
Facetize: An Interactive Tool for Cleaning

and Transforming Datasets for Facilitating

their Exploration

Anna Kokolaki

Thesis submitted in partial fulfillment of the requirements for the

Masters’ of Science degree in Computer Science

University of Crete
School of Sciences and Engineering

Computer Science Department
Voutes University Campus, Heraklion, GR-70013, Greece

Thesis Advisor: Associate Prof. Yannis Tzitzikas

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).

University of Crete
Computer Science Department

Facetize: An Interactive Tool for Cleaning and Transforming Datasets
for Facilitating their Exploration

Thesis submitted by
Anna Kokolaki

in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

THESIS APPROVAL

Author:
Anna Kokolaki

Committee approvals:
Yannis Tzitzikas
Associate Professor, University of Crete

Thesis Supervisor

Dimitris Plexousakis
Professor, University of Crete

Committee Member

Giorgos Flouris
Researcher, FORTH-ICS

Committee Member

Departmental approval:
Antonis Argyros
Professor, University of Crete

Director of Graduate Studies

Heraklion, September 2018

Facetize: An Interactive Tool for Cleaning and
Transforming Datasets for Facilitating their

Exploration

Abstract

There is a plethora of datasets in various formats which are usually stored in
files, hosted in data catalogs or accessed through SPARQL endpoints. In most
cases, these datasets cannot be straightforwardly explored by end users. To fill
this gap, in this thesis we present the design and implementation of Facetize an
editor that allows plain users with no particular technical background, to trans-
form datasets, either static (i.e. stored in files), or dynamic (i.e. being the re-
sults of SPARQL queries), to datasets that can be directly explored effectively
by themselves or other users. The latter is achieved through the familiar interac-
tion paradigm of Faceted Search (and Preference-enriched Faceted Search). We
describe the requirements, we introduce the required set of transformations, and
then we detail the functionality and the implementation of the editor Facetize

that realizes these transformations. The supported operations cover a wide range
of tasks (selection, visibility, deletions, edits, definition of hierarchies, intervals,
derived attributes, and others). In this way Facetize enables the user to carry
them out in a user-friendly and guided manner, without presupposing any tech-
nical background (regarding data representation or query languages). Finally we
present the results of task-based evaluation with users which was quite positive.

Facetize: ΄Ενα Διαλογικό Εργαλείο για τον
Καθαρισμό και το Μετασχηματισμό Συνόλων

Δεδομένων για τη Διευκόλυνση της Εξερεύνησής

τους

Περίληψη

Υπάρχει πληθώρα συνόλων δεδομένων σε διάφορες μορφές τα οποία συνήθως α-

ποθηκεύονται σε αρχεία, φιλοξενούνται σε καταλόγους δεδομένων ή προσπελαύνονται

μέσω των τελικών σημείων SPARQL . Στις περισσότερες περιπτώσεις, αυτά τα σύνο-
λα δεδομένων δεν μπορούν να εξερευνηθούν απ έυθείας από τους τελικούς χρήστες.

Για να συμπληρώσουμε αυτό το κενό, σε αυτή τη διατριβή παρουσιάζουμε το σχε-

διασμό και την υλοποίηση του Facetize, ενός διαλογικού εργαλείου επεξεργασίας

που επιτρέπει στους απλούς χρήστες, χωρίς τεχνικό υπόβαθρο, να μετασχηματίζουν

σύνολα δεδομένων είτε στατικά (δηλ. αποθηκευμένα σε αρχεία) είτε δυναμικά (δηλ.

απαντήσεις επερωτήσεων), σε σύνολα δεδομένων που μπορούν να εξερευνηθούν άμεσα

από τους ίδιους ή άλλους χρήστες. Το τελευταίο επιτυγχάνεται μέσω του γνωστο-

ύ παραδείγματος εξερευνητικής αναζήτησης, που ονομάζεται Πολυεδρική Αναζήτηση

(και της Πολυεδρικής Αναζήτησης με Προτιμήσεις). Στη διατριβή περιγράφονται οι

απαιτήσεις, εισάγεται το απαιτούμενο σύνολο μετασχηματισμών και στη συνέχεια ανα-

λύεται η λειτουργικότητα και η υλοποίηση του εργαλείου Facetize που πραγματώνει

αυτούς τους μετασχηματισμούς. Οι υποστηριζόμενες λειτουργίες καλύπτουν ένα ευρύ

φάσμα εργασιών (επιλογή, ορατότητα, διαγραφές, τροποποιήσεις, ορισμός ιεραρχιών

και διαστημάτων, παράγωγα γνωρίσματα και άλλα) και το Facetize επιτρέπει στο

χρήστη να τις εκτελέσει με φιλικό τρόπο, χωρίς να προϋποθέτεται οποιοδήποτε τε-

χνικό υπόβαθρο (όσον αφορά τις γλώσσες αναπαράστασης δεδομένων ή τις γλώσσες

επερωτήσεων). Τέλος παρουσιάζονται τα αποτελέσματα μιας αξιολόγησης με τους

χρήστες που ήταν θετική.

Ευχαριστίες

Αρχικά, θα ήθελα να ευχαριστήσω θερμά τον επόπτη καθηγητή μου κ. Γιάννη Τζίτζι-

κα για την άψογη συνεργασία και ουσιαστική συμβολή του στην ολοκλήρωση της

παρούσας μεταπτυχιακής εργασίας. Ακόμη θέλω να εκφράσω τις ευχαριστίες μου

στον κ. Δημήτρη Πλεξουσάκη και στον κ. Γιωργο Φλουρή για την προθυμία τους να

συμμετέχουν στην τριμελή επιτροπή.

Ακόμα ευχαριστώ το Ινστιτούτο Πληροφορικής του Ιδρύματος Τεχνολογίας και

΄Ερευνας για την πολύτιμη υποστήριξη σε υλικοτεχνική υποδομή και τεχνογνωσία,

καθώς και για την υποτροφία που μου προσέφερε κατα τη διάρκεια της μεταπτυχιακής

μου εργασίας.

Στο σημείο αυτό θα ήθελα να ευχαριστήσω την οικογένεια μου και τους φίλους μου

για την συμπαράσταση και την υποστήριξη που μου έδωσαν όλα αυτά τα χρόνια. Επειτα

θα ήθελα να ευχαριστήσω τον μεταδιδακτορικό ερευνητή Παναγιώτη Παπαδάκο για

την ενασχόληση του με κομμάτια την εργασίας αυτής και τον χρόνο που αφιέρωσε, τον

΄Αγγελο Μαυρουλάκη για την εργασία του που παρέλαβα και επέκτεινα, καθώς και τους

Μαρκετάκη Γιάννη και Παναγιώτη Λιονάκη για τον χρόνο που επίσης αφιέρωσαν για

την εργασία μου. Θα ήθελα επίσης να ευχαριστήσω όλους όσους είχαν την προθυμία

να συμμετέχουν στην αξιολόγηση του συστήματος και για τα χρήσιμα σχόλια που

έκαναν για επέκταση και βελτίωση του συστήματος στο μέλλον.

...

Contents

Table of Contents i

List of Tables iii

List of Figures v

1 Introduction 1

1.1 Outline of Thesis . 4

2 Context and Background 5

2.1 Datasets . 5

2.2 Faceted Search . 6

2.3 PFS: Preference-enriched Faceted Search 6

2.4 Hippalus . 8

3 Requirements 11

3.1 Transformation Requirements . 11

3.2 Workbench-related Requirements 11

4 Related Work 15

4.1 Data Cleansing . 15

4.1.1 Types of Data Errors . 15

4.1.2 State of the Art . 16

4.2 Tools for Data Cleansing and Transformations 17

4.2.1 DataPreparator . 17

4.2.2 Potter’s Wheel . 17

4.2.3 WinPure Clean . 23

4.2.4 OpenRefine . 25

4.2.5 Karma . 27

4.3 Executive Summary . 32

5 The Target Data Structure 33

5.1 Materialized Faceted Taxonomy . 33

5.2 A CSV file as a Materialized Faceted Taxonomy 34

i

5.3 FS Interaction . 34

6 The Supported Transformations 37
6.1 Visibility . 37
6.2 Facet Type . 38
6.3 Ordering of Facets . 40
6.4 Defining Hierarchies . 40

6.4.1 Hierarchies of Categorical Values 40
6.4.2 Hierarchies of Numerical Values: Intervals 40

6.5 Derived Facets . 40
6.6 Linear, Logarithmic and User Defined Intervals 41
6.7 Synopsis of Supported Data Transformations 43

7 The System Facetize 45
7.1 Implementation . 45
7.2 Supported Transformations . 45
7.3 The Notion of Project . 46

7.3.1 Project with Single File Dataset 46
7.3.2 Project with Multiple Files 47
7.3.3 Project with SPARQL Query 50

7.4 Interaction Example . 50
7.4.1 Defining Hierachies . 50
7.4.2 Refreshing the Dataset of an existing Project 52

7.5 Errors . 52

8 Evaluation 59
8.1 Comparing with the Functionality of Related Systems 59

8.1.1 Comparison using the Running Example 59
8.2 Scalability and Efficiency . 60
8.3 Task-based Evaluation with Users 62

8.3.1 Questionnaire . 63
8.3.2 Results of the Evaluation 64

8.4 Possible Improvements . 65
8.4.1 Null Values in the Dataset 65
8.4.2 Applicability over Very Large Datasets 66
8.4.3 Format Support . 66
8.4.4 Enrich a Facet with Restrictions 67
8.4.5 Integrity Constraints . 67

9 Conclusion and Future Work 69

10 Appendix 71
10.1 Logging of Transformations . 71

Bibliography 75

ii

List of Tables

3.1 Data Cleansing and transformations requirements. 13

5.1 Faceted Information Sources and FDT Interaction 35

8.1 Table with requirements that were done by each tool. 60
8.2 Features of data cleansing systems 61
8.3 Table with measurements of time to load projects with datasets of

different number of rows and 37 columns. 62

iii

iv

List of Figures

1.1 Scenario Example . 2

1.2 The process . 3

2.1 The faceted navigation on Epicurious.com allows the flexibility to
narrow results by many different criteria, including Main Ingredient,
Cuisine, and Dietary Consideration. 7

2.2 A canonical example of a faceted navigation at LinkedIn. 7

2.3 Hippalus preference actions . 9

4.1 The initial window in DataPreparator. 18

4.2 File Input Options in DataPreparator. 18

4.3 Discretization dialog contains options for discretizing numeric at-
tributes in DataPreparator. 19

4.4 Dialog containing options for scaling of numeric attributes in Dat-
aPreparator. 20

4.5 The dialog containing options for handling missing values in Dat-
aPreparator. 21

4.6 Example dependency tree in DataPreparator. The nodes represent
variables and the links the relationships between the variables. . . 22

4.7 Example Parallel Coordinates in DataPreparator. 22

4.8 Using Format, Merge and Split to clean name format differences . 23

4.9 Divide-ing to separate various name formats 24

4.10 Fold-ing to fix higher-order variations 24

4.11 Unfold-ing into three columns . 24

4.12 WinPure Clean . 25

4.13 WinPure data merging . 26

4.14 WinPure deduplication . 26

4.15 Create a new project in OpenRefine 27

4.16 Distinct values of a facet in OpenRefine 28

4.17 Edit values in OpenRefine . 28

4.18 Data clustering in OpenRefine . 29

4.19 Remove duplicates in OpenRefine 29

4.20 Add a new column in OpenRefine 30

4.21 Export data in OpenRefine . 30

v

4.22 Karma set semantic type . 31
4.23 Karma string similarity algorithms 32

6.1 Hidden property Rooms . 37
6.2 Specify property Name as type Identifier. 38
6.3 Specify property Longitude as contains geographic information for

longitude. 39
6.4 Specify property Latitude as contains geographic information for

latitude. 39
6.5 Specify interval hierarchy in facet Price. 41
6.6 Modal for create interval hierarchy. 42

7.1 Image with the implementation architecture of system Facetize . 46
7.2 CSV dataset file with internal hierarchies 47
7.3 Plain text file with external defined hierarchies 47
7.4 Object Id file . 48
7.5 CSV property file . 49
7.6 Example of a SPARQL query that reads and queries RDF data

embedded in a Web page (as RDFa) at query execution time. . . . 50
7.7 (a) Click on a term and open menu, (b) Set parent Crete for term

Chania in the hierarchy, (c) Hierarchy Chania/Crete has been created 51
7.8 Add new dataset file. 53
7.9 Select file from disc. 53
7.10 Apply transformations dialog box. 53
7.11 Message for applied transformations. 54
7.12 Facet Location with value Iraklio. 55
7.13 Click option Edit Value from menu. 56
7.14 Replace with value Heraklion. 56
7.15 Facet Location without value Iraklio. 57

8.1 (a) Dedicated time-Success percentage, and (b) Errors-Success per-
centage . 65

8.2 (c) Categories-Success percentage and (d) Age-Success percentage 66

vi

Chapter 1

Introduction

There is a plethora of datasets in various formats which are usually hosted in
catalogs. Although there is a tendency to Linked Data, the majority of datasets is
still represented in simple data file formats such as CSV and TSV. Such datasets
cannot be easily exploited by end users. A user could either have to view directly
these CVS files using a text editor, or spreadsheet application, or on the other
extreme he should build dedicated applications for offering a more user friendly
exploration service.

To tackle this difficulty, our objective is to provide a general purpose solution
that enables users to directly explore such datasets and/or to configure the way
they are explored. To this end, we rely on a quite familiar access method, specifi-
cally on Faceted Search, which is the defacto standard in e-commerce and booking
applications. However, a straightforward loading of such datasets in a faceted
search system will not always result to a satisfying solution, since additional tasks
are usually required. This includes deciding (a) the parts of the dataset that
should be explorable, (b) the attributes that should visible and their order, (c)
the transformations and/or enrichments that should be done, (d) the groupings
(hierarchical or not) of the values that should be made, (e) the addition of de-
rived attributes, and others. For this reason in this thesis we present the design
and implementation of an editor, called Facetize that allows the user to carry
out these tasks in a user-friendly and guided manner, without presupposing any
technical background (regarding the data representation language and the query
languages).

To grasp the idea, Figure 1.1(a) shows a CSV file containing information about
9 hotels each described with 10 properties. Now suppose that one would like from
this dataset to produce an explorable dataset, as sketched in Figure 1.1(b), with
the following specific requirements:

1o The dataset must contain hotels, only located in Greece (so one row should
be deleted).

2o The dataset should be enriched with a new hotel with values: Mitsis Laguna

1

2 CHAPTER 1. INTRODUCTION

(c) (d) (e)

(a)

(b)

Figure 1.1: Scenario Example

3

Resort & Spa,Heraklion,
25.371359,35.307237, 5,385,115,8.7,allowed,not allowed

3o The properties with name Longitude and Latitude, must be marked as prop-
erties that contain geographic information for longitude and latitude respec-
tively, for enabling an exploration system (like Hippalus) to show the location
of each hotel on a map.

4o The entities should take as names their corresponding values of property
Name.

5o The value Iraklio in property Location, must be replaced with the value
Heraklion, in all entities that contain that value.

6o The property Rooms should not appear in the list of facets: it should either
be hidden or deleted.

7o A new property with name Pets and Smoking should be created, with values
as shown in Figure 1.1(e), and each hotel should be associated with the right
value.

8o The values in property Location should be organized hierarchically as shown
in Figure 1.1(c).

9o The values in property Price, must be organized in interval hierarchies, as
shown in the bottom part of Figure 1.1(d).

10o The order of the facets should be as shown in Figure 1.1.

With the approach that we describe in this thesis, and the tool Facetize

a naive user can make all these transformation in an easy manner and produce
an output file that is directly loadable to Hippalus, which the users can directly
explore through a GUI as shown in Figure 1.1(b). The overall process is sketched
in Figure 1.2.

Interaction System
(Preference-enriched Faceted Search)

Users
SPARQL Results

Comma

Separated Values Facetize

Server(selection, transformation,

cleaning)

Non technical user

Figure 1.2: The process

In a nutshell, the key contributions of this thesis are: (a) we identify the
basic requirements for this kind of tasks, (b) we present a set of operations (for
selecting, transforming, cleaning or enriching a dataset), (c) we describe in detail
the design and implementation of Facetize that supports these operations over

4 CHAPTER 1. INTRODUCTION

static datasets (i.e. stored in files) as well as dynamic (i.e. being the results of
SPARQL queries) and (d) we report the results of a task-based evaluation with
users.

In comparison to related systems, OpenRefine is probably the more relevant
system. One distinctive feature of Facetize is that it supports the creation of
hierarchies and numeric intervals and these features are crucial for managing the
complexity of large datasets, and producing datasets that can be easily explored.
Moreover, Facetize can fetch data directly from SPARQL endpoints, making it
appropriate for dynamic datasets.

1.1 Outline of Thesis

The rest of this thesis is organized as follows:
Chapter 2 describes background information.
Chapter 3 identifies the requirements and
Chapter 4 discusses related work.
Chapter 5 describes the target data structure.
Chapter 6 describes transformations,
Chapter 7 presents the editor and describes the structures of system’s projects.
Then Chapter 8 presents the results of the evaluation with users of the scenario

discribed in this Chapter,
and finally Chapter 9 concludes the thesis and identifies directions for future

research.

Chapter 2

Context and Background

Section 2.1 represents the statistics of representation and categories of datasets
in CKAN data hubs and portals, Section 2.2 discusses faceted search, Section
2.3 discusses PFS: Preference-enriched Faceted Search, Section 2.4 discusses the
Preference-enriched faceted search system Hippalus.

2.1 Datasets

There has been a lot of activity in open data around the world. CKAN data
hubs and portals1 exist in Austria, Brazil, US, Africa and many other countries.
The top-five most used data categories2 are government and public sector (11.9%),
economy and finance (11.6%), regions and cities (10.1%), population and society
(9.5%), and environment (8.9%). These five data categories together represent 52%
of the total re-use of Open Data. The least used data categories are international
issues (3.6%), health (4.2%) and justice, legal system and public safety (4.2%).

Govdata.de is one of the most popular open data portals, with coherent
and compatible licensing policy and interesting, politically relevant dataset. In
govdata.de exist almost 26.76% files in CSV format3.

Data.gov.uk is the official open data portal of the UK Government. The
majority of files in that catalogue is in HTML format (about 33.85% of existing
files), while 18.70% of them are in CSV format.

Dati.gov.it open data portal of Italy, accommodates around 29.61% files in
CSV format.

In european data portal.eu (EDP) exist around 11.68% CSV files. The
EDP data category offering most mapped data sets is the justice, legal system
and public safety category (27.8%), followed by environment (23.6%), regions and
cities (12.0%), science and technology (11.9%) and population and society (5.5%).

1https://ckan.org/
2https://www.europeandataportal.eu/sites/default/files/re-using open data.pdf
3From open data formats statistics of the main catalogs (November 2016)

5

6 CHAPTER 2. CONTEXT AND BACKGROUND

The category government and public sector provides only 3.6% of the total mapped
data sets while the economy and finance category only provides 4.4%.

The majority of datasets in data.gov open data portal of U.S. Government’s
is in HTML format (21.44%) and there are 3.84% files in CSV format. Also, there
are 61 alive SPARQL endpoints 4 that are cataloged in CKAN.

In average, in all popular open data portals, there are around 18.1% files in
CSV format.

Moreover sensors and scientific instruments usually produce data expressed in
CSV. Finally, data in CSV are very easy to produce even by plain users using a
text editor or a spreadsheet application.

There are also large amounts of data published as Linked Data, e.g. see [29].

2.2 Faceted Search

Faceted Exploration (or Faceted Search) is a widely used interaction scheme for
Exploratory Search. It is the de facto query paradigm in e-commerce [38, 41].
It has been generalized also for RDF datasets (see [44] for a recent survey). In
a short (and rather informal) way we could define it as a session-based interac-
tive method for query formulation (commonly over a multidimensional information
space) through simple clicks that offers an overview of the result set (groups and
count information), never leading to empty results sets.

Filters are also tools that help users find information. They analyze a given
set of content to exclude items that don’t meet certain criteria. One important
difference between Filters and Faceted Search is that Faceted Search provides mul-
tiple filters, one for each different aspect of the content. Faceted Exploration is thus
more flexible and more useful than systems which provide only one or two different
types of filters, especially for extremely large content sets. Because Faceted Search
describes many different dimensions of the content, it also provides a structure
to help users understand the content space, and give them ideas about what is
available and how to search for it.

For example, Figures 2.1 and 2.2 contain snapshots of systems that use Faceted
Search for exploration. The full-fledged faceted navigation on Epicurious.com
(Fig. 2.1) allows users to narrow results by several different dimensions, including
Cuisine, Main Ingredient, and Dietary Consideration. In this case it’s a simple
matter to view only healthy recipes.

2.3 PFS: Preference-enriched Faceted Search

The enrichment of faceted search with preferences, hereafter Preference-enriched
Faceted Search [33, 45], for short PFS, has been proven useful for recall-oriented
information needs, because such needs involve decision making that can benefit

4https://www.w3.org/wiki/SparqlEndpoints

2.3. PFS: PREFERENCE-ENRICHED FACETED SEARCH 7

Figure 2.1: The faceted navigation on Epicurious.com allows the flexibility to
narrow results by many different criteria, including Main Ingredient, Cuisine, and
Dietary Consideration.

Figure 2.2: A canonical example of a faceted navigation at LinkedIn.

8 CHAPTER 2. CONTEXT AND BACKGROUND

from the gradual interaction and expression of preferences. PFS offers actions
that allow the user to order facets, values, and objects using best, worst, prefer
to actions (i.e. relative preferences), around to actions (over a specific value), or
actions that order them lexicographically, or based on their values or count values.
Furthermore, the user is able to compose object related preference actions, using
Priority, Pareto, Pareto Optimal (i.e. skyline) and other. The distinctive features
of PFS is that it allows expressing preferences over attributes whose values can be
hierarchically organized (and/or multi-valued), it supports preference inheritance,
and it offers scope-based rules for resolving automatically the conflicts that may
arise. As a result the user is able to restrict his current focus by using the faceted
interaction scheme (hard restrictions) that lead to non-empty results, and rank
according to preference the objects of his focus. Recently, PFS has been used
in various domains, e.g. for offering a flexible process for the identification of
fish species [43], as a Voting Advice Application [42] and it has been expanded
with geographic anchors for being appropriate for the exploration of datasets that
contain also geographic information [27]. Finally, applications of the model in the
context of spoken dialogue systems are also emerging, e.g. see [34].

2.4 Hippalus

Hippalus [32] is a publicly accessible web system that implements the PFS inter-
action model. The information base that feeds Hippalus is represented in RD-
F/S5 (using a schema adequate for representing objects described according to
dimensions with hierarchically organized values). For loading and querying such
information, Hippalus uses Jena6, a Java framework for building Semantic Web
applications. Hippalus offers a web interface for Faceted Search enriched with pref-
erence actions offered through HTML 5 context menus7. The performed actions
are internally translated to statements of the preference language described in [45],
and are then sent to the server through HTTP requests. The server analyzes them,
using the language’s parser, and checks their validity. If valid, they are passed to
the appropriate preference algorithm. Finally, the respective preference bucket
order is computed and the ranked list of objects according to preference, is sent
to the user’s browser.

Hippalus displays the preference ranked list of objects in the central part of
the screen, while the right part is occupied by information that relates to the in-
formation thinning (object restrictions), preference actions history and preference
composition. Figure 2.3 shows a screenshot of Hippalus over a data set that con-
tains fish species. The preference-related actions are offered through right-click
activated pop-up menus (through HTML5 context menus). Hippalus has been
evaluated very positively by users in various contexts (the interested reader can

5http://www.w3.org/TR/rdf-schema/
6http://jena.apache.org/
7Available only to firefox 8 and up.

2.4. HIPPALUS 9

refer to [32,42,43]).

Figure 2.3: Hippalus preference actions

10 CHAPTER 2. CONTEXT AND BACKGROUND

Chapter 3

Requirements

We dichotomize requirements to transformation requirements (described in §3.1)
and to workbench-related requirements (described in §3.2).

3.1 Transformation Requirements

Even from the running example in the introductory chapter it is evident that for
preparing a dataset appropriate for exploration [5, 24, 39, 48] one should be able
to define the facets that should be visible, and their order. As regards the terms
of the facets, it should be possible to define hierarchical groupings of terms for
aiding the exploration (and for avoiding cluttering the GUI), as well as intervals
to numerical values. Moreover it should be possible to define new facets whose
terms are derived by applying functions over the terms of other facets. In addition,
the user should be able to specify the type of the terms of a facet, e.g. identifier,
integer, float, string, longitude and latitude. By defining the type of a facet as
identifier, the entities will take as names their corresponding values in this facet,
and all values in this facet should be distinct.

Finally, it should be possible to add individual rows, edit individual rows and
delete individual rows. Moreover it should be able to delete all rows with a specific
value or a condition. Moreover it should be possible to replace each distinct value
in a facet with a new one in each row of the dataset.

3.2 Workbench-related Requirements

The notion of project, should be supported, allowing the user to create, open, edit
and save the changes on disc.

The system should be able to keep the history of transformations that have
been applied and offer to the user the ability to undo the desired ones (and redo).

Moreover, the user should be able to open a project and change the input
dataset, i.e. by giving a more recent version of the dataset, or the file with the
hierarchical information. This is very important for datasets that change over

11

12 CHAPTER 3. REQUIREMENTS

time, since we would not like to loose the transformations that have been defined
for a past version of the dataset.

Finally it should be possible to export the transformed dataset in RDF accord-
ing to a schema that is compliant with Hippalus, for enabling the straightforward
loading by Hippalus. Table 3.1 shows the data cleansing and transformations
requirements.

3.2. WORKBENCH-RELATED REQUIREMENTS 13

Table 3.1: Data Cleansing and transformations requirements.

Category Feature

Import/Export

Import/Export text files, EXCEL
Import/Export Data from databases
Import/Export RDF files
Export R2RML/JSON files
Execute SPARQL queries to retreive data from a
source

Data Visualization Ability to view data in plain text as well as in tabular
format

Data cleaning: Rows

Deletion of rows
Removal of duplicate rows
Addition of row
Removal of empty rows

Deletion of records containing missing values

Data cleaning: Values

Character removal, text replacement, date conversion
Value editing
Impute missing values
Creation of value hierarchies
Creation of intervals for arithmetic values
Correction of bad values using string similarity metrics
Clustering of the values in a property that contain
specific characters (e.g. same prefix)

Data cleaning: Columns

Delete/move attributes

Filtering
Renaming of Columns
Set column types
Creation of new columns using expression
Split of columns
Deletion of columns
Rearrangement of columns
Hiding of columns
Addition/merging of columns
Split records into columns

Editor Facilities
Undo/redo transformations
Display of the distinct values of a property and number
of their occurrences
Ability to reapply same range of transformations

Other Export Functions
Export macro or a C program, or a Perl program
Extraction of Entities
Export of Statistics, Table, File, Database, Visualize

14 CHAPTER 3. REQUIREMENTS

Chapter 4

Related Work

This chapter is organized as follows: Section 4.1 discusses the process of Data
Cleansing, the problems we encounter when we manage large datasets and the so-
lutions that exist. Section 4.2 describes the various data cleansing and transforma-
tion tools that exist, and Section 4.3 summarizes the describes and the placement
of Facetize in the landscape.

4.1 Data Cleansing

Data Cleansing [36] deals with detecting and removing errors, impurities and in-
consistences from data collections, such as files or databases, in order to improve
the quality and accuracy of data. Data quality problems occurs due to misspelling
during data entry, missing information or other invalid data. Organizations around
the world generate huge amount of data from their day-to-day activities for their
operations. These organizations will not survive if the data they generate remains
dirty or erroneous.

Data Warehouses [6, 21] require and provide extensive support for data clean-
ing. They load and continuously refresh huge amounts of data from a variety of
sources so the probability that some of the sources contain ”dirty data” is high.
Furthermore, data warehouses are used for decision making, so that the correct-
ness of their data is vital to avoid wrong conclusions. For instance, duplicated
or missing information will produce incorrect or misleading statistics (“garbage
in, garbage out”). Due to the wide range of possible data inconsistencies and the
sheer data volume, data cleaning is considered to be one of the biggest problems
in data warehousing.

4.1.1 Types of Data Errors

In large datasets, it is more likely to contain errors. [2] Data error is an atomic value
that is different from its given real fact and can be categorized into quantitative
or qualitative [30].

15

16 CHAPTER 4. RELATED WORK

In qualitative errors, are included:

1. Rule violations, refer to values that violate any kind of integrity con-
straints, such as not null and uniqueness constraints.

2. Pattern violations, refer to values that violate syntactic and semantic
constraints, such as misspelling, formatting and semantic data types.

In quantitative errors, are included:

1. Outliers, refer to values that deviate from the distribution of values in the
column of a table. These data values do not follow the statistical distribution
of the bulk of the data.

2. Duplicates, refer to different records that refer in the same entity. These
can have exactly the same or different values.

4.1.2 State of the Art

Available data cleaning solutions and tools [2], [28] belong to one or more of the
following four categories:

• Rule-based detection algorithms [1,7,14,17] that can be embedded into frame-
works, such as NADEEF [9, 24], where a rule can vary from a simple ”not
null” constraint to multi-attribute functional dependencies (FDs) to user-
defined functions. Using this class of tools, a user can specify a collection of
rules that clean data will obey, and the tool will find any violations.

• Pattern enforcement and transformation tools such as OpenRefine1, Data
Wrangler [23], Trifacta2, Katara [8], and DataX-Former [4]. These tools dis-
cover patterns in the data, either syntactic (e.g.,OpenRefine and Trifacta) or
semantic (e.g., Katara), and use these to detect errors (cells that do not con-
form with the patterns). They can also be used to change data representation
and expose additional patterns.

• Quantitative error detection algorithms that expose outliers, and glitches in
the data [3, 11,35,47].

• Record linkage and de-duplication algorithms for detecting duplicate data
records, such as the Data Tamer system [40]. These tools perform entity
consolidation when multiple records have data for the same entity. Conflict-
ing values for the same attribute can be found, indicating possible errors.

1http://openrefine.org/
2http://www.trifacta.com

4.2. TOOLS FOR DATA CLEANSING AND TRANSFORMATIONS 17

4.2 Tools for Data Cleansing and Transformations

There is a variety of cleansing and transformation tools in the market. In some
cases, the data cleaning tools are unable to remove completely all the anomalies and
therefore the user involvement in the data cleaning process cannot be overlooked.
We must mention, that there is no single dominant tool. Each tool needs to work
in collaboration with other tools. In this section, we will describe some of the
existing data cleansing and transformation projects.

4.2.1 DataPreparator

DataPreparator3 is a free software tool designed to assist with common tasks of
data preprocessing in data analysis and data mining. As we can see in Figure 4.1,
it supports data access from text files, relational databases and Excel workbooks.
So, it can handle large volumes of data (since data sets are not stored in the
computer memory, with the exception of Excel workbooks and result sets of some
databases where database drivers do not support data streaming).

The system provides data cleaning methods, such as character removal, text
replacement and date conversion on the data (Fig. 4.2). A user can delete or
move the selected attributes, discretize numeric attributes with equal width or
equal frequency (Fig. 4.3), scale numeric attributes with options such as Decimal,
Linear, Hyperbolic tangent, Soft-max, Z-score (Fig. 4.4) and handle missing values
(Fig. 4.5). In case of missing values, user can delete records and remove attributes
containing missing values, impute missing values and predict them from models
such as dependency tree and Naive Bayes model.

The system creates different forms of outputs and they can be statistics, ta-
bles, files, databases and visualizations. Visualization output can be for numeric
attributes such as Bar chart, Box plot, Histogram, Lag plot and many others. For
the categorical attributes, some visualizations can be with Bar chart, pie chart,
Pareto chart and Stacked chart. Also for numeric and nomimal attributes, Dat-
aPreparator creates Dependency tree (Fig. 4.6) and Parallel coordinates (Fig.
4.7).

DataPreparator is a stand alone tool, written in Java and requires Java Run-
time Environment (JRE) to be installed on the machine (JRE 1.6 or later). It
runs on Windows, Mac OS/X, and Linux operating systems.

4.2.2 Potter’s Wheel

Potter’s Wheel [37] is an interactive data cleansing system that integrates data
transformation and error detection using spreadsheet-like Interface. Users can
immediately see the effects of the performed operations in tuples that are visible
on screen. Error detections are applied automatically in the background.

3http://www.datapreparator.com/

18 CHAPTER 4. RELATED WORK

Figure 4.1: The initial window in DataPreparator.

Figure 4.2: File Input Options in DataPreparator.

4.2. TOOLS FOR DATA CLEANSING AND TRANSFORMATIONS 19

Figure 4.3: Discretization dialog contains options for discretizing numeric at-
tributes in DataPreparator.

20 CHAPTER 4. RELATED WORK

Figure 4.4: Dialog containing options for scaling of numeric attributes in Dat-
aPreparator.

4.2. TOOLS FOR DATA CLEANSING AND TRANSFORMATIONS 21

Figure 4.5: The dialog containing options for handling missing values in Dat-
aPreparator.

22 CHAPTER 4. RELATED WORK

Figure 4.6: Example dependency tree in DataPreparator. The nodes represent
variables and the links the relationships between the variables.

Figure 4.7: Example Parallel Coordinates in DataPreparator.

4.2. TOOLS FOR DATA CLEANSING AND TRANSFORMATIONS 23

It supports a set of operations, called transforms. These are i) Value Transla-
tion, ii) One-to-one Mappings of Rows and iii) Many-to-Many Mappings of Rows.
Value Translation transforms, apply a function to every value in a column. One-
to-one transforms are column operations that transform individual rows. As il-
lustrated in Figures 4.8 and 4.9, they can be used to unify data collected from
different sources. The operations that are supported in this case are the Merge
transform that concatenates values in two columns, optionally interposing a con-
stant (the delimiter) in the middle, to form a single new column. Split that splits
a column into two or more parts, by specifying character positions and regular ex-
pressions. Drop, Copy, Add transforms allow user to drop, copy or add a column.
Divide transform conditionally divides a column, sending values into one of two
new columns based on a predicate.

Many-to-Many transforms help to tackle higher-order schematic heterogeneities
where information is stored partly in data values and partly in the schema, as
shown in Figure 4.10. These transforms, include operation Fold, that converts
one row into multiple rows, folding a set of columns together into one column and
replicating the rest. Conversely, Unfold operation takes two columns, collects
rows that have the same values for all the other columns, and unfolds the two
chosen columns. Values in one column are used as column names to align the
values in the other column. Figures 4.10 and 4.11 show an example with student
grades where the subject names are demoted into the row via Format, grades are
Folded together,and then Split to separate the subject from the grade. Fold and
UnFold are adapted from the restructuring operators of SchemaSQL [25], and are
discussed in more detail in the full paper [37].

Users have the ability to undo incorrect transforms. After the user is satisfied
with the sequence of transforms, Potter’s Wheel can compile it into a transforma-
tion, and export it as either a C or Perl program, or a Potter’s Wheel macro.

Figure 4.8: Using Format, Merge and Split to clean name format differences

4.2.3 WinPure Clean

WinPure [19] is a worldwide provider of data quality solutions, is simple to use
and not only by experts. Businesses around the world use WinPure software to
improve the quality of their information.

24 CHAPTER 4. RELATED WORK

Figure 4.9: Divide-ing to separate various name formats

Figure 4.10: Fold-ing to fix higher-order variations

Figure 4.11: Unfold-ing into three columns

4.2. TOOLS FOR DATA CLEANSING AND TRANSFORMATIONS 25

It supports operations like filtering of rows, text cleaning (Fig. 4.12), update
missing values, merging duplicate groups (Fig. 4.13), deduplication (Fig. 4.14)
and exports data in different formats such as CSV, Excel and in other databases
like MySQL, SQL Server.

It is a stand alone desktop application, runs on windows and it was designed
using .NET technologies.

Figure 4.12: WinPure Clean

4.2.4 OpenRefine

OpenRefine4 is a free and open-source desktop application for cleaning and explore
large datasets that opens in the browser as a Local Webserver, so data is safe and it
doesn't get uploaded to the Google server. Data exploration is performed through
filtering and faceting exploration. OpenRefine can support several of data formats,
such as RDF, CSV, TSV, JSON, EXCEL, XML and Google Docs. It gives the
opportunity to the user to get a preview of the data before create a project for
apply data cleaning and other transformations to the data (Fig. 4.15).

User can specify how to view the data (e.g. in plain text, in tabular format).
Also, can select a facet and view in a widget the distinct values and the number
of their frequencies (Fig. 4.16). The user can then select a value from the widget
and filter rows that contain the selected value. Users can select and edit values
in each column (Fig. 4.17). Also, it supports data clustering which groups values
in each facet that have specific characteristics, such as same prefix (Fig. 4.18).
Data is always visible in each step of editing and user can change the type of each
column (e.g. from string to number type), rearrange, hide and delete them.

4https://casci.umd.edu/wp-content/uploads/2013/12/OpenRefine-tutorial-v1.5.pdf

26 CHAPTER 4. RELATED WORK

Figure 4.13: WinPure data merging

Figure 4.14: WinPure deduplication

4.2. TOOLS FOR DATA CLEANSING AND TRANSFORMATIONS 27

It supports also filling of empty cells, remove blank rows, remove duplicates
(Fig. 4.19), undo/redo transformations, cells transformations and addendum of
columns based on other columns with expressions that a user can type (Fig. 4.20).

Finally, the user can export the transformed data in the supported by the
system file formats, or export the whole project in zip format (Fig. 4.21).

Figure 4.15: Create a new project in OpenRefine

4.2.5 Karma

Karma [18] is an open source, available tool to model open data5- and it was started
by the University of Southern California. It lets the user to publish the generated
model using different formats: RDF, R2RML or JSON. Apart from this, Karma
allows the user to define some predefined ontologies and to get a list of suggested
semantic types for a given column header. Karma also learns through experience.
If the user selects a specific semantic type for a column, then that semantic type
would be suggested when user loads data that looks very similar with previous
modeled information. Karma has the following options for the columns:

• Set Semantic Type - allows the user to select a vocabulary and a property
for that specific node column, other than the ones suggested by default by
the application (Fig. 4.22).

• Add Column - allows the user to add a new column to the existing table

• Rename - rename the specific column header

5Open Data Handbook: http://opendatahandbook.org/guide/en/what-is-open-data

28 CHAPTER 4. RELATED WORK

Figure 4.16: Distinct values of a facet in OpenRefine

Figure 4.17: Edit values in OpenRefine

4.2. TOOLS FOR DATA CLEANSING AND TRANSFORMATIONS 29

Figure 4.18: Data clustering in OpenRefine

Figure 4.19: Remove duplicates in OpenRefine

30 CHAPTER 4. RELATED WORK

Figure 4.20: Add a new column in OpenRefine

Figure 4.21: Export data in OpenRefine

4.2. TOOLS FOR DATA CLEANSING AND TRANSFORMATIONS 31

• Split Values - using a regex or a list of characters create a new column/or
update an existing one with values from one column, each value splitted by
that

• Add Row - add a new row at the end of the table

• Extract Entities - gives the user the possibility to extract data, places or
persons from one of the columns

The person that would want to modify the data from a column must provide a
piece of Python code that would allow him to modify the values from that column
(split, merge columns, transform the data).

One of the problems with open data, is that it needs to be cleaned. When
people that are responsible with inserting data might be in a hurry, some of the
values from the table might be written wrong; like ”Bucharest” might be written
”Buchraest” (the letters ’a’ and ’r’ are transposed) or ”Paris” and ”Pari” (one
letter is missing). For correcting this type of possible errors, Karma has a feature
that indicates which string is close related to a reference one, using string similarity
algorithms. The strings that are used for generating the suggestions, are the values
from the same column that contains the value that would get a recommendation.
The string similarity algorithms implemented in the Karma Integration Tool are:
(a) Levenshtein [26], (b) Damerau-Levenshtein [10], (c) Jaro Jaro [22], (d) Jaro-
Winkler [31], (e) Cosine Similarity [20], (f) Jaccard [16]. Each one of them is good
to use depending on what data they are run on (Fig. 4.23).

Figure 4.22: Karma set semantic type

32 CHAPTER 4. RELATED WORK

Figure 4.23: Karma string similarity algorithms

4.3 Executive Summary

To sum up, the existence of anomalies in real-world data motivates the development
and application of data cleansing methods. Existing data cleansing approaches
mostly focus on the transformation of data, the elimination of duplicates, syntax
and lexical errors detection. Moreover, the current approaches offer methods for
create and edit attributes using a number of functions. Also, exist methods for
hide, delete and reorder attributes. Users can see the transformations in each
step of editing and export the data after applying transformations in different file
formats, such as Excel, Csv, RDF and others.

OpenRefine data cleansing and transformation tool, supports operations for
specifying the order of the facets, defining derived attributes and editing existing
ones. Also, OpenRefine supports the notion of project, where one can open, edit
and export the datasets in different file formats.

In addition to the above, with Facetize user can create hierarchies of values
and numeric intervals. Also, user can execute SPARQL queries to retrieve the data
from a source, delete rows that have specific values using functions and reapply
the same range of transformations.

Chapter 5

The Target Data Structure

We need a kind of “canonical data structure”, a structure appropriate for repre-
senting the contents of the input CSV file as well as the outcome of the various
transformations. This canonical data structure is essentially a multidimensional
structure where each dimension can have hierarchically organized values. This
structure can be loaded to Hippalus (if expressed in RDF using a particular RDF
Schema) and thus it is appropriate for enabling PFS over the transformed dataset.

Below we define formally this structure, for being able to define formally the
defined transformation. We shall refer to this structure with the term materialized
faceted taxonomy (as it was introduced in [46]).

5.1 Materialized Faceted Taxonomy

A terminology T is any finite set of terms where the notion of term is general
and able to capture both categorical and numerical values. A taxonomy is a pair
(T ,≤) where T is a terminology, and ≤ a subsumption relation over T (whose
semantics are that of the partial orders: reflexive, antisymmetric and transitive).
If ≤= ∅ then the taxonomy is flat, i.e. just a terminology.

A faceted taxonomy with k facets is a set {F1, ..., Fk} where each Fi is a pair
namei, (T i,≤i) where namei is a string (the name of the facet) and (T i,≤i) is the
taxonomy of the values that correspond to this facet (note that the terminologies
of the facets are distinct, and can be separated by prefixing each term with the
name of the facet).

Let Obj be any denumerable set of objects (corresponding to the real world
objects at hand). An interpretation of a terminology T is any function I : T → 2Obj .
If F is a faceted taxonomy and I is an interpretation of T =

⋃
i=1,k T i then a

materialized faceted taxonomy is this pair (F ,I). The model of (T ,≤) induced
by I is denoted by Ī, and is defined by considering the semantics, specifically it
is defined as Ī(t) = ∪{I(t′) | t′ ≤ t}. Consequently, this is how the model of a
materialized ontology is defined, and thus how exploration and query answering
should be done (over the model of the materialized faceted taxonomy).

33

34 CHAPTER 5. THE TARGET DATA STRUCTURE

The description of an object o with respect to an interpretation I is defined
as DI(o) = { t ∈ T | o ∈ I(t)}. Analogously, The description of an object o with
respect to Ī is defined as DĪ(o) ≡ D̄I(o) = { t ∈ T | o ∈ Ī(t)} = ∪t∈DI(o)({t} ∪
B+(t)).

All the above notions and notations are also shown in the upper part of Table
5.1.

5.2 A CSV file as a Materialized Faceted Taxonomy

A classical CSV can be seen as a flat materialized ontology (F ,I). Specifically each
row corresponds to the description of one object so the rows of the file specify the
set Obj. Each object is described by attributes values of the corresponding line.
This means that each column heading Ai of the CSV file corresponds to a facet Fi

having as name the name of Ai whose distinct values, i.e. all values that occur in
that column in the file, constitute the terminology Ti. In other words each row of
the CSV file represents the description DI(o) of an object o.

Consequently we can say that the contents of a classical CSV file can be cap-
tured with the notion of materialized flat faceted taxonomy. The same holds for
the answers of SPARQL SELECT queries.

5.3 FS Interaction

A materialized faceted taxonomy can be explored by end users through faceted
search (and PFS). The lower part of Table 5.1 defines formally the interaction of
FDT, i.e. the notion of restriction and zoom-in/out points. However our objective
here is not to describe the interaction. Details are given in the FDT book [38],
PFS [45] and an extension for RDF datasets is described in [44].

In brief, one area in the left bar is allocated for each facet and the user can
expand and see the terms of the desired facet each accompanied by a natural
number signifying how many objects (of the current state) have this value. The
objects of the current state (i.e. the focus) are shown in the main area of the
window. By clicking on such facet term, the objects of the focus are filtered to
those that have that value, and the applicable facets and their terms and counts
are recomputed. FS is essentially a session-based method where the user through
simple clicks can form complex filterings and during the interaction he is getting
an overview of the information space. Apart from clicks (which correspond to hard
constraints) the user can right click on a term and enact a preference action, i.e.
an action that ranks the focus (the objects of the current state).

5.3. FS INTERACTION 35

MATERIALIZED FACETED TAXONOMIES

Name Notation Definition

terminology T a set of terms (can capture cat-
egorical/numeric values)

subsumption ≤ a partial order (reflexive, tran-
sitive and antisymmetric)

taxonomy (T ,≤) T is a terminology, ≤ a sub-
sumption relation over T

broaders of t B+(t) { t′ | t < t′}
narrowers of t N+(t) { t′ | t′ < t}
direct broaders of
t

B(t) minimal<(B+(t))

direct narr. of t N(t) maximal<(N+(t))

Top element >i >i = maximal≤(T i)

faceted taxonomy F= {F1, ..., Fk} Fi = (T i,≤i), for i = 1, ..., k
and all T i are disjoint

object domain Obj any denumerable set of objects

interpretation of
T

I any function I : T → 2Obj

materialized
faceted taxonomy

(F , I) F is a faceted taxonomy
{F1, ..., Fk} and I is an inter-
pretation of T =

⋃
i=1,k T i

ordering of two in-
terpretations

I v I′ I(t) ⊆ I′(t) for each t ∈ T

model of (T ,≤)
induced by I

Ī Ī(t) = ∪{I(t′) | t′ ≤ t}

Descr. of o wrt I DI(o) DI(o) = { t ∈ T | o ∈ I(t)}
Descr. of o wrt Ī DĪ(o) ≡ D̄I(o) { t ∈ T | o ∈ Ī(t)} =

∪t∈DI (o)({t} ∪B+(t))

FDT-INTERACTION: BASIC NOTIONS AND NOTATIONS

focus ctx any subset of T such that ctx =
minimal(ctx)

projection on f. i ctxi ctx ∩ Ti

Kinds of zoom points w.r.t. a facet i while being at ctx

zoom points AZi(ctx) { t ∈ Ti | Ī(ctx) ∩ Ī(t) 6= ∅}
zoom-in points Z+

i (ctx) AZi(ctx) ∩N+(ctxi)

immediate zoom-
in points

Zi(ctx) maximal(Z+
i (ctx)) =

AZi(ctx) ∩N(ctxi)

Restriction over an object set A ⊆ Obj

reduced interpre-
tation

IA IA(t) = I(t) ∩A

reduced terminol-
ogy

TA { t ∈ T | ĪA(t) 6= ∅} =
{ t ∈ T | Ī(t) ∩A 6= ∅} =
∪o∈AB+(DI(o))

Table 5.1: Faceted Information Sources and FDT Interaction

36 CHAPTER 5. THE TARGET DATA STRUCTURE

Chapter 6

The Supported
Transformations

Let (F ,I) be the materialized faceted (flat) taxonomy defined by a CSV file. The
objective of the transformation is to produce a new one that is more convenient
for exploration. The transformations are those that the presentation designer has
issued.

6.1 Visibility

A user can specify which facets would be visible. Nevertheless, the values for
these attributes in each object’s card are visible, but they will not appear in the
Hippalus’ facet menu. For example in Figure 6.1, property Rooms has been defined
hidden and shows the value of property Rooms in Arethusa Hotel ’s card, but this
property is not appeared in facets’ menu.

Figure 6.1: Hidden property Rooms

37

38 CHAPTER 6. THE SUPPORTED TRANSFORMATIONS

6.2 Facet Type

A user can specify the type of each facet Fi of a faceted taxonomy F . The sup-
ported types are integer, float, string, boolean and identifier. If the type of
facet is defined identifier, then all values in that facet should be distinct, i.e.
no value should appear more than once and the entities will take as names their
corresponding values in this facet. In our scenario described in Chapter 1, prop-
erty Name has been defined as identifier and Figure 1.1(b) shows the objects
with names their corresponding values in this facet. To set the type of this facet
as identifier, we left click on facet Name and select options Facet Type... and
Identifier from menus (Fig. 6.2). Moreover, a user can specify that a particular
pair of facets contains geographical coordinates. In such cases the user can mark
these facets as Longitude and Latitude. This tagging allows systems (like [27])
to display the objects also in a map. For example, in our mentioned scenario, to
set property Longitude as contains geographic information for longitude, we left
click on facet Longitude and select options Specify Geographic Information... and
Longitude from menus (Fig. 6.3). Respectively, to set property Latitude as con-
tains geographic information for latitude, we left click on facet Latitude and select
options Specify Geographic Information... and Latitude from menus (Fig. 6.4).

Figure 6.2: Specify property Name as type Identifier.

6.2. FACET TYPE 39

Figure 6.3: Specify property Longitude as contains geographic information for
longitude.

Figure 6.4: Specify property Latitude as contains geographic information for lati-
tude.

40 CHAPTER 6. THE SUPPORTED TRANSFORMATIONS

6.3 Ordering of Facets

The objective is to define a linear order >facets over the set of facets F . This
corresponds to the order of appearance of facets in the GUI. In general facet
ranking can be done using various methods (e.g. see [44] for a survey). Our
objective here is to enable the user to define the desired order.

6.4 Defining Hierarchies

Let (T,≤) be a taxonomy. In many cases ≤= ∅. The objective is to organize the
values in T hierarchically to avoid cluttering the GUI in case of big terminologies,
and to aid the thinning process of faceted search.

The output is (T ∪ Tn,≤′) where T are the existing terms (and leaves of the
taxonomy) and Tn is the set of the new terms, which are defined as broaders
of the terms in T . Below we distinguish taxonomies over categorical value and
taxonomies over numerical values.

6.4.1 Hierarchies of Categorical Values

The user defines Tn manually. For each term t in T , the user can specify an-
other term (a new one or one from the existing terminology T) as parent of t.
For example, consider that a facet with name Country contains the distinct val-
ues: Heraklion, Patra, Chania, Crete. The user can set as parent of the terms
Heraklion and Chania, the existing term Crete; he can also define a new term
islands and set it parent of Crete.

6.4.2 Hierarchies of Numerical Values: Intervals

The user can define intervals that group the values of a facet. To define K intervals,
the user can define K new terms (Tn) each corresponding to one interval. Each
one can have a name, and its two bounds which can be closed or open. This
feature is very useful for defining price intervals, and intervals of measurements in
general. For example, from our running example in the introductory chapter, if
the user wants to create an interval hierarchy in facet Price with values from 22
to 69, we left click on this facet and select option Create New Interval Group from
menu (Fig. 6.5). Then, a (bootstrap.js) modal dialogue appears and we specify
low value 22 and high value 69 for this interval (Fig. 6.6).

6.5 Derived Facets

The user can define new facets using various functions that the system pro-
vides. The values of new derived facets can be based on values of existing facets.
For example, consider a new facet Fn, whose terminology is defined as: Tn =

6.6. LINEAR, LOGARITHMIC AND USER DEFINED INTERVALS 41

Figure 6.5: Specify interval hierarchy in facet Price.

concat("math", facetAM). In this case, facetAM is an existing facet that con-
tains student identifier numbers and concat is a system function that joins the
values that receives as parameters in one string value. Then, the new terminology
Tn will contain values of the form:
mathstudentId1,...,mathstudentIdk,
where studentId1,...,studentIdk are the distinct values of facetAM .

6.6 Linear, Logarithmic and User Defined Intervals

Supposing a facet contains number values, then a user can specify linear, loga-
rithmic or user defined intervals. In case of linear and logarithmic intervals, the
user can specify via Facetize the number of uniformly distributed intervals that
he wants to group the values of the facet and Hippalus will create and show them
in facets’ menu. For example, consider a facet with number values: 8000, 9000,
12000, 17000, 19000, 22190. If a user specifies 3 logarithmic divisions via our sys-
tem, then they will be created logarithmic intervals: [7990, 11240), [11240, 15800),
[15800, 22190] in Hippalus. In case of user defined intervals, the user can specify
via Facetize the bounds of the intervals, which can be closed or open, as well as
a name for the interval. For example, consider a facet with number values: 1, 2,
3, 4, 5, 6. If a user specify a user defined interval with name “Low values”, that

42 CHAPTER 6. THE SUPPORTED TRANSFORMATIONS

Figure 6.6: Modal for create interval hierarchy.

6.7. SYNOPSIS OF SUPPORTED DATA TRANSFORMATIONS 43

has low value: 3 and high value: 6, with right-open and left-closed bounds, then
it will be created interval “Low values” in Hippalus that contains values 3, 4, 5.

6.7 Synopsis of Supported Data Transformations

To sum up, with Facetize users can delete specific rows from a dataset, insert
and edit a row. Also, they can create hierarchies of values, specify a type for a
facet or geographic coordinates for a pair of facets. It supports operations for edit
distinct values of a facet, hide, reorder and delete a facet. Also they can create new
facets using functions for define expressions. Moreover, users can specify linear,
logarithmic and user defined intervals for facets that contain numerical values.

44 CHAPTER 6. THE SUPPORTED TRANSFORMATIONS

Chapter 7

The System Facetize

Here we discuss the implementation of Facetize (in §7.1), the supported transfor-
mations (in §7.2), the notion of project (in §7.3), an indicative interaction example
(in §7.4), and then (in §7.5) how it tackles the error correction requirements.

7.1 Implementation

Facetize is a Web Application, based on the architecture of client-server. Fig-
ure 7.1, shows the implementation architecture of our system. The presentation
layer (front end) is implemented using HTML, CSS for rendering elements ap-
propriately on screen, and JavaScript libraries such as Bootstrap.js to create
responsive content. The data access layer (back end), is implemented using Java
Servlets technologies and Jena Semantic Web framework1. To run the editor the
user should have installed at his computer Java Runtime Environment (JRE) and
a Java Servlet Container. Users can run from command line the WAR file of
Facetize (e.g. java -jar name of Java Servlet Container.jar Facetize.war). Fi-
nally, it can be accessed by loading http://localhost:8080 in browser.

7.2 Supported Transformations

In brief, Facetize supports all transformation requirements described in §3.1. As
regard hierarchies, the user is able to move values in existing hierarchies, and add
intermediate terms. In case of string values, the user is able to use functions to
define expressions for creating groups of values with same prefix and values that
start with the same range of letters for aiding the exploration. For numerical
facets, the specification of intervals is supported and the user can define linear
intervals, logarithmic intervals, and intervals with specific bounds.

1http://jena.apache.org/

45

46 CHAPTER 7. THE SYSTEM FACETIZE

Figure 7.1: Image with the implementation architecture of system Facetize

7.3 The Notion of Project

Since Facetize can be considered as an authoring environment for producing
explorable datasets, Facetize supports the notion of project, allowing the user
to gradually configure the desired presentation and also to update (refresh) the
underlying dataset without losing the transformations that they have been defined.
In brief it supports all requirements described in §3.2.

Each project has a name, an input dataset and a configuration of the transfor-
mations that should be applied for producing an output dataset that is suitable for
exploration by Hippalus. The structure of the project is described next. In brief,
Facetize supports three types of project: (a) Project with Single File Dataset,
(b) Project with Multiple Files, (c) Project with SPARQL Query.

7.3.1 Project with Single File Dataset

The dataset files that this type of project supports are TSV, CSV and JSON.
Figure 7.2, shows a CSV dataset file that contains information for 6 entities, 10
properties and an internal hierarchy. More specifically, the first row in a CSV
or TSV dataset file is the header row. Each column in this row must contain a
Property name (the name of the corresponding facet).

Hierarchies can be specified (a) internally, (b) externally, or (c) by both meth-
ods. According to method (a), the user can specify the complete path from the
instance to its root inside dataset file, e.g. Suzuki/Japanese/Asian, (Figure 7.2).
According to method (b), the hierarchy is specified through a configuration file
that contains hierarchical information about some or all the values of the tabular
data file. Figure 7.3 shows a plain text file that contains two external hierarchies.
Specifically, each line contains hierarchical information about one (non literal)
value. The syntax of a single line is: name + path from the specific value to the

7.3. THE NOTION OF PROJECT 47

root of the hierarchy separated with slashes (/), e.g. Mazda/Japanese/Asian/-
Manufacturer, where Manufacturer is the name of the facet that the mentioned
hierarchy belongs. The order of rows is not important and the import of a con-
figuration file in each project is optional, since the user can create the desired
hierarchies though the editor.

Figure 7.2: CSV dataset file with internal hierarchies

Figure 7.3: Plain text file with external defined hierarchies

7.3.2 Project with Multiple Files

Facetize supports input from multiple CSV or TSV files, located at a specified
folder. The files that such project can contain are:

1. Object Id File

The object id file is specified explicitly by the user and is the one that holds
all the ids of the objects of this project. They are actually the names of
the entities. It is a CSV/TSV file, with a single column. The header row
provides a human meaningful name, e.g. Scientific Name, Product No, etc,
which is skipped by the translator, because Hippalus sees only unique id
values. It does not need to know what these ids stand for.

2. Dimension (Property) Files

A dimension file contains information about a single property. It is a good
practice that the file name is the same with the property name, e.g. length.csv
for the length property, etc. These files have 2 columns: the first is for the
object id and it is the column of object id file that mentioned above and the
second for the value that the specified entity has for this property. The hier-
archies can be straightforwardly represented. We just have to put the child
at the first column and its parent at the second column. The hierarchies
can be expressed anywhere in the file (at the beginning, end, or mixed). The
translator will detect that a property is hierarchical when a first column item

48 CHAPTER 7. THE SYSTEM FACETIZE

is not a valid object id, so the current property is hierarchical. For example,
in line 23, in Figure 7.5, is defined an hierarchy.

This structure is convenient for enriching the dataset with more dimensions.
For example, Figure 7.4 shows an object id file that contains distinct names for fish
species, and Figure 7.5 shows the content of a property file for dimension Country.

Figure 7.4: Object Id file

7.3. THE NOTION OF PROJECT 49

Figure 7.5: CSV property file

50 CHAPTER 7. THE SYSTEM FACETIZE

7.3.3 Project with SPARQL Query

For exploiting the wealth of Linked Data and the available SPARQL endpoints,
Facetize allows the user to specify the address of a SPARQL endpoint and the
SPARQL SELECT query to be sent. For example a query with select clause of the
form SELECT ?Speed ?Price ?Weight will lead the tool to create 3 properties:
Speed, Price and Weight. Moreover the user can save queries and endpoints in
the favourites list. Then, the user can re-run a query or delete it from the list.
Also note that if the SPARQL endpoint supports SPARQL-LD [12,13], then that
implies that Facetize projects can be defined by extracting information from RDF
dumps and HTML pages with RDFa. For example, the query in Figure 7.6 returns
all co-authors together with their publications.

1 SELECT DISTINCT ?authorName ?paper WHERE {

2 SERVICE <http://users.ics.forth.gr/~fafalios/> {

3 ?p <http://purl.org/dc/terms/creator> ?author

4 FILTER(?author != <http://dblp.l3s.de/d2r/resource/authors/Pavlos_Fafalios>) }

5 SERVICE ?author {

6 ?author <http://xmlns.com/foaf/0.1/name> ?authorName .

7 ?paper <http://purl.org/dc/elements/1.1/creator> ?author.

8 }

9 }

Figure 7.6: Example of a SPARQL query that reads and queries RDF data em-
bedded in a Web page (as RDFa) at query execution time.

7.4 Interaction Example

Here we sketch a scenario for demonstrating some parts of the functionality

7.4.1 Defining Hierachies

Here we sketch a scenario demonstrating how a user can organize the hierarchically
the values of a facet. Figure 7.7.a shows the list of facets of the running exam-
ple described in the introductory chapter. Notice that facet Location contains
6 distinct values. By left clicking on the term Chania, and selecting the option
Add Parent from the menu, a (bootstrap.js) modal dialogue appears with a text
field for adding the parent value (see Fig. 7.7.b). If for example the user inserts
the value Crete, the hierarchy Chania/Crete will be created in facet Location (as
shown in Fig. 7.7.c).

7.4. INTERACTION EXAMPLE 51

(a)

(b)

(c)

Figure 7.7: (a) Click on a term and open menu, (b) Set parent Crete for term
Chania in the hierarchy, (c) Hierarchy Chania/Crete has been created

52 CHAPTER 7. THE SYSTEM FACETIZE

7.4.2 Refreshing the Dataset of an existing Project

Every time the user applies a transformation to the dataset of a Facetize project,
that transformation is saved in JSON format in a file in the project’s folder. For
each transformation, its type, as well as related information, are saved, for enabling
reapplying the transformation in the future.

For example, for the transformations of the introductory chapter: i) Properties
Longitude and Latitude, must be marked as properties that contain geographic
information for longitude and latitude respectively, and ii) The property Rooms
should be hidden or deleted from facet's list (if we choice to hide it), the log file
keeps the following information:

{"facetName": "Longitude",

"geoInfo": "Longitude",

"transformationType": "geoInfo"},

{"facetName": "Latitude",

"geoInfo": "Latitude",

"transformationType": "geoInfo"},

{"facetName": "Rooms",

"visibility": "hidden",

"transformationType": "facet-visibility"

}

The actions that are not logged are the following: deletions, additions and edits
of particular rows, edits of values, deletions and additions of facets, additions of
new dataset files and rename of a facet. The user can re-apply one or several trans-
formations, and delete transformations from the history. In case a transformation
cannot be applied, the user is notified with a message.

To refresh the dataset of an existing project with a new one, the user has to
right click on the Dataset File folder of the project, on the left sidebar with the
projects and select option Add Dataset File (Fig. 7.8). Then he has to browse on
the disc and select the new file (Fig. 7.9). If the project contains data transforma-
tions from previous dataset, the system will ask the user if he wants to apply the
same range of transformations in the new dataset with a dialog box (Fig. 7.10). If
the user selects Apply All in the dialog box, then the system will inform the user
with a message which of the transformations were applied successfully and which
not (Fig. 7.11).

7.5 Errors

Facetize supports a variety of transformation requirements, as mentioned in Sec-
tion 3.1. In terms of the data error types that were mentioned in Section 4.1,

7.5. ERRORS 53

Figure 7.8: Add new dataset file.

Figure 7.9: Select file from disc.

Figure 7.10: Apply transformations dialog box.

54 CHAPTER 7. THE SYSTEM FACETIZE

Figure 7.11: Message for applied transformations.

Facetize assists the user to detect and remove them Specifically, in case of Rule,
Pattern violations and Outliers errors in the dataset, the user can edit the val-
ues that cause the inconsistencies and replace them with other values. In case
of Duplicates, the user can delete or edit duplicate rows. For example, consider
from our running example in the introductory chapter that a user wants to replace
value Iraklio in property Location with value Heraklion (Fig.7.12). By left clicking
on the term Iraklio, and select the option Edit Value from the menu (Fig.7.13),
a (bootstrap.js) modal dialogue appears with a text field for replace it with the
value Heraklion (see Fig. 7.14, 7.15).

7.5. ERRORS 55

Figure 7.12: Facet Location with value Iraklio.

56 CHAPTER 7. THE SYSTEM FACETIZE

Figure 7.13: Click option Edit Value from menu.

Figure 7.14: Replace with value Heraklion.

7.5. ERRORS 57

Figure 7.15: Facet Location without value Iraklio.

58 CHAPTER 7. THE SYSTEM FACETIZE

Chapter 8

Evaluation

Section 8.1 compares the functionality of Facetize with the functionality of related
systems. Section 8.2 discusses the scalability and efficiency of Facetize. Section
8.3 reports the results of an evaluation with users. Finally, Section 8.4 discusses
issues related to the improvements of Facetize in the future.

8.1 Comparing with the Functionality of Related Sys-
tems

Table 8.2, shows the features of each data cleansing system that was mentioned
in Section 4.2. We observe that one distinctive feature of Facetize is that it
supports the creation of hierarchies and numeric intervals and these features are
crucial for managing the complexity of large datasets, and producing datasets that
can be easily explored. Moreover, Facetize can fetch data directly from SPARQL
endpoints, making it appropriate for dynamic datasets. Finally, users have the
ability to reapply the same range of transformations to an existing project and
this is very convenient in case they want to refresh the dataset of a project (with
a new version of the dataset) and would like to apply the same transformations.

8.1.1 Comparison using the Running Example

We tried to carry out scenario of the introductory section by ourselves, without
the involvement of any other users, using the tools mentioned in Table 8.2, i.e.
DataPreparator, Potters Wheel, WinPure Clean, Karma, OpenRefine, Facetize.
We wanted to check what transformations were feasible to perform and how much
time it took to make them. Of course none of these tools (apart from Facetize)
can produce an RDF file that is directly loaded to Hippalus, however we wanted
to test the rest aspects of the scenario.

The results are shown in Table 8.1, where we can see which of the 10 require-
ments (listed in the introductory section) were possible to perform with each tool
how much time it took us to carry out them. As we can see, with DataPreparator

59

60 CHAPTER 8. EVALUATION

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Time

WinPure Clean -
Data Prepara-
tor

X X 1 m

Potters Wheel X X 2 m
Karma X X X 3 m
Open - Refine X X X X X X 6 m
Facetize X X X X X X X X X X 7 m

Table 8.1: Table with requirements that were done by each tool.

we managed to perform requirements 5, 6 in 1 (one) minute, with Potters Wheel
we managed to perform requirements 6, 7 in 2 (two) minutes, with WinPure Clean
we did not manage to satisfy any of the requirements, with Karma we managed
to perform requirements 2, 5, 7 in 3 (three) minutes, and finally, with OpenRefine
we managed to perform requirements 1, 2, 5, 6, 7, 10 in 6 (six) minutes, i.e. it is
the tool that covered most of the requirements. With Facetize we managed to
perform all requirements in 7 (seven) minutes.

8.2 Scalability and Efficiency

Here, we discuss issues related to the efficiency and scalability of Facetize. The
measurements that are reported below and in Table 8.3, were performed using a
PC with CPU of a base clock speed of 2.30 GHz and 3,00 GB RAM. The loading
of a project with a dataset file of 720 rows and 7 columns takes around 1 second
(1,158 ms). In Table 8.3, we see the measurements of time that it took to load
projects with datasets of different number of rows that contain 37 columns. As we
can see, the more rows a dataset file contains, the more time Facetize needs to
load it and execute different operations. This happens because at the beginning,
Facetize has to read the file, to create the structures with properties, entities
and hierarchies. Then, if no error occurs, it scans the structures to create the
table and list with facets in the Data and Facets tab of Facetize project. Just
indicatively, the loading of a dataset file with 10,000 of rows and 18 columns takes
much more time (specifically 84,005 ms), due to the time required to parse the
file and create the internal structure that is required. In case there are more
rows in the dataset, the error: ”Uncaught RangeError: Maximum call stack size
exceeded...” is be thrown in browser from jQuery1 library when tries to create
the table with the data. This is caused due to many calls to a function that is
responsible for rendering the rows in the table with the checkboxes. The times
this function will be called is analogous to the number of rows. A possible solution
for this problem in the future, would be to create the table in server-side or to use
another javascript library for data table creation.

The rest operations are quite fast. For editing distinct values, the system scans

1https://jquery.com/

8.2. SCALABILITY AND EFFICIENCY 61

Table 8.2: Features of data cleansing systems

Category Feature

D
a
ta

P
re

p
a
ra

-
to

r

P
o
tt

e
rs

W
h

e
e
l

W
in

P
u

re
C

le
a
n

K
a
rm

a

O
p

e
n

R
e
fi

n
e

F
a
c
e
ti

z
e

Import/Export

Import/Export text files, EXCEL X X X X
Import/Export Data from databases X X
Import/Export RDF files X X X
Export R2RML/JSON files X
Execute SPARQL queries to retreive data from
a source

X

Data Visualization Ability to view data in plain text as well as in
tabular format

X

Data cleaning: Rows

Deletion of rows X X
Removal of duplicate rows X X
Addition of row X X X
Removal of empty rows X X
Deletion of records containing missing values X X

Data cleaning: Values

Character removal, text replacement, date con-
version

X

Value editing X X X
Impute missing values X X X
Creation of value hierarchies X
Creation of intervals for arithmetic values X
Correction of bad values using string similarity
metrics

X

Clustering of the values in a property that con-
tain specific characters (e.g. same prefix)

X X

Data cleaning: Columns

Delete/move attributes X X
Filtering X X X
Renaming of Columns X X X
Set column types X X X
Creation of new columns using expression X X
Split of columns X X
Deletion of columns X X X
Rearrangement of columns X X
Hiding of columns X X
Addition/merging of columns X X
Split records into columns X X

Editor Facilities
Undo/redo transformations X X X
Display of the distinct values of a property and
number of their occurrences

X

Ability to reapply same range of transformations X

Other Export Functions
Export macro or a C program, or a Perl program X
Extraction of Entities X
Export of Statistics, Table, File, Database, Vi-
sualize

X

62 CHAPTER 8. EVALUATION

the structure with the properties to find out the column that contains the value
to edit and then, it read all entities for replacing the delected. Finally, it creates
again the facets’ list. In the scenario of Chapter 1, the time it takes to replace the
value Iraklio with value Heraklion is 137 ms. The operations for deleting, creating,
and moving items in an existing hierarchy, require to scan all hierarchies that exist
in a project. The required time is analogous to the number of hierarchies. In our
scenario, the time it takes to create the hierarchy Heraklion/Crete is 19 ms.

Rows Columns Time

1,000 37 12,268 ms
2,000 37 21,154 ms
3,000 37 29,480 ms
4,000 37 35,938 ms
5,000 37 55,594 ms
6,000 37 75,476 ms
7,000 37 80,665 ms
8,000 37 82,004 ms
9,000 37 87,543 ms
10,000 37 90,369 ms

Table 8.3: Table with measurements of time to load projects with datasets of
different number of rows and 37 columns.

8.3 Task-based Evaluation with Users

We conducted a task-based evaluation with users with the following objectives:
(a) to get general and specific feedback from users, (b) to test the usability of
Facetize. The second objective refers to the effectiveness and the overall satis-
faction of the users while interacting with the system. More specifically, we need
to test: i) how fast a user who has never used the system before, can accomplish
basic tasks (Ease of learning), ii) how often users make errors while using the
system, how serious the errors are, and how users recover from the errors (Error
frequency and severity), iii) to what extend the users were satisfied by this ap-
plication. Finally we want to collect comments and feedback for improving the
approach and the system in the future (Subjective satisfaction).

For the purposes of evaluation, we used the scenario described in Chapter 1
with the dataset of hotels of Figure 1.1(a). We prepared a simple text tutorial
of 45 slides, a questionnaire and a file with the description of the aforementioned
scenario. The tutorial is available in the Web2. We invited by email various
persons to participate in the evaluation voluntarily. The users were asked to carry
out the tasks and to fill the questionnaire. It was stated to them clearly, that they
should not rush up. The participation to this evaluation was optional. Twenty
persons (20), eventually participated. The number was sufficient for our purposes,
since according to [15] 20 evaluators are enough for getting more than 95% of

2http://ophelia.ics.forth.gr/svn/Thesis/KokolakiThesis/2_Thesis/tutorial.pdf.

8.3. TASK-BASED EVALUATION WITH USERS 63

the usability problems of a user interface. In numbers, the participants were 11
(55%) female and 9 (45%) male, with ages ranging from 18 to 64 years. As regards
occupation and skills, users have studied Computer Science. In detail, 5 (25%)
were undergraduate students, 12 (60%) of them postgraduate students and 3 (15%)
computer engineers and researchers.

8.3.1 Questionnaire

We used a questionnaire that users had to fill it in, and then send it back to us by
email. The questionnaire is shown below. Moreover, after each question, we show
the results of the survey in the form of percentages written in bold.

Questions:

1) How many mistakes did you make ?

� No mistake (20%)

� 1-3 mistakes (45%)

� 3-6 mistakes (15%)

� 6-9 mistakes (5%)

� More than 9 mistakes (15%)

2) How much time you spent for carrying out the task?

� 6-7 minutes (0%)

� 7-10 minutes (20%)

� 10-15 minutes (25%)

� 15-20 minutes (45%)

� More than 20 minutes (10%)

3) Have you ever used data transforming systems like Facetize?

� Yes, I have used systems like Facetize. (25%)

� No, I have not used any system like Facetize. (75%)

4) What was the final outcome of the scenario?

� I successfully completed the entire scenario, and the data are displayed
exactly as it was requested. (70%)

� I did the whole script, except for some requirements that i did not
perform successfully and did not receive all the correct results from
Hippalus. List the numbers (in the order in which they appear) of the
requirements you did not successfully execute. (20%)

64 CHAPTER 8. EVALUATION

� I quitted the task in the requirement with number...... (fill in the num-
ber of requirement you were trying to perform or whatever you did).
(10%)

5) How would you rate Facetize as a data transformation system?

� Very Useful (40%)

� Useful (60%)

� Little Useful (0%)

� Not Useful (0%)

6) Your feedback is important. Please use the textbox below for reporting
problems that you encountered, other comments, or suggestions for future
improvements (e.g. usability problems, etc). (textbox)

7) Question for participant’s sex and age.

8.3.2 Results of the Evaluation

As regards the final outcome of the scenario, the results are satisfactory, since
14 (70%) users managed to complete the task successfully, 4 (20%) executed the
scenario, except from some requirements that they probably did not perform suc-
cessfully, and only 2 (10%) quitted the task. For those users who did not get the
right results, or quitted the process, they did not understand the system and used
it wrongly. As regards the overall rating, 12 (60%) users rated the system Useful,
while (40%) Very Useful. Hence, all participants (100%) were positive.

Plots (a)-(d) of Figure 8.1 and Figure 8.2 provide additional information for
further analyzing the results. In particular, from plot (a) Dedicated time-Success
percentage, we can see that users that spent 10-15 minutes were the most success-
ful. Those who spent more than 20 minutes were not very successful; probably they
followed a wrong path or they had difficulties with the system. In contrast, those
who spend 7-10 and 15-20 minutes had 20% success. From plot (b) Errors-Success
percentage, we can see that the users who made 1-3 errors were the most success-
ful; 35% success. Moreover, those who made no error had 20% success, 3-6 errors
had 10% success and those who made more than 9 errors had 5% success. From
plot (c) Categories-Success percentage, we can see that postgraduate students had
40% success, undergraduate students had 25% success and ICS employees had 5%
success. From plot (d) Age-Success percentage, we can see that users from 25 to
34 years old achieved the highest success percentage (65%).

Users stated useful suggestions and comments for improving the usability of
our system in the future. For example, many stated that had difficulties to define
an expression for create a new facet and it would be useful to exist autocomplete
when the user type a name of a facet or a function. Moreover, they pointed out
that it would be useful to exist the ability to select many values at the same time,
for add them in the same hierarchy when create one. Other suggestions are the

8.4. POSSIBLE IMPROVEMENTS 65

7-10 10-15 15-20 > 20
0

10

20

30

40

20

30

20

00

10

5 5

0

5

0

5
U

se
r

P
er

ce
n
ta

ge
(%

)

(a) Dedicated time-Success percentage

correct includes errors quit

no error 1-3 3-6 6-9 > 9
0

10

20

30

40

20

35

10

0

5

0

10

5 5

00 0 0 0

10 U
se

r
P

er
ce

n
ta

ge
(%

)

(b) Errors-Success percentage

correct includes errors quit

Figure 8.1: (a) Dedicated time-Success percentage, and (b) Errors-Success per-
centage

files that are being exported from our system, to be uploaded automatically in
the Hippalus for exploration, with a button click via Facetize and to exist the
ability to edit the values of an existing facet with an expression definition, using
functions, as those that are used for create a new facet. Also, they stated to appear
the number of occurrences of each value in a facet.

8.4 Possible Improvements

Here, we discuss issues related to the improvements and extensions of Facetize
in the future.

8.4.1 Null Values in the Dataset

In case a user wants to investigate the rows for which a certain column is empty,
one possible solution would be to exist a dropdown menu for each column. Then,
when a user choose an option from that menu to get a facet pane with two choices:
false and true. Choice true will contain the number of rows in that facet that are
blank. By left clicking on that choice, it will select rows with empty cells on that
facet. Respectively, the option false will filter rows that do not contain empty cells
on that facet. Moreover, if the user wants to search for rows with blank cells (not

66 CHAPTER 8. EVALUATION

Undergraduate St. Postgraduate St. ICS Employee
0

10

20

30

40

50

25

40

5

0

15

5

0

5 5

U
se

r
P

er
ce

n
ta

ge
(%

)

(c) Categories-Success percentage

correct includes errors quit

18-24 25-34 45-64
0

20

40

60

80

5

65

0

10 10

00
5 5

U
se

r
P

er
ce

n
ta

ge
(%

)

(d) Age-Success percentage

correct includes errors quit

Figure 8.2: (c) Categories-Success percentage and (d) Age-Success percentage

in a specific column), it could exist another dropdown menu that filter rows that
contain blank cells.

8.4.2 Applicability over Very Large Datasets

Here, we discuss issues in order to improve the efficiency of Facetize in the future.
In case exist a dataset with large amount of rows, it could scan the dataset file
one time to select the facets and their distinct values. Then, the user could apply
the desired transformations in the dataset (except from edits of individual rows)
and after that to scan one more time the dataset file and to create the output file.
Using that approach, our system will not keep tuples of dataset’s rows in the main
memory and will not create the table with the dataset’s rows.

8.4.3 Format Support

Facetize could support other data file formats to export the transformed data.
For example, it could export the data in CSV, TSV, JSON, XML, HTML. Also,
the users could add their own export template in case they want to export the
data in a specific format for loading from other systems for exploration.

8.4. POSSIBLE IMPROVEMENTS 67

8.4.4 Enrich a Facet with Restrictions

In case the users want to create a new facet, it could exist the ability to enrich
a facet with restrictions regarding their values. For example, a facet with name
”age” must contain positive integer numbers. In this way, users will create facets
that contain valid values.

8.4.5 Integrity Constraints

Another extension is to enrich a project with integrity constraints. For instance,
the valid range of values of each facet could be specified through the editor. Such
constraints concern both numerically valued facets (e.g. person age) as well as
categorical ones (e.g. location names). Having specified such constraints, the
system could check whether the values in the dataset respect these constraints
and then it could inform the user accordingly. This is especially important for
projects whose dataset evolves over time: whenever the user refreshes the dataset
of a project, the system could check whether these constraints are satisfied or are
not. This extension requires an extension of the notion of project, specifically
each facet should be associated with constraints that the user is able to formulate
through the Facetize editor.

68 CHAPTER 8. EVALUATION

Chapter 9

Conclusion and Future Work

To conclude, there is a demand for systems that help users with no particular
technical background to clean and apply transformations on plain datasets for
turning them easily explorable by end users. In this thesis we investigate the
hypothesis that the familiar interaction paradigm faceted search systems can be
useful for such a task. However, a straightforward loading of such datasets in
a faceted search system will not always result to a satisfying solution, since ad-
ditional tasks are usually required. This includes deciding (a) the parts of the
dataset that should be explorable, (b) the attributes that should visible and their
order, (c) the transformations and/or enrichments that should be done, (d) the
groupings (hierarchical or not) of the values that should be made, (e) the addition
of derived attributes, and others. For this reason in this thesis we presented the
design and implementation of an editor, called Facetize, that allows the user to
carry out these tasks in a user-friendly and guided manner,without presupposing
any technical background about the data representation language or the query
language.

Facetize can be construed as an authoring environment for setting up explo-
ration services over static files (represented in various formats) or results produced
by querying SPARQL endpoints. It is worth noting that the authoring environ-
ment, supports the notion of project, allowing the user to gradually configure the
desired presentation and also to update (refresh) the underlying dataset without
losing the transformations that they have been defined.

We evaluated the Facetize prototype with users over real data. The results
of the evaluation with users were positive: all participants (100%) were positive,
as regards the overall rating. Moreover, most of the users (90%) managed to
complete the task, while 70% of them managed to complete the task successfully.
In addition, this evaluation allowed us to identify useful extensions for improving
the usability of our system in the future.

Facetize offers remarkable innovations in the area of data transforming. As
we mentioned in this thesis, Facetize supports the creation of hierarchies and
numerical intervals and it can fetch data directly from SPARQL endpoints, making

69

70 CHAPTER 9. CONCLUSION AND FUTURE WORK

it appropriate for dynamic datasets. In addition, users have the ability to reapply
the same range of transformations to an existing project, which is very convenient
in case they want to refresh the dataset of a project and would like to apply the
same transformations.

As regards the suggestions of users of the evaluation for system improvements,
they pointed out to incorporate autocomplete in names of functions and facets
when define an expression for create a new facet. Moreover, to exist the ability to
select many values at the same time for add them in the same hierarchy when create
a new one and the files that are being exported from Facetize to be uploaded
automatically in Hippalus for exploration. Also, users to be able to edit the values
of a facet using expression definition and to appear the number of occurrences of
each value in a facet. Directions that are worth further work and research include
methods for predicting the missing values. Such functionality is helpful in cases
where there are a lot of missing values that we would like to fill in the dataset at
hand, and various models could be employed for that purpose (e.g. dependence
tree, Naive Bayes model, etc). Another direction is to device methods that can
spot possible errors or misspellings by exploiting string similarity-based clustering
methods.

Chapter 10

Appendix

10.1 Logging of Transformations

The transformations of each project are saved and can be reapplied to a new
version of the dataset. Such transformations are the following: (a) set facet type,
(b) set order of facets, (c) create hierarchy, (d) create intervals (linear, log, user
defined), (e) specify geographic information for facets, (f) set visibility of facets.

Each transformation is saved on disc in JSON format. For example, for the
transformations of our running example, the log file keeps the following informa-
tion:

{

"facetName": "Longitude",

"geoInfo": "Longitude",

"transformationType": "geoInfo"

}, {

"facetName": "Latitude",

"geoInfo": "Latitude",

"transformationType": "geoInfo"

}, {

"facetName": "Rooms",

"visibility": "hidden",

"transformationType": "facet-visibility"

}, {

"facetName": "Price",

"transformationType": "facet-order",

"order": 4

}, {

"facetName": "Price",

"transformationType": "facet-order",

"order": 3

}, {

71

72 CHAPTER 10. APPENDIX

"facetName": "Price",

"transformationType": "facet-order",

"order": 2

}, {

"facetName": "Price",

"transformationType": "facet-order",

"order": 1

}, {

"facetName": "Location",

"transformationType": "facet-order",

"order": 1

}, {

"facetName": "Location",

"transformationType": "facet-order",

"order": 0

}, {

"facetName": "Name",

"transformationType": "facet-order",

"order": 3

}, {

"facetName": "Name",

"transformationType": "facet-order",

"order": 2

}, {

"facetName": "Name",

"transformationType": "facet-order",

"order": 1

}, {

"facetName": "Price",

"transformationType": "facet-order",

"order": 2

}, {

"facetName": "Price",

"transformationType": "facet-order",

"order": 1

}, {

"facetName": "Rating",

"transformationType": "facet-order",

"order": 5

}, {

"facetName": "Rating",

"transformationType": "facet-order",

"order": 4

}, {

10.1. LOGGING OF TRANSFORMATIONS 73

"facetName": "Rating",

"transformationType": "facet-order",

"order": 3

}, {

"facetName": "Rating",

"transformationType": "facet-order",

"order": 2

}, {

"facetName": "Rating",

"transformationType": "facet-order",

"order": 3

}, {

"hierarchy": "Chania\/Crete\/Location",

"transformationType": "hierarchy"

}, {

"hierarchy": "Heraklion\/Crete\/Location",

"transformationType": "hierarchy"

}, {

"hierarchy": "Lasithi\/Crete\/Location",

"transformationType": "hierarchy"

}, {

"hierarchy": "Rethymno\/Crete\/Location",

"transformationType": "hierarchy"

}, {

"hierarchy": "Chania\/Crete\/Islands\/Location",

"transformationType": "hierarchy"

}, {

"hierarchy": "Heraklion\/Crete\/Islands\/Location",

"transformationType": "hierarchy"

}, {

"hierarchy": "Lasithi\/Crete\/Islands\/Location",

"transformationType": "hierarchy"

}, {

"hierarchy": "Rethymno\/Crete\/Islands\/Location",

"transformationType": "hierarchy"

}, {

"hierarchy": "Rhodes\/Islands\/Location",

"transformationType": "hierarchy"

}, {

"facetName": "Rooms",

"visibility": "visible",

"transformationType": "facet-visibility"

}, {

"newType": "id",

74 CHAPTER 10. APPENDIX

"facetName": "Name",

"transformationType": "facet-type"

}, {

"hierarchies": ["106\/106-115\/Price", "115\/106-115\/Price"],

"transformationType": "hierarchies"

}, {

"hierarchies": ["156\/156-264\/Price", "157\/156-264\/Price",

"264\/156-264\/Price"], "transformationType": "hierarchies"

}, {

"hierarchies": ["22\/22-69\/Price", "50\/22-69\/Price",

"59\/22-69\/Price", "69\/22-69\/Price"],

"transformationType": "hierarchies"

}

Bibliography

[1] Ziawasch Abedjan, Cuneyt G Akcora, Mourad Ouzzani, Paolo Papotti, and
Michael Stonebraker. Temporal rules discovery for web data cleaning. Pro-
ceedings of the VLDB Endowment, 9(4):336–347, 2015.

[2] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F
Ilyas, Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang.
Detecting data errors: Where are we and what needs to be done? Proceedings
of the VLDB Endowment, 9(12):993–1004, 2016.

[3] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling relational
data: a survey. The VLDB Journal—The International Journal on Very
Large Data Bases, 24(4):557–581, 2015.

[4] Ziawasch Abedjan, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Pa-
potti, and Michael Stonebraker. Dataxformer: A robust transformation dis-
covery system. In Data Engineering (ICDE), 2016 IEEE 32nd International
Conference on, pages 1134–1145. IEEE, 2016.

[5] Abhinay B Angadi, Akshata B Angadi, and Karuna C Gull. International
journal of advanced research in computer science and software engineering.
International Journal, 3(6), 2013.

[6] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing
and olap technology. ACM Sigmod record, 26(1):65–74, 1997.

[7] Xu Chu, Ihab F Ilyas, and Paolo Papotti. Holistic data cleaning: Putting
violations into context. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 458–469. IEEE, 2013.

[8] Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan
Tang, and Yin Ye. Katara: A data cleaning system powered by knowledge
bases and crowdsourcing. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, pages 1247–1261. ACM, 2015.

[9] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed Elmagarmid, Ihab F
Ilyas, Mourad Ouzzani, and Nan Tang. Nadeef: a commodity data cleaning

75

76 BIBLIOGRAPHY

system. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, pages 541–552. ACM, 2013.

[10] Fred J Damerau. A technique for computer detection and correction of spelling
errors. Communications of the ACM, 7(3):171–176, 1964.

[11] Tamraparni Dasu and Ji Meng Loh. Statistical distortion: Consequences of
data cleaning. Proceedings of the VLDB Endowment, 5(11):1674–1683, 2012.

[12] Pavlos Fafalios and Yannis Tzitzikas. Sparql-ld: a sparql extension for fetching
and querying linked data. In International Semantic Web Conference (Posters
& Demos), 2015.

[13] Pavlos Fafalios, Thanos Yannakis, and Yannis Tzitzikas. Querying the web
of data with sparql-ld. In International Conference on Theory and Practice
of Digital Libraries, pages 175–187. Springer, 2016.

[14] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. To-
wards certain fixes with editing rules and master data. The VLDB Journal,
21(2):213–238, 2012.

[15] Laura Faulkner. Beyond the five-user assumption: Benefits of increased sam-
ple sizes in usability testing. Behavior Research Methods, Instruments, &
Computers, 35(3):379–383, 2003.

[16] Nicholas V Findler and Jan Van Leeuwen. A family of similarity measures
between two strings. IEEE transactions on pattern analysis and machine
intelligence, (1):116–118, 1979.

[17] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro.
Mapping and cleaning. In IEEE 30th International Conference on Data Engi-
neering (ICDE), Chicago, Ill., March 31-April 4, 2014/Cruz, Isabel F.[edit.];
et al., pages 232–243, 2014.

[18] Shubham Gupta, Pedro Szekely, Craig A Knoblock, Aman Goel, Mohsen
Taheriyan, and Maria Muslea. Karma: A system for mapping structured
sources into the semantic web. In Extended Semantic Web Conference, pages
430–434. Springer, 2012.

[19] Hamed Ibrahim Housien, Zhang Zuping, and Zainab Qays Abdulhadi. A
comparison study of data scrubbing algorithms and frameworks in data ware-
housing. International Journal of Computer Applications, 68(25), 2013.

[20] Anna Huang. Similarity measures for text document clustering. In Proceed-
ings of the sixth new zealand computer science research student conference
(NZCSRSC2008), Christchurch, New Zealand, pages 49–56, 2008.

[21] Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis.
Fundamentals of data warehouses. Springer Science & Business Media, 2013.

BIBLIOGRAPHY 77

[22] Matthew A Jaro. Advances in record-linkage methodology as applied to
matching the 1985 census of tampa, florida. Journal of the American Sta-
tistical Association, 84(406):414–420, 1989.

[23] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wran-
gler: Interactive visual specification of data transformation scripts. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 3363–3372. ACM, 2011.

[24] Zuhair Khayyat, Ihab F Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouz-
zani, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. Big-
dansing: A system for big data cleansing. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pages 1215–
1230. ACM, 2015.

[25] Laks VS Lakshmanan, Fereidoon Sadri, and Iyer N Subramanian. Schemasql-
a language for interoperability in relational multi-database systems. In VLDB,
volume 96, pages 239–250. Citeseer, 1996.

[26] Vladimir I Levenshtein. Binary codes capable of correcting deletions, inser-
tions, and reversals. In Soviet physics doklady, volume 10, pages 707–710,
1966.

[27] Panagiotis Lionakis and Yannis Tzitzikas. Pfsgeo: Preference-enriched faceted
search for geographical data. In OTM Confederated International Con-
ferences” On the Move to Meaningful Internet Systems”, pages 125–143.
Springer, 2017.

[28] Jonathan I Maletic and Andrian Marcus. Data cleansing. In Data Mining
and Knowledge Discovery Handbook, pages 21–36. Springer, 2005.

[29] Michalis Mountantonakis and Yannis Tzitzikas. High performance methods
for linked open data connectivity analytics. Information (2078-2489), 9(6),
2018.

[30] Heiko Müller and Johann-Christph Freytag. Problems, methods, and chal-
lenges in comprehensive data cleansing. Professoren des Inst. Für Informatik,
2005.

[31] Andriy Nikolov, Victoria Uren, Enrico Motta, and Anne De Roeck. Integra-
tion of semantically annotated data by the knofuss architecture. In Inter-
national Conference on Knowledge Engineering and Knowledge Management,
pages 265–274. Springer, 2008.

[32] Panagiotis Papadakos and Yannis Tzitzikas. Hippalus: Preference-enriched
faceted exploration. In EDBT/ICDT Workshops, volume 172, 2014.

78 BIBLIOGRAPHY

[33] Panagiotis Papadakos and Yannis Tzitzikas. Comparing the effectiveness of
intentional preferences versus preferences over specific choices: a user study.
International Journal of Information and Decision Sciences, 8(4):378–403,
2016.

[34] Alexandros Papangelis, Panagiotis Papadakos, Margarita Kotti, Yannis
Stylianou, Yannis Tzitzikas, and Dimitris Plexousakis. Ld-sds: Towards an
expressive spoken dialogue system based on linked-data. In Search Oriented
Conversational AI, SCAI 17 Workshop (co-located with ICTIR 17), 2017.

[35] Nataliya Prokoshyna, Jaroslaw Szlichta, Fei Chiang, Renée J Miller, and Di-
vesh Srivastava. Combining quantitative and logical data cleaning. Proceed-
ings of the VLDB Endowment, 9(4):300–311, 2015.

[36] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current ap-
proaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[37] Vijayshankar Raman and Joseph M Hellerstein. Potter’s wheel: An interactive
data cleaning system. In VLDB, volume 1, pages 381–390, 2001.

[38] Giovanni Maria Sacco and Yannis Tzitzikas. Dynamic taxonomies and faceted
search: theory, practice, and experience, volume 25. Springer Science & Busi-
ness Media, 2009.

[39] Kofi Adu-Manu Sarpong and John Kingsley Arthur. A review of data cleans-
ing concepts-achievable goals and limitations. International Journal of Com-
puter Applications, 76(7), 2013.

[40] Michael Stonebraker, Daniel Bruckner, Ihab F Ilyas, George Beskales, Mitch
Cherniack, Stanley B Zdonik, Alexander Pagan, and Shan Xu. Data curation
at scale: The data tamer system. In CIDR, 2013.

[41] Daniel Tunkelang. Faceted search. Synthesis lectures on information concepts,
retrieval, and services, 1(1):1–80, 2009.

[42] Y. Tzitzikas and E. Dimitrakis. Preference-enriched faceted search for vot-
ing aid applications. IEEE Transactions on Emerging Topics in Computing,
PP(99):1–1, 2016.

[43] Yannis Tzitzikas, Nicolas Bailly, Panagiotis Papadakos, Nikos Minadakis,
and George Nikitakis. Using preference-enriched faceted search for species
identification. International Journal of Metadata, Semantics and Ontologies,
11(3):165–179, 2016.

[44] Yannis Tzitzikas, Nikos Manolis, and Panagiotis Papadakos. Faceted explo-
ration of RDF/S datasets: a survey. Journal of Intelligent Information Sys-
tems, 2016.

BIBLIOGRAPHY 79

[45] Yannis Tzitzikas and Panagiotis Papadakos. Interactive exploration of mul-
tidimensional and hierarchical information spaces with real-time preference
elicitation. Fundamenta Informaticae, 20:1–42, 2012.

[46] Yannis Tzitzikas, Nicolas Spyratos, and Panos Constantopoulos. Mediators
over taxonomy-based information sources. The VLDB Journal, 14(1):112–
136, 2005.

[47] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran,
and Neoklis Polyzotis. S ee db: efficient data-driven visualization recommen-
dations to support visual analytics. Proceedings of the VLDB Endowment,
8(13):2182–2193, 2015.

[48] Kwok-Bun Yue. A realistic data cleansing and preparation project. Journal
of Information Systems Education, 23(2), 2012.

