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Abstract

This thesis explores correlation functions in the AdS/CFT correspondence. Using
the supergravity approximation we compute the two-point functions of scalar and vector
fields. The same calculation is performed for a general Conformal Field Theory. Further-
more, we compute Witten diagrams that provide first and second order contributions to
conformal correlators in the large N limit. The Witten diagrams are written in the Mellin
representation and their associated Mellin amplitude is calculated.
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1 Introduction
The AdS/CFT Correspondence is the conjecture that two very different physical theories are

equivalent descriptions of an underlying physical system. More specifically, certain Conformal
Field Theories are thought to be dual to certain String Theories. The string theory is considered
on Anti-de Sitter space times a compact manifold. When the length scale or "radius" of AdS is
much bigger than the string length scale the graviton looks like a point particle and the string
theory can be approximated by classical supergravity. The CFT on the other hand is usually
a gauge theory of rank N and we take the limit where N is large. This is why AdS/CFT is
sometimes called Gauge-Gravity duality.

In this dual picture, the string coupling is related to the rank of the gauge group g ∼ 1/N .
The effective coupling for the gauge theory is λ = g2

YMN . This coupling constant is proportional
to R/ls ∼ λa with a > 0, with R and ls being the space and string length scales. This suggests
that in the areas where one theory is weakly coupled the corresponding theory is strongly
coupled. It is believed that the conjecture holds in all orders of perturbation theory, however,
it is typically very hard to do calculations beyond the first terms in the expansion. This is why
even though there is a lot of evidence for AdS/CFT, it is stil a conjecture.

This thesis is organized in the following way: the second section is a small introduction
to Anti-de Sitter geometry and representations of AdS. The third section provides a small
introduction to Conformal Field Theories in three or more dimensions. The fourth section
follows the paper by E. Witten titled "Anti-de Sitter space and holography" [1]. In that section
we calculate the two-point functions of massless scalar fields and gauge fields, using the tools
of classical gravity. The respective calculations are performed in the CFTs by enforcing the
conformal constraints.

The final section follows the paper by J. Penedones titled "Writing CFT correlation functions
as AdS scattering amplitudes" [2]. It is devoted to Witten diagrams. They are a diagrammatical
way to represent and calculate scattering in AdS space. These diagrams provide corrections
to conformal correlation functions in the large N limit. For scalar fields, these diagrams can
be written in the Mellin representation and each one has an associated Mellin amplitude. We
calculate these quantities for an n-point contact diagram and a four-point scalar exchange
diagram.

2 Anti-de Sitter Spacetime
Anti-de Sitter space is a homogeneous and isotropic Lorentzian manifold with constant negative
scalar curvature. It is a solution of Einstein’s field equations for a universe with negative
cosmological constant.

Ads geometry
For reviews on AdS see [3], [4]. AdSd+1 is the hyperboloid

−X2
0 −X2

d+1 +
d∑
i=1

X2
i = −R2 (2.1)

Embedded in d+ 2 dimensional Minkowski space Rd,2 with metric

ds2 = −dX2
0 − dX2

d+1 +
d∑
i=1

dX2
i (2.2)
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We can solve this equation by setting

X0 = R cost coshρ
Xd+1 = R sint coshρ
Xµ = R Ωµ sinhρ

(2.3)

where Ωµ parametrizes a unit d − 1 sphere. These are called global coordinates and give the
metric on AdSd+1:

ds2 = R2
(
−cosh2ρ dτ 2 + dρ2 + sinh2ρ dΩ2

d−1

)
(2.4)

If we now set tanθ = sinhρ where here θ must take values 0 ≤ θ < π/2 we find:

ds2 = R2

cos2θ

(
−dτ 2 + dθ2 + sin2θ dΩ2

d−1

)
(2.5)

Where we used cosh
(
sinh−1 (tanθ)

)
=
√
tan2θ + 1. If we rescale by R−2cos2θ we find

ds′2 = −dτ 2 + dθ2 + sin2θ dΩ2
d−1 (2.6)

This is the metric of the Einstein static universe R × Sd. For θ = 0 we have the "south" pole
of Sd and for θ = π/2 the metric is that of a d-sphere Sd. However since 0 ≤ θ < π/2 and θ
does not take values up to θ = π, this maps AdSd+1 to half of the Einstein static universe. An
analogous conformal compactification can be performed for d-dimensional Minkowski space and
it turns out to be identical to this one. This fact, along with the symmetry group similarities
that we will see shortly, provides a first hint at the AdS/CFT correspondence.

Wick Rotation
Consider flat Minkowski space in 4 dimensions:

ds2 = −dt2 + dx2 + dy2 + dz2 (2.7)

If we let time take imaginary values t = −iτ we can transform this metric into Euclidian space
in 4 dimensions

ds2 = dτ 2 + dx2 + dy2 + dz2 (2.8)
This is called Wick rotation and transforms R1,3 → R4. If we use this on our initial represen-
tation of AdS (2.1) and let Xd+1 → −iXd+1 we find

−X2
0 +

d+1∑
i=1

X2
i = −R2 (2.9)

This is called Euclidean AdS and is manifestly SO (d+ 1, 1) invariant. We can also introduce
Poincaré coordinates:

X0 = R
1 + x2 + z2

2z
Xµ = R

xµ

z

Xd+1 = R
1− x2 − z2

2z

(2.10)

Where z > 0 and by x2 we mean xµxµ. In these coordinates the metric reads

ds2 = R2 dz
2 + δµνdx

µdxν

z2 (2.11)
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These coordinates show that after conformally rescaling, AdS is mapped to R+ × Rd. At z=0
the boundary is simply Rd. In this form of the metric the subgroups ISO (d) and SO (1, 1) of
the SO (d+ 1, 1) isometry are apparent. ISO (d) are Poincaré transformations

xµ → Λµ
νx

ν Lorentz Transformations
xµ → xµ + aµ Spacetime Translations

(2.12)

SO (1, 1) is called dilatation. It is simply a coordinate re-scaling z → cz, xµ → cxµ for some
c > 0. As we will see in the next chapter these symmetries correspond to the conformal group,
the group of CFTs.

3 Conformal Field Theory
A Conformal Field Theory is a Quantum Field Theory that is scale-invariant. Meaning that
at whatever length scale we "look" at the theory the underlying physics is the same. A CFT is
invariant under transformations that preserve angles, but not necessarily lengths. Combining
this scale invariance symmetry with the Poincaré symmetry leads to further symmetries. All
these transformations form the Conformal Group which we will review in this chapter. This
is a Lie Group which means that we can write an element of the group using the infinitesimal
generators. It is important to stress that the 2-dimensional case is special as there are infi-
nite generators. However, it will not be relevant for our purposes. From here on, we assume
that we are talking about a CFT in d > 2. For comprehensive notes on CFTs in d > 2 see [5],[6].

Let’s take a look at the generators of the different subgroups of the Conformal Group:
(i) Momentum:

Pµ = ∂µ (3.13)
This generates spacetime translations, aµ.
(ii) Lorentz:

Lµν = xµ∂ν − xν∂µ (3.14)
This generates boosts and rotations, ωµν .
(iii) Dilatation:

D = xµ∂µ (3.15)
This generates scale transformations, σ.
(iv) Special conformal generator:

Kµ = x2∂µ − 2xµxν∂ν (3.16)

This generates a new parameter, bµ.

Primary Field Transformations
Before we look at how these tranformations act on Scalar Primary Fields we shall first carry out
some dimensional analysis to define the notion of the Weight ∆ of a field. From the massless
scalar field action:

S =
∫
ddx

1
2∂µφ∂

µφ (3.17)

Using units where ~ = c = 1, the action S is dimensionless. The derivatives have dimension
[∂µ] = [L]−1 and the differential has

[
ddx

]
= [L]d. Putting all this together we find

[φ] = [L]
2−d

2 (3.18)
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We also know from [~] = [E] · [T ] that [E] = [T ]−1 and of course from c that [L] = [T ]. So
in energy units the field has dimensions [φ] = [E]

d−2
2 . We usually assume that we are using

energy (or mass) dimensions so we write

[φ] = d− 2
2 =⇒ ∆φ = d− 2

2 (3.19)

This is the classical definition of the Weight ∆φ. Based on this discussion we can see that under
a dilatation of the form

xµ → x′µ = λxµ (3.20)

a scalar field transforms as:
φ′ (x′) = λ−∆φ (x) (3.21)

The Weight ∆φ will be important to us in the calculation of correlation functions and in relating
our findings in the CFT with the calculations in AdS.

A scalar primary field with weight ∆, by definition, transforms under a general conformal
transformation as:

φ′ (x′) = Ω−∆ (x)φ (x) (3.22)

We would like to write this equation infinitesimally. We start by writting:

x′µ = xµ + ξµ (x) and Ω = 1 + κ (x) (3.23)

where the ξ and κ are infinitesimal. Under this translation the field transforms as: φ (x) →
φ (x)− ξµ∂µφ (x) Inserting this into (3.22) we find:

φ′ (x′) = (1−∆κ (x)) (φ (x)− ξµ∂µφ (x))
φ′ (x′)− φ (x) ≡ δφ (x) = −∆κ (x)φ (x)− ξµ∂µφ (x)

(3.24)

Where we discard terms of order O (ξ2) ,O (κ2) ,O (ξκ). The ξ and κ are found by solving the
conformal Killing equation:

2κ (x) ηµν = ∂µξν + ∂νξµ (3.25)

The general solution (for d > 2) is:

ξµ (x) =aµ + ωµνx
ν + σxµ + bµx2 − 2bνxνxµ

κ (x) = 1
d
∂µξ

µ = σ − 2bνxν
(3.26)

Substituting this into (3.24) we find:

δφ (x) = −∆σφ (x) + ∆2bνxνφ (x)− aµ∂µφ (x)− ωµνxν∂µφ (x)− σxµ∂µφ (x)
− bµx2∂µφ (x) + 2bνxνxµ∂µφ (x)

(3.27)

Now by reading of the coefficients of the parameters aµ, bµ, σ, ωµν we find the action of their
respective infinitesimal generators on scalar primary fields.

δPµ = −∂µ for aµ

δLµν = xν∂µ − xµ∂ν for ωµν

δD = − (∆ + xµ∂µ) for σ

δKµ = 2∆xµ − x2∂µ + 2xµxν∂ν for bµ

(3.28)
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Conformal Charges
Noether′s Theorem
A continuous symmetry of the Lagrangian gives rise to a conserved current jµ (x). A conserved
current means that

∂µj
µ (x) = 0 (3.29)

Translation invariance of the Lagrangian leads to a conserved current for each dimension, all
expressed in the energy-momentum tensor T µν , that satisfies ∂µT µν = 0. Noethers theorem also
implies the existence of a conserved charge Q, defined as:

Qξ (Σ) = −
∫

Σ
dSµξν (x)T µν (x) (3.30)

Here Σ is a surface with boundary S. In the case of canonical QFT this would be an integral
over d3x. ξµ is a Killing Vector in flat space:

∂µξν + ∂νξµ = 0 (3.31)

To see why Q is indeed conserved in (3.30) we take the derivative:

∂µQξ (Σ) = −
∫

Σ
dSµ∂µ (ξν (x)T µν (x)) (3.32)

∂µ (ξν (x)T µν (x)) =
(∂µξν)T µν + ξν (∂µT µν) =
1
2 (∂µξν + ∂νξµ)T µν = 0

(3.33)

Where we used the fact that ∂µT µν = 0 and the fact that the energy-momentum tensor is sym-
metric: T µν = T νµ.

The important takeaway is that for each of our generators (3.13)-(3.16) there is an associated
conserved charge which we denote with a tilde e.g.

P̃µ = QPµ (3.34)

Taking the commutators of these charges differs from the commutators of the generators by a
minus sign

[Qa, Qb] = −Q[a,b] (3.35)
So the commutator of two conformal charges is opposite to the conserved charge corresponding
the commutator of the two charge generators. The action of a charge on a local operator is
given by the commutator

[Qa,O (x)] = −δaO (3.36)

So for example
[
P̃µ,O (x)

]
= ∂µO

Finally, it is important to mention how to think about CFTs with respect to regular Quantum
Field Theories. A QFT can be thought of as the renormalization group (RG) flow between
CFTs. For example, consider a non relativistic theory for a scalar field with a φ4 interaction
term:

S =
∫
d3x

( 1
2∂µφ∂

µφ+ 1
2m

2φ2 + gφ4
)

(3.37)

By dimensional analysis as we did in (3.17) we find [φ] = 1/2, [g] = 1 and of course [m] = 1.
So at high energies the kinetic term dominates and we say the theory is free in the UV. In the
low energy limit the IR theory will be a CFT for a special value of g2/m2. This will be an
interacting CFT that is not exactly solvable as the free theory.
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4 AdS/CFT
As mentioned in the introduction the AdS/CFT Correspondence refers to two equivalent de-
scriptions of the same underlying physics. The more precise relation that defines the corre-
spondence is the folowing

ZCFT = ZAdS (4.1)
where Z is the generating functional (or partition function). In QFT it is defined as:

Z [J ] =
∫
Dφ exp

[
i
∫
ddx [L+ J (x)φ (x)]

]
(4.2)

This a path integral, an integral over all field configurations. J (x) is called a source term and
its insertion allows us to produce correlation functions by taking the functional derrivative and
setting J = 0.

〈0| |T (φ (x1)φ (x2)) | |0〉 = Z [J ]−1
(
−i δ

δJ (x1)

)(
−i δ

δJ (x2)

)
z [J ]

∣∣∣∣
J=0

(4.3)

It is convenient to work in Euclidian signature so we consider the Wick-rotated version of (4.2):

Z [J ] =
∫
Dφ exp

[
−
∫
ddx [L − J (x)φ (x)]

]
(4.4)

This gives the Euclidian correlator

〈φ (x1)φ (x2) ...φ (xn)〉 (4.5)

Here we assumed scalar fields but the analysis is simmilar for vector and tensor fields. The
relation (4.1) tells us that the boundary value of a field φ0 is the source J for a scalar operator
O in the CFT.

〈exp
∫
Sd
φ0O〉

CFT
= ZS (φ0) (4.6)

In this section we provide examples of this relation for scalar and vector fields. This section
follows the paper by E. Witten titled "Anti-de Sitter space and holography" [1].

Scalar Field
The classical supergravity action for a massless scalar field is

I (φ) = 1
2

∫
Bd+1

dd+1x
√
ggµν∂µφ∂νφ (4.7)

Where √g is the determinant of the metric. We assume that the boundary value φ0 of φ is the
source of an operator O in the conformal theory. Our task now is to write φ in terms of φ0. To
do this we look for a Green’s function K (x− x′) that is a solution of the Laplace equation on
AdSd+1 such that

∇µ∇µK (x− x′) = δ (x− x′) (4.8)
To find this function we shall use the representation of AdSd+1 in Poincare coordinates (2.11).
We simply relabel z = x0 and set R = 1.

ds2 = 1
x2

0

d∑
i=0

(dxi)2 (4.9)

Here x0 > 0 and the boundary is at x0 = ∞. Notice that the boundary conditions are
independant of the xi. In addition, if we consider a translation of the xi ie x′i = xi + ai we can
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see that the metric is invariant under this translation since d (xi + ai) = dxi. So the Green’s
function K will have this symmetry and as a result will be a function only of x0. Before we
find K (x0) we shall first prove that the action (4.7) indeed gives a laplace equation for φ.

L = 1
2
√
ggµν∂µφ∂νφ (4.10)

∂L
∂φ

= 0 , ∂L
∂ (∂µφ) = √ggµν∂νφ (4.11)

So from the Euler-Lagrange equation we find:

∂µ

(
∂L

∂ (∂µφ)

)
= ∂µ (√ggµν∂νφ) = 0 (4.12)

Which is equivalent to the Laplace equation in curved space:

�φ = ∇µ∇µφ = 1
√
g
∂µ (√ggµν∂νφ) = 0 (4.13)

In order to solve the equation for K (x0) we need to find the inverse of the metric gµν , this is
easy to do since the metric in our representation (4.9) is block diagonal and so we only need to
take the inverse of the elements on the diagonal.

gµν =


x−2

0 0 · · · 0
0 x−2

0
. . . ...

... . . . . . . 0
0 · · · 0 x−2

0

 → gµν =


x2

0 0 · · · 0
0 x2

0
. . . ...

... . . . . . . 0
0 · · · 0 x2

0

 (4.14)

To find the determinant of the metric above we can start with d = 1 and for a 2x2 matrix
calculate det (g) = x−4

0 = x
−2(d+1)
0 . For d = 2 we find det (g) = x−6

0 = x
−2(d+1)
0 so we have found

the pattern for d dimensions and we have √g = x−d−1
0 . If we substitute this into the Laplace

equation (4.13) we find for K

d

dx0

(
x−d−1

0 x2
0

d

dx0
K (x0)

)
= 0 (4.15)

Where we can multiply by the factor √g (since x0 > 0) to get rid of the 1√
g
in (4.13). Now by

using the product rule the above equation takes the form:

(1− d)x−d0 K ′ (x0) + x1−d
0 K ′′ (x0) = 0 ⇒

(1− d)K ′ (x0) + x0K
′′ (x0) = 0

(4.16)

To solve this linear differential equation we let K (x0) = (x0)s. With this substitution (4.16)
reads:

(1− d) sxs−1
0 + x0s (s− 1)xs−2

0 = 0
(1− d) s+ s (s− 1) = 0
1− d = 1− s or s = 0
s = d or s = 0

(4.17)

So the general solution for K is
K (x0) = cxd0 + c′ (4.18)
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However we want the solution to approach zero as x0 → 0 so we take c′ = 0 and our final
sollution is K (x0) = cxd0. This grows at infinity and the singularity is a delta function. To
show this we make an SO (1, d+ 1) transformation that maps the point at x0 =∞ to a finite
point.

xi →
xi

x2
0 +∑d

j=1 x
2
j

(4.19)

Under this transformation K (x0) transforms as

K (x0) = cxd0(
x2

0 +∑d
j=1 x

2
j

)d (4.20)

For x0 → 0 K vanishes everywhere except at x1 = x2 = ... = xd = 0 where K (x0) ∼ x−d0 . So
K becomes a delta function with the infinity at x1 = x2 = ... = xd = 0. The solution for φ can
now be written as:

φ (x0, xi) =
∫
ddx′K (x− x′)φ0 (x′i) (4.21)

To see this one can act with the Laplacian on the previous equation and then use the definition
of the Green’s function (4.8). When we substitute K the equation above reads:

φ (x0, xi) = c
∫
ddx′

xd0(
x2

0 +∑d
i=1 (xi − x′i)

2
)dφ0 (x′i) (4.22)

Using the notation ∑d
j=1 x

2
j ≡ |x|

2 we rewrite (4.22) as

φ (x0, xi) = c
∫
ddx′

xd0(
x2

0 + |x− x′|2
)dφ0 (x′) (4.23)

for x0 → 0

φ (x0, xi) ∼ c
∫
ddx′

xd0
|x− x′|2d

φ0 (x′) → ∂φ

∂x0
∼ cdxd−1

0

∫
ddx′

xd0
|x− x′|2d

φ0 (x′) (4.24)

Now we integrate the action (4.7) by parts and find

I (φ) = 1
2

∫
dd+1x∂ν (√ggµν∂µφ · φ)− 1

2

∫
dd+1x∂ν (√ggµν∂µφ)φ (4.25)

The second term here vanishes as it satisfies the Laplace equation. The first term can be written
as a surface integral using the divergence theorem. We also take the limit of x0 = ε and I (φ) is

I (φ) = lim
ε→0

1
2

∫
ddx
√
hφ
(
n̂ · ~∇φ

)
(4.26)

where h is the induced metric and n̂ is the unit vector on the x0 plane. n̂ = x̂0N , the direction
of n̂ is clear but we need to find N for its length to be 1:

n̂ · n̂ = 1
x2

0
N2 = 1⇒ |N | = x0 (4.27)

Where we used the euclidian signature metric (4.9) for the dot product. The induced metric
is one dimension smaller than g since dx0 = 0 so we find

√
h = x−d0 . Putting all this together

along with (4.24) we find:

I (φ) = 1
2

∫
ddx · x−d0 φ · x0

∂φ

∂x0
⇒

I (φ) = cd

2

∫
ddxddx′

φ0 (x)φ0 (x′)
|x− x′|2d

(4.28)
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According to our formulation of the conjecture we can get the two point function of the operator
O by taking the functional derivative δJ(y)

δJ(x) ≡ δ(d) (x− y). So we find that

〈O (x1)O (x2)〉 = c12

|x1 − x2|2d
, (c12 = cd/2) (4.29)

As we will see soon, this is the same result one obtains by calculating the correlation functions
in the Conformal Field Theory for a scalar operator of conformal dimension d. In principle, one
can calculate all the correlation functions for a specific CFT using Feynman diagrams. However,
in practice this is very difficult. Therefore, we calculate the correlation functions by using the
general properties and symmetries of our theory to constrain the form of the functions. As we
will see, this is enough to fully fix the two-point function.

Conformal Constraints
We will now perform the same calculation in the CFT to calculate the two point function of a
scalar operator. Using the Ward Identity one can show that

〈δO1 (x1)O2 (x2) ...On (xn)〉+ ...+ 〈O1 (x1)O2 (x2) ...δOn (xn)〉 = 0 (4.30)

Where δ is the action of a conserved charge. In other words, if a symmetry of the Lagrangian
transforms an operator O → O′ = O + δO , we don’t expect the correlation functions which
are realted to observable quantities to change:

〈O1 (x1)O2 (x2) ...On (xn)〉 = 〈O′1 (x1)O′2 (x2) ...O′n (xn)〉 (4.31)

We now apply this to the two point function

〈O1 (x1)O2 (x2)〉 = f (x1, x2) (4.32)

Using (4.30) and the action of the infinitesimal generators (3.28) we impose the different sym-
metries.
Translations

(∂1 + ∂2) f (xµ1 , xµ2) = 0 =⇒ ∂f

∂xν1

∂xµ1
∂xν1

+ ∂f

∂xν2

∂xµ2
∂xν2

= 0

∂f

∂xν1
ηµν + ∂f

∂xν2
ηµν = 0 =⇒ ∂f

∂xν1
= − ∂f

∂xν2

(4.33)

This means that f must be a function of f ((x1 − x2)µ).

Lorentz
The two point function of scalar operators transforms as a scalar under the Lorentz Group.
This means that f must transform as a scalar and so can’t have any vector induces. This further
constrains the form of the function

f
(
(x1 − x2)µ (x1 − x2)µ

)
= f

(
|x1 − x2|2

)
(4.34)

This analysis so far holds for any relativistic QFT. In a CFT however we have two additional
symmetry sub groups to impose.

Dilatation

(xµ1∂1µ + ∆1 + xµ2∂2µ + ∆2) f
(
|x1 − x2|2

)
= 0 (4.35)
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For the derivatives we find

∂1µf
(
(x1 − x2)µ (x1 − x2)µ

)
= 2 (x1 − x2)µ f

′
(
|x1 − x2|2

)
∂2µf

(
(x1 − x2)µ (x1 − x2)µ

)
= −2 (x1 − x2)µ f

′
(
|x1 − x2|2

) (4.36)

Plugging this back to the previous equation we find:

2 (x1 − x2)µ f
′
(
|x1 − x2|2

)
(x1 − x2)µ + (∆1 + ∆2) f

(
|x1 − x2|2

)
= 0 (4.37)

If we set y = |x1 − x2|2 we have

2yf ′ (y) + (∆1 + ∆2) f (y) = 0
f ′ (y)
f (y) = − (∆1 + ∆2)

2y =⇒ lnf (y) = − (∆1 + ∆2)
2 lny + c

f (y) = c12y
(−∆1−∆2)/2

(4.38)

And if we reintroduce x we conclude that the correlation function must be of the form

f = c12

|x1 − x2|∆1+∆2
(4.39)

Special Conformal Transformation[
−2x1µ∆1 + x2

1∂1µ − 2x1µx
ν
1∂1ν − 2x2µ∆2 + x2

2∂2µ − 2x2µx
ν
2∂2ν

] c12

|x1 − x2|∆1+∆2
= 0 (4.40)

To simplify the calculation we define the differential operators Kiµ

Kiµ = x2
i∂iµ − 2xiµxνi ∂iν (4.41)

As a first step we look at how this operator acts on the invariant |x1 − x2|2 ≡ x2
12.

(K1µ +K2µ)x2
12 = 2x2

1 (x1 − x2)µ − 4x1µx
ν
1 (x1 − x2)ν + (x1 ↔ x2)

= −2x2
1x1µ − 2x2

1x2µ + 4x1µx
ν
1x2ν − 2x2

2x2µ − 2x2
2x1µ + 4x2µx

ν
2x1ν

= −2 (x1µ + x2µ)
(
x2

1 − 2x1 · x2 + x2
2

)
= −2 (x1µ + x2µ) (x1 − x2)2

(4.42)

However Kiµ is a differential operator:

(K1µ +K2µ)
(
x2

12

) −∆1−∆2
2 = −∆1 −∆2

2
(
x2

12

) −∆1−∆2
2 −1

(K1µ +K2µ)x2
12

= −∆1 −∆2

2
(
x2

12

) −∆1−∆2
2 −1

(−2) (x1µ + x2µ) (x1 − x2)2

= (∆1 + ∆2) (x1µ + x2µ) (x12)−∆1−∆2

(4.43)

Plugging this back to (4.40) we find

(∆1 −∆2) (x2µ − x1µ) c12

|x1 − x2|∆1+∆2
= 0 (4.44)

So we have ∆1 = ∆2 = ∆ or c12 = 0. So we conclude that the only form of the two point
function compatible with the conformal symmetries is

〈O1 (x1)O2 (x2)〉 = c12

|x1 − x2|2∆ (4.45)

We can even take c12 = 1 by renormalizing the operators. This is the result we obtained in
our gravity calculation (4.29). Moreover, for massless fields in AdS the weights of the scalar
operators in the CFT are given by the dimension d of the AdSd+1 space we are considering.
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U(1) Gauge Theory
Our next example of the AdS/CFT correspondence is in free U (1) gauge theory. As before, we
look for a Green’s function, in this case, a solution of Maxwell’s equations on AdSd+1, using
the metrtic representation (4.9). A natural language to solve this problem is the differential
forms formalism∗. In this formalism Maxwell’s equations are compactly written as:

dF = 0
d ∗ F = µ0J

(4.46)

Where F is the electromagnetic 2-form analogus to the E/M tensor Fµν .

F = 1
2Fαβdx

α ∧ dxβ (4.47)

And J is the current 3-form: J = −Ja ∗ dxα. In the free theory J = 0. By d we denote the
exterior derivative. For a p-form φ = gdxI = gdx1 ∧ dx2 ∧ ... ∧ dxp it is defined as:

dφ = ∂g

∂xi
dxi ∧ dxI (4.48)

Where i = 1, 2, .., d for a d-dimensional space. From this definition one can check that a second
order exterior derivative is always zero d (dφ) = 0 for any φ. This leads us to write F = dA
which is a consequence of the first equation in (4.46).

A is the potential 1-form A = Aαdx
α. Note that if we make a transformation A′ = A+ dλ we

find dA′ = dA. The gauge invariance of A also comes out naturally in this formalism.
Finaly, the ” ∗ ” symbol is the Hodge star operator that maps a p-form to a (d-p)-form:

(∗A)µ1...µd−p
=
√
g

p! ε
ν1...νp
µ1...µd−p

Aν1...νp (4.49)

where ε is the totaly antisymmetric Levi-Civita symbol. With this small introduction out of
the way we can look for our Green’s function. We write the second equation in (4.46) as:

d (∗dA) = 0 (4.50)

Just like the scalar case we expect our one-form A to only depend on x0

A = f (x0) dxi for some i 6= 0 (4.51)

Taking the exterior derivative (4.48) since A only depends on x0 we find

dA = f ′ (x0) dx0 ∧ dxi (4.52)

If we now act with the Hodge star (4.49) we find

∗ dA = √gεi012...df
′ (x0) dx1 ∧ dx2 ∧ ... ∧ d̂xi ∧ ... ∧ dxd (4.53)

The notation d̂xi means we do not include that differential in the wedge product. We lower the
2 upper indexes of ε by acting with the metric:

εi012...d = g0νgiµενµ12..d = g00giiε0i12..d = x4
0 (−1)i (4.54)

∗A calculation in covariant form is performed in Appendix A
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Here we used the inverse of the metric (4.14) and the fact that the Levi-Civita symbol is +1
for even permutations of (1, 2, ..., d) while −1 for odd permutations of (1, 2, ..., d). Using also√
g = x−d−1

0 we have for our d− 2-form:

∗ dA = 1
xd−3

0
(−1)i f ′ (x0) dx1 ∧ dx2 ∧ ... ∧ d̂xi ∧ ... ∧ dxd (4.55)

Maxwell’s equations d (∗dA) = 0 give:

∂

∂x0

(
1

xd−3
0

f ′ (x0)
)

(−1)i dx0 ∧ dx1 ∧ dx2 ∧ ... ∧ d̂xi ∧ ... ∧ dxd = 0 =⇒

1
xd−3

0
f ′ (x0) = c =⇒ f (x0) = cxd−2

0
d− 2 + c′

(4.56)

As before, we want f (0)→ 0 so we take c′ = 0. We find

A = cxd−2
0 dxi (4.57)

Now we make an inversion xi → xi

(x2
0+
∑n

i=1 x
2
i )
≡ xi

(x2
0+|x|2) and find

A = c

(
x0

x2
0 + |x|2

)d−2

d

(
xi

x2
0 + |x|2

)
(4.58)

And we can also make a gauge transformation

A→ A+ d

 −1
d− 2

xd−2
0 xi(

x2
0 + |x|2

)d−1

 (4.59)

This exterior derivative is equal to:

−1
d− 2

∂

∂x0

 xd−2
0 xi(

x2
0 + |x|2

)d−1

 dx0 + −1
d− 2

∂

∂xi

 xd−2
0 xi(

x2
0 + |x|2

)d−1

 dxi =

− 1
d− 2

(d− 2)xd−3
0 xi − 2xd−1

0 xi (d− 1) (x2
0 + |x2|)−1

(x2
0 + |x2|)d−1 dx0

− 1
d− 2

xd−2
0 − 2xd−2

0 x2
i (x2

0 + |x2|)−1

(x2
0 + |x2|)d−1 dxi

(4.60)

Where we used ∂
∂xi

∑n
j=1 x

2
j = 2xi. Now we also calculate the exterior derivative of (4.58) and

find:
A = c

(
− 2xd−1

0 xi

(x2
0 + |x2|)d

dx0 − xd−2
0 2x2

i

(x2
0 + |x2|)d

dxi + xd−2
0

(x2
0 + |x2|)d−1dx

i

)
(4.61)

We can set the constant c = d−1
d−2 and notice that the second terms the fractions of dx0 and

dxi in (4.60) cancel with the first and second terms in (4.61). Grouping together the remaining
terms leads to:

A = xd−2
0

(x2
0 + |x2|)d−1dx

i − xd−3
0 xi

(x2
0 + |x2|)d−1dx

0 (4.62)

This is the final form of the Green’s function. Using it we can write our solution of Maxwell’s
equations:

A (x0,x) =
∫
ddx′

xd−2
0(

x2
0 + |x− x′|2

)d−1ai (x
′) dxi − xd−3

0 dx0
∫
ddx′

(x− x′)i ai (x′)(
x2

0 + |x− x′|2
)d−1 (4.63)
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As before, our goal is to compute the action at the boundary limit of AdS. To do this need to
calculate F = dA:

F = (d− 2)xd−3
0 dx0

∫
ddx′

dxiai (x′)(
x2

0 + |x− x′|2
)d−1

− 2 (d− 1)xd−1
0 dx0

∫
ddx′

dxiai (x′)(
x2

0 + |x− x′|2
)d

− 2 (d− 1)xd−3
0 dx0

∫
ddx′

(xi − x′i) dxiak (x′) (x− x′)k(
x2

0 + |x− x′|2
)d

+ 2 (d− 1)xd−2
0

∫
ddx′

(xi − x′i) dxiak (x′) dxk(
x2

0 + |x− x′|2
)d

(4.64)

where a wedge product is implied between the differentials. Now we integrate the action by
parts:

I (A) = 1
2

∫
F ∧ ∗F = 1

2

∫
d (A ∧ ∗F )− 1

2

∫
A ∧ d (∗F ) (4.65)

The second term vanishes by virtue of d (∗dA) = 0 and the first term becomes a surface integral
over Tε for x0 = ε by the divergence theorem.

I (A) = 1
2 lim
ε→0

∫
Tε
A ∧ ∗F (4.66)

Using the above expressions for F and A and the hodge operation as we did for dA, this integral
gives:

I =
∫
dxdx′ai (x) aj (x′)

(
δij

|x− x′|2d−2 −
2 (x− x′)i (x− x′)j

|x− x′|2d

)
(4.67)

Taking the functional derivative of this result gives us the two point function of a conserved,
primary, spin-1 field in the Conformal Field Theory. We make use of ∂J(y)

∂J(x) = δ(d) (x− y) and
find:

〈Ji (x1) Jj (x2)〉 = δij

|x1 − x2|2d−2 −
2 (x1 − x2)i (x1 − x2)j

|x1 − x2|2d
(4.68)

In the following subsection will shall derive this result in the CFT by making use of the embed-
ding space formalism and light cone coordinates. This will hopefully demonstrate the usefullness
of light-cone coordinates in solving the conformal symmetry constraints. Furthermore, we shall
make use of this formalism in Section 5 to compute higher point functions.

Light Cone Coordinates and Embedding Space Formalism
It is convenient to think of the conformal boundary of AdS as the space of light rays

−
(
P 0
)2

+
(
P 1
)2

+ ...+
(
P d+1

)2
= 0 (4.69)

Where we use light cone coordinates

PA =
(
P+, P−, P a

)
(4.70)

And the metric is given by
PA · PB = −P+P− + δabP

aP b (4.71)
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A section of the light cone is the d-dimendional space of the CFT. We can go back to the
Poincare section by setting

P 0 (x) = 1 + x2

2 , P µ (x) = xµ, P d+1 (x) = 1− x2

2 (4.72)

This gives (dxµ)2 = 0 where µ = 1, 2, .., d so this is simply Rd. It is natural to extend primary
operators to the light cone by imposing the homogeneity property:

O (λP ) = λ−∆O (P ) (4.73)

This allows us to calculate correlation functions in the embedding space and then translating
the results to physical space. In addition, we extend this to vector and tensor operators by
imposing a transversality condition:

PA · JA (P ) = 0 (4.74)

The physical operator is obtained by projecting to the Poincare section

Oµ (x) = ∂PA

∂xµ
OA (P ) (4.75)

With this in mind we can go back to calculating correlation functions.

Scalar Two Point Function
Based on the homegeneity condition (4.73) we know that the function must be of order −∆1
in Φ1 (P1) and of order −∆2 in Φ2 (P2). Also, the function can only depend on P1 · P2 due to
Lorentz invariance. Since P1 and P2 must always apear together this means that ∆1 = ∆2 = ∆
and we have

〈Φ1 (P1) Φ2 (P2)〉 = c

(P12)∆ (4.76)

Where we define Pij ≡ −2Pi · Pj. We choose the light cone section

P =
(
1, x2, xµ

)
(4.77)

This gives
Pij ≡ −2Pi · Pj =

(
xi
)2

+
(
xj
)2
− δijxixj = (xi − xj)2 (4.78)

Plugging this back to (4.76) gives our well known result (4.29).

〈O1 (x1)O2 (x2)〉 = c

|x1 − x2|2∆ (4.79)

Vector Two Point Function
We now consider the two-point function of a primary vector field:

GAB (P1, P2) = 〈JA (P1) JB (P2)〉 (4.80)

G must be a second rank tensor under the Lorentz Group SO (d+ 1, 1). The most general such
tensor will be a linear combination of:

GAB (P1, P2) = c1

(
ηAB −

P1BP2A

P1 · P2

)
+ c2

P1AP2B

P1 · P2
(4.81)
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This is because these satisfy the transversality conditions for P1,P2:

PA
1 GAB (P1, P2) = 0 , PB

2 GAB (P1, P2) = 0 (4.82)

PA
1 ηAB − PA

1
P1BP2A

P1 · P2
= P1B − P1B = 0 (4.83)

PA
1
P1AP2B

P1 · P2
= 0 ,

(
P 2 = 0

)
(4.84)

And similarly for PB
2 . The c1, c2 must be scalars of the form P1 · P2. However, as before the

homogeneity condition mandates ∆1 = ∆2 = ∆ and we have:

GAB (P1, P2) = 1
(P12)∆

[
c1

(
ηAB −

P1BP2A

P1 · P2

)
+ c2

P1AP2B

P1 · P2

]
(4.85)

Now we project this result to physical space using (4.75)

gij (x) = ∂PA
1

∂xi
∂PB

2
∂xj

GAB (P1x, P2x) (4.86)

From (4.77) we see that the projection operators take the from

∂PA

∂xi
= (0, 2xi, δai ) (4.87)

The first term projects to

∂PA
1

∂xi
∂PB

2
∂xj

ηAB = ∂PA
1

∂xi
∂P2A

∂xj
= (0, 2x1i, δ

a
i ) (0, 2x2i, δ

a
i ) = δaiδ

a
j = δij (4.88)

∂PB
2

∂xj
P1B =

(
0, 2x2j, δ

b
j

) (
1, x2

1, x1b
)

= − 0 · x2
1

2 − 2x2j

2 + δbjx1b = −x2j + x1j

∂PA
1

∂xi
P2A = (0, 2x1i, δ

a
i )
(
1, x2

2, x2a
)

= − 0 · x2
2

2 − 2x1i

2 + δai x2a = −x1i + x2i

(4.89)

Putting this all together we have

∂PA
1

∂xi
∂PB

2
∂xj

(
ηAB −

P1BP2A

P1 · P2

)
= δab − 2

(x1 − x2)i (x1 − x2)j
(x1 − x2)2 (4.90)

Where we used P1 · P2 = − 1
2 (xi − xj)2. For the second term we have

∂PA
1

∂xi
P1A = (0, 2x1i, δ

a
i )
(
1, x2

1, x1a
)

= − 0 · x2
1

2 − 2x1i

2 + δai x1a = −x1i + x1i = 0 (4.91)

So the second term projects to zero and is simply a redundancy of the light cone. So we obtain:

〈Ji (x1) Jj (x2)〉 = c1

(x1 − x2)2∆

(
δab − 2

(x1 − x2)i (x1 − x2)j
(x1 − x2)2

)
(4.92)

Which the result we obtained in our gravity calculation for d = ∆ + 1 (4.68) . For more on the
topic of Light Cone Coordinates for CFT correlation functions see [7],[8].
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5 Witten diagrams in the Mellin representation
The more modern way of thinking about the AdS/CFT correspondence is in terms of AdS
scattering amplitudes and correlation functions. In this picture an n-point contact diagram
in AdS gives the leading contribution of an n-operator correlation function in the CFT. An
exchange diagram would give a small correction to this amplitude, a one-loop diagram an even
smaller correction and so on. The Mellin representation makes this analogy apparent and allows
for some physical interpretation of the perturbative corrections. This section follows the paper
by J. Penedones titled "Writing CFT correlation functions as AdS scattering amplitudes" [2]

Mellin Amplitude
A correlation function of primary scalar fields can be written as: (G. Mack [9])

〈O1 (x1) ...On (xn)〉 = N
(2πi)n(n−3)/2

∫
dδijM (δij)

n∏
i<j

Γ (δij)
(
x2
ij

)−δij (5.1)

The integration measure dδij = dδ12dδ23... is related to the Mandelstam invariants as we will
see shortly. M (δij) is the Mellin amplitude and Γ (δij) are gamma functions with simple poles
at non-positive integers. We integrate parallel to the imaginary axis so that poles of the gamma
functions stay on one side of the contour. We think of δij as the product of two "momentum"
vectors

δij = ki · kj = ∆i + ∆j − sij
2 (5.2)

Where sij = − (ki + kj)2 is analogus to the Mandelstam invariant in an n-particle scattering
process. s corresponds to the total center of mass energy squared. The ki are subject to
momentum conservation

n∑
i=1

ki = 0⇒
n∑
i=1

ki · kj = 0⇒
n∑
i=1

δij = 0 (5.3)

We think of the ∆i as the masses of the particles and require them to satisfy the "mass-shell"
relation

− k2
i = ∆i (5.4)

Putting these constraints together we notice that we have n (n− 3) /2 independent integration
variables. This is in analogy to the n (n− 3) /2 independent Mandelstam invariants required to
capture the kinematics of an n-particle scattering process. For example, in the 2→ 2 scattering
process we have two independent variables usually s,t while the third u is fixed by the relation

s+ t+ u =
4∑
i=1

m2
i (5.5)

As we have motivated in the previous section the correlation function in (5.1) can be calculated
from an AdS scattering process with amplitude A (xi)

A (xi) = 〈O1 (x1) ...On (xn)〉 (5.6)

In this section we compute Witten diagrams and show that they can be written in the form
(5.1). We calculate the Mellin amplitude M (δij) which comes out to be a simple algebraic
function.
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Witten Diagrams
The computation of Witten diagrams is simplified by the use of Embedding space formalism.
We consider Euclidean AdSd+1 embedded in d + 2 dimensional Minkowski space. So we have
the bulk geometry

−X2
0 +

d+1∑
i=1

X2
i = −R2 (5.7)

And at the boundary we have

− (P0)2 +
d+1∑
i=1

(Pi)2 = 0 (5.8)

In QFT the basic object required to calculate Feynman diagrams is the Feynman propagator.
Similarly, for Witten diagrams the essential object is the propagator. In this case we are
interested in the boundary limit of AdS so we require the Bulk to Boundary propagator. It is
given by:

GB∂ (X,P ) = C∆

R(d−1)/2 (−2P ·X/R)∆ (5.9)

Where
C∆ = Γ (∆)

2πhΓ (∆− h+ 1) , h = d

2 (5.10)

This is obtained by taking the limit of the bulk to bulk propagator. If we take the limit of the
bulk point X to a boundary point P2 we get the boundary to boundary propagator:

G∂∂ (P1, P2) = C∆

R(d−1)/2 (−2P1 · P2/R)∆ (5.11)

Which gives the known expression of the two-point function

G∂∂ (P1, P2) = 〈O∆ (P1)O∆ (P2)〉 = C∆

(−2P1 · P2)∆ (5.12)

For our purposes we will need the integral representation of (5.9) which we can write using a
gamma function identity ∫ ∞

0
dt tbe−at = Γ (b+ 1)

ab+1 (5.13)

One can check that this holds by a simple change of variables t′ = at. Using this we rewrite
the propagator as

GB∂ (X,P ) = C∆

R(d−1)/2Γ (∆)

∫ ∞
0

dt

t
t∆e2tP ·X/R (5.14)

We shall now apply this formalism to the calculation of a tree level n-point contact interaction
and a tree level scalar exchange.

Tree level n-point contact interaction
Our first diagram is the simple diagram in Figure 1. It gives the leading contribution (of order
g) to the AdS scattering amplitude of n-scalar fields.

A (Pi) = g
∫
AdS

dX
n∏
i=1

GB∂ (X,Pi) (5.15)
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g 2n− 1

n 1

...

Figure 1: Witten diagram for a n-point contact interaction in AdS

As a first check note that we integrate over all of AdS and so expect our amplitude to depend
only on the boundary points Pi. Using the integral representation of the propagator (5.14) we
obtain:

A (Pi) = gRd+1+n(1−d)/2
∫
AdS

d (X/R)
n∏
i=1

C∆i

Γ (∆i)

∫ ∞
0

dti
ti
t∆i
i e

2tPi·X/R (5.16)

The Rd+1 term comes form the AdS volume element in Poincare coordinates which we will
calculate shortly. This multi integral formula is usually defined as the D-function as it appears
in many diagrams of this type:

D∆1...∆n (Pi) =
n∏
i=1

(
1

Γ (∆i)

) ∫ ∞
0

dt1
t1
t∆1
1 . . .

∫ ∞
0

dtn
tn
t∆n
n

∫
AdS

d (X/R) e2Q·X/R (5.17)

Where we defined Q = ∑n
i=1 tiPi. We can calculate this amplitude and bring it to the Mellin

representation form. We start from the AdS integral:

d (X) = √gdzddx = (z/R)−d−1 dzddx (5.18)

Using lightcone coordinates we can take Q = |Q| (1, 1, 0) and X = (X+, X−, Xµ)
= R

z
(1, z2 + x2, xµ). So the dot product will be

Q ·X = R

2z
(
−1

(
z2 + x2

)
− 1 · 1

)
= − R

2z
(
1 + x2 + z2

)
(5.19)

This gives ∫
AdS

d (X/R) e2Q·X/R =
∫ ∞

0

dz

z
z−d

∫
Rd
ddxe−(1+z2+x2)|Q|/z

=
∫ ∞

0

dz

z
z−de(−1+z2)|Q|/z

∫
Rd
ddxe−x

2|Q|/z

= πh
∫ ∞

0

dz

z
(z |Q|)−h e−(1+z2)|Q|/z

(5.20)

Where in the second line we perfomed d gausssian integrals giving a factor of
[
πz
|Q|

]d/2
. As before

we set h = d/2. To proceed with the integral of z we let z |Q| → z:∫
AdS

d (X/R) e2Q·X/R = πh
∫ ∞

0

dz

z
z−he−z+Q

2/z (5.21)

The + sign in the Q2 is due to the fact that Q2 = − |Q|2. Substituting this into the original
expression (5.16) and rescaling by ti → ti

√
z leads to

A (Pi) = gRd+1+n(1−d)/2πh
n∏
i=1

C∆i

Γ (∆i)

∫ ∞
0

dt1
t1

(
t1
√
z
)∆1

. . .
∫ ∞

0

dtn
tn

(
tn
√
z
)∆n

∫ ∞
0

dz

z
z−he−z+Q

2

(5.22)
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This gives for z integral

eQ
2
∫ ∞

0

dz

z
z(∑n

i=1 ∆i−d)/2e−z = eQ
2Γ
( ∑n

i=1 ∆i − d
2

)
(5.23)

For Q2 we have from its definition

Q2 =
(

n∑
i=1

tiPi

) n∑
j=1

tjPj

 = (t1P1 + t2P2 + ...tnPn) (t1P1 + t2P2 + ...tnPn) (5.24)

The P 2 are zero by definition and the cross-terms are of the form:

2titjPiPj = −titj (xi − xj)2 = −titjPij (5.25)

So we obtain
A (Pi) = gRd+1+n(1−d)/22N

n∏
i=1

∫ ∞
0

dti
ti
t∆i
i e
−
∑

i<j
titjPij (5.26)

where we defined the normalization constant N

2N = πhΓ
( ∑n

i=1 ∆i − d
2

)
n∏
i=1

C∆i

Γ (∆i)
(5.27)

Finally, we make use of the identity (Symanzik [10])

2
n∏
i=1

∫ ∞
0

dti
ti
t∆i
i e
−
∑

i<j
titjQij = 1

(2πi)n(n−3)/2

∫
Σn
dδij

n∏
i<j

Γ (δij) (Qij)−δij (5.28)

which transforms the integral into the Mellin representation

A (xi) = N
(2πi)n(n−3)/2

∫
Σn
dδijM (δij)

n∏
i<j

Γ (δij) (Qij)−δij (5.29)

With normalization constant (5.27) and Mellin amplitude

M (δij) = gRd+1+n(1−d)/2 (5.30)

So we conclude that contact interactions in AdS have constant Mellin amplitudes.

Tree level scalar exchange
Our next diagram is the tree-level scalar exchange shown in Figure 2. It gives a contribution
of order g2 to the AdS scattering amplitude of 4-scalar fields.

A (Pi) = g2
∫
AdS

dXdY GB∂ (X,P1)GB∂ (X,P3)GBB (X, Y )GB∂ (Y, P2)GB∂ (Y, P4) (5.31)

The bulk to bulk scalar propagator is given by

GBB (X, Y ) = c∆

u∆ 2F1

(
∆, 2∆− d+ 1

2 , 2∆− d+ 1,− 4
u

)

= 1
(4π)h+1/2

∫ i∞

−i∞

dz

2πi
Γ (z) Γ (∆− z) Γ (1/2− h+ z)

Γ (z + ∆− 2h+ 1)

(
u

4

)−z (5.32)
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Figure 2: Witten diagram for a 4-point scalar exchange in AdS

where the second expression is given by the Barnes integral. 2F1 is the hypergeometric function
and u = (X − Y )2. The harmonic space expansion of the bulk to bulk propagator is computed
in appendix B. It reads

GBB (X, Y ) =
∫ +i∞

−i∞

dc

2πi
1

(∆− h)2 − c2
Ωc (X, Y ) (5.33)

Where
Ωc (X, Y ) = N (c)

∫
∂AdS

dP
1

(−2P ·X)h+c (−2P · Y )h−c
(5.34)

∂AdS denotes integral over the AdS boundary and N is given by

N (c) = Γ (h+ c) Γ (h− c)
2π2hΓ (c) Γ (−c) (5.35)

We reintroduce factors of R and we use the integral representation

1
(−2P ·X/R)∆ = 1

Γ (∆)

∫ ∞
0

dt

t
t∆e2tP ·X/R (5.36)

So GBB (X, Y ) takes the form

GBB (X, Y ) = 1
Rd−1

∫ +i∞

−i∞
dc

f (c)
2πi

∫
∂AdS

dP
∫ ∞

0

dt

t
th+ce2tP ·X

∫ ∞
0

d̄t

t̄
t̄h−ce2t̄P ·Y (5.37)

Where we write the constants compactly as

f (c) = 1
2π2hΓ (c) Γ (−c)

1
(∆− h)2 − c2

(5.38)

Plugging this back to (5.31) we find

A (Pi) =g2R2(1−d)
4∏
i=1

(
C∆i

Γ (∆i)

∫ ∞
0

dti
ti
t∆i

)∫ +i∞

−i∞

dc

2πif (c)
∫ ∞

0

dtd̄t

tt̄
th+ct̄h−c

∫
∂AdS

dP
∫
AdS

d
(
X

R

)
e2(t1P1+t3P3+tP )X/R

∫
AdS

d
(
Y

R

)
e2(t2P2+t4P4+t̄P )Y/R

(5.39)

The AdS volume element is

d
(
X

R

)
= √gdzddx = z−d−1Rd+1dzddx (5.40)

We can let
t1P1 + t3P3 + tP = Q , t2P2 + t4P4 + t̄P = Q̄ (5.41)
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With this in mind we perform the integrals over AdS using (5.21) and find

A (Pi) =g2R(5−d)
4∏
i=1

(
C∆i

Γ (∆i)

∫ ∞
0

dti
ti
t∆i

)∫ +i∞

−i∞

dc

2πif (c)
∫ ∞

0

dtd̄t

tt̄
th+ct̄h−c

π2h
∫ ∞

0

dzd̄z

zz̄
(zz̄)−h e−z−z̄

∫
∂AdS

dPeQ
2/z+Q̄2/z̄

(5.42)

We now rescale
t1 → t1

√
z, t3 → t3

√
z, t→ t

√
z

t2 → t1
√
z̄, t4 → t3

√
z̄, t̄→ t̄

√
z̄

(5.43)

The t and z integrals transform to∫ ∞
0

dtd̄t

tt̄
th+ct̄h−c

∫ ∞
0

z(h+c/2)z̄(−h−c)/2dzd̄z

zz̄
(zz̄)−h e−z−z̄ (5.44)

And the ti integrals contribute

z∆1/2 z∆3/2 z̄∆2/2 z̄∆4/2
n∏
i=1

∫ ∞
0

dti
ti
t∆i
i (5.45)

So we find ∫ ∞
0

dz

z
z(−h+c+∆1∆3)/2e−z

∫ ∞
0

d̄z

z̄
z̄(−h+c+∆1∆3)/2e−z̄ (5.46)

These contribute two gamma functions

Γ
(
−h+ c+ ∆1 + ∆3

2

)
Γ
(
−h− c+ ∆2 + ∆4

2

)
(5.47)

As for the integral over the boundary, the exponents read

(t1P1 + t3P3 + tP )2 = −t1t3P13 + 2Pt (t1P1 + t3P3)(
t2P2 + t4P4 + t̄P

)2
= −t2t4P24 + 2P t̄ (t2P2 + t4P4)

(5.48)

Putting all this together we find

A (Pi) =g2R(5−d)π2h
4∏
i=1

(
C∆i

Γ (∆i)

∫ ∞
0

dti
ti
t∆i
i

)
e−t1t3P13−t2t4P24

∫ +i∞

−i∞

dc

2πif (c) Γ
(
−h+ c+ ∆1 + ∆3

2

)
Γ
(
−h− c+ ∆2 + ∆4

2

)
∫ ∞

0

dtd̄t

tt̄
th+ct̄h−c

∫
∂AdS

dPe2P (t(t1P1+t3P3)+t̄(t2P2+t4P4))

(5.49)

The integral in the last line is of the same form as the one calculated in appendix B. It is given
by

2πh
∫ ∞

0

dtd̄t

tt̄
th+ct̄h−ce(t(t1P1+t3P3)+t̄(t2P2+t4P4))2

(5.50)

So we find

A (Pi) =g2R(5−d)π3h
4∏
i=1

(
C∆i

Γ (∆i)

)∫ +i∞

−i∞

dc

2πif (c)

∫ ∞
0

dtd̄t

tt̄
th+ct̄h−cΓ

(
−h+ c+ ∆1 + ∆3

2

)
Γ
(
−h− c+ ∆2 + ∆4

2

)
∫ ∞

0

4∏
i=1

dti
ti
t∆i
i e
−(1+t2)t1t3P13−(1+t̄2)t2t4P24−tt̄(t1t2P12+t1t4P14+t2t3P23+t3t4P34)

(5.51)
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Where we used −2Pi · Pj = Pij and P 2
i = 0. We can now make use of the identity (Symanzik

[10])

2
n∏
i=1

∫ ∞
0

dti
ti
t∆i
i e
−
∑

i<j
titjQij = 1

(2πi)n(n−3)/2

∫
Σn
dδij

n∏
i<j

Γ (δij) (Qij)−δij (5.52)

where we notice that

Q13 =
(
1 + t2

)
P13 , Q24 =

(
1 + t̄2

)
P24 , Qij = tt̄Pij (5.53)

We also insert the normalization constant (5.27) to bring the integral to the Mellin representa-
tion

2N = πhΓ
( ∑n

i=1 ∆i − d
2

)
n∏
i=1

C∆i

Γ (∆i)
(5.54)

Putting all this together we find

A (Pi) =g2R(5−d)π2h 2N
(2πi)2

1

Γ
( ∑4

i=1 ∆i−d
2

) ∫
Σn
dδij

∫ +i∞

−i∞

dc

2πif (c) Γ
(
−h+ c+ ∆1 + ∆3

2

)
Γ
(
−h− c+ ∆2 + ∆4

2

)
∫ ∞

0

dtd̄t

tt̄
th+ct̄h−c

(
1 + t2

)−δ13 (1 + t̄2
)−δ24 (

tt̄
)−δ12−δ14−δ34−δ23

4∏
i<j

Γ (δij) (Pij)−δij

(5.55)

So we find that the Mellin amplitude of this diagram is

M (δij) = g2R(5−d)2π2h

Γ
( ∑4

i=1 ∆i−d
2

) ∫ +i∞

−i∞

dc

2πif (c) Γ
(
−h+ c+ ∆1 + ∆3

2

)
Γ
(
−h− c+ ∆2 + ∆4

2

)

∫ ∞
0

dtd̄t

tt̄
th+ct̄h−c

(
1 + t2

)−δ13 (1 + t̄2
)−δ24 (

tt̄
)−δ12−δ14−δ34−δ23

(5.56)

The integral in the last line gives

Γ
(
h+c−s13

2

)
Γ
(

∆2+∆4+c−h
2

)
Γ
(
h−c−s13

2

)
Γ
(

∆1+∆3−c−h
2

)
Γ
(

∆1+∆3−s13
2

)
Γ
(

∆2+∆4−s13
2

) (5.57)

Where we used the definition of the Mandelstam invariant sij = −2δij + ∆i + ∆j. This gives
the final form the Mellin amplitude for this process

M (sij) = g2R5−d

Γ
(∑

i
∆i

2 − h
)

Γ
(

∆2+∆4−s13
2

)
Γ
(

∆1+∆3−s13
2

) ∫ i∞

−i∞

dc

2πi
l(c)l(−c)

(∆− h)2 − c2 (5.58)

With

l(c) =
Γ
(
h+c−s13

2

)
Γ
(

∆1+∆3+c−h
2

)
Γ
(

∆2+∆4+c−h
2

)
2Γ(c) (5.59)

We conclude that the Mellin amplitude of the scalar exchange only depends on s13. It has
simple poles at

s13 = ∆ + 2m, m = 0, 1, ... (5.60)
This has the interpretation of exchanged "mometum" going on shell, in analogy with scattering
in QFT.

24



Acknowledgements
I wish to thank Professor Vasilis Niarchos for his guidance and advice. His patience and
accuracy in answering my many questions helped me get a grasp of the concepts in this thesis.
His expertise and passion for the subject were a constant source of inspiration for me. I would
also like to thank fellow students Alexandros Zarafonitis and Chris Litos for helpful discussions.
Finally, I would like to thank my family for their support throughout my studies.

Appendix

A Maxwell’s equations in AdS
Maxwell’s equations in curved space in covariant form are

1
√
g
∂µ (√ggµρgνσFρσ) = jν (5.61)

In our case we are interested in the free theory so we get an equation for each ν = 0, 1, ..., d

∂µ (√ggµρgνσ (∂ρAσ − ∂σAρ)) = 0 (5.62)

We expect that the vector potential is only a function of Aµ = Aµ (x0) so the only non-vanishing
terms are:

d

dx0

(√
gg00gνσ (∂0Aσ − ∂σA0)

)
= 0 (5.63)

If ν = 0 we have a trivial solution. For ν 6= 0 we find
d

dx0

(√
gg00gνν (∂0Aν)

)
= 0 (5.64)

Using our Poincare metric representation (4.9) we have the determinant √g = x−d−1
0 and the

inverse of the metric gii = x2
0. So we find

x−d+3
0 A′ν (x0) = c (5.65)

This gives

Aν (x0) = cxd−2
0

d− 2 + c′ (5.66)

For x0 → 0 we want A→ 0 so c′ = 0. Using the relation A = Aµdx
µ we get the previous result

of our one-form (4.57)
A = cxd−2

0 dxi (5.67)
As a final note, we can calculate the form of the E/M tensor

Fµν = ∂µAν − ∂νAµ (5.68)

We have
F0ν = ∂0Aν = cxd−3

0 (5.69)
Fµν is antisymmetric and we have Fµν = −Fνµ. So in matrix form Fµν is

Fµν = xd−3
0


0 1 · · · 1
−1 0 . . . ...
... . . . . . . 0
−1 · · · 0 0

 (5.70)

This corresponds to zero magnetic field Bµ = 0 and equal electric field in all directions,
Eµ (x0) = xd−3

0 .

25



B Bulk to Bulk Propagator
The purpose of this appendix is to prove that the bulk to bulk propagator is indeed given as
an expansion in the basis of harmonic functions. See J. Penedones [2] [11].

GBB (X, Y ) =
∫ +i∞

−i∞

dc

2πi
1

(∆− h)2 − c2
Ωc (X, Y ) (5.71)

Where
Ωc (X, Y ) = N (c)

∫
∂AdS

dP
1

(−2P ·X)h+c (−2P · Y )h−c
(5.72)

Where ∂AdS denotes integral over the AdS boundary and N (c) is given by

N (c) = Γ (h+ c) Γ (h− c)
2π2hΓ (c) Γ (−c) (5.73)

We start by using the integral representation

1
(−2P ·X)∆ = 1

Γ (∆)

∫ ∞
0

dt

t
t∆e2tP ·X (5.74)

So the function Ωc reads

Ωc (X, Y ) = 1
2π2hΓ (c) Γ (−c)

∫
∂AdS

dP
∫ ∞

0

dtd̄t

tt̄
th+ct̄h−ce2tP ·X+2t̄P ·Y (5.75)

Where we used the explicit form of the gamma functions. To proceed we use Poincare section
P = (1, x2, xµ) and pick a basis where T = tX + t̄Y = |T | (1, 1, 0). In Poincare coordinates the
boundary volume element is simply dP = ddx. So we find

∫
∂AdS

dPe2T ·P =
∫
Rd
ddxe−|T |(1+x2) = e−|T |

(
π

|T |

)d/2
(5.76)

Where we used T · P = −1·1
2 + −1·x2

2 and performed d gaussian integrals. So the integral over
t and t̄ reads ∫ ∞

0

dtd̄t

tt̄
th+ct̄h−c

πh∣∣∣tX + t̄Y
∣∣∣h e−|tX+t̄Y | (5.77)

We now insert the delta function ∫ ∞
0

dsδ
(
s− t− t̄

)
= 1 (5.78)

We make a change of variables t→ st, t̄→ st̄ and find

πh
∫ ∞

0
ds
∫ ∞

0

dtd̄t

tt̄
th+ct̄h−c

sh+csh−c∣∣∣s (tX + t̄Y
)∣∣∣h e−s|tX+t̄Y |δ

(
s
(
1− t− t̄

))

= πh
∫ ∞

0

ds

s
sh
∫ ∞

0

dtd̄t

tt̄
th+ct̄h−ces(tX+t̄Y )2

δ
(
1− t− t̄

) (5.79)

Where we used the delta function identity δ (λx) = 1
|λ|δ (x). We now change variables once

more to perform the s integral t→ t/
√
s, t̄→ t̄/

√
s. This gives

2πh
∫ ∞

0

dtd̄t

tt̄
th+ct̄h−ce(tX+t̄Y )2

(5.80)
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Now we notice that we can write the exponent in the exponential as

− utt̄+
(
t+ t̄

)2
=
(
tX + t̄Y

)2
, u = (X − Y )2

= tt̄+ 2X · Y tt̄+ tt̄− t2 − 2tt̄− t̄2

= 2X · Y tt̄− t2 − t̄2
(5.81)

Where we used X2 = Y 2 = −1. So the bulk to bulk propagator takes the form

GBB (X, Y ) = 2πh
∫ i∞

−∞

dc

2πif (c)
∫ ∞

0

dtd̄t

tt̄
th+ct̄h−ce−(t+t̄)2−utt̄ (5.82)

We now make use of the Cahen–Mellin integral which gives the inverse of the Mellin transform
for the exponential function

e−utt̄ =
∫ c+i∞

c−i∞

dz

2πiΓ (z)
(
utt̄
)−z

(5.83)

So we find

GBB (X, Y ) =
∫ c+i∞

c−i∞

dz

2πiΓ (z)u−z
∫ i∞

−∞

dc

2πif (c)
∫ ∞

0

dtd̄t

tt̄
th+c−z t̄h−c−ze−(t+t̄)2

(5.84)

We can now perform the last integral∫ ∞
0

dtd̄t

tt̄
th+c−z t̄h−c−ze−(t+t̄)2

= Γ(h− z)Γ(h− z + c)Γ(h− z − c)
2Γ(2h− 2z) (5.85)

So we find that

GBB(X, Y ) = 1
2πh

∫ dz

2πi
Γ(z)Γ(h− z)
Γ(2h− 2z) u−z

∫ i∞

−i∞

dc

2πi
Γ(h− z + c)Γ(h− z − c)
Γ(c)Γ(−c) ((∆− h)2 − c2) (5.86)

Where reintroduced f (c) = 1
2π2hΓ(c)Γ(−c)

1
(∆−h)2−c2 . The last integral gives

∫ i∞

−i∞

dc

2πi
Γ(h− z + c)Γ(h− z − c)
Γ(c)Γ(−c) ((∆− h)2 − c2) =

Γ
(

1
2 + h− z

)
Γ
(

1
2 − h+ z

)
Γ(∆− z)

2πΓ(z + ∆− 2h+ 1) (5.87)

Finally, we use the Legendre duplication formula of the Gamma function to write

Γ (h− z) Γ
(
h− z + 1

2

)
= 21−2h+2z√πΓ (2h− 2z) (5.88)

This brings the propagator to its final form (5.32)

GBB (X, Y ) = 1
(4π)h+1/2

∫ i∞

−i∞

dz

2πi
Γ (z) Γ (∆− z) Γ (1/2− h+ z)

Γ (z + ∆− 2h+ 1)

(
u

4

)−z
(5.89)
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