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Abstract

Molecular dynamics (MD) simulations study the physical movement of atoms, provid-
ing valuable insight for a variety of physical systems. In order to study the motion of
molecules inside these physical systems we use either classical mechanics, if we want
to know the exact location of the particle in the space (determinism) or statistical me-
chanics, if we want to find the probability of the particle being in a particular position.
The difficulties due to the temporal and spatial limitations of simulations, lead us to
average out the details of atomistic, at the molecular level simulations. This can be
achieved by dimensionality reduction. In the current work we adopt coarse graining as a
dimensionality reduction approach. Having defined the new coarse grained system, the
purpose is to specify structural and dynamical properties of the system. We focus on the
equations of motion for the new coarse grained particles. These equations are the known
Generalized Langevin Equations (GLE). In this work, we present the derivation of the
GLE using the Mori-Zwanzig formalism. Then, we present a Markovian approximation
of the GLE based on the constrained dynamics of the microscopic system with respect
to the coarsening. This approximation leads to a closed system where the conservative
and friction forces can be estimated from data provided by all-atom molecular dynamics
simulations.

We present the application of the methodology for a high-dimensional system of a
star polymer, an 8-arm polystyrene. The coarse-variables are the center of mass of each
polystyrene molecule. We perform molecular dynamics simulations for a united-atom
system firstly to ensure the system is at thermodynamic equilibrium. Then, we perform
molecular dynamics simulations with constrained center of mass in order calculate the
average pair force.
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Chapter 1

Introduction

Nowadays more and more researchers are interested in the structural and dynamical
properties of polymers, especially of polymer stars. This happens because of their gen-
eral use in everyday life, since polymer stars are used wisely for plastics. Polymer stars
are the simplest class of branched polymers with a general structure consisting of sev-
eral (at least three) linear chains connected to a central core. But most of these systems
contain a large number of atoms (this can be 1023) so is essential to reduce the degrees
of freedom of the system. Additionally, with this reduction we can make our system less
numerically expensive. This reduction is achieved through the coarse-graining method-
ology. However, there is effort to study these polymers though all-atom representation
[3]. In order to study the behavior of physical systems we use molecular dynamics
simulations.

Molecular dynamics (MD) simulations are a powerful tool for understanding molecules
structures and functions with full atomistic detail. It is often used for studying the con-
formational rearrangements of molecules and their interactions with other molecular
species in a range of environments. The method provides a dynamic description of the
temporal behavior of atoms and molecules by using finite difference methods to nu-
merically solve Newton’s equations of motion. MD simulations treat the molecule as a
collection of interacting classical particles and integrate the classical (Newtonian) equa-
tions of motion to simulate the atomistic position of macromolecules, [16, 1, 10]. The
result of the simulation is a trajectory of the system over a certain period of time, usu-
ally tens to hundreds of nanoseconds. Various structural and dynamic properties of the
system can then be calculated from the trajectory to gain a kinetic and thermodynamic
understanding of the system. Simulations are performed using empirically parameterized
force fields that include explicit solvent. But the main problem is that the computa-
tional modeling of realistic complex molecular systems at the molecular level requires
long molecular simulations for an enormous distribution of length and time scales.

5



To solve this problem we need to apply dimensionality reduction, that is reductions of
degrees of freedom by averaging out the details of atomistic, at the molecular level sim-
ulations. This is achieved with coarse-graining. More specifically coarse-graining means
that you trace over a finite number of (microscopic) degrees of freedom in the problem.
In this way one can reach longer time or length scales. Coarse-grained (CG) models have
been proven very efficient means in order to increase the length and time scales accessible
by simulations, [10, 11, 9, 14]. The challenge is thus to describe efficiently the structural
and the dynamical behavior of the coarse grained system. To describe the structural
behavior approximation to the many body potential of mean force (PMF) are employed,
directly related to the equilibrium distribution of CG particles observed in simulations
of atomically detailed models. To achieve effective PMF approximations, several numer-
ical approaches have been introduced in recent years which correspond to fit a model for
different observables. There exist various numerical methods that construct reduced CG
models which approximate the properties of reference (microscopic) molecular systems
and are based on statistical mechanics principles, [13, 20, 4, 22, 18, 12, 15]. The evolu-
tion of the coarse-grained variables corresponding to Hamiltonian microscopic dynam-
ics can be described exactly with the Mori-Zwanzing formalism leading to a stochastic
integro-differential system with strong memory terms, known as the generalized Langevin
equation (GLE)[19, 25]. The GLE is in principle computationally intractable. Thus, ap-
proximate dynamical models are considered in recent studies, [5, 24, 6, 7, 17]. In this
study we follow the approximation introduced in [24] where using the Mori-Zwanzig for-
malism and a Markovian approximation one constructs a CG model for big molecules.
This approach uses constrained dynamics to calculate the terms of the GLE.

The purpose of the thesis is to apply the approach described in the work [24] to a high-
dimensional polystyrene molecular system. In this work, using coarse graining as tool
we describe the equation of motion of the new coarse grained particles. This equation
is the generalized Langevin equation (GLE). We describe the derivation of generalized
Langevin equation using the Mori-Zwanzig formalism. The Mori–Zwanzig formalism
is a projection operator technique that produces the GLE, which describes the non
equilibrium evolution of any set of functions defined on the phase-space of the microscopic
system. But, the GLE is difficult to use as computational tool because of the so called
”projected dynamics”, which is included in the equation, is not the real dynamics that we
can calculate using molecular dynamics (MD) simulations and it is difficult to write down
explicitly in general. This means that the GLE is not explicit in general. Moreover, even
if it were explicit, the GLE is an integro-differential equation with random coefficients
and the numerical integration of such an equation is very difficult. To overcome these
problems, it is usually assumed that both the projected and the real dynamics are
equivalent, and that the relevant variables (the coarse particles) are such that they
evolve on a time scale much larger that the correlation time of the memory kernel. In
this case, the GLE can be rendered Markovian and turned into a standard stochastic
differential equation (SDE). Then, we present the alternative approach followed in [24]
where the projected dynamics are approximated by constrained to the CG variable
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dynamics instead of the real dynamics.

We follow the later analysis and perform molecular dynamics simulations to calculate
the average force and the thermodymanic properties of our system with the new coarse
grained particles. Our application is for a system of polystyrene star-polymer, with 8
arms and 38715 atoms. The coarse grained particles are the center of mass (CoM) of
each polystyrene molecule. To collect the (all-atom) data that we need we firstly perform
unconstrained simulations in order to achieved the equilibrium. Then, we conducted 10
independent constrained runs of 1 nanosecond respectively. The computational cost for
one of these simulations is low, for example is approximately three hours. All simulations
were performed in LAMMPS [21]. From these simulations we manage to evaluate the
effective pair force and the thermodymanic properties of our system.

The structure of the thesis is as follows. In chapter 2 we introduce the thory of the
mechanics(classical and statistical). In chapter 3 we describe the structure which the
molecular systems have such the dynamics that we use for these systems. In chapter
4 we present the coarse grain methology while in 5 we analyse in detail its dynamics.
Lastly in chapter 6 we describe our system, the procedure that we follow and the results
of our work.
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Chapter 2

Mechanics

2.1 Classical Mechanics

2.1.1 Introduction

Classical mechanics describes the motion of macroscopic objects, from projectiles to
parts of machinery, and astronomical objects, such as spacecraft, planets, stars and
galaxies. If the present state of an object is known it is possible to predict by the
laws of classical mechanics how it will move in the future (determinism) and how it has
moved in the past (reversibility). Classical mechanics provides extremely accurate results
when studying large objects that are not extremely massive and speeds not approaching
the speed of light. The earliest development of classical mechanics is often referred
to as Newtonian mechanics. It consists of the physical concepts employed by and the
mathematical methods invented by Isaac Newton and Gottfried Wilhelm Leibniz to
describe the motion of bodies under the influence of a system of forces. Later, more
abstract methods were developed, leading to the reformulations of classical mechanics
known as Lagrangian mechanics and Hamiltonian mechanics. The latter will be analyzed
in this chapter.

2.1.2 Lagrange equations of motion

We begin our analysis by a quick review of classical mechanics. Consider N particles
whose position coordinates are given by a set of scalar quantities r = (r1, ...., rn). In a
d-dimensional space, one needs d numbers to specify a location, so that n = Nd. The
rate of change of the position is d

dtri = ṙi. We can write down the laws of motion by
specifying the Lagrangian L = L(r, ṙ, t) with the following steps. For any path r(s) ,
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t0 ≤ s ≤ t that could take the particles from their locations at time t0 to their locations
at time t , we define an ”action” by

A =

∫ t

t0

L(r(s), ṙ(s), t)ds

and we require that the motion (according to the mechanics embodied in the Lagrangian)
that takes us from r(t0) to r(t) is along a path which is an extremal of the action. To
simplify, we assume that L = L(r, ṙ) does not explicitly depend on t. We conclude thus
in the Lagrange equations of motion :

∂L

∂ri
− d

dt

∂L

∂ṙi
= 0 (2.1)

for all i = 1, .., n. Let us demonstrate with a simple example.

Example
Define the Lagrangian corresponding to a particle r = (r1, r2, r3) in R3 of mass m with
potential energy U(r),

L =
1

2
mṙ2 − U(r). (2.2)

Then, eqn. (2.1) gives the equations of motion

− ∂U
∂ri
− d

dt(mṙi) = 0, i = 1, 2, 3 ,

F = −∇U(r) = mr̈ ,

which are the known Newton’s second law.

2.1.3 Hamiltonian equations of motion

Define now a momentum pi conjugate to ri by pi = ∂L
∂ṙi

. The Hamiltonian function is

H =
∑

piṙi − L

By differentiating H with respect to ṙi and using the definition of the pi and the Lagrange
equations of motion, one sees that H is not a function of ṙi , and therefore it is a function
of only the ri, pi. By differentiating H with respect to the ri and then the pi one can see
that the equations of motion can be written as:

ṙi =
∂H

∂pi
, ṗi = −∂H

∂ri

which are the Hamiltonian equations of motion. If the Hamiltonian does not depend
explicitly on time, then it is a constant during the motion and

dH

dt
= 0.
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The constant value of the Hamiltonian is the energy E of the system. The Hamiltonian
is the sum of the kinetic energy and the potential energy, while the Lagrangian L is
the kinetic energy minus the potential energy. The particle trades kinetic energy for
potential energy and back again, without loss. From now on, we will denote the vector
of positions by r and the vector of momenta by p so that H = H(r, p).

Example
The Hamiltonian corresponding to the the example Lagrangian (2.2), is given by

H = p · ṙ − L =
1

2
mṙ2 + U(r). (2.3)

The Hamiltonian equation of motion are

ṙi =
∂H

∂pi
=
pi
m
, i = 1, 2, 3 (2.4)

ṗi = −∂H
∂ri

= −∂U
∂ri

= Fi. (2.5)

2.2 Statistical Mechanics

2.2.1 Introduction

Consider the Hamiltonian system that we described above with n degrees of freedom
(r1, p1), ..., (rn, pn), and H does not depend explicitly on the time t. A microscopic state
of the system (a “microstate” for short) is a set of values of the r1, ...rn, p1, ..., pn. The
system evolves in a 2n-dimensional space, which is denoted by Γ and is often called the
phase space. The sequence of points in Γ that the system visits as it evolves from an
initial condition is called a trajectory, [23]. If the system has many degrees of freedom,
then it is impossible to follow its exact evolution in time, since specification of all the
initial conditions is impossible and the numerical solution of the very large systems
that arise in practice is also out of reach. One often assumes that the equations of
motion are known with certainty, and deal with the uncertainty in the initial data by
assuming that the initial data r(0) and p(0) are drawn from a initial probability density
W = W (r,p, t = 0). Then, instead of considering single trajectories, we look at the
collection, or “ensemble,” of trajectories that are initially distributed according to W. We
note that standard theorems about the existence and uniqueness of solutions of ordinary
differential equations guarantee that trajectories cannot intersect or stop, provided H
is a smooth enough function of the r and p. As the trajectories evolve individually, the
probability density naturally changes; let the density of microstates at time t be W (t),
where each microstate is the location of a trajectory at that time. W (t) describes the
ensemble at time t; it is the “macrostate” of the ensemble. Thus, the microstate is a list
of numbers, or a vector in Γ, and the macrostate is a probability density in Γ. The set
of all macrostates corresponds to Ω.
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2.2.2 Liouville equation

Consider a volume V in Γ-space that we described above and a probability density of
system W . The number of microstates in V at a given time t is, on average,∫

V
WdV

where dV is the element of volume in Γ; when the position variables r are cartesian
coordinates dV = drdp (where dr = dmr1, ...., dmrn and similarly for dp). If microstates
neither appear nor disappear, then the only change in the density W of systems in V
can come from the inflow/outflow of systems across the boundary of V . Therefore, as
in fluid mechanics,

d

dt

∫
V
Wdrdp = −

∫
∂V
Wu · ndS = −

∫
V

div(Wu)dV

where n is normal to the boundary ∂V of V and dS is an element of area on ∂V . If we
assume that the density is smooth, we can deduce from the above that

∂W

∂t
+ div(Wu) = 0 (2.6)

and, using the incompressibility of u

∂W

∂t
+ u · gradW = 0 (2.7)

where

div(v) =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

and

grad(f) = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z

This last equation is known as the Liouville equation. One can define a linear differential
operator (the Liouville operator)

L =
n∑
i=1

∂H

∂pi

∂

∂ri
− ∂H

∂ri

∂

∂pi

and then (2.7) becomes
∂W

∂t
= −LW

This equation is linear even when the original system is not. By finding an equation
for W , we have traded in a problem in mechanics, where the unknowns were locations
and momenta for a mechanical system with particular initial data, for a problem where
the unknown is a probability density for an ensemble of systems, i.e., we have gone
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from mechanics to statistical mechanics. The Liouville equation is the linear partial
differential equations whose characteristics are the Hamilton equations we started from.
The big difference between the latter and the Liouville equation is that the solution of
the Liouville equation is well defined for all r,p in Γ, not only for those that lie on a
trajectory that issues from a specific initial datum. Once we have the density W (t), we
can define physical observables for the ensemble, which are averages of physical quantities
over the ensemble. The energy of each microstate is the value of the Hamiltonian H for
that microstate; the energy of the ensemble is

E(t) = E[H(t)] =

∫
Γ
H(r, p)W (r, p, t)dV

where dV is an element of volume in the phase space Γ. Similarly, if Φ = Φ(r, p) is a
property of a microstate, its macroscopic version is

E[Φ] =

∫
Γ

Φ(r, p)W (r, p, t)dV

A probability density W is invariant in time if it is a stationary solution of (2.6); that
is, if we draw the initial data from W , solve the equations for each initial datum, and
look at the density of solutions at some later time t, it is still the same W . Therefore,
from (2.7) ,

∂W

∂t
= 0.

In particular, one can choose as an invariant density W (r, p) = Z−1 exp (−βH(r, p))
where β > 0 in a constant and Z =

∫
Γ exp (−βH)drdp. A property of the Liouville

operator is the following: Let E[·] is the expectation with respect to a canonical density;
we have seen that if u, υ are two functions defined on the relevant probability space,
then E[uυ] defines an inner product, (u, υ) = E[uυ],and then

(Lu, υ) = E[(Lu)υ] = −E[u(Lυ)] = −(u, Lυ)

(i.e., L is skew-symmetric).

2.2.3 Ensembles

Let us now introduce the ensemble theory which establishes the link between the mi-
croscopic and macroscopic realms. The principal conceptual breakthrough on which
statistical mechanics is based is that of an ensemble, which refers to a collection of sys-
tems that share common macroscopic properties. Averages performed over an ensemble
yield the thermodynamic quantities of a system as well as other equilibrium and dynamic
properties. The idea that the macroscopic observables of a system are not sensitive to
precise microscopic details is the basis of the ensemble concept. More formally, an en-
semble is a collection of systems described by the same set of microscopic interactions
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and sharing a common set of macroscopic properties(e.g. the same total energy, volume,
and number of moles). Each system evolves under the microscopic laws of motion from
a different initial condition so that at any point in time, every system has a unique
microscopic state. Once an ensemble is defined, macroscopic observables are calculated
by performing averages over the systems in the ensemble. The fact that the systems in
the ensemble evolve in time does not affect properties of this type, and we may freeze
the ensemble at any instant and perform the average over the ensemble at that instant.
These ensembles are known as equilibrium ensembles. Below we will further analyse
three different types of ensembles.

The microcanonical ensemble

The microcanonical ensemble provides a starting point from which all other equilibrium
ensembles are derived. It requires an isolated system of N particles in a container of
volume V and a total energy E corresponding to a Hamiltonian H(r). The variables N,
V and E are all macroscopic thermodynamic quantities referred to as control variables.
Control variables are simply quantities that characterize the ensemble and that determine
other thermodynamic properties of the system. Different choices of these variables lead
to different system properties. The state function of this ensemble is the entropy of the
system, S = S(N,V,E), since the change in S is related directly to the change in the
three control variables of the ensemble. The entropy is a quantity that can be related
to the number of microscopic states of the system. ”Boltzmann relation” connects the
entropy(S) with the number of microscopic states available to a system(Ω) with the
following way

S(N,V,E) = k ln Ω(N,V,E) (2.8)

where k is the Boltzmann’s constant and its value is 1.3806505(24) × 10−23J · K−1

This equation is a probability equation which relates the entropy S to the quantity Ω.
Assuming we can determine Ω(N,V,E) from a microscopic description of the system,
equation (2.8) then provides a connection between this microscopic description and a
macroscopic thermodynamic observable. The microcanonical ensemble is not used very
often because it is very hard to analyze it in practice, since it is very difficult to perform
experiments under constant energy.

The canonical ensemble

Its thermodynamic control variables are constant particle number N , constant volume
V and constant temperature T , which characterize a system in thermal contact with an
infinite heat source. A canonical ensemble can be built from a microcanonical ensemble,
by dividing it into many parts and regarding one of them as the system and the others
as the thermal bath. The energy between them can be transferred (figure 2.1). Between
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the thermal bath and the remaining parts, we observe an exchange of heat, which makes
the temperature to remain constant. The heat bath is taken to be much larger than
the system so that EB � Eν where EB is the total energy of the the heat bath and Eν
denotes the energy state of the system. Thus, the sum E = EB + Eν is constant.

Figure 2.1: Molecular system in contact with a heat bath

At this point, we are interested in finding the microscopic quantity which we will use
as a tool to observe a macroscopic property of the system. So, first we aim to find the
probability ρEν which corresponds to an energy state Eν . If the system is at energy state
Eν the number of states accessible to the system plus the bath is Ω(EB) = Ω(E − Eν).
Thus, the equilibrium probability for observing the system in energy state Eν obeys

ρEν ∝ Ω(E − Eν) ∝ e(ln(Ω(E−Eν)))

and taking the Taylor expansion of ln(Ω(E − Eν)) around Eν , we get

ln(Ω(E − Eν)) ≈ lnΩ(E)− Eν
∂lnΩ

∂E
+ · · ·

We set C = lnΩ(E) as a constant due to the fact that the lnΩ(E) does not depend on
Eν and E � Eν ; so from the relation ρEν ∝ e(ln(Ω(E−Eν))) we have

ρEν ∝ eCe−Eν
∂lnΩ

∂E
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Noting ∂lnΩ
∂E = β we now have

ρEν ∝ C0e
−βEν (2.9)

where eC = C0 The relation (2.9) is called ”Boltzmann distribution function”. Using
the fact that

∑
ν ρEν = 1 we obtain

1

C0
=
∑
ν

e−βEν

and the final form of the ”Boltzmann distribution function” is

ρEν =
1

Z(N,V, T )
e−βEν (2.10)

where Z(N,V, T ) =
∑

ν e
−βEν which is called ”canonical partition function”, and β is

the thermodynamic beta. Each partition function relates to thermodynamic potentials.
So at this point we aim to show the thermodynamic quantity which is related with the
canonical partition function. The average energy in the canonical ensemble is

〈E〉 = 〈Eν〉 =
∑
ν

ρEνEν =
∑
ν

1

Z
eβEνEν

since −∂Z
∂β =

∑
ν e
−βEνEν we obtain

〈Eν〉 = −∂Z
∂β

∣∣∣∣
N,V

1

Z
= −∂ lnZ

∂β

∣∣∣∣
N,V

= kBT
2∂ lnZ

∂T

∣∣∣∣
N,V

where β = 1
kBT

. Since the internal energy E(β,N, V ) is equal to 〈E〉 in the canonical
distribution, using the famous relation for Helmholtz free energy A(N,V, T ) = E − TS
and S = −∂A

∂T we obtain

A = E + T
∂A

∂T

where S denotes the entropy. Using the relations 〈Eν〉 = −∂ lnZ
∂β

∣∣
N,V

and

T
∂A

∂T
= T

∂A

∂β

∂β

∂T
= −T ∂A

∂β

1

kBT 2
= −β∂A

∂β

we obtain the relation

A+
∂ lnZ

∂β

∣∣∣∣
N,V

+ β
∂A

∂β
= 0

The solution of the last equation is

A(N,V, T ) = −kBT lnZ

Consequently, if we can compute the canonical partition function Z, then we can obtain
the Helmholtz free energy A, which is a fundamental thermodynamic potential of the
system. From that, we can obtain other thermodynamic properties.
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Grand Canonical Ensemble

The Grand Canonical Ensemble represents the possible states of a mechanical system of
particles that is being maintained in thermodynamic thermal and chemical equilibrium.
We assume that the system can exchange energy and particles with a reservoir, while
the system’s volume, shape and other external coordinates are kept the same(figure
2.1). Thus, the various possible states of the system can differ in both their total energy
and total number of particles. So while the absolute temperature T , the volume V ,
and the chemical potential µ are the control variables, the number of atoms is allowed
to fluctuate. Now, we can define a grand canonical partition function for the grand
canonical ensemble as the sum over all micro-states,

Z =
∑
ν

e
−Eν+µNν

kBT

where ν is the micro-state with total number of atoms Nν and total energy Eν . This
partition function is closely related to the Grand Potential ΦG by the relation,

ΦG = 〈E〉 − TS − µ 〈N〉 = −kBT

Thus, the Grand partition function is a bridge between microscopic features of the system
and thermodynamically macroscopic functions.
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Chapter 3

Molecular systems

At this chapter we will discuss the idea of multiscale molecular dynamics(MD) simula-
tions and we present the meaning and the features of coarse graining. At first we will
describe the interactions between particles in atomistic level. Then we will define coarse
graining of the atomistic system.

3.1 Atomistic Description

We will start our analysis by studying how the atoms react in the atomistic level. In
molecular systems, we have two types of interactions between atoms the bonded and the
non-bonded interactions. As for the non-bonded interactions can be divided into inter-
molecular and intramolecular interactions between atoms of the same macromolecule.
To define bonded interactions, we consider the fact that the position of each atom in
time is determined by the distance d between bonds, the angle θ between two sequential
bonds and the torsional ϕ angle (see pictures 3.1,3.2,3.3). To be more specific. a) In
order to end up to the final form of the bond stretching potential, we do the following
assuming. Supposing that the bond is at a particular reference length d0 , its energy
has the lowest value. If the bond is compressed, the atoms will overlap. If the bond is
stretched, the bond will disassociate,i.e both cases, the energy increases . So, for small
deviations from the equilibrium bond length, taking a Taylor expansion of energy in
d− d0, we obtain the following relation of bond stretching potential

Ubond(d) =
1

2
kd(d− d0)2 (3.1)

where kd is the harmonic force constant kd = d2U
dd2

for d = d0 and d0 is the equilibrium
bond length.
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Figure 3.1: Bond between atoms

b)The bending angle potential is a function of angular displacement. It describes the
oscillation of the angle between two consecutive bonds around the equilibrium position
of angle θ0. The potential function that can model this interaction is:

Ubend(θ) =
1

2
kθ(θ − θ0)2 (3.2)

where kθ is the angle bending force constant. The energy which needs to distort an
angle away from equilibrium is much lower than that which needs to distort a bond, so
consequently bond angle bending force constants tend to be proportionally smaller than
those for bond stretching.

Figure 3.2: Bending angle between two consecutive bonds

c) The torsional angle potential describes the change in energy due to the rotation
around a bond. Torsional energies are usually important only for single bonds because
double and triple bonds are too rigid to permit rotation. These interactions are different
to stretching and bending interactions due to the fact that internal rotation barriers are
low compared to other interactions, meaning that changes in dihedral angles can be large.
While the torsional potential is periodic through a 360◦ rotation, it is inappropriate to
approximate it by a Taylor series. Thus it is most common to model it using a Fourier
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series:

Utor(ϕ) =
∑
a

1

2
vacos(aϕ) (3.3)

where ϕ is the current torsional angle and va are the torsional rotation force constants
while a ∈ {0, Natoms}.

Figure 3.3: Tortional angle

Force fields also contain non-bonded interactions. These interactions appear both
between atoms in the same molecule and between atoms in other molecules. They
are divided into electrostatic and Van der Walls interactions. a) The electrostatic in-
teractions arise due to the unequal distribution of charge in a molecule. This uneven
distribution of charge can be modeled by placing point charges at each of the atomistic
sites. While the electrostatic energy reduces slowly, it can affect atoms quite far apart.
For a neutral molecule these interactions sum to zero. The form of these interactions
can be modeled by Coulomb potential :

UE(e, d) =
1

4πε0

e1e2

d
(3.4)

with e1, e2 is the charge of two atoms, d is the distance between them, and ε0 is the
electric constant ε0 = 8.8510−12Fm−1.
b) The most popular intermolecular interaction potential is the Lennard-Jones potential
which approximates the interaction between a pair of neutral atoms due to temporarily
dipoles. The most common expression is:

ULJ(dij) = 4εi,j [(
σi,j
dij

)12 − (
σi,j
dij

)6] (3.5)
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Figure 3.4: Lennard Jones potential

The εi,j is the well depth, i.e., the region between i and j particles, surrounding a
local minimum of ULJ , σi,j is a measure of how strongly the two particles attract each
other and dij is the distance between the particles i and j. The σi,j is the distance at
which the intermolecular potential between the two particles is zero. Is referred to as the
Van der Waals radius and using this we can measure how close two non-bonded particles
can be. Obviously the parameters εi,j , σi,j depend on the type of atoms. The first term
in equation describes the repulsive forces between atoms while the latter one denotes
the attraction. As we studied above, the value of the energy is calculated as a sum of
bonded terms, (which describe the bonds, angles and bond rotations in a molecule), and
a sum non-bonded terms, (which account for interactions between non-bonded atoms in
the same or in different molecules). The final form of the total energy is given by :

U(r) =
∑
i,j

Ubond(dij) +UE(dij , eij) +ULJ(dij) +
∑
i,j,k

Ubend(θijk) +
∑
i,j,k,l

Utor(ϕijkl) (3.6)

3.1.1 Configurational distribution function

The pair distribution function is very important quantity since will be used in comparison
between atomistic and coarse grained systems. This function g(r) ,(correlation function)
in a system of particles (atoms, molecules etc.), describes how density varies as a function
of distance d from a reference particle. If a given particle is taken to be at the origin O,
and if ρ = N

V is the average number density of particles, then the local time-averaged
density at a distance r from O is ρg(r). Consider a system of N particles in a volume V
and temperature T with an average number density ρ = N

V . The particle coordinates are
given by the position vector r ∈ R3N , r = [r1, ..., rN ]. The potential energy due to the
interaction between particles is U(r). The probability of an elementary configuration,
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namely finding particle 1 in dr1 , particle 2 in dr2 , etc. is given by

W (r)dr1...drN =
e−βU(r)

Z(r)
dr1...drN (3.7)

Where Z(r) =
∫
...
∫
e−βU(r)dr1...drN is the configurational integral, taken over all

possible combinations of particle positions. The total number of particles is huge, so
that W (r) in itself is not very useful. However, one can also obtain the probability
of a reduced configuration, where the positions of only m < N particles are fixed, in
dr1, ..., drm with no constraints on the remaining N −m particles. To this end, one has
to integrate the above relation over the remaining coordinates rn+1, ..., rN :

W (r1, ...., rm) =
1

Z(r)

∫
...

∫
e−βU(r)drm+1...drN (3.8)

The particles are identical and so without loss of generality we can assume that any of
them occupies positions dr1...drn in any permutation, so the density probability function
of these n particles will be

ρ(r1, ..., rm) =
N !

(N − n)!
W (r1, ..., rm) (3.9)

It is now time to introduce a correlation function g(r1, ..., rm) by:

g(r1, ..., rn) =
ρ(r1, ..., rn)

ρn
. (3.10)

From (3.9),(3.10) it follows that

g(r) =
V nN !

Nn(N − n)!

1

Z(r)

∫
...

∫
e−βU(r)drm+1...drN (3.11)

which is the general form of distribution function. While this distribution describes how,
on average, the atoms in a system are radially packed around each other, is a very useful
tool for describing the structure of the system as long as is found in many methods for
approximating the potential of mean force.

3.2 Molecular dynamics

Molecular Dynamics (MD) is a computer simulation method that can be used to inves-
tigate the evolution of a molecular system. Loosely speaking, it is a way to imitate a
real life’s system, knowing in every step the positions and velocities of all the bodies it is
composed of, its energy, density and a variety of other quantities. Using this method we
have the possibility repeat the simulations as many times as we need -with the same or
different initial conditions- or stop it and restart it again with a much lower cost than in
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real experiments. Furthermore, we can control some quantities during this process such
as the temperature and the material composition better than we have during a real-life
experiment in a laboratory. The simulated system consists of N atoms and/or molecules
that interact with each other by the terms of a force field, or so-called interatomic po-
tential. The problem of finding the positions and velocities of each one of them is called
N-body problem. In order to estimate the quantities of interest in a simulation, we need
to know the trajectory of the atoms in the system. The trajectory is determined by the
positions and velocities (or momenta) in every step of the simulation. This informa-
tion can be obtained by solving numerically the classical equations of motion of every
molecule or atom in the system concerning all the interactions between them.

3.2.1 Numerical solution of equations of motion

In order to solve numerically the equations of motion in every step of the previous
algorithm there are some well-known integration methods. An integration method has to
be,so as to be chosen, relatively accurate, fast and not computationally expensive, which
means not to use a large amount of memory space. Moreover, it is highly important
to use an algorithm that respects the energy conservation of the Hamiltonian system
and which is time reversible as Newton’s equation of motion is. We will mention one
numerical integrator: Velocity Verlet , variant of general Verlet integrator.

Verlet integrator is a numerical method used to solve Newton’s equations of motion.
Although, as it is shown below, it is a ”position-only” scheme and this is why it is not
very applicable when velocities or momenta are requested. To generate its formula we
determine as ∆t > 0 the time step of the algorithm and we write Taylor expansion for
r(t) at (t + ∆t) and (t − ∆t) ,where ṙ(t), r̈(t),

...
r (t) denote, correspondingly, the first,

second and third time derivative:

r(t+ ∆t) = r(t) + ṙ(t)(t+ ∆t− t)+
r̈(t)(t+ ∆t− t)2

2!
+

...
r (t)(t+ ∆t− t)3

3!
+O(∆t4)

(3.12)

r(t−∆t) = r(t) + ṙ(t)(t−∆t− t)+
r̈(t)(t−∆t− t)2

2!
+

...
r (t)(t−∆t− t)3

3!
+O(∆t4)

(3.13)

Consequently:

r(t+ ∆t) = r(t) + v(t)(∆t) +
a(t)(∆t)2

2
+
b(t)(∆t)3

6
+O(∆t4) (3.14)

r(t−∆t) = r(t)− v(t)(∆t) +
a(t)(∆t)2

2
− b(t)(∆t)

3

6
+O(∆t4) (3.15)

By the summation of equations 3.14 and 3.15:

r(t+ ∆t) + r(t−∆t) = 2r(t) + a(t)(∆t)2 +O(∆t4) (3.16)
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we get the final scheme of general Verlet integrator:

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t)(∆t)2 +O(∆t4) (3.17)

where r(t) is the position in time t, v(t) the velocity in time t,a(t) the acceleration in
time t, b(t) is a notation for the third derivative of r(t) with respect to the time and
O(∆t4) is the order of the error of the approximation. Verlet algorithm does not require
the velocity to compute the new position. However, one can derive the velocity from the
difference of equations 3.14-3.15:

r(t+ ∆t)− r(t−∆t) = 2v(t)∆t+O(∆t3) (3.18)

or

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
+O(∆t3) (3.19)

Therefore, for calculating the velocity using equation 3.19 we should know the position
at next time which means that we cannot calculate both position and velocity in the
same time step. In order to avoid this problem we present a derivative of the Verlet
integrator.

Velocity Verlet

Velocity Verlet integrator is one of the most widespread methods. The advantage over
classical Verlet is that this one incorporates velocity in the same time step as position.
The formula goes as follows:

r(t+ ∆t) = r(t) + v(t)∆t+
F (t)∆t2

2m
(3.20)

v(t+ ∆t) = v(t) +
F (t) + F (t+ ∆t)

2m
∆t (3.21)

We have to make clear that instead of acceleration a(t) we write F
m just to mention

that a(t) is calculated from the interaction potential using r(t) and not from v(t), so
v(t+ ∆t) can be calculated independently without the calculation of a(t+ ∆t).

3.2.2 Thermostats and Barostats

Sometimes it’s necessary to see the evolution of a molecular system under specific condi-
tions of temperature T (isotherm) and/or pressure P (isobaric conditions). In order to
maintain T and P constant we use the appropriate thermostats and barostats, respec-
tively. Below, we present two types of thermostats and one of barostat.
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Nose-Hoover thermostat

Nose introduced a new parameter (degree of freedom) s which plays the role of a heat
bath aiming to damp out temperature deviations from the desirable level and actually
being an additional degree of freedom in the Lagrangian of the system. This new pa-
rameter results in one more term in potential energy (noted as Us) and another one in
the total kinetic energy (noted as Ks) giving the following Hamiltonian:

HNose−Hoover(ṙ, r) = H(ṙ, r) +Ks + Vs (3.22)

where

Ks =
p2
s

2Q
(3.23)

for

ps = Q
ṡ

s
(3.24)

being the momentum associated with s as well as Q represents the ”effective mass”
associated with s. The potential energy with respect to s equals to:

Us = gkBT lns (3.25)

with g equals to the total number of degrees of freedom and kB being the Boltzmann
constant.

Berendsen thermostat and barostat

Another way for performing isothermal and/or isobaric MD simulations is to use an
extended Lagrangian, by coupling the system into a temperature and/or pressure bath.
This is achieved by the following equations:

dT

dt
=

1

τT
(T − Text) (3.26)

dP

dt
=

1

τP
(P − Pext) (3.27)

where Text and Pext are the desired temperature and pressure values and τT and τP are
the time constants characterizing the frequency of the system coupling to temperature
and pressure baths. The solution of these equations forces velocities and positions to be
scaled at every time step by factors xT and xP , respectively,with:

xT =

(
1 +

dt

τT

(
T

Text
− 1

)) 1
2

(3.28)

xP = 1− βT
dt

τP
(P − Pext) (3.29)
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Chapter 4

Coarse grained models

4.1 Coarse Graining Mapping

Coarse-grained models have long been used to understand and prove the properties of
complex, many-body molecular systems. This method is considered from a mathemati-
cal point of view as a dimensionality reduction problem while the coarse-grained systems
have fewer degrees of freedom than the corresponding atomistic systems. These models
provide a reduced, low-resolution description of a given system in which for example
molecules are described by sites. Thus, are expected to be highly computationally effi-
cient providing also a powerful tool to understand many complex molecular phenomena
with long time and length scale processes. The main purpose of this field is to develop
a coarse-grained model that is significantly easier to simulate and also reproduces the
same physical behavior as a reference all-atom one with possibly more site coordinates
and known interactions. In other words, we target a cheaper and easier-to-estimate
coarse grained model which maintains correct physical behavior. At this point it must
be specified how the coarse-grained model is designed, i.e., we have to define a method
for mapping any atomistic configuration to a corresponding coarse one. This mapping
function takes as input a set of atomistic coordinates of chemical connected atoms in
detailed system, which are sampled by a canonical ensemble. This canonical ensemble is
a statistical ensemble used to represent the possible states of a system in thermal equi-
librium with fixed temperature, volume and number of atoms, and maps it uniquely to
a super-atom configuration in the coarse grained system. The reference coarse-grained
description is presented by R = [R1, .., RM ], R ∈ R3M . From now on, the interacting
particles in the atomistic model will be referred as “atoms” and the interacting particles
in the coarse grained model as “coarse grained sites”. The mapping function is given by
the form: ξ : r → R. There are several mapping functions that can be used in coarse
graining. For example, one coarse-grained site may correspond to the center of mass of
a specific set of atoms on a molecule (see picture 4.1). Another function might map a
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coarse-grained site to the center of mass of a specific CG site, while another one might
map it to the position of a single atom. The first mapping function is described by the
following equation:

RI =

∑
i∈I miri∑
i∈I mi

(4.1)

where mi describes the mass of each atom that corresponds to I CG site.

Figure 4.1: Coarse grained all-atom Polysterene
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4.2 Coarse grained equilibrium distribution function

The task here is to provide that coarse model whose equilibrium distribution of CG sites
is the same as in atomistic system. Having defined the mapping scheme, the second step
is to define the interactions between the coarse-grained sites. The equilibrium probability
density of states of atomistic model in canonical ensemble is given by

WAA(r) ∝ exp(−U(r)

kbT
) (4.2)

where 1
kbT

the inverse temperature scaled by the Boltzmann constant kb. Similarly, the
probability of coarse-grained system is given by

WCG(R) ∝ exp(−U
AA(r)

kbT
) (4.3)

We would like the configurational probabilities for coarse grained positions in the CG
ensemble

WAA(R) = WCG(R) = W (r)δ(ξ(r)−R) (4.4)

Taking into consideration the fact that the probability of a coarse-grained configuration
is the sum of the probabilities of all of the atomistic configurations that map to it via
the mapping function, we get:

WCG(R) =

∫
WAA(r)δ[ξ(r)−R]dr, (4.5)

where δ denotes the Dirac delta function. The above relation describes a conditional
probability function. Substituting the relations of probability in the above relation we
get:

exp(−W
CG(R)

kbT
) =

∫
exp(−U(r)

kbT
)δ[ξ(r)−R]dr. (4.6)

While the solution of the last relation has been long appreciated, is not practical useful
due to the highly multidimensional nature of this potential of mean force. It worth
mentioning that the CG potential is a free energy of a particular configuration, described
by RCG which contains entropic effects. This potential energy is in fact the many-body
potential of mean force (PMF) governing the equilibrium distribution of sites in the
atomistic model and describing the mean force which is acting between sites. It is
completely determined by the atomistic potential U(r) and ξ.

4.3 Coarse Grained Potential of Mean Force

The coarse graining starts by assuming that the total coarse grained potential energy,
can be separated into two parts, a bonded part and a non-bonded part:

UCG =
∑

UCGbonded +
∑

UCGnon−bonded (4.7)
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First, we are going to examine the potential which corresponds to the non-bonded inter-
actions. We can define an effective potential, whose gradients determine the force field
of the coarse grained model, as:

exp(−U
CG(R)

kbT
) ∼=

∫
exp(−U(r)

kbT
)δ[ξ(r)−R]dr (4.8)

The left side of the above equation is the Boltzmann factor of a system with UCG

potential, while the right side is the sum of the Boltzmann factors of all microstates
consistent with specified values of the coarse grained degrees of freedom. If we could
sample from coarse grained system according to UCG , all properties that depend only
on the coarse grained degrees of freedom, could be calculated exactly. Keep in mind,
however, that there is no guarantee that will have a particular functional form, i.e., there
is no a priori reason that it should be a pairwise additive sum of interactions between
the CG sites. This is due to the fact that the degrees of freedom that are coarse grained
away have now been included in the effective remaining interactions. On the other hand,
when we develop CG model energy functions we typically specify pairwise terms. This
is an approximation to keep our simulations computationally efficient, but in fact this
causes the deviation of the final potential from the initial estimate determined from the
atomistic function. We will further analyse this method in section 5.5.

4.4 Methods of approximating the potential of mean force

In order to construct reduced CG models, which approximate the properties of reference
(microscopic) molecular systems and are based on statistical mechanics principles, we
use numerical parameterizing methods. Such methods consider the optimization of a
proposed parametric model under different minimization principles. Specifically, they
consist of the pre-selected observable ϕ and the minimization of (average) quantities
over a parameter set Θ

min
θ∈Θ
Lcost(φ; θ)

where Lcost is a cost function. At below we will mention four of these methods.

Iterative Boltzmann Inversion

This method aims to construct a tabulated potential able to reproduce a target dis-
tribution from atomistic simulation, [2]. The distribution function can be bonded or
non-bonded, but most of the time the IBI method is used in order to calculate an opti-
mal potential for the non-bonded interactions.
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Force Matching method

Force matching is an alternative to the Inverse Monte Carlo method to extract classi-
cal potentials from ab initio calculations. Like the Inverse Monte Carlo approach one
performs a reference all-atom simulation and then is looking for an optimal CG model
that “matches” it in some optimal sense. Its aim is not to reproduce various distribution
functions but instead try to match forces on CG sites as closely as possible. Since is a
non-iterative method for evaluating CG potential, is less computationally demanding.
It represents a rigorous way of building up CG parameters bottom-up from atomistic
simulations and requires only a trajectory for a reference system.

Relative Entropy

The relative entropy approach is based on minimizing an objective function, the relative
entropy. This quantity has a direct relation with finding a CG potential that reproduces
the multidimensional potential of mean force. Is a method which quantifies the extent
of the configurational phase-space overlap between two molecular ensembles. In simple
terms, it measures the information lost when moving from the all-atom configurational
space to the CG configurational space. Since is based on the likelihood that random
sampling of the CG system can correctly reconstruct the atomistic distribution, it can
be used as a measure of the discrepancies between various properties of the CG system’s
and the reference all-atom system.

Inverse Monte Carlo

The inverse Monte Carlo method solves the inverse problem of the statistical mechanics,
i.e., reconstructs the interaction potential between molecules if the distribution function
is known. It is another iterative procedure that refines the CG potentials until the CG
model reproduces a set of reference distribution functions. If we know from some source
the distribution function between CG particles, we can calculate the corresponding pair
interaction potential. By applying the Inverse Monte Carlo approach, any sampling
method can be used as long as it provides a canonical sampling.
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Chapter 5

Dynamics of the coarse grained model

After we define the new coarse grained system our goal is to define the new dynamics
and the new equation of motion for the coarse grained particles. This equation is the
generalized Langevin equation. To find this equation in a general form we will use
Mori-Zwanzig procedure which use the pojection operator method.

5.1 Mori-Zwanzig theory

In this section we review the Mori–Zwanzig theory. We shall focus on systems whose
microscopic state is characterized by the instantaneous positions and momenta of the N
atoms of the system, {ri(t),pi(t)} with i = 1, · · · , N . We denote the collection of these
variables by Z(t) = (Z1(t), · · · , Z6N (t)), which is a vector of 6N components. In terms
of Z(t), the Hamiltonian dynamics of the system can be written as by

dZ(t)

dt
= J

∂H(Z(t))

∂z
,Z(0) = z (5.1)

where z represent the initial condition, H is the Hamiltonian and J is the symplectic
matrix with a block diagonal structure with the blocks given by

J =

(
0 1
−1 0

)
(5.2)

Assume that we are not interested in the evolution of Z(t), but of A(Z(t)) where
A(z) = (A1(z), ., AM (z)) is a specific observable, i.e. any set of M functions defined on
phase-space. More specifically we want to calculate the statistical properties of A(Z(t))
for t ≥ 0 for the ensemble of initial conditions Z(0) = z satisfying A(z) = α for some
fixed α and with z distributed according to the equilibrium density ρeq(z) conditional
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on A(z) = α. Zwanzig’s approach is a way to write an integro-differential equation
with random coefficients whose solutions in different realizations generate the desired
ensemble of A(Z(t)).

To see how this equation is derived, let us first make explicit the dependency in the
initial condition z in A(Z(t)) by denoting A(Z(t)) ≡ α(t, z). This function can be
formally expressed as

α(t, z) = exp{tL}A(z) (5.3)

in which the exponential operator is defined through its Taylor series expansion and L
is the Liouville operator

L = −∂H
∂z

J
∂

∂z
(5.4)

Eqn(5.3) indicates that α(t, z) satisfies the following equation

∂tα(t, z) = Lα(t, z),α(0, z) = A(z) (5.5)

Next introduce the conditional expectation operator Pα whose action to an arbitrary
phase function F (z) gives the conditional equilibrium expectation of F (z) at A(z) = α
fixed, i.e. the function of α defined as

PαF =
1

Ω(α)

∫
F (z)ρeq(z)δ(A(z)−α)dz (5.6)

Here ρeq(z) is the equilibrium probability density (e.g. the microcanonical density
ρeq(z) = Ω−1

0 δ(H(z) − E) where E is the energy and Ω0 is the normalization factor,
assuming that H(z) is the only invariant of motion), and we defined

Ω(α) =

∫
ρeq(z)δ(A(z)−α)dz (5.7)

Ω(α) is the probability density of A(z) or, loosely speaking, ”the number of microstates
compatible with the macrostate A(z) = α”. Let Qα = 1 − Pα, and in eqn (5.5) use
Lα(t, z) = L exp {tL}A(z) = exp {tL}LA(z) and insert 1 = PA(z)+QA(z) to transform
this equation into

∂tα(t, z) = exp {tL}PA(z)LA+ exp {tL}QA(z)LA (5.8)

Using the Duhamel–Dyson identity

exp {tL} = exp {tQA(z)L}+

∫ t

0
ds exp {(t− s)L}PA(z)L exp {sQA(z)L} (5.9)

the second term at the right-hand side of eqn (5.8) can be written as

∂tα(t, z) = exp {tL}PA(z)LA+

∫ t

0
ds exp {(t− s)L}PA(z)LR̃(s, ·) + R̃(t, z) (5.10)
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where we defined

R̃(t, z) = exp {tQA(z)L}QA(z)LA

= QA(z) exp {tQA(z)L}LA
(5.11)

and we used a dot instead of a z as second argument for R̃ in PA(z)LR̃(s, ·) to emphasize
that this term depends on z only through A(z) (the same is true for PA(z)LA but not

for R̃(t, z) which is a general function of z). The second term at the right-hand side
of eqn (5.10) can be simplified by means of the following identity which, for clarity, we
write component-wise using the indices µ, ν = 1, · · · ,M to denote the components of A
and α and Einstein sum convention over repeated indices which is defined for a random
function as

∑N
i=1 cix

i = cix
i

PαLR̃µ(s, ·) =
1

Ω(α)

∫
dzρeq(z)δ(A(z)−α)L exp {sQA(z)L}QA(z)LAµ

= − 1

Ω(α)

∫
dzρeq(z)[exp {sQA(z)L}QA(z)LAµ]Lδ(A(z)−α)

=
1

Ω(α)

∫
dzρeq(z)[exp {sQA(z)L}QA(z)LAµ][LAν(z)]

∂

∂αν
δ(A(z)−α)

=
1

Ω(α)

∂

∂αν

∫
dzρeq(z)δ(A(z)−α)[LAν(z)][exp {sQA(z)L}QA(z)LAµ][LAν(z)]

=
1

Ω(α)

∂

∂αν
(Ω(α)Pα([exp {sQAL}QALAµ][LAν ]))

= Mµν(α, s)
∂S(α)

∂αν
+ kB

∂Mµν(α, s)

∂αν
(5.12)

Here and below the operators inside the brackets [·] only act on the terms at their right
in these brackets and we have introduced the entropy

S(α) = kB ln Ω(α) (5.13)

as well as the memory matrix M(α, t) = MT (α,−t) whose components are given by the
following conditional expectation

Mµν(α, t) =
1

kB
Pα ([LAν ][exp {tQAL}QALAµ]) =

1

kB
Pα

(
R̃µ(t, ·)R̃ν(0, ·)

)
(5.14)

Inserting eqn (5.12) in eqn (5.10) and using the property that for any f(A(z)), we have
exp {Lt}f(A(z)) = f(α(t, z)) and so

exp {tL}PA(z)LA(z) = Pα(t,z)LA(z), exp {(t− s)L}M(A(z), s)
∂S(A(z))

∂α
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= M(α(t− s, z), s)∂S(α(t− s, z))
∂α

, exp {(t− s)L}kB
∂M(A(z), s)

∂α

= kB
∂M(α(t− s, z), s)

∂α

we arrive at the following equation for α(t, z)

∂tα(t, z) = ν(α(t, z))

+

∫ t

0
dsM(α(t− s, z), s)∂S

∂α
(α(t− s, z)) + kB

∫ t

0
ds
∂M

∂α
(α(t− s, z), s) + R̃(t, z)

(5.15)

where ν(α) is the following conditional expectation

ν(α) = PαLA (5.16)

Eqn (5.15) is a formally exact rewriting of eqn (5.5). Recall however that we are not
interested in solving this equation for a specific initial condition α(0, z) = A(z) but
rather for an ensemble of initial conditions z satisfying α(0, z) = A(z) = α(0) for some
fixed α(0) and with z distributed according to the equilibrium density ρeq(z) conditional
on A(z) = α(0). In this case, R̃(t, z), which is the only term in eqn (5.15) which
is not a function of α(s, z) for 0 ≤ s ≤ t, can be interpreted as a noise term whose
statistics must be consistent with eqn (5.14). With this in mind, we can introduce
the shorthand notation α(t, z) = α(t), and rewrite eqn (5.15) as an integro-differential
equation with a random-source term which is usually referred to as the generalized
Langevin equation(GLE):

dα(t)

dt
= ν(α(t))

+

∫ t

0
dsM(α(t− s), s)∂S

∂α
(α(t− s)) + kB

∫ t

0
ds
∂M

∂α
(α(t− s), s) +R(t)

(5.17)

where R(t) is now viewed as a zero-mean random process whose statistical properties
are specified by eqn (5.11) in which z is random and distributed according to the equi-
librium density ρeq(z) conditional on A(z) = α(0). By solving eqn (5.17) with the initial
condition α(0) in different realizations of R(t) we can then generate the exact statistics
of A(Z(t)) for t ≥ 0 along an ensemble of trajectories consistent with A(Z(0)) = α(0).

While formally exact within the statistical interpretation above, the GLE (eqn (5.17))
is unfortunately rather useless in practice. Indeed, while ν(a) and the gradient ∂S

∂α are
conditional expectations which can in principle be computed using constrained molec-
ular dynamics, we cannot calculate M(α, t) and R(t) since they involve the projected
dynamics associated with QA(z)L which we do not know how to generate. (Note also
that the process R(t) is non-Gaussian in general, i.e. it is not specified completely by
its correlation function in eqn (5.14).) On top of this, even if we knew how to com-
pute M(α, t) and the full statistics of R(t), eqn (5.17) would remain very challenging to
integrate numerically because of its non-Markovian character.
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5.2 The standard Markovian approximation and its caveats

In order to made the GLE (eqn (5.17)) practical we use the ”Markovian approxima-
tion”.This approximation starts by assuming that the time scale of variation of the
relevant variables is much larger than the time scale of decay of the memory matrix
M(α, t) defined in eqn(5.14), which can be approximated by

M(α, t) ≈MT (α)δ(t) (5.18)

where the time-independent friction matrix MT (α) is defined as

MT (α) =

∫ T

0
dtMT (α, t) =

∫ T

0
dtPα(R̃(t, ·)⊗ R̃(0, ·)) (5.19)

Note that the integral is capped at a finite time T rather than extended to infinity.
Consistent with the approximation in 5.18, we can assume that the random term R(t)
in (5.17) can be modelled as a white-noise, i.e. a Gaussian process with mean zero and
whose correlation at α(t) = α fixed is given by

〈RT (t)⊗RT (s)〉 = kBMT (α)δ(t− s) (5.20)

Under these assumptions, the GLE (eqn (5.17)) becomes the stochastic differential equa-
tion (SDE)

dα(t)

dt
= v(α(t)) +MT (α(t))

∂S

∂α
(α(t)) + kB

∂MT

∂α
(α(t)) +RT (t) (5.21)

The Fokker–Planck equation which is mathematically equivalent to 5.21 was derived by
Zwanzig. The last thing left so as 5.21 be fully explicit is how to compute the friction
matrix in 5.19. This is achieved by assuming that the projected dynamics exp

{
tQA(z)L

}
can be replaced by the real dynamics exp {tL} in eqn (5.11), i.e.

R̃(t, z) ≈ exp {Lt}QA(z)LA = LA(Z(t))− ν(α(t)) (5.22)

where ν(α) is defined in eqn (5.16), Z(t) is the solution of the original Hamilton eqn
(5.1) and we used again the notation α(t) = α(t, z). The right-hand side of eqn (5.22)
can be computed using a combination of standard MD simulations (to compute Z(t))
and constrained molecular simulation (to compute v(α)). Eqn (5.22) is valid for short
times when the time integrals in eqn (5.15) can be neglected: indeed, using ∂tα(t, z) =
LA(Z(t)) in eqn (5.15) and solving this equation with the integrals set to zero for
R̃(t, z) gives eqn(5.22). Unfortunately, eqn (5.22) is harder to justify at later times.
In particular, this approximation is the reason why the integral in eqn (5.19) must be
capped at a finite T: if one extends the limit of integration T in eqn (5.19) to infinity
using the approximation (eqn (5.22)) for R̃(t, z), then the integral vanishes. This is
the well-known plateau problem and the current practice is to select for the upper
time of integration a time T which is large compared to the correlation time of the
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(unspecified) orthogonal dynamics, but small compared to the time scale of evolution of
the macroscopic variables. This intermediate time scale is assumed to exists, at least in
situations where there is a clear separation of time scales, but the specific value for T is
not provided by the theory, and it is difficult to predict how the results depend on T.
In summary, both approximations eqn (5.18) and eqn (5.22) are uncontrolled and this
clearly diminishes the confidence that one can have in eqn (5.21). Another procedure to
derive an equation similar to eqn (5.21) but whose validity is easier to assess and which
does not suffer from the plateau problem is using modified dynamics and Markovian
limiting equation.

5.3 Modified dynamics and Markovian limiting equation

In order to replace eqn (5.18) and (5.22) by more controlled approximations, consider
the time integrals appearing in the GLE (eqn (5.17)) and perform the change of variables
s = ε2τ , where ε is a non-dimensional control parameter. This leads to

dα(t)

dt
= ν(α(t))

+ ε2

∫ t
ε2

0
dτM(α(t− ε2τ), ε2τ)

∂S

∂α
(α(t− ε2τ))

+ ε2kB

∫ t
ε2

0
dτ
∂M

∂α
(α(t− ε2τ), ε2τ) +R(t)

(5.23)

Now observe that if the following limit exists

lim
ε→0

ε2M(α(t− ε2τ), ε2τ) ≡ m(α(t), τ) (5.24)

then, in the limit as ε→ 0, eqn (5.23) reduces to the SDE

dα(t)

dt
= ν(α(t)) + M̄(α(t))

∂S

∂α
(α(t)) + kB

∂M̄

∂α
(α(t)) + R̄(t) (5.25)

Here the friction matrix M̄(α) has the Green–Kubo form

M̄(α) =

∫ ∞
0

m(α, τ)dτ (5.26)

and the random term R̄(t) is an Itô white-noise, i.e. a Gaussian process with mean zero
and whose correlation at α(t) = α is given by

〈R(t)R(s)〉 = kBM̄(α)δ(t− s) (5.27)

We want to find out under what conditions the limit in eqn (5.24) exists. By using the
definition in eqn (5.14) we can write

ε2M(α(t− ε2τ, z), ε2τ) =
ε2

kB
Pα(t−ε2τ,z)

([
exp

{
ε2τQAL

}
QALA

]
⊗ [QALA]

)
(5.28)
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From this expression, it can be checked by direct calculation that one way to ensure that
the limit eqn (5.24) exists is by assuming that the Liouville operator has the following
form

L = L0 +
1

ε
L1 +

1

ε2
L2 (5.29)

with the operators L1, L2 satisfying

PA(z)L2 = 0

PA(z)L1PA(z) = 0
(5.30)

So in this case, eqn(5.28) becomes

ε2M(α(t− ε2τ, z), ε2τ) =
1

kB
Pα(t)([exp{τL2}L1A]⊗ [L1A]) +O(ε) (5.31)

and the limiting dynamic equation obtained from eqn (5.17) when ε→ 0 precisely is eqn
(5.25) with the Green–Kubo friction matrix M̄(α) now given explicitly by

M̄(α) =
1

kB

∫ ∞
0

dτPα([exp{τL2}L1A]⊗ [L1A]) (5.32)

and the drift term is given by
ν(α) = PαL0A (5.33)

Now we want to make clear in which situations eqn(5.25) is useful. To start our analysis
we use the fact that Liouville operator can be decomposed as L = L0 + L1 + L2 by
defining

L0 = PA(z)(L−R)

L1 = QA(z)(L−R)

L2 = R
(5.34)

and letting PA(z) be the expectation with respect to the equilibrium distribution as-
sociated with the operator R. This operator, to be specified more fully later, should
be similar to L, except that it leaves both the Hamiltonian and the relevant variables
invariant, that is

Rf(H(z)) = 0

Rg(A(z)) = 0
(5.35)

for any functions f and g. By construction, the operators L0, L1, L2 in eqn (5.34)
satisfy the properties in eqn (5.30). This suggests the introduction of a modified dynamic
operator Lε as in eqn (5.29)

Lε ≡ L0 +
1

ε
L1 +

1

ε2
L2 (5.36)
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The dynamics associated with Lε coincides with the real dynamics when ε = 1 and
produces a dynamics of the relevant variables which is governed by the SDE (eqn (5.25))
when ε→ 0. By inserting the operators eqn (5.34) into eqn (5.32), (5.33) we obtain

ν(α) = Pα(LA)

M̄(α) =
1

kB

∫ ∞
0

dτPα([exp{τR}LA]⊗ [LA])
(5.37)

The advantage of the above procedure, which differs from the usual prescription in that
the projected dynamics exp{tQA(z)L} is approximated by exp{tL2} ≡ exp{tR} rather
than exp{tL}, is that we have now an explicit and practical method to compute the
constrained averages once we specify the operator R. If we assume that this constrained
dynamics is ergodic and denote compactly by ZR(t) = exp{tR}z the constrained trajec-
tory with initial condition ZR(0) = z with z such that A(z) = α and H(z) = E then
the conditional expectations in eqn(5.37) can be expressed as time averages

PαLA = lim
T→∞

1

T

∫ T

0
dtLA(ZR(t)) (5.38)

and

M̄(α) = lim
T ′→∞

1

kB

∫ T ′

0
dt′ lim

T→∞

1

T

∫ T

0
dt[LA(ZR(t+ t′))]⊗ [LA(ZR(t))] (5.39)

5.4 An Approximate Solution of the Mori-Zwanzig Equations

5.4.1 Approximation 1: Simplified orthogonal dynamics.

Let us now introduce a general (not necessarily Hamiltonian) system described by a set
of ordinary differential equations:

d

dt
φ(t) = M(φ(t)) (5.40)

where φ is an an n-dimensional vector with components φi, i = 1, · · · , n with n may
be infinite, M is an n-dimensional vector function of φ with components Mi(φ), and
the initial values φ(0) = x are given. We are interested in only the first m components
of the solution, where m is much smaller than n, m � n. Let φ̂ be the vector φ̂ =
(φ1, φ2, · · · , φm) made up of these first m components. Also we define the initial data as
x̂ = (x1, · · · , xm). Now consider as example a two-particle system in one space dimension
with Hamiltonian H = 1

2(r2
1 + r2

2 + r2
1r

2
2 + p2

1 + p2
1) where the ri, pi, i = 1, 2, are positions

and momenta. This is a system of two non-interacting harmonic oscillators coupled by a
quartic interaction term. The harmonic oscillators, once set in motion, oscillate forever.
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The equations of motion are:

ṙ1 = p1

ṗ1 = −r1(1 + r2
2)

ṙ2 = p2

ṗ2 = −r2(1 + r2
1)

(5.41)

The Liouville operator is:

L = p1
∂

∂r1
− r1(1 + r2

2)
∂

∂p1
+ p2

∂

∂r2
− r2(1 + r2

1)
∂

∂p2
(5.42)

We assume that the initial values r1(0), p1(0) of r1, p1 are given, while r2, p2 are sampled

from the pdf W (x) = e−H(r1,p1,r2,p2)

Z (a canonical density with temperature T = 1). Our
aim is to compute r1, p1 from the MZ equations. First we assume that etQL is etL in the
memory term. Specifically we want to make clear that as for the evolution of the noise ,
the orthogonal dynamics are roughly the same as the correct dynamics; the orthogonal
dynamics are not sensitive to the resolved variables. By definition,

PLesQL = LesQL −QLesQL

An operator commutes with any function of itself, so that

QLesQL = esQLQL

Using this last identity and then substituting esQL → esL on the right hand side of the
equality, we have

PLesQL ≈ LesL − esLQL

Then
e(t−s)LPLesQL ≈ e(t−s)LLesL − e(t−s)LesLQL = etLPL

making the integrand in the integral term of the MZ becomes independent of s, so that∫ t

0
etLPLQLxjds = tetLPLQLxj

where x̂ is the vector with components x1 = r1 and x2 = p1. The memory term has
been reduced to a differential operator multiplied by the time t; the time starts at t = 0
when the initial value of r1(t), p1(t) is assigned and when there is no uncertainty. The
equations with the simplified integral term constitute the ”t-model”. Collecting terms,
the t-model equations are:

d

dt
etLx̂ = etLPLx̂+ tetLPLQLx̂+ etQLQLxj (5.43)
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In our case where the components xj are r1, p1 we have:

Lr1 = p1,

PLr1 = p1,

QLr1 = 0,

LQLr1 = 0,

PLQLr1 = 0,

(5.44)

and

Lp1 = −r1(1 + r2
2)

PLp1 = −r1(1 +
1

1 + r2
1

)

QLp1 = −r1(1 + r2
2) + r1(1 +

1

1 + r2
1

)

LQLp1 = p1(−(1 + r2
2) + (1 +

1

1 + r2
1

)− 2r2
1

(1 + r2
1)2

)− 2r1r2p2

PLQLp1 = − 2r2
1p1

(1 + r2
1)2

(5.45)

The approximate equations of motion for r1, p1 are:

d

dt
r1 = p1

d

dt
p1 = −r1(1 +

1

1 + r2
1

)− 2t
r2

1p1

(1 + r2
1)2

+ etQLQLp1

(5.46)

where the noise term has not been made explicit.

Suppose all one wants to know are the quantities

E[r1(t) | r1(0), p1(0)], E[p1(t) | r1(0), p1(0)]

the conditional expectations of r1(t), p1(t) given r1(0), p1(0). An equation for these
quantities can be obtained by premultiplying equations(5.46) by the constant operator
P (remembering that by definition Pr1(t) = E[r1(t) | r1(0), p1(0)] etc.). Now we have
to deal with the difficulty: an average of a function of a variable does not generally
equal the same function of the average; for example, it is not true in general that
E[r2] = (E[r])2. An additional simplification is needed. This difficulty can be solved if
we look for sample paths of the resolved variables, when it replaced by the need to solve
the orthogonal dynamics equations for the noise.

5.4.2 Approximation 2: A ”mean field” approximation.

Assume that for the functions on the right-hand-side of equations (5.46) averaging and
function evaluation do commute, so that, for example, E[(1 + r2

1)−1 | r1(0), p1(0)] ≈
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(1 +E[r1(t) | ·]2)−1. This mean field approximation is legitimate when the noise is small
enough. If the noise is zero, the approximation is exact. In the specific problem under
consideration it should be a good approximation if the initial data are sampled from a
canonical density with low temperature. We use it here at the initial temperature T = 1.

Define R1(t) = E[r1(t) | r1(0), p1(0)], P1(t) = E[p1(t) | r1(0), p1(0)]. The approxi-
mate equations of motion become:

d

dt
R1 = P1

d

dt
P1 = −R1(1 +

1

1 +R2
1

)− t 2R2
1P1

(1 +R1)2

(5.47)

These equations can be solved numerically. Notwithstanding the approximations, these
graphs display the features one may expect in the solutions of the MZ equations in
general: the amplitude of the noise grows in time (we have not calculated this amplitude
explicitly, but it is reflected in the growing magnitude of the dissipation term), and the
averages of the solutions decay to zero.

5.5 Coarsening big complex molecules

Let us now apply the previous methology in a collection of big molecules by using
center of mass (CoM) variables as relevant variables. Later we will further analyse an
application in a system of star polymers but now the framework is to a large extend
independent of what kind of molecule we have, provided that they are made of many
atoms and that they are isotropic. We assume that the fluid system is composed by M
molecules and each molecule is made of Nm atoms whose positions and momenta are
riµ , piµ where the index iµ runs from 1, ., Nm, while the index µ runs from 1, .,M, i.e.
Greek indices label molecules. The Hamiltonian of the system is

H(z) =

M∑
µ=1

Nm∑
iµ=1

p2
iµ

2miµ

+ U (5.48)

where miµ is the mass of the atom iµ and U is the potential energy The Liouville operator
is given by

L =
∑
µ

∑
iµ

piµ
miµ

∂

∂riµ
+
∑
µ

∑
iµ

Fiµ
∂

∂piµ
(5.49)

where Fiµ = − ∂U
∂riµ

is the force on the atom iµ. At a coarse-grained level, we will

represent the complex molecule by just the position Rµ and momentum Pµ of its center
of mass. These relevant variables are the following functions of the atomic variables
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Rµ =
1

Mµ

Nm∑
iµ=1

miµriµ

Pµ =

Nm∑
iµ=1

piµ

(5.50)

where Mµ =
∑Nm

iµ=1miµ is the total mass of the molecule µ.

Note that we have LRµ =
Pµ
Mµ

, this is, the Liouville operator applied to a relevant

variable is (proportional to) a relevant variable itself. As a consequence, the conditional
average of Pµ conditioned to Pµ and Rµ is just Pµ itself. This means that there are
no dissipative terms (nor noise terms) in the evolution of the positions, and eqn (5.25)
reduces to

dRµ

dt
=
Pµ
Mµ

dPµ
dt

= 〈Fµ〉+ Tγµν
∂S

∂Pν
+ kBT

∂γµν
∂Pν

+ F̃µ

(5.51)

where we recall that the sum over repeated indices is implied. Here we use the shorthand
notations R = (R1, ....,RM),P = (P1, ...,PM) and we denote by 〈·〉 the conditional
expectation P(R,P ) at (R,P ) fixed. The friction tensor is defined by

γµν =
1

kBT

∫ ∞
0

dt 〈δFµ exp{tR}δFν〉 (5.52)

where δFµ = Fµ − 〈Fµ〉 and Fµ is the total force acting on the molecule µ:

Fµ =
∑
ν

Fµν ≡
∑
ν

∑
iµjν

Fiµjν (5.53)

Here Fiµjν is the force that atom jν exerts on atom iν , and Fµν is the total force that
molecule ν exerts on molecule µ. The entropy has the form

S(R,P ) = kB ln

∫
dz

1

Z
exp{−βH(z)}

∏
µ

δ(Rµ(z)−Rµ)δ(Pµ(z)− Pµ) (5.54)

The momentum integrals involved in the entropy function can be performed explicitly
with the result

S(R,P ) = S0 −
1

T
V (R)− 1

T

∑
µ

|Pµ|2

2Mµ
(5.55)

where S0 is a constant and V (R) is the so called effective potential defined by

V (R) ≡ −kB ln

∫
dz

1

Q
exp{βφ(z)}

∏
µ

δ(Rµ(z)−Rµ) (5.56)
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This effective potential satisfies

− ∂V

∂Rµ
= 〈Fµ〉 (5.57)

which justify its name. By using 5.55 in 5.51, this equation reduces to

dRµ

dt
=
Pµ
Mµ

dPµ
dt

= 〈Fµ〉 − γµν
Pν
Mν

+ kBT
∂γµν
∂Pν

+ F̃µ

(5.58)

Note that we have
∑

ν Fν = 0, because of Newton’s Third Law. From 5.52 this
implies that the friction coefficient defined in 5.52 satisfies

∑
µ γµν = 0 and,therefore,

γµµ =
∑
ν 6=µ

γµν (5.59)

While we expect that γµµ will be a positive quantity (because it is the time integral of
an autocorrelation function), this equation shows that γµν may be negative. Using 5.53
and 5.59, 5.58 can be written as

dRµ

dt
=
Pµ
Mµ

dPµ
dt

= 〈Fµ〉+
∑
ν

γµν(
Pµ
Mµ
− Pν
Mν

) + kBT
∑
ν

∂γµν
∂Pν

+ F̃µ

(5.60)

where we wrote the sums explicitly to avoid confusions (not all repeated indices are
summed in 5.60).

The stochastic force F̃µ can be expressed in terms of a linear combination of Wiener

processes as, for example,Fµ =
∑

αBµν
dWν(t)
dt with∑

α

BµαBνα = 2kBTγµν (5.61)

This is the Fluctuation–Dissipation theorem for this problem. Note that 5.60 has
the structure of dissipative particle dynamics (DPD). However, an important difference
with the usual DPD equations is that the effective force 〈Fµν〉 and the friction tensor
γµν(R,P ) depend, in principle, on the CoM variables of all the molecules in the system
and not only on Rµ −Rν as in DPD.
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Chapter 6

Simulation results for a system of star
polymers

As an application we now consider a system of star polymer that form in a polymer melt.
The star-shaped polymers are the simplest class of branched polymers with a general
structure consisting of several (at least three) linear chains connected to a central core.
The core, or the center, of the polymer can be an atom, molecule, or macromolecule; the
chains, or ”arms”, consist of variable-length organic chains. Star-shaped polymers in
which the arms are all equivalent in length and structure are considered homogeneous,
and ones with variable lengths and structures are considered heterogeneous.

Figure 6.1: Shape of a polymer star

In our case the polymer is polysterene. Polystyrene(PS) is a synthetic aromatic
hydrocarbon polymer made from the monomer known as styrene. Polystyrene can be
solid or foamed. General-purpose polystyrene is clear, hard, and rather brittle. It is an
inexpensive resin per unit weight. It is a rather poor barrier to oxygen and water vapour
and has a relatively low melting point and it’s one of the most widely used plastics.
Polystyrene can be naturally transparent, but can be coloured with colourants. As a
thermoplastic polymer, polystyrene is in a solid (glassy) state at room temperature but
flows if heated above about 100oC, its glass transition temperature. It becomes rigid
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again when cooled. This temperature behaviour is exploited for extrusion (as in Styro-
foam) and also for molding and vacuum forming, since it can be cast into molds with fine
detail. In chemical terms, polystyrene is a long chain hydrocarbon wherein alternating
carbon centers are attached to phenyl groups (a derivative of benzene). Polystyrene’s
chemical formula is (C8H8)n; it contains the chemical elements carbon and hydrogen.
Some of it’s uses include protective packaging (such as packing peanuts and in the jewel
cases used for storage of optical discs such as CDs and occasionally DVDs), containers,
lids, bottles, trays, tumblers, disposable cutlery and in the making of models.

Figure 6.2: Chemical type of polysterene

Figure 6.3: A snapshot of a model single polysterene chain
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Figure 6.4: A snapshot of the polysterene star

In our system the star polymers have f = 8 arms and m = 40 monomers per arm.
Each arm is connected to a central monomer so that the total number of monomers per
polymer is Nm = f ×m + 1. The melt contained a collection of M polymer molecules,
with M = 15 each on them has 2581 atoms so we have 38715 atoms in total. In order
to simulate the system we use LAMMPS [21] simulation package where the interactions
between all the atoms are defined through the united-atom model of TRAPPE force field
[3]. LAMMPS is a molecular dynamic simulator with a focus on materials modeling. So
as to run a simulation in this simulator we have to have two files, one which contains
the definition of our system (the number of the atoms, the bonds, e.t.c.) and the other
with the information about the ensemble, the time that we need e.t.c. (see A.1).

The procedure that we perform so as to take the data that we want is the follow-
ing. Starting from the initial configuration [8] where our system has already reached
the equilibrium we run an NPT simulation for 10 nanoseconds(ns) with unconstrained
dynamics. Then, we do an energy minimization for 10,000 femtoseconds(fs). Using
the data from the previous simulation we perform an NVT simulation for 10ns with
unconstrained dynamics and we perform again the energy minimization with the same
way that we did before. Then, we run an NVT simulation for 20ns with unconstrained
dynamics so as to collect a set of 20 configurations, each one having an independent
set of positions and momenta (R,P ) of the CoM of the molecules. In this step we can
see that our system is in equilibrium by ploting the thermodynamic properties of the
system(see appendix A ,6.5, 6.6). Starting from each of these 20 configurations we run
a short simulation (1ns) with NVT to collect the required CoM molecular dynamics raw
data. These set of short runs were carried out using the constrained dynamics (eq.6.1).
In all the above simulations we use Nose Hoover thermostat, Velocity-Verlet integrator
and the temperature is 450 Kelvin.
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Figure 6.5: Pressure in atmospheres

Figure 6.6: Temperature in Kelvin

In order to check that the system has reached equilibrium we calculate the systems
thermodynamic quantities, e.g. the temperature and the pressure. The running average
that we plot in figures 6.5 and 6.6, is a calculated by creating a series of averages of
different subsets of the full data set. We calculate it as follows. Suppose that we have
the equally weighted configurations n1, n2, · · · , nN then the values that we use in order
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to find the average are calculated as n̄i = n̄i−1 + 1∑i
j=1 j

(ni − n̄i−1) for i = 1, · · · , N .

Then, a procedure that we have to follow is to compute the autocorrelation function
of the CoM and the force autocorrelation function on the molecules in order to compare
them and find if we have a separation of time scales. The former gives the time scale
of the CoM velocity, which is a relevant variable. The latter provides an estimate of
the typical time scale at which the memory function in the definition of the friction
coefficient decays.

The constrained dynamics R that we discuss before and we use in order to compute
the mean force 〈Fµν〉 and the friction coefficient γµν(R,P ) is the following

driµ
dt

=
piµ
miµ

− Pµ
Mµ

dpiµ
dt

= Fiµ −
miµ

Mµ
Fµ

(6.1)

where Pµ is the CoM momentum of molecule µ, Fiµ is the total force on monomer iµ and
Fµ is the total force on molecule µ. These equations conserve the total energy, they leave
the positions and momentum of the CoM invariant, and they also conserve the volume
in phase space. For these reasons, this dynamic samples the constrained ensemble that
appears in the definition of 〈Fµν〉 and γµν(R,P ), and these averages may be computed
as time averages.

Consistent with eqn(5.38), by running eqn (6.1), we can compute 〈Fµν〉 as the time
average of the force Fµν that molecule ν exerts on molecule µ. In principle 〈Fµν〉 depends
on all the CoM positions R. If it happens, as we expect, that the force that molecule
ν exerts on molecule µ depends only on the CoM positions Rµ and Rν of these two
molecules and does not depend much on where the rest of molecules are located, then a
pair-wise approximation should be valid. By translational and rotational symmetry we
expect that the average force will be of the form

〈Fµν〉 ≈ F (Rµν)eµν (6.2)

where F (Rµν) = 〈Fµν · eµν〉, eµν =
(Rµ−Rν)
Rµν

and Rµν =| Rµ − Rν |. Consistent with

this assumption, we computed the modulus of the average force F (Rµν) by averaging
the result of 〈Fµν · eµν〉 over all those pairs µ, ν that are at a certain distance Rµν . In
practice, to perform these constrained dynamics we employed the LAMMPS[21] modulus
’recenter’. This modulus constrain the center-of-mass position of a group of atoms by
adjusting the coordinates of the atoms every timestep. This is simply a small shift that
does not alter the dynamics of the system or change the relative coordinates of any pair
of atoms in the group.

The results are depicted in fig. 6.7 and fig. 6.8 for two sets of simulated data. The
first set of data is composed of 50000 configurations while the second set is made by
5000 configurations.
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Figure 6.7: The conservative force used by the present pair-wise approximation
〈Fµν · eµν〉 versus the distance Rµν between center of masses of two interacting molecules.

Figure 6.8: The conservative force used by the present pair-wise approximation
〈Fµν · eµν〉 versus the distance Rµν between center of masses of two interacting molecules.

Regarding the figures we observe that the pair force tends to zero as the distances
grow up as we expected. For small values of distances we observe abnormal behavior.
This abnormal behavior is a result of the poor statistics (i.e. we need more simulations)
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in combination to the fact that we need to verify the validity of the constrained dynamics
we impose. The poor statistics may be a consequence of the temperature that we use,
which is 450 Kelvin. We assume that the atoms can’t move fast in this temperature, so
longer simulation times are necessary to have a wider range of configurations.

Let us now define the friction coefficients γµν(R,P ). Again, one has to deal with the
problem of their many arguments. Here we do the assumption that the correlation be-
tween the forces on molecule µ and ν will depend on the positions of these two molecules
but will not depend much on the positions and momenta of the rest of the molecules.
Thus we have the following expression:

γµν(R,P ) ≈ −γ⊥(Rµν)(1− eµνeTµν)− γ‖(Rµν)eµνe
T
µν (6.3)

The right-hand side of this equation only depends on Rµ and Rν and it is a general
form for a tensor that is invariant by rotations along the axis joining the particles µ, ν.
Compatibility of eqn(6.3) with eqn(5.52) then requires that

γ‖(Rµν) = − 1

kBT

∫ ∞
0

dt 〈(δFµ(t) · eµν)(δFν(0) · eµν)〉

γ⊥(Rµν) = − 1

kBT

∫ ∞
0

dt
〈

(δFµ(t) · e⊥µν)(δFν(0) · e⊥µν)
〉 (6.4)

Assuming that the right-hand side of eqn(6.4) is the same for all the pairs that are at
the same distance Rµν , we may average over all the pairs µν that happen to be at the
distance Rµν , this is

γ‖(Rµν) =
1

Nµν

′∑
µν

1

kBT

∫ ∞
0

dt 〈(δFµ(t) · eµν)(δFν(0) · eµν)〉 (6.5)

where
∑′

µν is a sum over all those pairs that are at a given distance Rµν and Nµν is the
number of pairs at that distance.
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Chapter 7

Conclusions and Discussion

To conclude our work, we summarize our approach, findings and future steps. Because
the molecular systems we study are very complex, due to the large number of particles,
they are difficult to simulate. Thus, we have to reduce the degrees of freedom. This is
achieved with the coarse graining process. We present analytically the equation of mo-
tion of the coarse grained particles, the generalized Langevin equation. This equation is a
result of the Mori-Zwanzig projection method. It is an integro-differential equation with
memory terms, rendering the dynamics governing the coarse variables non-Markovian.
Applying the Markovian approximation one reduces the memory term of the GLE equa-
tion to have explicit form. The common approach approximates the evolution operator
of the integrated out degrees of freedom by the real dynamics. In the current work, this
approximation is based on the the constrained (to the coarse variables) dynamics of the
all-atom system.

We applied the later approach for the polystyrene system. That is, we simulated the
polystyrene system and applied the coarse graining method with relevant variables the
center of mass of each polystyrene star in order to compute the average force and the
thermodynamic properties of the system. Since the system is high dimensional we faced
serious problems in achieving adequate statistics for the estimation of the force field.
We presented the resulted pair force estimated using observations of the united-atom
evolution of the system with the constrained center of mass of the molecules. However,
though we encountered difficulties in presented the pair force, due to poor statistics
(i.e. we need more simulations) in combination to the fact that we need constrained
dynamics we could not reach in a good representation of our system. A problem may
be the temperature that we use, which is 450 Kelvin. We assume that the atoms can’t
move fast in this temperature, so longer simulation times are necessary to have a wider
range of configurations.

The next goal is to calculate the velocity autocorrelation function of the center of
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mass and comparing the result with the force autocorrelation function on the molecules.
Additionally we want to calculate the friction coefficients of the system so as to represent
the total movement of the new coarse-grained particles.
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Appendix A

Thermodynamic properties of an NVT
ensemble

We present the thermodymanic properties for a simulation with uncostrained dynamics
in a system in equilibrium.

Figure A.1: Energy of angles in Kcal/mole
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Figure A.2: Energy of bonds in Kcal/mole

Figure A.3: Energy of dihedrals in Kcal/mole

56



Figure A.4: Energy of impropers in Kcal/mole

Figure A.5: Potential energy in Kcal/mole
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Figure A.6: VanderWaal energy in Kcal/mole

Figure A.7: Volume

A.1 Information of the system

In all the previous simulations that we performed we have the following information as
input:
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number of atoms 38715
σ of each type of atom

1 6.4
2 4.65
3 3.95
4 3.7
5 3.695
6 3.75

ε of each type of atom
1 0.0009935
2 0.0198614
3 0.0914914
4 0.0596080
5 0.1003107
6 0.1950048

initial size of the box in xyz directions
lower value 0.0000000
higher value 100.0000000

Mass of each type of atom
1 12.0110000
2 13.0190000
3 14.0270000
4 12.0110000
5 13.0190000
6 15.0350000

Units Real
mass grams/mole

distance Angstroms
time femtoseconds

energy Kcal/mole
velocity Angstroms/femtosecond

force Kcal/mole-Angstrom
torque Kcal/mole

temperature Kelvin
pressure atmospheres

dynamic viscosity Poise
charge multiple of electron charge (1.0 is a proton)
dipole chargeAngstroms

electric field volts/Angstrom
density gram

cmdim
bond style hybrid harmonic
angle style hybrid harmonic

dihedral style hybrid charmm multi/harmonic
improper style hybrid harmonic
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