, ¢ stands for

maq—Mp
T, t) = ————
(P( ) my+mpg

that is the difference between the concentrations of the two components in a mixture,
where m 4 and m g are the masses of phases A and B.

(p(x)

Figure 1.2: Concentration function in a neighborhood of a layer.



The nonlinear term f(p) = F/(y) is the reaction term whose antiderivative is a poten-
tial F'(¢). The type of potential F'(¢) which has been considered most in the literature is
the convex quartic double-well potential

1
Flp) = 7(1—¢%)%
In the case of the quartic double-well potential, f(¢) = ¢ — 3 represents the bi-stable
non-linearity. It favors layered functions that take values close to its minima +1. The
zero level sets of such a function are called interfaces and the values close to +1 are called
states.

25 T T T T

05

Figure 1.3: The double well potential F(p) = 1(1 —¢?)2.

The deterministic part of the equation is the L? gradient flow of free energy functional

Be) = [ VEL 4 rig)an
D

This functional behave like Lyapunov functions, that is functions that monotonically
change in time. Given an energy E(p) the associated gradient flow is given by the equation

dp _ _0F
ot 0p’

In other words, ¢ decreases along the gradient of . The notation g—E denotes the so-called
functional derivative of E to ¢, which generalizes the ‘gradient’ notion for functions.
Since the classical AC equation

Dy

2 = Ap+ 1(9) (1.4)

does not conserve the initial volume, Rubinstein and Sternberg [11] added a Lagrange
multiplier 3(t) = l—é‘ fD f(¢)dx to (1.4) in order to impose the conservation of volume.
Similarly the equation which we study here satisfies the mass conservation:

4 pdx = / %d:n
dt J, o

= [ [ty + o) [ storde+ ] o



(Div._Thm) / A(Vo) - yds+/f(90)d$ |11)y/f((p)dm/,3d$+/fjiz/dx
- [y [ oo [
/da:

Taking the expectation of above, we have

[jt/ <pdx]—£[/D‘9£/dx]:o.

Due to mass conservation, a phase separation begins either by spinodal decomposition,
or as in our case as the mass is very asymmetrical by nucleation.

1.3 Assumptions on the noise

The noise term %—‘QV is defined as the formal derivative of a Wiener process, which is given
by a Fourier series with coefficients being independent Brownian motions in time.

We consider a symmetric positive linear operator @ in Hilbert space L?(D), as the co-
variance operator. Then there exists an orthonormal basis (formed by eigenfunctions of Q)
{e;};=1 for L?(D) and by a (bounded) sequence of nonnegative real numbers (eigenvalues
of Q) {A;};>1 such that

Qe = \jey

forall [ =1,2,... We will always assume that the trace of the operator @ is finite, i.e.,

TrQ = (Qey,eq) r2(p)

Qe; - e, dx (Qe; = Njey)

Il
(e L[VJe 078

T
o g

)\lel * el d:E

A Hel||i(D) dz = 1, e; orthonormal basis)

2
<||€l”L(D)

ke

< Ay, (1.5)

8 L[]e

~
Il
—

for some positive constant Ay. We suppose furthermore that e, € H'(D) N L°°(D) for
l=1,2,... and that there exist positive constants A; and A, such that

= 2
Z)\l Hel”Loo(D) S‘/\17 (16)
=1
and -
S n Vel < A (17)
=1

Let (2,7, P) be a probability space. A stochastic process W (t), taking values in
L?(D), for t > 0 is called a Wiener process with covariance operator @, or Q-Wiener
process, if



(i) W(0) =
(ii) W has continuous trajectories (sample paths)
(iii) W has independent increments, and

v)

(i

Hence, W(t) ~ N(0,tQ), i.e., E[W(¢t)] = 0 and Cov(W (t)) = tQ. Also W is given as the
Fourier series

W(t) =W(s) ~ N(0,(t =5)Q), t =5 =>0.

Wz, t) == > BHQ%e(x)  (Qe = Aey)
=1
= ) VABe () (1.8)
=1
where .
51@)_7(‘/‘/@):61% Jj=12,

are real valued Brownian motions, that is,
Bi(t) ~ N(0, 1),

EB,(£)] =0,
E[B,(t)2] = ¢ and

E[5:(t)Bi(s)] = min{t, s}.

The infinite series (1.8) converges in L?(D).
If we equipped a probability space (£, 7, P) with a filtration {7 ,},., and assumed
that

(i) B(t) is F,-measurable
(ii) B(t) — B(s) is independent of F _,V0 < s < t,

we say that 3(t) is a Q-Wiener process with respect to {7, },-, or 5(t) is (F})-Brownian
motion.

1.4 Motivation - Goal

In this work, we introduce a nonlinear stochastic heat equation, perform a change of
functions in order to maintain a “deterministic style” mass conserved equation by hiding
the noise term and prove the existence of the solution in suitable Sobolev spaces similar
to those in [6]. Funaki and Yokoyama [8] derive a sharp interface limit for a stochastically
perturbed mass conserved Allen-Cahn equation with sufficiently mild additive noise. This
is different from the stochastic term in this paper which is not smooth. A singular limit of
a rescaled version of Problem (P) with linear diffusion has been studied by Antonopoulou,
Bates, Blomker and Karali [3] to model the motion of a droplet. However, they left open
the problem of proving the existence and uniqueness of the solution. The problem [7] is
more general than the one in [3] since it has a nonlinear diffusion term. The proof is based
on a Galerkin method together with a monotonicity argument similar to that used in [10]
for a deterministic reaction-diffusion equation, and that in [9] for a stochastic problem.
My Master Thesis is based mainly in [7] and is organized as follows:
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First, we introduce an auxiliary problem, more precisely the nonlinear stochastic heat
equation, with nonlinear diffusion, and prove the existence and uniqueness of the solution
Wy

Next, we prove the existence of a solution of Problem (P). To that purpose we perform
the change of function u(t) = ¢(t) — W4, as the new unknown function, to obtain an
equation without the noise term. This change is simplifies the use of Galerkin method,
which yields uniform bounds for the approximate solution in L>°(0,T; L?(Q2 x D)), L?( x
(0,T); HY(D)) and in L?P(Q x (0,T) x D). Applying the Galerkin method, we search for
suitable a priori estimates. We deduce that the approximate weak solution u,, weakly
converges along a subsequence to a limits. The main problem is then to identify the
limit of the elliptic term, dim(A(V(u,,, + W ,))), and the reaction term, f(u,,, + W4), as
m — 0o, which we do by means of the so-called monotonicity method.

Finally, we prove the uniqueness of the weak solution which in turn implies the con-
vergence of the whole sequence.






Chapter 2

Existence and uniqueness of the
stochastic Allen-Cahn equation

2.1 Functions spaces
Throughout this thesis we work with the following functions spaces:
H= {v c L2(D),/ v= 0}, V=HYD)NH and Z=VNL*®(D)
D

and denote with |-|| the norm corresponding to the space H. We also define (-,-) = (-,*) z- z
as the duality product between Z and its dual space Z* = V* + L%(D).

2.2 An auxiliary problem

We consider the Neumann boundary value problem for the stochastic nonlinear heat equa-

tion
P~ aiv(awwa) + 27 weD, 120
(P)Y A(VW,)-v =0, zedD, t >0,
W4 (2,0) =0, x € D.

We define a solution of Problem (P1) as follows:

Definition 2.1. (Strong solution) We say that W 4 is a strong solution of Problem (P;)
if :

(i) W4 € L=(0,T; L%2(2 x D)) N L2(2 x (0,T); H*(D));
(ii) W, € L*(Q;C([0,T]; L*(D)));
(iii) div(A(VW 4)) € L2(Q x (0,T); L?(D));

(iv) W 4 satisfies a.s. for allt € (0,T) the problem

WA (t) = / div(A(YW 4(s)))ds + W (L), in L2(D),
0 (2.1)

A(VW 4(t)) -n =0, in a suitable sense of trace on OD.

9



We will show the existence and uniqueness of the strong solution W4 of Problem (P;).
Moreover we will prove that

W, € L°(0,T; L9 x D)) for all g € [2,00). (2.2)

2.3 Existence of a solution of Problem (P,)

We study the solution W, of problem (P; ) using the Galerkin approximation. At first we
derive an approximate solution W,*™ of (P;) and a priori estimates, which we need to
show that the solution is global in time. A priori estimates imply that the elliptic term
div(A(VW ,)) is bounded in L?(D). We also remark that there are no reaction terms i.e.,
fi =0 for ¢ from 1 to n and that the noise is additive.

We prove the following result.

Theorem 2.1. There exists a unique solution of problem (Py).

Proof. Step 1: Solution of the approrimate problem. To begin with, we approximate the
function ¥ by a sufficiently smooth function U™ such that

U™ 50 in OY(R™) (2.3)

and
||D2\Pn||Loo<|Rn’|Rn><n) S Cq,y V‘I’n(O) = 0

It turns out that the upper bounds which we find do not depend on n. We define an
approximate solution W™ of (P;) by

W (t) = / P ldiv(VUH (YW ()]s + 3 Pr(v/NedBilt)  (2.4)
0 =1

a.s., where for v € L2(D)

P vi= 2(/}3 vw )w;

J

and
Pm :Hl(D) — Hm = Span{wlv"‘vwm}’ meN

is the continuous operator defined by

a— PmaH%ﬂ(D) = vél}{f la — vH%,l(D),a € H' (D).

Note that
“PmaHHl(D) < HGHHl(D)- (2.5)
and that
P.a—a, in HY(D) as m — cc. (2.6)
This implies in particular that
P.a—a, in L?(D) as m — oc. (2.7)
In addition, we have that
/ Uy, Py [div(VE™ (VW ™)) de = —/ Vu, VU™ (VW™ ) de. (2.8)
D D

10



Indeed,

/ P, [div(VI™ (VW) de =

/umz /le (VU™ (VW " ))w; dr)w,; dx =

=1

<.

Z/ umwj/ div(VE™ (VW "™ ) w, d dx
D D

Jj=1

/div(V\I’n(VWIT’n))Z /u w;dr)w; dr
D

=1

/le(V\IJ”(VWmn Z Uy, Wi w5 dx =
D

Q

(int. by parts)

/ div(V¥™(VW,""™))u,, dx —
D

—/ Ve (VW ") Vu,, dz
D

2.3.1 A priori estimates

Step 2: A priori estimates for W™, In what follows, we derive a priori estimates
for the function W™ We will use these estimates to prove the boundedness of W™,

Lemma 2.1. There exists a positive constant K such that

T
[E/ /(WQ’”)dedt < K, (2.9)
0 D
T
[E/ / VW™ dzdt < K, (2.10)
0 D
T
[E/ | Py div(VO (VW ™) 2 2 pydt < K, (2.11)
0
sup [E/(VVX“”)2 < K. (2.12)
te(0,T) D

Proof. We first prove the last estimate. We recall It6’s formula, and is applicable to
systems of stochastic ordinary differential equations.

Lemma 2.2. For a smooth vector function h and an adapted process (g(t),t > 0) with

T
/ lg(t)] < oo almost surely, for all T > 0 set
0 t t
X(t) = / o(s)ds + / hdW(s), 0<t<T,
0 0
where h is a vector of components h;,l =1,...,m and dW is a vector of components df3;,

l=1,...,m with B; a one-dimensional Brownian motion. Then, for F' twice continuously
differentiable in X and continuously differentiable in t, one has

F(X(t),t) = F(X(O),O)-i—/ Ft(X(s)js)ds—f—/ F_(X(s),s)g(s)ds
0

Z F s)h?ds. (2.13)

+/OF$(X() $)hdW (s) + 3

N | =

11



Next we apply Lemma 2.2 to (2.4) with hdW = ZPm\/)\leldﬂl(s) and h; =
=1
P, \/Ae;, supposing that F' does not depend on time and setting

X(t) =W (),

F(X(t) = (X(#)* = (W (1)?,
’(X(t>)—2X<t) 2W (1),

F7(X(t) =

g(s) =P m(wn(vwx’”(s))).

We remark that in this case F' does not depend on ¢, so F,(X(s),s) = 0and F(X(0),0) = 0.
Substituting on (2.13) we have

1

t
W (g 1)2 = 2/ WP, div(VE (VI (s)))ds
0

+2Z/ WP, A/ Ae dBy(s) +/ > (P Aer)?ds.

=1

After integrating on D, we obtain almost surely, for all ¢ € [0, T],
t
/ Wit (z,t)?dx = 2/ / Wit P, div(VU™ (VW " (s))) dzds
D o /D

m t
+2Z/ / WP, \/Ae, dzdf (s)
=170 D

t m
+/ Z/(Pm\/)\lel)Qdmds (2.14)
0 [=1YD
or equivalently
t
W 20 = 2 / / WP div(VU™ (VW (s))) dads
0 D
m t
+2Z/ /W;”’”Pm\/)\leldmdﬁl(s)
=170 D
t m
[ SN A sy (2.15)
0 [=1

Using (2.8), we have

/ WTn P, div(VE (VI (s)))da = —/ VWU (VW (5)) da.

D D
Substituting in (2.15), we take

W5 Oy 42 [ [ W (W ) dads
0
/ / W™ P /e dedBy (s) / ZIHPm\/)\TH%Q(D)ds. (2.16)
Taking the expectation, we obtain
[Euwg“”(t)H?LQ(D)Jrz[E/t/ VWU (VW (s))dds
o /D

12



t m
€[> 1PVl s (2.17)
-1

(O

m t

where we have used the fact that QE[Z/ / Wi P, v/ e dzdB;(s)] = 0. We deduce
=10 /D

from (2.5) that

Y NPuVAlE ) < ZHP VAl o)
1=1
= ZHvAzezHiz<D)+|\V(V/\z€z)H2Lz<D)
=1
< Ag+ A (2.18)

Returning to (2.17), we have

t m
R O = € [ Y 1Pn Al s

1=

e

t
—2E / VWLV (VW™ (s))dxds,
0

implies that
t m
EIW 5" (0122 p) < [E/ Y 1PN 2 ) ds
0 1=1

Taking the supremum of the above equation we obtain

wp €SO0, < s €[S IRV s

te(0,T) te(0,T)

= sup [EZtIIP VAlZ

te(0,7) 1=
(2.18)
< T(Ag+Ay)
< K.

This completes the proof of (2.9). In order to obtain an H?2-type estimate for W7* ((2.9),
(2.10), (2.11) estimates), we take the gradient of the equation (2.4).

VW) = / VAP [V (VU (VW) ks + 3 VP, [y e 6 (1)
0 =1

_ / V{Pm[div(V\I/”(VWA”’”))]}ds+f: / VP [/ NeldB(s)
0 =170
(2.19)

We fix x € D and apply below for a second time It6’s formula Lemma 2.2 to the in-

tegral equation (2.19) where in this case hdWW = ZV{Pm\/)\lel}dﬁl(s) and h; =
=1

V{P, /e } with:

X(t) = VW (=, 1),
F(X(1) = W (VW (x,1)),

13



FI(X (1) = VI (VW™ (2, 1)),
F7(X(t) = DO (VW " (2,1)),
) = (

g(s) = V{P,, div(VE™" (VW """ (z,s)))}.

We remark that F does not depend on ¢, so F,(X(t)) =0 and F(X(0)) = 0. Substituting
all above in (2.19), we obtain

t
TP VW (2, t) = / VU (VW (2, 5))V{P,, div(VE™ (VW™ (5))) s
0]
t m
[ T ) Y VP R bR )
0 =1
1 m t
+2Z/ D2U™ (VW (2, 1))V P,y (/e 2ds.
=170
After integrating over D, we obtain almost surely, for all ¢ € [0, 77,
/\I/”(VWZL’”(:U,t))dw
D
t
_ / / VU (VW (2, 5))V{P,, div(VE™ (VIVT" () }dads
m t
+3 / / VU (VW (3, 5) VAP, Npe }dadBy (s)
1 G m, n
+22/ /DQ\I/” (VW™ (x,5))|VP,,(\/Ae)|2dzds. (2.20)

=

By (2.8) the second term of the above equation becomes
/ / VO™ (VW™ (x, s))V{P,, div(VI™ (VW " " (s))) }dzds
/ / P, div(VU™ (VW7 ()P, div(VE™ (VI (s))) dads
_ / / [P, div(VU™ (VW™ ()] 2dds
t
= [ VP T TR )
Substituting in (2.20) we obtain
/ U (VW™ (z,t))de =
D

t
_/ | P div(VE™ (VW " ()72 ) ds
0

s / / VU (VW (2, 8))V{ Py, /ey }dedBy (5)

=

+= HD2\I/”(VW’”” Z/ /yVP (Ve 2dads

INE

_ /O 1P, div (VO™ (VW™ ()32 5
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VU (VI (2, 8))V{ P, /ey }dadB (s)

1 m t
—1—012/ /|VPm(\/)\lel)|2d:Uds =
2 =170 D

t
_/ | Py, div (VO™ (VW™ ()72 o) ds
0

+
Dygt
O\H\
g

+Z/ /vqm(vwg%”(x,s))V{Pm\/Tlel}dxdﬁl(s)
0 D

m ot
C
F2Y [ IV (Ve B s (2.21)

=170

~
Il
Ju

Thus taking the expectation of (2.21) we obtain
t
[/ TR (VT 2, 1)) da g—[E/ 1P div (VU™ (TW ™ ()2 0,y
D 0
m t
FEY / / VU (T (0, 8)) VP, /e YdadB, (s)
=170 ’/D
m_ ot
c
+DEY [ VPR oy
1=170
Using the fact that

i/ /Wn (VW™ (x,8))V{P,,(\/\e,) }drdB, (s

=1

we have

IA

t
[E/ \If”(VWAn’n(x,t))dw—i—E/ P div (VO™ (TWT ()2 s
D 0
m t
C
DeY [ VPR s (222
=10
Adding (2.17) and (2.22), using (2.5), (1.6) and (1.7) we obtain

t
[E/ \I/”(VWf’n(:c,t))dx—HE/ |P,,, div(VE™ (VW ()32 pyds
D 0

t
FEIW ™ ()12 ) + 2E / [R5 dads <
D
o t m (F,1<cq)
[EZ/ VP, (Ve |\L2(Dds+[E/ S 1P/ Nl <
=1
t m
EY / 9P, (VAo + cof |3 1Pwv/Rerliapds =
=10 0 I=1
m t
EY [ VP (VR i)+ IPm VA s =
1=1"v0
(2.5)
<

m t
CO[EZ/ HPm\/)‘lelH%‘[l(D)ds
1=170

15



m t
WEY. [ IWhalinpds -

=170

oEY / IV VA2 )+ Ve pds =

=1

o~

oE /( MIVerZa ) + MlerlZap )ds =
0 =1

o

t m
OEE/ ds( MIVelZe o)+ Ailledl 2 ) =
0 =1

m 5 5 (1.6),(1.7)
oF (Yo NIVerl2a )+ Allerap) )t <
=1
coT(Ag + Aq), (2.23)

where ¢y = max(1, 4 ). In view of (1.3) we obtain,
t t
QE/ / VWOV (VW " (s))deds = 2C’O[E/ / VW™ (s)|2dads
o /D o /D

— 20,E / [V (5)]2 0, s
Substituting in (2.23) we obtain,

t
[E/ W”(vwf’"(x,t)>dx+[5/ | P div(VE™ (VW " ()72 pyds
D 0

t
FEIWE ™ Ol )+ 206E [ VW (5) 3 ds
0
which completes the proof of (2.9), (2.10) and (2.11). O

According to the a priori estimates, we see that the sequences are bounded.
Step 3: Passing to the limit. Consequently there exist a subsequence which we denote
again by W,"" and a function W, € L?(Q x (0,T); H') N L°°(0,T; L?(Q2 x D)) such
that

W™ —= W, weakly in L2(Q x (0,T); H*(D)) (2.24)
W™ — W, weakly star in L°°(0,7; L?(Q x D)) (2.25)
P, div(VE™ (VIWT"(s))) — & weakly in L2( x (0,T); L2(D)) (2.26)

as m,n — oo.
In addition, one can show the following result.

Lemma 2.3.

D Pu(Vhe)B(t) = Zf efy(t), in L=((0,T); L*( LA(D))).  (2.27)
=1
Proof. For all t € [0,T],
E[ SRt =3 Pu/Repp (o) do
D =1

=1

16



E/\Zfelm )= P/ Ne)By(t)
D =1

ﬁelﬁl ’
> VRt =3 Vhesi()
=1 =1
VReB() =3 P/ A5y (1) da

=1

2
=1

<a+b)2§2(az+b2)) S / \/Tlelﬁl Z elﬁl ‘
D

=1

‘Z\Fezﬂl f:Pm Ve Bi(t) ‘

=1

Ms

+
1=

= [

S~ -

I=m+1
m 2
+26 [ |3 1Pn(VAe) = Vel do
D =1
= Wy + W,

We deduce that W; — 0 in C([0,T]) as m — oo. For W,, by the properties of the
Brownian motion f;(t), (8;(t) ~ (0,t)), we have that

2/ [E‘ [P (VAer) — v)\lez]ﬁz@fdx
D
[P (v Arer) — Ve )P daE[BE(t)]

1
Ms
g\

=1
(Vargo=ts7=t) =2 [P/ Ne) = Vel 3e pt
=1
<27y P (Vhie) = Vel 3a by (2.28)
=1

In order to prove that the right-hand side of (2.28) tends to zero as m — oo, we use (2.5)
and (2.7) to deduce that

[P (VA1) — \/A»lel|‘%2(D)
[P (VA1) — \/)Tlel”%ﬁ(D) + 1P (V) = Vel 2 o

‘Pm(\/rlel \FQHL%D

Z 2|P (VA ez oy + 21V el 7z
I=K+1

IN

M= M= 1M L= I0e

1P (VAre) — v )\lez”iz(p) + 2| P, (VAe) oy + 2l Avel oy

I=K+1

o0
| P (VArer) = Ve |22 p) + Z 2”\/)\»&1”%11(1)) + 2V Nel3n
I=K+1

)
N
-
Il
I

17



IA
gl
v
=
3
5
|
>
o
TS
E
+
W

||v)\z€z||?p<p)

A+ >\1HV61“2L2(D)

oo
K oo

= Y IPa(VNe) = VaelZap 4 Y VAo + IV Nel R p)
=1 =K+
>

< P, +P,. (2.29)

€

Let € > 0 be arbitrary. We choose K such that P, < For a fixed K, we choose m

\]

sufficiently large such that P; < ; Therefore,

S IP. (Ve) — Ve py <€ (2.30)
=1

so that W, — 0 in C([0,T]) as m — oc. O

Let y be an arbitrary bounded random variable, and let ) be an arbitrary bounded
function on (0,7"). Next we multiply the equation (2.4) by the product yi), integrate on
D between 0 and T and take the expectation to obtain

T T t
[E/O /Dyw(t)WA’ w;drdt = [E/O yw(t){/o (P, (div[VU™ (VW ")), w,)ds i

T m
E [ O] Y PR b, dolar.

0 D=1

Passing to the limit when m,n — oo, using (2.24)-(2.26) and (2.27), and remembering
that the linear combinations of w; are dense in H (D), yields

[E/O /Dylb(t)WAﬂ)dxdt = [E/O yw(t){/o (P, w)ds}dt
T )
2 [ o[ YV Reosioids)e,
0 D

=1

for all @ € H'(D). Therefore, we deduce that

t oo
Wu(t) = / O(s)ds + Z Ve 8(t) on Qx(0,T)x D. (2.31)
0 1=1
We will prove below, using the monotonicity method, that
d = div(VU(VIV ).

2.3.2 Monotonicity argument

Step 1: Let w be such that w € L?(Qx (0,T); H* (D)) and let ¢ be a positive constant.
We define

T
0,,. = [E[ / e=es{2(P,, [div(VE (VW ™)] — P, [div(VE™ (V)] W™ — w)
0
— W — ]}

18



- J1+J2,

T
J = T / ee39(P,, [div(VU™ (V™))
0

T
Jy = —[E/ e S| Wit™ — w|?ds.
0

Step 2: We will check the following result

Lemma 2.4.
0] < 0.

mn

Proof. Using (2.8) and (1.3) we have that

T
J, = [E/ ee*2(P,, [div(VI™ (VIWT"™))] —
0

_ QE/OTGcs/DPm[div(VW(VWZ’”))]

VO™ (VWT™) —

Co VWL —

IN

and

T
Jy = —[E/ e Se|[Wit™ —w|?ds <0,
0

which complete the proof.

Step 3: We have to find the lim supO,,,

m,n—oo

We write O,,,,, in the form O,,,,, = OL

T
oL [E/ ¢ (2P, [div(VE™ (VW) W) — o mn
0]

w)|?dzds

T
— 2G,E / e VW™ w2, ds
0
0

n + 02, where

— P, [div(VI™(Vw))]|, W™ —w)ds

P, [div(VI™(Vw))|, W™ —w)ds
= P, [div(VU™ (V) (W™ — w)

VI (Vw)| V(W™ —w)dzds

2}ds (2.32)

and O?nn is defined by the difference. We apply It6’s formula Lemma 2 on (2.4) where

MW =3 P (v/Ayer) a5 (s) and hy =
=1

X(t) =Wy (x,t),

F(X,t) =

F, = —ce °t(X)2 =

Pm<\/)\lel) with

7ct(X>2 — 6fct(WX7»:n)2’
—ce’Ct(WAn’n)2,

F/ = 2e7°H(X) = 2e (W),

/A —ct
F7 =2e ¢,

9(s) = P, [div(VE™ (VW™ (2, 9)))],

19



we obtain

t t
W == e [t W s 42 [ e W, (VU (VW) ds
0 0
t m
- 2/ e W™ Y P (Ve dBy(s)ds
0 =1
m t
+ Z/ 2e <t P, (\/\e;)|%ds.

=170

DO =

After integrating over D, we obtain almost surely, for ¢ € [0, T,

T
/e‘CT(WE’n)Qd:): = —c/ e‘cs/(WE’n)th
D 0 D

T

+2 / ees / WP [div(VE (VW ™)) dadt
0

+2)° / /Wm”P (V/Ae;)dB; (s)dadt
1

e_CSZ/ P, (\/ e 2dxdt

1=1YD

T
+

or equivalently,

e TIWE  Neapy = e [ e IWET e pydt

/
r

+2)°

ecs/ W™ P, (v Ae)dB; (s)dxdt
=170 D

T m
4 / e S 1P (Ve 2 o
0 =1

l

S—
S

e—cs / WP [div(VER (VW) dedt
D

T

Taking the expectation, we have that
T
EleTIWR " ) = —cE [ e W Ryt
0

T
+2[E/ eCS/ WP [div(VO (VW ™)) dedt
D

m T
+2[EZ/ ecs/ WP, (VVAe)dB, (s)dadt

=170 D

T m
[ e S PR it (2.33)

0 =1

From the fact that

[EZ/ /W P (VAe)dB, (s)dzdt = 0,
=1 D

(2.33) becomes

T
Ele MW" (D32 p) = —c[E/ e IWL L oyt
0

20



T
+oF / ecs / WP [div(VER (VI dedt
0 D

T m
[ e S PR oy
0 =1

Substituting the above into (2.32) we find that

T
Ohn = E [ o (2P (VU (VWE ™)L WE ) = el W [
0
T
_ oF / o3 (P, [div(VE™ (V)] W™ dt
0
T
—C[E/ e’cs|\W21’nH2L2<D)dt
0
T
_ 2[5/ e3P, [div(VU™(TW ™)) W™t + Ele T [W ™2, )]
0
T
—2[E/ ecs/ WP [div(VE™ (VW) dadt
0 D
T m
= [ e S P (VA B it
0 =1
T m
= [E[e_CTHW,Z%n(T)”%Z(D)]_/ e_CSZ“Pm(\/ )\zez)HQL“z(D)dt'
=1

0

We have that
T m o)
A SUAETT A SNEY T AP R
1P, \/)‘»lel||2L2(D) - Z I \/rleluiz(p)

=1

NE

T
m — —cs
(SN NET I = ‘ / €
0 l

+ > IVl m) = DIVl Ze p)df
=1 =1
(triangle ineq.) T 9 m 2
R A Y vt R D e
0 l =1
T m [ee)
+| / e VN m) — Y IVl 2 oy
0 =1 =1

m m
S 1P VNl = 2 IV e |t
=1 =1
T m o)
+ / e °* Z v >\161H2L2(D) - Z v )\lez||2L2(D)‘dt
0 =1 =1

Il
—

NE

I
—

T
e ¢S

IA
S—

T m
< / e > IPav/ N2y — VA€l Z o |t
0 =1
T [ee)
L A D IVt P
0 l=m+1
o0 oo
(Hmel“iQ(D):Al> g TZ‘“Pm\/)‘»lelH%ﬁ(D)_”\/rlelniz(D)’"i‘T Z )‘l

l

Il
—

l=m+1
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IN

TZHPm\ﬁzez \FelHLz +T Z Al
=1 l=m+1
< €

which, in view of (2.30) and (1.5), tends to zero as m — oo. Thus,

T m T oo
i [ e P Ayt = [ SRl
1=1 0 =1

m— o0

Letting m and n tend to infinity in (2.34), we deduce that

1 1 — 3 —cT m,n
Jlm swpOl, = limsup [Ele T |WE (D) e )
T m
_ / == Hme/)\lelH%%D)dt]
0 =1
(ﬂ[ cT”WA(T)HL2(Dj]) = m’lrilrgoo sup {[E[Q*CT”WXL,TL( )”L2 D)}
T oo
- [ e WAl
0 =1
+E[eT W (T)||L2(D - [eicTHWA<T>”2L2(D)]
T oo
= Ele T IWA(D3:p) - /0 e’ ;Aldt +de=cT (2.34)
where
0= mljln_l)oo sup [E[”W,T’R(T)HZL%D)] - [EH|WA(T)H2L2(D)] > 0.
On the other hand, the equation (2.31) implies that a.s. in L?(D)
t t
W4 (%) :/ @(s)ds+/ dW(s), Vt € [0,T]. (2.35)
0 0

Next we recall a simplified form of the It6’s formula, which will suffice for our purpose.
We do so since the [t6’s formula given in Lemma 2.2 only applies to finite dimensional
problems.

Lemma 2.5. Let h be an L?(D) valued progressively measurable Bochner integrable pro-
cess. Consider the following well defined process :

X(t) = /t h(s)ds + W (t), t € [0,T].
0

Assume that a function F : [0,T] x L?(D) — R and its partial derivatives F,,F,, F,

are uniformly continuous on bounded subsets of [0,T] x L?(D), and that F(X (0) O) 0.
Then, a.s., for all t € [0,T],
t t
FOXW.0) = [ FUX(s),9)ds + [ (B (X(9)8), b)) g (2.30)
0 0

where



and

(w0) 2y = [ (o),

D

where we note that TrA = Z(Ael, €1)L2(p) is bounded linear operator on L?(D).
I=1

Applying Lemma 2.5 to (2.4) with

X - WA7
F(X,t) = e X |72 p) = e IWalzp),
Fy(X,t) = —ce™ “X“2L2(D) = —ce W4 “21:2(17)’

F (X, t) =26 X = 2e W,
F,(X,t)=2e°t],
h=0.

Substituting in (2.36), we take

t t
€7Ct||WA”%2<D) = / —C€Ct||WA”%2(D)dS+2/ €7Ct<q),WA>L2<D)dS
0 0

N | —

t t
—|—/ (267 W 4, dW (8)) 12(p) + /T?“[2eCtIQ]ds
0 0

t t
= —C/ €Ct”WA”%2(D)d$+2/ eiCt<q)7WA>L2(D)dS
0 0
t s}
+2 / e tW 4 Z Ve dB;(s)dzds
D 1=1

0

t oo
/Z<2€_CtQ€z,ez>L2(D)dS
0

=1

+

t t
—_— —C/ B_CtHWAH2L2(D)d8+2/ B_Ct<q>7WA>L2(D)dS
0] 0]

—1—22/;
>

1t
—l—/ 2e '\, ds
2 ) =

t
— _C/ eCt”WA”%Z(D)dS+2/ €7Ct<¢’WA>L2<D>dS
0

/ e MW o/ A e,dp, (s)dzds
D

t
s} t
—f—QZ/ /eCtWA\/A»leldﬁl(s)dmds
=170 “D
t oo
—|—/ e‘CtZ)\lds.
0

=1

After taking the expectation, we deduce that
t t .
Ele W aldpy) = —cE [ e Waldupyds + 26 [ et B W4 g ds
0 0
) t
+ 2[52/ / e W 4/ e,df, (s)dads
=170 YD
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From the fact that E

t oo
+ / et Z A ds.
0

=1

gk

t
/ / e W 4 \/Eeldﬁl(s)dxds =0, we take
0o /D

l

Il
—_

+ t
Ele [WalZ2p) = —C[E/ GCtHWA“2L2(D)d3+2[E/ e (&, Wa) 2(p)ds
0 0

t oo
+ / et Z)\lds,
0 1=1

which we combine with (2.34) to deduce that

lim

m,n—o0

o0

SO, = EleTIWA(T) 2 ) / o2 3 dyds + beeT

=1

T T
- —c[E/ VA ds+2[E/ €0 (8, W) 1o 1) ds
0
T oo
/ e Z Ads — / e N\ ds + de—cT
0 -1 0 1=1

T
= 2[E/ e s (B, W ,) L2( >ds—c[E/ ’CSHWAHLQ(D ds + de= T
0 0

(2.38)

N

It remains to compute the limit of O2, -

2
Omn

Omn - O1lnn

T
[E[/ e=es{2(P,, [div(VE™ (VI T™))] — P, [div(VE™(Vw))], W™ — w)}
0

T
W s pyds] ~E[ [ e 2P div(TUn (W) W)
0

—c||W1T’n

%2(D)}ds]
[E/OT ecs{Z/D (Pm[div(V\Il”(VWXL’”))]

—P, [div(vqfn(vu)))]) (W™ — w)dz}
_C(”WXL’TL %2(D) - 2<W£n’naw>L2(D) + ||w||2L2(D))

—{2/D AV (VI (VTP )IWT T da} + W2, ds

T
E / e {2 / P [div(VE™ (VW DIWET™ + Py [div(VE™ (V) ) Jw
0

— P, [div(VE™ (V)W — P, [div(VE™ (VW) |w
— P, [div(VE (VW)W day
— W3

T2(p) T 26(W3""™ w) L2 p) — clwl Tz py + WL "7 2 p)ds

/ ees (2 / V(Y (V)W £ P, [div(VE™ (Vi)
D

— P, [div(VU™ (VW ") Jwdx} 4 2¢(W "™ w) 2 p) — c]|wH2L2(D>ds
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T
_ / ees {—2(P,  [div(VO™ (Vw))], W™)
0

+2(P,, [div(V¥™(Vw))], w) — 2(P,, [div(VE™ (VW " ™))], w)
+2e(W)" "™ w) 12 p) — c|\w||2Lz(D)}ds.
In view of (2.24), (2.26), using (2.3) and (2.8) we deduce that
T
lim 032, = lim E e {—=2(P, [div(V¥™(Vw))], W, ")

m,n—o00 m,nTee
+2(P,, [div(V¥™ (Vw))], w)
—2(P,,, [div(VE™ (VW ™))], w)
+ QC(WXL’TL, w)LQ(D) - C“w”%,Z(D)ds}

T
_ lim [ ees{—2 / P, [div(VE™ (Vo)W ™" dr
D

m,n—o0 0

+2 / P [div(VE™ (Vo)) |wdz
D

_2/ P, [div(VI™ (VW3 ™))wdz
D

+ 2c(W5™, W) r2(py — CHwH2L2(D)}d3
(2.8)

T
— lim E 668{2/ VU™ (Vw)VW " dx
0 D

m,n—oo
_2/ VU™ (Vw)Vwdz
D
) / P, [div(Ve™ (VW) ]wda
D
+2(Wi"" w) pap) — clwlLs p) }ds
(int. Barts) T

— lim E ecs{—2/ div(VU™(Vw))W " da
D

m,n—oo o
+9 / div(VE" (Vo) Jwda
D
_2/ P, [div(VI™ (VW ™) wdz
D
+2(Wi" w) pap) — clwls p) }ds
T
- / ecs (=2 / div(VU(Vw)W 4 da
0 D
+2/ div(V\I’(Vw))wd:c—Q/ dwdz
D D
+2e(Wy, w) p2(p) = clwlgz ) ds
T
o / = {—2(div(VT(Vw)), W)
0

+2(div(V¥(Vw)), w) — 2(&, w)
+26(Wa, w) p2(p) = e|wl gz ) ds

T
- E / e~ {=2(div(VI¥(Vw)), W)
0
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—2(® — div(VE¥(Vw)), w)

+2¢(W4,w) £2(p) —CHwH%Q(D)}dS. (2.39)
Combining (2.38) and (2.39), we obtain
lim O,,, = lim Ol + lim O3,
m,n—oo m,n—oo m,n—oo

T T
= 2[E[/O e (D, W, )ds| — c[E[/O e oW 4 ||%2(D>d8] + de=eT
T T
—2[E[/ e (div(V¥(Vw)), W 4 )ds| — c[E[/ e‘CSHw|\2L2<D)ds]
o ) 0
o] / e (B — div(VU(Vaw)), w)ds] + 2¢E[(W 4, w)ds]
b \
= 2[E[/ e_cs/ OW 4dxds]) — C[E[/ e_cs||WA||%2(D)d8] + de—cT
0 D 0
T T
o / e / div(VU (V)W ydads] — cE| / e ]2, ]
0 D 0
T ~
—2[E[/ e ¢ / (¢ —div(V¥(Vw)))wdxds] + ZC[E[/ W qwdzds]
0 D D
T ~
= of] / eee / (B — div(VU(Vw)))W 4 dads]
0 D
T ~
2[E[/ e °® / (® — div(V¥(Vw)))wdzds]
0 D
T
— c[E[/O e (IWalZz2p) — 2/D W wdz + |w]7 2 p))ds] + de="
T ~
= 2[E[/ e s / (® — div(V¥(Vw))) (W, — w)dxds]
0 D
T
—CE[/O e Wy — w|\2LQ<D)dS] + de—¢T

- / g / (& — div(VI(V))) (W, — w)daz
0 D
—c|[W4 — w||%2(D)]d8 + de—cT
= E /T e [2(® — div(VU(Vw)), W, — w)
0
—c|[W, — w||%2(D)]ds + de—<T.
Remembering that O,,,,, <0, yields
[E/T e [2(® — div(VE(Vw)), Wy —w) — ¢|[W 4 — w|3, plds +deT <0.
0
Since § > 0, it follows from that
[E/Te—cs[z@ — AV (VI(VW)), Wa — ) — e[ Wa — w2 Jds < 0.
0
Step 4: Let o € L2(Q x (0,T); H*(D)) be arbitrary and set
w=MW, — A0, with A e R,.

26



Substituting in above inequality, we see that
T ~
[E/ e % [2(P — div(V¥(VIW 4 — A1), \D) — c||)\17||2L2<D)]ds <0.
0
Dividing by A, we find that

1 T o
<)\)[E/ e~ [2(B — div(TU(TW 4 — AB)), AF) — elAT2 o Jds < 0 =
0

T
[E/ e [2(® — div(VU(VW 4 — \D)), 0) — c)\Hﬂ|\2L2<D)]ds <0
0
Letting X tend to zero, we have that
T ~
[E/ e=es (& — div(VU(VIV ), 5)ds < 0.
0
Since v is arbitrary, it follows that
T ~
[E/ (P —div(V¥(VIW,)),0)ds =0
0
T T
[E/ (@, Byds = [E/ (div(VE(VIV ), §)ds,
0 0

for all o € L?(Q x (0,T); H* (D)), that is
$ = div(VE(VW,)) (2.40)

a.s. a.e. in D x (0,7). One finally concludes that W, satisfies Definition 2.1 .
Next, we prove below the boundedness of W, in L°°(0,T; L1(Q2 x D)), for all ¢ > 2.

Theorem 2.2. Let W 4 be a solution of Problem (P;); then W, € L*°(0,T; L4(Q2 x D)),
for all g > 2.

Proof. For each positive constant k, denote by ®,, : R — R the function

o, (e — dIE% if |¢] < k,
k 2(q— kT 262 —q(q— k9 e+ (§ — (g — Dk, if k< ¢].

®,, is convex C? function and @, is a Lipschitz-continuous function with ®7 (0) = 0. The
9
function @, satisfies the inequalities 0 < @/ (£) < c(k)€ and 0 < &, (¢) = / P7.(¢)d¢ <

0
c(2k)§2 for all £ € RT. This yields in view of Definition 2.1 (i) that,

[E/D O, (Wy(x,t))de < C<2]€)[E/D W3 (z,t)dz < (k) for a.e t € [0,T).

Lemma 2.6. (i) One has 0 < /(&) < ¢, for all £ € R where ¢, is a positive constant

depending on k.
(i) One has 0 < O(€) < qlg —1)(1 + (€)), for all € € R,
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Proof. (i) For each positive constant k, denote by ®, : R — R the function

a if k
2, (6) — {Iﬁ, if [¢] <,

$(q— k97262 —q(q—2)kT e+ (§ — V(g — DK, if k<[],

The first derivative of function is

-t if k
o/ (¢) — qlglr, i €| < k,
q(q—1)kT2¢ — q(q— 2)kT 1, if k<€,
and the second derivative is
q)/k/(é-) _ Q<q )|§|7 1 \5\ <K,
q(g —1)kT2, if k<¢,

o if [§] <k = @L(E) < (g — 1E,
o ifk<E= @6 = qlg— DR
Thus,
i (6) = qlg— kT2 =i ¢,

(id) if [§] < k, ®7(&) = q(q — 1)IE]7 2,
e 1€l <k, |72 < [€]7 we have
Oy (&) = qlg—1)[]*? < qlg — DIE]? < q(g = 1)@, (&) < qlg — (1 + 1 (€)).
« 0 <6 <1, [€]7<[¢]72 < 1 them |¢]72 < 1 +|¢]4, we have
Oy =qlq—1)[[T2 < qlg— 1)1+ [¢]7) = q(g — 1)(1 + D4 (€)).
If |¢] > k, ®7(¢) = q(q— 1)k972 the problem then reduces to prove that
H(E) = 1+ Z(g— Dk 2¢% —qlq = k91| + (5 — D)(g — Dk? = k72 > 0,

Let us consider the function H(§) = F(&)+G where F(§) = 4(q—1)k9722—q(q—2)k971[¢]
and G = (§ —1)(¢— 1)k — k72 + 1.

o if >k H () =F' (&) >0and H(k) <0 for all k> 0, thus H(¢) > H(k) > 0 for
all € > k.

o if £ < —k then H(—¢) = F(—¢£) + G > 0. Therefore

H(§) > H(=€) > 0.

O]

Next we apply Lemma 2.5 to (2.1), supposing that F' does not depend on time, i.e.,
F,(X(t),t) = 0, and setting



F7(X(t) = ©p(X(t) = 2 (Wa(t)),

/ 3 (Wa)de =
D

(Qel:)‘el)

(int. by parts)

<

([, (er)?dz=]e,[?)

[ @A) div AW A (5)) 2 s
0

4 [ LW A AW (5)) oy
0

_|_

D1 (W 4 (s))dW (s)dxds

0 D
1 oo t
43> Mealie [ [ @vae)deds  (2a)
0 D

=1

From the coercivity property (1.3) and from (1.6) it results

t
/@k(WA(t))dx < —CO/ /(I)’,;(WA)WWAPda:ds (from (1.3))
D 0 YD

+ /0 t /D B (W 4 ())dW (s)dads

1 t
+2A1/ /(I)’,;(WA(s))d:cds (from (1.6))
0 YD

t
Taking the expectation, we deduce from the fact that [E/ / ®1 (W4 )dW (s) = 0, that
o /D

t 1 t
[E/ O, (W4 (t)da < —C’O[E/ /@%(WA)WWAy?dxderzAl[E/ /@g(WA(s))dxds.
D 0 D 0 D

Using the fact that <I>/k/ > 0, we obtain

[E/D@k(WA(t))da:S ;Al[/o /D®Z<WA<3)>dxd5-
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1
Then using Lemma 2.6 (ii) we obtain, defining C'(q) = iq(q —1),

[E/DQk(WA(t))d:v < ;Al[E/Ot/Dq>g(WA<s>)d:cds
T e t [ o= 10+ 00 )
| t [+ sz
< Ol /O /D \dads + /0 /D B, (W 4 (s)))dwds]
< clomenpl+ [ [ owae)dsas
< C(q)A1t|D\+C(q)A1[E/Ot/chk(WA(s)))dxds.

Using Gronwall’s Lemma B.1, with u(t) = [E/ O, (W4 (t))dx, a(t) = C(q)At|D|, B(s) =
D
C(q)A,, we obtain

[E/ B (Wa(t))de < C(g)Ayt|D]eh C@rids
D

= Olg)Ay1|DJeC @ b e
= C(q)At|D|eC @Mt
Thus, [E/ ®, (W 4)dz is bounded independently of k.

D
Finally, since @, (W 4(x,t)) converges to |W (x,t)|? for a.e. z and ¢ when k goes to
infinity, if follows from Fatou’s Lemma that

[E/ |W 4 (x,t)|9dx = [E/ lim &, (W4 (x,t))dx
D D

k—oo

= [E/ lim inf @, (W4 (z,t))dx
D

k—oo

(Fatou’s Lemma)

< lim inf [E/ O, (Wy(x,t))de
D

k—o0
< C(q)Ayt|D]eC @At
for all t > 0. Therefore, W, € L>°(0,T,L%(Q2 x D)) for all ¢ > 2. O

2.4 Uniqueness of the solution W,

Let w be given such that two pathwise solutions of Problem (P,), W} = W} (w,z,t) and
W2 = W3 (w,x,t) satisfy

u; (-, w) € L=(0,T; L2(D)) N L?(0,T; HY(D)),
div(A(V(u; + W) € L2((0,T); L2(D))

for ¢ = 1,2. The difference of the two solutions satisfies the equation

Wi w2 — /O div( AV (s)))ds + W (t) — /O div(A(YIV2 (s)))ds — W(¢)
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t
= / div{A(VW(s)) — A(VW?2(s))}ds
0
in L2((0,T) x D). We take the duality product of this equation with W} — W3 €
L2((0,T); HX(D)). In view of (1.3) we obtain
Wi_Wiaw,}x_Wiﬁ?(D) =
(W —

f

div{A(VW}(s)) — A(VW3 (s)}(WE — W)dsdw " 22"

/

[
/D/ (YWh(s)) — A(VW2(s))]V(WL — W2)dsdz <

t
~Co [ I9Wh = W) pyds
0
Which in turn implies that
Wi — WA|\L2<D < 0.

Nevertheless
W4 — W32 ) > 0.

Therefore
W4 —WilZ2p) = 0

or equivalently
Wh=W3 aein D x (0,T).

2.5 Change of functions

To begin with, we perform the change of functions

u(t) = p(t) = Wa(t);

then ¢ is a solution of (P) if and only if u satisfies:

% = div(A(V(u+Wa)) = A(VWa)) + flu+Wa)

<P2>< |D‘/fu+WA)d$ fL’ED,tZO,
AV(u+Wy)) -v=0, z € 0D,t >0,
\u(m,()) = @O(x)a rzeD.

Remark. The problem (P,) has the form of deterministic problem; however it is stochastic
since the random function W, appears in the parabolic equation for w.

Definition 2.2. We say that u is a solution of Problem (Py) if :
(i) we L>°(0,T; L?(Q x D)) N L2(Q x (0,T); HY(D)) N L?P(Q x (0,T) x D);
(i) div[A(V(u+W,))] € L*(Q x (0,T); H (D)’);

(7ii) w satisfies almost surely the problem : for allt € [0,T)
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t

u(t) = o + / div[A(V(u+Wy,)) — A(VW 4)]ds + / flu+Wy)ds
0

/ ID| / fu+Wy)dzds, in the sense of distributions, (2.42)

AV(u+Wy,))-v=0, in the sense of distributions on 0D x R™.

In order to check the conservation of mass property, namely that
/ u(z,t)dx :/ podz, a.s. for a.e. t € RT,
D D

we recall that Z* = V* + L%(D) and take the duality product of (2.2) with 1 for a.e. ¢
and w.

2.6 Existence of the solution of Problem (P,)

In this section we apply the Galerkin method to prove the existence of a solution of
Problem (P5).
The main result is the following

Theorem 2.3. There exists a unique solution of Problem (P,).

Proof. Step 1: Solution of the approzimate problem. We select a sequence of w;,, k=0, ...,
constituting an orthonormal basis of L?(D),w,, are the eigenfunctions correspond to the
eigenvalues 0 < v; <75 < ... <3 < ... of the operator —A. Note that they are smooth
functions.

Lemma 2.7. The functions {w;} are an orthonormal basis of L*(D) and satisfy :

1
/ w;wodx =0, for all j # 0 and wy = ——.
D D

Proof. We check below that / w;(v)dz = 0 for all j # 0. We have

D
—Aw; = yw; inD
aau;j =0 on OD.

Integration over D and using Green’s theorem, we take

/ wjdx = —i Aw j dzx
D 75 Jp
1 3wj
= —— —=dz (Green’s theorem)
i Joap YV
= 0, (from boundary conditions) (2.43)

which implies that / wwodr = 0 for all j #+ 0. Moreover, it is standard that the
D
eigenfunctions corresponding to different eigenvalues are orthogonal. O
We look for an approximate solution of the form
m m
U, (xa t) —M= Z uzm(t)wz = Z(um (t>a wi>wi7
i=1 i=1
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where M = ﬁ / ¢o(z)dz. Multiplying (P,) with w, and integrate over D, we obtain
D

/D gt(um(x,t) — M)w;dx = /D [div(A(V(u,,, — M +Wy,)) —A(VW,))
0+ W) = 17 [ F W)
= / div(A(V (u,, — M +Wy)) — AVW 4))w;da
D

+/Df(um+WA)fwjd:c

_’ll)‘/p(/p f (U, + Wy )dx)w;dx

(e by pos) / (A(V (1, — M +W4)) — AVW 5)|Vrda
D
+/ f(ty, +Wyw,dx
D
1
—/ (/ [y, + Wa)do)w;ds (2.44)
1Dl b Jp
for all w;, j =1,...,m. We remark that u,, (z,0) = M+Z(g00, w,; )w, converges strongly
i=1

to ¢g in L2(D) as m — oc.

Problem (2.44) is an initial value problem for a system of m ordinary differential
equations with the unknown functions u,,, (t),7 = 1, ..., m so that it has a unique solution
u,,, on some interval (0,7,,),T,, > 0; in fact the following a priori estimates show that
this solution is global in time.

First we remark that the contribution of the nonlocal term vanishes. Indeed for all j =

1,...,m

- /D ( /D Flus Wa®)de)ugdy = /D Flu+ Wa(0)ds) /D wyiy)
~ 0.
Therefore (2.44) reduces to the equation:
/D gt(um(a:,t) — M)w;dx = —/D[A(V(um — M+ W,))— A(VW,4)|Vw;dx
+ | (U + Wy)w;dz. (2.45)

We multiply (2.45) by u,,, = u;,,(t) and add these relations for j =1,...,m

Z/gt<um<$at)—M)ujm<t)wjdx =
D



We have denoted Z U w dx = u,,, — M, so it results

Jj=1

x

/ g(um(l‘,t) — M)(u,,, — M)dz
D

[AV(u—M+W,))—AVW )]V (u,, — M)dz

+ | flu,, + Wy)(u,, — M)dz. (2.46)

S—5

Integrating the first term, we take

R V= M+ Wa)) = AW )]V (u,, — M)da
D

-
+/Df o W) (u,, — M)dz.

Next we apply the monotonicity property of A (1.3) to bound the generalized Laplacian
term, which yields

1 d
Td [ M)2de < co/ V(u,, — M)[2dz
2di ), A

+/ f(uy, + Wa)lu,, — M)dz. (2.47)

Using the property (F;) we deduce that

I

/fmm+WMWWm—MM$

Fy

[y, — M+ M+ W4 (1) (u,, —M)dz

IN

L
| =l = M) 4 £y (O + W (2))da
D
/ —C (U, — M)?P + Co[(M + W4y (1))?P + 1dz =
D
/ —C4 (u,, — M)?Pdx +/ Col(M + W 4(1))?P + 1]dx.
D D
By identity |[M + W 4|?P < C(|M|?P + |W 4|?P)), the last term above becomes
[ Gl 4+ W)+ 1lde < [ GlOOPP + WA + Uda.
D D
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So we take

/ F ity + WA () (1, — M)d
D

IA

/ —C4(u,, — M)?Pdx
D

/ CLIC(M2P 4 [W 4 (8)[2P) + 1)da
D

+

I
g—

—Cl(um—M)2pdx+/ CyC|W 4 (t)|?Pdx
D

+ / ColCM?P + 1)da
D

I
5—

—Cl(um—M)de:c+/ CoC|W 4 (1)|?Pdx
D

+Cy|[CM3P + 1]/ ldx
D

= /Cl —M 2pd$+02/ |WA(t)|2pde
+Co(M)| D]

where we have set Cp = C,C, Cy(M) = Co[CM2P +1]. We substitute in (2.47) to obtain

Ld (um—M)2da;+CO/ \V(um—M)Ide—i-Cl/(um—M)dew

2dt ), A A

gcg/ W, (8)[2Pdz + Gy (M)| D). (2.48)
D

2.6.1 A priori estimates

Step 2: A priori estimates for u,, . In what follows, we derive a priori estimates for
the function w,,,. With these estimates we show later that there is a subsequence of our
solutions wu,,, of the approximate problems (2.44) which converges to a weak solution of

(Py).

Lemma 2.8. There exists a positive constant C such that

sup [E/( — M)3dx < C, (2.49)
tel0, T
/ /|v M)|2dzdt < C, (2.50)
[E/ /(um M)?Pdxdt < O, (2.51)
0] D
T
[E/ /(f( + M) % Tdadt < C, (2.52)
0] D
T 2
3 / QAT (s + W2 ) < C. (2.53)
0

Proof. To prove the first three a priori estimates we integrate (2.48) from 0 to ¢

t
/ (5% / (, — M)?da + C / IV (1, — M)[2dz+ Cy / (1, = M)?Pdz)ds <
0 D D

D

/Ot (CQ/D|WA(t)‘2pd$+C~2(M)|D>dS -
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S

r

DN

t
/(um—M)Qda:ds—l—CO/ /\V(um—M)Pdacds
D o /D
t

IN

+C, /(um—M)demls
o /D

t t
02/ /|WA(t)\2pda:ds+/ G, (M)|D|ds =
0 D 0

3 =302l +Co [ [ 1900, =20 2aaas

D

t
+Cl/ /(um—M)2pda:ds
o /D

t t
02/ /|WA(t)\2pdxds+/ G, (M)|D|ds =
0 D 0

/D(um—M)2(t)d:1:—i—C’O /Ot/D|V(um—M)|2dxds+Cl /Ot/D(um—M)2pda:ds

;/D(um(O)—M)2dx+C2/O /D|WA(t)y2pda;ds+62(M)\D|t.

IN

N
IN

Taking the expectation we deduce that for all ¢ € [0, T]

;[E/( — M)2(t)dz + CyE //|V M)|?dxds
+C,E / / M)?Pdzds

t
< [E/(um(O)—M)Qd:c—i—CQ[E/ /\WA(t)dea;ds—ir[E[CZ(M)|D]t]
2 D 0 D
1 ¢ -
< /(um(O)—M)2d:c+02[E/ /]WA(t)|2pdxds+C'2(M)]D\T
2 D 0 D
1 5 ¢ ~
1 ~
< g luo— M||L2(D + Cyck[t] + Co(M)|D|T
1 ~
< gluo— M||L2(D + CocT + Cy(M)|DIT
1 ~
= 5 luo— M||L2(D + T + Co(M)|D|T
< K

where we have used (2.2), namely W, € L°°(0,7; L4(Q2x D)) and set ¢ = / |W 4 (t)|?Pdx
D
= |[W4( )Hsz y and ¢y = Cye. We deduce that :

1
[E/ (w, — M2()de < K = [E/ (u,, — M)2(t)dz < 2K,
2 D D

for all t € [0,T],

T T K
C’O[E/ / |V (u,, —M)]?deds < K = [E/ / |V (u,, —M)|?drds < —,
o 'D o Jp Co

’ T K
C’l[E/ / (u,, — M)?Pdrds < K = [E/ / (u,, — M)?*Pdrds < —.
o “p o “p 1
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Therefore u,,, is bounded independently of m in
L>°(0,T,L?*(Q x D))NL2(Q x (0,T); HX(D)) N L?P(Q x (0,T) x D)).

Now we prove the other two estimates. Using the property (F5) we deduce that

Elf(w, +WA)HQPI =
1((0,T)xD)

(F3)
//|f AW dedt <

(triangle ineq.)

T
[E/ /[Cswum+WA—Ml2p‘1+03<M)]25"1d:cdt <
0 D

T
[E/ /[Cs(lum — M|+ |W4|)2P~1 + Cy(M)] 257 dadt.
0 D

Using the inequality |a +b|?P < C(|a|?P + |b|?P), with a = C5(|u,,, — M|+ |W 4])?P~1

b= C’~3(M), we obtain

T
E [ [ (Callug, =M+ [Wal)2r o+ Gya) 5 dadt
0 D
2p T 2p T ~ 2p
2%11[/ /[03(|um—M|+|WA|>2p1]zp1dxdt+[g/ /CB(M)QPId:ndt.
0 D 0 D
_2p ~ ~ 2P
Setting Cy = C37 " and C5 = C3 ™" ' (M), we take
2 T 2 T ~ 2
22J11[E/ /[03(|um—M|+WA|)2p1]2ppldxdt+[E/ /03(M T ddt
0 D 0 D

)

2 T 2 ~ T
22#’1-15/ /05[<um—My+|WAy)2p—1]2p‘dedt+c5[E/ /dxdt
0 D 0 D

T
2%1[/ / Csl(lty, — M|+ W4 |)2P V)55 dadt + | DIT.
D

Using again the inequality |a + b|?P < C(|a|?P +|b]2%), with a = |u,,, — M| and b = |W 4|,

we obtain

T
22?11{/ / Cs ([, — M| + [W4)2P |51 dadt + C5|DIT <

T
275 [ [ Cle(huy, — M WP dadt + G|DIT <

T
2%’%%/ /050%"%[|um—M2p1+|WA|2P1]%’%dxdt+c5|D|T.
0 D
Setting c5 = 2%71050%, we take
2p 1 2p T 2p ~
a 050”‘1[/ / ([t — M|2P1 4 [Wo[?P 1|51 dedt + Cs|DIT <
0 D
T 2 .
[E/ /Hum—M\Q”_l—i— W4 20175 dadt + Cs | D|T.
0 D
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Using again the inequality |a + b|?P? < C(|a|?P + [b|?Y), with a = lu,, — M[??~1 and
b=|W4|?P~!, we obtain

T
s [ [ (g = M 4 WA PP dudt + ColDIT <
o /D
T 2 T 2 ~
CS[E/ /Hum—M|2p_1]2ppld:1:dt+cg[E/ /[|WA]2P—1]2PP1dxdt+C’5]D|T _
o /D o /D
T T .
03[E/ / |um—M|2pd:1:dt+c3[E/ / |W 4 |?Pdadt + C5|D|IT <
o /D o /D
K,
by (2.51) and (2.2), with c¢5 a positive constant. Then we have show that
ENf (w, +WA>“2PI < K.
1((0,T)xD)
Finally we show that the elliptic term is bounded in (H(D))’. We have that
T 2
[ AT G+ WDt =
T
EfC AT, - W) o) =
ve HY, vl <1
T . 2 (int. by parts)
E sup | [ div(A(V(u,, +W4)))vdx|)*dt =
0 UGH vl <1
T
[E/ sup |—/ A(V(u,, + W4))Vodz|)2dt <
0 veHL vl <1
T (Holder ineq.)
[E/ sup / |A(V(u,,, + W 4))Vo|dz)2dt <
0 wveH! v, <1
T
E[ 0 s ([ AT+ W) ) / Vol2dr)tde <
0o veH!,|v| <1 Jp D
T (p |Vv|2dx<1)
[E/ sup / |A(V —l—WA))Pda:/ |Vou|?dz)dt <
0 veH! |l <1 D
T
[E/ / AV (u,y, + W4))[2da. (2.54)
o /D

Next we use (1.2) and (1.1) to estimate the term on the right-hand-side of (2.54)

T (1.2)
£/ [ 1AV, + WP S
0 D
T (Ja+b2<2(|al2+[b]2)
C[E/ /\V(um+wA)|2dxdt <
0 D
T T
20([5/ /|Vum\2dxdt+[E/ /|VWA|2d:z:dt) <
0 D 0 D
K.

The last line follows from the a priori estimates and the regularity of the solution of
Problem (P;). O
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We showed the a priori estimates, namely we proved that the sequences are bounded
at the respective functional spaces.

Step 3: Passing to the limit. Hence there exist a subsequence which we denote
again by {u,, — M} and a function u — M € L?(2 x (0,7); V) N L?P(Q x (0,T) x D) N
L°°(0,T; L?(Q x D)) such that

Uy, —M — u—M weakly in L2(Q x (0,T);V) (2.55)
and L?P(Q x (0,T) x D)

Uy — M — u—M  weakly star in L°°(0,T; L%(2 x D)) (2.56)

Flu, +Wa) — x weakly in L7 (Q x (0,T) x D) (2.57)

div(A(V(u,, + Wy,))) — @ weakly in L2(Q x (0,T); (H)) (2.58)

as m — oo.
Next, we pass to the limit as m — oco. To that purpose we integrate in time the equation
(2.45) to obtain

¢ 0
—(u,, (x,t) — Mw.dxds =
| ] gtenten =2,
—/ /[A(V(um—M+WA>)—A<VWA)ijdxds+/ /f(um—i—WA)wjda: N
0 D 0 D
[ () = My, = (1 0) = Ml =
D
/(div[A(V(um—M—l—WA))—A(VWA)],wj)ds+ /f(um—i—WA)wjdx =
0 0 D
/(um(az,t)—M)wjdx =
D
/(um(O)—M)wjd:z:+/ (div[A(V (ty, = M +Wy)) — A(VIW4)],w,)ds
D 0

t
_|_/0 /ljf(um+WA)wjda:ds, (2.59)

forall j=1,...,m.

Let y = y(w) be an arbitrary bounded random variable, and let ¢ be an arbitrary bounded
function on (0,7"). We multiply the equation (2.59) by the product y, integrate between
0 and T and take the expectation to deduce

[E/O /Dy¢(t)(um(x,t)M)wjdxdt
T
= [ u, (0) — M)w.dxd
/0 /Dy¢<t><m<> Jwjdrdt
T t
HE [ O [ in{A(T (g, = M+ W) = AV )] ;) s
0 0
T t
E U W w.dxdstd
+/wa<t>{/0/Df<m+ Aw;deds)dt
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E /0 ! / yn (0) — Mw,dzdt

E (div]A(V(u,,, — M +Wy))],w,)}dsdt
+/wa/ AV (yy — M+ Wa)) )}
T
—F dw VW Nldsd
/wa {/ ) w;) st

+[E/0Ty¢ {/ /f m + Wa)w;dwds}dt (2.60)

forall j=1,...,m

Next we pass to the limit in (2.60). We will use the Lebesgue-dominated convergence
theorem, so we have to prove at first that every term in (2.60) is bounded. First we
give the proof of convergence for the last term , using the a priori estimates and Hoélder
inequality. For boundedness we have

‘[E(yw(t) /Ot/Df(um—i-WA)wjdxds)‘
= ‘w(t)u;(y/ot/Df(um+WA)wjdxd8>‘

t
< [Ey]Hw(t)‘[E/ / fluy, +WA)wjdxds|
o /b
t
< Wl WOl o E [ [ [F + Wadugfasds
o /b
(Hélder ineq.)
< H?JHLoo(Q) @)l Lo o, 1)

(" [t waraans) ™ (€ [ [ o raans) ™.

t
Using (2.52) and [E/ / lw;|*Pdzds < C we have that
o /p

E(y / [t Wautsds)| <l 0],

t
This shows that ’¢(t)[E<y/ / flu,, +WA)wjd$ds) ’ is uniformly bounded by a function
o /D

belonging to L'(0,7T). In addition using (2.57) we have that

wt)[E<y/0t/Df(um+WA)wjdxds> = ¢(t)[E(y/Ot/Dijdxds)

for a.e. t € (0,T). Applying Lebesgue-dominated convergence theorem we deduce that:

(Lebesgue dom. theorem)
lim / b(t) / / Fluy, + W w dxds)dt <
m— o0

lim (1) / /f +WAwda:ds>dt -

T
Y(t)E y/ /ijdxds dt =
0 o /D

0



E/OTyz/J(t)</0t/wajdxds>dt.

We perform a similar proof for the three first terms in (2.60), we show first that every
term is uniformly bounded by a function belonging to L'(0,7") and then we pass to the
limit by using Lebesgue-dominated convergence theorem. For the first term of (2.60) we
have

‘[E/ yib(t)(u,, — M)wjda:dt‘
D

<yl MOIE / | Vs = M0y

(Hfjlder ineq.) 9 % t 5
< Wl gy WO 0,70 / / u ~ MPdwds) " (€ [ [ Ju,[dads)
0 D

(2.49)

< Wl gy 1O e

=

C
Using (2.56) and Lebesgue-dominated convergence theorem we have

(Lebesgue dom. theorem)

lim E / ’ / yp(t) (utyy — Muw,dxdt o

m— 00
/ / lim yi(t) — M)w;dxdt =
m— o0

3 /0 /D y(t) (u — M)uw sdadt.

‘[E /D yz/J(t)(um(O)—M)wjda:dt‘

For the second term

< Wl FOOIE [ [ 1 (0) = My dds
0 D

(Holder ineq.)

< ol g 1O 0,
t
[E/ /|um( M|2dxds / /|w |2dxds
o /b
(2.49) _
< 19 e () 1O e 0, C

Using (2.56) and Lebesgue-dominated convergence theorem we have

T sgue om. eorem
lim E / / Y (1 (0) — Mywdadp 5 2 )

m— o0
/ / W%me Y (t) (U, (0) — M)w ;dzdt =

/ / y(t) M)w;dzdt.

‘[E(yw(t) /Ot<div[A(V(um — M+ W), wj>dsdt>‘

For the third term
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< Wl HOOIE [ [ IVACT (4 W)y dads
0 D

(Hélder ineq.>
<" ol g 19 0,1,
t 1 t 1
.([E/ /|div[A(V(um+WA))|2d3:ds)2<[E/ /]ijQd:xds)z
0 D 0 D
(2.53)
<

Using (2.57) and Lebesgue-dominated convergence theorem we have

Lebesgue dom. theorem)

. r L (
lim [E/O yzp(t){/o (V[ A(Y (1, — M + W )], w,)ds}dt o

m— o0

T t
3 / im_ gt / (AVIA(Y (1, + W a))], w,)ds}dt

g on / (@, wjds)t.

This yields
T T
E u(t) — M)w.dxdt = E — M)w.dxd
/0 /Dyw)( (t) — M)w,dadt / /Dywa)wo Jw,dadt
+ [E/ yw(t){/ (®,w;)ds}dt
0 0
T t
— £ div[A(VW 4 )], w;)ds}d
/wa<t>{/0< ACTW 0], w;)dsdt
E t w.dxdstdt
T /OW(){/O/D“ )
T
= [E — M)w.dxd
/0 /D y() (0 — M)w,dadt
+ [E/ yz/)(t){/ (@ — div[A(VIW 4),w,;)ds}dt
0 0

+ [E/OTyw(t){/Ot/D)gwjda:ds}dt, (2.61)

forall j =1,...,m. We remark that the linear combinations of w; are dense in VNL?P(D),
so that

E /O . /D yb(t)(u(t) — M)ibdedt = E /0 ’ /D yib(t)(po — M)ivdadt

T t
+OE /O ()] /O (@ — div[A(VIV ), @) ds}dt

+ E /O Tyw(t){ /0 t /D Y@dzds}dt

or equivalently

T T
£ / yb){u(t) — M, @dt = E / yb() (o — M, @)dt
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T t
n Eé Wﬁﬂé<¢+x—ﬁWMVW%L®Mﬂﬁ,

for all @ € V N L2P(D),y € L°°(Q) and ¢ € L°°(0,T). This implies that for a.e (t,w) €
(0,7) x Q

(u(t) — M, o) = (chM,ﬁ)>+/ (P + x —div(A(VW4)), Ww)ds (2.62)
0

for all @ € V N L?P(D).
Lemma 2.9. The function u is such that u € C([0,T]; L?(D)) a.s.

Proof.
Z CHCZ.

Since u — M € L2(0,T; Z) a.s and 4 € L2(0,T;V*) + L*(0,T; L= (D)) = L2(0,T; Z*)
a.s it follows (by applying Lemma 1.2 p.260 in [12]) that u — M € C(0,T; H) a.s. O

It remains to prove that:
(@ + x, @) = (div(A(V(u+WyL))) + flu+W4(t), @), forall eV nNL2P(D).
We do so by means of the monotonicity method.

2.6.2 Monotonicity argument

Step 1: Let w be such that w— M € L2(Q x (0,T); V)N L?P(Q x D x (0,T)) and let
¢ be a positive constant which will be fixed later. We define

T
0,, = [E[/ e {2(div(A(V(u,, — M +W,)) — AVIW,))
0

— div(A(V(w—=M+W,)) = AVW4)), Uy, — M — (w—M)) 7. 5
2 f gy + W) = F(w0+ Wa),thy — M~ (0= M)) 5.
— el — M~ (0= M)[2, , Y]

=Ji+Jy+J; (*)
where
T
J, = [E/ 5 {2(div(A(V (u,,, — M +W4)))
0
— div(A(V(w =M +Wyu))),u,, — M — (w— M)) 5. z}dt,
T
Ty = B[ 2 + Wa) = ot W)ty = w) 5, )t
0
and

T
_ 2
= [E/ e ot (e, —wl, , Y.
0

Step 2: We prove below the following result

Lemma 2.10.

0,, <0.

m
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Proof. First we estimate J; and apply (1.3)

T
5, = F / e {2(div(A(V (u,, — M +W 1))
0
— div(A(V(w =M +Wy4))),u,, — M — (w— M)) 5. z}dt
_ 2[5/ / (div(A MWL)

— div(A(V(w— M + W )] (u,,, — M — (w— M))dzdt

T
= 2[/ e‘cs/ div(A(V(u,,, — M + W) (u,, — M — (w—M))
0 D
— div(A(V(w— M+ Wy)))(u,, — M — (w— M))dzdt

(int. by parts)

by 2[E/0TeCS[—/DA(V(um—M+WA))V(um—M—(w—M))d:U

+ / A(V(w— M +W,))V(u,, —M—(w—M))da:]dt
D

5
[\V)
g
O\
|
@

—cs/ [— A(V(u,, — M +W4)) + AV (w — M+ W )]
D

= M — W, + W, — (w— M)]dzdt

S / 0 [ ATy = M W) = AT = M 5 W)

m

(1.3) T
< 2[E/ e CS/ ColV(tuy, — M +Wy)—V(w— M+ W,)|*dzdt
0
< — 20, E / /\v w)|?dxdt
S A T
0
< 0.

Now we estimate J, and apply (F3) and the mean value theorem (MVT)

T
Jo = [E/ e 2(f (U, + Wa) — flw+Wa),u,, — M — (w—M)) 5. z}dt
T
= [E/ e / m+Wa)— flw+WA))(u,, —w)dxdt
0
(Z:z 15 T
2[E/ e Cs/ +WA f(w+WA>)(um w)2dxdt
0 D U _w)
T
2[5/ /f’ — w)?dzdt
0 D
(F3) T 2
< o / e, fuyy — wl?, , d:
0

Choosing ¢ > 2C,, we have

T
—es 2
Jy < [E/ e c]|um—wHL2(D)dt.
0
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Replacing the inequalities for J;, Jy in (%), it turns out that
T
0. < —20,F /0 el |
T T
+[E/O e “c|u,, — w|\L2<D) dt — [E/O e “*clu,, — wHQLQ(D) dt

T
_ a0k / e [ty — 0)|2s p, dod
0

< 0.

O

Step 3: We have to find the lim supO,,,
m— o0
We represent O,,, in the form O,, = OL + O? where
T
Oh = E[ [ e o 2NV (= M + W) = AVW )ty — M) 5. 5

0

+ 2(f (Upy, + W) thyy, — M) 7. 7 —clluy, — M|? }]dt (2.63)

L2%(D)

and O2, is defined by the difference. We integrate the equation (2.45) between 0 and T

to obtain
Troa
/0 /D a(um (z,t) — M)w;dzdt

. — M +W,4)) — AV (W L)V, dudt

T

S
[ e

or equivalently
/ (U (2, T) — M)w;dx = / (U, (0) = M)w,;dx
D D

T
(int. by parts) + / <d1V[A(v<Um — M + WA)) — A(V(WA))], wJ>Z*’Zdt
0

T
+ / / J (U, + W4 )w,dzdt, (2.64)
o D
forall j=1,...,m
Next we recall a chain rule formula, which can be viewed as a simplified Ités formula.

Proposition 2.1. Let X be a real valued function such that
t
X(t) = X(0)+/ h(s)ds, 0<s<t,
0

and suppose that h is measurable in time such that h € L*(0,T). Suppose that the function

F F
F:[0,T] xR — R and its partial derivatives %t and ax o continuous on [0,T] X R.
Then for all t € [0,T]

L OF L oF
— (s, X(s))ds + | ox

F(LX(8) = F(0,X(0)) + / OF  X(s)h(s)ds.  (2.65)
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Applying (2.65) to the m equation in (2.64) with

:/ m— M)w;dr, j=1,. m, F(s,q) = e °3¢2,

= (div[A(V(u,y, —M+WA) ANVW )] + [ty + Wa),wj) 2+ 7,

F(6X(0) = e X (5 = e Myu,dr)
D
P(0.X(0)) = X(0)? = ( / (10 (0) — M, da:) ,
oF —cs Y2 _ —cs 2
E(S,X(S)) = —ce “$X?(s) = —ce (/D(um—M)wjd:c> ,
and

aF J— —CS 8X2<S> — —CS —_ —CS
8X<S X(s)) = e % 2e 5 X(s) = 2e /D(um—M)wjd:):.

Substituting all above in (2.65), we deduce that

eCT</ (u,, (z,T) — M)wjdm>2 =

D

(/(umm) —M)wjda:>2 —c/OTecs(/D(um —M)wjdx>2dt

/ 703 /D M)w dw) (div[A(V(u,, — M +W,4))— A(VIW )]

+f(um + WA)7wj>Z*,Zdt -

/D w~da:>2 —c/OTe—CS(/D(um —M)wjd:c>2dt

T
2/ ecs{/ (thyy — M)w,;da HAV[A(Y (w1, — M + W 0)) — AYW 2], 05) -5t
0 D

/ cs{/ M)w;dz}(f(, +Wa),w;) 5o zdt,
(2.66)
for all j =1,...,m. In what follows, we will use the identity
m
Lemma 2.11. Let F € Z* and B,,, =Y (B,,,w;)w;. Then
j=1
=1

Proof.

Z(F,wj>(Bm,wj> = Z<F’<Bm’wj>wj> ((F,w;) \=(F,Aw,), \eR)
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Summing (2.66) on j = 1,...,m and applying the identity (2.67) yields

m T
+ 22/0 e { [ (ur, — Myw,dz} (div]A(Y (u,, — M +W4))

j=1vD
;/D@m(o)M) d:Cc/O eCs;/D(um M)2w2dadt
T m

+ 2/ e—Cs Z{/ (U, —M)wjdm}<diV[A(V(um —M+Wy))

0 j=1 YD
- A(VWA)]ij>Z*’Zdt

T m
2 e—cs u,, — M)w.dx u Wa),w,) e od
" /0 ;{/D(m Yw da}(f (t, +Wa),w;) 5o gdt =

—C - 2
e Tuumm—Mu;(m;nwjllm) =

m T m
2 e—cs 2

T m
+ 2/ e ¢S Z w;(div[A(V(u,, = M +W,)) — A(VW 4)|,w;) 7+ zdt
0 j=1
T m
+2/ 75 (utyy, — Mowy){(fuy, + Wa),wy) 5. gt
0 j=1

or equivalently

(Lemma 2.11)

_ 2
T Ju, (T) — M2, )

(sl 2 2=
T
2 o—cs 2
(O = M2y = [ 7o = M2, de
0

4 2/ e (AiV[A(Y (1, — M + W) — ACVW)], 1, — M) .yt
0

)

T
49 / e (Flu + W o), — M)y gt (2.68)
0
Taking the expectation of the equation (2.68) yields
—cT 2
EleeT fup, (1) = M2, ]
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T
2 es 2
— Elfug ) = MIZ, ) = [ e ) = M2, ds
0

T
4 2[E/ S (Aiv[A(Y (u,, — M+ W4)) — AW )],y — M) . yds

)

0
+oF / L e g+ W)yt — M) g s (2.69)
0
It follows from (2.63) and (2.69) that
Oy = Ele™" Jup, (T) = M[7, )] = Ellun, (0) = M7, 1 ]
From this we obtain
Jim_supO, = EleT [u(T) = M2, | — Elu(0) = M|, | + 8¢, (2.70)

where
5 = Jim supEfJu,(T) — M|*) — E[Ju(T) — M|*) > 0

On the other hand, the equation (2.62) implies that
t t
wt) =M = g— M +/ B — div(A(VIV 1) + / v vte0, T (211)
0 0

a.sin Z* = V* + L%(D). Next we recall a second variant of the chain rule formula,
which can be viewed as a simplified It6’s formula, and involves different function spaces.
Consider the Gelfand triple

Z CHCZ*

where Z = V N L?P(D) and Z* are defined in the introduction.

Proposition 2.2. Let X € L2(0,T;V)N L?P(0,T; L?P(D)) and Y € L?(0,T;V*) +
L%(O,T;L%(D)) be such that

X(t) =Xy + /t Y(s)ds, t €10,T].
0

Suppose that the function F :[0,T] x Z. Then for all t € [0,T]

F(t.X(0) = FO.XO) + [ 56 X0ds+ [ V(). 526 X(5D) s (272
0 0

Applying Proposition 2.2 to the equation (2.71), we set

u(t) —
X(t) = *Ct||X( )2,
F(, (0)) = llu(0) — M]?,

ﬁ
~~
N
Il

( X (1) = —ce | X(1)]* = —ce " Ju(t) — M|?,
( ) =@ —div(A(VW,4)) + X,
—(t, X(t)) = 2t X (t) = 2 “*(u(t) — M),

n (2.72), from [0, T}, to deduce that
2 2 T 2
T [u(T) — M|? = [u(0)— M|? — ¢ / et u(s) — M2 dt
0]
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T
+ / (@ — div(A(VIV0)) + v, 2~ u — M) 5. ydt
0
T
= Ju(0)— M|? e / et u(s) — M2 dt
(0]

T
+ 2/ e o5 (B — div(A(YIV4)),u— M) 5. ydt
0

T
+ 2/ e~ (x,u— M) g zdt
0

Taking the expectation we deduce that

T
Ele=" |u(T) = M|*] = E[Ju(0) - M|*] - C[E[/ e Ju(t) — M| di]
0
T
+ 2] / et (@ — div(A(YW,4)),u— M) 5. ydi]
0
T
+ 2[/ e (x,u— M) 5. zdt],
0
which we combine with (2.70) to deduce that

T
lim supO} = 2[E[/ e NP —div(A(VW,)),u — M) 5. zdt]
0

m— 00
T
+ 2[[/ et {x,u — M)Z*7Zdt]
0
T
el / e=<t Ju(t) — M|% di] + de—<T. (2.73)
0

It remains to compute the limit of O2, :
02, = 0,, -0}
. / et {2(div(A(V(u,, — M +W,)) — AVIV,,))
0
— div(A(V(w =M+ Wy)) = A(VW4)) Uy, = M — (w—M)) 5. 7}
+ 2(f (U, + Wa) = fw+Wa),ttyy =M — (w—M)) 5. »
=l — M — (w— M)|?}dt]
T
[ e 2V AT (= M+ W) =~ ACTW ), = M) 5.
0
2 g+ W)t~ M) 77— el — M2}
T
- [E/ e {2V (A(T (1 — M+ W4)) — AT Aty — M) 5.
— 2div(A(V (up, =M +Wy)) = AVWH)),w = M) 5.
— 2div(A(V(w =M+ Wy)) = A(VW4)), tyy, = M) 7. 7
+ 2<d1v( (Vw—M+W,))—ANVW,)),w—M) g 5

2(f (U, + W o)ty — M) o 7 = 2(f(w+ Wy ), 0, — M) 7 5

2(f (U, + W o)y w—M) g 7 +2(fw+Wy),w— M)z 5

clu,,, — M|? — c|jlw — M|? + 2¢{u,, —M,w—M)yz

2(

m

div(A(V(uy, =M +Wa)) = AVW4)), ty, = M) 7. 7
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2ty + Wa)sthy — M) gz + i, — MI? )l
T
— / e e {—2(div(A(V(uy, — M+ WA)) — ATWA))sw— M) .

2(div(A(V(w =M +Wy)) = AVW4)), ty, — M) 5 7
2(div(A(V(w =M+ Wy,)) = A(VWy)),w— M)z z
<f(w+WA — M)z z
2(f(u,, +WA>7w_M>Z*,Z+2<f(w+WA>vw_M>Z*Z
—c||w—M||2+20<um—M,w—M>Z*7Z}dt

T
= B[ e AT (= M4 W) = ATWA)) g = M) 5
0

— 2(div[A(V(u,, — M +W,)) — A(VW 4)]

— div[A(V(w =M +Wy)) = AVWo),w— M)z 5

= 2(f(w+Wa)thyy, — M)z 7 —2(f (U, + Wy) = flw+Wy),w— M)z
— c|w— M|? + 2c{u,,, — M,w — M>Z*7Z}dt

In view of (2.56), (2.57) and (2.58), we deduce that
lim O2,
m— o0
T
= [E/ e H{=2(div(A(V(w — M+ Wy)) — A(VW,)),u— M) 5 4
0

— 2(® —div(A(VW ) —divA(V(w — M + W,)) — AVW ), w— M) 5. ,
= 2(flw+Wa)u—M)z 7z —2(x—flw+Wy),w—M)z 5
— cllw— M|? 4 2¢(u— M, w— M) 5. ,}dt. (2.74)

Combining (2.73) and (2.74), we find
lim supO,, = lim supOl + lim supO?,
m— 00 m— 00 m— 00

T
- 2[E/ et (D — div(A(YW ), u— M) 5. ydt

/ X»U— >Z*,Zdt
0

— c[E/ et |u(t) — M|? dt + e—<T
0

_ QEE/ e div(A(V (w0 — M+ Wa)) — ACVWA))su— M) o it
0

Q[E/T P — div(A(VIW,))
0

— diV(A(V(w — M+ W) — AVW ), w — M) 5. gdt

!

—2F [ et {f(w+Wy),u— M)y gdt

-2k = flw+Wa),w— M)z zdt

!
/T
0

T
— c[E/ e w — MPdt—i—Zc[/ e u—M,w—M)gz. dt
b 0

50



T
_ [E/ e12(® — div(A(VIV ), u— M) 5. 5

0
+ 20 u— M)z z—clu—M|?
— 2{div[A(V(w =M +Wy4)) = AVW4)|,u— M)z
— 2(® — div(A(VIW,))
— div(A(V(w =M +Wy))) — AVWy)),w— M)z
—2flw+Wa)u—=M)z 7z —=2(x— flw+Wy),w—M)z 5
— cllw— M|?dt + 2¢(u — M,w— M) 5. 5+ de T

T
_ / e=et2(® — div(A(VIV ) — div(A(V(w — M + W 4)))
0

+ div(A(VW ), u — M — (w— M)>Z*,Z
+2(x — flutWy),u—M)z 7 —2(x — flw+Wy),w—M)z 5
— cllu— M|? —c|w— M|? +2¢(u — M,w— M) 5. zdt+ de T

= [/ e t2(® — div[A(V(w — M + W), u—M — (w—M)) . ,
0]

+2(x — flu+ Wy),u—M —(w—M))z
—c|u—M — (w— M)|?dt + de=<T.

Remembering that O,,, <0, yields
T
[E/ e *2(® — div[A(V(w — M + W), u—M — (w—M)) 5. »
0

+2(x — flw+Wy)u—M—(w—M))z
—clu—M — (w— M)|?dt + de—<T <0.

Since § > 0, it follows from that
T
[E/ o2 — div[A(V(w— M + W), u— M — (w— M), 5
0

+2(x — flw+Wy)u—M—(w—M))z
—clu—M — (w— M)|?dt <0.

Step 4: Let v € L(Q x (0,T); V) N L?P(2 x (0,T) x D) be arbitrary and set
w—M=u—M-— v, with A€ R,.
We obtain the inequality :
T
[E/ et {2(P — div[A(Y(u— Ao — M+ Wa) Ao} e 5
0
+ 20 — flu— M+ Wa),\0) 7. 7z — c|M|?}dt =
T
[E/ e 2P — div[A(V(u— Ao =M+ W)+ x — f(u— v+ W4), ) 5. 5
0

— c| | }dt
0.

IN

Dividing by A, we see that
T
[E/ e NP+ x —div[A(V(u— I =M+ W) — flu—Av+Wy4),v) 7
0
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— e v|?}dt < 0.

Letting A — 0, we find that:
T
[E/ et (@ 1 x — div[A(Y(u— M+ Wa))] = fut Wa),0) g pdt < 0
0
or equivalently

T
[E/ (® + x — div[A(V(u— M+ W) — flut Wa) o)y zdt < O,
0

ct

since e~ " is positive. Since v is arbitrary, it follows that

T T
[E/ (@4 x,0) 5 gt = [E/ (div[A(Y (1 — M+ W)+ f(ut Wa),v) gy,
0 0
for all v € L2(Q x (0,7); V) N L?P(Q x (0,T) x D), or else

O+x = diviAVu—M+Wy))|+ flu+Wy)+0(t,w), (2.75)

a.s a.e in D x (0,T). Taking the duality product of (2.75) with @ € V' N L?P(D) we obtain
that

(P+X, W)z z = (div[A(V(u—M+ W)+ flut+Wy)+0(t,w), 1)z
= (div[A(V(u—=M+Wy))]+ flu+Wy), @)z (2.76)

Substituting (2.76) in (2.62) we deduce that for a.e (t,w) € (0,T) x Q
t
(w(t)— M, @) = (po— M)+ / (@ + x — div(A(YW ), &) 5. 5ds
0
t
— (g0~ M., @) + / (4 X, @) 7 7 — (AV(AVIV4)), ) 5. 5ds
0

= (po— +/ (v[A(Y (u— M+ W) + flut W)
0
— div(A(YW ), @) 5. zds (2.77)

for all @ € V N L2P(D).
This completes the identification of the limit terms by the monotonicity method.
Next, we prove that u satisfies the equation (2.42) in Definition 2.2. We define

V = HY(D) N L??(D).

The equation (2.77) implies that a.s in V* = (HY(D))" + L%(D)

t t
u(t) = o div[A u—M+WA))]—div(A(VWA))ds+/ flu+Wy)ds
0

_l_
+£A (2.78)

for all ¢t € [0, 7.
In order to identify the last term of (2.78), we take its duality product (.,.)y. y, with 1

w(t). Dy v = <<P071>v*,v+</ f<u+WA>ds,1>w,V+</ A(s)ds, 1)y v
0 0
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+ </ div[A(V(u— M +W,))] — div(A(VW4))ds, 1)y v/
0

or equivalently

/Du(t)dx = /Dwodx+/D/0tf(u+WA)dsdx+/jD/0t)\(s)dsd:n
+/t/ div(A(V(u—M +Wy,))) — div(A(VW 4 ))dzds.

Using Divergence Theorem and applying Neumann Boundary Conditions, we have

/D w(t)dz — /D poda _ /D /0  fut W )dsda + /D /O " \(s)dsdx

+/0 /Ddiv(A(V(u—M—G—WA)))dmds

- /0 t /D div(A(VW 4))dwds

(Divergence Thm) / / flu+Wy)dsdx + / A(s)ds|D|
D Y0 0

t
+/ A(V(u— M+ Wy)).vdSds
0 JaD

t
—/ A(VW 4).vdSds
0 JaD

(Neumann B.C.)

t t
/ f(quWA)dsder/ A(s)ds|D].
D Yo 0

Remembering that the equation is mass conserved, i.e.,

/u(t)dw = /gpoda:,
D D
we obtain
t
// flu+Wy) dsdaz—i—/ A(s)ds|D| = /u(t)dm—/gpoda::O. (2.79)
D Y0 0 D D

/Ot A(s)ds = —é|/p/0t flu+ W y)dxds,

AN = —ul)/Df(u(x,t)—l—WA(x,t))da:.

Thus,

so that also

The equation (2.78) becomes

goo—i-/ div[A u—M+WA))]—div(A(VWA))ds+/ flu+Wy)ds
0

0
—/O M/Df(u(a:,s)—FWA(a:,s))dmds,
for all t € [0,T].
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2.7 Uniqueness of the solution of Problem (F,)

Let w be given such that two pathwise solutions of Problem (P,), u; = u;(w,x,t) and
Uy = Uq(w, x, t) satisfy

ui (-, w) € L*°(0,T, L2(D)) N L2(0, T3 H (D)) N L*?((0,T) x D),

fu +Wa) € L ((0,T) x D),

div(A(V(u; + Wa)) € L2((0,T); (H'(D))")

for i = 1,2 and uq(+,0) = uy(+,0) = ¢y. Then

uy (z,8) = uq (2,0) + | div(A(V(uy +W4))) — div(A(VW ,))ds +/ Fluy +Wa)ds
0

S~

1 t
— \D|/ fluy + Wy)dzds,
0

Uy (z,t) = ug(x,0) +

— ul)|/t/ flug + W4 )dzds,

o0 YD

div(A(V (uy + W o)) — div(A(VIV 4))ds + / Flug + W 4)ds
0

O\HU

so that the difference u; — u, satisfies the equation

uq(t) —ug(t) = uq(z,0) +/ div(A(V(uq + Wy))) — div(A(VIW 4))ds
0

/ful—l-WA |D//fu1+WA )dxds

— ug(x,0) + / div(A(V(ug + Wy))) — div(A(VIV 4))ds
0
/fu2+WA |D//fu2+WAda:ds
_ / Aiv[A(Y (g + W) — A(V (g + W4))]ds
0
b [ H W) = Fuy 4 Wa)ds
0

1 t
— |D|/ / flug + Wy) — flug + W4 )dads
0o D

in L2((0,T); V*) + L% 7((0,T) x D).
We take the duality product of the equation of the difference u; — uy with u; —uy €
L2((0,T); V*) N L= ((0,T) x D), to deduce that

luy —usllZ2p) :/ (div(A(V(uy +Wa)) = A(V(ug + Wa))), uy — ug) 7+ zds
0
+ / (flug +Wa) — flug +Wa),uy —uy) 7. zds
0
- ul)|/ </ flug +Wa) — flug +Wa)dz,uy —uy) 7. zds
o ’p
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:/ / div(A(Y (1 + W 4)) — AV (g + W 4))) (1 — g)dds
0]
[+ W) = s + W)y )

/ / (ug + Wy) — flug + Wy))(uy —ug)dardrds
D

|

“ i
e g / / (A(V (g + Wa) — A (g + Wa))V (g — uy)dads

D

/ (flug +Wa) — Flug + Wa)) (g — ug)dads

D

/0 [ / (Flug +Wa) — flug + Wa))de /D (g — up)da]ds

/ V(uy +W4) = AV (g + W)V (g — uy)dads

0

flug + Wa) — flug + Wy))(uy, —uy)dzds (2.80)

where we remark that since

ul /u2(:n,t)d:n = / o (z)dz, the nonlocal
D

term vanishes. In view of (1.3

_/ / AV (g 4 W) — AV (g + W)V (1 — ug)dads
0 D

t
< — Co/ / IV (uq — us)|?dads,
o /D

(2.80) becomes

t
iy sl < [ [ (Pl +Wa) = fluy + W)y — uy)dads
0 D

t
— C’O/ / |V (uy —ug)|?dzds, (2.81)
o /D
for all t € (0,7). In addition, the property (F5) implies that
flug +Wy) — flug + W
(g +Wa) = flug + W)y —g) = LT WAl W) o
(ug — ug)
< COy(uy —ug)? (2.82)

Substituting (2.82) in (2.81) yields

Uy —ug)?(x, t)dr = Uy — ug)?(z,t)dx
[ —w2Ende = [ e

IN

/ / (f(uy +Wy) — flug + Wy))(uq —ug)dzdt
o /D

t
—C'O/ /|V(u1—u2)|2da:ds
o /D



uy +Wy)— flug + W Uy — Uq)dxd

< /0 /(f( A) ( a))( ) t
C Uy — ug)?(w,t)dxds,

< 4 A /( ) ( t)

for all t € (0,7), which in turn implies by Gronwall’s Lemma B.1 (With a=20,b=

0, u(t) = / (uq —u2)2(:c,t)d:c> that

D
/ (uy —uq)?(x,t)dx <0,
D

or equivalently
Uy = Ug a.e. in D x (0,7T).
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Appendix A

In this appendix we prove the properties (F}), (Fy) and (Fy) for the nonlinear function

2p—1
f(s)=Y_ b.s"  withby, ; <0,p>2.
r=0
(Fy) There exist positive constants C; and C, such that
fla+bla < —Cia?P + fy(b), If2(0)]| < C5(b2P +1), for allab €R
Proof. For simplicity we suppose that b; =1 for all j =0,...,2p—2 and that by, ; = —1.

2p—1

fla+b) = > bila+b)
j=0

= bo(a+b)°4+by(a+b)t +byla+b)%+-+by, o(a+b)>P2
+ by, q(a+D0)?P71
= 1+ (a+b)+(a+b)*+-+(a+b)?*P2—(a+b)*P!

hence

fla+ba = a+ (a+ba+ (a+b)2a+-+ (a+b)?P2a— (a+b)*Pta
= Lo+ Ly+ Lo+ Loy ot Loy g (A1)

For the last the term Lo, ;, we apply the binomial expansion,

_ _ 2p_ 1 2p—1y _ 2 2p—23p2 _ ... _ 2p—3 _3;2p—3 _ ~2p—2 _2;2p—2
= —a Cap_qa b—C35, qa b Cyp_10°b Cyp_107b
— ab?r1, (A.2)

where CF = k,”ilk), Next, we consider the second term on the right-hand-side of (A.2).

I(n
Using the Holder inequality

elol” | 1BI°

- A3
af < =+ -, (A.3)
with conjugate exponents s =2p, t = 5, = 2;51 (sothat 1+ 1 =1),anda =a?P~ !, 3=
b, we obtain

_ e(2p — 1)[al?® |b[2P
For the last term on the right-hand-side of (A.2), we apply Holder inequality (A.3) with
conjugate exponents t =2p, s = 212)131 (so that L1 +1 =1), and a = a, § =b?P71, to get

2p _ 2p
ab2P—1 < glal I (2p —1)[b] .
2p 2pe
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Similarly, we apply Holder inequality (A.3) also for all the other terms of (A.2) to obtain

_ 2p—1 a2 e(2p —1)[al?*? 1 |b]?P |a]?P
L2p71 = —(a+b> p a S p+02p 1T 2p—1 2p€ +--+€ 2p
2p — 1)[b|?P
L oo
2pe
1 1
< (OOt e+ om.  (as)

where C/(p) =C3,_28-1 + L 4+ .. Cs(p) =C3

2p—17"2p 2p 2p—1 2p
A quite similar argument lead to the following Lemma.

+ 251 + .., and Oy(p) =

Lemma A.1l.

C
L, < Cyfp)lafr + S

1
b2 + 2, (), (A1)
forall g€ {1,...,2p —2}.
Proof. By induction, we first prove that (A.4) is true for ¢ = 1. Using Holder inequality
(A.3) with conjugate exponents ¢ =p, s = ;P (so that ¢+ + § =1), and a = a?, =1 for

the first term, and ¢ =2p, s = % (so that 1 + 1 =1), and o = a, f = b fro the second,
we deduce that

—1 2p
Ly = (a+b)a = a®> +ab < E|a]2p—i-p | ]2p+ ]b\%
p €p
3 —1 2 1 1 2p —2
< Tlapr e s T ( 2P + 22—
2p Ep 2pe \2p—1 2p—1
3 -1 2p—1 1 2p—12p—2
< ol Fos e 5 b2+ 25—
2p Ep 2pe 2p—1 2pe 2p—1
3e —1 1 —
= Lape 2Ty e P2
2p ep 2pe pE
3 1 2p —2
= a?P 4 2P+
2p 2pe j23

where we used, at the second line, Holder inequality (A.3) with ¢ = 1, conjugate exponents

t=2-L s=2p—1(sothat 1 +1=1),and a =1, 3 = b=,

We suppose that (A.4) is true for ¢ = 2p — 3 and prove that it remains true for
= 2p — 2: Using Holder inequality, we obtain

= g2p-1 +Clp 2a2p—2b+'_‘+c2p*3 2b2p—3+ab2p—2

< <Cy (p)lal?? + gcg<p>rb\2p + EC4(Z?>- (A5)
0
Combining (A.1)-(A.4) and choosing ¢ < ! yields

2(C7(p) + C1(p))
flatba < [F14e(C(p)+Cr(p)]lal”
£ 10, + Calp)

1
2(C7(p) + C1(p))

< (-1+ (€' (D) + C1(p)) ) ]
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+ Cy(b?P + 1)
= (14 Plal + O(b% +1)
= e+ Cy? + 1),
with Cy = max(2C3(p), C4(p))- u
(F5) There exists a positive constant C'5 such that
f(s)] < Csls — M|?P=1 4 C3(M).
Proof. Again, we suppose that b; =1 for all j =0,...,2p — 2 and that by, ; = —1.
2p—1
f(s) = Z bjsj =bgs® +byst +bys? 4+ bgp,2$2p_2 + b2p7182p_1
3=0
=1+s+82+ 4 s2P72 —g2P7 1 (A.6)
We estimate the leading term of (A.6)

|s|?P~1 = |s— M+ M|?P1
= |s—M[*" 14+ 0L [s— M[?P72M + -+ C3P 2 |s — M|M?P~2 4 (2P 1,

By Hoélder inequality (A.3), there holds

2p—2 M2p-1
s—mpren < S22 ppepery M
2p—1 e(2p—1)
_ 2p—1 2p—1 _
|8_M|M2p72 S 6‘8 M’ ’M| (2p 2)’
2p—1 e(2p—1)

so that

2278 = [s = MPP1 4 Gy _yfs = MPP=2M + ot G301 — MIM3P -1 4 |M 2P

<ls—MP2Ptycl (5(22;__12)# — M2ty %) +
2p—1 2p—-1
N 035:%<5]3 gp]\{’f ’M\Egp (_21;)_ 2)) + |M|2ret
— |5 — MJ20-1 4 C%plw|s - MPERT Cipl% T
+ o;g_fw +c§£_f‘M’:2_; (_221)_ DS
- (1 + E(Czlpl;ij +C3r 2 2p1_ 1)) |s — M|?P~1
N -
= (1+€C(p))ls — MPP 4 (1+ ZGp)) | MPP. (A7)

Next, we estimate the last term on the right-hand-side of (A.6). It follows from Hélder
inequality (A.3) that

sl = ls =M+ M| <|s— M|+ [M]|
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2p — 2

< —MPPly ——— 4+ |M
< 9,1~ Ml +s(2p—1)+’ |
1 ~

= <Cy(p)ls — MIPP* + 2Cy (p) + |M]. (A8)
Computing all the other terms of (A.6) similarly and substituting (A.7) and (A.8) in (A.6)
we obtain

If(s)] = |—s?P L 462P 244524
< PP PR - +\s\2+\s\

< (1+eC(p))|s — M|?P- 1+(1+ “E(p )]MPpl

oo 2Cy (p)ls = MPPP 4 26y (p) + M

< Cyls — M[2P~1 4+ Cy(M).
0
F5) There exists a positive constant C'; such that
3 4
f'(s) < Cy.
Proof. From (A.6)
fs)=—s?P 14 2P 2 44 2+ 541
we have
f(s)=—(2p—1)s?P72 4 (2p — 2)s2P3 + ... +- 25 + 1. (A.9)
By Holder inequality (A.3)
2p—3) 1
ops o E2P=3) oppy 1 A.10
€ 2p— 3
< 2p=2 4 & A1l
We compute all the other terms similarly, and substitute them in (A.9) to obtain
f(s) = —(2p—1)s?P2 4 (2p—2)s2P 3 ... + 25+ 1
2p — 3) 1
< —(2p—1)|s|2P 2+ (2p—2 [5(7 T L
< —Cp— D2+ p = [T ]+
2p—3
2| p2g P
2y TR 2p—2 F
1 els|*P=2  2p—3
= —(2p—1)|s|]?P"2 +2(2p—3)[s[?P 2+ = + - 1
(2p —1)|s] +¢e(2p —3)|s| +€+ + p—1 +( _1>€+
1 % — 3 1
= [—@r-D+e(@-3)+ —+.. )lsPP2] + [1 e+
[ 2p—1)+¢((2p 3)—|—p_1+ |s] + 1+ s+
¢
= [—(2p—1)+eC(p)]|s|?P~ 2+£m—|—1. (A4)

We may bound the right hand side of (A.4) by choosing & < 22-L. Indeed, we have

2C(p)’

f(s) < [=@2p—1)+eCp)]ls|?~ 2+Cip>+1
< (-~ -1+ Zorew s+ Cnse ) 11
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Appendix B

B.1 Brownian motion

Brownian motion is a natural phenomenon, which describes the random motion of particles
suspended in a liquid or a gas resulting from their collision with the fast-moving molecules
in the fluid or gas. This motion is named after the botanist Robert Brown, who first
described the phenomenon in 1827, while looking through a microscope at pollen of the
plant Clarkia pulchella immersed in water. In mathematics, Brownian motion is described
by the Wiener process, a continuous-time stochastic process named in honor of Norbert
Wiener.
The Wiener process W, is characterized by four facts:

° WO == O
e W, is almost surely continuous.

« W, has independent increments, i.e., if 0 < sy <ty < sy <ty then W, — W, and
W, — W, are independent random variables.

o W, =W, ~N(0,t—s) (for 0 <s<t).

N (u,0?) denotes the normal distribution with expected value p and variance o2.

Figure B.1: Standard Brownian motion, where X (¢) = W, is plotted on the vertical axis.
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B.2 Adapted Process

In the study of stochastic processes, an adapted process (also referred to as a non-
anticipating or non-anticipative process) is one that cannot “see into the future”. An
informal interpretation is that X is adapted if and only if, for every realization and every
n, X,, is known at time n.

Definition B.1. Let
e (Q,5F,P); be a probability space;
e [ be an index set with a total order < (often ,I is N,Ng,[0,T] or [0, +00);
o« F = (‘?i)z‘el be a filtration of the sigma algebra F;
e (S,%) be a measurable space, the state space;
e X :1IxQ — S be a stochastic process.

The process X is said to be adapted to the filtration (F i)vse ; if the random variable
X, :Q— Sisa (F;,X)-measurable function for each i € I.

B.3 Gronwall’s inequality

In mathematics, Gronwall’s inequality (also called Gronwall’s lemma) allows one to bound
a function that is known to satisfy a certain differential or integral inequality by the
solution of the corresponding differential or integral equation. There are two forms of the
lemma, a differential form and an integral form. For the latter there are several variants.
Gronwall’s inequality is an important tool to obtain various estimates in the theory of
ordinary and stochastic differential equations. In particular, it provides a comparison
theorem that can be used to prove uniqueness of a solution to the initial value problem.

Lemma B.1. (Integral form for continuous functions.) Let I denote an interval of
the real line of the form [a,c0) or [a,b] or [a,b) with a < b. Let o, f and u be real-valued
functions defined on I. Assume that B and u are continuous and that the negative part of
B is integrable on every closed and bounded subinterval of I.

If the function « is non-decreasing and if u satisfies the integral inequality

u(t) <alt)+ | B(s)u(s)ds, Vtel,

a

then
u(t) < alt) exp ( ﬁ(s)ds), tel
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