
University of Crete

School of Sciences and Engineering
Computer Science Department

A System for Modal and Deontic Defeasible
Reasoning

by

Nikos Dimaresis

Master ’s thesis

Heraklion, July 2007

��������	
���
��	��������
�

�����	��	
���
���	�
�	�
��
����
�

�
��������	��	�����

���������	
���

�����
���
�������	������� �

����
����

��������	��	���	��������
�	��	��������	
���
��

�
	�������	���������
�	��	���	���������
��

���	���	������	��	������	��	
���
��

�������

�����	��	
������

����������

�������

�������

��������	���

!���	"##$%	&���'���
%	(�����

)))))))))))))))))))))))))))))))))))))))

*�'��	���������

��������	
���
��	��������
�

)))))))))))))))))))))))))))))))))))))))

(�������	�
��
���%	+��������

)))))))))))))))))))))))))))))))))))))))

�
�������	�
�����%	,���������

)))))))))))))))))))))))))))))))))))))))

+�
�������	-����
���%	+��������

�������
	��	���	(�������	
������	���������

)))))))))))))))))))))))))))))))))))))))

��������	+��.����'��%	+��������

A System for Modal and Deontic Defeasible Reasoning

Dimaresis Nikos

Master of Science Thesis

Computer Science Department, University of Crete

Abstract

Defeasible logic is a simple and efficient rule-based nonmonotonic reasoning ap-

proach, that has been shown useful for various applications areas. Recently defea-

sible logic has been used in applications to the Semantic Web.

The Semantic Web is an extension of the current Web, in which information

is given well-defined meaning, and its development proceeds in layers, each layer

being on top of other layers. Now that the layers of metadata (RDF) and ontology

(OWL) have reached sufficient maturity, the next step will be the logic and proof

layer and an important focus is on rule languages for the Semantic Web. While

initially the focus has been on monotonic rule systems, nonmonotonic rule systems

are increasingly gaining attention.

The first source of motivation for our work is the modelling of multi-agent

systems based on cognitive and social models, where an agent behavior is deter-

mined as an interplay between mental attitudes and normative aspects. Commonly,

these aspects are logically captured through the use of modal logics, which are by

definition monotonic. Reasoning about intentions and other mental attitudes has

defeasible nature, and defeasibility is a key aspect for normative reasoning.

The second important source for motivation for our work is the modelling of

policies. Defeasible logic is the nonmonotic reasoning approach that would be

suitable solution for the requirements that arise from the specific nature of policies

and especially of business rules.

In our work we use and develop an extend variant of defeasible logic, that

uses modal and deontic operators. This is a suitable formalism that can deal with

the motivational components of our work and can capture their nonmonotonic be-

havior. For the purposes of modelling policies sufficiently, we will introduce an

additional deontic operator for expressing “permission”.

We implement a nonmonotonic rule based system, based on this formalism,

which integrates with the Semantic Web, as it reasons with the standards of RDF

and RDF Schema. The core of the system consists of a logic metaprogram that

implements the extension of defeasible logic.

\Åíá Óýóôçìá ãéá ÄåïíôéêÞ êáé ÔñïðéêÞ ÓõëëïãéóôéêÞ"

Íßêïò ÄçìáñÝóçò

Ìåôáðôõ÷éáêÞ Åñãáóßá

ÔìÞìá ÅðéóôÞìçò Õðïëïãéóôþí, ÐáíåðéóôÞìéï ÊñÞôçò

Ðåñßëçøç

Ç ÁíáéñÝóéìç ËïãéêÞ åßíáé ìßá áðëÞ êáé áðïäïôéêÞ âáóéóìÝíç-óå-êáíüíåò
ìç ìïíïôïíéêÞ ðñïóÝããéóç, ç ïðïßá Ý÷åé áðïäåé÷ôåß ÷ñÞóéìç óå äéÜöïñåò ðå-
ñéï÷Ýò åöáñìïãþí. Ðñüóöáôá ç ÁíáéñÝóéìç ËïãéêÞ Ý÷åé ÷ñçóéìïðïéçèåß óå
åöáñìïãÝò ðÜíù óôï Óçìáóéïëïãéêü Éóôü.

Ï Óçìáóéïëïãéêüò Éóôüò åßíáé ìßá åðÝêôáóç ôïõ óçìåñéíïý Éóôïý, üðïõ
ç ðëçñïöïñßá Ý÷åé êáëÜ êáèïñéóìÝíï íüçìá, êáé ç áíÜðôõîç ôïõ âáóßæåôáé óå
ðñüôõðá ãëùóóþí äïìçìÝíùí óå åðßðåäá, ðïõ êÜèå åðßðåäï âñßóêåôáé ðÜíù
áðü Üëëá åðßðåäá. Ôþñá ðïõ ôá åðßðåäá ôùí ìåôá-äåäïìÝíùí (RDF) êáé
ïíôïëïãéþí (OWL) Ý÷ïõí áíáðôõ÷èåß åðáñêþò, ôï åðüìåíï âÞìá åßíáé ç áíÜ-
ðôõîç ôùí åðéðÝäùí ôçò ëïãéêÞò êáé ôçò ôåêìçñßùóçò. Ôá ôåëåõôáßá ÷ñüíéá
ç Ýñåõíá åðéêåíôñþíåôáé óôéò ãëþóóåò êáíüíùí ãéá ôï Óçìáóéïëïãéêü Éóôü.
Åíþ ç áñ÷éêÞ Ýñåõíá åóôßáóå ðÜíù óôá ìïíïôïíéêÜ óõóôÞìáôá êáíüíùí, ôá
ìç ìïíïôïíéêÜ óõóôÞìáôá êáíüíùí êåñäßæïõí üëï êáé ðåñéóóüôåñç ðñïóï÷Þ.

Ç ðñþôç ðçãÞ ðáñáêßíçóçò ãéá ôç äïõëåéÜ ìáò åßíáé ç ìïíôåëïðïßçóç
ðïëõ-ðñáêôïñéêþí óõóôçìÜôùí, âáóéóìÝíá ðÜíù óå ãíùóôéêÜ êáé êïéíùíéêÜ
ìïíôÝëá, óôá ïðïßá ç óõìðåñéöïñÜ åíüò ðñÜêôïñá êáèïñßæåôáé áðü ôçí áëëçëå-
ðßäñáóç ìåôáîý äéáíïçôéêþí äéáèÝóåùí êáé êáíïíéóôéêþí üøåùí.

Ç äåýôåñç óçìáíôéêÞ ðçãÞ ðáñáêßíçóçò ãéá ôçí äïõëåéÜ ìáò åßíáé ç ìïíôå-
ëïðïßçóç ðïëéôéêþí. Ç ÁíáéñÝóéìç ËïãéêÞ åßíáé ç ðñïóÝããéóç ìç ìïíïôïíé-
êÞò óõëëïãéóôéêÞò ðïõ èá Þôáí ç êáôÜëëçëç ëýóç ãéá ôéò áðáéôÞóåéò ðïõ
åìöáíß-
æïíôáé ëüãù ôçò óõãêåêñéìÝíçò öýóçò ôùí ðïëéôéêþí êáé åéäéêüôåñá ôùí åðé-
÷åéñçóéáêþí êáíüíùí.

Óôçí åñãáóßá ìáò ÷ñçóéìïðïéïýìå êáé áíáðôýóóïõìå ìßá åðåêôÜóéìç ðá-
ñáëëáãÞ ôçò ÁíáéñÝóéìçò ËïãéêÞò, ç ïðïßá ÷ñçóéìïðïéåß Ôñïðéêïýò êáé Äåï-
íôéêïýò ôåëåóôÝò. ÁõôÞ åßíáé ìßá êáôÜëëçëç ôõðéêÞ ãëþóóá ðïõ ìðïñåß íá

÷åéñéóôåß ôá óõóôáôéêÜ ðáñáêßíçóçò ôçò äïõëåéÜò ìáò êáé íá óõëëÜâåé ôç ìç
ìïíïôïíéêÞ óõìðåñéöïñÜ ôïõò. Ãéá ôïõò óêïðïýò ìïíôåëïðïßçóçò ðïëéôéêþí
åðáñêþò, èá åéóÜãïõìå Ýíá åðéðëÝïí äåïíôïëïãéêü ôåëåóôÞ ãéá íá åêöñÜóïõìå
ôçí Ýííïéá ôçò \Üäåéáò".

ÕëïðïéÞóáìå Ýíá ìç ìïíïôïíéêü âáóéóìÝíï-óå-êáíüíåò óýóôçìá, óôçñé-
æüìåíï óå áõôÞ ôç ôõðéêÞ ãëþóóá, ôï ïðïßï áëëçëåðéäñÜ ìå ôá ðñüôõðá RDF
êáé RDF Schema ôïõ Óçìáóéïëïãéêïý Éóôïý. O ðõñÞíáò ôïõ óõóôÞìáôïò
áðïôåëåßôáé áðü Ýíá ëïãéêü ìåôáðñüãñáììá, ôï ïðïßï õëïðïéåß ôçí åðÝêôáóç
ôçò ÁíáéñÝóéìçò ËïãéêÞò.

Åõ÷áñéóôßåò
ÁéóèÜíïìáé ôçí áíÜãêç íá åõ÷áñéóôÞóù ôïí åðüðôç êáèçãçôÞ ìïõ, êýñéï

Ãñçãüñç Áíôùíßïõ, ãéá ôçí ðïëýôéìç êáèïäÞãçóÞ ôïõ êáé ôçí ïõóéáóôéêÞ
óõìâïõëÞ ôïõ óôçí ïëïêëÞñùóç ôçò åñãáóßáò, áëëÜ êáé ãéá ôçí áðïäïôéêÞ
êáé åõ÷Üñéóôç óõíåñãáóßá ðïõ åß÷áìå.

Èá Þèåëá íá åõ÷áñéóôÞóù ôçí êõñßá Áíáóôáóßá ÁíáëõôÞ, åñåõíÞôñéá ôïõ
ÉÔÅ-ÉÐ, ãéá ôéò ðïëýôéìåò óõìâïõëÝò êáé ðáñáôçñÞóåéò ôçò, êáé ãéá ôçí óõììå-
ôï÷Þ ôçò óôçí åéóçãçôéêÞ åðéôñïðÞ ôçò åñãáóßáò, êáé ôïí êáèçãçôÞ ÄçìÞôñç
ÐëåîïõóÜêç ãéá ôçí óõììåôï÷Þ ôïõ óôçí åéóçãçôéêÞ åðéôñïðÞ.

ÅðéðëÝïí, åõ÷áñéóôþ ôïí äéäáêôïñéêï öïéôçôÞ Áíôþíç ÌðéêÜêç, ãéá ôçí
óõìâïëÞ ôïõ óôçí åðßëõóç ðëÞèïõò áðïñéþí ìïõ êáé ãéá ôçí áîéüëïãç ðñïèõ-
ìßá ôïõ ãéá âïÞèåéá.

ÔÝëïò åõ÷áñéóôþ üëïõò ôïõò ößëïõò ìïõ ãéá üëåò ôéò óôéãìÝò ðïõ ðåñÜ-
óáìå ìáæß êáé ãéá üëç ôçí âïÞèåéá ðïõ ìïõ ðñüóöåñáí êáôÜ äéÜñêåéá ôùí
óðïõäþí ìïõ óôï ÇñÜêëåéï ôçò ÊñÞôçò.

Contents

1 Introduction 1

2 Rules for the Semantic Web 5

2.1 Web Documents in XML . 6

2.2 Describing Web Resources in RDF 7

2.3 Web Ontology Language . 10

2.4 Logic and Rules on the Semantic Web 11

2.5 Integrating Rules and Ontologies 13

2.5.1 CWM . 13

2.5.2 Jena . 14

2.5.3 Triple . 15

2.5.4 SWI-Prolog Semantic Web Library 16

2.5.5 Characteristics of Rule-based Systems 16

2.6 Nonmonotonic Rules on the Semantic Web 17

2.7 Nonmonotonic Rule Systems on the Semantic Web 20

2.7.1 DR-Prolog . 20

2.7.2 DR-DEVICE . 20

2.7.3 SweetJess . 21

2.7.4 dlvhex . 21

2.8 Rule Languages for the Semantic Web 21

2.8.1 Rule Markup Language 22

2.8.2 Semantic Web Rule Language 23

3 Extension of Defeasible Logic 25

3.1 Defeasible Logic . 25

3.1.1 Syntax . 26

3.1.2 Formal Definition . 27

3.1.3 Proof Theory . 28

3.2 Modelling Agents . 31

3.2.1 Intelligent Agents . 31

3.2.2 Cognitive Agents . 32

3.2.3 BDI Architecture . 33

3.2.4 Multiagent Systems . 34

i

CONTENTS ii

3.2.5 Society of Agents and Norms 35

3.2.6 The BOID Architecture 35

3.3 Modal Logic . 36

3.3.1 Deontic Logic . 37

3.3.2 Temporal Logic . 38

3.3.3 Epistemic Logic . 38

3.4 Modelling Mental Attitudes and Normative Notions within Defea-

sible Logic . 39

3.4.1 Knowledge . 40

3.4.2 Intention . 40

3.4.3 Obligation . 41

3.4.4 Agency . 41

3.4.5 Permission . 42

3.4.6 A Defeasible Logic of Agency, Intention, Obligation and

Permission . 43

3.4.7 Interaction Among Modalities and Agent Types 44

3.4.8 Rule Conversion . 46

4 Translation Into Logic Programs 49

4.1 Translation into Logical Facts 49

4.2 Defeasible Logic Metaprogram 50

4.2.1 Supportive Rules . 50

4.2.2 Definitely Provable Literal 51

4.2.3 Defeasible Provable Literal 51

4.2.4 Consistent Literal . 51

4.2.5 Supported Literal and Rule Conversion 52

4.2.6 Undefeated Applicable Rule 54

4.2.7 Applicable Rule . 56

4.2.8 Defeated Rule . 56

4.2.9 More Clauses . 56

4.2.10 Negative Permission Approach 56

4.2.11 Deriving Permissions Through Defeaters 57

4.3 Arithmetic Capabilities in the Metaprogram 58

4.4 Examples of Using the Metaprogram 59

4.4.1 The Surgeon . 59

4.4.2 The Prisoner ’s Dilemma 60

4.4.3 Umbrella Example . 62

4.4.4 Weekend Example . 62

4.4.5 Washington Conference 63

4.4.6 Legal Reasoning . 64

CONTENTS iii

5 Implementation Architecture 67

5.1 Overview of the Architecture . 67

5.2 Graphical User Interface . 69

5.2.1 Loading RDF Documents 70

5.2.2 Loading Logic Programs 70

5.2.3 Querying the System . 72

5.3 The Semantic & Syntactic Validator 73

5.4 The RDF Translator . 74

5.5 InterProlog . 77

5.6 YAProlog . 77

5.7 XSB . 77

6 A System Use Case: University Regulations 79

6.1 Modelling Regulations . 79

6.2 University Ontological Knowledge 80

6.3 Modelling University Regulations 87

6.3.1 Enrollment in Courses 87

6.3.2 Exam Participation . 89

6.3.3 Graduate Requirements 90

6.3.4 More Regulations for Enrollment 91

7 Conclusions and Future Work 93

List of Figures

2.1 The Semantic Web layers from W3C. 6

2.2 Graph representation of an RDF Statement. 7

2.3 RDF graph . 8

2.4 RDF Schema and RDF Layers 9

2.5 The RuleML hierarchy of rules. 23

5.1 The Overall Architecture of our System. 68

5.2 System ’s Graphical User Interface 69

5.3 Load RDF/S Data . 70

5.4 Invalid RDF File . 71

5.5 Logic Program Imported . 71

5.6 Invalid Prolog File not loaded . 72

5.7 User Queries the System . 73

5.8 Error in Query ’s Syntax . 73

6.1 University RDF Schema . 84

v

List of Tables

3.1 Basic Attacks . 45

3.2 Agent Types . 46

3.3 Rule Conversions . 47

vi

Chapter 1

Introduction

The first source of motivation for our work is the modelling of multi-agent systems,

in which agents can operate effectively and interact with each other productively.

In particular, we follow more recent approaches on cognitive agents that combine

two apparently independent perspectives: (a) a cognitive account of agents that

specifies motivational attitudes, and (b) modelling of agent societies by means of

normative concepts. The first aspect is addressed through the well-known BDI ar-

chitecture [18, 71]. The second aspect is based on artificial societies of agents, in

which normative concepts play a decisive role, allowing for coordination of au-

tonomous agents [31, 69]. The result of this combination of perspectives is the

modelling of autonomous agents based on cognitive and social models, where an

agent deliberation and behavior is determined as an interplay between mental atti-

tudes and normative aspects.

Commonly, both motivational attitudes and normative aspects are logically

captured through the use of modal logics. Modal logics are extensions of clas-

sical propositional logic with some intensional operators. So modal logics are by

definition monotonic. However as we know, classical propositional logic is not

well suited to deal with real life scenarios and inconsistent information, that may

easily arise in multi-agent and web environments. As argued in [40], reasoning

about intentions and other mental attitudes has defeasible nature, and defeasibility

is a key aspect for normative reasoning.

The second important source of motivation for our work is the modelling of

policies. Policies play crucial roles in enhancing security, privacy, and usability

of distributed services and extensive research has been done in this area, including

the Semantic Web community [16]. It encompasses the notions of security poli-

cies, trust management, action languages, and business rules. Business rules are

statements that are used by a body or an organization to run their activities. They

provide a foundation for understanding how a business operates. They are used to

formalize and automate business decisions as well as for efficiency reasons.

As explained in [1], defeasible reasoning is appropriate for modelling and rea-

soning with business rules. However, in order to be able to represent and reason

1

CHAPTER 1. INTRODUCTION 2

with business rules sufficiently, there are still requirements which go beyond de-

feasible logic. In particular, we need a formal specification language with higher

expressiveness, including deontic notions[81].

In our work, we adopt the well-known defeasible logic, that is described in [5],

as the suitable formalism that can deal with these components and capture their

nonmonotonic behavior. Defeasible logic has been studied in terms of proof theory

[5], model-theoretic semantics [57], and argumentation semantics [37], and has

delivered efficient implementations [2, 59]. It is a flexible, rule-based, and efficient

approach, that has been shown useful for application areas, such as modelling of

contracts [46, 44, 35], legal reasoning [41], agent negotiations [36], modelling of

agents and agent societies [40, 38], and applications to the Semantic Web [2, 12].

Recent work shows that defeasible logic is a nonmonotonic approach that can be

extended with modal and deontic operators [40], [39], [41], [74], [38].

This thesis presents a computationally-oriented nonmonotonic logical frame-

work, based on the approach of [40], that extends defeasible logic with modal and

deontic operators, and reports on an implemented system, based on this formalism.

This proposed logic introduces and manipulates modalities, and is flexible enough

to deal with different intuitions about the interactions of the internal and external

motivational attitudes.

As stated, the expressive power of the formal specification language that is

required by the business rules community is high and includes deontic notions

like obligation, permission, and prohibition. This task is captured by the deontic

extension of defeasible logic. For the purposes of modelling policies, we intro-

duce an additional deontic operator to our logical framework, in order to express

permission. This operator is used commonly in policies, describing (conditional)

entitlements.

The Semantic Web is an extension of the current Web, in which information

is given a well-defined meaning, better enabling computers and people to work in

cooperation. The development of the Semantic Web proceeds in layers, each layer

being on top of other layers. Now that the layers of metadata (RDF) and ontol-

ogy (OWL) are stable, an important focus is on rule languages for the Semantic

Web. While initially the focus has been on monotonic rule systems [42, 47, 75],

nonmonotonic rule systems are increasingly gaining attention [29, 12, 2]. Our lan-

guage of choice, defeasible logic, is compatible with applications in this area. In

particular, there are implementations of defeasible logic that interoperate with Se-

mantic Web standards [12, 2]. The two motivations of our work outlined above can

be combined with the Semantic Web initiative [13], as Semantic web languages

and technologies support the issue of semantic interoperability, which is important

both for multi-agent systems and for policies.

As already stated, this thesis presents modal and deontic extensions of defeasi-

ble logic, and describe an implemented system, the basic characteristics of which

are the following:

• It is a nonmonotonic rule-based system that supports reasoning in defeasible

CHAPTER 1. INTRODUCTION 3

logic, extended with modalities.

• It integrates with the Semantic Web, as it reasons with the standards of RDF

and RDF Schema.

• It is based on Prolog. The core of the system consists of a logic metaprogram

that implements the extension of defeasible logic. In particular, we base our

implementation on the system DR-Prolog [2], which uses XSB [91] as the

underlying logical engine.

This rest of the thesis is organized as follows:

Chapter 2 presents the Semantic Web and the role of rules in its development.

Firstly, we present the layers of the Semantic Web that have been so far imple-

mented. At present, the highest layer that has reached sufficient maturity is the

ontology layer in the form of the description logic based languages. Then we rea-

son why rule systems, especially the nonmonotonic ones, are expected to be part of

the layered development of the Semantic Web, for the realization of logic and proof

layers. We report on rule systems, both monotonic and nonmonotonic, as the ap-

proaches in integrating ontologies with rules is a subject of active research for the

Semantic Web community. Finally, we present rule languages, as standardization

efforts in representing rules for the Semantic Web.

Chapter 3 presents the logical formalism. At first, we present the language

of defeasible logic and its main features and then one motivation of our work,

the multi-agent systems. We outline different perspectives, like agents based on

cognitive and social models and approaches on this domain, that include BDI and

BOID architecture. After presenting modal logics and its variations, we describe

why motivational attitudes and normative notions have nonmonotonic behavior.

Thus we conclude that extending defeasible logic with modal and deontic operators

as a convenient and appropriate way to model these aspects.

Chapter 4 presents the logic metaprogram, implemented in Prolog, that was

used to implement the extension of defeasible logic. We present the predicates

and the clauses that consist the different parts of the metaprogram, in order to

formulate the defeasible theory of the formalism. We show the different ways that

can be used to handle the additional operator of permission and the resolution of

conflicts among modalities for the different types of agents. Finally, we illustrate

with several examples how we use this metaprogram in order to reason over this

formalism.

Chapter 5 reports on the implementation architecture of our nonmonotonic

rule-based system, based on the extension of defeasible logic. Firstly, we give

an overview of how the system works, and then we describe in detail the function-

ality of each of the modules of the system. We show with several screenshots the

GUI of this system, illustrating the way a user interacts with the underlying system.

In Chapter 6 we present a use case, showing in practice the abilities and the

functionality of our system. This is an example from a specific application, the

modelling of a variety of university regulations from the Department of Computer

CHAPTER 1. INTRODUCTION 4

Science at the University of Crete. This task is compatible with the motivation of

our work in modelling policies and business rules. We use our formalism, in par-

ticular the deontic extensions of defeasible logic, to model logically and represent

these regulations. RDF/S data are loaded as ontological knowledge, integrating in

this way with Semantic Web standards. Then, we show through several screenshots

how the system responses to user queries.

Finally, in Chapter 7 we present our conclusions and plans of future work.

Chapter 2

Rules for the Semantic Web

The Semantic Web [13] is an initiative that aims at improving the current state of

the World Wide Web. It is an evolving extension of the World Wide Web in which

Web content can be expressed not only in natural language, but also in a form that is

more easily machine-processable. We can take advantage of these representations

by using intelligent techniques. The Semantic Web is propagated by the World

Wide Web Consortium (W3C), an international standardization body for the Web.

The driving force of the Semantic Web initiative is Tim Berners-Lee, the very

person who invented the WWW in the late 1980s. His vision for the Semantic

Web is to augment the existing Web with resources more easily interpreted and

used by programs and intelligent software agents. This involves moving the Web

to a universal medium for data, information, and knowledge exchange. In order to

achieve these goals, a variety of enabling technologies are necessary, that will lead

to a more advanced Semantic Web. The key technologies include explicit metadata,

ontologies, logic and inferencing, and intelligent agents.

The development of the Semantic Web proceeds in steps, each step building

a layer on top of another. In building one layer of the Semantic Web on top of

another requires each layer to have downward compatibility and upward partial

understanding. Downward compatibility means that agents which are fully aware

of a layer, should also be able to interpret and use information written at lower

levels. Upward partial understanding means that agents should take at least partial

advantage of information at higher levels. For example, an agent aware only of the

RDF and RDF Schema semantics can interpret knowledge written in OWL partly,

by disregarding all but RDF and RDF Schema elements. The Semantic Web layers

are presented in Figure 2.1. In the next sections we will briefly describe the basic

Semantic Web layers and the technologies that have reached a reasonable degree

of maturity.

5

CHAPTER 2. RULES FOR THE SEMANTIC WEB 6

Figure 2.1: The Semantic Web layers from W3C.

2.1 Web Documents in XML

At the bottom layer we find XML [20], a universal meta-language that lets users

write structured Web documents with a user-defined vocabulary. The eXtensible

Markup Language (XML) provides a uniform framework for exchanging data be-

tween applications through markup, structure, and transformations. It represents

structured information on the Web, that can be easily accessed by the machines.

Unicode characters and Uniform Resource Identifiers (URIs) are two technolo-

gies that XML is built upon. The Unicode characters allow XML information to

be communicated using any written human language. URI is a generic term that

identifies a resource on the World Wide Web. So URIs are used by the upper levels

as unique identifiers for concepts in the Semantic Web.

An XML document is valid if it conforms to certain structuring information.

XML Schema [85] is the richer language for defining restrictions in the structure

of XML documents. It supports powerful capabilities in defining user-defined data

types. It also provides a sophisticated large set of built-in data types, which many

of them can be used by the ontology languages in the upper levels.

Namespaces [19] are a simple mechanism of XML for creating globally unique

names for the elements and attributes in an XML instance. They are used for

disambiguation purposes. An XML document may contain element or attribute

names from different markup languages, allowing to be mixed together without

ambiguity. A namespace is denoted as a URI reference, which is the location of a

vocabulary (e.g an XML Schema).

XML provides a surface syntax for structured documents and Semantic Web

technologies, which are positioned in the upper levels and are built on top of this

language. Although it provides syntactic interoperability, XML does not provide a

mechanism to deal with the the meaning of the content. For this lack of semantics,

CHAPTER 2. RULES FOR THE SEMANTIC WEB 7

other technologies with further features for the Semantic Web are layered on top

of XML.

2.2 Describing Web Resources in RDF

XML is a markup language that can often add meaning to data with the use of tags.

However, there is no standard way of assigning meaning to tag nesting, actually

understanding is meaningful only to humans. It is required for machines to do

more automatically and go beyond the notion of XML data model, toward a more

meaning model. These machine-processing capabilities are provided by RDF, a

foundation for representing and processing metadata. Metadata is the term that

captures the information of the data and is used to identify and extract information

from Web sources in the Semantic Web.

Resource Description Framework(RDF) [52] is a data-model that is based upon

the idea of subject-predicate-object triple, called a statement. These statements are

made about resources that can be anything with an associated URI. The basic RDF

graph-based model produces triples, where a resource (subject) is linked through an

arc, labeled with a property (predicate), to a value (object). Properties are special

kind of resources (so they are identified by a URI) and they are used to describe

relationships between resources. A value can be either a resource or a literal, which

is an atomic value.

In RDF we can interpret a statement in three ways: a) as a triple, b) as a graph,

or c) in a XML form. An example of statement is the sentence:

The course with homepage http://www.csd.uoc.gr/∼hy467 is taught by

Grigoris Antoniou.

The simplest way of representing this statement is as a triple:

(http://www.csd.uoc.gr/∼hy467, http://www.mydomain.org/uni-ns/#isTaughtBy,

“Grigoris Antoniou”).

Figure 2.2 shows the second graph-based way of representing statements. It is

the corresponding graph for the same sentence. We can think that a graph rep-

http://www.csd.uoc.gr/~hy467 Grigoris Antoniou
isTaughtBy

Figure 2.2: Graph representation of an RDF Statement.

resents a collection of interrelated statements, where the nodes are connected via

various relationships (properties). At any point we can introduce new nodes, as we

add relationships between resources. The following statement

CHAPTER 2. RULES FOR THE SEMANTIC WEB 8

The course with homepage http://www.csd.uoc.gr/∼hy467 it entitled as

Knowledge Representation.

is added to the previous graph:

http://www.csd.uoc.gr/~hy467 Grigoris Antoniou
isTaughtBy

Knowledge
Representation

title

Figure 2.3: RDF graph

Although the graph view is the most convenient for communication between

people, the Semantic Web vision requires a suitable representation that is machine-

accessible and machine-processable. This is the third way, the XML-based syntax.

RDF is defined as an excellent complement to XML. The expression of RDF data

in XML form provides syntactic interoperability. It can passed over the Web and be

easily accessed by the machines. RDF provides the semantic interoperability and

makes an information object interoperable among applications. This combination

enables users or machines to retrieve, process and manage information from the

Semantic Web.
According to the XML-based view, an RDF document is represented by an

XML element, which describes a number of statements about resources.The fol-
lowing RDF/XML document describes the previous statements:

<?xml version="1.0" encoding="UTF-16"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:mydomain="http://www.mydomain.org/uni-ns">

<rdf:Description rdf:about="http://www.csd.uoc.gr/˜hy467">

<mydomain:isTaughtBy rdf:resource="Grigoris Antoniou"/>

<mydomain:title rdf:datatype="&xsd;string">

Knowledge Representation

</mydomain:title>

</rdf:Description>

</rdf:RDF>

In the first line an RDF document specifies that we are using XML. It follows

with the root element tag rdf:RDF that also specifies a number of namespaces.

The namespace mechanism of XML is used, but in an expanded way. In XML,

namespaces are only used to remove ambiguities, while in RDF, external names-

paces are expected to be RDF documents defining resources, which are used to

import RDF documents. This allows reuse of resources and enables other people

to add additional features for the resources producing a large distributed collection

of knowledge.

CHAPTER 2. RULES FOR THE SEMANTIC WEB 9

http://www.csd.uoc.gr/~hy467 Grigoris Antoniou
isTaughtBy

Course isTaughtBy Lecturerdomain range

Professor
Associate
Professor

Assistant
Professor

subClassOfsubClassOf
subClassOf

type

type

title
domain

Literal
range

Knowledge
Representation

RDFS

RDF

type

title

Figure 2.4: RDF Schema and RDF Layers

The content of the rdf:RDF element is a number of statements about resources.

We use the element rdf:Description to describe each statement about resources.

Within the rdf:Description are contained the property elements, the content of

which are their values, if the value is a literal. In case the value is a resourse,

is denoted as an attribute of a property element. RDF also uses the predefined set

of XML Schema data types in order to indicate the type of a literal.

RDF is a universal language that lets users describe resources, but it is domain-

independent. That means that it does not make assumptions about any particular

application domain. It is up to users to define their own vocabularies using a lan-

guage called RDF Schema (RDFS)[21].

RDF Schema is a primitive ontology language that provides a mechanism for

describing specific domains. The purpose of RDFS is to provide a vocabulary that

specifies which properties apply to which kinds of objects and what values they

can take, and describe the relationships between objects. Thus RDFS describes the

semantics and makes them machine-accesible, in accordance with the Semantic

Web vision. The main RDFS constructs are classes, subclass relations, properties,

subproperty relations, and domain and range restrictions.

A class can be considered as a set of elements. Individual objects that belong

to a class are instances of this class. The constraints on properties are introduced

through domain and range restrictions. The domain specifies the set of resources

that may have a given property, while the range specifies the set of values for

a given property. Finally RDFS defines hierarchy for classes and properties and

establishes these relationships through subclasses and subproperties respectively.

Figure 2.4 shows an example that illustrates the separate layers of RDF Schema

and RDF. This schema contains the classes course and lecture, which it has the

CHAPTER 2. RULES FOR THE SEMANTIC WEB 10

subclasses professor, associate professor and assistant professor and the properties

is taught by and title. It also defines the domain and range restrictions for the

properties. The RDF layer contains class instances and values of properties. The

arc with label type defines the relationship between classes and instances.

Although RDF and RDFS form a basis on which more layers can be built,

together they still lacked sufficient expressive power. For example, a serious re-

striction about RDF is that it uses only binary properties, because we often use

predicates with two or more arguments. RDF Schema is a minimal ontology mod-

eling language for the Web. Many desirable modelling primitives are missing and

the only constraints expressible are domain and range constraints on properties.

Therefore we need an ontology layer on top of RDF/RDFS for the Semantic Web.

2.3 Web Ontology Language

The Web Ontology Working Group of W3C has identified a number of character-

istic use-cases for the Semantic Web that indicate the need for a more powerful

ontology modeling language. For machines to perform useful automatic reasoning

tasks on Web documents, the language machines must go beyond the expressive-

ness than RDF and RDF Schema offer. As a result, W3C has defined Web On-

tology Language (called OWL) [68] as standard for Web ontologies. OWL builds

upon RDF and RDF Schema and facilitates greater machine readability of Web

content, by providing additional vocabulary along with formal semantics.

Generally an ontology describes a domain of discourse. It formally consists

of a list of terms and the relationships between them in order to represent an area

of knowledge. The terms denote important concepts, such as classes of objects.

Besides subclass relationships, ontologies may include information, such as prop-

erties, value restrictions, disjoint statements e.t.c. In the context of the Web, on-

tologies provide a shared understanding of a domain. Such a shared understanding

is necessary to overcome differences in terminology. This is a way for a program

to know when any two given terms are being used to mean the same thing.

An ontology language permits the development of explicit, formal conceptu-

alizations of models. The main requirements of an ontology language are a well-

defined syntax, a formal semantics, convenience of expression, an efficient reason-

ing support system, and sufficient expressive power.

RDF and RDF Schema allow the representation of some ontological knowl-

edge. The main modeling primitives of RDF and RDFS concern the organiza-

tion of vocabularies in typed hierarchies. However, a number of other features are

missing, such as local scope of properties, disjointness of classes, cardinality of

restrictions e.t.c. Therefore we need an ontology language that is richer than RDF

Schema, with respect to these additional features. In designing such a language the

trade-off is between expressive power and efficient reasoning support. Generally

speaking, the richer the language is, the more inefficient the reasoning support be-

comes. Thus an ontology language in needed that can be supported by reasonably

CHAPTER 2. RULES FOR THE SEMANTIC WEB 11

efficient reasoners while being sufficiently expressive.

The full set of requirements for an ontology language seems unreachable. These

requirements have prompted W3C to define OWL to include three different sub-

languages (OWL Full, OWL DL, OWL Lite) in order to offer different balances of

expressive power and efficient reasoning.

The entire language is called OWL Full and uses all the OWL languages prim-

itives and allows their combination with RDF and RDFS. The advantage of OWL

Full is that it is fully compatible with RDF, both syntactically and semantically.

The disadvantage of OWL Full is that the language is undecidable, and thus cannot

provide efficient reasoning support.

OWL DL is a sublanguage of OWL Full that restricts how the constructors

from OWL and RDF may be used. This language corresponds to a well studied de-

scription logic [11]. The advantage of OWL DL is that permits efficient reasoning

support. The disadvantage is the lose of full compatibility with RDF.

An even further restriction of OWL DL to a subset of the language constructors

produces a subset of the language called OWL Lite. The advantage of this language

is that it is both easier to understand and easier to implement for tool builders. The

disadvantage is of course a more restricted expressiveness.

2.4 Logic and Rules on the Semantic Web

At present, the highest layer that has reached W3C standardization is the web on-

tology language OWL. The next steps in the development of the Semantic Web

will be the realization of more advanced representation and reasoning capabilities

for web applications. This is the development of the next layers, logic and proof.

Logic is the study of the principles of reasoning. In general, logic constructs

formal languages for expressing knowledge, well-understood formal semantics,

and automatic reasoners to deduce (infer) conclusions. It is the foundation of

knowledge representation, which has been studied in the area of artificial intelli-

gence, particularly in the form of predicate logic (also known as first-order logic).

Both RDF and OWL (Lite and DL) can be viewed as specializations of pred-

icate logic that are used for Web knowledge representation. This correspondence

can be illustrated by describing the semantics of RDF and OWL in the form of

logical axioms. They are languages that define reasonable subsets of logic and

provide a syntax that fits well with Web languages. As we mentioned before, OWL

Lite and OWL DL correspond roughly to a description logic, a subset of predicate

logic, for which efficient proof systems exist.

Because of the existence of proof systems, it is possible to trace the proof that

leads to a logical consequence. This is an important advantage of logic, that it

can provide explanations for answers. Ultimately, since the logic provides trace-

able steps in obtaining and backtracking a conclusion, an explanation will trace

an answer back to a given set of facts and the inference rules used. Explanations

are important for the Semantic Web because they establish validated proofs for the

CHAPTER 2. RULES FOR THE SEMANTIC WEB 12

Semantic Web agents in providing reliability for their results.

A key ingredient of logic and proof layers will be rules. An inference rule is

a scheme for constructing valid inferences. It can be viewed as relations holding

between a set of formulas called premises and conclusions, whereby the conclu-

sion is said to be inferable (or derivable or deducible) from the premises. Rule

technologies are by now well-established and no longer restricted to AI systems.

There seems to be a general consensus that rules with a well-defined semantics are

needed in the Semantic Web applications and that they should be well integrated

with the ontology level.

Rule systems can be utilized in two stages of the layered development of the

Semantic Web:

(a) in the ontology layer, they can serve as extensions of, or alternatives to,

description logic-based ontology languages by enriching them with more

expressive power and representational capabilities; and

(b) on top of the ontologies, they can be used to develop automated reasoners

that can deduce new knowledge based on the ontology knowledge.

Reasons why rule systems are expected to play a key role in the further devel-

opment of the Semantic Web include the following:

• Seen as subsets of predicate logic, monotonic rule systems (Horn logic) and

description logics are orthogonal; thus they provide additional expressive

power to ontology languages.

• Efficient reasoning support exists to support rule languages.

• Rules provide a high-level description, abstracting from implementation de-

tails; they are concise and simple to write. They are well-known, understood

by non-experts, and well integrated in the mainstream Information Technol-

ogy.

Therefore integration of rules and ontologies is a subject of active research. The

existing proposals for using rules in the Semantic Web refer to rule formalisms

originating from the field of Logic Programming and non-monotonic reasoning.

These classes of rules are based on different kinds of logics and thus they have well

defined declarative semantics, supported by well-developed reasoning algorithms.

The simplest language of this kind, playing important role in logic programming,

is Horn logic or rule systems, a subset of predicate logic that allows efficient rea-

soning. A rule has the form

H ←− A1, .., An

where H, Ai are atomic formulas. H is called the head or the consequent and

A1, A2, ..., An is called the body or antecedent of the rule. The rule is read as if

A1, A2, ..., An are known to be true, then H is also true.

CHAPTER 2. RULES FOR THE SEMANTIC WEB 13

Horn logic is the basis of monotonic rules. A rule is called monotonic if a con-

clusion remains valid even if new knowledge becomes available within predicate

logic. It appears that the best one can do at present is to take the intersection of the

expressive power of Horn logic and description logics.

Among the studies and approaches regarding integration of description logics

and rule systems for the Semantic Web, we distinguish:

• Description Logic Programs (DLP) [42], which define an intersection of

OWL DL and horn clauses, thus making possible re-use of existing reason-

ers. The resulting logic is decidable, but does not increase the expressive

power of OWL, which is the main objective.

• Semantic Web Rule Language (SWRL) [47], which extends OWL to include

Horn-like rules, but results in an undecidable logic. SWRL is presented in

section 2.8.2.

• CARIN [53] is defined as a family of languages that provide a hybrid inte-

gration of Datalog with different description logics.

• the study made by Rosati [75], dealing with reasoning in description logic

knowledge bases augmented with Datalog rules.

In the next section we present several systems which integrate rule languages

with ontology languages, following different implementation techniques and al-

lowing different rule language extensions. All these rule-based systems use knowl-

edge representation and inference mechanisms to reach conclusions from facts and

rules. The basic distinction lies in the way the inference engines apply the rules

to a specific problem. In rule-based systems, there are two directions, forward and

backward chaining.

In backward chaining, the system is given a hypothesis or a goal and backtracks

to check if there is data available that will support any of these goals. So it searches

for rules whose conclusions match this goal. In forward chaining, the system is

given data and chains forward, by using the inference rules, in order to reach a

goal. When this data is the body of a rule, it triggers this rule and add its head to

the conclusions.

2.5 Integrating Rules and Ontologies

2.5.1 CWM

CWM [27] is a forward-chaining first-order inference engine that is written in

Python by Tim Berners-Lee and Dan Connolly. It is pronounced as coom. It is

an open-source program under the W3C software license, used in Semantic Web

applications. CWM is a general-purpose processor for text-based data in files for

the Semantic Web. Its core language is RDF, which is extended to include rules.

CWM supports RDF in three different graph serialization formats: RDF/XML,

CHAPTER 2. RULES FOR THE SEMANTIC WEB 14

N-Triples and Notation 3 [63](N3). N3 is a shorthand non-XML serialization for-

mat of RDF models, designed due to the lack of human-readability of RDF/XML

syntax. It is compact and allows greater expressiveness.
Suppose that in a movie database community, the information of which is rep-

resented in RDF/S ontologies, the following rule stands for its members:

If someone is a fan of an actor, then buys a ticket for watching on cinema any
new film, where this actor participates in.

This rule can be encoded in CWM as follows:

@prefix imdb: <http://www.imdb.com/ontology#> .

{ ?M imdb:isFanOf ?A. ?A imdb:participates ?F. } =>

{ ?M imdb:buyTicket ?F. }.

One main feature of CWM is that it can perform several built-in functions like

comparing strings, mathematical operations, retrieving resources from the Web

(rules or triples), representation capabilities, time handling e.t.c. It also uses a full

set of rules in a module, in N3 format, that defines most of the RDFS semantics

and can apply these entailment rules in RDF graphs, in order to infer new triples.

2.5.2 Jena

Jena [50] is an open source Semantic Web framework for Java. It is a system that

supports many features and integrates RDF/RDFS and OWL with several inference

engines. It provides:

• a programming environment for reading and writing RDF, in the formats of

RDF/XML, N-Triples and N3, and an OWL API too.

• the RDF Query Language of SPARQL [80]

• apart from the in-memory storage, persistent storage of RDF data in rela-

tional databases. Currently are supported the database engines of MySQL,

HSQLDB, PostgreSQL, Oracle, Microsoft SQL Server and Apache Derby.

Jena has the functionality to allow a range of different inference engines to be

plugged. It provides the following predefined set:

• RDFS reasoner

• OWL reasoner

• Transitive reasoner

• Generic rule reasoner

CHAPTER 2. RULES FOR THE SEMANTIC WEB 15

RDFS reasoner supports the use of RDF Schema. It implements almost all of the

RDFS entailments through axioms and rules, which are used to derive additional

RDF assertions. The RDFS reasoner can work in three different modes: a) full,

which implements almost all of the RDFS axioms, but it is the most expensive

mode, b) default, a more restricted mode, c) simple, which omits the axioms, but is

the most useful mode, according to the authors.

OWL reasoner consists of three implementations: default, mini and macro.

Each of the configurations is a sound implementation of a subset of OWL/full

semantics but none of them is complete.

Transitive reasoner is the core engine that implements just the transitive and

symmetric properties of rdfs:subPropertyOf and rdfs:subClassOf. Although it is

a pure inference engine on its own, it is used to build more complex reasoners

(e.g. used by RDFS reasoner), in order to provide slightly higher performance, and

somewhat more space efficiency.

Generic rule reasoner is a general purpose inference engine, which is also used

to implement both the RDFS and OWL reasoners, by supporting rule-based infer-

ence over RDF graphs, but it is also available for general tasks. It has the special

feature of supporting forward chaining, backward chaining and a hybrid mode of

combining them. It provides the forward RETE inference engine and a backward

chaining datalog engine that supports tabling. The generic rule reasoner has the

option of employing both of the individual rule engines in conjunction, in a hybrid

inference engine. Finally this reasoner can also be extended by registering new

procedural primitives.
So the rule from the movie database example can be encoded in two ways.

Using the backward chaining the rule is:

(?M imdb:buyTicket ?F) <-

(?M imdb:isFanOf ?A), (?A imdb:participates ?F) .

The same rule can be encoded using the forward chaining, by exchanging the
directions:

(?M imdb:isFanOf ?A), (?A imdb:participates ?F) ->

(?M imdb:buyTicket ?F) .

2.5.3 Triple

Triple [78] is a Semantic Web engine that is designed for querying, reasoning and

transforming RDF models under several different semantics. Its reasoning engine

is based on Horn Logic ad it borrows many basic features from F-Logic, but is spe-

cialized for the requirements of the Semantic Web. It supports RDF, RDF Schema

and a subset of OWL Lite. It can be represented in a Prolog-like syntax and in an

RDF-based, allowing interoperability across the Web.

Horn Logic is the core rule language, but in order to support basic RDF con-

structs like namespaces, resources and statements, it is syntactically extended.

CHAPTER 2. RULES FOR THE SEMANTIC WEB 16

Triple provides extensions for supporting RDF schema through rules that axioma-

tize the RDFS semantics (incomplete entailment though). It also provides modules

that implement RDF Schema and description logic languages (OWL,

DAML+OIL), by interacting with external reasoning components. In the latter

case, Triple behaves as hybrid rule language, because it works on top of the on-

tologies and uses the vocabulary defined in description logic. It finally provided

many features, like reified statements, path expressions, skolem functions, modal

functionalities in agent communication e.t.c.

Triple rule language can be compiled into logic programs, by using Prolog

systems like XSB [91]. Thus Triple is a backward chaining inference engine with

tabling support, which guarantees termination of inference.
The rules from the example can be encoded in Triple as:

rdf := "http://www.w3.org/1999/02/22-rdf-syntax-ns#".

rdfs :="http://www.w3.org/TR/1999/PR-rdf-schema-19990303#".

@fanticket {

imdb := "http://www.imdb.com/ontology#".

FORALL A,B A[imdb:buyTicket->B] <-

EXISTS C (A[imdb:isFanOf->C] AND

C[imdb:participates->B]).

}

2.5.4 SWI-Prolog Semantic Web Library

Swi-Prolog [82] is an open-source Prolog system which is widely used in research

and education as well as for commercial applications. It has a rich set of features,

by providing many add-ons and libraries. One of these additional functionalities

is provided by the SWI-Prolog Semantic Web Library, which deal with RDF/S

documents. It consists of Prolog packages for reading, querying and storing RDF

triples, only in RDF/XML format. It is a hybrid rule system with backward in-

ference engine, because the predicates of the Prolog rules and the ontology are

distinguished and suitable interfacing between them is facilitated. If a user wants

to explore the hierarchies and domain restrictions of RDFS constructs, he refers to

the special predicates, provided by the Semantic Web library.
Therefore, using this library, the rule from the example is written in Prolog as:

’http://www.imdb.com/ontology#buyTicket’ (Member,Film) :-

rdf(Member,’http://www.imdb.com/ontology#isFanOf’,Actor),

rdf(Actor,’http://www.imdb.com/ontology#participates’,Film).

2.5.5 Characteristics of Rule-based Systems

In this section we presented systems that support reasoning with RDF/S ontologies.

As we stated before, all these systems use as rule formalism a logic programming

language, which is based on definite Horn clauses, with sound and complete proof

CHAPTER 2. RULES FOR THE SEMANTIC WEB 17

procedures. CWM, Jena, TRIPLE are homogeneous reasoners, which means that

both ontologies and rules are embedded in a logical language, without making a

priori distinction between the rule predicates and the ontology predicates. These

systems use modules that contain the axiom schemes for the several forms of en-

tailment defined for RDF graphs. On the other hand, as we said in subsection 2.5.4,

SWI-Prolog Library can be seen as a hybrid reasoner. Furthermore, CWM is a for-

ward engine while TRIPLE and SWI-Prolog are backward ones. Jena supports

both forward and backward chaining, and even can combine them together. Triple

relies on XSB-Prolog tabling features for guaranteeing termination of inference,

while Jena also has its own implementation of tabling, inspired by the mechanisms

of XSB-Prolog too.

2.6 Nonmonotonic Rules on the Semantic Web

One of the issues that have attracted the concentration of the developers of the Se-

mantic Web, is the nature of the rule systems that should be employed in the layered

development of the Semantic Web. Most studies have focused on the employment

of monotonic logical systems, because the Semantic Web standards (RDF, RDFS,

OWL) are based on classical predicate logic. Although important and useful in

many situations, like in factual and ontological knowledge, which contains general

truths that do not change often, approaches based on monotonic reasoning suffer

from not dealing with inconsistent information properly. When an inconsistency

arises in a knowledge base, then every conclusion can be derived.

Nonmonotonic rule systems seem also to be a good solution, as they offer more

expressive capabilities and are closer to commonsense reasoning. There are many

scenarios in which conflicting rules may arise on the Web. Here we mention a few

of them:

• Reasoning with Incomplete Information: [1] describes a scenario where busi-

ness rules have to deal with incomplete information: in the absence of certain

information some assumptions have to be made which lead to conclusions

not supported by classical predicate logic. In many applications on the Web

such assumptions must be made because other players may not be able (e.g.

due to communication problems) or willing (e.g. because of privacy or se-

curity concerns) to provide information. This is the classical case for the use

of nonmonotonic knowledge representation and reasoning [60].

• Rules with Exceptions: Rules with exceptions are a natural representation for

policies and business rules [7], and priority information is often implicitly or

explicitly available to resolve conflicts among rules. Potential applications

include security policies [10], [54] business rules [1], personalization, bro-

kering, bargaining, and automated agent negotiations [36].

• Default Inheritance in Ontologies: Default inheritance is a well-known fea-

ture of certain knowledge representation formalisms. Thus, it may play a

CHAPTER 2. RULES FOR THE SEMANTIC WEB 18

role in ontology languages, which currently do not support this feature. [45]

presents some ideas for possible uses of default inheritance in ontologies.

A natural way of representing default inheritance is rules with exceptions,

plus priority information. Thus, nonmonotonic rule systems can be utilized

in ontology languages.

• Ontology Merging: When ontologies from different authors and/or sources

are merged, contradictions arise naturally. Predicate logic based formalisms,

including all current Semantic Web languages, cannot cope with inconsis-

tencies. If rule-based, or Horn definable, ontology languages are used and if

rules are interpreted as defeasible (that is, they may be prevented from being

applied even if they can fire) then we arrive at nonmonotonic rule systems. A

sceptical approach, as adopted by defeasible reasoning, is sensible because

does not allow for contradictory conclusions to be drawn. Moreover, priori-

ties may be used to resolve some conflicts among rules, based on knowledge

about the reliability of sources or on user input. Thus, nonmonotonic rule

systems can support ontology integration.

Nonmonotonic reasoning is a subfield of Artificial Intelligence trying to find

more realistic formal models of reasoning than classical (first-order) logic. A logic

is monotonic if the truth of a proposition does not change when new information

are added to the system. By contrast, the real world requires common sense rea-

soning, that deals with incomplete and potentially inconsistent information and one

draws conclusions that have to be withdrawn when further information is obtained.

In a nonmonotonic logic, the set of conclusions, in contrast to monotonic logic,

does not grow monotonically (in fact, it can decrease) with the given information.

This is the phenomenon that nonmonotonic reasoning methods try to formalize.

Several nonmonotonic logics have been proposed and studied during the last few

several decades, among them default logic, autoepistemic logic, circumscription

and defeasible logic.

Default logic [73] is a non-monotonic logic proposed by Raymond Reiter and

it has been used to formalize a number of different reasoning tasks. Default Logic

assumes that knowledge is represented in terms of a default theory. It can express

facts like “by default, something is true”. A default theory is a pair (D,W). W is a

set of first order formulas, called the background theory, representing the facts that

are known for sure. D is a set of default rules of the form

A:B1,..,BN

C

where A,Bi, C are classical closed formulas. This has the intuitive reading: if A

is provable and ∀i ∈ [1, N] =⇒ ¬Bi is not provable, then derive C. A is called the

prerequisite, Bi a consistency condition or justification, and C the consequent of

the default. We can make this clear by formalizing the default rule as

bird(X):flies(X)
flies(X)

CHAPTER 2. RULES FOR THE SEMANTIC WEB 19

in combination with the rule

penguin(X) −→ ¬flies(X)

According to this rule , if X is a bird, and it can be assumed that it flies, then we

can conclude that it flies. One of the exceptions to this rule is the penguin.

Moore ’s autoepistemic logic [62] is the most widely studied logic of a class

called modal nonmonotonic logics. The autoepistemic logic is a formal logic aimed

at formalizing representation and reasoning of knowledge about knowledge. It

can express knowledge and lack of knowledge about facts. These logics use a

modal operator to express explicitly that a certain formula is consistent or believed.

Moore extends the syntax of propositional logic by a modal operator L indicating

knowledge: if p is a formula then also Lp is. Lp stands for “p is believed”. The

idea is to allow reasoning about what an agent completely knows and about what

he does not know. This means that: if p belongs to the set of beliefs B, then also

Lp has to belong to B, otherwise ¬ Lp must be in B.

Circumscription [61] was created by McCarthy and it has generated a great deal

of interest in the nonmonotonic reasoning community. It formalizes the common

sense assumption that things are as expected unless otherwise specified. Circum-

scription deals with the minimization of predicates subject to restrictions expressed

by predicate formulas. In circumscription, theories are written in classical first-

order logic, however the entailment relation is not classical.

Defeasible logic [65], [5] is a nonmonotonic logic proposed by Donald Nute to

formalize defeasible reasoning. Defeasible reasoning is a simple, but often more

efficient than other nonmonotonic rule systems rule-based approach, to reasoning

with incomplete and inconsistent information. It is based on the use of rules that

may be defeated by other rules. In general, a knowledge base in defeasible logic

consists of five different kinds of knowledge: facts, strict rules, defeasible rules,

defeaters, and a superiority relation among rules.

Defeasible logic has recently been used in Semantic Web applications. In par-

ticular, there are implementations of defeasible logic that interoperate with Seman-

tic Web standards. We will present these implementations in the next section. Its

use as a rule language for Semantic Web applications has many advantages. It of-

fers enhanced representational capabilities allowing one to reason with incomplete

and contradictory information. It also can reason both with static and dynamic

knowledge on the Semantic Web. Defeasible logic also supports, in contrast to

the classical nonmonotonic reasoning approaches, the representational feature of

priority. Priorities on rules may be used to resolve some conflicts among them. Fi-

nally, compared to mainstream nonmonotonic reasoning, defeasible logic has the

additional very important advantage of its relatively low computational complexity

[56].

CHAPTER 2. RULES FOR THE SEMANTIC WEB 20

2.7 Nonmonotonic Rule Systems on the Semantic Web

We present the following implemented systems, which follow nonmonotonic rea-

soning approaches for Semantic Web applications:

2.7.1 DR-Prolog

DR-Prolog [2] is a defeasible reasoning system on the Web, in which is based the

implementation of our system. It is a powerful rule system based on defeasible

logic, which combines the expressive power of a nonmonotonic logic with the

major Semantic Web standards (RDF/S, OWL, and RuleML), to build applications

for the logic and proof layers of the Semantic Web. DR-Prolog has a firm formal

foundation provided by a number of papers published in top artificial intelligence

and logic programming conferences and journals [5], [9], [4], [57], [56], [58], [59].

The main characteristics of DR-Prolog are the following:

• It is based on Prolog. The core of the system consists of a well-studied trans-

lation [6] of defeasible knowledge into logic programs under Well- Founded

Semantics [32]. This declarative translation distinguishes from other defea-

sible reasoning systems.

• The main focus is on flexibility. Monotonic and nonmonotonic rules, pref-

erences among rules are part of the interface and the implementation. It also

supports open and closed world assumption, and reasoning with inconsis-

tencies. DR-Prolog implements the entire of defeasible logic and supports a

number of reasoning variants.

• The system can reason with RDF data and RDF Schema and (parts of) OWL

ontologies. The latter happens through the transformation of the RDFS con-

structs and many OWL constructs into rules. Note however, that a number

of OWL constructs cannot be captured by the expressive power of rule lan-

guages.

• Its user interface is syntactically compatible with RuleML, the main stan-

dardization effort for rules on the Semantic Web.

2.7.2 DR-DEVICE

DR-DEVICE [12] is also a defeasible reasoning system for the Semantic Web,

exhibiting similar functionality with DR-Prolog, but following a different overall

approach. It is a powerful query answering system that is implemented in Jess. It

is capable of reasoning about RDF data and RDF Schema ontologies over the Web

using defeasible logic. DR-DEVICE implements the full version of defeasible

logic, by supporting multiple rule types of defeasible logic, priorities among rules,

two types of negation, multiple variants e.t.c. Its architecture is based on the CLIPS

rule system, and is in fact an extension of R-Device: a system for rules on RDF

CHAPTER 2. RULES FOR THE SEMANTIC WEB 21

data. It is syntactically compatible with RuleML and the rules can be expressed

either in the rule language of CLIPS, or in an extension of the OO-RuleML syntax.

DR-DEVICE is based on a translation of defeasible theories into the non-

logical language of Jess, with an associated loss in declarativity of the overall ap-

proach. On the other hand, it has advantages of easier integration with mainstream

software technologies.

2.7.3 SweetJess

SweetJess [45] is another defeasible reasoning system that it is implemented in

Jess and integrates well with RuleML. It is based on Situated Courteous Logic

Programs (SCLP), a powerful knowledge representation formalism that supports

prioritized conflict handling and procedural attachments. The latter is a feature not

supported by any of the other nonmonotonic implementations. It uses Jess rule en-

gine as inference engine and supports translation from rules in SCLP, syntactically

encoded in RuleML, into Jess rules and vice versa. An integration effort with the

Semantic Web ontology language of DAML+OIL exists, in which SCLP RuleML

is extended and is called DamlRuleML.

SweetJess is more limited in flexibility, in that it implements only one rea-

soning variant (ambiguity blocking variant). Moreover, it imposes a number of

restrictions on the programs it can map on Jess.

2.7.4 dlvhex

dlvhex [29] is a Semantic Web engine that is based on HEX-programs, which are an

extension of Answer-Set Programs. Answer-set programming (ASP) is a declara-

tive programming approach, similar in syntax to logic programming, with non-

monotonic semantics. HEX-programs are high-order logic programs, with exter-

nal atoms for software interoperability, which extend answer-set semantics. It is the

only nonmonotonic rule system that supports high-order features, which are only

supported by TRIPLE, from the monotonic systems we presented before. dlvhex

integrates rules on top of ontologies, by dealing with external knowledge, through

external atoms. External atoms allow integration of external sources of knowledge,

like RDF data, and reasoners of various nature, like description-logic reasoners for

OWL DL. In contrast to the previous homogeneous nonmonotonic systems, dlvhex

is a hybrid approach.

2.8 Rule Languages for the Semantic Web

Most of the rule-based systems, that we presented in the previous section and have

been developed over the time, present different concepts of rule languages and

notations to feed the rules into the systems. Rule systems use languages that are

best suited for their intentions and capabilities. A different research effort deal

with a unifying framework to represent rules for the Semantic Web context, where

CHAPTER 2. RULES FOR THE SEMANTIC WEB 22

rules need to be published on the Web and implemented in such a way, as to allow

software agents to process on them. A standard XML encoding for the rules is

needed that would ease the exchange of rules on the Web between agents. We

present two standardization efforts in the area of rules for the Semantic Web:

2.8.1 Rule Markup Language

The Rule Markup Language (RuleML) [76] is a XML based rule language standard

that was developed to express both forward (bottom-up) and backward (top-down)

rules in XML for deduction, rewriting, and further inferential-transformational

tasks on the Web. It is developed by the Rule Markup Initiative, an open network

of researchers and practitioners from several countries that was formed to develop

a canonical Web language for rules using XML markup, formal semantics, and

efficient implementations.

RuleML provides a classification of the rule it supports. RuleML contains a

hierarchy of rules, including reaction rules (event-condition-action rules), transfor-

mation rules (functional-equational rules), derivation rules (implicational-inference

rules), also specialized to facts (premiseless derivation rules) and queries (conclu-

sionless derivation rules), as well as integrity-constraints (consistency-maintenance

rules). For these top-level families, XML DTDs and Schemas are provided, reflect-

ing the structures of the rule families. Derivation rules, facts, and queries have been

developed mostly up to date.

The RuleML hierarchy of rules branches into the two direct categories of re-

action rules and transformation rules. On the next level, transformation rules spe-

cialize to the subcategory of derivation rules. Then, derivation rules have further

subcategories, namely facts and queries. Finally, queries specialize to integrity

constraints. More subdivisions are being worked out, especially for reaction rules.

A graphical view of the top-level classification of RuleML rules is shown in Fig-

ure 2.5.
The basic subcategory in this hierarchy is the language of function-free Horn

clauses, known as Datalog. This is a sublanguage of derivation-rules and Horn
logic and it is the foundation for the kernel of RuleML sublanguages. Datalog
is the language in the intersection of SQL and Prolog. Its syntax is defined by
an XML Schema, using XML tags such as <head>, <body>, <atom> and is
referred as RuleML proposal. The latest XSD version that has been released is
RuleML version 0.91. To explain the Datalog features, we show the following
example, where a rule is formalized in RuleML Datalog:

<Implies>

<head>

<Atom>

<Rel>buyTicket</Rel>

<Var>Member</Var>

<Var>Film</Var>

</Atom>

</head>

CHAPTER 2. RULES FOR THE SEMANTIC WEB 23

Figure 2.5: The RuleML hierarchy of rules.

<body>

<And>

<Atom>

<Rel>isFanOf</Rel>

<Var>Member</Var>

<Var>Actor</Var>

</Atom>

<Atom>

<Rel>participates</Rel>

<Var>Actor</Var>

<Var>Film</Var>

</Atom>

</And>

</body>

</Implies>

One of the goals of RuleML is to integrate with ontology languages and sub-

sequently with OWL. The current outcome of these efforts is a draft for SWRL,

which is based on a combination of the OWL DL with the unary and binary Data-

log sublanguages of RuleML. SWRL is described in the next section.

2.8.2 Semantic Web Rule Language

SWRL (Semantic Web Rule Language) [48] is a proposal for a Semantic Web rule

language, combining sublanguages of the OWL Web Ontology Language (OWL

CHAPTER 2. RULES FOR THE SEMANTIC WEB 24

DL and Lite) with those of the Rule Markup Language (Unary/Binary Datalog).

The language makes it possible to extend the set of OWL axioms to include Horn-

like rules. It thus enables Horn-like rules to be combined with an OWL knowledge

base.

Rules are of the form of an implication between an antecedent (body) and a

consequent (head). The intended meaning can be read as: whenever the conditions

specified in the antecedent hold, then the conditions specified in the consequent

must also hold. Both the antecedent and the consequent consist of zero or more

atoms. An empty antecedent is treated as trivially true and an empty consequent is

treated as trivially false. Multiple atoms are treated as a conjunction.

The integration between rules and ontologies is achieved by using the con-

cepts and the roles of OWL DL, (which denote, respectively, unary and binary

predicates) for building atoms of the SWRL rules. The concepts and the roles are

defined by axioms expressed in OWL, which is a subset of SWRL, and used in

SWRL rules. Atoms in these rules can be of the form C(x), P(x,y), sameAs(x,y)

or differentFrom(x,y), where C is an OWL description, P is an OWL property, and

x,y are either variables, OWL individuals or OWL data values.
SWRL provides an XML Concrete Syntax which is a combination of the OWL

XML and RuleML presentation syntax. An example is the following:

<ruleml:imp>

<ruleml:_body>

<swrlx:individualPropertyAtom swrlx:property="buyTicket">

<ruleml:var>member</ruleml:var>

<ruleml:var>film</ruleml:var>

</swrlx:individualPropertyAtom>

<swrlx:individualPropertyAtom swrlx:property="isFanOf">

<ruleml:var>member</ruleml:var>

<ruleml:var>actor</ruleml:var>

</swrlx:individualPropertyAtom>

</ruleml:_body>

<ruleml:_head>

<swrlx:individualPropertyAtom swrlx:property="participates">

<ruleml:var>actor</ruleml:var>

<ruleml:var>film</ruleml:var>

</swrlx:individualPropertyAtom>

</ruleml:_head>

</ruleml:imp>

Chapter 3

Extension of Defeasible Logic

3.1 Defeasible Logic

Defeasible reasoning is a nonmonotonic reasoning approach in which the gaps

due to incomplete information are closed through the use of defeasible rules that

are usually appropriate. This reasoning family is comprised of defeasible logics

[65], [5] and Courteous Logic Programs [43]. Defeasible logics were introduced

and developed by Nute [65] over several years. These logics perform defeasible

reasoning, where a conclusion supported by a rule might be overturned by the

effect of another rule. These logics also have a monotonic reasoning component,

and a priority on rules. One advantage of Nute ’s design was that it was aimed at

supporting efficient reasoning and he kept the language as simple as possible.

Defeasible logic has recently attracted considerable interest. Its use in various

application domains has been advocated, including the modelling of regulations

and business rules [3], modelling of contracts [35], legal reasoning [41], agent

negotiations [36], [79], modelling of agents and agent societies [40], [38], and

applications to the Semantic Web [2], [12].

Being nonmonotonic, defeasible logic deal with potential conflicts (inconsis-

tencies) among knowledge items. Thus, it contain classical negation, contrary to

usual logic programming systems. It can also deal with negation as failure (NAF),

the other type of negation typical of nonmonotonic logic programming systems;

in fact, Wagner [88] argues that the Semantic Web requires both types of nega-

tion. In defeasible logic, it is often assumed that NAF is not included in the object

language. However, as Antoniou et al. [9] show, it can be easily simulated when

necessary. Thus, we may use NAF in the object language and transform the original

knowledge to logical rules without NAF exhibiting the same behavior.

The logics take a pragmatic view and have low computational complexity. This

is, among other things, achieved through the absence of disjunction and the local

nature of priorities: Only priorities between conflicting rules are used, as opposed

to systems of formal argumentation where more complex kinds of priorities (e.g.,

comparing the strength of reasoning chains) are often incorporated.

25

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 26

Defeasible logic is a logical formalism that has been studied and analyzed, with

strong results in terms of proof theory [5], semantics [37], [57] and computational

complexity [56]. As a consequence, its translation into logic programs, a funda-

mental part of our implemented system, has also been studied thoroughly [59],

[8],[6].

3.1.1 Syntax

A defeasible theory (a knowledge base in defeasible logic) D is a triple (F, R, >),

where F is a set of literals (called facts), R a finite set of rules, and > a superi-

ority relation on R. In expressing the proof theory we consider only propositional

rules. Rules containing free variables are interpreted as the set of their variable-free

instances.

Facts are literals that are treated as known knowledge (given or observed facts

of a case), for example, Tweety is an emu. Written formally, this would be ex-

pressed as

emu(tweety).

There are three kinds of rules. Strict rules are denoted by A → p and are interpreted

in the classical sense: whenever the premises are indisputable (e.g. facts) then so is

the conclusion. An example of a strict rule is “Emus are birds”. Written formally:

emu(X) → bird(X).

Inference from facts and strict rules only is called definite inference. Facts and

strict rules are intended to define relationships that are definitional in nature. Thus

defeasible logics contain no mechanism for resolving inconsistencies in definite

inference.

Defeasible rules are denoted by A ⇒ p and can be defeated by contrary

evidence. An example of such a rule is “Birds typically fly”; written formally:

bird(X) ⇒ flies(X).

The idea is that if we know that something is a bird, then we may conclude that it

flies, unless there is other, not inferior, evidence suggesting that it may not fly.

Defeaters are denoted by A Ã p and are used to prevent some conclusions. In

other words, they are used to defeat some defeasible rules by producing evidence

to the contrary. An example is the rule

heavy(X) Ã ¬flies(X)

which reads as follows: “If an animal is heavy then it may not be able to fly”. The

main point is that the information that an animal is heavy is not sufficient evidence

to conclude that it doesn’t fly. It is only evidence that the animal may not be able to

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 27

fly. In other words, we do not wish to conclude ¬flies(X) if heavy(X); we simply

want to prevent a conclusion flies(X).

The superiority relation among rules is used to define priorities among rules,

i.e., where one rule may override the conclusion of another rule. For example,

given the defeasible rules

r : bird(X) ⇒ flies(X)

s : brokenWing(X) ⇒ ¬flies(X)

which contradict one another, no conclusive decision can be made about whether a

bird with broken wings can fly. But if we introduce a superiority relation > with s

> r, with the intended meaning that s is strictly stronger than r, then we can indeed

conclude that the bird cannot fly.

Notice that a cycle in the superiority relation is counterintuitive. In the above

example, it makes no sense to have both r > s and s > r. Consequently, we focus

on cases where the superiority relation is acyclic.

Another point worth noting is that, in defeasible logic, priorities are local in

the following sense: two rules are considered to be competing with one another

only if they have complementary heads. Thus, since the superiority relation is used

to resolve conflicts among competing rules, it is only used to compare rules with

complementary heads; the information r > s for rules r, s without complementary

heads may be part of the superiority relation, but has no effect on the proof theory.

3.1.2 Formal Definition

In this report we restrict attention to essentially propositional defeasible logic.

Rules with free variables are interpreted as rule schemas, that is, as the set of all

ground instances. If q is a literal, ∼q denotes the complementary literal (if q is a

positive literal p then ∼q is ¬p; and if q is ¬p, then ∼q is p).

Rules are defined over a language (or signature) Σ, the set of propositions

(atoms) and labels that may be used in the rule.

A rule r: A(r) →֒ C(r) consists of its unique label r, its antecedent A(r), (A(r)

may be omitted if it is the empty set) which is a finite set of literals, an arrow →֒

(which is a placeholder for concrete arrows to be introduced in a moment), and its

head (or consequent) C(r) which is a literal. In writing rules we omit set notation

for antecedents, and sometimes we omit the label when it is not relevant for the

context. There are three kinds of rules, each represented by a different arrow. Strict

rules use →, defeasible rules use ⇒, and defeaters use Ã.

Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of

strict and defeasible rules in R by Rsd, the set of defeasible rules in R by Rd, and

the set of defeaters in R by Rdft. R[q] denotes the set of rules in R with consequent

q.

A superiority relation on R is a relation > on R. When r1 > r2, then r1 is called

superior to r2, and r2 inferior to r1. Intuitively, r1 > r2 expresses that r1 overrules

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 28

r2, should both rules be applicable. Typically we assume > to be acyclic (that is,

the transitive closure of > is irreflexive).

A defeasible theory D is a triple (F, R, >) where F is a finite set of literals

(called facts), R a finite set of rules, and > an acyclic superiority relation on R. D

is called decisive if the atom dependency graph of D is acyclic.

3.1.3 Proof Theory

A conclusion of D is a tagged literal and can have one of the following four forms:

• +∆q, which is intended to mean that q is definitely provable in D.

• -∆q, which is intended to mean that we have proved that q is not definitely

provable in D.

• +∂q, which is intended to mean that q is defeasibly provable in D.

• -∂q, which is intended to mean that we have proved that q is not defeasibly

provable in D.

If we are able to prove q definitely, then q is also defeasibly provable. This is a

direct consequence of the formal definition below. It resembles the situation in,

say, default logic: a formula is sceptically provable from a default theory T = (W,

D) (in the sense that it is included in each extension) if it is provable from the set

of facts W.

Provability is based on the concept of a derivation (or proof) in D = (F, R, >).
A derivation is a finite sequence P = (P(1),...,P(n)) of tagged literals constructed

by inference rules. There are four inference rules (corresponding to the four kinds

of conclusion) that specify how a derivation may be extended. (P(1..i) denotes the

initial part of the sequence P of length i):

+∆: We may append P(i+1)= +∆q if either

q ∈ F or

∃r ∈ Rs[q] ∀a ∈ A(r): +∆a ǫ P(1..i)

That means, to prove +∆q we need to establish a proof for q using facts and

strict rules only. This is a deduction in the classical sense. No proofs for the

negation of q need to be considered (in contrast to defeasible provability below,

where opposing chains of reasoning must be taken into account, too).

To prove −∆q, that is, that q is not definitely provable, q must not be a fact.

In addition, we need to establish that every strict rule with head q is known to be

inapplicable. Thus for every such rule r there must be at least one antecedent a for

which we have established that a is not definitely provable (−∆a).

−∆: We may append P(i+1)= -∆q if

q /∈ F and

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 29

∀r ∈ Rs[q] ∃a ∈ A(r): −∆a ∈ P(1..i)

It is worth noticing that this definition of nonprovability does not involve loop

detection. Thus if D consists of the single rule p → p, we can see that p cannot be

proven, but defeasible logic is unable to prove -∆p.

+∂: We may append P(i+1) = +∂q if either

(1) +∆q ∈ P(1..i) or

(2) (2.1)∃r ∈ Rsd[q] ∀a ∈ A(r): +∂a ∈ P(1..i) and

(2.2) −∆ ∼q ∈ P(1..i) and

(2.3)∀s ∈ R[∼q] either

(2.3.1)∃a ∈ A(s): −∂a ∈ P(1..i) or

(2.3.2)∃t ∈ Rsd[q] such that

∀a ∈ A(t): +∂a ∈ P(1..i) and t > s

Let us illustrate this definition. To show that q is provable defeasibly we have

two choices: (1) We show that q is already definitely provable; or (2) we need to

argue using the defeasible part of D as well. In particular, we require that there

must be a strict or defeasible rule with head q which can be applied (2.1). But now

we need to consider possible attacks, that is, reasoning chains in support of ∼q.

To be more specific: to prove q defeasibly we must show that ∼q is not definitely

provable (2.2). Also (2.3) we must consider the set of all rules which are not known

to be inapplicable and which have head ∼q. Essentially each such rule s attacks

the conclusion q . For q to be provable, each such rule must be counterattacked by

a rule t with head q with the following properties: (i) t must be applicable at this

point, and (ii) t must be stronger than s. Thus each attack on the conclusion q must

be counterattacked by a stronger rule.

The definition of the proof theory of defeasible logic is completed by the con-

dition -∂. It is nothing more than a strong negation of the condition +∂.

−∂: We may append P(i+1) = −∂q if

(1) −∆q ∈ P(1..i) and

(2) (2.1)∀r ∈ Rsd[q] ∃a ∈ A(r): −∂a ∈ P(1..i)or

(2.2) +∆ ∼q ∈ P(1..i) or

(2.3)∃s ∈ R[∼q] such that

(2.3.1)∀a ∈ A(s): +∂a ∈ P(1..i) and

(2.3.2)∀t ∈ Rsd[q] either

∃a ∈ A(t): −∂a ∈ P(1..i) or t 6> s

To prove that q is not defeasibly provable, we must first establish that it is

not definitely provable. Then we must establish that it cannot be proven using the

defeasible part of the theory. There are three possibilities to achieve this: either we

have established that none of the (strict and defeasible) rules with head q can be

applied (2.1); or ∼q is definitely provable (2.2); or there must be an applicable rule

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 30

r with head ∼q such that no possibly applicable rule s with head ∼q is superior to

s (2.3).

The elements of a derivation P in D are called lines of the derivation. We say

that a tagged literal L is provable in D = (F, R, >), denoted D ⊢ L, iff there is a

derivation in D such that L is a line of P. When D is obvious from the context we

write ⊢ L.

It is instructive to consider the conditions +∂ and -∂ in the terminology of

teams, borrowed from Grosof [43]. At some stage there is a team A consisting of

the applicable rules with head q, and a team B consisting of the applicable rules

with head ∼q. These teams compete with one another. Team A wins iff every rule

in team B is overruled by a rule in team A; in that case we can prove +∂q. Another

case is that team B wins, in which case we can prove +∂∼q. But there are several

intermediate cases, for example one in which we can prove that neither q nor ∼q

are provable. And there are cases where nothing can be proved (due to loops).

Proposition 1. [14] If D is decisive, then for each literal p:

(a) either D ⊢ +∆p or D ⊢ -∆p

(a) either D ⊢ -∂p or D ⊢ +∂p

Not every defeasible theory satisfies this property. For example, in the theory con-

sisting of the single rule p ⇒ p neither -∂p nor +∂p is provable. The proof of the

proposition can be found in [14].

Proposition 2. [5]Consider a defeasible theory D.

(1) If D ∀ -∆∼p and D ∀ +∆p then D ∀ +∂p.

(2) If D ⊢ +∆∼p and D ⊢ -∆p then D ⊢ -∂p.

(3) If D ⊢ +∂∼p and D ⊢ -∆p and D ∀ -∂p then D is cyclic.

Theorem 3. [5]If D is an acyclic defeasible theory, then D is conclusion equiv-

alent to a theory D’ that contains no use of the superiority relation, nor defeaters.

If D is a cyclic defeasible theory, then D is conclusion equivalent to a theory D’

that contains no use of defeaters, and if D’ contains cycles then they have length 2,

and each cycle involves the only two rules for a literal and its complement.

Proposition 4. [5]Let D be an acyclic defeasible theory.

If D ⊢ +∂p and D ⊢ +∂∼p then D ⊢ +∆p and D ⊢ +∆∼p.

Consequently, if D contains no strict rules and no facts and D ⊢ +∂q , then D

⊢ -∂∼q.

The proves for the Propositions 2, 4 and for the Theorem 3 can be found in [5].

Governatori et. al [37] describe defeasible logic and its variants in argumentation-

theoretic terms. Under the argumentation semantics, proof trees are grouped to-

gether as arguments, and conflicting arguments are resolved by notions of argument

defeat that reflect defeat in defeasible logic.

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 31

Maher [55] gives a denotational-style semantics to defeasible logic, providing

another useful analysis of this logic. The semantics is compositional, and fully

abstract in all but one syntactic class.

A model-theoretic semantics semantics of defeasible logic is given by Maher

in [57]. This semantics follows Nute’s semantics for LDR [64] in that models

represent a state of mind or “belief state” in which definite knowledge (that which

is “known”) is distinguished from defeasible knowledge (that which is “believed”).

A major difference from [64] is that adopts partial models as the basic from which

to work.

3.2 Modelling Agents

As we stated, one of the basic motivations of our work is the modelling of multi-

agent systems. At this point, we should present a definition of the term agent.

Although there is no universally accepted definition of this term, we present the

definition, adapted from [89] : “An agent is a computer system that is situated in

some environment, and that is capable of autonomous action in this environment

in order to meet its design objectives”.

As the definition said, we consider agents to be systems that are situated or em-

bodied in some environment. By this, we mean that agents are capable of sensing

their environment and they have a set of possible actions that they can perform, in

order to modify their environment. Agents cannot perform all actions in all situa-

tions. Therefor actions have preconditions, which define the possible situations in

which they can be applied. In almost all realistic applications, agents have at best a

partial control over their environment, in that it can influence it, but not a complete

control.

There is a wide range of environments with different properties, that can be

occupied by agents. Such a case is when an agent is situated in part of the real

world, where it senses its environment by physical sensors and actions are physi-

cal, like moving objects around. There are also many cases where software agents

perform actions in a software environment. An example is the buyer agents or

shopping bots that help Internet users find products and services they are searching

for. These software applications recommend products that were visited by users

who did the same search. An other example are user agents, which execute tasks

automatically for the user, like sorting emails according to the user’s order of pref-

erence. Other Web applications of software agents include spam filters, search

engine bots etc. Finally most daemons, background processes which monitor a

software environment, in Unix-like systems can be viewed as agents.

3.2.1 Intelligent Agents

An intelligent agent is one that operates flexibly and rationally in a variety of envi-

ronmental circumstances, in order to meet its design objectives, given the informa-

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 32

tion they have and their perceptual and effectual capabilities. These agents should

have the following properties:

• autonomy : To some extent they have control over their behavior and make

independent decisions without driven by humans and other systems;

• reactivity : They are able to perceive their environment, and are responsive

in a timely fashion to changes that occur in it;

• pro-activeness : They are able to exhibit goal-directed behavior by taking

the initiative in order to achieve their goals;

• social ability : They are capable of negotiating and cooperating with other

agents.

One of the key problems in facing an agent is the decision of which actions to per-

form from the set of possible actions. Agent architectures are particular method-

ologies for building agents for decision making systems that are embedded in an

environment. We consider four types of agent architecture, characterized by the

different nature of their decision making:

• Logic-Based Architectures : The “traditional” approach to building artifi-

cially intelligent systems, in which decision making is achieved through log-

ical deduction;

• Reactive Architectures : Such systems are perceived as simply reacting to an

environment, without reasoning about it. Decision making is implemented

via simple direct mapping from situation to action;

• Belief-Desire-Intention Architectures : BDI architectures have their roots in

the philosophical tradition of understanding practical reasoning, which is the

process of deciding which action to perform in furtherance of our goals. De-

cision making depends upon the manipulation of data structures representing

the beliefs, desires, and intentions of the agent;

• Layered Architectures : A class of architectures, where agents are capable of

reactive and proactive behavior and various subsystems are arranged into a

hierarchy of interacting layers. decision making is realized via the interac-

tion of a number of task accomplishing layers.

3.2.2 Cognitive Agents

A cognitive or rational agent is an intelligent agent that chooses to perform actions

that are in its own best interests, given his or her knowledge of its environment. It

behaves in a way that maximizes its chances for goal achievement. Suppose that

a cognitive agent has the goal to stay dry and it has the belief that it is raining.

Then it chooses to take an umbrella when it leaves its house, since this action is in

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 33

its own best interest, which is the goal of staying dry. In our work, we take into

account the BDI architecture as the model for building cognitive agents. This is an

approach of building Intentional Agent systems, where agents are provided with

mental attitudes, like believing, wanting, hoping and fearing and so on.

3.2.3 BDI Architecture

Belief-Desire-Intention (BDI) [71],[72] model of rational agency contains explicit

representations of beliefs, desires, and intentions.

Beliefs are the information an agent has about the world. We use the term be-

lief, rather than knowledge, to recognize that what an agent believes may be incom-

plete or incorrect. Desires are those things that the agent would like to accomplish

or bring about. In BDI architecture we use the term goals to represent desires and

it adds the further restriction to be consistent with one another. Intentions are those

desires that an agent has chosen to achieve. An agent is not able to achieve all its

desires and these chosen desires, to which it has some commitment, are intentions.

The BDI model has its roots in the philosophical tradition of understanding

practical reasoning in humans, originally developed by Michael Bratman [17].

Practical reasoning is the process of deciding, moment by moment, what to do.

Contrast to theoretical reasoning, which is directed towards beliefs, practical rea-

soning is the application of reasoning towards action, e.g. the decision to catch a

bus instead of a train.

Practical reasoning appears to consist of at least two distinct activities: deciding

what goals we want to achieve, and how we want to achieve these goals. The

former process is known as deliberation and the latter as means-ends reasoning.

For example, deciding which career to aim for, after graduating from university, is

deliberation. The process of deciding a plan, in order to achieve the chosen goal of

pursuing a career as an academic, is means-ends reasoning.

Thus intentions play a crucial role in practical reasoning and their most obvious

property is that they are pro-attitudes, which means that they tend to lead to action,

e.g. applying to various PhD programs in order to achieve the intention to become

academic. A agent should also at times reconsider some intentions, because it

comes to believe that either has achieved them or its current intentions are no longer

possible. The relationships that exist between an agent ’s mental states, lead it to

select and perform rational actions. In this way, it is realized the definition of an

agent that we presented in section 3.2. A BDI agent senses its environment through

mental states and then chooses to perform actions.

A family of logics that support a formal theory of BDI model has been de-

veloped. The first logical description was Anand Rao and Michael Georgeff’s

BDICTL. More recently, BDICTL was extended by Michael Wooldridge to the

Logic Of Rational Agents (LORA) [90]. This a multi-modal logic, where modali-

ties represent BDI components, combined with temporal and action components.

BDI architectures have been implemented several times. The first implemen-

tation was the Intelligent Resource-Bounded Machine Architecture (IRMA) [18].

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 34

However, the best-known implementation is the Procedural Reasoning System

(PRS) [33], that was developed by a team led by Georgeff. Many descendants

of PRS were implemented later.

3.2.4 Multiagent Systems

Much of traditional Artificial Intelligence has been concerned with the charac-

teristics and the structure of a single agent in order to function intelligently. But

intelligent agents do not function in isolation, but they operate and exist in some en-

vironment, which typically is both computational and physical and it might contain

other agents. Thus an agent cannot operate usefully by itself, but it also interacts

with the other agents. These environments, in which agents can operate effectively

and interact with each other productively, are called multiagent systems.

In [51] are identified the major characteristics of multiagent systems. Multia-

gent systems provide an infrastructure specifying communication and interaction

protocols. Their environments are typically open and decentralized. The agents

are autonomous, making decision without regard of the others, and distributed.

Difference may exist in agent ’s behavior, as they may be self-interested or cooper-

ative. Each agent also has incomplete information about its environment and it is

restricted to its capabilities.

One of the most important concerns of a multiagent environment are the com-

munication and interaction protocols. Communication protocols enable the ex-

change of information among agents, based on a shared system of signs. Interac-

tion protocols enable agents to have conversations through a structured exchange

of messages, leading to some defined outcome.

One of the key functionalities needed to implement a multiagent system is the

coordination as a form of interaction, which is particularly important with respect

to goal attainment and task completion. Coordination is the property of system of

agents performing actions that fit well with each other, as well as to the process of

achieving this state. The purpose is to achieve states of affairs that are considered

as desirable by one or several agents and that results in a coherent system, which

behaves well as a unit. A measure of coordination is the degree in which activities

like livelock, deadlock and increased resource contention are avoided.

In order to coordinate the agents, we must take dependencies among their ac-

tivities into consideration. Two contrasting manifestations of coordination that

play important roles are cooperation and competition. Cooperation is coordination

among nonantagonistic agents that work together, in order to achieve a common

goal, and so they succeed or fail together. On the other hand, in the case of com-

petition, several agents with conflicting goals work against each other and so the

success of one implies the failure of others. The coordination among competitive

agents is called negotiation.

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 35

3.2.5 Society of Agents and Norms

An intelligent system does not function in isolation but they are part of an environ-

ment, which it may contain other such intelligent agent systems. It makes sense to

view such systems as a society of agents.

A group of agents can form a small society in which they play different roles.

When an agent joins a group, he joins in one or more roles, and acquires the com-

mitments of that role. Though it is an autonomous agent, it is constrained by the

commitments for the roles it adopts. Thus typically roles include permissions and

obligations, and are associated with specific behavioral patterns.

The mental attitudes that describe an agent ’s internal state, as in the Belief-

Desire-Intention agent that we described in subsection 3.2.3, are appropriate for

a number of applications and situations but not for understanding all aspects of

social interactions. A self-interested agent need not be selfish and it may have

other interests than its immediate personal gain. Thus intelligent agents should

interact and coordinate to achieve their own goals and the goals of their society.

We use social laws and norms as a way of coordinating activities and behaviors of

large numbers of agents in a society.

Norms are established expected patterns of behavior. They are rules that spec-

ify how an agent embedded in a society of agents should behave, striking a balance

between individual freedom on the one hand, and the goal of the agent society

on the other. They consist a set of constraints on individual actions in particular

contexts such that, if all agents follow the social laws, the agent system will avoid

undesirable states. As we said, norms carry the meaning of expected behavior, e.g

it is a norm to form a queue when waiting for a bus and to allow those who arrived

first to enter the bus first.

3.2.6 The BOID Architecture

More recent works on cognitive agents try to combine two different perspectives.

The first one is the classical agent systems based on mental attitudes, like the BDI

architecture. The other is the artificial societies of agents, where normative as-

pects coordinate the behaviors of intelligent autonomous agents [23], [31], [69],

[26], [39]. The result of this combination of perspectives is the modelling of au-

tonomous agents based on cognitive and social models, where an agent deliberation

and behavior is determined as an interplay between mental attitudes and normative

aspects. BOID architecture is such an approach, in which BDI cognitive states

interact with one another and with obligations as well, incorporating in this way

norms and commitments.

Beliefs-Obligations-Intentions-Desires (BOID) [23], [24], [25], [28] architec-

ture is an agent architecture that contains at least four components representing the

beliefs (B), obligations (O), intentions (I) and desires (D) of the agent. A logical

framework has been developed, where the content of each component is repre-

sented by sets of propositional logical formulas, often in the form of defeasible

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 36

rules. BOID identifies two general types of conflicts: Internal conflicts can arise

within each component and external conflicts between them. These two general

types of conflicts can be distinguished into further conflict subtypes, e.g. unary

subtypes within each component, binary conflict subtypes, such as OI, BD, e.t.c.,

ternary conflicts subtypes, such as BID, BOD, e.t.c., and one quadruplicate conflict

type BOID. A classification of conflict resolution types among the motivational at-

titudes is supported, which corresponds to what in agent theories is called agent

types. For example, an agent is realistic if beliefs overrule all the other compo-

nents, simple-minded if intentions overrule desires and obligation, social if obliga-

tions overrule desires e.t.c.

3.3 Modal Logic

In formal logic, a modal logic is any logic for handling modalities. A modal is

an expression that is used to qualify the truth of a judgement. Modal logic is,

strictly speaking, the study of the deductive behavior of the expressions “it is nec-

essary that” and “it is possible that”. In its general form, modal logic was used by

philosophers to investigate different modes of truth, but it also has important appli-

cations in computer science. For example, the following are all modal propositions:

It is possible that it will rain tomorrow.

It is necessary that either it is raining here now or it is not raining here now.

However, the term “modal logic” may be used more broadly for handling a number

of other ideas. These include logics for belief, for tense and other temporal expres-

sions, for the deontic expressions such as “it is obligatory that” and “it is permitted

that”, and many others. The best known family of modal logics with similar rules

and a variety of different symbols will be described in the next sections.

Modal logic was first developed to deal with the concepts of necessity and pos-

sibility, which are called basic modal operators, and only afterward was extended

to others. These operators are usually written as ¤ for Necessarily and ♦ for Pos-

sibly.

Many systems of modal logic, with widely varying properties, have been pro-

posed since C. I. Lewis began working in the area in 1910. The most familiar

logics in the modal family are constructed from the weakest modal logic, named

K in honor of Saul Kripke. The symbols of K include “∼” for “not”, “−→” for

“if...then”, and the modal operators of “¤” and “♦”. These operators is definable

in terms of the other, forming a dual pair of operators:

• ¤p (necessarily p) is equivalent to ∼♦∼p (not possible “not p”)

• ♦p (possibly p) is equivalent to ∼¤∼p (not necessary “not p”)

K results from adding the following rule and axiom to the principles of proposi-

tional calculus:

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 37

• Necessitation Rule: If p is a theorem of K, then so is ¤p.

• Distribution Axiom: ¤(p−→q) −→ (¤p−→¤q).

The system K is too weak to provide an adequate account of necessity. Many

important axioms are not provable in K and they give rise to other well-known

modal systems. For example, a desirable axiom is that if “p is necessary then p is

true”. The following are well-known elementary axioms that govern the necessity,

iteration, or repetition of modal operators.

• ¤p −→ p

• ¤p −→ ¤¤p

• p ⇒ ¤♦p

• ¤p ⇒ ♦p

• ♦p ⇒ ¤♦p

3.3.1 Deontic Logic

Deontic logic is the field of logic that is concerned with obligation, permission, and

related concepts. Obligation and norms generally, seems to have a modal structure.

The difference between “You must do this” and “You may do this” looks a lot like

the difference between ”It is necessary that” and “It is possible that”. Deontic logic

introduces the modal operators O for “it is obligatory that”, P for “it is permitted

that” and F for “it is forbidden that”. These are the notions that have received

more attention in deontic logic than others, like “it is non-necessary that” or “it

is optional that”. Permission and prohibition are defined by taking obligation as

primitive operator:

• PA ↔∼O∼A

• FA ↔O∼A

These assert that something is permissible if and only if its negation is not obliga-

tory and forbidden if and only if its negation is obligatory.

Standard Deontic Logic (SDL) is the most cited and studied system of de-

ontic logic, and one of the first deontic logics axiomatically specified. It builds

upon propositional logic and it follows a simple and elegant Kripke-style seman-

tics. SDL can be axiomatized by assuming that we have a language of classical

propositional logic with an infinite set of propositional variables, the operators ∼,

⇒ and O and by adding the following axioms:

• OA ⇒ PA

• O(A⇒B) ⇒ (OA ⇒ OB)

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 38

The first axiom guarantees the consistency of the system of obligations by insisting

that when A is obligatory, then it is permissible that A. The second axiom says that

when it is obligatory that A implies B then if A is obligatory then B is obligatory

too.

Norms are “patterns”, “rules”, “laws” that individuals or social groups obey or

“regularities” that their behavior displays. Deontic Logic enables one to represent

the norms and perform normative reasoning of human behavior by formalizing

such concepts as obligation, permission and prohibition, and employing them in

representation and reasoning. When the norms of an organization are identified,

it is possible to predict and hence to collaborate with others in performing coordi-

nated actions. Norms aims to be captured and represented in the form of deontic

logic, in order to serve as a basis for coordinating intelligent autonomous agents to

perform many activities and regulating the interactions among them.

3.3.2 Temporal Logic

The term Temporal Logic has been broadly used to cover all approaches to the

representation of temporal information within a logical framework. It is also used

to refer to the modal-logic type of approach introduced around 1960 by Arthur

Prior under the name of Tense Logic and subsequently developed further by logi-

cians and computer scientists. Applications of Temporal Logic include its use as

a formalism for clarifying philosophical issues about time, as a framework within

which to define the semantics of temporal expressions in natural language, as a

language for encoding temporal knowledge in artificial intelligence, and as a tool

for handling the temporal aspects of the execution of computer programs.

Temporal Logic contains four modal operators. The two basic operators are G

for the future, which is read as “it will always be the case that”, and H for the past,

which is read as “It has always been the case that”. The other temporal operators

are F which is read as “It will at some time be the case that” and P which is read

as “It has at some time been the case that”. These operators are defined from the

basic operators by using the following equivalences:

• PA ↔∼H∼A

• FA ↔∼G∼A

3.3.3 Epistemic Logic

Epistemic logic is a subfield of modal logic that studies reasoning about knowl-

edge and belief. It provides insight into the properties of individual knowers and a

means to model complicated scenarios involving groups of knowers. While epis-

temic logic has a long philosophical tradition dating back to Ancient Greece, it

has many applications in philosophy, theoretical computer science, artificial in-

telligence and economics. It was C.I. Lewis who created the first symbolic and

systematic approach to the topic, in 1912.

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 39

Syntactically, the language of propositional epistemic logic is simply a matter

of augmenting the language of propositional logic with the basic epistemic operator

K, which can be read as “it is known that”. If there is more than one agent, the

subscripts that are attached to the operator indicates whose agent the knowledge is

represented. So the operator KcA is read as “Agent c knows A”. Epistemic logic

can be extended to support the notion of common knowledge for a group of agents.

For example, there is the operator EGA which is read as “every agent in group G

knows that A”, and the operator CGA which is read as “it is common knowledge

to every agent in G that A”.

3.4 Modelling Mental Attitudes and Normative Notions

within Defeasible Logic

Recent work shows that defeasible logic is a nonmonotonic approach that can be

extended with modal and deontic operators [40], [39], [41], [74], [38]. This report

presents a computationally oriented nonmonotonic logical framework that deals

with modalities, motivated by potential applications for modelling multi-agent sys-

tems and policies.

The logical framework deals with the following modalities:

1. knowledge

2. intention

3. agency

4. obligation

5. permission

This approach has many similarities with the BOID architecture that was described

in subsection 3.2.6. As our system, BOID architecture is a rule-based framework

where the motivational attitudes are represented as rules. The conflicts may arise

among informational and motivational attitudes and the way these conflicts are re-

solved determines the type of the agent. Both systems capture the informational

attitude of belief (or knowledge) and the external motivational attitude of obliga-

tion while the policy-based intention modality of our framework captures both the

intention and desire components of BOID.

On the other hand, there many aspects which differentiate our system from

BOID architecture:

• our framework is enriched with the additional notions of agency and permis-

sion;

• rules support the introduction of modalities, not only through the labelling

of rules, but also explicitly in rule antecedents. Thus rules can also contain

modalised literals, enriching in this way the expressive power of the logic;

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 40

• it supports the feature of rule conversion, in which the modality of one rule

can be converted into another;

• the resolution of conflicts captures only some motivational attitudes. Con-

flicts may not appear among certain modalities;

• superiority relation is used between two single rules in order to devise spe-

cific policies.

Our logical framework is based on the approach of [40]. Similarly to BOID, it

combines the two different perspectives of cognitive agents, based on the BDI ar-

chitecture and the modelling of agent societies by means of normative concepts. In

addition to this approach, we consider a fifth kind of modality, the deontic notion

of permission.

3.4.1 Knowledge

Knowledge is the agent ’s theory about the world. This is an epistemic notion.

It corresponds to the information that an agent has about the environment and its

beliefs about the world. What an agent believes may not necessarily be true and in

fact may change in the future, when new information is added to the system. So

knowledge has a defeasible nature.

3.4.2 Intention

Intention in our framework describes the agent ’s policy. It is the policy-based in-

tention and is based on Bratman ’s classification of intention [17], [38]. Bratman

classifies intention as deliberative, non-deliberative and policy-based. The differ-

ence between the three is the following: When an agent i has an intention of the

form INT t1
i ϕ, t2 (read as agent i intends at t1 to ϕ at t2) as a process of present

deliberation, then it is called deliberative intention. On the other hand, if the agent

comes to have such an intention not on the basis of present deliberation, but at

some earlier time t0 and has retained it from t0 to t1 without reconsidering it, then

this intention it is called non-deliberative. The third case arises when intentions are

general and concern potentially recurring circumstances in an agent ’s life. Such

general intentions comprise policy-based intentions, and are defined as follows:

when the agent i has a general intention/personal policy to ϕ in circumstances of

type ψ and i notes at t1 that i is (will be) in a ψ-type circumstance at t2, and thereby

i arrives at an intention to ϕ at t2.

From the above definition it can be noted that a policy-based intention is not

deliberative, since there is no present deliberation concerning the action to be per-

formed, but it depends on the circumstances. Neither is it a non-deliberative since

it is not simply a case of retaining an intention previously formed. It is general

intention that can be either periodic or circumstance-triggered.

Suppose that there is a TV agent whose main objective is to make recommen-

dations of TV programs given a user ’s preferences. The weekly update of the TV

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 41

guide is considered as an agent ’s periodic policy-based intention. On the other

hand, the agent has the circumstance-triggered policy-based intention to recom-

mend programs that the user likes. The agent does not intend to recommend tv

programs that happen at the same time and he choose to recommend the highest

program according to the ratings. In such scenarios the general intentions need to

be reconsidered. The general intention has a nonmonotonic nature and the agent

does not intend to act no matter what. He intends an outcome only if he is sure

that all the evidence to the contrary has been defeated. This comes in contrast with

normal modal logic, where the agent intends all the consequences.

3.4.3 Obligation

Our framework also incorporates the intuition of obligation, according to the agent

’s normative system. It is crucial aspect in the modelliing of autonomous agents

based on cognitive as well as social models to formalize internal motivational at-

titudes such as intention and external motivational attitudes such as obligation.

Intentions are viewed as internal constraints of an agent and obligations as exter-

nal constraints. As constraint, obligation is nonmonotonic, which is a well-known

character of deontic reasoning. An example that shows this intuition, by presenting

two conflicting rules in a normative system, is the following: “One rule says that

committing a harm implies responsibility, while an other rule says that acting in

self-defence implies no responsibility”.

The defeasibility of normative reasoning is a very well established phenomenon

with many facets and many nonmonotonic systems have been proposed to capture

it. Moreover, Nute [66], [67] has proposed to extend Defeasible Logic with deontic

operators to capture normative phenomena, while [3] shows how regulations can

be represented conceptually in Defeasible Logic.

3.4.4 Agency

We also enrich our framework by the notion of agency [30], which is described

in a multi-modal logical setting. This is an aspect that differentiates this system

if compared, for example, to BOID architecture. The intuition of agency has been

studied in many contributions. Despite some well known limitations, modal agency

is very general since it captures actions that are simply taken to be relationships

between agents and states of affairs. It is also a flexible approach, since it allows

for the easy combination of actions and concepts like powers, obligations, beliefs

etc.

We focus on the idea of personal and direct action to realize a state of affairs,

formalized by the well-known modal operator E. The formula ExA means that the

agent x brings it about A. For example, ExA can have the form

Ecustomermakeorder(p), where A is an action predicate denoting an order, exe-

cuted by the customer ’s agent. Different axiomatizations have been provided for it

but almost all include ExA ⇒ A. This schema expresses the successfulness of ac-

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 42

tions that is behind the common reading of “bring about” concept. Other common

axiomatizations are ¬Ex⊤ and (Exp ∧ Exq) ⇒ Ex(p ∧ q).
We follow the approach that was developed in [40], where the focus is on the

intentional character of actions in order to handle the interaction between actions,

intentions and other mental states. So we use the operator Z to express intentional

actions and making clear the difference with the E operator that captures both in-

tentional and unintentional actions. Z has the same properties as E plus the schema

Zp ⇒ Ip. The intentional character of Z implies that is also a nonmonotonic

notion.

3.4.5 Permission

In our work we enrich the logical framework of [40] with a fifth kind of modality,

permission, which is a basic deontic operator. This component represents what an

agent is permitted to do, according to his normative system and it is used commonly

in policies describing (conditional) entitlements. For this reason we extend the

multi-modal logical framework with permissions, in order to represent and reason

with business rules and policies properly, in Semantic Web applications.

Permission is a notion that has been studied less frequently than obligation in

deontic logic, because of the complexity that appears in it [15]. In our framework,

in order to introduce permission, we studied the provability of this operator and

follow the approaches that exist. The simplest way is to see an action as it is

permitted if its prohibition is not derived from the code. This is a kind of negative

permission. Another approach that was followed in [41], says that a permission for

an action is derived, if a derivable defeater for this action exists, which is superior

and defeats all the prohibitions of the action.

In our work we concentrate more on the approach that follows a kind of positive

permission. According to this, a permission for an action is derived, if it is explic-

itly stated with the use of the permission operator in a rule mode or in a modalised

literal, as happens with the other modal operators. In the next chapter and by pre-

senting the metaprogram we will make transparent the three different approaches

of introducing permissions in the formalism. However, our system is mainly based

on dealing with the permission operator directly and stating it explicitly as every

other operator.

Two important axioms of deontic logic that our system supports are that a per-

mission is incompatible with a prohibition and something is prohibited if its nega-

tion is obligatory and vice versa. Therefore the deontic notion of prohibition is

also supported indirectly, as it can be introduced through the obligation of a lit-

eral ’s negation. In this way, the formalism supports the basic normative concepts

of obligation, permission and prohibition and captures the requirements of busi-

ness rules community [81], [16]. Modelling policies and business rules requires

a formal specification language with high expressive power that includes deontic

modalities.

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 43

3.4.6 A Defeasible Logic of Agency, Intention, Obligation and Permis-

sion

Commonly, both motivational attitudes and normative aspects are logically cap-

tured through the use of modal logics. Modal logics are extensions of classical

propositional logic with some intensional operators. So modal logics are by def-

inition monotonic. However as we know, classical propositional logic is not well

suited to deal with real life scenarios, because the descriptions of real-life cases

are, very often, partial and somewhat unreliable. Hence any modal logic based on

classical propositional logic is doomed to suffer from not properly dealing with in-

consistent information, that may easily arise in multi-agent and web environments.

As we have argued so far, reasoning about mental attitudes, like intention and

agency, has a defeasible nature, and defeasibility is a key aspect for normative

reasoning. Recent works by Thomason [84] and on BOID architecture showed that

any system that aims at the integration of informational and motivational attitudes,

like a multi-agent system, should be developed within a nonmonotonic setting. The

two phenomena of mental attitudes and deontic notions, although are different and

sometimes incompatible intuitions, they are subject to defeasibility. A number of

strategies are provided in BOID that handle the interaction and solve the conflicts

among motivational attitudes.

Defeasible Logic is the suitable formalism that can deal with these components

and can capture their nonmonotonic behavior. The reason being ease of implemen-

tation [59], flexibility [4] and it is efficient [56]. A rule-based computationally

oriented nonmonotonic formalism was developed that extends defeasible logic and

represents and reasons with these modal operators. This proposed logic introduces

and manipulates modalities and is flexible enough to deal with different intuitions

about the interactions of the internal and external motivational attitudes. Extending

defeasible logic with deontic operators captures the expressiveness that is required

in modelling and reasoning with policies.

In our formalism, a defeasible theory D is a structure D = (F, RK , RI , RZ , RO,
RP , >) where F is a finite set of facts, RK , RI , RZ , RO and RP are, respectively,

finite set of rules (strict, defeasible rules and defeaters) for knowledge, intentions,

agency, obligations and permissions, and > is the set of the superiority relation-

ships between the rules of the theory.

Given an agent, F consists of the information the agent has about the world, its

immediate intentions, its actions and its absolute norms, that consist of obligations

and permissions. It covers the direct knowledge of an agent. The indirect knowl-

edge comes from the form of rules. The main function of rules is to allow for the

derivation of new conclusions and those conclusions can be new pieces of knowl-

edge, new intentions, obligation etc. Accordingly we have divided the rules in rules

for each modality. In particular, RK corresponds to the agent ’s theory and beliefs

about the world, RI , RZ encode its policy and actions respectively, RO and RP en-

code the obligations and permissions that are defined from his normative system.

Finally, the relation > captures the strategy of the agent (or its preferences).

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 44

In order to correctly capture the mental and deontic notions we extend the sig-

nature of the logic with the modal operators. Thus if l is a literal then agency(l)

is a modalised literal. A modalised literal is represented prefixed with a modal

operator (agency, intention, obligation and permission). For example, a rule such

as Summertime ⇒Z V isitSpain allows to infer the agent ’s intention to visit

Spain. A modalised literal can be defined in a defeasible theory as a fact or as a

rule ’s conclusion, where the mode of the rule determines the mode of the conclu-

sion. In the previous example, the rule mode is agency. An unmodalised literal

belongs to the knowledge of the environment. Rules for knowledge does not pro-

duce modalised literals, but express the agent ’s factual knowledge about the world.

On the other hand, modalised literals can only occur in the antecedents of rules and

are not permitted in consequents. This restriction is motivated from the fact that

rules are meant to introduce the modalities.

In subsection 3.1.3 we presented the proof theory of defeasible logic and how

a conclusion is represented in the form of a tagged literal. In a similar way, we can

represent a conclusion of a defeasible theory D in our formalism as a tagged literal

and it can have one of the following four forms:

• +∆Xq, which is intended to mean that q is definitely provable in modality X

in defeasible theory D.

• -∆Xq, which is intended to mean that we have proved that q is not definitely

provable in modality X in defeasible theory D.

• +∂Xq, which is intended to mean that q is defeasibly provable in modality X

in defeasible theory D.

• -∂Xq, which is intended to mean that we have proved that q is not defeasibly

provable modality X in defeasible theory D.

Though we argued about the defeasible nature of motivational attitudes, which are

primarily incarnated by ±∂Xq, nothing prevents from having also mental states

and deontic notions that are indisputable. For example, we are used to say that

the conditional obligations are defeasible but we cannot reject the possibility that

strict obligations occur in agent ’s theory. The intuition behind the interpretation

of the rules for obligation is that strict rules express hard constraints that cannot be

violated, while defeasible rules represent soft constraints that can be violated in ex-

ceptional situations. For the same reason, our formalism supports indisputable and

defeasible intentions and agencies. Finally, the distinction in the type of rules helps

us to capture the difference between the knowledge that an agent has about his en-

vironment, which never changes, and his beliefs that may change when stronger

evidence in the contrary is obtained.

3.4.7 Interaction Among Modalities and Agent Types

Our motivation is to model autonomous agents based on cognitive and social mod-

els. The result of this combination of perspectives is an account of agent ’s be-

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 45

havior as a balance between mental states and external normative factors. As we

mentioned before, our system is based on defeasible logic, because it is not only

the suitable formalism for dealing with the nonmonotonic character of motivational

attitudes, but it can also handle the > relation and resolves conflicts among mental

states and normative factors. As in the BOID architecture, this formalism defines

agent types by stating conflict resolution types in terms of overruling between rules.

Agent types correspond to the different ways through which conflicts are de-

tected and solved between different types of rules. A rule is attacked potentially by

another rule with complementary literal in its head and different mode. Table 3.1

shows the relationship between the different modes of rules and for each kind of

rule indicates all potential attacks on it. In this table we analyze ten combinations

⇒K q / ⇒O ∼q +∂Kq / −∂O∼q

⇒K q / ⇒I ∼q +∂Kq / −∂I∼q

⇒K q / ⇒Z ∼q −∂Kq / −∂Z∼q

⇒K q / ⇒P ∼q +∂Kq / −∂P∼q

⇒I q / ⇒Z ∼q −∂Iq / −∂Z∼q

⇒I q / ⇒P ∼q +∂Iq / +∂P∼q

⇒P q / ⇒Z ∼q +∂P q / +∂Z∼q

⇒P q / ⇒O ∼q −∂P q / −∂O∼q

⇒O q / ⇒I ∼q type of agent

⇒O q / ⇒Z ∼q type of agent

Table 3.1: Basic Attacks

in two columns. This is the way that all basic attacks are resolved for all type

of agents. The first column presents the potential attack between two modalized

rules. Since we refer to attacks between rules, we use defeasible rules, where the

conclusion of a rule can be defeated by contrary evidence. In the second column

we present the result of the potential attack. In case the attack fails, the conclu-

sion of the first rule is defeasibly provable. That means that the mode of the first

rule is not attacked by the mode of the second rule. For example knowledge is not

attacked by obligation. On the other hand, in case of an attack, the conclusion of

the first rule is not provable. For example, agency is attacked by intention and vice

versa. In case a mode of a rule wins, that happens independently of the strength of

the rules involved.

The general assumption is that we deal with realistic agents. In other words,

beliefs (knowledge) override and attack all the other modal operators. The only

exception to this view is that rules for agency attack rules for knowledge, since

the former ones represent the intentional direct actions, the performance of which

derives factual results. Mutual attacks also exist between intention and agency,

since the latter are intentional in character and between obligation and permission,

according to the basic deontic axiom of incompatibility between a permission and

a prohibition. There is not any attack between permission and mental states. If an

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 46

agent has an intention or performs an intentional action, then there is no conflict if

it is also permitted not to perform this action according to his normative system. On

the other hand, the conflicts that arise in the interaction among internal constraints

(intention and agency) and external constraints (obligation) must be settled. The

way these potential attacks are resolved, determines the different type of agents, as

shown in Table 3.2. It is worth noting that in each agent type we consider the case

⇒O q/ ⇒Z∼ q ⇒O q/ ⇒I∼ q Agent Type

+∂Oq +∂Z∼q +∂Oq +∂I∼q Strongly independent

+∂Oq −∂Z∼q +∂Oq +∂I∼q Selfish saint

+∂Oq −∂Z∼q +∂Oq −∂I∼q Hypersocial

−∂Oq +∂Z∼q −∂Oq +∂I∼q Sinner

−∂Oq −∂Z∼q −∂Oq +∂I∼q Social sinner

−∂Oq −∂Z∼q −∂Oq −∂I∼q Hyperpragmatic

Table 3.2: Agent Types

that agency and intention are potentially attacked by obligation. It is meaningless

the case where intention and agency conflict, because we mentioned this basic

attack before, since rules for Z govern intentional actions.

We distinguish six agent types. A strongly independent agent is free to adopt

intentions and to perform intentional actions in conflict with obligations. In a hy-

persocial agent, obligations override all the conflicting rules for action and inten-

tion, while in a hyperpragmatic agent, no derivation is possible. A selfish saint is

the agent whose intention is in conflict with an obligation, but no intentional action

to realize such content is performed. On the other hand, the sinner agent performs

the action and the obligation is defeated. The social sinner has the intention, but

the conflicting obligation is not derived and no violating action is performed.

3.4.8 Rule Conversion

Our formalism also supports the interesting feature of rule conversion, which af-

fect the condition of applicability of the rules. According to this, we can obtain

modalised conclusions by a certain modality through application of rules which

can have different modes. The feature of converting from one type of conclusion

into different one can be found in many formalisms and allows the combination of

nonmonotonic and classical consequences. The conversions depend on the modal-

ity in which the premises of the rule are provable. In many cases, the conclusion

of the rule inherits the modality of the antecedent.

For example, let ¬open umbrella ⇒K wet, which encodes the knowledge of

an agent that knows that if he does not open the umbrella, then he will become

wet. Now, if we know that the agent has the intention not to open his umbrella,

represented as I(¬open umbrella), then we can conclude by rule conversion and

from the previous rule that the agent has the intention to become wet. In other

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 47

words, since he knows that the consequence of his choice not to open the umbrella

is to become wet, he intends to this result. So we conclude +∂Iwet. Similarly if he

has the obligation not to open his umbrella, represented as O(¬open umbrella)
and that means that +∂O¬open umbrella has been proved, then it is obligatory for

the agent to be wet (+∂Owet).
In Table 3.3 we present the rule conversions that are supported by our system.

The first and second columns indicate the permitted modalities of the antecedent

X Y ⇒ W

O O K O

I I K I

Z Z K Z

Z I K I

I I Z I

O O Z O

Table 3.3: Rule Conversions

of the rule, in order to satisfy the conditions for rule conversion. The third column

specifies the mode of the rule and the fourth column the modality in which can be

transformed the conclusion, if the previous conditions are satisfied. For example,

according to the first case, a rule for knowledge can be used to directly derive an

obligation, if the antecedent of the rule are provable in obligation. Or in the fourth

case, a rule for knowledge can be used to obtain an intention, if its antecedent are

provable in agency and intention.

CHAPTER 3. EXTENSION OF DEFEASIBLE LOGIC 48

Chapter 4

Translation Into Logic Programs

There are two different approaches for translating defeasible theories into logic

programs, sharing the same basic structure:

• The translation of [6], [59], where a metaprogram is used to express defea-

sible logic in logic programming terms.

• The translation of [8], which makes use of control literals to translate a de-

feasible theory into logic program clauses.

It is an open question which is better in terms of computational efficiency, although

we conjecture that, for large theories, the metaprogram approach is better since the

latter approach generates a large number of program clauses. Therefore, we have

adopted the metaprogram approach to formulate the proof theory of defeasible

logic.

According to this, we translate a defeasible theory D into a logic program P(D),

and we use a logic metaprogram that simulates the proof theory of the formalism

that extents defeasible logic, to reason over the defeasible theory. The metaprogram

was implemented in the logic programming language of Prolog.

4.1 Translation into Logical Facts

A defeasible theory is a structure D = (F,RK , RI , RZ , RO, RP , >) where F is

a finite set of facts, RK , RI , RZ , RO and RP are, respectively, finite set of rules

(strict, defeasible rules and defeaters) for knowledge, intentions, agency, obliga-

tions and permissions, and > is the set of the superiority relations between the

rules of the theory. The basic predicates, which are used to represent a defeasibly

theory, are translated as follows:

fact(p). for each p ∈ F
strict(r,m, p, [a1, ..., an]). for each rule r : a1, a2, .., an −→m p ∈ R
defeasible(r,m, p, [a1, ..., an]). for each rule r : a1, a2, .., an =⇒m p ∈ R

49

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 50

defeater(r,m, p, [a1, ..., an]). for each rule r : a1, a2, .., an Ãm p ∈ R
superior(r, s), for each pair of rules such that r > s

The relationship between the proof tags of a defeasible theory D on one hand

and the predicates strictly and defeasibly of the metaprogram M on the other is

as follows:

D ⊢ +∆Xp iff M ⊢ strictly(p, X)

D ⊢ −∆Xp iff M ⊢ not(strictly(p, X))

D ⊢ +∂Xp iff M ⊢ defeasibly(p, X)

D ⊢ −∂Xp iff M ⊢ not(defeasibly(p, X))

4.2 Defeasible Logic Metaprogram

The translation into logic programming follows the approach described in [40],

where the metaprograms that represent the extension of defeasible logic are pre-

sented. This approach also supports the definition of different types of agents, by

handling the conflicts between the different types of modal rules, and the feature

of rule conversion. Additionally to these features, our metaprogram supports the

introduction of the permission operator and the representation in logic program-

ming terms of the basic properties between the deontic notions that we mentioned

in subsection 3.3.1.

There are six metaprograms, one for each agent type. We will present the

metaprogram for the strongly independent type, which is free of conflicts be-

tween agency, intention and obligation and contains only the basic attacks between

modalities. We will also illustrate how the clauses of this metaprogram can be

modified in order to support different agent types with different policies in resolv-

ing conflicts. This metaprogram consists of clauses, introduced and described in

the following subsections:

4.2.1 Supportive Rules

The first two clauses define supportive rules that are used to derive the provability
of a literal. Strict and defeasible rules are supportive:

a1 : supportive_rule(Name,Operator,Head,Body) :-

strict(Name,Operator,Head,Body).

a2 : supportive_rule(Name,Operator,Head,Body) :-

defeasible(Name,Operator,Head,Body).

These predicates have similar structure to the rule predicates in metaprograms

that have been developed for the propositional defeasible logic, with an additional

argument. This is a modal operator that determines the mode of the rule. We mark

a label in front of each clause, e.g. a1, to refer them easily in the examples of

section 4.4.

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 51

4.2.2 Definitely Provable Literal

The next clauses define the definite provability: a literal is strictly (or definitely)
provable in knowledge, if it is a fact and strictly provable in other modalities, if
the corresponding modal literal is a fact. A modalised literal is represented as
prefixed with a modal operator (agency, intention, obligation or permission). An
unmodalised literal belongs to the knowledge of the environment. A literal is also
strictly provable in a modality, if it is supported by a strict rule, with the same mode
and the premises of which are strictly provable.

b1 : strictly(P,knowledge) :- fact(P).

b2 : strictly(P,obligation) :- fact(obligation(P)).

b3 : strictly(P,intention) :- fact(intention(P)).

b4 : strictly(P,agency) :- fact(agency(P)).

b5 : strictly(P,permission) :- fact(permission(P)).

b6 : strictly(P,Operator) :- strict(R,Operator,P,B),

strictly(B).

b7 : strictly([]).

b8 : strictly([A1|A2]) :- strictly(A1),strictly(A2).

b9 : strictly(obligation(P)) :- strictly(P,obligation).

b10 : strictly(intention(P)) :- strictly(P,intention).

b11 : strictly(agency(P)) :- strictly(P,agency).

b12 : strictly(permission(P)) :- strictly(P,permission).

b13 : strictly(P) :- strictly(P,knowledge).

4.2.3 Defeasible Provable Literal

The next clauses define defeasible provability: a literal is defeasibly provable in a
modality, either if it is strictly provable in the same modality, or if the literal, for
this modality, i) is consistent, ii) is supported by a supportive rule, and iii) there is
not an undefeated applicable conflicting rule.

c1 : defeasibly(P,Operator) :- strictly(P,Operator).

c2 : defeasibly(P,Operator) :- consistent(P,Operator),

supported(R,Operator,P),negation(P,P1),

not(undefeated_applicable(S,Operator,P1)).

c3 : defeasibly([]).

c4 : defeasibly([A1|A2]) :- defeasibly(A1),

defeasibly(A2).

c5 : defeasibly(obligation(A)):- defeasibly(A,obligation).

c6 : defeasibly(agency(A)) :- defeasibly(A,agency).

c7 : defeasibly(intention(A)) :- defeasibly(A,intention).

c8 : defeasibly(permission(A)):- defeasibly(A,permission).

c9 : defeasibly(P) :- defeasibly(P,knowledge).

4.2.4 Consistent Literal

A literal is consistent in a modality, if its complementary literal is not strictly prov-
able in the same modality and in any of the attacking modalities. In the previous

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 52

chapter and in Table 3.1 we show which are the basic attacks between modali-
ties. Knowledge is a modality that is attacked only by agency, independently of
the agent type. The next clause defines a literal ’s consistency in knowledge for all
agent types:

d1 : consistent(P,knowledge) :- negation(P,P1),

not(strictly(P1,knowledge)),not(strictly(P1,agency)).

As we mentioned, agency and intention are mutually attacked, while knowl-
edge attacks intention and obligation. Thus, in the metaprogram for strongly inde-
pendent agent type, we should add the following clauses, which define a literal ’s
consistency in the other modalities:

d2 : consistent(P,obligation):- negation(P,P1),

not(strictly(P1,knowledge)),not(strictly(P1,obligation)),

not(strictly(P1,permission)).

d3 : consistent(P,permission):- negation(P,P1),

not(strictly(P1,knowledge)),not(strictly(P1,obligation)).

d4 : consistent(P,intention) :- negation(P,P1),

not(strictly(P1,knowledge)),not(strictly(P1,intention)),

not(strictly(P1,agency)).

d5 : consistent(P,agency) :- negation(P,P1),

not(strictly(P1,knowledge)),not(strictly(P1,intention)),

not(strictly(P1, agency)).

In case of an other agent type there are more attacks. In a hypersocial agent,
obligation attacks agency and intention. Thus, we should add the predicate
not(strictly(P1,obligation)) to the clause that proves a literal ’s consistency in in-
tention and agency:

d6 : consistent(P,intention) :- negation(P,P1),

not(strictly(P1,knowledge)),not(strictly(P1,intention)),

not(strictly(P1,agency)),not(strictly(P1,obligation)).

d7 : consistent(P,agency) :- negation(P,P1),

not(strictly(P1,knowledge)),not(strictly(P1,intention)),

not(strictly(P1,agency)),not(strictly(P1,obligation)).

4.2.5 Supported Literal and Rule Conversion

A literal is supported in a modality, if it is supported by a supportive rule with the
same mode, the premises of which are defeasibly provable.

e1 : supported(R,Operator,P) :-

supportive_rule(R,Operator,P,A),defeasibly(A).

The metaprogram also supports the feature of rule conversion, where the mode
of a rule is converted into a different one. For example, as we can see in , we use
the rule conversion to define that a rule for knowledge can be used to support a
literal in obligation:

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 53

e2 : supported(R,obligation,P) :-

supportive_rule(R,knowledge,P,B),

obligation_environment(B).

We use different predicates than the defeasibly predicate in the body of the
clauses, in order to determine the defeasibly provability of the rule antecedent in
the particular modalities required by the conversion. We call environment these
literals in the antecedent of the conversion rule. In the above clause, we used the
predicate obligation environment to determine that the literals in the body of the
rule must be provable in obligation. Thus we add the following clauses that define
environment literals that are provable in obligation:

f1 : obligation_environment(A) :-

defeasibly(A,obligation).

f2 : obligation_environment(obligation(A)):-

defeasibly(A,obligation).

f3 : obligation_environment([A1|A2]) :-

obligation_environment(A1),obligation_environment(A2).

f4 : obligation_environment([]).

As we can see in Table 3.3, a rule for knowledge can also be used to transform
a conclusion in an agency and intention, while a rule for agency can be used to
obtain an intention and an obligation. We capture these cases by adding the fol-
lowing clauses in supporting a literal in a modality different than the mode of the
supportive rule:

e3 : supported(R,agency,P) :-

supportive_rule(R,knowledge,P,A),agency_environment(A).

e4 : supported(R,intention,P) :-

supportive_rule(R,knowledge,P,A),

intention_agency_environment(A).

e5 : supported(R,intention,P) :-

supportive_rule(R,agency,P,A),intention_environment(A).

e6 : supported(R,obligation,P):-

supportive_rule(R,agency,P,A),obligation_environment(A).

The following clauses define environment literals that are provable in the modal-
ities that are required in rule conversions:

f5 : agency_environment(A) :-

defeasibly(A,agency).

f6 : agency_environment(agency(A)) :-

defeasibly(A,agency).

f7 : agency_environment([A1|A2]) :-

agency_environment(A1),agency_environment(A2).

f8 : agency_environment([]).

f9 : intention_environment(A) :-

defeasibly(A,intention).

f10: intention_environment(intention(A)) :-

defeasibly(A,intention).

f11: intention_environment([A1|A2]) :-

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 54

intention_environment(A1),intention_environment(A2).

f12 : intention_environment([]).

f13 : intention_agency_environment(A) :-

defeasibly(A,intention).

f14 : intention_agency_environment((A)) :-

defeasibly(A,agency).

f15 : intention_agency_environment(intention(A)):-

defeasibly(A,intention).

f16 : intention_agency_environment(agency(A)) :-

defeasibly(A,agency).

f17 : intention_agency_environment([A1|A2]) :-

intention_agency_environment(A1),

intention_agency_environment(A2).

f18 : intention_agency_environment([]).

The environment literal intention agency environment is used to define literals

that are provable in intention or agency. It is required by the fourth row in Table 3.3,

where the antecedent of a rule for knowledge is provable in agency and/or intention,

in order to transform the conclusion in an intention mode.

4.2.6 Undefeated Applicable Rule

An undefeated applicable rule is a conflicting rule that is used to prevent the de-

feasible provability of a literal in a modality. A rule is undefeated applicable in a

modality M, if it is an applicable rule in M or in a mode that attacks M, and it is

not defeated by a conflicting rule in its mode N or in a modality that attacks N. For

example, in a strongly independent agent type, a rule is undefeated applicable in

agency, if it is a rule in intention (attacking modality) and it is not defeated by a

conflicting rule in knowledge, agency (attacking modalities) and intention.
The following clauses define the undefeated applicable rules in different modal-

ities:

g1 : undefeated_applicable(R,knowledge,P):-

applicable(R,knowledge,P),not(defeated(R,knowledge,P)),

not(defeated(R,agency,P)).

g2 : undefeated_applicable(R,knowledge,P):-

applicable(R,agency,P),not(defeated(R,knowledge,P)),

not(defeated(R,agency,P)),not(defeated(R,intention,P)).

g3 : undefeated_applicable(R,agency,P) :-

applicable(R,knowledge,P),not(defeated(R,knowledge,P)),

not(defeated(R,agency,P)).

g4 : undefeated_applicable(R,agency,P) :-

applicable(R,agency,P),not(defeated(R,knowledge,P)),

not(defeated(R,agency,P)),not(defeated(R,intention,P)).

g5 : undefeated_applicable(R,agency,P) :-

applicable(R,intention,P),not(defeated(R,knowledge,P)),

not(defeated(R,agency,P)),not(defeated(R,intention,P)).

g6 : undefeated_applicable(R,obligation,P) :-

applicable(R,knowledge,P),not(defeated(R,knowledge,P)),

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 55

not(defeated(R,agency,P)).

g7 : undefeated_applicable(R,obligation,P) :-

applicable(R,obligation,P),

not(defeated(R,knowledge,P)),

not(defeated(R,obligation,P)),

not(defeated(R,permission,P)).

g8 : undefeated_applicable(R,obligation,P) :-

applicable(R,permission,P),not(defeated(R,knowledge,P)),

not(defeated(R,obligation,P)).

g9 : undefeated_applicable(R,intention,P) :-

applicable(R,intention,P),not(defeated(R,knowledge,P)),

not(defeated(R,agency,P)),not(defeated(R,intention,P)).

g10 : undefeated_applicable(R,intention,P) :-

applicable(R,knowledge,P),not(defeated(R,knowledge,P)),

not(defeated(R,agency,P)).

g11 : undefeated_applicable(R,intention,P) :-

applicable(R,agency,P),not(defeated(R,knowledge,P)),

not(defeated(R,agency,P)),not(defeated(R,intention,P)).

g12 : undefeated_applicable(R,permission,P):-

applicable(R,knowledge,P),not(defeated(R,knowledge,P)),

not(defeated(R,agency,P)).

g13 : undefeated_applicable(R,permission,P):-

applicable(R,obligation,P),not(defeated(R,knowledge,P)),

not(defeated(R,obligation,P)),

not(defeated(R,permission,P)).

In case of another agent type, like a sinner agent, where agency and intention

attack obligation, we should add clauses that define applicable rules in intention

and agency that are undefeated in obligation. The predicates

not(defeated(R,agency,P1)), not(defeated(R,intention,P1)) should also be added in

each case we define that an applicable rule in obligation is undefeated in all the

attacking modalities.

We can state an interesting aspect about the multi-modal logical formalism.

Permission is the only exception in modalities in that there is no conflict between

complementary literals. In particular, a literal is consistent in permission even

though its complementary literal is definitely provable. An applicable rule in per-

mission is undefeated even though it exists an applicable conflicting rule in per-

mission, independently of the strength of the rules.

Thus in a defeasible theory, it is allowed to derive both p and ∼p (definitely

or defeasibly) in permission mode. This is an inconsistency that may arise in a

defeasible theory, but it is an aspect that we must adopt in this formalism. It makes

more sense if we allow an agent both to perform and not to perform an action

according to his normative system. On the other hand it is inconsistent to both

permit and prohibit an action. So our system supports the basic deontic axiom of

incompatibility among permission and prohibition.

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 56

4.2.7 Applicable Rule

A rule is applicable in a modality, if it is any rule (supportive rule or defeater) for
this modality that its premises are defeasibly provable. A supportive rule is also
applicable even it has a different mode that can be converted to this modality with
the feature of rule conversion, which we mentioned before. To capture this case,
we define that a supportive rule is applicable in a modality, if a literal is supported
in this modality by this rule:

h1 : applicable(R,Operator,P):-

defeater(R,Operator,P,A),defeasibly(A).

h2 : applicable(R,Operator,P):-

supported(R,Operator,P).

4.2.8 Defeated Rule

The next clause defines that an applicable rule is defeated in a modality, if exists
an applicable superior conflicting rule in the same modality.

k1 : defeated(S,Operator,P):- negation(P,P1),

applicable(R,Operator,P1),superior(R,S).

4.2.9 More Clauses

We introduce two more clauses in the metaprogram that capture the success of the
agency operator:

m1 : strictly(P,knowledge) :- strictly(P,agency).

m2 : defeasibly(P,knowledge):- defeasibly(P,agency).

We define the predicate negation to represent the negation of a predicate and
evaluate the double negation of a predicate to the predicate itself.

m3 : negation(˜(X),X):- !.

negation(X,˜(X)).

4.2.10 Negative Permission Approach

As we mentioned in the previous chapter, apart from the basic approach of positive
permission, we can formulate through a metaprogram the two other approaches in
introducing the permission operator in our formalism. The simplest way to meet
the requirements of permission consists in viewing the permission of an action as
the negation of its prohibition. In this case, permission is implicitly expressed in
the system. It corresponds to the non-derivability of an obligation. We use the
predicate permission to describe this notion, as the modal operator permission is
not used in a defeasible theory and stated explicitly any longer. Thus, if we have
−∂Op, we can obtain permission(p). The next clause define permissive derivabil-
ity:

permission(P):-

negation(P,P1),not(defeasibly(P1,obligation)).

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 57

As the permission operator is not directly introduced, we remove from the pre-

vious metaprogram all the cases that define the provability of permission. These

are the clauses which have as head the predicates strictly(P,permission),

strictly(permission(P)), defeasibly(permission(A)), consistent(P, permission) and

undefeated applicable(R,permission,P). We also remove all the potential attacks

to obligation operator from permission, like stating not(strictly(P1, permission))

and not(defeated(R,permission,P)).

This approach seems reasonable when there are no rules for obligation that

support the complementary literals p and ∼p, or these rules exist but are inappli-

cable. On the other hand, if rules for obligation exist for these two literals, that

are applicable but they defeat each other without the possibility of solving the con-

flict with a superiority relation, then it seems unreasonable to conclude both again

permission(p) and permission(∼p). For example, suppose that we have the two

conflicting rules r1 : killer ⇒O punishable and r2 : mad ⇒O ¬punishable and

that this conflict cannot be solved. In this case, it is unreasonable to derive both

permission(punishable) and permission(¬punishable).

4.2.11 Deriving Permissions Through Defeaters

The third approach follows the indirect introduction of permission in the formal-

ism, as happens with the previous approach, but with a stronger statement that deals

with the weakness of the previous approach. A literal p is permitted if a defeater in

obligation for the same literal blocks all the attacks from conflicting prohibitions.

But as we know, defeaters are used only to prevent a conclusion and not to derive

it. Thus we define a special treatment of defeaters, following the approach from

[41], where they are used as rules for supporting the derivation of a conclusion.

A permission p is derived, if a defeater ÃO p exists, the premises of which are

defeasibly provable and it is used not only to block the conflicting supportive rules

for obligation, but it must also be superior from them in order to establish the con-

clusion permission(p). To illustrate this, suppose there is a norm that forbids to

U-turn at traffic lights unless there is a “U-turn permitted” sign. This scenario can

be represented as follows:

r1 :⇒O ¬Uturn

r2 : UturnSign ÃO Uturn

The defeater in the second rule blocks the derivability of the first rule, but in order

to conclude permission(Uturn), we must add the superiority relation r2 > r1 in the

defeasible theory.
The metaprogram has similar structure with that of the negative permission

approach and it does not include clauses and predicates that define derivations and
attacks from permission. It differs in the way that treats permissions and it is
defined by the following clauses:

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 58

permission(P):- defeater(R,obligation, P, A),defeasibly(A),

not(defeated_permission(P,permission,R)).

defeated_permission(P,permission,R):-

negation(P,P1),supportive_rule(S,obligation,P1,A),

defeasibly(A),not(superior(R,S)).

The defeater has similar treatment with the undefeated applicable rule from the

metaprogram of positive permission. We use a new predicate defeated permission

to define a supportive rule in obligation (not a defeater) that is not inferior (even

though it is not superior) and blocks the supportive defeater. As we can conclude,

this approach is used preferably more in scenarios where the prohibitions are the

normal case and permissions are the exceptions.

4.3 Arithmetic Capabilities in the Metaprogram

The rule language of defeasible logic does not support arithmetic and temporal

operations, that are required in many applications, like in reasoning with business

rules and regulations [3]. Since the modelling of policies and business rules was

one of the basic motivations for our work, we augment the metaprogram with more

facilities. This was achieved by embedding in the metaprogram the arithmetic

capabilities that are offered by the Prolog engines.
Both the two logical systems (YAP and XSB), that we use as reasoning engines

in our system, support these capabilities. They support numbers, both integers
and floating-point numbers, that can be used as Prolog terms. Prolog offers binary
operators in comparing Prolog terms and evaluating Prolog expressions. Therefore,
we add the following clauses in the metaprogram, in order to support arithmetic
comparison between terms:

strictly(greater(X,Y),knowledge) :- X>Y.

strictly(equal(X,Y),knowledge) :- X=Y.

strictly(different(X,Y),knowledge) :- X\=Y.

strictly(greaterEqual(X,Y),knowledge):- X>=Y.

strictly(less(X,Y),knowledge) :- X<Y.

For each type of comparison operation we define a corresponding predicate, to

support this operation in the metaprogram. It is obvious that a conclusion of this

kind of rule, the premises of which are a mathematical expression, never changes.

So the conclusion of this rule is considered as definitely provable and belongs to the

agent ’s theory about the world. For example, if the variables X and Y are instan-

tiated to numbers 8 and 5 respectively, then the Prolog Engine evaluates that the

expression 8>5 is true and the metaprogram produces +∆knowledgegreater(8, 5)
or that the literal greater(8,5) is definitely provable in knowledge.

Prolog supports evaluation of arithmetic expressions through the built-in pred-
icate is/2. The predicate is(?X,+Y) succeeds if the result of evaluating the expres-
sion Y unifies with X. An arithmetic expression can use unary or binary operators.
We add the following clauses in the metaprogram, in order to support several arith-
metic operations between terms:

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 59

strictly(inc(X,Y),knowledge) :-is(X,+(Y,1)).

strictly(add(X,Y,Z),knowledge) :-is(Z,+(X,Y)).

strictly(equalMax(X,Y,Z),knowledge):-is(Z,max(X,Y)).

strictly(dec(X,Y),knowledge) :-is(X,-(Y,1)).

strictly(sub(X,Y,Z),knowledge) :-is(Z,-(X,Y)).

In the same way, for each type of arithmetic operation we define a correspond-

ing predicate in the metaprogram. For example, if the variables X and Y are instan-

tiated to numbers 8 and 5 respectively, then the Prolog Engine evaluates that the

expression is(Z,+(X,Y)) is true and the metaprogram produces

+∆knowledgeadd(8, 5, 13) or that the literal add(8,5,13) is definitely provable in

knowledge.
Prolog engines also offer modules that contain list manipulation predicates, as

lists are useful utilities in calculations. A list is a Prolog structure that can be used
to represent a sequence of Prolog terms. The two basic list predicates are append/3
and member/2. The predicate append(?List1,?List2,?List3) succeeds if list List3 is
the concatenation of lists List1 and List2. The predicate member(?Element,?List)
succeeds if Element occurs in list List. The following clauses are added to the
metaprogram in order to define list operations:

strictly(member(X,[X|List]),knowledge).

strictly(member(X,[Element|List]),knowledge):-

strictly(member(X,List),knowledge).

strictly(append([],List,[List]),knowledge).

strictly(append([Element|List1],List2,

[Element|List1List2]),knowledge) :-

strictly(append(List1,List2,List1List2),knowledge).

strictly(not(X)) :-

not(strictly(X)).

4.4 Examples of Using the Metaprogram

We will describe some scenarios, in order to illustrate the way that the metapro-

gram is used in order to reason over the extension of defeasible logic with modal

operators.

4.4.1 The Surgeon

This example is taken from [40]. Suppose that a drunk surgeon intends to operate

a patient. He is aware that operating under the influence of alcohol will be an

action with failed results. Besides, the law prescribes that people are responsible

for causing damages as a result of carelessness. These two rules can be formalized

using the formalism that extends defeasible logic as:

r1 : intention(operate), drunk ⇒Z fail
r2 : permanentDamages, agency(fail) ⇒O responsible

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 60

Since we want to reason and obtain conclusions from the defeasible theory, we need
to translate the rules according to the metaprogram. The two rules are rewritten:

defeasible(r1,agency,fail,[intention(operate),drunk]).

defeasible(r2,obligation,responsible,

[permanentDamages,agency(fail)]).

Suppose that we have a defeasible theory with the facts F = (intention(operate),

drunk, permanentDamages) and R = (r1,r2). By running the metaprogram and the

logic programs which represent the facts and rules of the defeasible theory, we can

conclude that defeasibly(responsible,obligation) or +∂Oresponsible. That means

that the surgeon is responsible for causing permanent damage to a patient as a re-

sult of negligence. At first, from clause c2, we conclude +∂Zfail, as agency(fail)

is supported by rule r1 (clause e1), the premises of which are facts from the the-

ory. Then the conclusion obligation(responsible) is supported by the rule r2 (we

use again clauses c2 and e1), the premises of which are the previous conclusion

agency(fail) and permanentDamages, which is a fact from the theory.

On the other hand, suppose that the law prescribes that if the patient will die

without the operation and the surgeon is not on duty but he is the only person that is

able to complete the required medical procedure, then the surgeon is not responsi-

ble for the results of this operation, independently of the surgeon ’s situation during

the operation. For this reason, we should add the following rule to the defeasible

theory

r3 : patientDies, surgeonNotOnDuty ⇒O ¬responsible

and the superiority relation r3 > r2. We translate in logic programming as:

defeasible(r3,obligation,˜(responsible),

[patientDies,surgeonNotOnDuty]).

superior(r3,r2).

So if we obtain evidence to the contrary that the patient was dying and the

surgeon was not on duty, then rule r3 defeats r2 (clause k1). We conclude the

surgeon ’s innocence +∂O¬(responsible), as r3 is an undefeated applicable rule

in obligation (clauses h2 and g7).

4.4.2 The Prisoner ’s Dilemma

We will illustrate the way that we use the formalism and especially the feature

of different agent types, by formalizing the well-known prisoner ’s dilemma from

game theory, an example also taken from [40]. The classical prisoner ’s dilemma

is as follows:

Two people are arrested by the police for a major crime. The police does not

have enough evidence to incriminate them, and, having separated both prisoners,

visit each of them to offer the same deal: if one of them confesses the crime and

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 61

the other remains silent, the betrayer will be sentenced to one year and the silent

partner receives the full 25-year sentence. If both stay silent, both prisoners have

to serve for three years each. If each betrays the other, they have to serve for three

years each. Each prisoner must make the choice of whether to betray the other

or to stay silent. The best individual outcome for each prisoner is to confess the

crime, while the best outcome according to the organization code of honor is not

to confess and betray their partner.

The dilemma can be represented using the formalism as

r1 : committedCrime, arrestedWithPartner ⇒Z confess
r2 : committedCrime, arrestedWithPartner ⇒O ¬confess

or translated using the metaprogram clauses as:

defeasible(r1,agency,confess,

[committedCrime,arrestedWithPartner]).

defeasible(r2,obligation,˜(confess),

[committedCrime,arrestedWithPartner]).

The dilemma is represented as a conflict between the intentional action of the

prisoner to confess the crime and receive minor sentence and the obligation to the

organization code of honor (his normative system) not to confess the crime. Actu-

ally the latter is a prohibition, as it is equivalent in the obligation not to act. The

attack between agency and obligation is not basic and it is resolved by the agent

type ’s policy and in particular the clauses from 4.2.6, which determine when an

applicable rule is undefeated in a modality for a particular agent type. For ex-

ample, as it is defined from Table 3.2, a hypersocial prisoner, where obligation

overrides agency, will stick with the code of honor and will not confess the crime.

It will be concluded that +∂O¬confess and −∂Zconfess or that the predicate

defeasibly(∼(confess),obligation) is true. Both these two literals are consistent

(clauses d2 and d4) and supported by the corresponding defeasible rules (clause

e1), but rule r2 is undefeated applicable and blocks the derivability of the agency

to confess. On the other hand, a sinner prisoner, where agency overrides obliga-

tion, will confess the crime, giving in this way priority to his welfare. It will be

concluded that +∂Zconfess and −∂O¬confess. This is a violation of an obli-

gation that does not imply its cancelation. The violated obligation is still in force

but it does not make sense to deduce its consequent as a real obligation (or a pro-

hibition). The prisoner is a case of legislator within the organization and he acts

in a way that blocks the inference of O¬confess. In case of a hyperpragmatic

prisoner, obligation and agency are mutually attacked and only the superiority re-

lations, that capture the strategy of the prisoner, among the rules can resolve this

conflict and leads to a conclusion that detects his behavior in this dilemma. Thus,

if the prisoner is hyperpragmatic and he has the preference r2>r1 (clause k1), it

means that in this particular situation, he chooses to obey to his normative code

and not to confess the crime.

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 62

4.4.3 Umbrella Example

Let ’s take the example that we presented in subsection 3.4.8, which uses the fea-
ture of rule conversion. The rule, that encodes knowledge of the agent about not
opening the umbrella, is translated according to the metaprogram as:

defeasible(r1,knowledge,wet,˜(open_umbrella)).

Adding to the agent ’s defeasible theory the intention not to open the umbrella,

is translated into the fact intention(∼(open umbrella)). If we run the metapro-

gram and the logic programs that represent the facts and rules, we can conclude

that +∂Iwet or defeasibly(wet,intention) is true. Rule r1, although is a rule for

knowledge, it can be used to support the literal ∼(open umbrella) in intention, by

using rule conversion (clauses e4 and f9), as its premises are provable in intention.

In the same way, if we add the obligation not to open the umbrella, represented

as the fact obligation(∼(open umbrella)), we conclude that +∂O¬wet or defeasi-

bly(˜(wet),obligation) (from clauses e2 and f1).

4.4.4 Weekend Example

The following example is borrowed from [23]. Here we show how we can rep-
resent and formalize a well-known example from BOID architecture, an approach
that has several points of contact with our work. The scenario is the following:

My mother-in-law, who lives in Los Angeles, is in hospital and I am obliged to
see her this weekend. On the other hand, i already have a plan to go to an impor-
tant conference in New York, that is held also in this weekend. It is obvious that
because of the distance, if i meet me brother-in-law i cannot attend the conference
and vice versa.

The obligation of meeting the mother-in-law is formalized as:

defeasible(r1,obligation,meetMotherInLaw,weekend).

The intention to attend the conference as:

defeasible(r2,intention,attendConference,weekend).

We have the knowledge about the world that it is impossible to combine both
meeting mother-in-law and attending the conference in a weekend and this is rep-
resented by the following rules:

defeasible(r3,knowledge,˜(meetMotherInLaw),

attendConference).

defeasible(r4,knowledge, ˜(attendConference),

meetMotherInLaw).

Thus, having the information that we are in the weekend (represented in the

logic program as fact(weekend)), we use the formalism and the translations into

the logic programming, in order to have an automate decision in choosing between

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 63

the obligation and the intention. At first, both the two literals

obligation(meetMotherInLaw) and intention(attendConference) are supported by

the first and second rule respectively (clause c2). But, the third and fourth rule

are both applicable in intention and obligation respectively, by using rule conver-

sion (clauses e4 and e2). The conclusions depend on the type of the agent that

defines the potential attacks. For example, in a hypersocial agent, the applicable

rule r4 in obligation attacks the intention rule r2. So i will obey to the obliga-

tions of my family and i will meet my mother-in-law in Los Angeles, concluding

+∂OmeetMotherInLaw, +∂O¬attendConference and

−∂IattendConference. In case of a sinner agent, the applicable rule r3 in inten-

tion attacks the obligation rule r1. So i will prefer my scheduled plan to attend the

conference in New York, concluding

+∂IattendConference, +∂I¬meetMotherInLaw and

−∂OmeetMotherInLaw.

4.4.5 Washington Conference

The following example is borrowed from [28], a research that is based again on
BOID architecture. We will represent the following scenario:

I have an intention to attend a conference that will be held in Washington. The
conference site is one of the most luxurious in Washington and all the rooms, close
in this site, are quite expensive. Thus if i intend to go to Washington, I have the
obligation to keep the company ’s budget low and book a cheap room. On the other
hand, if I have an intention to visit Washington, I have the intention to stay close to
the conference site, because it facilitates my transfers.

We first represent the information that if someone stays in the conference site,
he does not live in cheap room:

defeasible(r1,knowledge,˜(bookCheapRoom),stayConferenceSite).

defeasible(r2,knowledge,˜(stayConferenceSite),bookCheapRoom).

The obligation to book a cheap room is formalized as:

defeasible(r3,obligation,bookCheapRoom,

intention(goWashingtonConference)).

My intention to book rooms near the conference site, if I have an intention to
go to Washington is represented as:

defeasible(r4,intention,StayConferenceSite,

intention(goWashingtonConference)).

Thus, having the information that I have the intention to attend a conference

(represented as fact(intention(goWashingtonConference)), we will find if I obey to

the obligation to book a cheap room or I prefer to intend stay close to the conference

site and spend more money. Both are supported by the rules r3 and r4 respectively

(clause c2). The first rules are applicable in intention and obligation (clauses e4 and

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 64

e2). The type of the agent determines the derived conclusion, the obligation to book

a cheap room +∂ObookCheapRoom (defeasibly(bookCheapRoom,obligation)) or

the intention to stay in conference site +∂IstayConferenceSite
(defeasibly(stayConferenceSite,intention)).

4.4.6 Legal Reasoning

The following example is borrowed from [77]. In this scenario we will illustrate
how our formalism represents and formalizes well-known examples from legal rea-
soning, a domain that is related with regulations and policies and incorporates de-
ontic notions:

Article 2043 Italian Civil Code: A person is liable for damages he has intention-
ally caused, except for cases where the existence of justification causes is shown.
These are the cases where the person accomplished the fact a) by self-defence, b)
by a state of necessity, or c) he was incapable during the fact.

This article can be represented using the formalism as:

r1 : agency(accomplished(X, Fact)), caused wrongful(Fact,Damage) ⇒O

liable(X,Damage)
r2 : self defence(X, Fact) ⇒O ¬liable(X, Damage)
r3 : under necessity(X, Fact) ⇒O ¬liable(X, Damage)
r4 : incapable during(X, Fact) ⇒O ¬liable(X, Damage)
r2 > r1, r3 > r1, r4 > r1

or translated using the metaprogram clauses as:

defeasible(r1,obligation,liable(X,Damage),

[agency(accomplished(X,Fact)),

caused_wrongful(Fact,Damage)]).

defeasible(r2,obligation,˜(liable(X,Damage)),

self_defence(X,Fact)).

defeasible(r3,obligation,˜(liable(X,Damage)),

under_necessity(X,Fact)).

defeasible(r4,obligation,˜(liable(X,Damage)),

incapable_during(X,Fact)).

superior(r2,r1).

superior(r3,r1).

superior(r4,r1).

This is a case where we model a norm and its exception-provisions as defea-

sible rules with higher priority. In this certain situation, a particular normative

statement is blocked and does not apply. For this reason we use the mode obli-

gation for the modality of these rules ’s conclusions, as they define a person ’s

responsibility for harmful actions, according to the normative system of law. We

also model the intentional action to accomplish this fact by using in the antecedent

of the rules the literal accomplished(X,Fact), modalised by operator agency.

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 65

Suppose now that we have the following case: Mary, during a quarrel with
her husband Mark, has defended herself by throwing against him a dish. This dish
belongs to Mark ’s valuable collection of pottery and the result of the throw was its
break. These facts are represented as:

fact(agency(accomplished(Mary,ThrowDish))).

fact(caused_wrongful(ThrowDish,BreakDish)).

fact(self_defence(Mary,ThrowDish)).

We will use the rules from article 2043, along with the facts from this case, in

order to automatically decide if Mary is liable for breaking Mark ’s dish. In this

defeasible theory, conflicting rules r1 and r2 are both applicable (clause c2), but r2

has higher priority (clause k1). So we conclude that

+∂O¬liable(Mary,BreakDish) or differently, that Mary is not responsible for

this fact.

The following rule encompasses the notion of permission:

Article 2033 Italian Civil Code (undue payment): A person who has accomplished

a payment that was not due has the right to claim back what he has paid.

This article is represented as a rule for permission:

accomplished payment(X,Y), undue(Y) ⇒P claim back(X, Y)

CHAPTER 4. TRANSLATION INTO LOGIC PROGRAMS 66

Chapter 5

Implementation Architecture

5.1 Overview of the Architecture

Our nonmonotonic rule-based system supports reasoning in defeasible logic, ex-

tended with modalities. It integrates with the Semantic Web, as it reasons with the

standards of RDF and RDF Schema. It provides automated decision support, when

running a specific case with the given logic programs and ontological knowledge

to get a correct answer. Figure 5.1 presents the overall architecture of our system,

which consists of different modules.

The system works in the following way: A user imports its rules and facts

as logic programs. They follow the structure of the extended metaprograms with

modalities, which translate defeasible theories into logic programs and perform

defeasible reasoning, as we described in chapter 4. The user has the ability to

choose the agent type metaprogram, that determines the way that the attacks be-

tween modalities are resolved during defeasible reasoning. In this case, the corre-

sponding logic metaprogram is loaded to the system ’s reasoning engine. The user

can select between two choices for reasoning engines: YAP [92] and XSB [91].

Facts may come not only directly from logic programs, but also from the Web

and in particular from RDF documents. The system has the additional function-

ality that treats RDF data as facts of the user’s defeasible theories, in order to be

processed by the rules. The RDF/S documents are retrieved from the Web, and

validated by the Semantic & Syntactic Validator, before being loaded to the sys-

tem. Then the system communicates with an instance of SWI-Prolog [82] system.

It employs the SWI-Prolog Semantic Web library to load the syntactically and se-

mantically valid RDF/S documents and translate them into RDF triples. The triples

that have come from RDF data are translated into Prolog facts, and then are passed

to the Reasoning Engine. The RDF Translator also translates triples that have come

from RDFS documents into logical rules that capture the RDF Schema semantics.

These Prolog rules are passed to the Reasoning Engine and further Prolog facts are

entailed.

The system provides a Graphical User Interface (GUI). By interacting with

67

CHAPTER 5. IMPLEMENTATION ARCHITECTURE 68

Graphical User Interface

Semantic & Syntactic
Validator

Prolog facts

Internet

RDF documents

Rules and Facts as
Logic Programs

User

queries answer to
the queries

RDF
Translator

vali d RDF
documents

RDF Documents

Reasoning Engine

Logi c Programs answer to
the queries

Figure 5.1: The Overall Architecture of our System.

the GUI, the user can import logic programs, load RDF/S ontologies and query

the system. On the other hand, the system displays messages to the user through

the GUI. The system also employs the Java programming library of InterProlog

[49], an interface that provides access to the Prolog systems of YAP and XSB, in

passing the logic programs and processing the user ’s queries. InterProlog also

provides access to the Prolog system of SWI-Prolog, which contains the Semantic

Web library that translates RDF/S data, passed from the system, in Prolog facts and

rules.

The reasoning engine compiles the metaprogram, which corresponds to the

agent type we use, and the logic programs, which represent the rules and contain

the ontological knowledge. Logic programs must have valid Prolog syntax, other-

wise the system informs the user about the errors in syntax. The reasoning engine

also evaluates the answers to user’s queries. If these queries are syntactically cor-

CHAPTER 5. IMPLEMENTATION ARCHITECTURE 69

Figure 5.2: System ’s Graphical User Interface

rect then are applied to the compiled programs. Otherwise the system informs the

user about the errors in syntax.

5.2 Graphical User Interface

The system provides a Graphical User Interface based on Java Foundation Classes

(Swing), that allows the user to interact with the underlying system. A screenshot

of our system is presented in figure Figure 5.2. The interaction with the graphical

user interface can be distinguished in three main tasks: a) loading RDF documents,

b) loading logic programs and c) querying the system. Each task takes a different

component in GUI ’s panel.

CHAPTER 5. IMPLEMENTATION ARCHITECTURE 70

5.2.1 Loading RDF Documents

User can select RDF/S documents, in order to be loaded to the system. He inserts

the URL of the location where the document exists, or he selects to store local RDF

documents, by inserting the directory where the file exists.

If the user pushes the “STORE RDF” button, he imports an RDF(S) document

to the system. This file is firstly sent to the semantic & syntactic validator, where

it is checked and if it is valid, then it is passed to the RDF Translator, where it

is translated into Prolog facts or rules. This Prolog file is sent and loaded to the

reasoning engine and then a message is displayed to the user, that informs him that

the RDF file was valid and loaded to the system, as Figure 5.3 shows. The button

Figure 5.3: Load RDF/S Data

“CLEAR” is used when the user prefers to clean the messages that are displayed

in this area. In case where he inserts an invalid RDF document, then the validator

notifies the system and the appropriate message is displayed to the user, as is shown

in Figure 5.4. This message informs the user about the errors of the invalid file,

that was not loaded to the system.

5.2.2 Loading Logic Programs

By using the middle component, user can import Prolog files into the system. He

can choose the Prolog system, that will be used as reasoning engine (YAP or XSB),

and the agent type metaprogram, according to the way he prefers the resolution

among modalities. In importing logic programs, the user types the directory where

exists the local Prolog file, or he presses the button “CLEAR” to find it. By pressing

the button “LOAD RULES”, the file is sent to the reasoning engine. If it has valid

syntax, then the logic program is loaded and the system informs the user through

a message. In Figure 5.5, user has selected YAP as the Prolog system, strongly

CHAPTER 5. IMPLEMENTATION ARCHITECTURE 71

Figure 5.4: Invalid RDF File

independent as the agent type, and he loads successfully a Prolog file. On the

Figure 5.5: Logic Program Imported

other hand, the user ’s logic program may be not loaded to the system, for reasons

like due to error in Prolog Syntax, incompatible type of file (e.g. if XSB is the

reasoning engine, then only “.P” files are loaded), wrong path directory etc. Then

the system displays the error message to the user. Figure 5.6 shows a case where

the user imports an XSB Prolog file, which is wrong in syntax and it is not loaded.

CHAPTER 5. IMPLEMENTATION ARCHITECTURE 72

Figure 5.6: Invalid Prolog File not loaded

5.2.3 Querying the System

The last component of the GUI offers a way of interaction between the user, who in-

serts the queries, and the system, which returns the answers. Our system facilitates

the typing of queries, by offering choices in the query ’s provability, as definitely

or defeasibly, and choices in the modality of the query ’s literal, as knowledge,

intention ,obligation etc. The user must only insert the literal of the query.

If the query has valid Prolog syntax, it is applied to the compiled Prolog files,

which consist of the logical metaprogram and logic programs that the user may

have inserted before, directly or from translated RDF documents. Then the reason-

ing engine evaluates and returns the answer to the system, which is a positive “yes”

or a negative “no”.

Figure 5.7 shows such a case. The user inserts the literal

“enroll(’Nikos Dimaresis’,’cs-280’,fall,2007)” and the choice for query ’s prov-

ability is defeasibly, while the modality is permission. Thus, the query is translated

into the Prolog query “defeasibly(enroll(’Nikos Dimaresis’,’cs-280’,fall,2007),

permission)” and it is sent to the reasoning engine. If the user inserts a literal with

false syntax, then the reasoning engine returns to the system the error message

about the invalid query and this is displayed to the user. Figure 5.8 shows a case,

where the user inserts the literal “enroll(’Nikos Dimaresis’,’cs-280’,fall,2007”, in

which he has forgotten to close the parenthesis. This is not a valid Prolog query

syntax and the system displays the corresponding message.

CHAPTER 5. IMPLEMENTATION ARCHITECTURE 73

Figure 5.7: User Queries the System

Figure 5.8: Error in Query ’s Syntax

5.3 The Semantic & Syntactic Validator

This module of semantic & syntactic validator is a Java library that embeds the

3.0 version of VRP [87] and checks the RDF documents before being loaded into

the system. The ICS-FORTH Validating RDF Parser (VRP v3.0) is a tool for ana-

lyzing, validating and processing RDF documents. This parser is part of the ICS-

FORTH RDFSuite [83], a platform that comprises software tools that addresses the

need for effective and efficient management of large volumes of RDF descriptions

and schemas, as required by real-scale Semantic Web applications.

VRP analyses syntactically the statements of a given RDF/ XML file according

to the RDF Model & Syntax Specification. It also checks whether the statements

contained in both RDF schemas and resource descriptions satisfy the semantic

constraints derived by the RDF Schema Specification (RDFS). The semantic con-

straints that are applied in RDF descriptions are:

CHAPTER 5. IMPLEMENTATION ARCHITECTURE 74

• Class Hierarchy Loops

• Property Hierarchy Loops

• Domain/Range of SubProperties

• Source/Target Resources of properties

• Types of Resources

VRP reports to our system whether the RDF file is valid and sends diagnostic

messages in case of several kinds of errors, like syntax, semantic and system errors.

The error reporting is one the parser ’s main features and the system uses the GUI

to display these messages to the user. Otherwise informs him about the successful

storage of the valid RDF document. VRP is based on standard compiler generator

tools for Java, namely CUP (0.10j) and JFlex (1.3.5) similar to YACC/LEX, which

ensure good performance when processing large volumes of RDF descriptions.

5.4 The RDF Translator

The RDF translator is the module of our system that translates valid RDF and RDF

Schema statements into Prolog facts and rules. This transformation allows the

RDF/S information to be processed by the rules provided by the user. Therefore

the system supports reasoning with RDF/S ontologies and integrates the Semantic

Web standards of RDF/S with our rule language that extends Defeasible Logic with

modal and deontic operators.

In processing RDF/S documents we employ the SWI-Prolog Semantic Web

library, that we mentioned in subsection 2.5.4. By using this library, when we

load an RDF/S document in SWI, at first it is transformed into an intermediate for-

mat, where RDF triples are represented using predicates in the form of rdf(Subject,

Predicate, Object).

In the next step SWI uses several built-in predicates to process these triples and

tranform them in a more suitable format. In case where RDF data has been loaded,

RDF triples are transformed further into the format Predicate(Subject, Object). The

namespaces of all the elements are cut, while triples with rdfs:comment elements

are removed. Then the triple is transformed in the format of fact in defeasible

logic, that is fact(Predicate(Subject, Object)). When the processing of RDF triples

is finished, all the facts are written in a new file, which is sent back to the system.

Then the system sends this logic program to the reasoning engine in order to be

loaded.
For example, suppose that we load the RDF example, from section 2.2, in

SWI-Prolog. The following triple is produced:

rdf(’http://www.csd.uoc.gr/˜hy467’,

’http://www.csd.uoc.gr/˜dimares/ontology/

University.rdfs#isTaughtBy’,’Grigoris Antoniou’).

CHAPTER 5. IMPLEMENTATION ARCHITECTURE 75

This triple is transformed into the following fact:

fact(isTaughtBy(’http://www.csd.uoc.gr/˜hy467’,

’Grigoris Antoniou’)).

In addition, SWI processes RDF Schema information, by translating RDF
triples into Prolog facts and rules, by following the rules that capture the semantics
of RDF Schema constructs:

a : C(X) :- rdf : type(X,C).

b : C(X) :- rdfs:subClassOf(Sc,C),Sc(X).

c : P(X,Y) :- rdfs : subPropertyOf(Sp,P),Sp(X,Y).

d : D(X) :- rdfs:domain(P,D),P(X,Z).

e : R(Z) :- rdfs:range(P,R),P(X,Z).

The first rule defines the core property rdf:type, which defines the relation-
ship between a resource X and a class C. It declares that the resource is an in-
stance of this class. When loading an RDF document in SWI, the RDF triples
of the form rdf(Subject, rdf:type, Object) are transformed in facts of the form
fact(Object(Subject)) and then are passed to the reasoning engine. Suppose the
following triple is produced:

rdf(’http://www.csd.uoc.gr/˜hy467’,rdf:type,

’http://www.csd.uoc.gr/˜dimares/ontology/

University.rdfs#Course’).

This triple is transformed into the following fact:

fact(course(’http://www.csd.uoc.gr/˜hy467’)).

The second rule defines the core property of rdfs:subClassOf, which defines

hierarchy in classes. It defines that if class Sc is subclass of class C, then each

instance of Sc is also an instance of C. When loading an RDFS document in SWI,

the RDF triples of the form rdf(Subject, rdfs:subClassOf, Object) are transformed

in rules of the form fact(Object(X)):- fact((Subject(X)) and then are passed to the

reasoning engine.
For example, suppose we load the RDF Schema document, the statements of

which, along with RDF data, are represented in the graph of Figure 2.4. Then SWI
produces the following triple:

rdf(’http://www.csd.uoc.gr/˜dimares/ontology/

University.rdfs#Professor’,rdfs:subClassOf,

’http://www.csd.uoc.gr/˜dimares/ontology/

University.rdfs#Lecturer’).

This triple is transformed into the following rule, that captures the semantics
of subclass relationship:

fact(lecturer(X)):- fact(professor(X)).

This Prolog rule is returned to the system and it is sent and loaded to the rea-
soning engine. It allows to infer additional facts from the facts that were initially
loaded. Thus, after loading RDF data in SWI, from the initial RDF triple

CHAPTER 5. IMPLEMENTATION ARCHITECTURE 76

rdf(’Grigoris Antoniou’,rdf:type,’http://www.csd.uoc.gr/

˜dimares/ontology/University.rdfs#Professor’).

and after translating the statements into Prolog facts and rules, the following
fact is also entailed:

fact(lecturer(’Grigoris Antoniou’)).

The third rule defines the core property of rdfs:subPropertyOf, which defines
hierarchy in properties. It defines that if property Sp is subproperty of property P
and X,Y are respectively the subject, object of Sp, then X is also a subject of P, and
Y is an object of P. When loading an RDFS document in SWI, the RDF triples of
the form rdf(Subject, rdfs:subPropertyOf, Object) are transformed in rules of the
form fact(Object(X,Y)):- fact((Subject(X,Y)) and then are passed to the reasoning
engine.
For example, suppose SWI produces the following triple:

rdf(’http://www.csd.uoc.gr/˜dimares/ontology/

University.rdfs#isTaughtBy’,rdfs:subPropertyOf,

’http://www.csd.uoc.gr/˜dimares/ontology/

University.rdfs#involves’).

This triple is transformed into the following rule, that captures the semantics
of subproperty relationship:

fact(involves(X,Y)):- fact(isTaughtBy(X,Y)).

This Prolog rule is returned to the system and it is sent and loaded to the rea-
soning engine. It allows as to infer additional facts from the facts that were initially
loaded. Thus, after loading the RDF example from 1.2 in SWI, and after translating
the statements into Prolog facts and rules, the following fact is also entailed:

fact(involves(’http://www.csd.uoc.gr/˜hy467’,

’Grigoris Antoniou’)).

The fourth and fifth rule capture the relationship between a property and its

domain and range. The subject of a property P must belong to the class which

is specified by the domain D of the property, and the object of a property P must

belong to the class which is specified by the range R of the property. Actually SWI

does not process the RDF triples that contain the properties rdfs:domain(P,D) and

rdfs:range(P,R) and it does not transform them in Prolog rules. VRP parser checks

the semantic constraint of source and target of properties in an RDF document,

before this file is sent to the RDF translator. In case where an RDF file contains a

statement where the subject or object is not instance of the domain or range class

of the property respectively, then VRP reports the system about this error and the

file is not sent to the RDF translator.

CHAPTER 5. IMPLEMENTATION ARCHITECTURE 77

5.5 InterProlog

InterProlog is an open-source programming library for developing Java + Prolog

applications. It is proposed as a bridge between Java and Prolog, promoting an

integration between logic and object-oriented layers. InterProlog implements a

bidirectional predicate/method calling between both languages, by mapping Java

objects into Prolog terms and vice-versa. The communication between a Java ap-

plication and a Prolog system is done through TCP/IP sockets or the Java Native

Interface. Prolog processes are launched in the background, outside the Java Vir-

tual Machine. InterProlog supports the Prolog systems of XSB, YAP and SWI

through the same API.

5.6 YAProlog

YAP (Yet Another Prolog) is one of the two choices that can be used as reasoning

engine and it is widely considered one of the fastest available Prolog systems. It

is a high-performance Prolog compiler with several optimizations and the whole

system is written in C. YAP obtains performance comparable to or better than

commercial Prolog systems. It also provides many built-ins, including I/O func-

tionality, data-base operations, modules and arithmetic operations, as the latter are

embedded in the metaprogram (as we showed in chapter 4) and are required in

many applications. Actually YAP is more suitable than XSB in applications with

large defeasible theories, with many facts and rules, which require Prolog systems

that offer small execution times.

5.7 XSB

XSB is an open source commercial logic programming system that extends Pro-

log with new semantic and operational features, mostly based on tabled resolution

and HiLog. Tabled resolution is useful for recursive query computation, allowing

programs to terminate correctly in many cases where Prolog does not. Users inter-

ested in several applications like Parsing, Program Analysis, Temporal Reasoning

etc may benefit from XSB. HiLog is a standard extension of Prolog, permitting lim-

ited higher-order logic programming in which predicate symbols can be variable

or structured and that allows their unification.

The main reason for selecting XSB as the system ’s reasoning engine is the need

for a Prolog system that supports the well-founded semantics. The choice of well-

founded semantics has the advantage that it offers low computational complexity

and it can detect cycles in the theories, without running into infinite loops. Under

this approach, the translation of a defeasible theory D into a logic program P(D)

has a certain goal: to show that

p is defeasibly provable in D ⇔

p is included in the Well-Founded model of P(D)

CHAPTER 5. IMPLEMENTATION ARCHITECTURE 78

XSB supports well-founded semantics of logic programs through the use of

sk not operator instead of not and the use of tabled predicates. This negation oper-

ator allows for the correct execution of logic programs with well-founded seman-

tics and deals with cyclic theories. The logical metaprograms that were described

in chapter 4, remain the same, with the only difference that the not operator is re-

placed by sk not. In order to declare that the predicates are tabled, we include in

each metaprogram the directive :- auto table.

Chapter 6

A System Use Case: University

Regulations

In this chapter we describe a use case that shows how our system works and inter-

acts with the user ’s queries. This is an example from a specific application, the

modelling of a variety of university regulations from the Department of Computer

Science at the University of Crete. Our system uses the formalism that extends

defeasible logic with modalities and especially with deontic operators, in order to

apply logic modelling to the representation and use of regulations. Thus we de-

scribe a use case that shows the functionality of our system in providing automated

support for reasoning with regulations and integrating with the Semantic Web.

6.1 Modelling Regulations

Regulations are the type of business rules that codify how products must be made

and process should be performed. They are a wide-spread and important part in

the organization and functioning of society in general, and business in particular.

In an environment of increasing complexity of, and change in, regulation, mainly

due to technological change and the current trend towards globalisation, automated

support for reasoning with regulations is becoming necessary.

Regulations are one of the many domains where business rules are applied. In

this case, business rules are used by an organization either to ensure compliance

with regulations, or to make decisions under regulations. Therefore, reasoning with

regulations is compatible with one of the main motivations of our work, which is

modelling of policies and business rules.

The use case is based on previous logical approaches in legal reasoning [70],

[34], [86], [61] and in formalizing regulations [3] and business rules [1]. Formal

systems offer the advantage of automatic execution. Thus it is possible to run

a specific case with the given regulations to get a correct answer. An interesting

aspect is the explanation of an answer, which is the reasoning chain of the response.

Benefits include the user ’s higher trust for the system. Formal methods also can be

79

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 80

used to detect anomalies, to investigate the effects of changes on the entire system

and for debugging, which suggests changes to the regulations that will have as an

effect the desired outcome.

The more recent approaches concluded that nonmonotonic systems with rules

and priorities comprise appropriate solutions on the above requirements. Defeasi-

ble logic is the nonmonotonic reasoning approach that it is easily implementable

and it has low computational complexity. It offers a natural way of representing

regulations, by mapping them to rules. Since regulations may contradict one an-

other, the sceptical behavior of defeasible logic prevents conflicting conclusions

and none of the corresponding rules fires. Priorities among rules, based on several

principles (recency, specificity, exception e.t.c), resolve these conflicts.

On the other hand, [3] showed that some features that appear to be useful or

necessary for the analysis of regulations, require additions to defeasible reason-

ing and an improved underlying knowledge representation formalism. Our system

captures these crucial aspects. It is based on a nonmonotonic reasoning formalism

with improved expressiveness, an extension of defeasible logic with the required

deontic notions of obligation, permission and prohibition. The system supports

arithmetic and temporal operations, as the Prolog engines, used as reasoning en-

gines, support useful built-in predicates. Finally, it supports the use of ontological

knowledge by integrating and reasoning with RDF Schema ontologies and RDF

data. Thus regulations make use of terminology and concepts, based on an onto-

logical knowledge, which is relevant to an organization, which is a university in

this use case.

Thus we describe a use case that shows how our system provides automated

decision support for reasoning with university regulations. This a tool that would

be used in many occasions by a student support service, a secretary, a lecturer

etc. The system ’s user interface provides functionalities for loading regulations as

rules. It also uses a query editor that offers an easy way to formulate queries, that

are processed successfully and responded.

6.2 University Ontological Knowledge

An RDFS ontology that models concepts and their relationships in the domain of
the university is defined for this application and it is imported to the system. This
document (available at the URL http://www.csd.uoc.gr/∼dimares/ontology/
University.rdfs) is represented as follow:

<?xml version="1.0" ?> <!DOCTYPE rdf:RDF [<!ENTITY xsd

"http://www.w3.org/2001/XMLSchema#">]>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Student"> </rdfs:Class>

<rdfs:Class rdf:ID="Undergraduate">

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 81

<rdfs:subClassOf rdf:resource="#Student"/></rdfs:Class>

<rdfs:Class rdf:ID="Postgraduate">

<rdfs:subClassOf rdf:resource="#Student"/></rdfs:Class>

<rdf:Property rdf:ID="registrationYear">

<rdfs:domain rdf:resource="#Student"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#integer"/></rdf:Property>

<rdf:Property rdf:ID="name">

<rdfs:domain rdf:resource="#Student"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#string"/> </rdf:Property>

<rdfs:Class rdf:ID="Lecturer"></rdfs:Class>

<rdfs:Class rdf:ID="Professor">

<rdfs:subClassOf rdf:resource="#Lecturer"/></rdfs:Class>

<rdfs:Class rdf:ID="AssociateProfessor">

<rdfs:subClassOf rdf:resource="#Lecturer"/></rdfs:Class>

<rdfs:Class rdf:ID="AssistantProfessor">

<rdfs:subClassOf rdf:resource="#Lecturer"/></rdfs:Class>

<rdfs:Class rdf:ID="Course"> </rdfs:Class>

<rdf:Property rdf:ID="code">

<rdfs:domain rdf:resource="#Course"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#string"/> </rdf:Property>

<rdf:Property rdf:ID="title">

<rdfs:domain rdf:resource="#Course"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#string"/> </rdf:Property>

<rdf:Property rdf:ID="units">

<rdfs:domain rdf:resource="#Course"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#integer"/> </rdf:Property>

<rdf:Property rdf:ID="category">

<rdfs:domain rdf:resource="#Course"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#string"/> </rdf:Property>

<rdf:Property rdf:ID="enroll">

<rdfs:domain rdf:resource="#Student"/>

<rdfs:range rdf:resource="#ScheduledCourse"/>

</rdf:Property>

<rdfs:Class rdf:ID="ScheduledCourse"> </rdfs:Class>

<rdf:Property rdf:ID="isGiven">

<rdfs:domain rdf:resource="#ScheduledCourse"/>

<rdfs:range rdf:resource="#Course"/> </rdf:Property>

<rdf:Property rdf:ID="semester">

<rdfs:domain rdf:resource="#ScheduledCourse"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#string"/> </rdf:Property>

<rdf:Property rdf:ID="academicYear">

<rdfs:domain rdf:resource="#ScheduledCourse"/>

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 82

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#integer"/> </rdf:Property>

<rdf:Property rdf:ID="involves">

<rdfs:domain rdf:resource="#ScheduledCourse"/>

<rdfs:range rdf:resource="#Lecturer"/> </rdf:Property>

<rdf:Property rdf:ID="isTaughtBy">

<rdfs:domain rdf:resource="#ScheduledCourse"/>

<rdfs:range rdf:resource="#Lecturer"/>

<rdfs:subPropertyOf rdf:resource="#involves"/>

</rdf:Property>

<rdfs:Class rdf:ID="Exam"> </rdfs:Class>

<rdf:Property rdf:ID="examineCourse">

<rdfs:domain rdf:resource="#Exam"/>

<rdfs:range rdf:resource="#Course"/> </rdf:Property>

<rdf:Property rdf:ID="examineeStudent">

<rdfs:domain rdf:resource="#Exam"/>

<rdfs:range rdf:resource="#Student"/></rdf:Property>

<rdf:Property rdf:ID="period">

<rdfs:domain rdf:resource="#Exam"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#string"/> </rdf:Property>

<rdf:Property rdf:ID="examinationYear">

<rdfs:domain rdf:resource="#Exam"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#integer"/> </rdf:Property>

<rdf:Property rdf:ID="grade">

<rdfs:domain rdf:resource="#Exam"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#integer"/> </rdf:Property> <rdfs:Class

rdf:ID="BachelorThesis"> </rdfs:Class>

<rdf:Property rdf:ID="topic">

<rdfs:domain rdf:resource="#BachelorThesis"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#string"/> </rdf:Property>

<rdf:Property rdf:ID="hasAccepted">

<rdfs:domain rdf:resource="#Undergraduate"/>

<rdfs:range rdf:resource="#BachelorThesis"/>

</rdf:Property>

<rdf:Property rdf:ID="submittedSemester">

<rdfs:domain rdf:resource="#BachelorThesis"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#string"/> </rdf:Property>

<rdf:Property rdf:ID="submittedYear">

<rdfs:domain rdf:resource="#BachelorThesis"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#integer"/> </rdf:Property>

<rdf:Property rdf:ID="thesisGrade">

<rdfs:domain rdf:resource="#BachelorThesis"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 83

XMLSchema#integer"/> </rdf:Property>

<rdfs:Class rdf:ID="RecognizedCourse"> </rdfs:Class>

<rdf:Property rdf:ID="corresponding">

<rdfs:domain rdf:resource="#RecognizedCourse"/>

<rdfs:range rdf:resource="#Course"/> </rdf:Property>

<rdf:Property rdf:ID="passedBy">

<rdfs:domain rdf:resource="#RecognizedCourse"/>

<rdfs:range rdf:resource="#Student"/></rdf:Property>

<rdf:Property rdf:ID="passedGrade">

<rdfs:domain rdf:resource="#RecognizedCourse"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/

XMLSchema#integer"/> </rdf:Property>

</rdf:RDF>

A graphical representation of the same RDF Schema is shown in 6.1.The above

RDF Schema defines vocabulary, that describes a part of the domain of the Uni-

versity, which is related more to the undergraduate program of studies and the

corresponding regulations that we model in this application. Thus we define the

basic classes of Course, ScheduledCourse, Exam, Student, Lecturer, BachelorThe-

sis, RecognizedCourse. The class Course defines all the lessons that comprise the

program of studies of the department. The properties that apply to this class include

all the basic information of the course like title, units, etc. ScheduledCourse is the

class that defines the set of all courses that are taught or has been taught, during a

semester. It contains information like the course which is taught, the semester, aca-

demic year etc. The class Exam defines the set of all examinations, and properties

that apply to this class include the course that is examined, the examination period,

the students that give this exam, their grades etc.

We also establish relationships between classes that define hierarchy. Thus

we define the classes Undergraduate and Postgraduate, which are subclasses of

class Student, and the classes Professor, AssociateProfessor and AssistantProfes-

sor, which are subclasses of class Lecturer. Finally a hierarchical relationship is

also defined for the property isTaughtBy, which is a subproperty of property in-

volves.
This RDF Schema document is imported to the system and RDF translator

transforms these concepts and relationships into the following Prolog rules:

fact(student(X)) :- fact(postgraduate(X)).

fact(student(X)) :- fact(undergraduate(X)).

fact(lecturer(X)) :- fact(professor(X)).

fact(lecturer(X)) :- fact(associateprofessor(X)).

fact(lecturer(X)) :- fact(assistantprofessor(X)).

fact(involves(X,Y)):- fact(isTaughtBy(X,Y)).

RDF documents that define instances regarding descriptions about students,
courses, exams e.t.c are also imported and the terms which are used for the defini-
tion of the instances are references to this RDFS ontology. Parts of the initial in-
stances are represented in the following RDF document (all the instances are avail-

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 84

Figure 6.1: University RDF Schema

able at the URLs http://www.csd.uoc.gr/∼dimares/ontology/University Data.rdf
and http://www.csd.uoc.gr/∼dimares/ontology/Courses.rdf):

<?xml version="1.0"?> <!DOCTYPE rdf:RDF [<!ENTITY xsd

"http://www.w3.org/2001/XMLSchema#">]> <rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:uni=

"http://www.csd.uoc.gr/˜dimares/ontology/University.rdfs#">

<uni:Course rdf:about="http://www.csd.uoc.gr/˜hy280">

<uni:code>cs-280</uni:code>

<uni:title>Theory of Computation</uni:title>

<uni:units>4</uni:units>

<uni:category>core</uni:category>

</uni:Course>

<uni:Course rdf:about="http://www.csd.uoc.gr/˜hy255">

<uni:code>cs-255</uni:code>

<uni:title>Software Technology Laboratory</uni:title>

<uni:units>4</uni:units>

<uni:category>core</uni:category>

</uni:Course>

<uni:Course rdf:about="http://www.csd.uoc.gr/˜hy225">

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 85

<uni:code>cs-225</uni:code>

<uni:title>Computer Organization</uni:title>

<uni:units>5</uni:units>

<uni:category>core</uni:category>

</uni:Course>

<uni:ScheduledCourse rdf:ID="cs280fall2007">

<uni:semester>fall</uni:semester>

<uni:academicYear>2007</uni:academicYear>

<uni:isGiven rdf:resource=

"http://www.csd.uoc.gr/˜hy280"/>

</uni:ScheduledCourse>

<uni:ScheduledCourse rdf:ID="cs255fall2007">

<uni:semester>fall</uni:semester>

<uni:academicYear>2007</uni:academicYear>

<uni:isGiven rdf:resource=

"http://www.csd.uoc.gr/˜hy255"/>

</uni:ScheduledCourse>

<uni:ScheduledCourse rdf:ID="cs225fall2007">

<uni:semester>fall</uni:semester>

<uni:academicYear>2007</uni:academicYear>

<uni:isGiven rdf:resource=

"http://www.csd.uoc.gr/˜hy225"/>

</uni:ScheduledCourse>

<uni:Undergraduate rdf:about="mailto:dimares@csd.uoc.gr">

<uni:name>Nikos Dimaresis</uni:name>

<uni:registrationYear>2006</uni:registrationYear>

<uni:enroll rdf:resource="#cs100fall2007"/>

<uni:enroll rdf:resource="#cs255fall2007"/>

<uni:enroll rdf:resource="#cs225fall2007"/>

</uni:Undergraduate>

<uni:Exam rdf:ID="cs280january2008dimares">

<uni:examineCourse rdf:resource=

"http://www.csd.uoc.gr/˜hy280"/>

<uni:examineeStudent rdf:resource=

"mailto:dimares@csd.uoc.gr"/>

<uni:period>january</uni:period>

<uni:examinationYear>2008</uni:examinationYear>

<uni:grade>7</uni:grade>

</uni:Exam>

<uni:Exam rdf:ID="cs255january2008dimares">

<uni:examineCourse rdf:resource=

"http://www.csd.uoc.gr/˜hy255"/>

<uni:examineeStudent rdf:resource=

"mailto:dimares@csd.uoc.gr"/>

<uni:period>january</uni:period>

<uni:examinationYear>2008</uni:examinationYear>

<uni:grade>4</uni:grade>

</uni:Exam>

<uni:Exam rdf:ID="cs255september2008dimares">

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 86

<uni:examineCourse rdf:resource=

"http://www.csd.uoc.gr/˜hy255"/>

<uni:examineeStudent rdf:resource=

"mailto:dimares@csd.uoc.gr"/>

<uni:period>september</uni:period>

<uni:examinationYear>2008</uni:examinationYear>

<uni:grade>5</uni:grade>

</uni:Exam>

...............................

This is part of the RDF data that are loaded to the system. The RDF translator
transforms these statements into Prolog facts, in the following form:

fact(course(’http://www.csd.uoc.gr/˜hy280’)).

fact(code(’http://www.csd.uoc.gr/˜hy280’,’cs-280’)).

fact(title(’http://www.csd.uoc.gr/˜hy280’,

’Theory of Computation’)).

fact(units(’http://www.csd.uoc.gr/˜hy280’,4)).

fact(category(’http://www.csd.uoc.gr/˜hy280’,core)).

fact(scheduledcourse(cs280fall2007)).

fact(semester(cs280fall2007,fall)).

fact(academicyear(cs280fall2007,2007)).

fact(isgiven(cs280fall2007,’http://www.csd.uoc.gr/˜hy280’)).

fact(undergraduate(’mailto:dimares@csd.uoc.gr’)).

fact(name(’mailto:dimares@csd.uoc.gr’,’Nikos Dimaresis’)).

fact(registrationyear(’mailto:dimares@csd.uoc.gr’,2006)).

fact(enroll(’mailto:dimares@csd.uoc.gr’,cs280fall2007)).

fact(exam(cs280january2008dimares)).

fact(period(cs280january2008dimares,january)).

fact(examinationyear(cs280january2008dimares,2008)).

fact(grade(cs280january2008dimares,7)).

...............................

As we mentioned in section 5.4, the RDF translator represents RDF statements
as triples and then transforms them into Prolog facts. That means that only binary
predicates are loaded to the system. This results in writing rules with many binary
predicates in their body and that makes more complicated the representation of
regulations. For example, if the body of a rule requires information about a course
with code X, like its units and category, this is represented as:

fact(course(X)),fact(code(X,Y)),fact(units(X,W)),

fact(category(X,P)).

For reasons of readability and space in modelling regulations and in facilitating
the formulation of queries, it is preferable to add the following rule, that defines a
new predicate course with four arguments:

fact(course(Code,Title,Units,Category)):- fact(course(X)),

fact(code(X,Code)),fact(title(X,Title)),

fact(units(X,Units)),fact(category(X,Category)).

For the same reasons, the following clauses are defined:

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 87

fact(enroll(Student,Course,Semester,Year)) :-

fact(enroll(X,A)),fact(student(X)),fact(name(X,Student)),

fact(scheduledcourse(A)),fact(isgiven(A,B)),

fact(code(B,Course)),fact(semester(A,Semester)),

fact(academicyear(A,Year)).

fact(exam(Student,Course,Period,Year,Grade)):- fact(exam(A)),

fact(examineestudent(A,B)),fact(name(B,Student)),

fact(examinecourse(A,D)),fact(code(D,Course)),

fact(period(A,Period)),fact(examinationyear(A,Year)),

fact(grade(A,Grade)).

fact(recognized_passed_lesson(Student,Course,Grade)):-

fact(recognizedcourse(A)),fact(corresponding(A,B)),

fact(code(B,Course)),fact(passedby(A,D)),

fact(name(D,Student)),fact(passedgrade(A,Grade)).

fact(accepted_thesis(Student,Semester,Year,Grade)) :-

fact(hasaccepted(A,B)),fact(undergraduate(A)),

fact(name(A,Student)),

fact(submittedsemester(B,Semester)),

fact(submittedyear(B,Year)),fact(thesisgrade(B,Grade)).

These clauses are loaded to the system as logic programs, before RDF data

being loaded to the system, in order to be processed by these logical rules.

6.3 Modelling University Regulations

In this section we present how we model a variety of university regulations, taken

from the undergraduate program of studies from the Computer Science department

at the University of Crete. These are rules from the department ’s policy in under-

graduate studies and describe conditional entitlements. Thus we formalize them

by using rules with the deontic mode of permission and obligation (representing

indirectly prohibitions). A logic program is loaded to the system, that contains the

logical rules of regulations (along with assistant clauses, like clauses for mathe-

matical and temporal operations), and then the system is ready to response to user

queries.

6.3.1 Enrollment in Courses

The following typical rule relates with the enrollment in courses for students:

A student has the permission to enroll in a course during a semester if he has
passed the course’s prerequisites, unless he has enrolled in courses this semester
with total number of course units more than 35. A student is also forbidden to en-
roll in a course in a spring semester, a) if he has enrolled in the same course just
the fall semester the same academic year (the previous year), or b) he has enrolled

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 88

in courses this academic year with total number of course units more than 65.

This is a typical rule with exceptions. In our logical framework of defeasible logic
with extensions, these rules are represented with the use of defeasible rules:

r1 : prerequisites passed(Student, Lesson, Semester, Y ear) ⇒perm

enroll(Student, Lesson, Semester, Y ear)
r2 : enroll(Student, Lesson, fall, Y ear) ⇒obl

¬enroll(Student, Lesson, spring, Y ear + 1)
r3 : total semester units(Student, Semester, Y ear, Sum), Sum > 35 ⇒obl

¬enroll(Student, Lesson, Semester, Y ear)
r4 : total semester units(Student, fall, Y ear, Sum1),

total semester units(Student, spring, Y ear + 1, Sum2),
add(Sum1, Sum2, Sum), Sum > 65 ⇒obl

¬enroll(Student, Lesson, spring, Y ear)
r2 > r1, r3 > r1, r4 > r1

The above defeasible theory is translated, according to the metaprogram approach,
into the following clauses:

defeasible(r1,permission,

enroll(Student,Lesson,Semester,Year),

prerequisites_passed(Student,Lesson,Semester,Year)).

defeasible(r2,obligation,

˜(enroll(Student,Lesson,spring,Year2)),

[enroll(Student,Lesson,fall,Year1),inc(Year2,Year1)]).

defeasible(r3,obligation,

˜(enroll(Student,Lesson,Semester,Year)),

[total_semester_units(Student,Semester,Year,Sum),

greater(X,35)]).

defeasible(r4,obligation,

˜(enroll(Student,Lesson,spring,Year)),

[total_semester_units(Student,fall,Year1,Sum1),

inc(Year2,Year1),

total_semester_units(Student,spring,Year2,Sum2),

add(Sum1,Sum2,Sum),greater(Sum,65)]).

superior(r2,r1).

superior(r3,r1).

superior(r4,r1).

If the user issues a query about a student ’s permission in enrolling a course

during a semester, then the reasoning engine applies this query to the compiled

logical programs. The body argument of the defeasible clauses contains predicates

that may come from RDF/S documents, translated into facts, like the predicate en-

roll(Student,Lesson,Semester,Year). Suppose that a query about the permission of

student, with name Nikos Dimaresis, to enroll the course with code cs-280 at spring

semester of year 2008, is issued to the system. This query is expressed in Prolog

syntax as defeasibly(enroll(‘Nikos Dimaresis’,‘cs-280’,spring,2008),permission).

If the information from the RDF document, that was showed in section 6.2, has

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 89

been loaded to the system, then fact(enroll(‘mailto:dimares@csd.uoc.gr’,

cs280fall2007)) is loaded to the system. By using the processing rules, the reason-

ing engine also concludes that fact(enroll(‘Nikos Dimaresis’,‘cs-280’,fall,2007)) is

true. In this case, rule r2 is applicable and defeats rule r1. Thus the system re-

sponses by stating that the student does not have the permission to enroll again this

course the next semester.
The body argument in defeasible clauses contains also predicates that are eval-

uated further in other clauses. An example is the predicate
prerequisites passed(Student, Lesson,Semester,Year)) in rule r1, which checks if
the student has passed the course’s prerequisites until this semester. For example,
the program of studies defines that a student is permitted to enroll the course with
code cs-255, if he has passed the course with code cs-150. This is defined by the
following clause:

strict(r114,knowledge,

prerequisites_passed(X,’cs-255’,Semester,Year1),

[passed(X,’cs-150’,Period,Year2,Grade),

earlier_period(Semester,Year1,Period,Year2)]).

This is a strict rule for knowledge. Predicate

passed(X,‘cs-150’,Period,Year2,Grade) is used in logic programs to describe the

course that is passed by a student, along with the semester, the year and the grade.

This is further evaluated in other more complicated clauses, by using arithmetic

and list operations and ontological knowledge about the exams, translated into the

facts of the form exam(Student,Course,

Period, Year,Grade) etc. For reasons of space we will not refer further.
We also embed in the metaprogram the predicate earlier period(Period1,Year1,

Period2,Year2) in order to model temporal aspects for our application. This pred-
icate compares two different moments. If the time defined by arguments Pe-
riod1,Year1 is more recent than the time defined by arguments Period2,Year2, then
this literal is definitely provable in knowledge. An example is the following clause,
which is embedded in the metaprogram:

strictly(earlier_period(fall,Year,january,Year),knowledge).

It defines that during a year, fall semester comes after month January. Thus

these clauses facilitate the reasoning engine in evaluating queries correctly, taking

in account temporal aspects.

Similarly predicate total semester units(Student,Semester,Year,Sum) calculates

in variable Sum, the course units that has already been declared by the student in

this semester. Finally the clauses contain predicates that offer arithmetic capabili-

ties, like add(Sum1,Sum2,Sum).

6.3.2 Exam Participation

The following typical rules relate with a student ’s permission in giving exams dur-
ing examining period and acquiring a grade:

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 90

A student has the permission to give an exam for a course in the examining pe-
riod of January, if he enrolled in this course the fall semester, the same academic
year. A Student has also the permission to give an exam in the examining period
of June, if he enrolled in spring semester in the same year. Finally he can give
an exam in September, if he enrolled in the course in fall or June semester, for the
academic year that has passed.

These regulations are represented with the use of defeasible rules, as follow:

r6 : enroll(Student, Lesson, fall, Y ear) ⇒perm

exam(Student, Lesson, january, Y ear + 1, Grade)
r7 : enroll(Student, Lesson, spring, Y ear) ⇒perm

exam(Student, Lesson, june, Y ear,Grade)
r8 : enroll(Student, Lesson, fall, Y ear) ⇒perm

exam(Student, Lesson, september, Y ear + 1, Grade)
r9 : enroll(Student, Lesson, spring, Y ear) ⇒perm

exam(Student, Lesson, september, Y ear,Grade)

The above defeasible theory is translated, according to the metaprogram, into the
following clauses:

defeasible(r6,permission,

exam(Student,Lesson,january,Year,Grade),

[enroll(Student,Lesson,fall,Year1),inc(Year,Year1)]).

defeasible(r7,permission,

exam(Student,Lesson,june,Year,Grade),

enroll(Student,Lesson,spring,Year)).

defeasible(r8,permission,

exam(Student,Lesson,september,Year,Grade),

[enroll(Student,Lesson,fall,Year1),inc(Year,Year1)]).

defeasible(r9,permission,

exam(Student,Lesson,september,Year,Grade),

enroll(Student,Lesson,spring,Year)).

Suppose again that we have loaded the RDF document from section 6.2, then

again is concluded that fact(enroll(‘Nikos Dimaresis’,‘cs-280’,fall,2007)) is true.

Thus, if we query the system, this student has the permission to give an exam in

course with code ‘cs-280’ at the examining periods of January and September in

year 2008 (derived from applicable rules r6 and r8 respectively), but not at June in

the same year (rule r7 is not applicable).

6.3.3 Graduate Requirements

The following typical rules define when a student is permitted to graduate:

A student has the permission to graduate in a particular period, if he has fulfilled
the following requirements: if he has passed a) all the core courses, b) at least two
courses that belong to category e1, c) at least 28 units from courses that belong to
categories e3-e9 and graduate courses, but at most three lessons at each category

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 91

and d) at least 158 units totally. On the other hand, it is forbidden to graduate if
he has not been studying for at least 4 years in the department.

These regulations are represented with the use of defeasible rules, as follow:

r10 : passed core lessons(Student, Period, Y ear),
passed e1 lessons(Student, Period, Y ear),
total optional lessons units(Student, Period, Y ear, Sum1), Sum1 > 28,
total units(Student, Period, Y ear, Sum2), Sum2 > 158 ⇒perm

graduate(Student, Period, Y ear)
r11 : undergraduate(Student), registrationyear(Student, Y ear1),

sub(Y ear2, Y ear1, X), X < 4 ⇒obl

¬graduate(Student, Period, Y ear2)
r11 > r10

The above defeasible theory is translated, according to the metaprogram, into the
following clauses:

defeasible(r10,permission,graduate(Student,Period,Year),

[passed_core_lessons(Student,Period,Year),

passed_e1_lessons(Student,Period,Year),

total_optional_lessons_units(Student,Period,Year,Sum1),

greaterEqual(Sum1,28),

total_units(Student,Period,Year,Sum2),

greaterEqual(Sum2,158)]).

defeasible(r11,obligation,˜(graduate(Student,Period,Year2)),

[undergraduate(Student),registrationyear(Student,Year1),

sub(Year2,Year1,X),less(X,4)]).

superior(r11,r10).

These clauses use again predicates in their body, that are evaluated further in

other clauses. These clauses calculate the course units of the optional lessons,

completed by a student, and the course units of all the passed lessons. Other clauses

check, by using list operations, if the student has passed all the core courses and if

he has passed at least two courses that belong to e1 category. Predicates that exist in

the body argument are loaded as facts, like the predicates undergraduate(Student)

and registrationyear(Student,Year1), and arithmetic and comparison operations.

6.3.4 More Regulations for Enrollment

Bachelor thesis is represented as a core course with code cs-499. It is forbidden
for a student to enroll in elaborating bachelor thesis, if he is not at least at the
fifth semester of his studies, which means that he has been studying at least two
years in the department. Undergraduate students may spend a work term for gain-
ing experience, part-time or full-time, represented as optional courses with codes
cs-499-3 and cs-499-6 respectively. A student is forbidden to enroll in a part-time
work term, if he has already enrolled in courses this semester with more than 26
units. A student is also forbidden to enroll in a full-time work term, if has not com-
pleted at least 90 course units.

CHAPTER 6. A SYSTEM USE CASE: UNIVERSITY REGULATIONS 92

These regulations are represented with the use of defeasible rules, which conflict
with rule r1, that was presented in subsection 6.3.1:

r12 : undergraduate(Student), registrationyear(Student, Y ear1),
sub(Y ear2, Y ear1, X), X < 2 ⇒obl

¬enroll(Student,′ cs − 499′, Semester, Y ear2)
r13 : undergraduate(Student),

total semester units(Student, Semester, Y ear, Sum), Sum > 26 ⇒obl

¬enroll(Student,′ cs − 499 − 3′, Semester, Y ear)
r14 : undergraduate(Student), total units(Student, Period, Y ear, Sum),

Sum < 90 ⇒obl

¬enroll(Student,′ cs − 499 − 6′, Semester, Y ear)
r12 > r1, r13 > r1, r14 > r1

The above defeasible theory is translated, according to the metaprogram, into the
following clauses:

defeasible(r12,obligation,

˜(enroll(Student,’cs-499’,Semester,Year1)),

[undergraduate(Student),registrationyear(Student,Year2),

sub(Year1,Year2,X),less(X,2)]).

defeasible(r13,obligation,

˜(enroll(Student,’cs-499-3’,Semester,Year)),

[total_semester_units(Student,Semester, Year,Sum),

greater(X,26)]).

defeasible(r14,obligation,

˜(enroll(Student,’cs-499-6’,Semester,Year)),

[undergraduate(Student),

total_units(Student,Period,Year,Sum),less(Sum,90)]).

superior(r12,r1).

superior(r13,r1).

superior(r14,r1).

Chapter 7

Conclusions and Future Work

In this report we argued that defeasible reasoning is a computationally efficient way

of dealing with issues related to the modelling of policies and multi-agent systems.

In particular, we have described how to enhance standard defeasible logic with

agency, intention, permission, and obligation operators. Additionally, we outlined

an implemented system that is also compatible with semantic web technologies.

At first, we reason why rule systems, especially the nonmonotonic ones, are

expected to be part of the layered development of the Semantic Web. Then, we

describe the logical formalism, on which the system is based on. We present de-

feasible logic and its main features, its declarative capabilities, and its low compu-

tational complexity. Then we explain why we extend modal and deontic operators,

as a way to model two different aspects: the modelling of multi-agent systems and

the modelling of policies.

We present the logic metaprogram, implemented in Prolog, that was used to

implement the extension of defeasible logic and detail the implementation archi-

tecture of the system, its rationale, and its functionality. Finally, we present a use

case that models a variety of university regulations, showing in practice the abilities

and functionality of our system.

Our planned future work includes:

• Providing explanation mechanisms to help users in understanding policy de-

cisions. When an answer is given, it is useful to provide a reasoning chain

explaining the response. Such an explanation tool is meant to guide the user

in acquiring the permissions necessary to get the desired services. Such fea-

tures are essential in an open environment such as the Semantic Web, where

the clients or users of a service are often occasional and do not know much

about how to interact with the service.

• Supporting RuleML [76] syntax, the main standardization effort for rules on

the Semantic Web. In [35], RuleML is extended by supporting modalities

and defeasible logic as an inferential mechanism.

• Providing an experimental evaluation in order to measure the performance

93

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 94

of our system. Here, we have to deal with the problem that there are not any

standard experimental tests for this formalism.

• Implementing load/upload functionality in conjunction with an RDF reposi-

tory, such as RDF Suite [83] and Sesame [22]. This additional functionality

will promote the integration of the system with the Semantic Web, and will

make it more suitable for building web-based applications.

• Supporting integration with description logic based ontologies. The logical

framework can be easily extended to ontologies which lie within the Horn

expressible part of OWL, since these ontologies can be given a semantics

based on a representation using Horn rules. In fact, DR-Prolog [2] supports

reasoning with (parts of) OWL ontologies, through the transformation of

many OWL constructs into rules.

• Providing applications of the developed implementation for modelling multi-

agent systems.

Bibliography

[1] G. Antoniou and M. Arief. Executable declarative business rules and their

use in electronic commerce. In SAC ’02: Proceedings of the 2002 ACM

symposium on Applied computing, pages 6–10, New York, NY, USA, 2002.

ACM Press.

[2] G. Antoniou and A. Bikakis. DR-Prolog: A System for Defeasible Reason-

ing with Rules and Ontologies on the Semantic Web. IEEE Transactions on

Knowledge and Data Engineering, 19(2):233–245, 2007.

[3] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. On the model-

ing and analysis of regulations. In Proceedings of the Australian Conference

Information Systems, pages 20–29, 1999.

[4] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. A flexible

framework for defeasible logics. In Proceedings of the Seventeenth National

Conference on Artificial Intelligence and Twelfth Conference on Innovative

Applications of Artificial Intelligence, pages 405–410. AAAI Press / The MIT

Press, 2000.

[5] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. Representation

results for defeasible logic. ACM Trans. Comput. Logic, 2(2):255–287, 2001.

[6] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. Embed-

ding defeasible logic into logic programming. Theory Pract. Log. Program.,

6(6):703–735, 2006.

[7] G. Antoniou, D. Billington, and M. J. Maher. On the analysis of regulations

using defeasible rules. In HICSS ’99: Proceedings of the Thirty-second An-

nual Hawaii International Conference on System Sciences-Volume 6, page

6033, Washington, DC, USA, 1999. IEEE Computer Society.

[8] G. Antoniou and M. J. Maher. Embedding defeasible logic into logic pro-

grams. In ICLP ’02: Proceedings of the 18th International Conference on

Logic Programming, pages 393–404, London, UK, 2002. Springer-Verlag.

[9] G. Antoniou, M. J. Maher, and D. Billington. Defeasible Logic versus Logic

Programming without Negation as Failure. J. Log. Program., 42(1):47–57,

2000.

95

BIBLIOGRAPHY 96

[10] R. Ashri, T. Payne, D. Marvin, M. Surridge, and S. Taylor. Towards a seman-

tic web security infrastructure. In In Proceedings of Semantic Web Services,

2004.

[11] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-

Schneider, editors. The Description Logic Handbook: Theory, Implemen-

tation, and Applications. Cambridge University Press, 2003.

[12] N. Bassiliades, G. Antoniou, and I. P. Vlahavas. DR-DEVICE: A Defeasible

Logic System for the Semantic Web. In PPSWR, pages 134–148, 2004.

[13] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, 284(5):34–43, May 2001.

[14] D. Billington. Defeasible logic is stable. J. Log. Comput., 3(4):379–400,

1993.

[15] G. Boella and L. van der Torre. Permissions and obligations in hierarchi-

cal normative systems. In ICAIL ’03: Proceedings of the 9th international

conference on Artificial intelligence and law, pages 109–118, New York, NY,

USA, 2003. ACM Press.

[16] P. A. Bonatti and D. Olmedilla. Semantic Web Policies: where are we and

what is still missing - ESWC’06 Tutorial, 2006.

[17] M. E. Bratman. Intention, Plans, and Practical Reason. Harvard University

Press, Cambridge, MA, 1987.

[18] M. E. Bratman, D. Israel, and M. E. Pollack. Plans and resource-bounded

practical reasoning. Computational Intelligence, 4:349–355, 1988.

[19] T. Bray, D. Hollander, A. Layman, and R. Tobin. Namespaces in XML 1.0

(Second Edition). http://www.w3.org/TR/REC-xml-names/, 2006.

[20] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and o. Y. Franc. Exten-

sible Markup Language (XML) 1.0 (fourth edition). Technical report, W3C,

2006.

[21] D. Brickley and R. Guha. Rdf vocabulary description language 1.0: Rdf

schema, February 2004.

[22] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architec-

ture for storing and querying rdf and rdf schema. In ISWC ’02: Proceedings

of the First International Semantic Web Conference on The Semantic Web,

pages 54–68, London, UK, 2002. Springer-Verlag.

[23] J. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. van der Torre. The

BOID architecture: conflicts between beliefs, obligations, intentions and de-

sires. In AGENTS ’01: Proceedings of the fifth international conference on

Autonomous agents, pages 9–16, New York, NY, USA, 2001. ACM Press.

BIBLIOGRAPHY 97

[24] J. Broersen, M. Dastani, and L. W. N. van der Torre. Resolving conflicts

between beliefs, obligations, intentions, and desires. In ECSQARU ’01: Pro-

ceedings of the 6th European Conference on Symbolic and Quantitative Ap-

proaches to Reasoning with Uncertainty, pages 568–579, London, UK, 2001.

Springer-Verlag.

[25] J. Broersen, M. Dastani, and L. W. N. van der Torre. Bdioctl: Obligations

and the specification of agent behavior. In IJCAI, pages 1389–1390, 2003.

[26] R. Conte. Social Order in Multiagent Systems. Kluwer Academic Publishers,

Norwell, MA, USA, 2001.

[27] Cwm - a general-purpose data processor for the semantic web.

http://www.w3.org/2000/10/swap/doc/cwm.html, 2007.

[28] M. Dastani and L. van der Torre. A classification of cognitive agents, 2002.

[29] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. dlvhex: A System for

Integrating Multiple Semantics in an Answer-Set Programming Framework.

In WLP, pages 206–210, 2006.

[30] D. Elgesem. The modal logic of agency. Nordic Journal of Philosophical

Logic, 2(2):1–46, 1997.

[31] J. Gelati, A. Rotolo, G. Sartor, and G. Governatori. Normative autonomy

and normative co-ordination: declarative power, representation, and mandate.

Artif. Intell. Law, 12(1):53–81, 2004.

[32] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for

general logic programs. J. ACM, 38(3):620–650, 1991.

[33] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In AAAI,

pages 677–682, 1987.

[34] T. Gordon. The pleadings game: An artificial intelligence model of procedu-

ral justice, 1993.

[35] G. Governatori. Representing business contracts in RuleML. Int. J. Cooper-

ative Inf. Syst., 14(2-3):181–216, 2005.

[36] G. Governatori, M. Dumas, A. H. M. ter Hofstede, and P. Oaks. A formal

approach to legal negotiation. In International Conference on Artificial Intel-

ligence and Law, pages 168–177, 2001.

[37] G. Governatori, M. J. Maher, G. Antoniou, and D. Billington. Argumentation

semantics for defeasible logic. J. Log. and Comput., 14(5):675–702, 2004.

BIBLIOGRAPHY 98

[38] G. Governatori, V. Padmanabhan, and A. Sattar. A Defeasible Logic of

Policy-Based Intention. In AI ’02: Proceedings of the 15th Australian Joint

Conference on Artificial Intelligence, page 723, London, UK, 2002. Springer-

Verlag.

[39] G. Governatori and A. Rotolo. A defeasible logic of institutional agency,

2003.

[40] G. Governatori and A. Rotolo. Defeasible Logic: Agency, Intention and Obli-

gation. In DEON, pages 114–128, 2004.

[41] G. Governatori, A. Rotolo, and G. Sartor. Temporalised normative positions

in defeasible logic. In ICAIL ’05: Proceedings of the 10th international con-

ference on Artificial intelligence and law, pages 25–34, New York, NY, USA,

2005. ACM Press.

[42] B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs:

Combining logic programs with description logic, 2003.

[43] B. N. Grosof. Prioritized conflict handing for logic programs. In ILPS ’97:

Proceedings of the 1997 international symposium on Logic programming,

pages 197–211, Cambridge, MA, USA, 1997. MIT Press.

[44] B. N. Grosof. Representing E-Commerce Rules via Situated Courteous Logic

Programs in RuleML. Electronic Commerce Research and Applications,

3(1):2–20, 2004.

[45] B. N. Grosof, M. D. Gandhe, and T. W. Finin. SweetJess: Translating DAML-

RuleML to JESS. In RuleML, 2002.

[46] B. N. Grosof, Y. Labrou, and H. Y. Chan. A Declarative Approach to Business

Rules in Contracts: Courteous Logic Programs in XML. In EC ’99: Proceed-

ings of the 1st ACM conference on Electronic commerce, pages 68–77, New

York, NY, USA, 1999. ACM Press.

[47] I. Horrocks and P. F. Patel-Schneider. A proposal for an owl rules language.

In WWW ’04: Proceedings of the 13th international conference on World

Wide Web, pages 723–731, New York, NY, USA, 2004. ACM Press.

[48] I. Horrocks, Peter, H. Boley, Said, and M. Dean. Swrl: A se-

mantic web rule language combining owl and ruleml. available at:

http://www.w3.org/Submission/SWRL/, May 2004.

[49] InterProlog - a Prolog-Java interface. http://www.declarativa.com/interprolog,

2007.

[50] Jena A Semantic Web Framework for Java.

http://jena.sourceforge.net/index.html, 2007.

BIBLIOGRAPHY 99

[51] N. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research

and development. Autonomous Agents and Multi-Agent Systems, 1(1):7 – 38,

July 1998.

[52] O. Lassila and R. Swick. Resource description framework (rdf) model and

syntax specification.

[53] A. Y. Levy and M.-C. Rousset. Combining horn rules and description logics

in carin. Artif. Intell., 104(1-2):165–209, 1998.

[54] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based

approach to distributed authorization. ACM Trans. Inf. Syst. Secur., 6(1):128–

171, 2003.

[55] M. J. Maher. A denotational semantics of defeasible logic. In CL ’00:

Proceedings of the First International Conference on Computational Logic,

pages 209–222, London, UK, 2000. Springer-Verlag.

[56] M. J. Maher. Propositional defeasible logic has linear complexity. Theory

Pract. Log. Program., 1(6):691–711, 2001.

[57] M. J. Maher. A model-theoretic semantics for defeasible logic, 2002.

[58] M. J. Maher and G. Governatori. A semantic decomposition of defeasible

logics. In AAAI/IAAI, pages 299–305, 1999.

[59] M. J. Maher, A. Rock, G. Antoniou, D. Billington, and T. Miller. Efficient

defeasible reasoning systems. International Journal on Artificial Intelligence

Tools, 10(4):483–501, 2001.

[60] W. Marek and M. Truszczynski. Nonmonotonic logic: Context-dependent

reasoning. 1993.

[61] J. McCarthy. Epistemological problems of artificial intelligence. pages 46–

52, 1987.

[62] R. C. Moore. Semantical considerations on nonmonotonic logic. Artif. Intell.,

25(1):75–94, 1985.

[63] Notation3 (N3) A readable RDF syntax.

http://www.w3.org/DesignIssues/Notation3.html, 1998.

[64] D. Nute. Defeasible reasoning and decision support systems. Decis. Support

Syst., 4(1):97–110, 1988.

[65] D. Nute. Handbook of logic in artificial intelligence and logic programming,

volume 3, chapter Defeasible logic. Oxford University Press, 1994.

[66] D. Nute. Defeasible Deontic Logic. Kluwer Academic Publishers, Dordrecht,

1997.

BIBLIOGRAPHY 100

[67] D. Nute. Norms, priorities, and defeasibility. In H. Prakken and P. McNa-

mara, editors, Norms, Logics and Information Systems. New Studies in De-

ontic Logic and Computer Science, pages 201–218. IOS Press, Amsterdam,

1998.

[68] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontol-

ogy Language Semantics and Abstract Syntax. http://www.w3.org/TR/owl-

semantics, 2004.

[69] J. Pitt. Open Agent Societies: Normative Specifications in Multi-Agent Sys-

tems. John Wiley & Sons, 2004.

[70] H. Prakken and G. Sartor. A dialectical model of assessing conflicting ar-

guments in legal reasoning. Artificial Intelligence and Law, 4(3-4):331–368,

1996.

[71] A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-

architecture. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings

of the 2nd International Conference on Principles of Knowledge Representa-

tion and Reasoning (KR’91), pages 473–484. Morgan Kaufmann publishers

Inc.: San Mateo, CA, USA, 1991.

[72] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Pro-

ceedings of the First Intl. Conference on Multiagent Systems, San Francisco,

1995.

[73] R. Reiter. A logic for default reasoning. Artif. Intell., 13(1-2):81–132, 1980.

[74] R. Riveret, A. Rotolo, and G. Governatori. Interaction between normative

systems and cognitive agents in temporal modal defeasible logic. In Norma-

tive Multi-agent Systems, 2007.

[75] R. Rosati. On the decidability and complexity of integrating ontologies and

rules. 3(1):41–60, 2005.

[76] RuleML. The RuleML Initiative website. http://www.ruleml.org/, 2007.

[77] G. Sartor. The structure of norm conditions and nonmonotonic reasoning in

law. In ICAIL, pages 155–164, 1991.

[78] M. Sintek and S. Decker. Triple - a query, inference, and transformation

language for the semantic web. In ISWC ’02: Proceedings of the First In-

ternational Semantic Web Conference on The Semantic Web, pages 364–378,

London, UK, 2002. Springer-Verlag.

[79] T. Skylogiannis, G. Antoniou, N. Bassiliades, and G. Governatori. Dr-

negotiate - a system for automated agent negotiation with defeasible logic-

based strategies. In EEE ’05: Proceedings of the 2005 IEEE Interna-

tional Conference on e-Technology, e-Commerce and e-Service (EEE’05) on

BIBLIOGRAPHY 101

e-Technology, e-Commerce and e-Service, pages 44–49, Washington, DC,

USA, 2005. IEEE Computer Society.

[80] SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-

query/, 2007.

[81] S. Spreeuwenberg and R. Gerrits. Business Rules in the Semantic Web, Are

There Any or Are They Different? In Reasoning Web, pages 152–163, 2006.

[82] SWI-Prolog. http://www.swi-prolog.org, 2007.

[83] The ICS-FORTH RDFSuite: High-level Scalable Tools for the Semantic

Web. http://139.91.183.30:9090/RDF, 2007.

[84] R. H. Thomason. Desires and defaults: A framework for planning with in-

ferred goals. In A. G. Cohn, F. Giunchiglia, and B. Selman, editors, KR2000:

Principles of Knowledge Representation and Reasoning, pages 702–713, San

Francisco, 2000. Morgan Kaufmann.

[85] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. Xml

schema part 1: Structures. http://www.w3.org/TR/2000/WD-xmlschema-1-

20000407/, 2000.

[86] A. von der Lieth Gardner. An artificial intelligence approach to legal reason-

ing. MIT Press, Cambridge, MA, USA, 1987.

[87] VRP - The ICS-FORTH Validating Rdf Parser.

http://139.91.183.30:9090/RDF/VRP, 2007.

[88] G. Wagner. Web rules need two kinds of negation. In PPSWR, pages 33–50,

2003.

[89] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and prac-

tice. HTTP://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-html.h (Hyper-

text version of Knowledge Engineering Review paper), 1994.

[90] M. J. Wooldridge. Reasoning about Rational Agents. The MIT Press, Cam-

bridge, Massachusetts, 2000.

[91] XSB - Logic Programming and Deductive Database System for Unix and

Windows. http://xsb.sourceforge.net, 2007.

[92] YAP Prolog. http://www.ncc.up.pt/ vsc/Yap, 2007.

