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Abstract

The purpose of this thesis is to study the time series modeling and make a comparative
empirical analysis of the Greek new car-market, report and discuss the research results, and
investigate whether time series methods can successfully be applied in marketing data and
give reliable forecasts. Although the practice of forecasting marketing data, like sales, is a
widely researched area, it hasn’t been extensively applied for the Greek new-car sales sector.
Therefore, this research is an attempt to report and discuss the new car sales forecasting
practices concerning Greek companies in a turbulent economic time interval and a strictly

supervised economic environment.

The design of this empirical research application reports on sales forecast practices, us-
ing monthly data of the Greek new-car sales sector, available from the Association of motor
vehicles importers representatives (AMVIR) of Greece. The monthly new car registration
number is assumed, to be equal to the monthly new car sales level in the Greek market.
The methodology of this applied study uses an in-sample and an out-of-sample time series
modeling and forecasting, in a variety of new-car sales firms in the Greek retail market,

testing various data sets in a time frame of the last two decades (1998 till 2016).

Despite the difficult economic conditions in the Greek market, the researcher develops
a comparative study, by modelling various time series and analysing them. Simple time
series models are used, like the Mean or Average, the Naive and the Seasonal Naive models,
but also some more sophisticated ones, like for example the Linear Models with Seasonal

Dummies (LMSD), the Exponential Smoothing state space model (ETS), the Seasonal
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Autoregressive Integrated Moving Average (SARIMA), and the family of Seasonal Autore-
gressive Integrated Moving Average-General Autoregressive Conditional Heteroscedastic

Model (SARIMA- GARCH).

Furthermore, in addition to the original form of the variables and their log transfor-
mation, the use of the family of Box-Cox (1964) data transformation is applied in this
research, where the transformation parameter \ is determined by the method of Guerrero
(1993). All these alternative approaches improve the quality and performance of the data,
which ultimately proves that transforming variables provides a powerful tool for develop-
ing models. Lastly, the approach of combined forecast, as a forecasting tool, of various
time series forecasting models is reported and discussed. This technique uses information
from various individual forecasting methods, assuming either equal weights or optimally
weighted forecasts, depending on the limitations, set by each type of combined forecasts

studied.

The empirical findings of this study gave evidence of an improvement in forecasting
and confidence intervals, using the appropriate data transformation process. In addition,
there is the prevailing conclusion that it is extremely difficult to find a single model, that
can capture and forecast new car sales for all companies and at all times. Each car firm
should be treated separately. However, research suggests that data transformation, the use
time series models, and the combination of their predictions in the right way, prove to be
beneficial in improving the accuracy of predictions for all cases of this research in the Greek

car market.

The conclusions of this thesis are very interesting cause the research takes place over a
difficult time for the Greek economy. During the research period the country signed three
(3) Memorandums of Understanding, on specific economic policy conditions, which lead
to an economic supervision of the country, by a decision group referred as “TROIKA”,
which was formed by the International Monetary Fund, the European Central Bank and
the Kuropean Commission. Greek government was forced to implement austerity measures
to its citizens, as a consequence of the supervision. Greek consumers, due to economic

uncertainty, liquidity shortage, and bank crises, prolonged buying durable goods, like cars,

viil
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which resulted in a sharp fall of new car sales in the Greek market.

Finally, the originality of this research and the added value in economic science is that
it is the first time, to my knowledge, that new car sales sector of the Greek market is
treated as time series, with an extensive application of time series modeling, for the first
two decades of the 21st century. Additionally, this thesis research contributes in depicting
the best way for predicting sales, and helps improve the quality and accuracy of sales
forecasts, hedge against risk, and reduce failure, for the Greek new-car decisions makers.
It also emphasizes the problems, that evolved from the diminishing new car sales, due to

the economic crisis in the Greek new car market.

Keywords: Time Series, Forecasting, Greek market, new car retail sector, Naive Model,
Seasonal Naive Model, Linear model with seasonal dummies, Exponential Smoothing state
space model (ETS), Seasonal Autoregressive Integrated Moving Average (SARIMA), Sea-
sonal Autoregressive Integrated Moving Average-General Autoregressive Conditional Het-
eroscedastic Model (SARIMA- GARCH), Box-Cox transformations, Guerrero method, fore-

casts combinations.
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Chapter

Introduction

Time series analysis is an important tool in modeling and forecasting economic vari-
ables. Different time series analysis techniques are applied in this thesis in an attempt to
measure, capture, and forecast marketing data of new car sales in the Greek market. Our
research starts with analysing various time series variables of the Greek new car market and
arguing on the elements that seems to influence the level of sales in that market, during a
turbulent economic period for the Greek economy (1998-2016). The study focus initially in
applying various simple models, like the average -or mean- model, the naive, and seasonal
naive model, and continues with the Box-Jenkins modeling methods used in Autoregres-
sive Integrated Moving Average (ARIMA) Models, and the Seasonal ARIMA models, the
Linear Model with Seasonal Dummies (LMSD), the state space models based on exponen-
tial smoothing models (ETS), and the family of Generalized Autoregressive Conditional

Heteroscedastic (GARCH) models.

The empirical evidence of this research shows that simple time series models, like the
Seasonal Naive models can be adequate for a short-term forecasting, while more complicated
ones, like the state space models with exponential smoothing (ETS), the Linear Models with
Seasonal Dummies (LMSD) and the seasonal autoregressive Integrated Moving Average

(SARIMA) Models are better for long term predictions.

Additionally, we study the accuracy in time series modeling, when data used are trans-

formed. So this research presents results when modeling the variables in original values,



Maria K. Voulgaraki

alternatively in log values, and finally in transformed values, using the family of Box-Cox
process. Furthermore, we emphasize the importance of combining forecasts of the various
individual time series models. Thus, instead of trusting one single model for forecasting, we
decrease risk by using all the available information, and study the technique of combining
forecast from various time series models. This is done either assuming equal weights in each
forecast or weight them optimally according to the weighting scheme of the combination

method. The combined forecast outperform all single time series models in this research.

This thesis research covers a difficult time interval for the Greek economy at the be-
ginning of the 21%" century, from the year 1998 till the year 2016. Hence, this study has a
parallel interest in the economic situation in the Greek market, and try to show indirectly,
how the economic crisis, the austerity measures, that came into force after the implementa-
tion of the financial agreement of the Greek government with European Commission (EC),
European Central Bank (ECB) and International Monetary Fund (IMF), changed the eco-
nomic activity in the automobile retail sector in Greece, reflecting the prolong economic

difficulties of the Greek market.

In more detail, the present chapter gives a brief introduction to the subject, followed
by the research purpose, aims, and objectives, while it set the questions that puzzled the
researcher during the period of study. The purpose of this study and the research ob-
jectives are clearly stated and will be fully developed throughout this thesis, background
and motivation are explained, while research questions will be answered scientifically and
efficiently based in applied econometric theory and practice used in Time Series data. The
Data Source and the used software are given in detail, and the thesis overview helps in un-
derstanding the structure of this thesis. The research contribution, and the final conclusions
of this thesis can give useful information, that can help the decision makers to establish
strategies for proper inventory planning, human resource, and logistics applications in sec-
tor of retail new car representatives in Greece. Additionally, it gives a major contribution
to the science, due to the shortage of research in this sector of the Greek market and the

valuable application of a comparative study using time series theory and methods.
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1.1 Thesis Purpose, aims and objectives

This thesis research work is in the field of applied econometrics of economic science.
It focus in time series analysis, which is one of the major, necessary, and essential field
of economics, and business administration. Forecasting time series contain a necessary
source of information, which supports each business decision making. Strategic planning,
and future actions in business world, are based in economic variables forecasting, that are
produced from the econometric analysis of a set of variables, observed over time. People,
working as chief executives officers or in other committee decision making groups, are asked
to take important decisions, that determine the future of their business. For example,
decisions considering the schedule of production line, human or natural resources plan,
logistics plan, advertisements expenditures plan, and business strategy in general are based
mainly in the forecasting of future product demand, which determines the products’ future

sales level.

Consequently, the forecasting of a product demand, sales level or services, consist one
of the most important functions for the well being of business and organization operations,
and considering that, time series analysis have become part of the mainstream statistics.
However, relatively little work has been done for non-linear models or marketing data,
like new car demand. In addition to that, marketing data like sales have always been the
focus of considerable attention in the last decade, and it seems likely that this is only the
beginning in terms of the exploration in new areas of statistical modeling. Furthermore,
research in the Greek market of new car sales seems to be very basic without a lot of

scientific work done for developing more the dynamics of these marketing sales data.

New car sales levels in the Greek market can easily be treated as Time Series data.
The use of Time Series data for business analysis is, however, not new. What is new, in
economic science, is the ability to collect and analyze high volume of data in sequence, at
extremely high velocity to get the clearest picture to predict and forecast market changes,

buyers’ behavior, resource consumption, environmental conditions and much more.
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1.2 Background and Motivation

The motivation for this research work was, firstly to explain, analyse and model new car
sales levels in the Greek market based on time series theoretical background. Secondly to
investigate the impact of Greek economic crisis and austerity measures on new car demand
and how that had influenced the car representatives all over Greece. Thirdly to evaluate

the accuracy of various time series forecasting models to predict car demand.

Furthermore, this thesis analyses the time series data for more than 15 years and select
the “best” models and forecasting techniques to predict car demand before and after the
inclusion of Greek economy recession. The important aspect of this research is that it
uses quantitative methodology to estimate what were the implications in the Greek car
market, during a period that the whole economy of the country had shrunk by a quarter

and unemployment had stood at more than 25 percent.

Greece is currently under a prolong period of economic crisis. After the implementation
of austerity measures Greek citizens postpone or delay the purchase of durable products,
like cars and other goods. The great recession in the Greek market started in early 2008.
It became even worse after the announcement of the financial agreement of the Greek
government with the International Monetary Fund in May 2010 and the austerity measures.
Greece negotiated and agreed by singing a memorandum with the International Monetary
Fund and the European Central Bank in the early months of 2010 for austerity packages and
reforms that last until now and for many years to come. The country’s three main creditors -
the European Commission (EC), the European Central Bank (ECB) and the International
Monetary Fund (IMF) dictate the terms of the bailout and monitor the application of
austerity measures and the reform of public administration, while the country already had
received two bailout programs and is excepted to start bargaining for the third during this

year (2015). Greece is struggling to stay in the eurozone as an equal member.

The economic and social effects of austerity measures were dramatic. The overall in-

crease in the share of population living at “risk of poverty or social exclusion” was not
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significant during the first 2 years of the crisis 2009-2010" but for 2011 the estimated figure
rose sharply above 33% and above 35% by 2013. According to an IMF official, austerity
measures have helped Greece bring down its primary deficit in 2011 but as a side-effect
they contributed to a worsening of the Greek recession, which began in October 2008 and
only became worse in 2010 and 2011. The reality is that by 2012, wages have been cut to
the level of late 1990s while purchasing power equals that of 1986.That had an immediate
reflection in car sales levels with total new car sales recording historically the lowest level
of sales for the last decade.

Our research data in this thesis -monthly sales of new cars in the Greek automobile
market- reflect the decline of economic activity covering a wide time period, before and
during the economic crisis in Greece. The new car sales data are analyzed and modelled
as time series data while conclusions will help us understand, on the one hand, consumer
behavior in period of economic crisis, and on the other hand, how car representatives
operating in Greece reacted to survive and which of them manage to stay in the market
and at what cost.

The main research questions that have triggered the applied econometric thesis from

the very beginning are:

What is the best econometric model that fit more appropriate to the new passenger

car registration levels in the Greek market?

Can we measure the volatility of sales at the Motor Vehicle Passenger Car Segments

in Greece?

Is it possible to make safe forecasts intervals for the future sales levels of different

Motor vehicle Importers Representatives operating in the Greek market?

What are the impacts in new car sales levels after the implementation of austerity

measures in Greece for both consumers and sales representatives?

IThe figure was measured to 27.6% in 2009 and 27.7% in 2010 (and only slightly worse than the EU27-

average at 23.4)
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Furthermore the research objectives of this thesis work was to learn and interpret
the business time series data of a specific segment in the Greek market, study simple and
more complicated models and methods for analysis of Greek business time series data,
understand the proper use and limits of econometric methods in business data, analyze
business data from the Greek auto-mobile market scientifically and efficiently, explain the
volatility of the new car sales and revile a model that can efficiently measure and predict
the new car sales fluctuations in the Greek market, empirically use of econometric models
in forecasting future new car sales levels in the market, develop an intervention analysis
of car sales data for the evaluation of the impact of the Greek economic crisis on the new
car sales levels and understand the impact of austerity measures in Greece in the new car
market sector and how they affect the consumer behavior and the sales representatives’

decision making.

1.3 Data Source and Used Software

The car registration data are available from the Association of Motor Vehicle Importers
Representatives (AMVIR) web site named http://www.seaa.gr where SEAA is the Greek
abbreviation of the association which is translated as “Syndesmos Eisagogeon Antiprosopon
Autokiniton” in the Greek language. The marketing data available at that page in the
Statistics refer to the Public cars’(PC) and taxi cars’ registration by month. We take as a
fact that the car registration number equals the new car sales number for this research and
that is how we will refer to these data from now on. The first year of statistical records of
car sales available in the year 1998.

This econometric analysis is completely done by programming based open-source soft-
ware named as R started with R-studio Desktop version 0.98.1102 ended with version
1.2.5001 from “The R Foundation for Statistical Computing”. R is my favorite all-around
statistics software, free open-source version of S, a program developed in the 1970s and

1980s at Bell Laboratories.

R is excellent for graphics, classical statistical modeling, and various non-parametric
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methods. The additional library package used for our analysis are forecast,tseries,fpp2,
rugarch, fGarch, Metrics, FinTS, stats and so on, that fit specific classes of models in R.

This thesis report is produced in the BTEX document preparation system which is a high
—quality typesetting system for the production of technical and scientific documentation
from MiKTeX version 2, a trademark of the American Mathematical Society using the
latest TeXStudio Desktop version at first, and later the QOuverleaf, which is a collaborative

cloud-based LaTeX editor used for writing scientific documents that can easily be shared.

1.4 Thesis Overview

The present chapter gives a brief introduction to the subject, followed by the purpose
and motivation, research question, and objectives of this study. The data source of the
empirical study and the used software are given in detail. The chapter ends with the thesis
overview which gives the structure of this research study and the final conclusions.

The second chapter refers to the empirical analysis of the time series data set. Firstly
an overview of the Greek new car market is presented so that the reader can have a general
idea of the market segment before going into further details needed for the empirical study
to follow. Visualizing the car sales structure with the use of different graphical presentation
helps the time series analysis. Statistical inferences of the data, autocorrelation properties
and stationarity tests will complete the data empirical analysis. Given the wide time range
covered by the data set and the separated research work that needs to be done, for each
one of the 10 different automobiles retail firms operating in Greece, one can understand
the complexity of this project.

There is a reference to the related work that has already been done on this subject and
a literature review of applied time series analysis to various data.

The Time Series Models are given in a separate section of this first chapter covering the
theoretical background of all Time Series models that will be used in the empirical analysis
and gives the methodology for model selection. We consider different time series models,

simple like the average, naive and seasonal naive models and more complicated like Sea-
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sonal Autoregressive Integrative Moving Average (SARIMA), the General Autoregressive
Conditional Heteroscedastic (GARCH) and the Exponential State Space Smoothing (ETS)

models in this research study.

The third chapter analyses the in sample empirical modeling of the time series data.
Time-series methods and models are applied to the set of data and are compared and
contrasted for selecting the one that fits best to the data set of each firm. Models like the
average, naive and seasonal naive, Autoregressive Integrative Moving Average (ARIMA)
and Seasonal ARIMA (SARIMA), the family of the General Autoregressive Conditional
Heteroscedastic (GARCH) models and a combination of SARIMA - GARCH model and
finally the Exponential State Space Smoothing (ETS) models are estimated, evaluated,
compared to find which one capture best the monthly movement of each firms’ new car

sales levels.

The fourth chapter considers the forecasting performance of the applied time series
models used to fit the data in an out of sample estimation process. The time series models
used to fit the data are now estimated, evaluated, and compared to find which one can
predict best the monthly movement of each firms’ new car sales levels in the Greek market.
Different forecasting measures are used to evaluate the model with the best forecasting
performance. Different time intervals are also used as an intervention analysis, to fit and
forecast new car sales levels in an attempt to evaluate how the economic crisis had influenced

the new car retail segment in Greece.

The fifth chapter of this thesis present a volatility forecasting comparative study within
the autoregressive conditional heteroskedasticity class of models. The focus is in identifying
if a SARIMA-GARCH model can successful predict the volatility of car sales level during
a period of economic crisis in the Greek market. The study proceeds with GARCH model
selection and analysis and end up with the diagnostic checking of the model, but before
fitting the GARCH model the research try to diagnose if the SARIMA squared residuals
are serial correlated and test for ARCH effects. Finally the SARIMA-GARCH (1,1) with
student-t distribution was preferred only for Opel and Toyota that show serial correlated

SARIMA residuals in a specific data set. SARIMA-GARCH(1,1) model can be an effective
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way to improve forecasting accuracy against SARIMA model and to reduce the prediction
intervals of the forecast.

The sizth chapter of this thesis contains several mathematical data transformations from
the family of Box-Cox transformation but also time series modeling using the original data
with no transformation at all. Additionally, the 95% confidence Interval in the forecasting
is studied in order to find the best data transformation and the best forecasting model for
our marketing data.

The seventh chapter of this thesis combines the forecasts in a way to improve the
forecast accuracy and hedge against risk. We go on from the selection of one single model
to the combination of several time series models ending up with a more accurate and less
risky model that uses all the available information. We study the simple average and the
ordinary least squared combination of the forecasts using equal weights and unequal ones
accordingly. The empirical evidence suggests that the Simple average method with equal

weights outperforms all the individual time series methods giving the best results.

1.5 List of publications & research presentations.

I am grateful and lucky that I was given the opportunity to present my thesis research
with my participation in various conferences and Symposiums and get valuable feedback
for the continuation of my studies. Special thanks to the“A.G. Leventis Foundation” for
sponsoring, twice, part of my travel expenses to London, for my participation in the Hellenic
Observatory Ph.D. Symposium on Contemporary Greece and Cyprus, at London School of
Economics and Political Science, Furopean Institute in UK.

The list of publications resulting from my participation in various conferences during

this thesis study in chronological order is provided below:

- Voulgaraki K. Maria (2019), “Box Cox transformation in Forecasting sales. Evi-
dence of the Greek market.” in Proceedings of the 39'" International Symposium on
Forecasting (ISF 2019), organized by the International Institute of Forecasters, in

Thessaloniki, Greece.



Maria K. Voulgaraki

- Voulgaraki K. Maria (2017), “Forecasting sales using switching regime models in
the Greek market.” in Proceedings of the 8" Biennial Hellenic Observatory Ph.D.
Symposium on Contemporary Greece and Cyprus, London School of Economics and

Political Science, European Institute, The Hellenic Observatory, in London, UK.

- Voulgaraki K. Maria (2016), “Modeling and Forecasting sales in the Greek market.
The case of the Greek new car sales sector.”, in Proceedings of the IMAEF 2016,

[oannina Meeting on Applied Economics and Finance, in Corfu, Greece.

- Voulgaraki K. Maria (2014), “Forecasting Sales of durable products in the Greek mar-
ket. Empirical evidence from the new car retail sector”, Proceedings of the Annual
Postgraduate Seminar Day (13-04-2014), Department of Economics, University of

Crete, in Rethimnon, Greece.

- Voulgaraki K. Maria (2013),“Forecasting sales and intervention analysis of durable
products in the Greek market. Empirical evidence from the new car retail sector”,
in Proceedings of the 6! Biennial Hellenic Observatory Ph.D. Symposium on Con-
temporary Greece and Cyprus, London School of Economics and Political Science,

European Institute, The Hellenic Observatory, in London, UK.

- Voulgaraki K. Maria (2013),“Exponential Smoothing Time Series Forecasts” , Pro-
ceedings of the Annual Postgraduate Seminar Day (09-01-2013), Department of Eco-

nomics, University of Crete, in Rethimnon, Greece.

1.6 Research Contribution

This thesis argues that marketing series like car sales in the Greek market can success-
fully be measured and forecasted using scientific time series methodology and procedures.
This study uniquely faces the problem of measuring the performance of car sales in the
Greek market in a turbulent period of economy for Greece. Austerity measures due to strict

implementation of the various memorandum agreements that affected the Greek economy
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and more specific the levels of car sales, where very well reported and measured by time
series theory and the use of autoregressive models.

The demonstration of more than seven time series models and the empirical implemen-
tation of forecast combination give a thorough presentation of econometric models that can
be used in marketing data that can capture their performance and forecast future values.
The exhaustive test of data transformation using Box-Cox methodology against the origi-
nal values gives a better understanding of why transforming the data can always help us
in forecasting. The research offers steps towards a better understanding if the variability
and complexity of the Greek market and that the more information one can use the better
it is. Combine information given by various forecasting models gives better results than

using separate forecasting models results.
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Chapter

Time Series Empirical Analysis.

2.1 Introduction

The collection of observations of well-defined items, obtained through repeated mea-
surements over time, like day, month, week, are called “Time Series Data”. In this thesis’s
empirical research, the time series data are the new passengers’ car registration numbers for
the top motor vehicle importers —representatives of the automobile retail sector in Greece.
Car registration numbers are well defined and consistently measured at equally spaced in-
tervals, collected regularly, on a monthly base. The researcher has, equivalently, assume
that the monthly new passengers’ car registration data series is the monthly new car sales
levels of each one of the selected motor vehicle importers representatives, operating in the
Greek car market. These observations are treated as time series data, and the time series
analysis, that will follow, can be considered having characteristics like an analysis done on
regular marketing data. Furthermore, the study of the new car sales data encompasses
methods for analyzing data, to extract meaningful statistics and other characteristics. It
also focuses on a comparative analysis, that points out similarities and differences in the

researched time-series data.

Our data analysis begins with an overview of the Greek new Car Market during the
last two decades, alone with some crucial economic and political events during that period.

Then the various time-series data of this thesis empirical study are presented in more detail.
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In the data description section, summary statistics for our data, are presented, like mean,
kurtosis, variance, skewness (see Table 2.1 page 26), describing ten (10) different data sets
and giving useful statistical inferences for each one of the different time-series samples. The
summary of statistics gives all statistical properties of the series along with two tests for
normality and randomness in our sample data. The graphical presentation of the data, for
this empirical research analysis, is presented by a line and a Box plot of the raw data alone
with the autocorrelation function (ACF) and the partial autocorrelation function (PACF)

plots (see Figure 2.4, Figure 2.5 and Figure 2.6).

Seasonality, which is the regularly repeated pattern of highs and lows related to calendar
time, such as seasons, quarters, months, and so on, is observed in Box plots of our data
along with the months of the highest and lowest sale level in a yearly base. Concluding
remarks are given in the analysis of the data characteristics of each sample set and their

graphical presentation features.

In short the plan of this chapter is the following. In Section 2, a general reference in the
overall Greek new car market is discussed, alone with some political and economic events.
In Section 3, by the empirical data analysis of the variables are presented which include the
data description, summary statistics and graphical presentation of the series. In Section 4
the literature review give more details in the related work that has been done in the field
of the Automobile sector and the applied methodology for univariate time series modeling
in marketing data (like sales). In Section 5 the research methodology and the univariate
time series forecasting methods and models that will be applied are briefly explained with
specific focus in their theoretical background and their methodology. In Section 6 there
is a short presentation of the forecasting methods with a discussion of the qualitative vs
quantitative forecasting methods and techniques. Finally in the last section, there is a

short discussion that summarizes the findings of this chapter.
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2.2 Overview of the Greek new car market.

The automotive industry around the world is facing several challenges right now, such
as economical crisis and tough competition. At the same time demand for alternative tech-
nologies is increasing and the legislation on emissions for light-duty vehicles is tightening.
The European car market has been a prime causality of the continents’ economic crisis as
hard-pressed consumers differ purchases and several leading European makers have been
forced into radical restructurings. Greece has no heavy industry so there are not any au-
tomotive manufactures in the country. All vehicles are imported from different countries
and various car representatives are promoting, selling, and delivering various automotive
vehicles to motor trade customers. However, Greek economy’s new reality, during the last
ten years, shows that the Greek society is undergoing a severe pressure due to austerity
measures applied in an attempt to control and stabilize the country’s enormous debt. The
global economic recession has put nations under situations that were difficult to handle or

control.

Greece, as a member of the European Union, at the year 2010 asked for the contribution
of EU (European Union) the European Central Bank (ECB) and the International Mone-
tary Fund (IMF), and due to that, the Greek government had implemented a sequence of
unprecedented austerity measures in an attempt to control the country’s enormous debt.
The consequences of economic depression, in business and in all aspects of everyday lives,
caused uncontrollable destabilization in Greek society. New measures, voted by the Greek
government, and new laws were in force. Measures that have not been implemented before
in any other EU country and therefore the economic and social consequences had not been
effectively calculated or anticipated. The exhaustive austerity measures combined with
political instability, change the economic and social reality in Greece. The country was
experiencing the biggest economic crisis in its modern history. People had to confront a
new way of living based on uncertainty, insecurity, disappointment, lack of trust, unem-
ployment, and disorientation. Greek citizens were called upon to reform the society, the

economic activities, their habits, and be reformed by this new reality.
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Total New Car Sales in Greece
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Figure 2.1: Total New Car Sales in Greece 1998-2019 [Bar Chart).

The economic situation in Greece had effected all aspects of economic life. Figure 2.1
(page 16)! visually gives the flow of the yearly total new car sales in the Greek market for
the last 20 years (from 1998 till 2019). If we divide the period in half we come up with
two different realities for the Greek car market, before and after 2009. In the period of the
first 10 years (i.e. from 1998 till 2008) the total yearly car sales average is above 250.000
cars per year, while in the second period (i.e. from 2009 till 2019) the total yearly car sales
average hardly reach 100.000 cars per year, which is less than half of the first period. The
figure shows clearly the dramatic decrease in sales after the year 2010 and how the new
reality influenced the sales levels of new cars. In periods of economic recession, like the one
Greece was into, the first thing that the consumers do is to prolong or postpone buying
durable consumer goods, like cars, furniture, and so on. The new car sales sector continues
to experience difficult economic operating conditions. New vehicle registrations provide
a measure of confidence and stability in the Greek economy and automobile retail sector
from businesses and consumers alike. Low levels of sales revile how deep recession and

instability is in the Greek Market even nowadays and how businesses (car representatives)

!Data from the Association of Motor Vehicle Importers Representatives (AMVIR), http://www.seaa.gr
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and customers (car buyers) react to this.

In the modern history of Greece there are some special events or elements that had
influenced the economic situation of the country and therefore the total new car sales in
Greece from 1998 till 2019. To understand and rationalize the flow of the new car sales
it is useful to keep in mind what had happened during the period of the last 20 years in

Greece. A short presentation follows:
* During 1999-2008 Greek citizens could borrow money with low interest rates.

* In the year 2000, parliamentary elections were held in Greece in April 2000. The
ruling Panhellenic Socialist Movement (PASOK) of Prime Minister Costas Simitis
was re-elected and that gave stability to the economy (historical high level of car

sales -peak 1).
* In the year 2001, the drachma, Greece’s national currency, was replaced by Euro.

* In the year 2004, the Olympic Games were held in Greece, and parliamentary elec-
tions in March 2004, where New Democracy Party with Prime Minister Kostas Kara-

manlis won the elections (high level of car sales -peak 2).

* In the year 2007, parliamentary elections were held in Greece in September 2007
and the New Democracy Party of Kostas Karamanlis was re-elected (high level of car

sales -peak 3).

* In the year 2007-2008, the worldwide financial crisis, also known as the global fi-
nancial crisis (GFC), started with the depreciation in the subprime mortgage market
in the United States, and it developed into an international banking crisis and a se-
vere worldwide economic crisis (car sales starts to fall since car-loans were severely

restricted).

* In the year 2010, parliamentary elections in Greece in November 2010 and the Pan-
hellenic Socialist Movement with George Papandreou as Prime Minister was elected.

Greece was in danger of bankruptcy. The first (15') Memorandum of Understanding
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with the “TROIKA” of foreign creditors — the European Commission, the European
Central Bank, and the International Monetary Fund — was signed over the terms of

a bailout agreement (car sales fall dramatically).

x In the year 2012, in March, the second (2"¢) bailout package or the second memoran-
dum was agreed. Parliamentary elections in Greece on June 2012 and Greek voters
gave a narrow victory to Antonis Samaras, the leader of the New Democracy party

(car sales reached a historical bottom record).

* In the year 2015, two snap parliamentary elections in Greece in January and Septem-
ber. Greece’s exhausted voters seem to have lost patience with the traditional par-
ties of power and gave the victory for Alexis Tsipras’ Coalition of the Radical Left
(SYRIZA) Party that promised to tear up bailout agreements that had created a
“humanitarian crisis”. On 5 June 2015 the “Greek bailout referendum” was held
where citizens had to decide whether Greece should accept the bailout conditions in
the country’s government-debt crisis proposed. As a result, the bailout conditions
were rejected by a majority of over 61% who voted “NO”. Despite that in July the
third (3"?) bailout agreement/memorandum, was signed (car sales stay low but with

an upward trend).

* In the year 2019, parliamentary elections in Greece in May where the liberal-conservative
political party New Democracy and its new leader Kyriakos Mitsotakis won power
over Alexis Tsipras’ Coalition of the Radical Left party (SYRIZA). This was largely
been seen as a battle for the middle-class which was severely impacted by austerity
measures following the country’s near-bankruptcy and assistance from international

creditors (car sales develop a stable upward trend).

During the period of interest 1998-2019 it seems that there were three (3) peaks in 2000,
2004 and 2007 and then a down turning point in 2012 where car sales reached the lowest
sales level of this period. In more detail, since the worldwide financial crisis in 2007-2008,

the new passenger vehicle sales in Greece had a downward trend and reach the bottom line
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in 2012. After that, the market seemed to regain some hope and a small growth of only
0.4% had occurred in 2013 car sales which were of course far from the historical peak of
sale that happened in 2000.

The Greek car market was fueled by low interest rates courtesy of the euro, from 1999
to 2008. The lower the interest rate, the more willing people are to borrow money to make
big purchases, such as a new car. During these years the Greek new car market exceeded
250.000 new car sales per year. That is a big number of small countries like Greece. Since
the country has a population of around 10 million people the level of new car sales meant
that Greeks bought one new car every 40 citizens each year. It is too hard to keep that
pace or even increase it. The Greek statistic organization?, reported at the Greek census

of 2011 that :

30,4% of the total registered household had no car,
45,5% had one car
20,3% had two cars, and

3,8% had more than two cars.

Household car ownership in Greece

No car 30,4%

One Car 45,5% More than two Cars3,8%

Two Cars 20,3%

Figure 2.2: Household Car Ownership in Greece [2011 Census].

2ELSTAT
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Furthermore, at the end of 2008, after the begging of the economic crisis, when the
cheap credit ran out, the Greek car market crashed fast and deep. Car representatives’
managers had to make budget cuts, sales personnel redundancies, or close down branches
all around the country. The collapse of the Greek automobile market reflected the dire
state of the Greek economy as a whole.

The new-car market pie was divided by various brand leaders in the Greek market.
Toyota was at the top sales position as the bestselling car brand in Greece for many years
and a leader ahead of other German brands like Volkswagen and Opel. On the other hand,
the Japanese car-makers like Toyota, Mazda, Suzuki and Mitsubishi, all managed to grow
in European countries, helped by a soft yen, new smaller diesel engines in their line-up and
new models tailored to European tastes.

The market share of each firm’s new car sales level in the Greek market change over the
years, however, the differences are usually small. Graphically the sales of each firm, as a
percentage of the total number of new car sales, are illustrated in Figure 2.3 as a pie chart,

for the year 2011.

Greek New Car Sales 2011

ETOYOTA B VOLKSWAGEN W OPEL W NISSAN
HFIAT W HYUNDAI M FORD W CITROEMN
SUZUKI ES5KODA B MERCEDES BMW
RENAULT AUDI SEAT PEUGEOT

OTHER

Figure 2.3: Market Share for Greek new-cars [Pie Chart].

In general, more than 35 different firms were operating in the Greek market and the
market share was divided into many small players. Only 2 to 3 firms have each a market

share around 10%, 6 to 8 firms have each around 5%, 7 to 8 firms have each less than 3%,
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5 to 6 firms have each less than 0,5% and the rest have less than 0.1% market share during
these years of research. Furthermore, sales activity can be divided into three different
groups. The first group represent about 40% of total sales i.e. 1/3 of the total share and is
dominated by the leading car representatives consisting of not more than 3 firms that have
each around 10% of the total sales in the market (usually the players are Toyota, Opel,
and Volkswagen). The second group manages to have only half the share of the first group
i.e. around 20% of the total sales and consists of 6 to 8 firms with a share of less than 5%.
The last group covers the share of 40% of the markets and includes many firms with small

market share (3% to 1%). Throughout the years this taxonomy is not changing much.

2.3 Empirical Data Analysis.

This empirical analysis time series data includes a group of 10 different sample data
sets. The sample data sets are comprised of monthly new car registration in Greece from
10 different firms. The time starts from January 1998 till December 2016, which gives a
total of 228 observations for each one of the ten (10) data samples. These data sets are
new car registrations from the largest Motor Vehicle importers-representatives operating in
the Greek automobile retail market. The data are obtained from the Greek Motor Vehicle
Importers - Representatives (AMVIR)? statistical database. Data are the passenger car
registration numbers for the last 19 years as officially recorded from the Greek authorities.
More than 35 different passenger car representatives were operating in Greece but for this
research, only a group of the top 10 firms operating in the Greek market was chosen. The
criterion was the sales level of each firm operating in the Greek market in terms of cars
registered ending up to a blend of leading companies operating in the Greek market.

The sample of the 10 leading companies of this retail market is a sample of more than
70 % of the total retail sector of the new car market. The pie chart representation of new
car market sales in Greece for the year 2011, shows that the research sample covers more

than 3/4 of the total market activity.

3https://www.seaa.gr /el /statistics /registrations
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2.3.1 Descriptive Statistics.

In this section, a brief description of the 10 data sets is given, which represents a sample
of the total new car sales in Greece. Descriptive statistics that summarize the data sets
are broken down into measures of central tendency and measures of variability (spread) of
each data set. The descriptive (summary) statistics for the monthly new-car sales series are
given in original (raw) data and the logarithmic transformation of the original data. The
mean, the median the maximum and minimum value of the series, the standard deviation,
the skewness, and the kurtosis are given.

Under the time series analysis, the researcher is interested in the distributional proper-
ties of each series, which can be defined by the moments of each random variable. Generally,

there are four central moments, which are important when examining a time series behavior:

1. The first moment is called the mean or expectation of the series and it measures the

central location of the distribution u or Z.

2. The second central moment measures the variability of the series and is called the
variance of the series denoted as o2. The positive square root of the variance is the

standard deviation of the series.

3. The third central moment measures the symmetry of the series concerning the mean

and is called skewness(S).

4. The fourth central moment measures the tail behavior of the series and is called

kurtosis(K).

The first two moments of a random variable uniquely determine a normal distribution
(i.e. =0, 0> = 1) while for other distribution higher-order moments should be addi-
tionally considered as well. The third and fourth central moments of = are often used to
summarize the extent of asymmetry and tail thickness. In a normal distribution, skewness
equals zero (S=0), which indicates that the values are relatively evenly distributed on both
sides of the mean, and kurtosis equals three (K=3), which is presented graphically as a

bell-shaped diagram.
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Furthermore a distribution with negative skewness (S < 0) indicates that the tail on
the left side of the probability density function is longer than the right side and the bulk of
the values (possibly including the median) lie to the right of the mean. On the opposite,
a distribution with positive skewness (S > 0) indicates that the tail on the right side is
longer than the left side and the bulk of the values lie to the left of the mean.

A distribution with kurtosis more than three (K > 3) is called leptokurtic and is said to
have heavy tails, implying that the distribution puts more mass on the tails of its support
than a normal distribution does. We tend to see kurtosis more than three in series where
their distribution contains more extreme values. On the other hand, a distribution with
kurtosis less than three (K < 3) is called platykurtic and is said to have short tails, which
gives a uniform distribution over a finite interval.

Additionally, this study is interested to test the normality of the series, which means to
see whether the sample series are normally distributed. This is important for the errors of a
modelling process. The two popular formal statistical tests for normality that are referred
in this research are: the Shapiro and Wilk’s test (SW) and the Jarque-Bera (JB) tests.

The Shapiro and Wilk’s test is a well known goodness of fit test for the normal
distribution. It tests the null hypothesis that the sample x1, x», ..., x, come from a normal
distributed population. It was published in 1965 by Samuel Shapiro and Martin Wilk.

The test statistic is .

(3 cizp))?
W =l

> (i - 2’

where z(;) (with parenthesis enclosing the subscript index i) is the i order statistic i.e.

the ith smallest number in the sample; z = (x; + x93 + - - - + z,,) /n is the sample mean, the

) . _ mTv—l n B .
constants «; are given by (aq, o, ..., q,) = (VI —T) /2 where m = (my,...,my)
and mq, ..., m, are the expected values of the order statistics of independent and identically

distributed random variables sampled from the standard normal distribution at time T |
and V is the covariance matrix of those order statistics. The user may reject the null
hypothesis if the value of the statistic W is too small.

The test of normality can additionally be interpreted via a Q-Q plot which can tell a lot
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about the distribution non-normality and may point to solutions. On the other hand, the
Shapiro-Wilk test is sample size-dependent and it does not indicate the degree of deviation
from normality directly. Therefore in a small sample, someone almost always concludes
normality and in a large enough sample, even a tiny deviation from normality will be

significant.

A

The Jarque and Bera test (JB) is a goodness-of-fit test of the sample skewness(S)
and sample kurtosis (K) matching a normality distribution. It is based on the result that
a normally distributed random variable has skewness equal to zero and kurtosis equal to
three. The null hypothesis is a joint hypothesis of the skewness being zero (0) and the
kurtosis equals three (3) (or the excess kurtosis being zero). For the normal distribution of

x; series, we get S=0, K=3, and JB=0, and any deviation from this increase the JB test.

The test is defined as:

JB = —(5%+ (K —3)?) (2.1)

IS,

n
6

where n is the number of observations, S is the sample skewness, K is the sample kurtosis.

JB test is asymptotically distributed as a chi-squared random variable with 2 degrees

of freedom, to test for the normality of ;.
Hy : S =0 and K=3 against the alternative
H.: S # 0and K # 3 with error «.

Reject Hy if JB < x%ja, in other words, reject the null hypothesis of normality if the

p-value of the JB statistic is less than the significance level(a) [Tsay, 2005].

The main disadvantage of the JB test is the over-rejection of normality in the pres-
ence of serially correlated observations [Thomakos and Wang, 2003]. However, Thadewald
and Buning [2007] provided simulated evidence that the JB test, generally works best in
comparison to several alternative normality tests but for some cases, other tests should be

preferred.
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2.3.2 Summary statistics of Data

The summary statistics explain each one of the 10 data sets of the retail firms of the
Greek market covering the period from January 1998 to December 2016 and are illustrated
in Table 2.1 (page 26)*. In general, the first two moments (the mean and the variance) is
said to determine the normal distribution. The last two moments (kurtosis and skewness)
are used to summarize the extent of the asymmetry and tail thickness of the series. For a
time series variable with normal distribution, the mean equals the median. In more detail,
the median is the numerical value separating the higher half from the lower half of the
observations. It can be found easy by simply arranging all the observations from the lowest
to the highest value and picking the middle one. In our study case, we have an even number
of observations so we take the two middle values, which corresponds to interpreting the
median as the fully trimmed mid-range. More specifically in this empirical research sample
series, the mean and the median appear to be close enough to each other but still do have
a small difference which gives a hind for normality but also a small deviation from it as
well (Table 2.1, 2"® & 37 columns ) which makes it difficult to decide whether we have a
normal distribution or not.

Max represent the maximum value and Min the minimum value of the monthly new-car
sales level (Table 2.1, 4" & 5% columns). By subtracting the minimum from the maximum
value gives a new number, which is the monthly range of each firms extreme new car sales
numbers (Table 2.1 6! column). The bigger that number, the wider the range of the
extreme monthly sales of each firm. Notice that the higher range of the 2 extreme monthly
car sales levels is in Toyota (3.640 cars) followed by Hyundai (3.059 cars) and Fiat (3.043
cars) while the Skoda (1.457 cars) and Peugeot (2.256 cars) have the lower range (in original
data). This indicates how sharp the fall in sales was in each one of the firms and how wide
was the sample of each firm.

Skewness(S), in Table 2.1 (8") column, is positive and ground zero for the original data,

but not equal to zero, as in normal distribution. It is giving a positive result at a range

4Note: SD=Standard Deviation, S=Skewness, K=Kurtosis, JB=Jarque Bera test, SW=Shapiro Wilk’s

test, p-values in brackets.
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Statistics ~ Mean Median Max Min Range SD S K JB(p-value) SW(p-value)
Monthly Original New-Car Sales
Opel 1.357 1.293 3.154 263 2.891 738 0,39 -0,80 3,73(0,15) 0,98(0,04)
Toyota ~ 1.577 1.612 3.938 234 3.704 839 034 -0,71 0,54(0,76) 0,98(0,19)
VolksWagen 1.473  1.497 2.634 219 2415 492 0,06 -0,21 0,32(0,85) 0,99(0,31)
Hyundai 1.617 1.656 3.292 233 3.089 731 0,07 -0,75 3,70(0,15) 0,98(0,03)
Peugeot  1.062 1.089 2369 113 2256 506 0,15 -0,59 2,81(0,24) 0,98(0,02)
Ford 1143  1.111 2448 136 2312 536 029 -0,84 6,78(0,03) 0,97(0,00)
Nissan 998 961 2.630 8 2545 378 0,54 1,49 24,71(0,00) 0,97(0,00)
Fiat 996 880 3.260 94 3.260 670 0,86 0,19 17,84(0,00) 0,95(2,391e-05)
Skoda 610 631 1.524 67 1.457 302 0,27 -0,23 2,29(0,31) 0,98(0,03)
Citroen 1136 1101 2729 88  2.641 577 028 -0,44 3,30(0,19) 0,97(0,00)
Monthly Log New-Car Sales
Opel 734 742 806 595 211 042 -063 0,06 11,04(0,003) 0,96(0,00)
Toyota 7,48 7,55 8,28 5,67 261 044 -1,07 1,35 45,42(1,367e-10) 0,93(3,452e-07)
VolksWagen 7,23 7,31 7,88 5,39 249 0,4 -1,38 3,51 142,07(< 2,2e —16)  0,91(1,592¢-8)
Hyundai 7,26 741 810 545 265 057 -0,95 027 26,10 (2,14e-06)  0,92(8,867¢-08)
Peugeot 6,82 6,99 07 473 3,04 0,61 -1,01 0,51 30,76 (2,089e-07) 0,91(3,843e-08)
Ford 6,91 7,01 7,80 491 289 0,55 -0,74 0,27 16,08 (0,0003) 0,95(2,976e-05)
Nissan 6,82 6,87 787 444 343 046 -1,50 446 205,11 (< 2,2 —16) 0,90(4,913e-09)
Fiat 700 704 809 538 271 052 -037 -0,17 4,04 (0,132) 0,98(0,16)
Skoda 6,25 6,45 733 4,20 3,13 0,65 -1,11 0,74 38,71 (3,927e-09) 0,90(7,258e-09)
Citroen 6,86 7,00 791 448 343 066 -0,99 046 29,16 (4,649¢-07)  0,91(3,95¢-08)

Table 2.1: Descriptive Statistics for original and log values of monthly new-car sales of 10 firms.
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between 0,06 to 0,79 in all sample series. This is indicating that we have an elongated tail
at the right which means more data in the right tail than would be expected in a normal
distribution. So the original series is skewed to the right, which implies that the left tail
of the distribution is fatter than the right tail. On the other hand, the skewness becomes
negative if we take the log values of each series indicating the opposite conclusion for the
log values distribution. In the log values graph, there is an elongated tail at the left, which
means more data in the left tail of the distribution, and that makes the right tail fatter
than the left. So if we take the log transformation of the series, the log series is skewed to

the left, while the original series is skewed to the right.

Kurtosis(K), in Table2.1 (9" column), in original new-car sales series is much less than
three (3) in all the sample series, indicating that the series have short tails and can be
called platykurtic. (Notice: Results show kurtosis and not the excess kurtosis i.e.kurtosis-
3). Transforming the data, by taking their log values, increases the kurtosis but still
keeps it around zero quit lower than 3. There are only two cases the opposite result (i.e.
(K > 3)) which indicate distributions with heavy tails: Volkswagen (K = 3,51) and Nissan
(K =4,46).

Furthermore, the values of the Jarque-Bera test for normality of the original new-car
sales values, rejects the null hypothesis that series are normality distributed only for the
sales series of Ford, Nissan and Fiat, because their J-B statistics are high numbers away
from zero (Table 2.1, 10" column) and their J-B statistic p-values are less than the 5%
significance level. In all the rest series (i.e. Opel, Toyota, Hyundai, Peugeot, Volkswagen,
Citroen, and Skoda) we can assume that they are normally distributed. However, in the log
values of the same series, the results are different. All new-car sales series reject that the
series are normality distributed due to a very high value for each one of the J-B statistics
while the corresponding p-values are much less than the 5% level of confidence.

The Shapiro Wilk’s test p-values (Table 2.1, 11%* column) are less than o = 0,05 (for
a 95% confidence level) in case of Opel, Hyundai, Peugeot, Ford, Nissan, Fiat, Skoda and
Citroen for original new-car sales series, which means that data seems to be deviate from

normal distributioni.e. reject Normality. On the other hand, the Shapiro Wilk’s test for
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the log values of the series indicates that all the series are rejecting normality. So for the
original values of the series and the log-values of the series the conclusions is the same using

either test.

2.3.3 Graphical Presentation.

Raw data are graphically presented in four different panels which present the time-
series line plots, the Box plots, the time series Autocorrelation Function (ACF) plots and
the time series Partial Autocorrelation Function (PACF) plots for three different Greek
vehicles representatives for the sake of a concise presentation (Figure 2.5 on page 36, Figure
2.4 on page 35, Figure 2.6 on page 37).

The statistical graphs can summarize our data in a more readable and understandable
way, for economists and non-economists. As many people say “a picture is worth a thou-
sand words”. Therefore we consider the graphical presentation valuable for our analysis
since it can indicate some very important features, useful in our analysis. Numerous graph-
ical techniques can be used, but we will focus on just a few time series plots, to show how
the variables change over time and what are the data characteristics. Firstly, we illustrate
the line plots of the new car sales level that show the movements and fluctuations of sales
over time and then we present the Box Plots of monthly sales of each firm in raw data. Sec-
ondly, we present the plots of Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) of each sample data variable alone with the Ljung-Box autocorrelation
test and finally the study gives the conclusions of the graphical presentation.

The line plot of the series illustrates the turbulent economic environment and some
signs of seasonality. That gives us a hind that the variance of data may fluctuate and not
be stable during the period that we examine. However, it is hard to identify a clear upward
or downward trend throughout the years. Trend, in general, is the movements of sales in a
prolonged period when they are rising or falling faster than their historical average. There
is no consistent trend (upward or downward) over the entire time for none of the sample
time series. The series appears to slowly wander up and down. However, it is identified

a short-term trend if we split time into smaller segments since there is no evidence of a
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clear long term direction (trend) of the series in the whole period. For example, generally
speaking for all car representatives we have a slightly upward trend for the years 1998 till
2002 and a downward movement for the period 2008-2010, with a dramatic dropping trend
till the year 2012 due to the economic crisis that affects all fields of economic life. After
the year 2012 where sales reached a historically low level of sales, there was a slow upward
trend and the market found a new equilibrium at a level about half of what it was during

the years 1998-2008.

Box plots are a convenient way of graphically depicting groups of numerical data through
their quartiles. They are useful for identifying outliers (which are observations far away
from other data) and for comparing distributions. The Box plots display differences between
different variables without making any assumptions about their statistical distribution. The
different spacing in the parts of the box helps us to visually identify the degree of dispersion

in other words the spread and skewness in the data and also identify outliers.

Additionally, marketing data like sales always exhibit calendar effects. The Box Plots
graphical representation of the series gives clear evidence of seasonality. These plots sup-
port the seasonality of the data, reveals the underlined seasonal pattern, and indicate the
customers’ attitude in a yearly effect. In Box Plot figures observations for each month are
collected together overall years in research and are presented in one time plot, as a sepa-
rate time series for each of the firms. In other words, the January sales level for one car
representative is collected for all years (1998-2016) and the horizontal line in each month
is the average sales level for the sample period. Thus, the underlying pattern is seen and
it enables us to visualize the seasonality over time. Furthermore, it is easy to identify the
months with high or low sales levels throughout the year. According to these plots, the
month with the highest sales level is January for all car representatives and July is the
second month with the highest sales on a yearly base. Generally speaking for all firms au-
tumn and winter months have low new-car sales levels. December, September, and August

are months with quite low sales levels for all firms.

December, the last month of the year, has the lowest sales level. One reason for this
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is that customers try to avoid the taxation claim® placed by the Government, annual to
all vehicles. It is due for each car yearly, on a calendar base. This tax bill depends on
the engine power of the car and must be paid to the local Independent Authority for the
Public Revenue office from the owner of the car. It is valid from January till December
of each year and it is due to be legally be permitted to drive the car in Greece for the
current calendar year. If one purchases a new car in December this tax bill should be
paid for the year ending in 315 of December, while in January the same amount should be
paid again for the coming year. Therefore a lot of potential new car buyers prefer to delay
their purchase and make it in January instead of December. Customers try to avoid the
yearly taxation amount that car owners have to pay to the Greek authorities by postponing
their buy until January, so instead of December they buy in January and pay the yearly
taxation only once, for the new coming year. This produces low sales in Autumn especially
in December and the high sales level in January. The second month with low sales level
is September where the school starts and people are focusing more on their family and
their children and the families’ educational expenditures rather than in purchasing durable
products, like cars. August is the third month with a low sales level which is also the last
month of summer. This comes not surprisingly mainly due to two reasons: Firstly the
climatological circumstances. August, as the last month of summer, is the hottest month
in Greece, and the period where consumers are on holiday. Secondly, it is the month where
car manufactures are lowering their production or even closing their factories for holiday
reasons. Car representatives are closing or work with a limited workforce since the demand
is not high and the staff needs to take some days off so we notice a high level of holiday
absence.

The most common feature exhibited by actual time series is the fact that the observa-
tions are not independent and this is a key point when research uses the previous history
of the series to make predictions in particular conditional distributions on the past. One
important tool for assessing the degree of dependence in observed data is the sample auto-

correlation function (sample ACF) of the data.

Scalled Teli Kykloforias, in Greek
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The autocovariance is the covariance® of the variable with itself which actually means
that it is the variance of the variable against a time-shifted version of itself. For a time
series, the covariance and the autocorrelation functions are needed to model the dependence

over an infinite number of random variables.

The sample autocorrelation function (ACF) for new-car sales time series, gives correla-
tions between the z; series and its lagged values” In time series analysis a lag is defined as
an event occurring at time ¢+ k where k£ > 0 and it is said to lag behind an event occurring

13

at time t, the extent of the lag being k. In 1970, Box and Jenkins wrote, “...to obtain
a useful estimate of the autocorrelation function, we would need at least 50 observations
and the estimated autocorrelations would be calculated for k = 0,1,. .. k lags, where k was
not larger than n/4”, where n/4 is the sum of observations divided by four. The ACF®
can be used to identify the possible structure of any time series data, because it gives the
correlations between x; and z;_1,x; and x;_5 and so on. In other words, it illustrates the
similarity between observations as a function of the time separation between them. The
only disadvantage is that there is often not one single clear-cut interpretation in the sample
autocorrelation function.

In empirical research, the autocorrelation graph of the residuals is often used. For
example, to detect seasonality, the researcher plot the autocorrelation function (ACF) by
calculating and graphing the residuals (observed values minus mean for each data point).
The graph of the residuals against a specified time interval is called a lagged autocorrelation
function or a correlogram figure.

The null hypothesis for the ACF is that the time-series observations are not correlated to
one another, which means that any pattern in the data is from random shocks only. When

we plot the sample ACF of a model’s residuals, the ideal is not to find any significant

n
6Sample Autocovariance Function for z; time series with 7 = % > ap and Var(zy) < oo ist 4(h) =
t—1

n—|h|
% > (Teqpn) — @) (2 — T), —n < h < n where v, (h) = Cov(Tiyn, xt) = E[(®r4n — Teqn)(xr — )] =
t=1
Elxiihet) — TeenTy
“for lags of 1, 2, 3,...k the lagged values are Ty_1,Ti—2, Ti—3, ... Ti—k-
y(h
8Sample autocorrelation function (ACF) is: p(h) = YEO; —n<h<n
Y
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correlations for any lag. As a rule of thumb for an ACF, if there are plotted residuals that
are greater than 2 standard errors away from the zero mean, that indicates statistically
significant autocorrelation. A given autocorrelation coefficient is classed as significant, if it

is outside a +1,96 % 1/(n)1/2 band where n is the number of observations.

The partial autocorrelation function (PACF) is used to detect trends and seasonality.
In general, PACF is the amount of correlation between a variable and its lag that is not
explained by correlations at all lower-order lags. The partial autocorrelations at all lags can
be computed by fitting a succession of autoregressive models with increasing numbers of
lags. In particular, the partial autocorrelation at lag k is equal to the estimated coefficient
in an autoregressive model(AR) with k terms noted as AR(k). The AR(k) is a multiple
regression model in which z is regressed on LAG(z,1), LAG(z,2) and so on, up to LAG(z,k).
Thus, by mere inspection of the PACF we can determine how many autoregressive terms
we need to use for the explanation of the autocorrelation pattern in our time series. If the
partial autocorrelation is significant at lag k and not significant at any higher-order lags,
for example, if the PACF cuts off at lag k, then we should try fitting an autoregressive

model of order k for stationary series.

In ACF Plots there are 3 significant autocorrelation coefficients commonly observed in
all series at lag 12, 24, and lag 36, which lay more than 2 standard errors (which is the
approximate 95% confidence limits) from the zero mean. We interpret this as a twelve-
month seasonal pattern that cycles yearly. So graphical presentation of ACF reveals the
existence of seasonality in our sample data. The characteristics of the ACF and PACF
of the 10 series of our research sample tend to show a strong peak at k=12,24,36 in the
autocorrelation function. The fluctuations, around the vertical axis of zero means, indicate
that there is a cycle of about 12 months in the new-car sales series indicating strong
seasonality. There are of course many other smaller or higher peaks appearing at different
lags in the autocorrelation function and the partial autocorrelation function. This may
suggest the order of either a seasonal moving average (MA) or a seasonal autoregressive
model (AR) or perhaps both, but we need to make sure first that our series is stationary

before making any suggestions for their coefficient order. The “suspension bridge” pattern
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in the ACF is typical of a series that is both non-stationary and strongly seasonal. In
figures 2.4 on page 35 we have the ACF and the PACF of the sample time series plots of
the Toyota raw series and Opel in Figure 2.5 page 36), which are obtained by plotting the
“residuals”of an ARIMA(0,0,0)x(0,0,0) model with a constant: the autocorrelation plots
indicate that the series may not be stationary, because the correlations die down very slowly

in most of the cases.

Ljung—Box Autocorrelation Test

T QLB p-value

Opel 172,98* | <2,2¢ — 16

Toyota 96,99* | <2,2e — 16

Volkswagen | 164,31* | <2,2e — 16

Hyundai | 368,76% | <2,2¢ — 16

Peugeot | 635,34*% | <2,2e — 16

Ford 609,92* | <2,2e — 16

Nissan 148,47* | <2,2¢ — 16

Fiat 476,12*% | <2,2e¢ — 16

Skoda | 484,12* | <2,2¢ — 16

Citroen | 474,48% | <2,2e — 16

Table 2.2: Ljung-Box Test for car sales series (original data with lag = 12)

Note:*Original Series autocorrelated

Autocorrelation plots are one common method for testing the randomness of the series
but the researcher additionally applies the Ljung—Box statistic test in the data. Ljung and
Box’s test for autocorrelations of the series is based on the autocorrelation plot, but instead
of testing randomness at each distinct lag, it tests the overall randomness based on several
lags [Bowerman et al., 2005]. The tested hypothesis is H,: all correlation coefficients up to

lag 1 are 0 (i.e. data are random) and the alternative H.: not all lags up to 1 are 0 (i.e.
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data are not random)

The statistic for this test is :Qrp = n(n+2) > (n—r)"'rZ, where n is the sample size,
7, is the autocorrelation at lag x. H, of randomness is rejected if Qg > 2425, where 22
denotes the 100 (1 — a)th percentile of chi-squared distribution with m degrees of freedom
and h is the number of lags being tested.

Ljung-Box Test in Table 2.2 on page 33 illustrates the results of our Ljung Box test
of the car series raw data of each car representative. It rejects the null hypothesis of no
autocorrelation at the 1 % level for all numbers of lags considered in each firm (lags=12).
The p-values are so small (P < 2,2e — 16), this means (P < 2,2% 10— 16) i.e. equals
0,00000000000000022 which is effectively close to zero (actually numerically undistinguish-
able from 0) and therefore we reject the null hypothesis. Hence the results from the Ljung
and Box’s autocorrelation test give evidence that original data series are not random which
means that they are autocorrelated.

Autocorrelation refers to the correlation of the time series with its past and future values
and there is significant evidence that there is autocorrelation between the observation of
each series. It is common to always use statistical tests to ensure that the graphical implied
conclusions are correct. This test is not telling us whether the series is stationary or not
and it is not adding much information, except that it is just confirming that there is some
correlation in the data as illustrated in the ACF and PACF plots. However, this test will be
much more useful later on, to test whether residuals of the estimated and selected models

are correlated or not.
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Toyota New Car Sales

Boxplot of Toyota new-car sales by Month
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Figure 2.4: Toyota new—car sales. Panel (a)Line Plot, (b)Box Plot, (¢) ACF, (d)PACF

Toyota line plot shows a rapid increase in their new car sales level for 2 years (1998-
2000) and then the firm seems to maintain a stable high market share in sales with very
small upward and downward movements throughout the years up until 2010. No extreme
values are observed throughout the years. However, after 2010 the scenery change. A rapid
downfall of the Toyota market share in new car sales seems to force the company to a much
lower level of sales. Seasonality plot indicates the yearly seasonal movement of the sales
with the highest sales occurring in January. The random plot indicate the change in the
sales level around 1999 with the sharp increase and around 2009 with the dramatic fall
(Figure2.4 page 35).

Volkswagen car sales, had an extended period of rapid growth in new car sales from
1998 till 2002. After 2002 the firm generally maintained its market share at the same level
for the next seven to eight years with some very small fluctuations. However, after 2020

there were high fluctuations which were caused by a dramatic decrease in sales that reached
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very low levels.

Opel New Car Sales

Boxplot of Opel new-car sales by Month
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Figure 2.5: Opel new-car sales. Panel(a)Line Plot, (b)Box Plot (¢) ACF, (d)PACF

Opel new car sales line plot during the period 1998 till 2016 indicates four picks each
one occurred in January of 2001, 2005, 2007, and 2010. Sales are increasing rapidly from
1998 until 2001 but then started falling until 2004. The company managed to regain its
market share in 2005 but sales decrease again. In 2007 the company managed to regain
sales level at a much lower level but at a stable pace and kept it for the following two
years. Unfortunately after 2009, the company started a downfall movement on its sales in
the Greek market that became dramatic during 2011. The high seasonality of the series is
obvious in the Box plot with the same pattern repeated on a yearly base. The Box plot
gives evidence of big fluctuations in the years 1999, 2000, 2002, 2004, and 2010 but in the
meanwhile fluctuations where more soft and stable (Figure2.5 page 36).

Skoda seems to have an extended period with rapid growth in the new car sales market

from 1998 till 2001. Additionally, the firm maintained its market share and surprisingly
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increase it over the years until the beginning of 2010. During 2010 and 2011 sales decrease
only slightly. This firm seems to be one of the favorite firms in periods of economic crisis
among consumers. That is mainly due to the low purchasing values of Skoda cars and the

perceived good value for money.

Fiat New Car Sales

Boxplot of Fiat new-car sales by Month
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Figure 2.6: Fiat new—car sales. Panel(a)Line Plot, (b)Box Plot,(c)ACF, (d)PACF

Fiat had a good market share in the Greek market with a slightly increasing trend of
its car sales level until 2002. Unfortunately, Fiat did not maintain its market share, which
gradually decreased until 2005 and stabilized at a new lower level. After 2010 Fiat car sales
decreased even more with less than 500 car sales per month (Figure2.6 on page 37).

Hyundar started with quite a high sales level in 1998 and had a stable increase in sales
until 2000 where sales had their first sales pick. The firm maintains a stable sales level with
very small upward and downward movements and reaches the second sales pick in 2005
with about the same level of sales. After 2005 a downfall of sales starts gives a signal of

temporal stability in 2010 but then starts to drop again. The highest sales were in January,
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April, and June each year while the yearly pattern is stable except the beginning and end
of the period where an increase followed by a decreasing trend is obvious respectively.

Peugeot sales had increased its new car sales level from 1998 until 2002 where the firm
reached its highest sales level. After 2002 it started to gradually decrease until January 2010
where the fall in sales was sharp and drastic reaching very low levels. There is however an
obvious repeated pattern on a yearly base but the fluctuations do not seem to be very wide.
On the other hand, the randomness of series that is not explained by trend or seasonality
seems to have quite big movements during the period and indicated the unpredicted and
unexpected different sales levels in this film.

Ford sales level had an extended period with gradual growth for six years (1998 till
2003). Ford seems to maintain its high level of sales for the next eight years (2003 till
2010) and finally started decreasing at an increasing speed. Seasonality is obvious in data
with a repeated pattern throughout the years and randomness is only wide at the beginning
of the observed period and stable for the rest of the period.

Nissan car sales reached their highest level in 2000 and ever since have a stable new
car sales level for the next ten (10) years with very small fluctuations. After the year 2010
sales decrease rapidly. There were high seasonality and very small fluctuations concerning
sales levels over each month.

Citroen starts with high levels of sales and keep them stable till 2008. It seems that the
firm enjoyed a stable market share for 10 years but then sales started decreasing rapidly. In
less than a year Citroen had lost more than half of its customers with a decreasing trend.
In the second half of 2009, the firm seems to regain a small percentage of its share but then
a more severe downfall movement started at the end of 2010 and made sales level drop to

a minimum until the end of 2011 and then stabilize in a lower level.

2.4 Related Work - Literature Review

In recent years there has been a great deal of discussion on applications of various time

series forecasting models and their performance in forecasting business activities. Several
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time series models, original like the naive models or the more complicated once like the
family of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models and
even further advanced model like the Exponential Smoothing (ETS) state-space models,
have been applied to explain forecasting performance of preferred variables. However, there
are paucities of studies with specific reference to the automobile retail segment in Greece.
Few noteworthy studies relating to automobile retail segments and other businesses may
be highlighted here. To my knowledge, there are no previous studies on the new car
sales market in Greece that use different time series econometric models in estimating the

volatility of sales levels.

Automobiles are highly differentiated durable products with variable lifetimes and the
literature review of research in automobiles covers a wide range of modeling. Berkovec
[1985] presents a short-run general equilibrium model for the automobile market combin-
ing a discrete model of consumer automobile demand with original models of new auto-
mobile production and used vehicle scrappage. Econometric estimates of the scrappage
and demand functions are then used to create a simulation model of the automobile mar-
ket, which is used to provide forecasts of automobile sales stocks and scrappage for the

1978-1990 period.

The Spanish Automobile Industry is investigated in Garcia-Ferrer et al. [1997] as a uni-
variate forecasting comparison case study. This paper investigated the forecasting ability of
two unobserved component models with fixed and time-varying parameters and compared
it with the standard ARIMA, Box Jenkins, univariate approach. The data used are the
monthly time series of automobile sales in Spain and the accuracy of the different meth-
ods was assessed by comparing several measures of forecasting performance based on the
out —of sample prediction for various horizons and different assumptions on the models’
parameters. The unobserved components model seems to provide greater flexibility for
adaptive applications while it is little to choose between the methods in forecasting per-
formance terms. In Hiilsmann et al. [2012] car sales forecast models are presented for the
automobile markets of Germany and US —America based on time series analysis and Data

Mining techniques. Lin Yuchen [2015] completed her thesis (with Honors, advised by Prof.
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Ed.Rothman) at the University of Michigan, Department of Statistics, with research on
Auto Car Sales Prediction as a statistical study using Functional Data Analysis and Time
Series. She fitted an ordinary least square (OLS) Model and a Time Series model to the
data since the error term was not independent and concluded that the unemployment rate
and stock price are not the sensitive variables in the model. On the other hand interest
rate, crude oil price, and consumer price index (CPI) for all items play a meaningful role
in predicting auto car sales and therefore suggest including these variables in a foresting

model.

In Barriera et al. [2013] presented a study describing the use of Internet search informa-
tion to achieve an improved nowcasting ability with original autoregressive models using
data from Portugal, Spain, France, and Italy for the unemployment rate and car sales.
Especially for car sales, they have found that in some cases the volume of search queries

helps to explain the variance of car sales data.

Nanaki [2018] measured the impact of economic crisis to the Greek Vehicle Market and
her research findings show a positive relationship of net disposable income to car — sales and
a negative relationship to unemployment rate, inflation rate and fuel price. She concluded
that the implementation of austerity measures led car sales to a significant lower level and
tax legislation of the Greek government affected car sales. On the one hand, she argues
that the favorable loan terms during the period of 2003-2008 increased citizens’ interest
in buying new cars and on the other hand, the social and economic changes led to a 40%

reduction during the period 2008-2014.

The automobile sector is among the most popular domains for application of choice
modeling in general and in the design literature specifically in Train [2009]. The major-
ity of researchers apply discrete choice methods to predict consumer-choice as a function
of product attribute and price Wassernaar et al. [2005]. Applications of choice models
within design implicitly rely on accurate choice predictions. In Lave and Train [1979] they
proposed a disaggregate model of vehicle class purchase choice base on consumer charac-
teristics and additional vehicle characteristics, like fuel economy, weight, size seat number,

and horsepower. Logit models along with variants including nested and mixed logit mod-
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els represent the most popular modeling approach by far. In Boyd and Mellman [1980]
they proposed a random coefficient logit model, while Whitefoot and Skerlos [2012] inves-
tigated the effect of fuel economy standards on vehicle size and employ a logit model with

coefficients.

The application of Time Series methods and techniques for business analysis is not new.
Time Series models are widely used to better understand business data or to predict future
points. One of the most important objectives in the analysis of a time series is to forecast
its future values. In 1982 the Journal of Forecasting published the results of a forecasting
competition organized by Makridakis et al. [1982]. That study used the 1001 time series
to compare 21 extrapolative methods and their ex-ante forecasting errors using a variety
of accuracy measures for different types of data and varying forecast horizons. Uni-variate
time series analysis is used in Rothman [1998], Johnes [1999], Proietti [2001], Gli-Alana

[2001] for forecasting the employment rate in US and UK.

Burman and Shumway [2006] considers the problem of prediction for stationary and
non-stationary univariate time series using modification suggested by the usual exponential
weighted moving average method. Empirical evidence shows that the method is competitive
with autoregressive integrated moving average (ARIMA) models which usually lead to
better forecasts.

Adding seasonality to business or science observations economic literature gave rise
to the application of the Seasonal Autoregressive Integrated Moving Average (SARIMA)
model which has been used in a wide variety of data for forecasting with successful appli-
cations in different fields of physical and social sciences.

In economic science, Wagner [2010] used SARIMA models in forecasting daily demand in
cash supply chains. Antoniadis et al. [2006] compared the resulting predictions of two real-
life data sets of wavelet -Kernel approach with those obtained by a smoothing spine method,
a classical SARIMA model, and a Holt-Winters (HW) forecasting procedure. They con-
cluded that although the SARIMA method performed better that method HW both were in-
ferior to the predictions that were made by the other functional base methods.Furthermore

Andrikopoulos and Markellos [2015] develop a model of dynamic interactions between price
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variations in leasing and selling markets for automobiles monthly using US data from 2002
to 2011 showing that variations in selling market prices lead rapidly dissipating changes of
leasing market prices in the opposite direction.

In tourism research,Kim [1999] and Lim and McAleer [1999, 2001] used SARIMA model
to obtain short-term forecasts such as monthly or quarterly outbound tourism forecasts;
Gonzalez and Moral [1995] applied SARIMA models in forecasting the international de-
mand in Spain , Song and Wong [2003] found the model to be the best forecasting model for
both China foreign visitor arrivals and total visitors arrival while Chang and Liao [2010]
used SARIMA model for predicting monthly outbound tourism departures from Taiwan.

In environmental research, Li et al. [2003] applied SARIMA models for forecasting soil
dryness index in southwest of Western Australia, while Mishra and Desai [2005], Modarres
[2007] and Abebe and Foerch [2008] used the model to for hydrological drought forecast-
ing. Momani [2009] used it for rainfall prediction in Jordan; Ibrahim et al. [2009] for air
pollutants prediction in several area of Malaysia; Durdu [2010] used it for forecast boron con-
centrations in a river in Western Turkey and Yusof and Kane [2012] used SARIMA models
and Exponential Smoothing (ETS) state-space models to predict the monthly rainfall.

In medical issues, Hu et al. [2004] applied the time series models for prediction of Ross
River virus disease in Brisbane; Briet et al. [2008] for short term malaria prediction in Sri
Lanka. In energy issues, Contreras et al. [2003] applied the SARIMA model for prediction
of next-day electricity prices in Spain and California which they found reliable and with
high accuracy; Ediger et al. [2006] for forecasting the production of fossil fuel in Turkey
and Ediger and Akar [2007] for prediction of primary energy demand by fuel in Turkey.

Hall and Q.Yao [2003] shows that ARCH and GARCH models have proven valuable in
modeling processes where a relatively large degree of fluctuations is present, just like in our
data.

Taylor [2011] in his empirical case study paper evaluate a recently proposed seasonal
exponential smoothing method previously considered only for forecasting daily supermarket
sales to monthly sales data from a publishing company and show evidence that the method

outperformed the other methods considered. Chatfield et al. [2001] reviews and compare
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a variety of potential models for Exponential smoothing forecasting methods that allow
for changing variance and is very interesting for our forecasting application because it
allows for risk and uncertainty which is needed. It shows that the Exponential Smoothing
procedures as an attractive proposition due to the availability of the software and the ease

of interpretation of the forecasting results.

The dynamic linear models or State-Space models are very general models that seem to
subsume a whole class of special cases of models and was introduced by Kalman [1960] and
Kalman and Busy [1961] primarily for aerospace-related research. The model was applied
in modelling economic data (Harrison and Stevens [1976], Harvey and Pierse [1984], Harvey
and Todd [1983], Shumway and Stoffer [1982], Kitagawa and Gersch [1984]). Durbin and
Koopman [2001] applied time series analysis in state-space models and Shumway and Stoffer

[2006] gives extensive examples in applied time series based in the dynamic linear models.

Exponential Smoothing (ES) was originally developed in the late 1950s ES models
rise from state-space models with only a single source of error and are called innovation
state-space models. Gardner [1985] and Ord et al. [1997] developed more than modeling
framework while Chatfield and Yar [1991], Ord et al. [1997] and Chatfield et al. [2001], es-
tablished prediction intervals for exponential smoothing methods. Stellwagen and Goodrich
[1999] used first the ES in automatic forecasting and Hyndman et al. [2002b] developed
it further in a more general class of methods with a uniform approach to the calculation
of prediction intervals, maximum likelihood estimation and the exact calculation of model

selection criteria such as Akaike ‘s Information Criterion.

There is a variety of applications of time series data in forecasting in the literature.
However, the number of efforts undertaken in the new car sales field of research is small,
not to mention the complete lack of research in the field of Greek new car market, especially

for time series models and methods applications that are covered in this thesis.
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2.5 Theoretical Framework of Time Series Models

This section presents the way we will apply our research as a Time series analysis.
Time series methodology is the process where the data series are analyzed to understand
the underlying structure and function that produce the observations. Understanding the
mechanisms of a time series allows a mathematical model to be developed that explains
the data in such a way that prediction, monitoring, or control can occur. In this chapter,
we are going to explain some of the major time series methods and in the following section,
we empirically test our data using these methods. We explain some popular Time series
models starting with the simple ones, like the Average, the Simple Naive, and the Seasonal
Naive models, which are easily calculated, and we gradually explain more complicated ones.
Research evidence shows, however, those very simple models are surprisingly effective in
fitting time series or forecasting them [Hyndman and Athanasopoulos, 2013]. The Average,
simple Naive and seasonal Naive time series models are used in this study to help us
compare them with more advanced time series models and see if more complicated models

can outperform these simple form models for our researched data.

2.5.1 Simple Time Series Forecasting Methods

Forecasting time series encompasses a variety of techniques, which rely primarily on the
statistical properties of the data, either in isolated single time series or in groups of series.

Time series models use only information on the variable to be forecast

Ti41 = f(xta Ti—1,Tt—2,Tt—3, 8)

where ¢ is time, = is our variable under evaluation and ¢ is the error term. This equation
means that the forecast value of x is a function of previous values and an error. These
methods do not exploit the understanding of the time series behavior as an economic
value. Therefore the objective of the forecasting process is not to build models, which are
a good representation of the economy with all its complex interconnections, but rather to
build simple models which capture the time-series behavior of the data and may be used

to provide an adequate basis for forecasting (Hall Simon and Schuster,1994).
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Simple Time Series forecasting methods are proven to be quite effective sometimes in
practice [Hyndman and Athanasopoulos, 2013]. Denoting n as the number of the observa-
tions, x; is the observed time series, h is the forecasting horizon and &; is the white noise

errors (e, ~ N(0,1)) we have the following very simple forecasting methods.

Average or Mean Model

The Average models use a method that takes the mean of the historical data of a
variable for a given time. In other words, the next value of a variable will be the mean of
the last data at a given period, which is easily calculated. In the Average or Mean method
all future forecasts are equal to a simple average of the observed data and therefore all
observed data are of equal importance given equal weight when generating forecasts. The

mathematical model can be written as:

n

. 1
Tpy1 = ﬁ Z(l’t)

t=1
These simple forecasting methods may be suitable for forecasting, in some cases, but maybe

insufficient in other cases.

Simple Naive Model

The Simple Naive models use a method that is even more simple as it needs no cal-
culations at all. In this method, the next step forecasts equal to the last observed value
so the next variable value will be the value of the last observation. Therefore only the
most-current observation is of great importance while all previous observations provide no
information for the future. This is so simple and easy that it is hard to believe that this
method works remarkably well for many economics and financial time series as indicated
by Hyndman and Athanasopoulos [2013]. It gives good predictions more specific in the
short run because it can measure the behavior of a market better if it can be assumed to

be efficient. Mathematically the model can be denoted as :

Tpy1 = Tp
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where n is the number of the observed values. If the data follow a random walk process (z; =
x4—1 + €¢) then this is the optimal method of forecasting. This method works remarkably
well for many economic and financial time series, like stock price and stock index. It gives
good predictions more specific in the short run because it can measure the behavior of a

market better if it can be assumed to be efficient.

Seasonal Naive Model

The seasonal Naive models use a simple method that is suitable for seasonal data and
therefore estimation becomes more complicated. For example, in case we have monthly
data the forecast for a future month is the most recently observed value for the same
month of the year i.e. the next March value will be equal to the last March value and so
on. Adding the seasonal component to the simple Naive method and we have forecast that
equal to the last value from the same period. These simple forecasting methods may be
suitable for forecasting, in some cases, but may also be insufficient for some other cases.

So forecast x for time n+h is denoted as:

Tnthln = Tnth—km

where m is the seasonal period and k=[(h-1)/m|+1. More commonly this means that when
having monthly data, the forecast for all future, for example, April values is equal to the

last observed April value.

2.5.2 Linear Models with Seasonal Dummies (LMSD)

Seasonal Dummies predictor is used as a special feature that adds to the model a
seasonal indicator (or dummy variable) to serve as regressors for seasonal effects. A dummy
variable is also known as an ”indicator variable” and is a categorical variable that takes
only two values (e.g. 0 or 1). Such a variable might arise, for example, when forecasting
monthly car sales and you want to take account of the previous sales levels of the same
month. So for forecasting January sales level the predictor takes value 0 when referring

to month January and 0 otherwise. Since we have more than two categories, the variable
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can be coded using several dummy variables but always one fewer than the total number
of categories. In our case, we fit an ARIMA model that consists of an intercept and 11
seasonal dummy variables which is effectively a mean model with a separate mean for each
month. Since our empirical data in this thesis are monthly the seasonal Dummies option
added 11 seasonal dummy variables. These include a dummy regressor variable that is 1
for January and 0O for the other months, a regressor that is 1 only for February, and so forth
through November. Because the model includes an intercept no dummy variable is added
for December. The December effect is measured by the intercept while the effect of other
seasons is measured by the difference between the intercept and the estimated regression
coefficient for the season’s dummy variable. The first seasonal dummy-parameter will
always refer to the first period in the seasonal cycle (January for our monthly data) and
since an intercept is present in the model there will be no seasonal dummy parameter for
the last period in the seasonal cycle (December for our monthly data). In our case, we are
forecasting monthly new car sales and we want to account for the month of the year as a

predictor. In Table 2.3 we can see the dummy variable that can be created.
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Table 2.3: Seasonal Dummies Variables

Month Dy Dy Dsy Dy Dsy Dg D7 Dgg Doy Dioy Dy Dy

—_
=)
S

January

February

—_
o o O

March

—_
—_
o o o O

April

o o o o o

May

—_
o o o o o o

—_

June

o o o o o o o

—_

July

o o o o o o o o

—_

August

o o o o o o o o o

—_

September

o O o o o o o o o o

October

—_
—_

November

o O o o o o o o o o o

December

—_
o O o o o o o o o o o

o O o o o o o o o o

o O o o o o o o o

o o o o o o o o

o o o o o o o

o o o o o o

o o o o o

o o o O

o o O

o O

o O O o o o o o o o o o o

January

Note: Dy, is the seasonal dummy for the 15 month of the year i.e. January and Dy = 1 if

it is January, otherwise Dy = 0 and so on.

The linear Model with Seasonal Dummies has a deterministic seasonality denoted Sy,
that can be written as a function of seasonal dummy variables. The seasonal frequency for
our monthly data is s = 12 and we denote is as Dyy, Doy, D3y, -, D19 the seasonal dummies

where:

e Dy, =1 if s is the first period i.e. January, otherwise Dy, =0
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e Dy =1 if s is the second period i.e. February, otherwise Dy, = 0 and so on.

The Deterministic seasonality S; is a linear function of the dummy variables and is denoted

as

Sy = Z%‘Dit (2.2)
i=1

Y1, ift=January

Yo, ift=February

Y12, tft=December
\

The estimation with least squares regression is

Tipn = Z YiDis + e (2.4)
i=1
s—1
Tipn =+ Z BiDi + e (2.5)
i=1

Since we regress x on an intercept and the seasonal dummies, we omit one dummy (one
season i.e. December) because if we regress both the intercept plus all seasonal dummies
there would be collinear and redundant.

Interpreting the coefficients a and 8 of the model
s—1
St =a+ Z BiDit (2.6)
i=1

the intercept v = ~y, is the seasonality in the omitted season while the coefficients 8 = ~; —;

are the difference in the seasonal component from the s** period.

2.5.3 Holt—Winters methods modeling

The basic Exponentially Weighted Moving Average (EWMA) model was firstly intro-
duced by Holt [1957a] forecasting trends in production, inventories and labor force and was

later improved by Winters [1960], adding seasonality. If we define f; to be the forecast of
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x; using only past information, then the Holt procedure uses the following formulate to

forecast xs11:
Jer1 = my + g
where ¢ is the expected rate of increase of the series and m is our best estimate of the

underlying value of the series. We can then develop a recursion to produce a set of estimates

for ¢ and m through time
M1 = AoZer1 + (1 — o) (M + g)

Grr1 = A (muygpr —my) + (1 — X)) gy

Then we can perform the recursion conditional on prior values of the two smoothing pa-
rameters.

Holt’s linear method [Holt, 1957b] is an extension of simple exponential forecasting that
allows a locally linear trend to be extrapolated. Forecasts are given by &y p = £; + hby,

where
gt =Tt + (]_ — —Oé>(€t_1 + bt—l)
by =Bl — li—1) + (1 — B)br—y

and the two parameters a and 5 must lie in [0,1]. Here ¢; denotes the level of the series
and b; the slope of the trend at time t.

A popular method for seasonal data is the Holt—Winters method for seasonal data which
is introduced in Holt [1957b], and extends the Holt’s method to include seasonal terms.

Then j"t-l—h‘t = Et + hbt + St—m —+ h:;” Where

U =a(xy — Si—m) + (1 — a)(l—1 + bi_1),
by =Bl — li-1) + (1 = B)by-1,
se =7(@e — ) + (L= 7)81-m,
ht = [(h — 1)mod m] + 1
and the three parameters «, [ and ~ all lie in [0,1].
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There is also a multiplicative version of the Holt-Winters method, and damped trend
versions of both Holt’s linear method and the Holt-Winters method [Makridakis et al.,
1998]. None of these methods are explicitly based on underlying time series models, and as
a result, the estimation of parameters and the computation of prediction intervals is often
not done. However, all the above methods have recently been shown to be optimal for some
state-space models [Hyndman and Khandakar, 2008], and maximum likelihood estimation
of parameters, statistical model selection and computation of prediction intervals is now

becoming more widespread.

2.5.4 Exponential Smoothing State Space (ETS) Models

One of the fundamental concepts of system theory is the state of the system which
is meant to be the summary of the past behavior of the system, in our case, the past
observations. According to Kitagawa and Gersch [1996] the state taken together with the
future system inputs determines all future states and system outputs while the current
state and the current input values determine the current outputs.

Exponential Smoothing (ES) modeling was developed in the 1950s [Brown, 1959, Holt,
1957b, Winters, 1960] and has been widely used ever since. It is a technique that can
be applied to time series data either to produce smoothed data for presentation or to
make forecasts. It is a broadly sensible approach to forecasting and not the result of a
particular economic or statistical view about the way data was generated. In time-series
data, which are a sequence of observations, exponential smoothing assigns exponentially
decreasing weights over time. These models initiated research that gave rise to some of the
most successful forecasting methods. Nowadays exponential smoothing has been revolu-
tionized with the introduction of a complete modeling framework incorporating innovations
state-space models, likelihood calculation, prediction intervals, and procedures for model
selection Hyndman and Khandakar [2008].

In more detail forecasts produced using exponential smoothing methods are weighted
averages of past observations, with the weights decaying exponentially as the observed

values get older. Thus, the more recent the observations, the higher the associated weight.
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Consequently, only the most recent data point and most recent forecast need to be stored.
According to Hyndman et al. [2002b] this method provides forecast accuracy comparable
to the best forecasting methods and it appears to be particularly good for short forecast

horizons with seasonal data. Some of its benefits are:
e the easy of calculations of the likelihood, the AIC, and other model selection criteria,
e the opportunity that it gives in computing prediction intervals for each method and
e the random simulation from the underlying state-space model.

The type of ES model has two equations the Observed equation and the State space
equation as follows:

Observed equation y; :w'z;_1 + ¢ where ¢; N(0,02)

State equation x; : Fxy_1 + g€

where

x; is the state vector (unobserved)

y; is the observed time series

€; is the white noise series

Exponential Smoothing State Space Models can improve predictability. The ETS refers
to error (E), trend (T), and seasonal (S) components. The error (E) component is either
additive (A) or multiplicative (M). The trend (T) and seasonal (S) component may be A,
M, or inexistent (N). Trend (T) component may be dampened additively (Ay) or multi-
plicatively (My). That makes a total of thirty (30) possible ETS combinations within the
forecasting framework comprising linear and non-linear ones [Hyndman and Khandakar,

2008].

Originally exponential Smoothing methods were classified by Pegels [1969] taxonomy.
This was later extended by Gardner [1985], modified by Hyndman et al. [2002a] and ex-
tended again by Taylor [2003], giving a total of fifteen methods seen in Table 2.4 simply by

considering variations in the combination of trend and seasonal components. Each method
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is labeled by a pair of letters defining the type of Trend and Seasonal components. These
15 ETS models with multiplicative error structure (heteroskedastic) were considered for
time series analysis [Medina et al., 2008]. Evidence shows that the models yield more re-
alistic 95% prediction intervals values while the reduction on the number of ETS methods

evaluated has the advantage that it diminishes the extensive computational time.

Table 2.4: The 30 possible different combinations for ETS models.

Trend component Seasonal Component
N(none) A(Additive) M(multiplicative)
N(none) N.,N N,A N.M
A(Additive) AN AA AM
Agy(Additive damped) Ag,N Ag, A Ag, M
M (multiplicative) M,N M,A M,M
M, (Multiplicative damped) | Mgy, N Mgy, A MyM

Source: ”Forecasting Principle and Practice” by Hyndman and Athanasopoulos [2013]

In more detail forecasts produced using exponential smoothing methods are weighted
averages of past observations, with the weights decaying exponentially as the observed
values get older. Thus, the more recent the observations the higher the associated weight.
Consequently, only the most recent data point and most recent forecast need to be stored.

There are many similarities between Exponential Smoothing (ES) and Moving Average
(MA) models. Both models assume stationary (not trending) time series, both have roughly
the same distribution of forecast error but they differ in that exponential smoothing takes
into account all past data, whereas moving average only takes into account k past data
points. Technically speaking, they also differ in that moving average requires that all past
data points be kept, whereas exponential smoothing only needs the most recent forecast
value to be kept. In the near past, this was an attractive feature of exponential smoothing
method, when computer storage was expensive and it has proved remarkably robust or

even optimal to a wide range of time series processes [Chatfield et al., 2001].
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2.5.5 Autoregressive Integrated Moving Average(ARIMA)

Autoregressive (AR) models were first introduced by Yule [1927] and were consequently
supplemented by Slutsky [1937] with the illustration of Moving Average (MA) schemes.
The combination of both AR and MA schemes was made one year later by Word [1938]
who showed that Autoregressive Moving Average (ARMA) process can be used to model
all stationary time series as long as the appropriate order of p (the number of autoregressive
terms) and q (the number of moving average terms) was appropriately specified. In other
words, this means that any series x; can be modeled as a combination of past x; values

and/or past errors &;:
Ty = Q1Tp—1 + Qoo+ F Oy +&p — O160-1 — Osgp0 — -+ — Operg (2.7)
According to Makridakis and Hibon [2000] modeling real life time series requires four steps:

1. The original series x; must be transformed to become stationary around its mean and

its variance.
2. The appropriate order of p and q must be specified.

3. The value of the parameters ¢y, ¢o,..., ¢, and/or 01,6, ..., 8, which represent the
autoregressive and moving average components, respectively, must be estimated using
some non-linear optimization procedure that minimizes the sum of the squared errors

or some other appropriate loss function.

4. Practical ways of modeling seasonal series must be envisioned and the appropriate

order of such a model should be specified.

The ARIMA model is considered suitable when one wants to forecast continuous data
and exogenous variables Wen-hsien [2002]. However, this theoretical approach did not be-
come possible to model real-life series at that time due to the complicated calculations
involved. In the mid 1960s, the theory became popular and economical mainly due to the
technological revolution of computers. All the difficult required calculations for optimiza-

tion procedures of equation 2.7 were done by the computers and that made the theory
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easily applicable and quite popular. Additionally, a methodology introduced by Box and
Jenkins [1976] (original edition 1970) popularized the use of ARMA models through the

following;:

1. Provide guidelines for making the series stationary in both its means and variance,

2. Suggested the use of autocorrelations and partial autocorrelations coefficients for
determining appropriate values of p and q (and their seasonal equivalent P and Q

when the series exhibited seasonality)

3. Provide a set of computer programs to help users identify appropriate values for p

and ¢ as well as P and QQ and estimate the parameters involved.

4. After the estimation of the parameters a diagnostic test was proposed to determine
whether or not the residuals ¢; were white noise(i.e. mean equal to zero and variance
equal one), in which case the order of the model was considered final. If the residuals
were not white noise another model was entertained in step 2 and steps 3 and 4 were
repeated. If the diagnostic check showed random residuals then the model developed
was used for forecasting or control purposes assuming of course remain the same

during the forecasting, or control, phase.

Strictly speaking, there is no such thing as “the best” model to fit or forecasting model.
Thus, the most important problem to be solved when modeling is that of trying to match the
appropriate model to the pattern of the available time-series data. Box and Jenkins [1976],
therefore, proposed three practical stages for finding a good model, namely identification,
estimation, and diagnostic checking. The approach proposed by Box and Jenkins came to
be known as the Box-Jenkins methodology to ARIMA models where the letter I between AR
and MA stood for the word Integrated. ARIMA models and the Box-Jenkins methodology
became highly popular in the 1970s among academics in particular when it was shown
through empirical studies that they could outperform the large and complex econometric

models, popular at that time in a variety of situations Armstrong [1978].
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The Box- Jenkins procedure

\ Data collection and preliminary analysis . :mﬂﬁ -
—— - Correlograms
i N

Identification of {[S)ARIMA models v

* Duration of Seasonality (S}

* Non-seasonal differentiation order {d} - Confidence bands

* Seasonal differentiation order (D} S - Correlograms of the

= Number of autoregressive non-seasonal terms{p} models

= Number of auloregressive non-seasonal terms{P}

= Number of moving average non-seasonal terms {q}

= Number of ing average I terms {Q}

Estimation of the parameters and choice of the Lt o critesia

{SJARBMA el - Correlograms of the model
- ~Comrelograms of the
Diagnostic check gt
— Ljung Box O-test
—Shapiro-Wilk test

Figure 2.7: Box and Jenkins Methodology.

An ARIMA(p,d,q) process is given by:

(1-¢B—...—¢,B") 1-B)* zy=c+(1+6,B+...+0,B)¢ (2.8)
~~ 7 N ~ -~ 4
AR(p) d—dif ferences MA(q)

or in a more compact presentation as:
#(B)(1 — B)'z; = ¢+ 0(B)e, (2.9)

where x; represent the time series, ¢, is assumed to be uncorrelated error term with
white noise process i.e. zero mean and variance o2, B is the back-shift operator, ¢ is the
constant term and d takes values 1 or 0 depending on whether there is a need for first
difference or not to ensure stationarity.

The polynomial of the Autoregressive (AR) order p is :

¢(B) = (1= ¢1B+ ¢B — -+ — ¢,B)

56



Modeling Time Series

and the polynomial of the moving average (MA) of order q is :
9B)=01+6B+0,B+---+0,B9)

Furthermore to ensure causality and invertibility it is assumed that ¢(B) and (B) have
no roots for | B |< 1 [Brockwell and Davis, 1991].

The methodology for time series analysis proposed in the famous book by Box and
Jenkins [1970] aims to find the most appropriate ARIMA (p,d,q) model that fits the data
series and to find the model that is best for forecasting. In more details the Box- Jenkins

methodology uses a six-stage scheme which are:

e A priori identification of the differentiation order d (or choice of another transforma-

tion)

A priori identification of the orders p and q

Estimation of the parameters (av,. .. ,a,,81,. . .,8, and *=Var &)

Validation

Choice of a model

Prediction

For the first step we examine the graph of the series for signs of non-stationarity, but
there are also a variety of official unit root tests developed in the last 30 years, like the
Dickey-Fuller test(DF) or the Augmented Dickey-Fuller test (ADF)Dickey and Fuller [1981],
the Philips Perron Test (PP) Philips and Perron [1988], the Kwiatkowski, Phillips, Schmidt
and Shin test (KPSS) Kwiatkowski et al. [1992] e.c.t. that can be applied to examine the
stationarity of the series. If the data series exhibit apparent deviations from stationarity,
we will take the first difference of the series (so d=1), and this may be an indication that
the underlying process is heteroscedastic.

However the order selection for the ARIMA models is usually considered subjective

and difficult to apply. Thus, researchers tried to automate the ARIMA modeling for a
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stationary series during the last 30 years. An early review of the automatic ARIMA imple-
mentation can be viewed in Ord and Lowe [1996]. Hannan and Rissanen [1982] proposed
a method where innovations (g;) could be obtained by fitting a long autoregressive model
to the data and then the likelihood of potential models could be computed via a series
of standard regressions. This method was later extended to include multiplicative sea-
sonal ARIMA models identification Tsay [2005]. Many researchers implement different
algorithms using different software (Gémez and Maravall [1998], Liu [1989], Melard and
Pasteels [2000], Goodrich [2000], Makridakis and Hibon [2000], Reilly [2000]). Hyndman
and Khandakar [2008] in the “forecast”package of R uses an algorithm for step—wise fore-
casting with ARIMA models and that is partially used in this thesis research along with a

random selection method.

2.5.6 Seasonal ARIMA Model (SARIMA)

For a given time series (z;) with seasonal period s, we can combine the seasonal and
non —seasonal operators into a multiplicative seasonal autoregressive moving average model

denoted as:

SARIMA(p,d,q) x (P, D, Q),
—_—

T )
(Non-seasonal part of the model) (Seasonal part of the model)

The SARIMA model equation is given by :

(1 - B—-— ngpo) (1 - B—-- - <I>pBS) (1-— B) (1-B°%)a; = (2.10)
~ ~ N - N e’ e e’
AR(p) SAR(P) d D

(1+6:B+-+0,B) (1+ 6,8+ +0qB%e,

MA(q) SMZ‘(Q)

where t is the point in time which is t=1,2,3,... n,

c is the constant term,

B is the lag operator,
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g, is the error term at time t,

AR(p) is the autoregressive model of order p,

SAR(P) is the seasonal autoregressive model of order P,
MA(q) is the moving average model of order ¢,
SMA(Q) is the seasonal moving average model,

d is the non—seasonal differences,

D is the seasonal differences,

¢p(B) and 0,(B) of order p and ¢ represent the ordinary autoregressive and moving

average components,

Op(B°) and Og(B®) of order P and Q represent the seasonal autoregressive and
moving average components and all the polynomials should have roots outside the

unit circle ensuring an invertible representation for the differenced data.

The SARIMA model can be written in a more compact way like:
0p(B)2p(B*) V' 77w = ¢ + 0,(B)Oq(B°)= (2.11)

where t=1,2,3,...,n, B is the lag operator, ¢,(B) and 0,(B) of order p and q represent
the ordinary autoregressive and moving average components, ¢ p(B*) and O¢(B?) of order
P and Q represent the seasonal autoregressive and moving average components and all the
polynomials should have roots outside the unit circle ensuring an invertible representation

for the differenced data. Furthermore
v'=(1-B)

and

vl =01-B)"

are the ordinary and seasonal difference components respectively where d is the consecutive

differencing and D the seasonal differencing . To ensure causality and invertability, we
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assume that ¢,(B) and 6,(B) have no roots for |B| < 1 Brockwell and Davis [1991]. The
model may contain a constant term c. The ordinary autoregressive (AR) characteristic
polynomial ¢,(B)®p(B) and moving average (MA) characteristic polynomial §,(B)Oq(B)

components are represented by:

¢p(B) = (1 — B — ¢2B2 - ¢po)
dp(B°) = (1 — ®,B* — &,B* — ... — &pB")
(2.12)
0,(B) = (1+6,B+0,B>+---+0,B7)
Oq(B*) = (1 +©,B° +0,B% + ... + 0oBY)

Note that we have a special ARIMA model with AR order p+ Ps and MA order g+ Qs
and integration of order d for the series and D for the seasonal component. The coefficients
are being determined by only p + P + ¢ + @) coefficients and are not completely general. If
s = 12 then p+ P + g+ @ will be considerably smaller than p 4+ Ps+ g+ (s and will allow

a much more parsimonious model Cryer and Chan [2008].

2.5.7 Generalized Autoregressive Conditional Heteroscedastic

The Autoregressive conditionally heteroscedastic (ARCH) models were introduced by
Engle [1982]. Bollerslev [1986] extended these models to the Generalized ARCH (GARCH)
model as an alternative to the usual time series process. Empirical evidence for some
kinds of data shows that the disturbance variances in time series models were less stable
than usually assumed (Engle [1982], Engle [1983], and Cragg [1982]). Volatility is not
constant over time, and sometimes errors appeared to occur in clusters, suggesting a form
of heteroscedasticity in which the variance of the forecast error depends on the size of the
previous disturbance. This means that large movements in the series tend to be followed
by further large movements. Thus the economy has cycles with volatility and low volatility
periods, just like in the financial return series. The basic concept in these models is the
conditional variance, that is the variance conditional on the past. In the classical GARCH
models, we notice that the conditional variance is expressed as a linear function of the

squared past values of the series which enables the capture of the main characteristic
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features of time series.

GARCH models modification

The classical GARCH modeling has an important drawback by its construction. The
fact that the conditional variance depends only on the modulus of the past variables, is the
major reason that negative and positive innovations have the same effect on the current
volatility. On the other hand, empirical research, in most of the time-series data, shows
a negative correlation between the squared current innovation and the past innovations,
which gives a signal that the conditional distribution is asymmetric. If the conditional
distribution were symmetric in the past variables, such a correlation would be equal to zero.
In a conditional asymmetric distribution, the volatility increase due to a data level decrease
is generally stronger than that resulting from a price increase of the same magnitude and
this is also referred to as a leverage effect. In order to allow this asymmetry property and the

leverage effect to be incorporated we consider two groups of GARCH models modifications:

1. GARCH models with alternative conditional error distributions (Gaussian, t-Student

and generalized).

2. GARCH models with asymmetric conditional volatility (EGARCH, GJR, APARCH).

Alternative Conditional Distributions

Time series y; observations have a distribution that one often assumes to be normal
(Gaussian) but in reality they usually tend to be leptokurtic (fat tailed). In this thesis the
fat tailed Student-t distribution (STD) and the generalized error distributions (GED) are
considered. Further information about the different types of distributions are given in this

section.

Normal Distribution. Usually the default choice for the distribution (D) of the inno-

vations z; of a GARCH process is the Standardized Normal Probability Function:

—_
M)

x

fy) = e 7 (2.13)
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The probability function or density is named standardized, marked by a star x, because

f*(2) has zero mean and unit variance. This can easily be verified computing the moments:

o0

py = / y" " (y)dy (2.14)

—0o0

Note, that u§ = 1 and o7 = 1 are the normalization conditions, that the first moment
wt defines the mean p = 0, and the second moment p3 the variance 0% = 1.

An arbitrary Normal distribution located around a mean value p and scaled by the
standard deviation o can be obtained by introducing a location and a scale parameter

through the transformation
(y — )

Fdy = Dy = e 2 4y (2.15)

The central moments p,. of f(y) can simply be expressed in terms of the moments p* of
the standardized distribution f*(y). Odd central moments are zero and those of even order

can be computed from

op 2T 1

e = [ = 0 Fo)dy = o, = o +3) (2.16)

—0o0

yielding ps = 0, and py = 3. The degree of asymmetry 7, of a probability function, named
skewness, and the degree of peakedness 75, named excess kurtosis, can be measured by

normalized forms of the third and fourth central moments

Ha 2

On the other hand, if we like to model an asymmetric and/or leptokurtic shape of the
innovations we have to draw or to model ¥, from a standardized probability function which
depends on additional shape parameters which modify the skewness and kurtosis. However,
it is important that the probability has still zero mean and unit variance. Otherwise, it
would be impossible, or at least difficult, to separate the fluctuations in the mean and
variance from the fluctuations in the shape of the density. In a first step we consider still
symmetric probability functions but with an additional shape parameter which models the
kurtosis. As examples we consider the generalized error distribution and the Student-t

distribution with unit variance, both relevant in modelling GARCH processes.
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Student-t distribution. Bollerslev [1988], Hsieh [1989], Baillie and Bollerslev [1989],
Bollerslev et al. [1992], Palm [1996], Pagan [1996] and Palm and Vlaar [1997], among others
showed that the Student-t distribution better captures the observed kurtosis in empirical
log-return time series. The density f*(y|v) of the Standardized Student-t Distribution can

be expressed as:

() 1
f*lv) = e
AR A 215

where v > 2 is the shape parameter and B(«,b) = T'(a)T'(b)/T'(ae + b) the Beta function.
Note, when setting g = 0 and ¢? = v/(v — 2) formula (2.18) results in the usual one-
parameter expression for the Student-t distribution as implemented in the S function dt.
Again, arbitrary location and scale parameters p and o can be introduced via the
transformation y — #>£. Odd central moments of the standardized Student-t distribution

are zero and those of even order can be computed from:

, B(zL, w1
2r  x 2r 5 2 7 2
e = 0% pi5, = 0¥ (v —2)i— 22 (2.19)
B(53%)
Skewness 7, and kurtosis v, are given by
Ha M2 v—d

2r—1
v—2r"

This result was derived using the recursion relation o, = pg, — 2

Generalized Error Distributions. D.B.Nelson [1991] suggested to consider the family
of Generalized Error Distributions, GED, already used by Box and Tiao [1973], and Harvey

[1981]. f*(y|v) can be expressed as:

*(ylv) = v 3141
f (y‘y) )\V21+1/VF<1/1/)6 A )
2-2Mp(Ly (2.21)
A\ =(————2H)V/

re)

with 0 < v < oo. Note, that the density is standardized and thus has zero mean and

unit variance. Arbitrary location and scale parameters  and o can be introduced via the
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transformation y — . Since the density is symmetric, odd central moments of the GED

are zero and those of even order can be computed from

o QYYN)E 20 + 1

Hor = 0-27“”’2*7“ =0 1—\(%) F( v ) (222>
Skewness 7, and kurtosis v, are given by
3 221 F(l)r(é)
py? 13 r(2)

For v = 1 the GED reduces to the Laplace distribution, for v = 2 to the Normal
distribution, and for ¥ — oo to the uniform distribution as a special case. The Laplace
distribution takes the form f(y) = e~V2ul/V2 and the uniform distribution has range +2+v/3.

The Laplace distribution is a GED with shape parameter v = 1.

2.6 Forecasting Methodology.
All forecasting methods can be divided into two broad categories:
e Qualitative and
e Quantitative

which are divided further into more categories as illustrated below in the following figure.

Qualitative forecasting models are useful in developing forecasts with a limited scope
and these models are usually highly reliant on expert opinions and are most beneficial in
the short term. Some examples of qualitative forecasting models include market research,
polls, and surveys that apply the Delphi method or the Scenario writing or the subjective
approach.

Quantitative methods of forecasting exclude expert opinions and utilize statistical data
based on quantitative information and available historical time series data. Therefore quan-
titative forecasting models include time series methods and other econometric modeling

methods.
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Figure 2.8: Forecasting Methods [Tree Graph].

2.6.1 Qualitative vs Quantitative Forecasting Methods.

Qualitative forecasting techniques generally employ the judgment of experts in the
appropriate field to generate forecasts. A key advantage of these procedures is that they can
be applied in situations where historical data are simply not available. Moreover, even when
historical data are available, significant changes in environmental conditions affecting the
relevant time series may make the use of past data irrelevant and questionable in forecasting
future values of the time series. There are three important qualitative forecasting methods
are the Delphi technique, scenario writing, and the subject approach.

In the Delphi technique, an attempt is made to develop forecasts through ”group con-
sensus”. Usually, a panel of experts is asked to respond to a series of questionnaires. The
experts, physically separated from and unknown to each other, are asked to respond to an
initial questionnaire (a set of questions). Then, a second questionnaire is prepared to incor-
porate the information and opinions of the whole group. Each expert is asked to reconsider
and to revise his or her initial response to the questions. This process is continued until
some degree of consensus among experts is reached. It should be noted that the objective

of the Delphi technique is not to produce a single answer at the end. Instead, it attempts to
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produce a relatively narrow spread of opinions the range in which opinions of the majority

of experts lie.

Under the Scenario Writing approach, the forecaster starts with different sets of assump-
tions. For each set of assumptions, a likely scenario of the business outcome is charted out.
Thus, the forecaster would be able to generate many different future scenarios, correspond-
ing to the various sets of assumptions. The decision-maker is presented with different

scenarios and has to decide which scenario is most likely to prevail.

The Subjective Approach allows individuals to participate in the forecasting decision
to arrive at a forecast based on their subjective feelings and ideas. This approach is based
on the premise that a human mind can arrive at a decision based on factors that are often
very difficult to quantify. ” Brainstorming sessions” are frequently used as a way to develop
new ideas or to solve complex problems. In loosely organized sessions, participants feel free
from peer pressure and, more importantly, can express their views and ideas without fear

of criticism.

Quantitative forecasting methods are used, when historical data on variables of interest
are available. These methods are based on an analysis of historical data concerning the
time series of the specific variable of interest and possibly other related time series. Many
forecasting techniques use past or historical data in the form of time series. There are two

major categories of quantitative forecasting methods.

e Time series methods, are based on past data that are being forecast.

e Other Econometric modeling methods, which may use historical data, like the causal
methods, which examine the cause and effect relationships of the variable with other

relevant variables.
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Figure 2.9: Time Series Forecasting Methods [Tree Graph].

There are various time series forecasting methods, some of them are simple and some of
them are more complicated, but they all have the same goal, accurate predictions. Time-
series methods are going to be examined in-depth and are going to be used in this thesis

applied data research.

2.7 Discussion

During the last two decades new car market in Greece has been undergoing some severe
changes due to the difficult economic condition in the country. New car sales have shrunk
and never managed to overcome the economic crises especially after the worldwide financial
crisis 2007-2008.

In the Greek car market there are more than 35 different firms operating in a national
level but only 2-3 of them have a share around 10% of the total market. We studied ten (10)

of the top firms of the market. The results in Table 2.1 (page 26) shows that when using
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the original values of the series the mean of the series it is not equal to the median so that
indicate that we do not have a normal distribution in none of the ten different time series.
Additionally, the skewness and the kurtosis of the series differ from the ones normally found
in normally distributed series (i.e. S=0, K=3). Results show that the original data are all
right skewed (positive) platykurtic (K<3) while the log data are left skewed platykurtic
with only two exceptions (VolksWagen and Nissan). However, when we consider the log
values of the series then the differences between the mean and the median become smaller
so there is a hind of normality in the data but we still have a small deviation. Furthermore,
the Jarque -Bera test for normality, rejects normality for all series in log values (except the
Fiat case) while in the original values only Toyota and VolksWagen seem to be normally
distributed.

After presenting the related work done (literature review) there is a short theoretical
framework of the various time series models that are going to be empirically implemented
in the next chapter alone with the forecast methodology that we are going to follow. This
research continues with only a small group of the firms in their log values for more accurate,
and quick data processing, and for the facilitation and easiness of results presentation, in

an in-sample, and out-of sample, model estimation and forecasting.
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Time Series with-in-sample Modeling.

3.1 Introduction

In this thesis chapter, we initiate the empirical analysis using a with-in-sample time
series modeling. The monthly new car sales of the top firms operating, as a retailer of
new car representative, in the Greek market are treated as time series, and the empirical
study starts with simple econometric models, like the Average (or Mean), the Naive and
the Seasonal Naive and then continues with some more advanced models like the Exponen-
tial Smoothing state space (ETS) models and the Linear models with seasonal dummies
(LMSD). Additionally, the research focus in relating the present value of series, to past
values and past prediction errors so it uses time series models called Autoregressive Inte-
grated Moving Average (ARIMA) models, and since our data have seasonality the models
are called Seasonal Autoegressive Integrated Moving Average (SARIMA) models. They
are constructed using the Box and Jenkins methodology for time series data. This empir-
ical research is completed with the estimation of the hybrid model of the linear seasonal
autoregressive moving average (SARIMA) and the non-linear generalized autoregressive
conditional heteroscedasticity (GARCH) in an in-sample modeling of the series. The good-
ness of the fit of each model and its performance is measured using the root mean square
error (RMSE)and the mean absolute square error (MASE), while the analysis is carried

out using the R software.
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The idea of using various model types is due to the fact that different types of economet-
ric models are designed to capture different characteristics that are commonly associated
with time series, for example varying variance, fat tails, volatility clustering, leverage ef-
fects, and so on. However there is a problem of how to choose the correct model that
best fit the series. This problem is solved by the calculation of variance at the series of
each model. The variance is the Minimum Squared Errors (MSE) that results from fitting
the various models. The Root of the Minimum Squared Errors (RMSE) is actually the

standard deviation of the series and it is given as :

n

RMSE = % > (w— i) (3.1)

t=1
where n is the number of observations x; is the values of the series at time t and ; is the
estimated values of the series from the chosen model at time t.

Additionally another measure is the Minimum Absolute Percentage Errors (MAPE)

which is calculated as:

1 n 7
MAPE =~ Jre =@ (3.2)
n
t=1

Tt

According to Wang and Lim [2005], RMSE is the square root of the average of all
squared errors and it ignores any over or under estimation, but it does not allow comparison
across different time series and different time intervals. On the other hand MAPE does
allow comparison across different time series and different time intervals and is particularly
useful when the units of measurements of x; are relatively large. In the results that follow
both metrics are calculated for a variety of models using the log values of all series. Finally,
all models will be compared using the MAPE accuracy metrics that allows for comparison
across different time series in order to discuss the finding of this with-in sample empirical

study.
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3.2 Simple Time Series Models

This with-in-sample empirical analysis starts with the most simple Time series models
like the Mean or Average model, the Naive and Seasonal Naive model. The RMSE and the
MAPE is calculated in Table 3.1 on page 74 and shows that the Seasonal Naive model fit
best to our data among the simple time series models of all firms since it gives the minimum
value of RMSE and MAPE performance measures with no exception.

However the diagnostic checking of the Seasonal Naive model (see Table 3.2, page 75)
which is employed by examining if the fitted model specification is adequate do not give
good results. The outcome of Box-Pierce and L-Jung Box test shows that the residual
series are correlated so we need to develop a better model for analysis of new car sales

series.

3.3 Holt-Winters & Exponential Smoothing State Space

Models

The with-in-sample empirical analysis continues with the Holt-Winters time series mod-
els and the Exponential Smoothing State Space (ETS) models. The research considers three
types of Holt-Winters which is the simple exponential model: a)with Level b)with Level
and Trend (L, T) and c¢)with Level Trend and Seasonality (L, T, S). Additionally, it calcu-
lates the best ET'S model from various possible combinations. In this research, the ETS(A,
N, A) is proven to be the best which means the exponential smoothing with additive errors
and additive seasonality but with no trend. The RMSE and MAPE performance measures
were calculated in Table 3.3 on page 76. Results show that the Exponential Smoothing
State-Space model with no Trend but with an additive seasonal component and error fits
best among these models! to the time series data.

Furthermore the diagnostic tests for the ETS models (see Table 3.4 page 77) shows that

the residuals series after fitting the ETS models are uncorrelated and that means that ETS

!Note L: Level, T: Trend, S: Season
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models give a good fit to our data and be consider to handle the new car series effectively.

3.4 Linear Modelling with Seasonal Dummies Models

In modeling monthly demand for new car and the researcher wants to account for
the month of the year, as a predictor. Therefore the following monthly dummy variables
can be created with frequency s = 12 and denoted as seasonal dummies or indicators as

Dy, Doy, D3y, -, D1y according to Hyndman and Athanasopoulos [2013].

Table 3.5: Indicator Variables of Linear Model with Seasonal Dummies

Month

January Dy, Ty =a+ 01+ e
February Dy, Top =+ [y + €4
MarchDs, T3 = a+ B3+ ¢
AprilDy, Ty =a+ By +e
May D, Tst = o+ O5 + e
JuneDg, Ter = .+ Pg + €4
July D7, Tre = a+ Br + e
August Dg; Ty = a+ g + €
SeptemberDy; x9; = a+ B9 + €
OctoberDg; Tiot = o+ Bro + €
NovemberDi; z11; = a+ (i1 + e
DecemberD 3 x19 = o+ ¢

In the Table 3.5 on page 72 the dummy or indicator variables were defined and there

were only eleven (11) dummy variables? that were needed to code twelve (12) categories

2Note: Dy, is the seasonal dummy for the 1,; month of the year i.e. January and x;; are the new car
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i.e. twelve (12) months of each year. That was because the 12! category, which was month
December in our study, was specified when the dummy variables were all set to zero (0).

The Linear Model with seasonal Monthly data is given by?:

zy = a+p1 D1+ B2 Do+ B3 D3+ BaDar+B5 Dsi+ 6 Do+ 57 D7+ Bs Dsi+ B9 Do+ 1o Dioe+ 511 D1 +ey
(3.3)
According to Hyndman and Athanasopoulos [2013] many beginners try to add a twelve
dummy variable for the twelve category and that mistake is known as the ”dummy variable
trap” because it will cause the regression to fail because of the big amount of parameters
to estimate. Therefore the general rule is to use one fewer dummy variables than cate-
gories. So for our yearly data we use eleven dummy variables. Furthermore Hyndman
and Athanasopoulos say that the interpretation of each of the coefficients associated with
the dummy variables is the measure of the effect of that category relative to the omitted
category. In the above example, the coefficient associated with January will measure the
effect of January compared to February on the forecast variable and so on.
The results from the diagnostic tests of Box-Piece and Box Ljung for the Linear models
with Seasonal Dummies - LMSD (see Table 3.7 page 78) shows that the residuals series of

this model are correlated so we need to develop a better model to fit new car sales series.

sales for January at year t and so on.
3Note: Do is not included
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Table 3.1: Simple models RMSE & MAPE (log data with-in-sample).

Mean Naive Seasonal Naive
RMSE
Opel 0,43 0,41 0,36
Toyota 0,44 0,49 0,37
VW 0,41 0,40 0,37
Hyundai | 0,61 0,44 0,39
Peugeot 0,65 0,43 0,40
Ford 0,56 0,39 0,40
Fiat 0,45 0,42 0,38
Nissan 0,60 0,45 0,43
Skoda 0,58 0,41 0,42
Citroen 0,55 0,39 0,40
MAPE%
Opel 4,76 4,30 3,75
Toyota 4,61 4,68 3,63
VW 4,46 4,08 3,60
Hyundai | 6,78 4,68 4,16
Peugeot 6,95 4,37 4,29
Ford 7,71 4,66 4,59
Fiat 5,65 4,67 4,15
Nissan 7,93 4,78 4,64
Skoda 7,03 4,55 4,50
Citroen 6,98 4,40 4,45
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Table 3.2: Diagnostic Tests for Seasonal Naive model

Box-Pierce p-value | Box-Ljung p-value

Opel 67,76 (2,2e-16) 68,76 (2,2e-16)

Toyota 101,19 (2,2¢-16) 102,6 (2,2e-16)
VW 39,00 (4,23e-10) 39,75 (2,87e-10)
Hyundai 45,37 (1,63e-11) 46,25 (1,04e-11)
Peugeot 62,66 (2,44e-15) 63,88 (1,33e-15)
Ford 44,12 (3,08e-11) 44 97 (1,99e-11)
Nissan 43,24 (4,83e-11) 44,08 (3,14e-11)
Fiat 57,92 (2,62e-14) 58,80 (1,743e-16)

Skoda 83,31 (2,2e-16) 84,92 (2,2e-16)
Citroen 40,63 (1,83e-10) 41,42 (1,22¢-10)
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Table 3.3: Holt-Winters & ETS models RMSE & MAPE (log data with-in-sample).

Level L,T L, T,S ETS

RMSE

Opel 0,35 4,25 524 0,21
Toyota 0,39 4,33 5,33 0,25
VW 0,33 4,19 518 0,24
Hyundai | 0,38 4,21 515 0,24
Peugeot 0,38 3,96 4,86 0,25
Ford 0,33 4,00 4,9 0,26
Fiat 0,36 4,18 5,87 0,23
Nissan 0,40 4,10 5,10 0,27
Skoda 0,39 3,80 4,70 0,25
Citroen | 0,40 4,01 495 0,26

MAPE%

Opel 3,77 35,96 52,04 2,12
Toyota 4,02 33,36 52,03 2,40
VW 3,39 35,85 52,16 2,41
Hyundai | 4,37 36,40 52,14 2,52
Peugeot | 6,95 3437 54,29 2,86
Ford 3,83 35,92 52,11 2,76
Fiat 3,25 34,57 50,09 2,35
Nissan 7,25 38,10 55,03 2,95
Skoda 6,98 37,09 54,05 2,90

Citroen 7,28 38,06 53,10 2,95
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Table 3.4: Diagnostic Tests for ETS model

ETS Box-Pierce p-value) | Box-Ljung (p-value)
Opel (A,Ad,A) 2,36 (0,12) 2,39 (0.12)
Toyota(A,A,A) 0,015 (0,89) 0,01 (0,89)
VolksWagen (A,Ad,A) 0,10 (0,74) 0,10 (0,74)
Hyundai (A,N,A) 0,08 (0,76) 0,08 (0,76)
Peugeot (A,N,A) 0,09 (0,92) 0,09 (0,92)
Ford (A,N,A) 0,29 (0,58) 0,30 (0,58)
Nissan (A,N,A) 0,54 (0,45) 0,55 (0,45)
Fiat (A,AA) 5,23 (0,99) 5,30 (0,99)
Skoda (A,N,A) 0,02 (0,88) 0,02 (0,88)
Citroen (AN,A) 1,82 (0,17) 1,85 (0,17)

Table 3.6: Linear Model with Seasonal Dummies RMSE & MAPE (log values).

RMSE MAPE%

Opel
Toyota
VW
Hyundai
Peugeot
Ford
Fiat
Nissan
Skoda

Citroen

0,58 7,45
0,59 7,16
0,68 8,11
0,71 6,28
0,65 7,56
0,67 8,40
0,71 9,41
0,70 8,50
0,69 8,20
0,66 7,60
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78

Table 3.7: Diagnostic Tests for LMISD models

ETS Box-Pierce p-value) | Box-Ljung (p-value)
Opel 178,34 (2,2e-16) 2,39 (2,2e-16)
Toyota 140,56 (2,2e-16) | 14242  (2,2¢-16)
Volkswagen 70,33 (2,2e-16) 71,59 (2,2e-16)
Hyundai 118,45 (2,2e-16) 120,57 (2,2e-16)
Peugeot 12421 (2,2¢-16) | 12644  (2,2e-16)
Ford 112,68  (2,2¢-16) | 114,70  (2,2e-16)
Nissan 8368  (22¢16) | 8519  (2,2e-16)
Fiat 185,65  (2,2e-16) | 188,10  (2,2¢-16)
Skoda 13944 (2,2¢-16) | 141,95  (2,2e-16)
Citroen 125,52 (2,2e-16) 127,78 (2,2e-16)
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3.5 (S)ARIMA Modelling using Box-Jenkins Method-

ology.

The stationarity of the series should be checked first before evaluating any (S)ARIMA
models. Therefore the Augmented Dickey Fuller (ADF) test and the KPSS test for station-
arity of the series was evaluated (Table 3.8 on page 79). The KPSS test often select fewer
differences than the ADF test. A KPSS test has the null hypothesis of stationarity whereas
ADF test assume that the data have I(1) non —stationarity. Consequently the KPSS test
will only select one or more differences if there is enough evidence to overturn the sta-
tionarity assumption while the other tests will select at least one difference unless there is
enough evidence to overturn the non-stationarity assumption. According to Hyndman and

Athanasopoulos [2013] KPSS test led to models with better forecast.

Table 3.8: ADF & KPSS Stationarity Tests (log with-in-sample).

Stationarity Tests
ADF Num.Diff. KPSS Num.diff.

Opel | -3,98(0,01) 0 1,18(0,01) 1
Toyota | -4,00(0,01) 0 1,22(0,01) 1
VW -2,97(0,17) 1 0,71(0,01) 1
Hyundai | -2,62(0,31) 1 2,84(0,01) 1
Peugeot | -2,75(0,26) 1 2,92(0,01) 1
Ford | -1,41(0,82) 1 1,41(0,01) 1
Fiat | -2,50(0,57) 1 1,32(0,01) 1
Nissan | -1,58(0,70) 1 1,35(0,01) 1
Skoda | -2,10(0,60) 1 1,25(0,01) 1
Citroen | -2,60(0,75) 1 2,70(0,01) 1

The seasonality Unit root test of OCSD is tested to our data but considering the ADF

of the residuals of the model we will make the final decision for taking or not a difference
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due to seasonality.

Table 3.9: OCSD Seasonality Unit Root Test. Log data, in-sample.

OCSD Tests
Seasonal Num.Diff.

Opel 0
Toyota 1
VW 1
Hyundai 0
Peugeot 0
Ford 0
Fiat 0
Nissan 1
Skoda 0
Citroen 1

The “with-in-sample” estimation continues with a methodology proposed in the famous
book by Box and Jenkins [1976], that aims to find the most appropriate ARIMA (p,d,q),
model. The Box and Jenkins [1976] methodology for the analysis and forecasting of time
series is also extended to
SARIMA(p,d, q)(P, D, Q)s
models as well, and generally it is widely regarded to be the most efficient technique for
fitting a model and use it for forecasting. In practice, it is used extensively, especially for

univariate time series. The Box-Jenkins technique requires, for each series, three steps:

Step 1. Identification.

Analyze the series and recognize a possible appropriate model.

Step 2. Estimation.

Model estimation and evaluation of the model’s coeflicients.
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Step 3. Diagnostic checking.

Test if the model is the best-estimated model.

These steps are going to be applied to find which among the ARIMA or seasonal ARIMA
(SARIMA) models fits best our sample data. After the model identification process, the
in—sample estimations for each—one of the 10 firms will result in the models’ parameters.
In—sample estimation means that we are considering all available observations in the data
sample leaving nothing out of consideration. Finally, we proceed to the diagnostic checking
of the models’ residuals to identify if the models are adequate for fitting out the 10 different

sample series.

3.5.1 STEP 1: Identification.

Identification is the process of recognizing a possibly appropriate model for time series
after analyzing them Box and Jenkins [1976] provided both a theoretical framework and
practical rules for determining appropriate values for their autoregressive (p) and moving
average terms (q) as well as their seasonal counterparts P and Q. The only difficulty is that
often more than one model could be entertained, requiring the researcher to choose one of
them without any knowledge of the implications of that choice on the model’s fitting or
forecasting accuracy.

The order of the ARIMA model is found by examining the autocorrelations (ACF)
and partial autocorrelations (PACF) functions of the stationary series. Results from the
data plots of the ACF and PACF (see Figures in Appendix A) of the original series and
additionally the unit root tests give evidence that the series is non-stationarity. Thus, we
take the log values of the data to minimize the variations and the first difference of the
series (i.e. A(xy) = 2y — 241 = (1 — B)x;) to have stationary series and lower means and
standard deviations.

We are graphically presenting the autocorrelation function (ACF) and partial autocor-
relation function (PACF) correlograms of the log data series in all 10 different sample series

for three different cases:
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«Panel (a) ARIMA(0,1,0)z(0,0,0);2 models with constant, i.e. first difference data (d=1)

with non-seasonal difference (D=0)

«Panel (b) ARIMA(0,0,0)z(0,1,0);2 models with constant, i.e. simple raw data (d=0)

with non-seasonal difference (D=0) and

«Panel (c) ARIMA(0,1,0)z(0,1,0);2 models with constant, i.e. first difference data (d=1)

with seasonal difference (D=1)

The ACF and PACF of the 3 different cases are illustrated for OPEL in Figure 3.1 in
page 82 and in Appendix A for all 10 new car firms. Generally experienced researchers

notice that:
- If the ACF plot cut off (or fast decline) the time series appears stationary.

- If the ACF plot shows a very slow linear decay pattern the time series appears non-

stationary.
- If the ACF/PACF plot presents repeated waves the series indicate seasonality.

- If the ACF presents a pattern of changes of sign from one observation to the next the

series shows signs of over differences.

- If the ACF plot exhibit a definite tendency to return to it mean the time series appears

stationary.

The ACF and PACF plots of the non-seasonal difference are showed in Panel (a) for
all series suggests that since all the ACF cut off (or fast decline) or tend to return to it
mean the differenced series are stationary. Additionally, the ACF and PACF plots of the
seasonal difference are shown in Panel (b) for all series and the repeated waves which are
more obvious in the ACF of Peugeot, Nissan, Fiat, and Hyundai indicate the presence
of seasonality in the new-car sales series. The log—differenced series (the residuals of a
random-walk-with-growth model) look (more-or-less) stationary, but there is still very

strong autocorrelation at the seasonal period (lag 12,24,36). The seasonal pattern is strong

83



Maria K. Voulgaraki

and stable. Knowing that if the series has a strong and consistent seasonal pattern, we
should use the order of seasonal differencing in the model we proceed in doing so. We must
note that researchers suggest never to use more than one order of seasonal differencing or
more than 2 orders of total differencing (seasonal plus non-seasonal).

The seasonal and non-seasonal differences of the series are shown in Panel (c) for all
series and the results give signs of mild over-differencing. The positive spikes in the ACF and
PACF have become negative. In more details the four types of the SARIMA (p, d, q)z(P, D, Q)s

models are:

x Type A — SARIMA(0,0,0)z(0,0,0)12 with constant.

x Type B — SARIMA(0,1,0)z(0,0,0);2 with constant

x Type C — SARIMA(0,0,0)z(0,1,0);2 with constant

x Type D — SARIMA(0, 1,0)x(0,1,0);, with constant

In other words we have four different models.

e In model type A we have the original data in log values.

e In model type B we have the log data in first difference.

e In model type C we have the log data in first seasonal differences and

e In model type D we have the log-data in first differences and first seasonal differences.

Data order of differencing selection criteria for modelling. The problem of choos-
ing the correct order of differencing is solved by the calculation of the variance of the series
at each level of differencing. The variance is just the minimum squared errors (MSE) that
results from fitting the various difference only ARIMA models. The root of the minimum
squared errors (RMSE) is actually the standard deviation of the series at each level of

differencing.
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Table 3.10: RMSE and MAPE for different SARIMA models in log new-car sales series.

RMSE
TYPE A B C D
SARIMA | (0,0,0)z(0,0,0)12  (0,1,0)2(0,0,0)5 (0,0,0)2(0,1,0)12 (0,1,0)z(0,1,0)2
Opel 0,4131 0,4067 0,3672 0,2950
Toyota 0,4366 0,4988 0,3621 0,3550
VW 0,3999 0,4022 0,3673 0,3440
Hyundai 0,5664 0,4434 0,3958 0,3622
Peugeot 0,6098 0,4338 0,4072 0,3405
Ford 0,5502 0,3971 0,4006 0,3805
Nissan 0,4559 0,4267 0,4023 0,3817
Fiat 0,5169 0,3822 0,3848 0,3318
Skoda 6,5223 0,4329 0,4634 0,3256
Citroen 6,5589 0,5559 0,4016 0,3780
MAPE%

Opel 3,3700 4,1643 3,7301 2,8970
Toyota 4,5928 4,6716 3,5155 3,4765
VW 4,2442 3.9956 3,4953 3,4232
Hyundai 6,5209 4,6415 4,1317 3,6541
Peugeot 7,4702 4,5758 4,6189 3,7568
Ford 6,7221 4,4245 4,2560 4,0985
Nissan 4,9813 4,7380 4,3350 4,1643
Fiat 6,0464 4,2483 4,2582 3,6764
Skoda 8,6561 5,2911 1,0149 4,0343
Citroen 7,9280 5,6541 4,5652 4,0012

The results are given in Table 3.10 at page 85, show that the lowest RMSE is obtained

by model D which uses one difference of each type, i.e. first difference for the non-seasonal
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and first difference for the seasonal counterparts. This, together with the appearance of the
relevant plots of ACF and PACF in Figure 3.1 page 82 strongly suggests that we should
use both a seasonal and a non—seasonal difference in our data. The analysis of the series
using unit root tests (Table 3.8 provide evidence for the need of the first difference in our
data. On the other hand the official seasonal unit root test results (Table3.9 based on the
OCSB test, yield to first seasonal difference only for four (4) of the ten(10) new car sales
series i.e. Toyota, Volkswagen, Nissan, Citroen new—car sales series.

It is worth noticing that, except for the gratuitous constant term, model D is the
Seasonal Random Trend (SRT) model, whereas model B is just the Seasonal Random Walk
(SRW) model. Comparing these two models, the SRT model appears to fit better than the
SRW model. Model C (SARIMA(0,0,0)z(0,1,0)12) is not going to be considered seriously
because it has the original series without any differences (d=0) which is not correct since
we have proven that we should take the first difference (d=1) of the series, based on KPSS
unit root test.

Furthermore if we notice the ACF of model C (Panel b in Figure 3.1 are slowly decreasing
for almost all series, which is an indication that the mean of the series is not stationary.
On the contrary, in model (a), SARIMA(0, 1,0)xz(0,0,0);2) the ACF functions (Panel b in
Figures 3.1 appears approximately stationary, since the autocorrelation functions exhibit a
definite tendency to return to the series mean and exhibit no long-term trend.

The ACF for model D (Panel ¢ in Figures 3.1) shows signs of over-differencing especially
for the time series of new car sales of Peugeot, Hyundai, Fiat, and Skoda. We notice a
pattern of changes of sign from one observation to the next (positive-negative -positive-
negative and so on) at the ACF plot. Additionally ACF in model D has a negative spike

at lag 1 that is close to 0.5 in magnitude.

Conclusion Remarks. In the analysis that follows, we will try to improve two models:

1. Model B: SARIMA(0, 1,0)x(0,0,0)12for Opel, Hyundai, Peugeot, Ford, Fiat, Skoda

new—car sales series and,

2. Model D:SARIMA(0, 1,0)x(0, 1, 0);5 for Toyota, Volkswagen, Nissan, Citroen new—car
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sales series,

through the addition of seasonal and non-seasonal ARIMA terms, comparing which model
fit better to each time series in an “in sample”estimation.

For each of the series we will try to investigate which among a variety of Seasonal Autore-
gressive Moving Average (SARIMA) models best fit our data. In SARIMA(p, d, q)x(P, D, Q)5
model general equation (2.11) the error term &, is initially assumed to be a Gaussian white
noise process, with zero mean and a constant variance 2. We allow for a non-seasonal
first differences (d=1) in all 10 different time series, according to the results from Table3.8

(page 79), and a seasonal first difference (D =1) only in the case of Toyota, Volkswagen,

Nissan and Citroen due to the results from Table 3.9 on page80.

SARIMA Model Selection Criteria. Since we are dealing with monthly data we set
s=12 and allow the autoregressive (p) and moving average (q) orders to take values from
0 to 5, and the equivalent seasonal P and Q to take values from 0 to 2. If the values of
P, q, P, and Q are allowed to range more widely, the number of possible models increases
rapidly.

Since it is sometimes not possible to identify the parameters p,d,q and P,D,Q using
visualization tools, such as ACF and PACF plots, researchers use different selection criteria,
like the Akaike Information Criteria (AIC) and/or the Schwartz Bayesian Criteria (SBC
or BIC). Using these techniques, the problem of over-fitting in the modeling time series,

which leads to less precise estimators and bad forecasts, is controlled:
- Using BIC we select the (S)ARIMA model with the lowest value of the BIC
- Using AIC we select the (S)ARIMA model with the lowest value of the AIC.

In this empirical study, the AIC criterion is used and our scope is to identify which
model better fits our data and proceed to the model selection that generates the best
“in sample”estimates. The number of parameters that yield the minimum specifies the

best model for each one of the car representatives. The AIC information criterion which
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helps in selecting the orders of p, q, P and Q for every series in different SARIMA models

specification is calculated as:

AIC = —2log(L) + 2k (3.4)

where L is the maximized likelihood of model and £ is the number of estimated parameters
(including the variance).

Calculating the AIC values for each model with the same data set will give us the
“best” model which is the one with the minimum AIC value. The value of the AIC depends
on the data series x;, which leads to model selection uncertainty. Table 3.11 on page 91
gives the best model for Opel, Hyundai, Peugeot, Ford, Fiat, and Skoda series while Table
3.13 on page 92 gives the best model for Toyota, Volkswagen, Nissan, and Citroen. Briefly,

the best SARIMA models for our series are:

Opel Model: SARIMA(0,1,1)(1,0,1)12

Skoda Model: SARIMA 1,1

)

Toyota Model: SARIMA (2,1,3)(1,1,1)2
Volkswagen Model: SARIMA (0,1,1)(2,1,0)12
Hyundai Model: ~ SARIMA (1,1,1)(2,0,1)12
Peugeot Model: SARIMA (0,1,1)(1,0,1)12
Ford Model: SARIMA (0,1,1)(1,0,1)2
Nissan Model: SARIMA (0,1,4)(0,1,1)12
Fiat Model: SARIMA (2,1,1)(1,0, 1)1

(0,1,1)(2,0,1)

(0

Citroen Model: SARIMA (0,1,2)(0,1,1)12

We notice that each new vehicle representative has a different SARIMA model specifi-
cation. That is due to the different operational and marketing strategy of each car firm.
Each car retailer in the market may maintain, increase or decrease their market share in
the Greek new car market. However, there are some car firms that share the same type of
model specification for their sales level. Opel, Peugeot and Ford new-car sales in Greece
are best modelled by the SARIMA (0,1,1)(1,0,1);2. That means that these three firms

share the same general formula for estimating there new-car sales levels, produced from the

equation (2.11).
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On the other hand we have different coefficients estimations for each one of the car

representatives, due to the data variety, which brings about 10 different models as illustrated

in Table 3.15. Grouping the SARIMA models formulation for the 10 different new car

representatives, leads to only 8 different types of models formulations (since Opel Peugeot

and Ford share the same type of model) which are illustrated below:

e Model 1
Opel & Peugeot & Ford new—car sales=— SARIM A(0,1,1)(1,0,1)12:

(1-B)(1 —®,B®)z, = (1+6,B)(1+6,B%)e,

e Model 2
Toyota new—car sales=> SARIMA(2,1,3)(1,1,1)12 :

(1—B)(1 - B, = (14 6,B+ 0,B% + 63B%)(1 + ©,B")¢,

e Model 3
Volkswagen new—car sales = SARIMA(0,1,1)(2,1,0)2:

(1—B)(1 - B%(1 - & B - ®,B*)2, = (1+ 6,B)e,

e Model 4

Hyundai new—car sales = (1,1,1)(2,0, 1);2:

(1—¢1B)(1 - B)(1 — &, B — ®,B* )2, = (1 + 6,B)(1 + ©,B%)¢,

e Model 5
Nissan new—car sales = SARIM A(0,1,4)(0,1,1);2:

(1—B)(1 - B2, = (14 6,B + 0,B% 4+ 03B* + 0,B*)(1 + ©,B")¢,

e Model 6
Citroen new—car sales = SARIM A(0,1,2)(0,1,1);2:

(1—B)(1 - B2, = (14 6,B+0,B*)(1+0,B"%)e,

(3.5)

(3.8)

(3.9)

(3.10)
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e Model 7
Skoda new—car sales = SARIMA(0,1,1)(2,0,0)2:

(1—B)(1—®,B"” — ®,B*)z;, = (1 + 0, B)e; (3.11)

e Model 8
Fiat new—car sales = SARIM A(2,1,1)(1,0,1)19:

(1—¢1B —¢2B*)(1 — B)(1 — ®,B®)z; = (1+6,B)(1+ 0,B"%)e, (3.12)

where B is the lag operator and &, is the error term at time t (i.e. the residuals of each
model). After completing the estimation process, we will rewrite the above models replacing
the unknown parameters with the ones estimated using the Maximum Likelihood estimation
process. So ¢, will be replaced with the estimated parameters for the AR(p), 6, with the
estimated parameters of MA(q), ®p with the estimated parameters of SAR(P), and ©¢

with the estimated parameters of SMA(Q).
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SARIMA Opel Hyundai Peugeot Ford Fiat Skoda
(0,1,1)(0,0,1)12 80,76 117,90 110,92 95,28 88,54 83,96
(0,1,2)(0,0,1)12 82,76 119,77 112,44 96,64 89,99 85,96
(2,1,0)(0,0,1)12 83,02 121,27 110,71 99,02 89,01 88,84
(3,1,1)(1,0,0)12 45,03 78,83 74,56 84,08 63,85 66,74
(1,1,1)(1,0,1)12 4,89 43,30 52,15 - - 34,23
(1,1,2)(1,0,1)12 2,75 45,90 53,77 69,37 22,12 36,20
(3,1,2)(1,0,1)12 8,21 46,92 50,91 71,71 21,74 34,20
(2,1,2)(1,0,1)12 6,72 46,90 55,86 - - 37,34
(1,1,1)(1,0,2)12 6,40 40,92 54,03 69,03 21,58 35,71
(0,1,1)(2,0,1)12 5,24 40,46 52,01 68,26 19,82 34,23
(2,1,1)(2,0,0)12 15,89 45,43 54,22 74,54 38,06 59,48
(1,1,2)(2,0,2)12 6,09 43,30 - 72,4 23,77 36,64
(0,1,2)(2,0,2)12 8,06 43,04 - 70,78 21,93 34,47
(2,1,3)(1,0,2)12 9,99 45,34 53,96 - 23,88 39,99
(0,1,1)(2,0,0)12 14,68 44,89 55,02 72,38 37,78 56,43
(2,1,3)(1,0,1)12 8,68 46,92 51,85 72,62 2245 38,21
(0,1,1)(1,0,1)12 3,60 45,14 50,16 66,87 1842 32,52
(0,1,2)(1,0,2)12 6,66 41,57 54,03 69,03 21,59 35,69
(0,1,1)(1,0,2)12 5,28 40,84 52,04 68,17 19,61 34,06
(1,1,1)(2,0,1)12 7,38 40,39 - - 22,99 40,12
(1,1,1)(2,0,0)12 15,51 44,33 56,93 72,54 39,39 5791

Table 3.11: AIC information criterion for different SARIMA specifications (d=1,D=0).
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Table 3.13: AIC information criterion for different SARIMA specifications(d=1,D=1).

92

SARIMA Toyota Volkswagen Nissan Citroen
(0,1,1)(0,1,1)12 61,33 34,93 79,24 66,09
(0,1,4)(0,1,1)12 60,57 39,84 72,23 66,67
(2,1,0)(0,1,1)12 60,74 41,11 82,62 76,27
(3,1,1)(1,1,0)12 76,86 38,34 89,38 85,85
(1,1,1)(1,1,1)12 63,30 29,36 75,24 65,18
(1,1,2)(1,1,1)12 60,99 30,76 75,92 66,68
(3,1,2)(1,1,1)12 63,17 33,93 77,51 70,73
(2,1,2)(1,1,1)12 61,81 32,75 77,89 68,73
(1,1,1)(1,1,2)12 65,16 31,16 76,58 65,45
(0,1,1)(2,1,1)12 64,67 29,53 79,84 69,51
(2,1,1)(2,1,0)12 70,14 31,02 74,44 -
(1,1,2)(2,1,2)12 64,96 34,22 77,14 70,25
(0,1,2)(0,1,1)12 61,39 36,67 76,81 62,72
(2,1,3)(1,1,2)12 59,39 30,41 80,65 -
(0,1,1)(2,1,0)12 71,70 27,77 78,42 80,84
(2,1,3)(1,1,1)12 57,66 29,26 79,21 70,68
(0,1,3)(0,1,1)12 59,96 38,28 78,28 64,69
(0,1,2)(1,1,2)12 64,09 31,10 78,57 65,03
(0,1,1)(1,1,2)12 64,67 29,72 81,17 68,06
(1,1,1)(2,1,1)12 65,29 29,72 75,30 66,74
(1,1,1)(2,1,0)12 72,36 30,09 73,60 77,03
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3.5.2 STEP 2: Estimation

In the estimation process we follow the Box-Jenkins methodology. This methodology
supports the principle of parsimony, meaning that a simpler (having fewer parameters)
model should be selected in case more than one model are possible. The final models
are selected via the AIC information criterion and computed using maximum likelihood

estimation. The results are the following for each one of the new—car firm:

e OPEI (S)ARIMA (0,1,1)(1,0, 1);.Model
(1— B)(1—0.97B2)z, = (1 — 0.54B)(1 — 0.71B'2)¢,

e TOYOTA (S)ARIMA (2,1,3)(1,1,1)12 Model
(1-1,64B — 0,86B%)(1 — B)(1 — B2)(1 — 0,12B2)z, = (1 + 1,13B — 0,23B2 —
0,67B3)(1 — 0, 75B2)e,

e VOLKSWAGEN (S)ARIMA (0,1,1)(2,1,0);2 Model
(1—B)(1—B2)(1+0,84B2 +0,31B*)2, = (1 — 0,62B)¢,

e HYUNDAI (S)ARIMA (1,1,1)(2,0,1); Model
(1 -0.21B)(1 — B)(1 — 0.64B" — 0.29B*)z, = (1 — 0.74B)(1 — 0.47B")¢,

e PEUGEOT (S)ARIMA (0,1,1)(1,0,1);> Model
(1—B)(1—0.95B2)z, = (1 — 0.55B)(1 — 0.63B2)¢,

e FORD (S)ARIMA (0,1,1)(1,0, 1)1, Model
(1— B)(1—0.92B2)z, = (1 — 0.66B)(1 — 0.683')z,

o NISSAN (S)ARIMA (0,1,4)(0,1, 1)1, Model
(1—B)(1 — B2)z, = (1 —0,49B — 0,09B% — 0,007B3 — 0,22B%)(1 — 0,63B'2)¢,

e FIAT (S)ARIMA (2,1,1)(1,0,1)12 Model
(1—0,47B —0,34B2)(1 — B)(1 — 0,98B2)z; = (1 — 0,98B)(1 — 0, 773"z,

o SKODA (S)ARIMA (0,1,1)(2,0,0):5 Model
(1—B)(1—0,42B" — 0,27B*)z, = (1 — 0,50B)e,
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e CITROEN (S)ARIMA (0,1,2)(0,1, 1)1, Model
(1—B)(1 — B2)z, = (1 — 0,548 — 0,195%)(1 — 0,93B2)¢,

The results from the estimation process are given in more details in Table 3.15, page
95.

After the estimation of the parameters the SARIMA models general formulation is given
in Equations (3.5) to (3.12) can now be transformed into a more accurate presentation as

the one already developed above for each one of the new—car firm.

3.5.3 STEP 3: Diagnostics checking.

The diagnostic check is a procedure that is used to check the residuals of a model. After
the model specification, the diagnostic checking is employed by examining the residuals from
the fitted model to see if the model specification is adequate. The residuals should fulfill
the model’s assumptions.

For SARIMA models residuals should be random, independent, and normally dis-
tributed. Suppose these assumptions were not fulfilled then the researcher choose another
model for the series. In terms of the Box-Jenkins methodology, any model which results in
random residuals, is an appropriate one.

Once an appropriate model had been entertained and its parameters estimated, the
Box-Jenkins methodology required examining the residuals of the actual values minus those
estimated through the model. If such residuals are random, it is assumed that the model
is appropriate. If not, another model is entertained, its parameters estimated, and its
residuals checked for randomness.

In practically all instances, a model should be found to result in random residuals since
it is a standard statistical procedure not to use models whose residuals are not random. The
implementation of the diagnostic checking can be done both by graphical and statistical

testing.

Graphical Testing of SARIMA models Residuals. The Graphical testing includes

a variety of plots like :
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- Histogram of Residuals

- Q-Q plot of Residuals

- Standardize Residuals Plot

- ACF plot of Residuals

- p-value plot of Ljung-Box test

- Squared Standardized Residuals Plot

- ACF and PACF plots of squared Residuals

Visually a histogram of the residuals, a normal probability plot or a normal quantile-
quantile plot (Q—Q plot) of the squared residuals can help in identifying departures from

normality and investigates marginal normality [Johnson and Wichern, 1992].

Histograms. The overall pattern of the histogram of the residuals should be similar to
the bell-shaped pattern observed when plotting a histogram of normally distributed data.
Departures from these shapes usually mean that the residuals contain a structure that is
not accounted for in the model.

Identifying that structure and altering the model may lead to a better model. The
histogram of the residuals of the SARIMA models fit each firms’ new car sales data in-
dicate that the residuals are close to normality as they are bell-shaped except for a few
extreme values in the tails. The histograms of the SARIMA model residuals are graphically

presented in the first figure at the top left angle of Fig.3.2 (page 100) for Opel.

Q-Q plot of Residuals. The normal quantile-quantile plot (Q-Q plot) of the residuals
is shown in the top right angle of the Figures indicated above for all 10 different series
and since the variance of the residuals ¢, is unobservable, the squared residuals serve as a
Proxy.

The Q-Q plot compares the ordered values of each variable with the quantiles of a specific

theoretical distribution (for example the normal distribution). If the two distributions
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match the points on the plot, it will form a linear pattern passing through the origin with
a unit slope. The Q-Q plots are used to see how well a theoretical distribution models the
empirical data.

All car firms appear to have a small variation in their new car sales level with a wider
range of outliers in the upper and lower extreme values. In other words, we observe some
variations in the sales levels for the months that we have the higher and the lower sales levels
for each firm. However, the linearity of the points of the normal Q-Q plots suggests that the

data are very close to normal distribution but also give some evidence of heteroskedasticity.

Standardize Residuals Plot. Firstly we observe the time plot of the innovations (resid-
uals) e, = zy — Z4_1 or the time plot of the standardized innovations. The standardized

residual (g7) is the residual divided by its standard deviation:

* Ty — Tg—1
gt = N
o

where Z;_; is the “one —step—ahead” prediction of Z;_s, based on the fitted SARIMA models
and ¢ is the estimated squared root error variance (or the standard deviation) from the
selected SARIMA model.

In this way we are scaling the residuals by simply standardizing them, meaning scale the
residuals by dividing with the constant standard error. If a model fits well, the standardized
residuals should behave as an identical independently distributed (iid) sequence, with mean
zero (u = 0) and variance equal to one (o2 = 1). The time plot of the series is inspected for
any obvious departures from this assumption. There is evidence that the SARIMA models
do not fit very well; since there are large and small deviations from the mean in different
periods.

We observe that the standardized residuals plot analysis shows signs of heteroskedastic-
ity with a mean around zero. The time plots of the standardized residuals are illustrated

in the first out of the three plots in the second half of the Figure 3.2 (page 100) for Opel.

ACF of Residuals. Since the third stage, in building SARIMA models, consists of

validating the model through an examination of the one-step prediction residuals ¢;, a
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basic visual diagnostic technique should also be to examine the autocorrelation function
(ACF) of the residuals.

Checking the correlation structure of the residuals, we plot the sample autocorrelations
of the residuals illustrated in the second out of the three plots in the second half of the
Figure 3.3 (page 100) for Opel and so on for the other firms.

Generally the presence of large autocorrelations indicates that the models may be in-
adequate. It is well known that for random and independent series of length n, the lag k
autocorrelation coefficient is normally distributed with a mean of zero and variance of %
and the 95% confidence limits are given by i—%. For a white noise sequence, the sam-
ple autocorrelations are approximately independently and normally distributed with zero
means and Variances%.

However, residuals from a model fit, may not have the exact properties of a white noise
sequence and the variance of 7 (¢) can be much less than % [Box and Pierce, 1970, McLeod
and Hipel, 1978].

The detection of the obvious departures from the independence assumption can be
visually inspected. The ACF plots of the SARIMA squared residuals in all ACF figures
show that there is no significant autocorrelation left in the residuals from the SARIMA
type models of the monthly new vehicle sales. In other words, the autocorrelation function
give the impression that residuals are purely random.

According to Shumway and Stoffer [1982] evidence that the residuals are uncorrelated
is enough only if we know that time series is Gaussian i.e normally distributed. Because
there are examples where residuals are uncorrelated but time series are non-Gaussian, like

in the case of the GARCH family models.

Ljund-Box p-value plot. The levels of p—values of the Ljung—Box p—statistic in the
third out of the three plots in the second half of the figure 3.2 (page 100) for Opel and so

on for the other firms give evidence of :

1. High p-values which indicate no autocorrelation in the residuals (in case of Opel,

Toyota, Hyundai, Ford, and Fiat) and
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2. Low-level p-values or p-values with fluctuations as the level of lags increases, which
indicates that there is some autocorrelation left in the residuals (cases of Volkswagen,

Peugeot, Skoda, Nissan, and Citroen).

In general the p-value’s exceedance of 0,05 indicate the acceptance of the null hypothesis
of the model adequacy at significance level 0,05 [Wang et al., 2005]. Results show that the
SARIMA models may not be adequate for all the sample series.

Squared Standardized Residuals Plots and their ACF and PACF Plots. There is a
tendency in the data that large (small) absolute values of residual process are followed by
other large (small) values of unpredictable sign, which is a common behaviour of GARCH
processes. It was Granger and Andersen [1978] that have found that some of the series
modelled by Box and Jenkins [1976] exhibit autocorrelated squared residuals even though
the residuals themselves do no seem to be correlated over time and therefore suggested that
the ACF of the squared time series could be useful in identifying non-linear time series.
Bollerslev [1986] stated that the ACF and PACF of squared process are useful in identifying
and checking GARCH behaviour. In Figure 3.4(pagel01) and in Figure 3.3(page 100) we
have the ACF and the PACF of the squared standardized residual series from the selected
SARIMA models of monthly new car sales in Greece.

It is shown that although the residuals are almost uncorrelated as shown in the plot of
the simple residuals Figure 3.2(page 100), the squared residuals series illustrated in Figure
3.4 are correlated illustrating high volatility especially during the last 3 years. Additionally
the ACF and PACF plot of the squared standardized residual series exhibit seasonality
effect, which has been taken care by the seasonal ARIMA modelling and structure that is
not modelled by the selected SARIMA models. As a consequence, we can assume that given
the structure of the ACF and PACF there is an indication that the variance of residuals
series may exhibit an ARCH effect.

The Statistical testing of SARIMA models residuals includes a variety of tests like the

followings:

- Box - Pierce Test
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Figure 3.4: Opel SARIMA model Squared and Standardized Residual Plots

- Ljung - Box Test

- Shapiro - Wilk Test

- Jarque - Bera Test

The Box and Pierce [1970] and Ljung and Box [1978]Q —statistics is often adopted
to test the adequacy of the model. After the graphical examination of the residuals, we
continue and instead of testing the significance of any individual autocorrelation coefficient
via the ACF, we test the joint hypothesis that all the autocorrelation coefficients (px) up to
a certain lag are simultaneously equal to zero. Box—Pierce and the Ljung-Box test statistic
for examining the null hypothesis of independence in a given time series is based on the
autocorrelation plot. However, instead of testing the randomness at each distinct lag, it
tests the overall randomness based on several lags. For this reason, they are sometimes

known as a “portmanteau”test.

The Box - Pierce Test (Qpp—statistic) developed by Box and Pierce [1970] is defined
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as:
@pp=n Z i (3.13)
k=1

where n=sample size and m=the number of autocorrelations included in the sample and
pz is the squared sample autocorrelation of residual series ¢, at lag k . The Box and Pierce
[1970] @ pp-statistics test has the null hypothesis that there is no autocorrelation up to

order 6, 12, and 24 computed on 25, 2,

The hypothesis of no autocorrelation up to lag
m is rejected if the () statistic is greater than the appropriate percentile of the x—square
distribution with m — p — ¢ degrees of freedom (where m > p + ¢, p the autocorrelation
order and q the moving average order of the SARIMA model).
The Ljung and Box [1978] Test (Qrp—statistics) is a variant of the Box and Pierce [1970]
Test (Qpp statistic) and is defined as:
Qus =nln+2) 32 ) (5.14)
n—k

k=1

where n=sample size and m=the number of autocorrelations included in the sample and
pz is the squared sample autocorrelation of residual series ¢, at lag k .

Under the null hypothesis of model adequacy, the QQrp test statistic is asymptotically
2?(m — p — q) distributed. The null hypothesis at level « is rejected if the value of Qpp
exceeds the (1 — «) quantile of the z*(m — p — ¢) distribution. In other words, if the
computed (Qgp exceeds the critical (Q value from the chi-square distribution at the chosen
level of significance («), one can reject the null hypothesis that all the (true)py are zero,
meaning that at least some of them must be non-zero. In this test, a small p—value is an
evidence that there is dependence. So we want to see large p—values. However, a large
p—value is not evidence of independence, merely a lack of evidence of dependence.

In a large sample, both Qgp and Qg follow the chi-square distribution with m degrees
of freedom. In small samples, (J;p has been found to have more powerful, in a statistical

sense, ‘small sample properties’ than the Qpgp statistic [Gujarati, 2003].

BP and LB Test of SARIMA Residuals. The Q-statistics tests and their p—values

for the non-autocorrelation of residuals of the selected SARIMA models in modeling the
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new car sales for Q(6), Q(12) and Q(24) statistic are given in Table 3.16 on page 107.
The sum of the Q(6), Q(12) and Q(24)squared autocorrelations of the selected SARIMA
residuals as shown by the Box-Pierce Qpp and Ljung Box () p statistics is not statistically
significant for a level a = 0, 10 since the Q statistics calculated are less than the critical
values of the x? distribution 10,64 for Q(6), 18,54 for Q(12) and 33,19 for Q(24).

However, if we increase the error term to a = 0,5 then the critical values decrease and
become 5,34 for Q(6) 11,34 for Q(12)and 23,33 for (24). In this case, both Box-Pierce
Qpp and Ljung Box Q)1 p statistics reject the null hypothesis that all autocorrelations are
zero for the cases of Volkswagen, Peugeot, Skoda while the null hypothesis is also rejected
for Nissan and Citroen when the Q statistic considers 24 lags.

The levels of p—values are also illustrated graphically in the Ljung—Box p—values plots
in Figure, in the third plot (c¢) on the row. High p-values indicate no autocorrelation in the
residuals as shown in the case of Opel, Toyota, Hyundai, Ford, and Fiat. On the other hand,
low-level p-values or p-values with fluctuations as the level of lags increases indicate that
there is some autocorrelation left in the residuals like in the case of Volkswagen, Peugeot,
Skoda, Nissan, and Citroen.

In general the p-value’ exceedance of 0,05 indicates the acceptance of the null hypothesis
of the model adequacy at significance level 0,05 [Wang et al., 2005] Conclusively, we can
say that there is evidence that the selected SARIMA model is adequate for at least half of
the 10 different new car representatives in the sample while the other half firms’ SARIMA
models seem to have autocorrelation in the residuals of the selected SARIMA models. The

SARIMA models may not be adequate for all the sample series.

BP and LB Test of squared SARIMA Residuals. However the application of the
Box Pierce and Ljung Box test to the squared standardized residuals of the SARIMA models
illustrated in Table 3.17 page 108 show evidence of heteroskedasticity in all residual series.
The Q-statistics have higher values and the associated p-values are less than the results
given in the case of standardized residuals. They are now significant up to lag 24 at the

5% level in all squared SARIMA residuals indicating that there is heteroskedasticity in the
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SARIMA squared residuals. That is suggesting that there can be some improvement on
the current models through volatility modeling.

We also notice that the firms that are suffering more fro the serial correlation are the
Volkswagen and the Nissan, since their selected SARIMA model’s squared residual give
a quite high value in the ARCH effect test statistics results in Table 3.17. Hence it is
necessary for this in sample testing to develop a better model for analysis of the car sales
series which is the SARIMA - GARCH model that can handle heteroscedasticity in the

series.
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Figure 3.5: ACF of SARIMA resid.and resid.?-Opel, Toyota, VW, Hyundai, Peugeot
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SARIMA residuals | Box—Pierce | Ljung—Box
Opel 6 lags | 2,78 (0,83) | 2,89(0,82)
12 lags | 6,72 (0,87) | 7,13(0,84)

24 lags | 11,90 (0,98) | 13,06(0,96)

Toyota 6 lags | 1,48 (0,96) | 1,54(0,95)
12 lags | 7,46 (0,82) | 7,96(0,78)

24 lags | 19,51 (0,72) | 21,55(0,60)
Volkswagen | 6 lags | 6,54(0,36) | 6,83(0,33)
12 lags | 12,13(0,43) | 12,87(0,37)

24 lags | 33,57 (0,09) | 37,32(0,04)

Hyundai 6 lags | 2,23(0,89) | 2,30(0,88)
12 lags | 4,10 (0,98) | 4,28(0,97)

24 lags | 6,98 (0,99) | 7,60(0,99)

Peugeot 6 lags | 6,68 (0,35) | 6,92(0,32)
12 lags | 16,08 (0,18) | 16,98(0,15)

24 lags | 26,66 (0,32) | 28,95(0,22)

Ford 6lags | 1,39(0,96) | 1,43(0,96)
12 lags | 8,00(0,78) | 8,49(0,74)

24 lags | 11,10(0,98) | 12,04(0,97)

Nissan 6 lags | 2,02((0,91) | 2,10(0,90)
12 lags | 8,76 (0,72) | 9,32(0,67)

24 lags | 26,24(0,34) | 28,95(0,22)

Skoda 6lags | 5,13(0,52) | 5,32(0,50)
12 lags | 19,10(0,08) | 20,37(0,60)

24 lags | 33,95(0,08) | 37,52(0,03)

Fiat 6 lags | 1,46(0,96) 1,50(0,95)
12 lags | 5,19 (0,95) | 5,53(0,93)

24 lags | 10,45(0,99) | 11,58(0,98)

Citroen 6 lags 1,44(0,96) 1,49(0,96)
12 lags | 7,59(0,81) | 8,10(0,77)

24 lags | 23,78(0,47) | 26,46(0,33)
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Table 3.17:

SARIMA residuals | Box—Pierce Ljung—Box
Opel 6 lags | 9,68 (0,13) 9,92(0,12)
12 lags | 24,57 (0,01) 26,00(0,01)
24 lags | 32,24 (0,12) 34,94(0,06)
Toyota 6 lags | 13,74 (0,03) 14,21(0,02)
12 lags | 17,99 (0,11) 18,77(0,09)
24 lags | 22,72 (0,53) 24,24(0,44)
Volkswagen | 6 lags | 27,75(0,00) 28,31(8,178e-05)
12 lags | 45,04(1,013¢-05) | 47,10(4,464¢-06)
24 lags | 67,66 (4,911e-06) | 72,41(9,378-07)
Hyundai 6 lags | 3,45(0,75) 3,59(0,73)
12 lags | 31,58 (0,00) 34,13(0,00)
24 lags | 34,64 (0,04) 39,70(0,02)
Peugeot 6 lags | 6,49 (0,37) 6,64(0,35)
12 lags | 15,49 (0,21) 16,38(0,17)
24 lags | 30,78 (0,16) 33,76(0,08)
Ford 6 lags | 13,89(0,03) 14,20(0,02)
12 lags | 20,40(0,05) 21,18(0,04)
24 lags | 22,22(0,56) 23,23(0,50)
Nissan 6 lags | 28,78((6,694e-05) | 29,60(4,671e-05)
12 lags | 40,98(4,934e-05) | 42,69(2,541e-05)
24 lags | 67,40(5,361e-06) | 72,67(8,535¢-07)
Skoda 6 lags | 6,827(0,33) 6,98(0,32)
12 lags | 9,35(0,67) 9,70(0,64)
24 lags | 30,75(0,16) 34,07(0,08)
Fiat 6 lags | 12,74(0,04) 13,21(0,03)
12 lags | 18,11 (0,11) 18,98(0,08)
24 lags | 25,93(0,35) 27,86(0,26)
Citroen 6 lags | 1,77(0,93) 1,83(0,93)
12 lags | 25,09(0,01) 27,19(0,00)
24 lags | 35,63(0,05) 39,37(0,02)

ARCH effect test for squared residuals of selected SARIMA models




Modeling Time Series

Shapiro Wilk Test. Running the Shapiro—Wilk test(SW) [Shapiro and Wilk, 1965, Roys-
ton, 1982] we examine whether the population being sampled has a specified distribution
and more specifically in our case we examine if the sample (residuals of each firm’s SARIMA
model) came from a normally distributed population. The Shapiro-Wilk test statistic which
can indicate if the residuals are normally distributed is denoted as:

(i 0‘%'55(1'))2

SW = & -
2 i (T = 7)?

(3.15)

where
e 1, is the sample series,

e z(; (with parentheses enclosing the subscript index ) is the " smallest number in

the sample,

(1]1+$2+"'+(L’n)

o I = is the series mean,
n
mTv -1 T
e the constants o; are given by oy, ..., a, = T where m = (mq,...,my,)
and my, ..., m, are the expected values of the order statistics of independent and iden-

tically — distributed random variables sampled from the standard normal distribution,

and
e V is the covariance matrix of those order statistics.

SW test Decision Rule: If the p-value of the SW test is greater than the chosen alpha
level then we do not reject the null hypothesis which means that we conclude that the
data are from a normally distributed population. If the p-value of the SW test is less than
the chosen alpha level, then one does reject the null hypothesis that the data came from a
normally distributed population.

The results from the Shapiro-Wilk test applied in the selected SARIMA residuals shown
in Table 3.18 (page 111) yields that for an alpha level of 0.10 (i.e for a 90% confidence
interval) we cannot reject the hypothesis that the data are from a normally distributed

population i.e. the residuals are normal for Hyundai, Nissan, Fiat and Skoda while it
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indicates that the residuals are not normally distributed for Opel, Toyota, Volkswagen,
Peugeot, Ford and Citroen. Thus, the (S)ARIMA models for Opel, Toyota, Volkswagen,
Peugeot, Ford and Citroen appear to fit well, but for Hyundai, Nissan, Fiat and Skoda a

distribution with heavier tails than the normal distribution should be employed.

Jarque - Bera Test. There is also no evidence of no normality using the Jarque-Bera
(JB)test [Jarque and Bera, 1987] for Hyundai, Fiat, Skoda and Nissan. The JB test has the
null hypothesis that the SARIMA models residuals are drawn from a normally distributed
population and hence the test can be regarded as a test of goodness of fit. The results from
this test illustrated in Table 3.18 (page 111) confirms that the SARIMA residuals have
skewness and kurtosis matching normal distribution only for Hyundai, Nissan, Skoda, and
Fiat. However the majority of the car representatives have JB statistic p—values sufficiently
low which is happening because the value of the statistic is very different from zero (0) and
so we reject the hypothesis that the residuals are normally distributed for Opel, Toyota,
Volkswagen, Peugeot, Ford, and Citroen. Of course, we keep in mind that the JB test is a

large sample test and our sample may not be necessarily large.
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Table 3.18: Shapiro Wilk & Jarque Bera test for selected SARIMA residuals.

Shapiro-Wilk p-value | Jarque Bera  p-value
Opel 0,97 0,01 8,52 0,01

Toyota 0,96 0,00 34,76 2,827e-08
VW 0,97 0,00 15,00 0,00
Hyundai 0,99 0,96 0,24 0,88
Peugeot 0,97 0,00 9,71 0,00
Ford 0,98 0,02 9,48 0,00
Nissan 0,99 0,294 1,81 0,40
Fiat 0,98 0,19 0,31 0,85
Skoda 0,99 0,76 0,94 0,62

Citroen 0,96 0,00 28,41 6,766e-07
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3.6 SARIMA - GARCH Modelling

Since GARCH family models have been introduced to the world, people often use them
to analyze volatility and they usually fit well. Nowadays, with the development of eco-
nomics all around the world and the economic recession of Europe and Greece more and
more people are considering less investing their money in durable products like cars. This
situation gives rise to volatility in car sales over time. For a definition, volatility is a
measure for variation of the price of a financial instrument over time, according to Lin C.
1996. Therefore the future new car sales levels uncertainty could be presented as volatility.
Modeling and forecasting volatility need new models other than the traditional SARIMA
models. The well Known SARIMA models have their limitations in the application since

they always ignore the heteroskedasticity of the monthly new car sales data.

The Seasonal Autoregressive Integrated Moving Average with Generalized Autoregres-
sive Conditional Heteroscedastic Errors (SARIMA-GARCH) models are called volatility
models. These models were developed after relaxing the hypothesis of constant variance
in the series - which was needed for SARIMA model estimation. In this way, researchers

created other types of models like a SARIMA with generalized autoregressive conditional

heteroscedastic errors (SARIMA-GARCH) models.

The SARIMA models are good for modeling homoscedastic time series, meaning time
series with constant variances. However most of the financial and sales time series are
leptokurtic with fat tails and if we wish to relax the hypothesis of homoscedasticity and
assume that the variance is not constant, we model the series using heteroscedastic models
such as the Auto-Regressive Conditional Heteroscedastic (ARCH) models [Engle, 1982] or
the Generalized ARCH (GARCH) Modells [Bollerslev, 1986] and their derivatives which
are the IGARCH, GARCH-M, GARCH-t, asymmetric GARCH models and so on (for more
details Brooks [2008], Enders [1995], Mills [1999], Tsay [2010])

In this chapter, we are going to introduce the SARIMA GARCH models and then we
are going to follow the Box Jenkins methodology to model our series. In the first step, the

Identification process will be done by checking if there is an ARCH effect in the SARIMA
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residuals. Step 2 is going to be the estimation of a variety of volatility models and Step 3

will end the process with a diagnostic checking.

3.6.1 SARIMA GARCH Model Building

The SARIMA-GARCH model may be interpreted as a combination of a SARIMA model
which is used to model mean behavior and an ARCH model which is used to model the
ARCH effect in the residuals series from the SARIMA model. The number of GARCH mod-
els is immense, but the most influential models were the first. The standard ARCH model
was introduced by Engle [1982] and the GARCH model by Bollerslev [1986]. There exist
a collection of review articles by Bollerslev et al. [1992], Higgins and Bera [1993],Bollerslev
et al. [1994], Engle [2001], Engle and Patton [2001], and Ling and McAleer [2002] that give
a good overview of the scope of the ARCH and GARCH models. In applied research, these
models are especially useful when the goal of the study is the analysis and the forecast-
volatility. These volatility models are able to forecast volatility and incorporate in a model
some facts like persistence, mean reversion, asymmetry, and the possibility of exogenous or

predetermined variables influencing volatility.

The SARIMA-GARCH model building procedure proceeds in the following steps:

Logarithmize the original new-car sales series for the 10 different car representatives.

Fit a SARIMA model to the logarithmized new-car sales series

Calculate seasonal standard deviations of the residuals obtained from SARIMA model

and standardize the residuals.

Fit a GARCH model to the standardized residual series.

The SARIMA model has the general form as specified in equations 2.11, page59 and
the GARCH (p,q) model has the form [Bollerslev, 1986] :

5t|@/}t—1 ~ N(07 ht)

q p (3.16)
he =w+ Y oig]  + > Bilui
=1 =1
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where €; denotes a real-valued discrete-time stochastic process, 1, the available information
set w is the constant term, while o; and (; are the coefficients with the restrictions p >
0,qg>0,w>0,0; >0, and S; > 0.

When p=0 the GARCH(p,q) model reduces its form to the ARCH(q) model. Under the
GARCH (p,q) model the conditional variance(h;) of ;, depends on the squared residuals
in the previous q time steps and the conditional variance in the previous p time steps.
Since GARCH models can be treated as SARIMA models for squared residuals the order of
GARCH can be determined with the method for selecting the order of SARIMA models and
traditional model selection criteria such as Akaike information criterion (AIC) or Bayesian

information criterion (BIC) for the selected models [Wang et al., 2005].

3.6.2 Step 1. Identification

Before analyzing and building SARIMA-(G)ARCH models, which are a combination of
SARIMA modeling for the mean equation and GARCH modeling for the volatility equation,
the researcher check if there is an ARCH effect in the residuals of the selected SARIMA

models.

Test of Arch effect. There are some formal methods to test for the ARCH effect of a
process such as the McLeod-Li test [McLeod and Li, 1983, the Engle’s Lagrange Multiplier
test [Engle, 1982], the BDS test [A. et al., 1996], Tsay [1986] e.t.c.

All these tests share the principle that once any linear structure is removed from the
data, any remaining structure should be due to a non-linear data generating mechanism.
The linear structure is removed from the data through the SARIMA models and the resid-
uals of the preferred SARIMA models, which are by construction serially uncorrelated, are
then tested for non-linear independence using each of the procedures in turn. All the pro-
cedures embody the null hypothesis that the series under consideration is an independently
and identically distributed (IID) process. McLeod-Li and Engle’s Lagrange Multiplier test
are used in this study to check the existence of an ARCH effect in the new car registration

series. Details of the tests are as follows.
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McLeod-Li test for the ARCH effect A formal test for ARCH effect based on the
Ljung-Box test was proposed by McLeod and Li [1983]. The test looks at the autocorrela-
tion function of the squares of the residuals and tests whether the first L autocorrelations
for the squared residuals are collectively small in magnitude. Similar to the Ljung-Box test
equation

22( 2
Pr(e?)
Qur = n(n+2)8¢, nk(_ p

(3.17)

where n is the sample size, L=the number of autocorrelations included in the statistic and

N 9.9
> EiEly,
t=k+1

n
> et
t=1

/\2_
L =

pz is the squared sample autocorrelation of squared residuals series at lag k, obtained from
fitting the selected SARIMA model to the data. If the series &; is independently and
identically distributed (IID) then the asymptotic distribution of Q. is z?(L) distributed
with L degrees of freedom. Thus, under the null hypothesis —Hy:No ARCH effect in the
data- the test statistic is asymptotically 2?(L) distributed. Figure 3.7, in page 116 shows
the results of the McLeod-Li test for monthly new car sales SARIMA residuals series. It
illustrates that the null hypothesis of no ARCH effect is clearly rejected only for the case

of Volkswagen, Hyundai, and Nissan SARIMA residual series.

Engle’s Lagrange Multiplier test for the ARCH effect Given the fact that the
ARCH model has the form of an autoregressive model, Engle [1982] proposed the Lagrange
Multiplier (LM) test, in order to test for the existence of ARCH behavior based on the
regression. The Lagrange multiplier Test (or LM Test) for the ARCH effect is applied
to examine if the residuals are higher-order series correlated. ARCH LM tests whether

coefficients in the following regression are zero.
2 2 2
€ =Wt g+ ogE,

The &; are the residuals from the selected SARIMA models, which we want to test for

ARCH effects. The null hypothesis, which states that there is no ARCH effects in the
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Figure 3.7: McLeod-Li Tests for SARIMA residuals.
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residuals is :

Hy:aop=ay=---=a,=0

If the hypothesis is accepted then we can say that series has no ARCH effects because
the volatility becomes equal to €2 = w meaning that we have constant volatility or in
other words homoscedasticity. If the null hypothesis is rejected then one or more coeffi-
cients are non zero and we say that there is an ARCH effect in the SARIMA residuals,
heteroskedasticity. In more detail the testing procedure for ARCH effect has the following

steps:

1. Run the selected SARIMA model and obtain the residual (¢;) and the squared resid-

uals (£2).

2. Regress the squared residuals €7 on past values &_,é7 ,,...,&;_ where

€ =c+ €]+ fp g+ -+ cgé_Ferror.

3. Calculate the test statistic given by T'R?, where R is the sample multiple correlation
coefficient computed from the regression of eon a constant and €7_,, ..., &7_,, while T
is the sample size. The test statistic LM,y = TR? ~ xZ is asymptotically distributed

as chi-square distribution with q degrees of freedom.
4. Decision Rule: Reject the null of no ARCH effects if LM;.q >xZ critical values.

This test, as Bollerslev [1986] suggested, should have power against the GARCH model

alternatives.

Using the squared residuals of the identified SARIMA model estimation result, we test for
the ARCH effect and use 1-2-3-4-5-6-7-8-9-10 lag for this test. Engle’s LM test was carried
out and the null hypothesis that there are no (G)ARCH effects in the residuals is rejected at
the 10% level. The results as presented in details in Table 3.19, page 119 show that the Engle
LM test statistics for the absence of ARCH effect in the squared residuals of the selected
SARIMA models, is strongly rejected for the case of Opel, Peugeot, Ford, and Fiat at a 10%

level of significance at lag one. So we should consider the use of heteroscedastic models,
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especially for these cases. Additionally, the test shows weaker evidence of ARCH effect
for Hyundai and Nissan while on the other hand the rest of the firms(Toyota, Volkswagen,
Skoda, and Citroen) show no ARCH effect in the SARIMA residuals. This suggests that
there can be some improvement in the current model though volatility modeling especially
for the case of Opel, Peugeot, Ford, and Fiat. Therefore conditional volatility models will

be built to investigate the ARCH effects in new car sales series. We do not test directly for

GARCH effects because if ARCH effects exist, GARCH models can be considered.

On the whole, shreds of evidence from both the McLeod-Li test and Engle’s LM test
about the existence of conditional heteroskedasticity in the residual series, from SARIMA
fitted to the logarithmized monthly new vehicles ‘registration series in Greece suggest that
conditional volatility models should be built. The McLeod-Li and the Engle test are both
tests for GARCH effects. Although the picture is not clear in all new car firms represen-
tatives in the sample, one could argue that GARCH effects are present in the majority of
the new car sales residuals series.

The results of the Engle LM test show an ARCH effect in the SARIMA residuals of
Opel, Peugeot, Ford, Fiat and the results from the McLeod-Li test show evidence of an
ARCH effect in Volkswagen Nissan and Hyundai. These evidences are reinforced by the
plots of the squared standardized residuals Figure 3.4 and Figure 3.3, in page 101 and page
100 respectively which shows that the volatility of the SARIMA models is not constant.

This empirical study fits the GARCH (p,q) models to the SARIMA residual series for
p=0,1,2 and ¢ = 1,2,3 with a mean equation the chosen SARIMA model for each car
representative and compare the models AIC values. In table 3.20 on page 120 the Akaike
information criterion (AIC) is illustrated for nine (9) different SARIMA-GARCH models.
In general, the SARIMA-GARCH (1,1) model is the most popular model for our sample
series since half of our sample series seems to have the lowest AIC value at this model.

The other half of the series seems to fit better with SARIMA-ARCH(1) or SARIMA-
ARCH(2) models More specific Opel and Skoda seems to fit better using a SARIMA-
ARCH(2) model while Peugeot Ford and Citroen prefer the SARIMA-ARCH(1) model

while the all the rest car firms(Toyota, Volkswagen, Hyundai, Nissan, Fiat) better fit their
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new car sales series using a SARIMA-GARCH(1,1) model.

Table 3.20: AIC information criterion for SARIMA-GARCH models.

01 | 02) | (03) | (LY | (1,2) | (1,3) | (21) | (22) | (23)
Opel | -1581 |-17,53 | -13,28 | -16,93 | -15,02 | -10,26 | -13,65 | -12,88 | -8,62

Toyota | 24,21 | 17,22 | 24,47 | 15,87 | 19,51 | 24,90 | 19,60 | 18,65 | 26,05

VW | -15,63 | -14,73 | -11,91 | -16,31 | -12,93 | -8,64 | -11,88 | -9,87 | -4,88

Hyundai | 13,76 | 15,04 | 17,66 | 13,59 | 17,10 | 19,64 | 17,84 | 19,07 | 21,64

Peugeot | 25,85 | 28,88 | 29,10 | 27,86 | 31,05 | 31,27 | 31,36 | 33,25 | 33,61

Ford 48,12 | 51,06 | 51,96 | 50,19 | 53,16 | 54,05 | 51,37 | 54,93 | 55,67

Nissan | 33,98 | 33,11 | 34,11 | 29,01 | 32,78 | 35,96 | 31,85 | 34,17 | 37,62

Fiat -5,76 | -3,656 | -1,49 | -7,59 | -5,16 | -2,32 | 4,60 | -3,55 | -0,46

Skoda | 40,24 | 39,89 | 43,47 | 41,95 | 42,27 | 4550 | 42,25 | 44,07 | 47,59

Citroen | 25,14 | 26,18 | 29,27 | 27,14 | 28,28 | 31,62 | 30,00 | 30,,10 | 33,61

3.6.3 Step 2. Estimation

The unknown parameters o; (1 = 1,2,...,¢) and 5;(j = 1,2,...,p) of the Equation 3.16
can be estimated using the (conditional) maximum likelihood estimation (MLE). Estimates
of the conditional standard deviation v/h; are obtained as a side product standard deviation.

The results form the estimation process are the following;:

e OPEIl Model: SARIMA(0,1,1)(1,0,1); — ARCH(2)
(1— B)(1—0.97B2)z, = (1 — 0.54B)(1 — 0.71B'?)e,
he = 0,03 40,332 | 40,172,
e TOYOTA Model: SARIMA(2,1,3)(1,1,1)15 — GARCH(1,1)
(1 —1,64B — 0,86B2)(1 — B)(1 — B'2)(1 — 0,12B2)z, = (1 + 1,13B — 0,23B2 —
0,67B%)(1 — 0, 75B2)e,

hy = 0,01 +0,34¢2 | + 0,54h;_
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o VOLKSWAGEN Model: SARIMA(0,1,1)(2,1,0)1, — GARCH(1,1)
(1— B)(1 — B2)(1+0,84B' +0,31B%)z, = (1 — 0,62B)e,
hy = 0,02 + 0,392 | +0,29h,_;

o HYUNDAI Model: SARIMA(1,1,1)(2,0,1)1s — GARCH(1,1)
(1—0.21B)(1 — B)(1 — 0.64B'2 — 0.20B2)z, = (1 — 0.74B)(1 — 0.47B"2)¢,
hy = 0,032, 4 0,90h;_;

e PEUGEOT Model: SARIMA(0,1,1)(1,0,1)15 — ARCH(1)
(1— B)(1—0.95B2)z, = (1 — 0.55B)(1 — 0.63B')z,
he = 0,05+ 0,182,

e FORD Model: SARIMA(0,1,1)(1,0,1); — ARCH(1)
(1— B)(1 —0.92B2)z, = (1 — 0.66B)(1 — 0.68B2)¢,
hy = 0,06 + 0, 142,

o NISSAN Model: SARIMA(0,1,4)(0,1,1)1» — GARCH(1,1)
(1— B)(1 = B2z, = (1 —0,49B — 0,095 — 0,007B% — 0,22B%)(1 — 0, 63B'2)¢,
hy = 0,01+ 0,302, + 0,53h;_

o FIAT Model: SARIMA(2,1,1)(1,0,1)12 — GARCH(1, 1)
(1— 0,478 — 0,34B2)(1 — B)(1 — 0,98B'%)z, = (1 — 0,98B)(1 — 0, 77B?)e,
ht = O, 085%_1 + O, 78ht_1

o SKODA Model: SARIMA(0,1,1)(2,0,0)12 — ARCH(2)
(1—B)(1—0,42B' —0,27B%)z, = (1 — 0,50B)z,
hy = 0,05 + 0,232 | 40,0562 ,

e CITROEN Model: SARIMA(0,1,2)(0,1,1)15 — ARCH(1)
(1= B)(1 — B®)z, = (1 —0,54B — 0,19B2)(1 — 0,93B'2)e,
hy = 0,06 + 0, 00492,
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3.6.4 Step 3. Diagnostic Checking.

In order to check the goodness of the fit of the SARIMA -GARCH models we apply
the Jarque-Bera (JB) and the Ljung Box test illustrated in Table 3.21, page 122. In Ljung
Box test we have high p-values in all firms and that gives evidence of lack of dependence in
the residuals of the SARIMA-GARCH models. The goodness of fit Jarque-Bera (JB) test
confirms that the SARIMA-GARCH residuals have skewness and kurtosis matching normal
distribution only for the cases, where the JB test p-value is sufficiently high,like for example
Hyundali, Fiat, Skoda, Nissan, Opel. We reject the hypothesis that the SARIMA-GARCH

residuals are normally distributed for the Toyota, Volkswagen, Peugeot, Ford and Citroen.

Table 3.21: Residuals Diagnostic Tests for SARIMA-GARCH model

firm Jarque Bera p-value | Box-Ljung p-value
Opel 2,54 0,27 0,02 0,88
Toyota 6,03 0,04 9e-04 0,97
VW 5,34 0,06 0,001 0,96
Hyundai 0,14 0,93 0,007 0,93
Peugeot 12,89 0,00 0,04 0,84
Ford 6,94 0,03 0,28 0,59
Nissan 2,82 0,24 0,36 0,54
Fiat 0,28 0,86 0,36 0,54
Skoda 1,32 0,51 6e-04 0,98
Citroen 27,44 1,1e-06 0,021 0,88
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3.7 Discussion

To sum up, in this chapter we present the empirical evidence of a with-in-sample em-
pirical analysis of the top ten vehicle representatives in the Greek market (see Table 3.22
page 124). The research shows that after fitting more than six time series models to all the
data set of each series, the model that fit best is the ETS model. That evidence is the same
in all time series, since the model has the smallest value of MAPE performance measure
in all series. The reason for that is the fact that, since the economic environment is pretty
unstable during these last two decades, and ETS model give high importance to the last
observations into the model, these both are crucial and give as a result better forecasts for

our study.

However, other models like the SARIMA, and Seasonal Naive models, that come as a
second best choice, also give very good results in comparison to other time series models.
The goodness of the fit to the data for these models makes sense, since the researched data
do have seasonality effects that are very well explained with the SARIMA and Seasonal

Naive models that do take that fact into highly consideration.

Furthermore, as the accuracy measure, MAPE, can also allow comparison across differ-
ent time series, we can conclude that if we examine the fit of ETS model across all time
series, we get the best with-in-sample fit for the model in the case of Opel, Toyota, Fiat
and then VolksWagen, Hyundai, Ford and so on. For the SARIMA model we have similar
results, the best with-in-sample fit appears to the VolksWagen, Hyundai, Citroen, Opel,
Peugeot, Nissan, Skoda, Ford,Fiat and Toyota. We notice that the firms that fit better to
the models are the ones that keep the biggest share in the market place during the years.
Therefore evidence show us that the firms that had a biggest share (almost 10% of the total
sales) in the Greek new car market (like Opel, Toyota, VolksWagen) keep a more stable
level of sales and is easier to better fit a time series model to those data than to firms with
smaller market share and a less solid position in the new car market. This study concluded

that ETS and SARIMA models are more appropriate models in fitting new car sales series.

This with-in-sample empirical research also examined the residuals of the SARIMA
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Table 3.22: Time Series MAPE% metrics for with-in-sample modeling (log values)

Mean Naive S.Naive ETS LMSD SARIMA*

Opel 4,76 4,30 3,75 2,12 7,45 2,84
Toyota 4,61 4,68 3,65 2,40 7,16 BT
VW 4,46 4,08 3,60 2,41 8,11 2,44
Hyundai | 6,78 4,68 4,16 2,52 6,28 2,76
Peugeot | 6,95 4,37 4,29 2,86 7,56 2,92
Ford 7,75 4,66 4,59 2,76 8,40 3,18
Fiat 5,65 4,67 4,15 2,35 9,41 3,22
Nissan 7,93 4,78 4,65 2,95 8,50 3,13
Skoda 7,03 4,55 4,50 2,90 8,20 Byl
Citroen | 6,98 4,40 4,45 2,95 7,60 2,77

*SARIMA selected see Table 3.15 (page 95)

model estimation. There was evidence of heteroskedasticity in the SARIMA squared resid-
uals which suggested that the research can improve the SARIMA model through volatility
modeling and so we estimated the SARIMA-GARCH models for all series. While the En-
gle LM Test showed an ARCH effect in only a small group of firms (Opel, Peugeot, Ford,
Fiat) and Box-Pierce and Ljung-Box statistics show that squared residuals of SARIMA
models of Volkswagen and Nissan are mostly suffering from serial correlation, this study
continues the in-sample-estimation research with different types of SARIMA-GARCH mod-
els. We estimated various specification of these models and conclude that, in general, the
SARIMA-GARCH(1,1) model is the most popular one, for in-sample-estimations since it
has the lowest AIC value at these models. We can assume that the volatility of the series is
better explained using these models, but we can not be sure that these models specification
can improve the forecasting ability. For the estimation of the forecasting accuracy of the

models we continue with an out of sample research in the next chapters.
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Chapter

Time Series out-of-sample Forecasting.

4.1 Introduction.

Forecasting is an attempt to predict the future, as accurate as possible, given all the
available information, including historical data and knowledge of past, present, or future
events that may be influencing the forecast valuables. It is a common statistical task
in economics that provides useful information for the decision-makers of every field in
the public or private sector. In issues like production scheduling, personnel management,
strategic planning, the use of prediction methods is of great importance. In practice,
however, the business or public unit forecasting is often done poorly using simple forecasting
methods that are often not based on statistical modeling. In this research the use of
statistical forecasting is developed, using some of the most commonly used time series

methods of forecasting.

To test which is the appropriate model for forecasting, the researcher can use a with-
in-sample forecast or an out-of-sample forecast. In-sample forecasts are those generated
for the same set of data that was used to estimate the model’s parameters. Qut-of-sample
forecasts are those generated by not using all of the observations in estimating the model
parameters but rather hold some back and then use the hold-out-observation sample to
compare how close the forecasts values are relative to their actual values. In this study the

researcher is using an out-of sample forecast methodology.
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The time interval 1998-2016, in which our time series expands, is divided into four (4)
smaller different data sets for this research. The various data sets of our empirical study
are defined following the 8:2 ratio between the training and test set. In more details the
total data set is divided into the “Training Set” and the “Test Set”. The Training Set is
used to estimate the model parameters and covers about 80% of the whole sample, while
the Test Set is used to measure the forecasting accuracy and covers the remaining 20% of
the whole data sample. In this empirical out-of-sample forecasts analysis the researcher

created A,B,C, and D sets which are divided as follows!:

Table 4.1: Empirical Analysis Training & Test Sets.

SET | Training Set 80% Test set 20%
Estimation Period Forecasting Period

A Jan.1998-Dec.2012 180 obsv. (15y) | Jan.2013-Dec.2016 48 obsv.(4y)

B Jan.2006-Dec.2013 96 obsv. (8y) Jan.2014-Dec.2015 24 obsv. (2y)

C Jan.2006-Dec.2009 48 obsv. (4y) Jan.2010-Dec.2010 12 obsv. (ly)

D Jan.2002-Dec.2009 96 obsv. (8y) Jan.2010-Dec.2011 24 obsv. (2y)

The first set (A) of this study covers 19 years. It starts with a Training Set of January
1998 till December 2012 that covers 15 years with 180 monthly data observations and a
test set that covers the next four (4) years from January 2013 till December 2016 with 48
observations.

The second set (B) of this study covers 10 years. The Training set starts in January
2006 till December 2013 and covers 8 years with 96 monthly observations while the test set
has 24 observations and covers the following two (2) years from January 2014 till December
2015.

The third set (C) of this study starts in January 2006 till December 2009 and covers four

(4) years with 48 monthly data that specify each time the model and test its performance

ITable Note: obsv.= number of observations in each set and y=number of years.
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in a set of 12 observations that covers the next year from January till December 2010.

The fourth set (D) of this study starts in January 2002 till December 2009 and covers
eight (8) years with 96 monthly data that specify each time the model and test its per-
formance in a set of 24 observations that covers the following two (2) years from January
2010 till December 2011.

Furthermore we consider that the great recession in the Greek market started in early
2008 along with the global financial crisis (GFC) of 2007-2008 and became even worse after
the announcement of the financial agreement of the Greek government with the Interna-
tional Monetary Fund (IMF) in the May 2010. Sales reached their historical bottom in the
year 2012 and until the end of 2016 the Greek market was under a lot of pressure and a
prolong period of economic crisis. The implementation of austerity measures forced Greek
citizens to postpone or delay the purchase of cars, banks gave almost no loans for such a
purchase and therefore there was a dramatic change in the sales levels over the last years.

In this chapter, after this small introduction, the researcher is going to explain some
of the major forecasting accuracy measures used in this empirical study. Furthermore
we are going to test these measures empirically in our time series data using an out-
of-sample estimation. More specifically, after a definition and a brief reference to the
literature for forecasting accuracy measures used, the research continues with an empirical
implementation of them in various time series models.

The empirical results of the out-of-sample forecast are given for different time series
models and with various forecasting accuracy measures. The calculation process is the
following: estimation of each model parameters using the log values of the training set,
generate point forecast for the forecast period in each set, and estimate the forecasting
measures using the back-transform forecast values of the model with the original values of
the test set which are held out for comparison reasons in each set.

Additionally, monthly sales point forecasts are graphically presented for the various
time series forecasting methods, in comparison with the actual sales levels with a 95 %
confidence interval for the variance of each model, for Opel’s new-car sales in Greece. That

is an attempt to visually show the results of our empirical study. Lastly we discuss the
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finding of this empirical study using different forecasting time series methods and models
and enrich the findings with economic analysis of the specific retail sector of the Greek

market.

4.2 Forecast Accuracy Measures.

There are different measures of forecast accuracy. These measures are used because the
forecasting models may be bias and there may be a need to find the absolute size of the

forecast errors which is defined as: Error = Actual — Forecast i.e. € = x; — f;

In the forecasting process it is important the forecast values of a time series generated
from the training set model, not to be too far from the actual future outcomes as indicated
by the test set, which is left for comparison reasons, and that is important for the accuracy
of the forecasting model. So, the difference between the forecast value and the associated
actual value of the variable, at time ¢, is the forecast error. However, if we simply take
the average of forecast errors over time, this will eventually not capture the true magni-
tude of forecast errors, since large positive errors may simply cancel out large negative
errors, giving a misleading impression about the accuracy of forecasts generated. As a
result, researchers commonly use accuracy measures for the evaluation of the forecasting

performance of models.

Analogous to the estimation of time series models, where the parameters are chosen such
that the residuals variance are minimized, forecasting is considered desirable to choose the
model which minimizes a chosen error function. The measures however can also be used
to compare alternative forecasting models and also to identify the forecasting models that
may need adjustments. There is a variety of the forecasting accuracy measures. The

Measures?used in this study are illustrated below (see Table 4.2 on page 129):

2Table Notes:n =number of time periods, z;=actual value in time t, f;=forecast value in time period t.

128



Modeling Time Series

Table 4.2: Forecast Accuracy Measures

Definition Equation of Error Magnitude
Mean Squared Error MSE = 2 3" (z; — f1)?

t=1

Z | 2 — fi |
Mean Absolute Error MAE = =

n
Root Mean Squared Error RMSE = \/n—l So(xy — fi)?
t=1

Mean Absolute Percentage Error MAPE = 100n"">"7" | |z: — fi| /|7

The mean squared error (MSE), also called mean squared deviation (MSD), is a
measure that gives the average of the squares errors, which is the average squared difference
between the estimated values and the actual value. It is always non-negative, and values
closer to zero are better. This is an easily computable quantity for a particular sample and

hence is sample-dependent. It is denoted as:

n

MSE = %Z(:ct — f,)?

t=1

One of the simplest measures of forecast accuracy is the Mean Absolute Error
(MAE) also called Mean Absolute Deviation (MAD) indicates the absolute size of the

errors and is denoted as:

zn:’xt—ft’

MAE or MAD = =1
n

The Root Mean Squared Error (RMSE) is a frequently used measure for evaluating

a models performance for fitting the data or forecasting them. It is calculated as:

n

RMSE = ,|n™! Z(xt — f1)?

t=1

It calculates the differences between values predicted by a model and the values ob-
served. It is usually best to report the root mean squared error (RMSE) rather than mean
squared error (MSE), because the RMSE is measured in the same units as the data, rather

than in squared units, and is representative of the size of a typical error.
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The root of the minimum squared errors (RMSE) is the standard deviation of the series
at each level of differences. According to Wang and Lim [2005], RMSE is the square root
of the average of all squared errors and it ignores any over-or under- estimation, but it does
not allow comparison across different time series and different time intervals. Furthermore
RMSE gives greater weight to large errors than to smalls because the errors are squared

before summed.

A typical measure for forecasting accuracy is the Mean Absolute Percentage Error

(MAPE) which is :

MAPE =100n"" " |y — fil /]|

t=1

The MAPE evaluation criterion is a great tool for model evaluation and forecasting
accuracy because it is not scale-dependent, while MAE and RMSE are both scale dependent,
and what is more important is that it allows comparison across different time series and

different time intervals.

However MAPE has some limitations. For example if the data contain zero values the
MAPE can be infinite or if the data contain very small numbers MAPE can be huge. The
car series data of this research do not have zero or very small values so those limitations
are of minor importance. Additionally MAPE of monthly car sales level makes some kind
of sense, when expressed in generic percentage terms, even to someone who has no idea

what constitutes a big or small error.

Another limitation of MAPE measurement is that it puts a heavier penalty on negative
than on positive errors i.e. when actual values are less than forecast values (z; < f). It
was Armstrong [1985] that first argue that MAPE has a bias favoring estimates that are
below the actual values and later Armstrong and Collopy [1992] argued that MAPE “puts
a heavier penalty on forecasts that exceed the actual than those that are less the actual”.
For this asymmetry of MAPE Makridakis [1993] argue that “equal errors above the actual
value results in a greater absolute percentage error that those below the actual value”.

To avoid asymmetry on MAPE Armstrong [1985].proposed the “adjusted MAPE” while
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Makridakis [1993] proposed the symmetric MAPE (sMAPE) which are :
MAPE,gjustea = 100mean(2|x; — fi|/(x: + fi))

MAPEmmetric = 100mean(2|x, — fi|/|z: + fi])

In the process of in sample model estimation and the model forecast evaluation two
different criteria are used: the Root Mean Squared Error (RMSE) and the Mean Absolute
Percentage Error (MAPE). Both RMSE and MAPE were calculated for evaluating the in
sample performance of the estimated models, but also for one step out of sample forecast
errors of the models. It is more common to use the RMSE and MAPE accuracy measures
not only in selecting the best forecasting model but also in comparing the fit of several
models. For more information about the different error functions given in the literature see
Poon and Granger [2005].

Three forecasting Measures are used in this chapter; the root mean square error (RMSE)
and the minimum absolute percentage error (MAPE) and the Mean Absolute Error (MAE)
which usually give similar outcomes. However due to the turbulence time of sales levels

they sometimes might come up with conflicting or different results.

4.3 Empirical out-of-sample Forecasting.

The empirical Study of this chapter focused in three (3) different car representatives:
Opel, Toyota and Fiat. It test the data forecasting performance in four (4) different period
using six (6) different time series models, from the simple ones like the Mean/Average, the
Naive, the Seasonal Naive model to more complicated ones like the Exponential Smoothing
State Space Model (ETS) and the Seasonal Autoregressive Integrative Moving Average
Model (SARIMA). The researcher keep as a rule that 80% of the data are for the training
set and 20% for the test set in each time series.

For preparing the data it is sufficient to take the log values of all the original observations
and then calculate the appropriate model based on the observations of the training set. The

researcher use the model to estimate point forecast for the next values (equal to range of
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test set observations) and then accuracy measures (RMSE, MAPE,and MAE) are estimated
to calculate the accuracy of the forecast of each models. The results gave different model
specification for each one of the sets given in Table 4.1 and for each one of the different
firms. The use of the appropriate software made it feasible and sufficient to calculate the
various models.

Furthermore preparing the appropriate SARIMA models the researcher had to follow the
steps given by Box-Jenkins methodology: identification, estimation, diagnostic checking.
The focus was to find an appropriate SARIMA models based on the ACF and PACFS3.
Spikes on PACF give the AR number, spikes on ACF gives the MA number while spikes
of PACF and ACF around lags 12,24 show evidence of seasonality and lead to AR, and
MA,. The model selection? for the best SARIMA model for Opel, Toyota and Fiat with

the smallest AIC and BIC in all 4 different data sets as stated in Table 4.3.:

Table 4.3: SARIMA models for Forecasting.

SET | Opel Toyota Fiat

A (1,0,1)(2,0,0)12 | (4,0,0)(1,0,0)12 | (1,0,1)(2,0,0)12
B (1,0,1)(2,0,0)12 | (1,0,0)(1,0,0)12 | (1,0,1)(2,0,0)12
C (1,0,1)(1,0,0)12 | (0,0,0)(1,0,0)12 | (1,0,0)(1,0,0)12
D (2,0,0)(2,0,0)12 | (1,0,1)(1,0,0)12 | (1,0,1)(2,0,0)12

The estimation of the parameters of SARIMA models are calculated and diagnostic
checking of the best models, directly related to whether residuals analysis is preformed
well, is done for the fitted models of Opel, Toyota and Fiat and plots of standardized

residuals, sample ACF of residuals and normal Q-Q plots are estimated (see Figure 4.1 on

31dentification of an AR model is often best done with PACF and identification of a MA model is often

best calculated with ACF.
4Model selection=strategy used to select the appropriate model from a variety of possible models.

Selection criteria: Akaike Information Criteria (AIC) and Bayesian information criterion (BIC) or Schwarz

criterion (SBC). The model with the lowest AIC/BIC is preferred based on the likelihood function.
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page 4.1).

All firms ACF and PACF of the SARIMA residuals shows all spikes within the signif-
icance limits, the QQ plots of standard residuals, which explore the distributional stage,
suggest that the distribution may have a tail thicker than that of a normal distribution
and may be somewhat skewed to the right and show some non-normality on the tails of the
distribution and a nearly straight line suggesting that the residuals follow approximately

normal distribution and that the models seems to fit quite well.

4.3.1 Graphical Presentation.

Since graphics always help to picture best the empirical results of a table full of numbers
or evidences the researcher illustrate the forecasting models for all four (4) different cases
in our empirical result for Opel retail representative in Greece. The first Set A is illustrated
in Figure 4.2 on page 136, Set B is illustrated in Figure 4.3 on page 137, Set C is illustrated
in Figure 4.4 on page 138 while Set D is illustrated in Figure 4.5 on page 139. Each figure
has eight (8) different graphs. The first two graphs show the original and the log data for
each period of the data set. The vertical line in the first two graphs, separates the training
set from the test set for the easy of understanding. Then the forecast values of the six
(6) different forecasting methods used in this thesis (i.e. the Mean, Naive, seasonal Naive,
LMSD, ETS and SARIMA forecasting models) alone with the 95% CI and the real data for
that period are presented. It is noticeable that actual data are not always into the 95% CI
of the forecast estimation. When the actual values are close to the forecast values and in
the 95%CI with a squeezed range between the upper and the lower level then that usually
is the best forecast model.

The study has very bad results for the Mean model as a forecast technique since it
simply takes the mean of the historical data and set that as the next forecast value. The
Naive model, on the other hand, takes the last observation and set it as the next forecast
value, while the Seasonal Naive model takes seasonality into account and takes the last
observation of the same month of last year and set it as the forecast value. They are

both used with some success especially in the long run, and when the economic period
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is turbulent and unstable. ETS models are also preferred, especially from the Fiat data,
and takes into account the error, the tend and the seasonality while weight more the last
observations given to the model. Linear models with seasonal dummies (LMSD) do not
give very good results. However as data show seasonality SARIMA models are sometimes
hard to win, like in the case of Toyota at data set A. However there is no single model that
can fit all cases and all data so the researcher has to evaluate each case study separately.
This research present graphically in the following pages the original data time series
and their log transformation values, the estimated forecast values using different time series
models and different data sets and their 95% confidence interval. We graphically present all
data after back transforming the results to the original units. So in new car sales example
that we study, if we are 95% confident that o < logu < 8 then we are also 95% confident
that e® < u < e? so we back transform the forecast mean values of each of the six (6) time

series models in all four (4) different data sets and the results are presented in Figures.

4.3.2 Accuracy Measures Evaluation.

In this study we approach the forecasting by finding the “best possible” models us-
ing models estimations over the mean, Naive, seasonal Naive, ETS, LMSD and SARIMA
function outputs in R, and select the best estimated models based on the lowest RMSE
or MAPE. There is no such a thing as a good RMSE or MAE, because they are scale-
dependent i.e. dependent on the dependent variable and therefore one can not claim a
number, as a good RMSE or a good MAE. On the other hand, MAPE is a scale-free mea-
sures of fit, but we cannot claim a threshold of being good. However, the smaller the root
mean square error (RMSE) or the mean absolute percentage error (MAPE) or the mean
absolute error (MAE), the better, although small differences between forecasting measures
may not be relevant or even significant.

For each candidate model we test the out-of-sample RMSE, MAPE and MAE of each
set and each firm, and pick the one with the best out-of-sample metric. The resulting
model is the best, in the sense that it gives us a good in-sample fit, associated with low

error measures and white noise residuals and avoids over-fitting by giving us the best out-
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of-sample forecast accuracy.

According to the results presented in Table 4.4 on page 141 for Opel, Table 4.5 on
page 142 for Toyota, and Table 4.6 on page 143 for Fiat, the forecasting accuracy measures

RMSE, MAPE and MAE are calculated for six time series models® in all the data sets.

In Set A, the best forecasting model for Opel seems to be the Naive model, for Toyota
the SARIMA model, while for Fiat the ETS model, selected according to the forecast

accuracy measures.

In Set B and C, the best forecasting model for Opel, Toyota and Fiat seems to be
the ETS Model. This model seems to be very good when the economic environment face

instability especially in the a short-run forecasting.

Finally in Set D, the best forecasting model for Opel seems to be the ETS model, for
Toyota the Seasonal Naive model and the Naive or SARIMA model for FIAT.

SForecasting Models: SARIMA=Seasonal Autoregressive Integrated Mean Average Model,
LMSD=Linear Model with Seasonal Dummies,
ETS=Exponential State space smoothing Model,

S.Nalve=Seasonal Nalve Model.
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Table 4.4: Forecast Performance Evaluation for OPEL (Data:log values).

-OPEL- | RMSE | MAPE | MAE
Data Set A
Mean 914 63 896
Naive 188 27 127
S.Naive | 282 29 193
LMSD 993 62 938
ETS 314 34 273
SARIMA | 225 40 156
Data Set B
Mean 526 49 509
Naive 240 63 202
S.Naive 169 29 133
LMSD 613 48 551
ETS 147 22 117
SARIMA | 234 64 196
Data Set C
Mean 652 36 566
Naive 668 88 531
S.Naive 782 31 537
LMSD 644 34 543
ETS 471 28 393
SARIMA | 655 33 501
Data Set D
Mean 718 39 649
Naive 563 75 455
S.Naive 782 30 515
LMSD 745 39 666
ETS 436 29 392
SARIMA | 617 32 501
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Table 4.5: Forecast Performance Evaluation for TOYOTA (Data:log values).

-TOYOTA- | RMSE | MAPE | MAE
Data Set A
Mean 755 42 599
Naive 927 94 631
S.Naive 1225 48 1064
LMSD 688 39 561
ETS 784 40 667
SARIMA 567 32 396
Data Set B
Mean 783 24 481
Naive 843 i 402
S.Naive 771 21 422
LMSD 642 22 419
ETS 533 20 335
SARIMA 731 23 420
Data Set C
Mean 569 23 447
Naive 1502 195 1407
S.Naive 464 20 347
LMSD 642 11 220
ETS 285 11 229
SARIMA 450 18 336
Data Set D
Mean 1151 82 1038
Naive 1627 63 1498
S.Naive 533 23 426
LMSD 1067 73 962
ETS 948 60 854
SARIMA 951 56 818
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Table 4.6: Forecast Performance Evaluation for FIAT (Data:log values).

-FIAT- | RMSE | MAPE | MAE
Data Set A
Mean 664 65 648
Naive 209 82 155
S.Naive 164 42 116
LMSD 125 32 93
ETS 123 30 97
SARIMA | 230 124 176
Data Set B
Mean 307 47 283
Naive 157 51 114
S.Naive 134 34 104
LMSD 348 47 326
ETS 122 28 95
SARIMA | 155 56 122
Data Set C
Mean 430 41 383
Naive 482 78 382
S.Naive 524 48 433
LMSD 387 38 344
ETS 382 38 354
SARIMA | 443 46 391
Data Set D
Mean 534 46 484
Naive 355 51 250
S.Naive 536 45 437
LMSD 518 45 344
ETS 441 42 407
SARIMA | 401 41 363
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4.4 Discussion

In this chapter the research was in the out-of-sample forecast performance of six (6)
different time series models: Mean or Average, Nalve, Seasonal Naive, State space Expo-
nential Smoothing (ETS), Linear Model with Seasonal Dummies (LMSD) and the Seasonal

Autoregressive Moving Average (SARIMA) models.

The data time was from the beginning of 1998 till the end of 2016 and it was divided in
four (4) different data sets, based on the rule of 80:20 for training and testing sets. The aim
was to examine how good those time series models are in predicting new car sales levels
under difficult economic situations like the one the Greek economy was facing in the last

two decades.

Empirical evidence for three different firms Opel, Toyota and Fiat were studied. Results
show that the basic Mean/Average model and the simple Naive model were very poor in
predicting sales levels. In this empirical application each firm corresponded differently and
that is normal since each firm reports different sales levels and fluctuations thought out the

years.

Additionally, the forecasting accuracy measures did not always result at the same model
which is expected since the root mean squared error (RMSE) measures the average mag-
nitude of the error (i.e. is the square root of the average of squared difference between
prediction and actual observation), while the mean absolute percentage error (MAPE)
measures the average magnitude of the errors in the set of predictions as a percentage
(%). The main difference between those two measures is that RMSE gives a relatively high
weight to large errors. This means that RMSE might be more useful when large errors are

particularly undesirable because it penalizes large errors more.
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Table 4.7: Summary of Best out-of-sample Forecasting Model(log values)

RMSE MAPE

Set{Estimate}: Forecast | Opel Toyota Fiat | Opel Toyota Fiat

A{1998-2012}:2013-16 Naive SARIMA ETS | Naive SARIMA ETS
B{2006-2013}:2014-15 ETS ETS ETS | ETS ETS ETS
C{2006-2009}:2010-10 ETS ETS ETS | ETS ETS ETS

D{2002-2009}:2010-11 ETS  S.Naive Naive | ETS  S.Naive SARIMA

In Table 4.7 on page 145 the summary of the empirical research evidences in choosing
the best model in an out of sample forecasting is presented, according to the forecasting
accuracy measures Root Mean Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE). Results from the Mean Absolute Error (MAE) metric are not presented because
they are similar to the results given by the MAPE metric.

Empirical results for Opel give the choice of Naive (in both RMSE and MAPE metrics)
for data set A, which has 15 years of monthly observations in the training set and gives
a long term forecast for four (4) years. However, in data set B, C and D, Opel sales
are better predicted by ETS models, mainly because the training set covers a period of
turbulent movements and deep recession for car sales due to the economic crisis in the
market that was obvious after 2010. Furthermore, these models are better in short-run
forecasting.

The study for Toyota new car sales give a preference in SARIMA model for the long-
term forecast in data set A and the short-term forecast at the beginning of the deep
recession period and prefer the ETS models for the data set B and C, during the deep
recession period. Seasonality determine new car sales data ad therefore the S. Naive model
is selected as the best forecasting model for the data set D.

For Fiat new car sales the long-term and short-term forecast is estimated more accurate
by the ETS model for data Set A,B and C. However, in data set D we get better results
when using the Naive or the SARIMA model according to RMSE and MAPE accordingly.
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In general, there is no single model that is the best forecasting model for all the cases
studied in this empirical research. Each firm has its own sales level, marketing program,
goodwill and customers perception in the market place, so each one responds slightly dif-
ferent, in sales level, during a period of economic crisis. The training and testing set are
seem to be crucial when forecasting, therefore the researcher, should make carefully the
choice of the training and test sets.

Furthermore accuracy measures do not always agree and empirical results do not give
always the same “best” model. Usually the RMSE measure give the same results as the
MAPE but there are cases, few exceptions, that they do not agree and give different results.
For example, for Fiat in Set D we can choose Naive or SARIMA model according to RMSE
or MAPE accordingly.

In general the results found in the calculations of the accuracy metrics agree and can be
visually observed in the graphical presentation of the series forecast values in comparison
with the actual values in each data set.

As far as confidence intervals (CI) are under consideration, it seems that if we have
a short-term forecast period (like one year as in Set C) then the forecast values fail in
predicting the real values of the variable as the forecasts go beyond the forecast 95%
confidence interval area. Having two years ahead forecast seems better as forecast values
are within the confidence interval boundaries and that seems to be safer for forecasting.

Additionally the narrower the CI is the better, especially when actual values and forecast
values are within the 95% CI. In these cases forecast values are close to the actual ones

and additionally the error may be possible but is limited.
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Chapter

SARIMA-GARCH Forecasting Models.

5.1 Introduction.

In this chapter we present a volatility forecasting comparative study within the au-
toregressive conditional heteroskedasticity class of models. Our goal is to identify if a
SARIMA-GARCH model can successful predict the volatility of car sales level during a

period of economic crisis in the Greek market.

Forecast volatility is important for three main purposes : risk management, asset al-
location, and for taking bets on future volatility of inventory. In 1982, Robert Engle
developed the autoregressive conditional heteroskedasticity (ARCH) models, to model the
time-varying fluctuations, often observed in economical time series data. For this contribu-
tion, he won the 2003 Nobel Prize in Economics. The ARCH models assume, the variance
of the current error term or innovation to be a function of the actual sizes of the previous
time periods’ error terms, and often the variance is related to the squares of the previous
innovations.

There is a vast literature on volatility and Poon and Granger [2003, 2005] provide an
extensive survey of the literature’s main findings, while T.G.Andersen et al. [2006] provide a
comprehensive theoretical overview on forecasting. Brownlees et al. [2011] present a volatil-
ity forecasting comparative study within the autoregressive conditional heteroskedasticity

(ARCH) class of models and find that volatility, during the 2008 crisis, was well approxi-
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mated by predictions made with these models in the short-run.

Having explored the general theory of Seasonal Autoregressive Integrative Moving Av-
erage Models (SARIMA) and Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) models in the preceding chapters, this study introduce the univariate SARIMA-
GARCH models, in an attempt to examine their forecast ability. The family of GARCH
models are useful because one can predict better the volatility of the variables with those
models. However they are found to be perfect for predicting a few periods ahead but
not very good for long terms predictions. These models are helpful in expanding the phe-
nomenon of volatility clustering. This phenomenon has periods of relative calm and periods
of high volatility which is common in market data, like sales.

In our study, car sales volatility clearly moves around though time and its seasonality
depends on the particular market, where trading happens. So the GARCH model view is
that volatility spikes upwards, and then decays until there is another spike.

An autoregressive approach helps to build more accurate and reliable volatility models.
According to Tsay [2005] market volatility is known to cluster, which means that highly
volatile periods tends to persist for sometime before the market returns to a more stable
environment. The ARCH models structure refers to an autoregressive model since ¢, clearly
depends on previous €,_; and is conditionally heteroscedastic. The GARCH family of
models is widely used in practice for prediction of financial market volatility and returns.

Briefly the steps for building a SARIMA-GARCH model are introduced in this research:

Step One: Specify a mean equation by testing for serial dependence in the data and building a

SARIMA model for the sales series to remove any linear dependence and seasonality.

Step Two: Use the residuals of the mean equation to test for ARCH effects (Ljung-Box Test for

residuals or Lagrange Multiplier Test).

Step Three: Specify a volatility model if ARCH effects are statistically significant and perform a

joint estimation of the mean and volatility equations.

Step Four: Finally check the fitted model carefully and refine it if necessary.
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This study proceeds with GARCH model selection and analysis and end up with the
diagnostic checking of the model, but before fitting the GARCH model the research try
to diagnose a 2"¢ order dependency using ACF of squared residuals and test for ARCH

effects.

Briefly, the plan of this chapter is the following: after the short introduction we first
plot the residuals and then examine the autocorrelation function of the SARIMA residuals
and SARIMA squared residuals, to see if they give some evidence of autocorrelation. Then
we apply tests on these SARIMA residuals a) for autocorrelation the Ljung-Box and b)
for an ARCH effects the Lagrange Multiplier test. They show evidence of Autocorrelation
only in Set A for Opel and Toyota and evidence of an Arch effect only for Opel in data set
D.

In section two, we fit the SARIMA-GARCH(1,1) model only in Opel and Toyota at Data
Set A where there was evidence of autocorrelation in the SARIMA residuals. We specify the
mean equation with the pre-selected SARIMA models in our research in the former chapter
(see chapter 4) and continue with the volatility equation, using the simple GARCH(1,1)
model. This study also examine, three alternative distributions on the SARIMA-GARCH
(1,1) models to find the most suitable one. The empirical evidence show that GARCH
with student-t distribution is the best case against the normal and the generalized error

distribution.

Furthermore in section three we make the diagnostic checking of the SARIMA-GARCH(1,1)
models residuals and research findings confirms that there is no correlation left in the resid-
uals and that the fit of the models is good. In section four, we focus on SARIMA-GARCH
prediction intervals and show how they are reduced, especially in the short-run, and provide
better forecasts. Lastly this chapter ends up with a discussion for the findings of this em-
pirical research on SARIMA-GARCH models in the Greek new-car market. According to
RMSE forecasting results the SARIMA-GARCH(1,1) models can produce better forecasts

against the SARIMA, when SARIMA residuals give evidence of serial correlation.
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5.1.1 Autocorrelation function of SARIMA model residuals.

The first step to identify the volatility clustering is to plot the SARIMA residual series
and then test for autocorrelation and ARCH effect. In volatility clustering, we expect high
fluctuations to be followed by high fluctuation, and calm movements to be followed by calm
movements, and that is what can be seen in Figure 5.1 on page 151. However the flow over
the years is turbulent and do not exhibit persistence in the high or low levels of the series
which is typical when series have an ARCH effect.

The identification for an ARCH effect can also be explored via the autocorrelation
(ACF) plot of the SARIMA residuals and squared residuals. According to the literature,
it is remarkable how squared residuals can magnitude the effect in the series that exhibit
autocorrelation. If SARIMA squared residuals are serial correlated, then ARCH effects are
present. In general, if a time series exhibit conditional heteroskedasticity - or autocorrela-
tion in squared series - it is said to have autoregressive conditional heteroskedastic (ARCH)
effects.

On evaluating autocorrelations of residuals and squared residuals of the fitted SARIMA
models, for each data set of Opel, Toyota and Flat new cars’ sales in the Greek market,
we found that SARIMA residuals give no evidence of autocorrelation. However the squared
SARIMA residuals give some evidence of serial correlation. That lead us to the conclusion
that conditional heteroskedastic behaviour might be present since we have slightly high
level of ACF at some specific lags of the squared SARIMA residuals, as can be seen in

Figure 5.2( on page 153) for example :
Opel: lag 11 for squared residuals of the fitted SARIMA(1,0, 1)(2,0,0);2 model
TOYOTA: lag 11 for squared residuals of the fitted SARIMA(4,0,0)(1,0,0);2 model

FIAT: lag 5 for squared residuals of the fitted SARIMA(1,0,1)(2,0,0);2 model

Generally, in research if no autocorrelation in the squared standardize residuals can be
found, then volatility is properly explained by the SARIMA model. In our case study,
there are some weak evidence that an ARCH/GARCH model might be needed because the
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squared standardize residuals of the SARIMA models have autocorrelation i.e. evidence of
volatility clustering and a need for GARCH model specification.

However, the case of FIAT new car sales the ACF of the squared residuals looks more
like a realisation of a discrete white noise process, indicating that the serial correlation
present in the squared residuals have all been explained with the appropriate mixture of
SARIMA(1,0,1)(2,0,0);2 model.

So there is no strong evidence of a GARCH effect in our data series according to the
ACF of the squared residuals, however we choose to proceed further the research into the
SARIMA-GARCH models, in order to investigate whether they add usefully information.

and determine later what value they add in this study.
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5.1.2 Testing for ARCH/GARCH Effects

There are two test used for the error variance in order to test the evidence of an ARCH
effect, before fitting a GARCH model. If the error variance is not constant the data are
sald to be heteroscedastic and hence have an ARCH effect.

The two test for ARCH effect are :

- Ljung-Box (LB) test statistic (LB) which is based on squared residuals and is used
to test for independence of the series.
In this test the null hypothesis is Ho: There is no autocorrelation
Therefore if the test give p — value < 0,05 then we reject Ho, hence there is autocor-

relation i.e. volatility clustering and ARCH effect.

- Lagrange Multiplier (LM) test for autoregressive conditional heteroscedasticity (ARCH)
LM test statistic of Engle [1982], as described by Tsay [2005] is widely used as a
specification test in univariate time series models. It is a test of no conditional het-
eroskedasticity against an ARCH model.

In this test the null hypothesis is Ho: There is no ARCH effect

Consequently if p — value < 0,05 then we reject Ho, hence there is an ARCH effect.

Results of the Ljung Box and Lagrange Multiplier Test are recorded in Table 5.1 (page
155). The Ljung Box tests, on squared residuals of the selected SARIMA forecasting
models, are computed and applied in our series for twelve (12) lags - since our data are
monthly observations exhibiting seasonality. According to Ljung-Box Text in SARIMA
squared residuals are uncorrelated, except Opel and Toyota SARIMA squared residuals that
are suffering from serial correlation, in data Set A. So all residuals are serially uncorrelated
except those two cases. Hence it is necessary to develop a better time series model for
analysis of new car sales and a GARCH model is proposed to handle heteroskedasticity in
both series. On the other hand the ARCH Lagrange Multiplier Test on levels of residuals
of the selected SARIMA forecasting models, are computed and show no ARCH effect in

the residuals except in the case of OPEL in data set D.
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Table 5.1: Testing SARIMA residuals for Heteroscedasticity.

Ljung-Box and Lagrange Multiplier Tests (lag order=12)

OPEL

Data Set | Ljung-Box Test p — values | LM Test p — values

A 21,71 (0,04)* 15,72 (0,20)

B 6,65 (0,87) 5,36 (0,94)

C 9,94 (0,62) 19,84 (0,07)

D 16,00 (0,19) 38,34 (0,00)**

TOYOTA

A 27,47 (0,00)* 20,16 (0,06)

B 2,40 (0,99) 3,90 (0,98)

C 8,78 (0,72) 9,05 (0,69)

D 3,42 (0,99) 2,91 (0,99)
FIAT

A 19,07 (0,08) 13,74 (0,31)

B 13,36 (0,34) 12,23 (0,42)

C 7,49 (0,82) 7,34 (0,83)

D 10,88 (0.53) 8,51 (0,74)

Note: * Autocorrelation **Arch Effect
LB Test Ho:No Autocorrelation. If p-value< 0,05 Reject Ho
LM Test Ho:No ARCH Effect. If p-value< 0,05 Reject Ho
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Surprisingly, the two test -Ljung Box and Lagrange Multiplier Test - do not seem to
support each other results. In Set A, Opel and Toyota LB tests show serial correlation in
SARIMA squared residuals and it was expected that LM tests would support those evidence
giving an ARCH effect in SARIMA residuals, but LM tests outcome do not confirm those
results. Additionally, in Set D, Opel seems to have an ARCH effect (according to LM test)
but squared residuals are serial uncorrelated (according to LB test). So we conclude that

this give evidence of a very weak ARCH effect in the series.

In this study it is clear that there is no constant variance, therefore the research con-
tinues with the estimation of a GARCH(p,q) model, where p stand for number of period
of past squared returns and q stands for the previous variance into consideration. It is
however not acceptable to apply ARCH model of high order, like for example of order
11 or more as suggested in the ACF plot of Squared residuals for OPEL and TOYOTA
selected SARIMA models (see Figure 5.2 page 153 ). The extraordinarily large number of
parameters and an order of this degree would generally not be considered a good fit since
it would be inconvenient and difficult to work with such a high order process. The order
can be restricted and used to estimate the coefficients of a desired process of lower order,

so the parsimonious GARCH(1,1) model is applied that generally gives a good fit.

5.2 Fitting GARCH (1,1) Model

5.2.1 Model Selection and Analysis

Our strategy in choosing the appropriate GARCH model from competing models is
based on the Akaike information criterion (AIC) and Bayesian information criterion (BIC)
while the idea is to have a parsimonious model that captures as much variation in the data
as possible. Therefore a quick comparison of the residuals from R software to fit GARCH
models, using the squared residuals of SARIMA models of the series, are used to determine
the best fitting model. The suggested models with their respective fit statistics are given

in Table 5.2 (page 158) only for the data set A and for three firms: Opel and Toyota that
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showed evidence of autocorrelations in the SARIMA squared residuals.

The study specifies the mean equation with the pre-selected SARIMA models (see Table
4.3 on page 132) and continue with the specification of a volatility model since there is
autocorrelation and therefore signs of an ARCH effects. A joint estimation is performed of
the mean and the volatility equation. Usually, the simple GARCH model captures most of
the variability in most series, therefore small lags for p and q are common in applications.
A typical GARCH (1,1) model is adequate for modeling volatility even over long sample
periods with normal conditional distribution, however alternative conditional distributions

are also explored (See Table 5.2).

5.2.2 Alternative Conditional Distributions

In this comparative study we have included SARIMA - GARCH(1,1) model estimation
for Opel and Toyota using alternative conditional distributions! like the normal one, the
generalized error distribution and the fat tailed student-t distribution for data set A and
the pre-selected SARIMA models for each firm and check which conditional distribution is
more appropriate for modelling time varying variances of our data according to their AIC

and BIC performance metrics.

Results in Table 5.2 illustrate the AIC and BIC of the various models. We know that
small AIC and BIC values are better than large AIC and BIC values i.e. makes the model
unfavourable. However since all values are negative, the best model, is the one with the
highest absolute value. As a conclusion, we notice that the selection criteria AIC and BIC
for Opel and Toyota in data set A, have their lowest values at the SARIMA-GARCH(1,1)
model with a fat tailed Student-t distribution (STD). Hence, these time series observations
have a distribution that one often assumes to be normal (Gaussian) but in reality they

usually tend to be leptokurtic (i.e. fat tailed).

Parameters estimation of SARIMA(1,0,1)(2,0,0);2-GARCH(1,1) models with Student-

! Alternative conditional distributions: Normal, Generalized Error (GED) and Student-t (STD) distri-

bution.
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Table 5.2: Comparing alternative conditional distribution of variance equation.

Set A Volatility Forecasting Models Cond.
Distrib. | AIC BIC

OPEL SARIMA(1,0,1)(2,0,0)12 — GARCH(1,1) | Normal | -1.9067 -1.8358
SARIMA(1,0,1)(2,0,0)12 — GARCH(1,1) | GED 25662  -2.4775
SARIMA(1,0,1)(2,0,0)12 — GARCH(1,1) | STD -2.7940 -2.7053

TOYOTA | SARIMA(4,0,0)(1,0,0)120 — GARCH(1,1) | Normal | -0.8661  -0.7952

SARIMA(4,0,0)(1,0,0)12 — GARCH(1,1) | GED -1.6776  -1.5890

(1,0,1)(2,0,0) (1,1)
(1,0,1)(2,0,0) (1,1)
(1,0,1)(2,0,0) (1,1)
(4,0,0)(1,0,0) (1,1)
(4,0,0)(1,0,0) (1,1)
(4,0,0)(1,0,0) (1,1)

SARIMA(4,0,0)(1,0,0)12 — GARCH(1,1) | STD -1.9746 -1.8859

t distribution derive using the method of maximum likelihood and estimate? the coefficients
of the SARIMA-GARCH models. The coefficients for OPEL in set A are given, as an

example of model analysis, below for the mean and volatility equations:

arl mal sarl sar2 intercept
0.9160 -0.4442 0.3349 0.4637 6.9055
s.e. 0.0375 0.0847 0.0721 0.0762 0.4352

mu omega alphal betal shape

0.02137236  0.00038873 0.11904089 0.93258634 2.09758114

Notice that in the coefficients of Opel the sum of a; + 81 = 0.11904089 + 0.93258634 =
1.0515 is close to unity, which is a standard GARCH (1,1) model restriction.
The full SARIMA(1,0,1)(2,0,0);o-GARCH(1,1) model for OPEL with its estimated

coefficients is represented as:

(1 —0.9160B)(1 — 0.3349B" — 0.4637B>")x; = 6.9055 + (1 — 0.4442B)¢; (5.1)

2estimated with R package “fGarch” and “garchFit” function
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o = 0.02137236 + 0.11904089¢> | + 0.9325863407 , (5.2)

Notice that €2 ; is the ARCH term i.e. the news about volatility from the previous
period measured, as the lag of the squared residuals from the mean equation. The o2 ,is
the GARCH term i.e. it is the last period’s forecast variance.

The value of a1+ f; is close to unity and this agrees that the volatility shocks are totally
continual. The coefficients of the squared residuals are positive and statistically significant

showing that GARCH effect is evidence for our data.

5.3 Diagnostic checking of SARIMA-GARCH Models

Diagnostic checking of Opel’s SARIMA(1,0,1)(2,0,0);2-GARCH(1,1) model with t-
Student distribution is crucial before accepting it as a fitted model and interpret its findings.
It is essential to check, if the model is correctly specified, whether the model assumptions
are supported by the data, because if any key assumptions seem to be violated, then we
should specify a new model, that will be fitted and checked again, until the model is found
adequate to fit the data.

A useful tool for checking the model specification, is the standardized residuals where
the model checking is done through analyzing the residuals from the fitted model. In time
series model analysis, the selection of the best model to fit the data, is directly related to
whether residuals analysis is performed well. One of the GARCH model assumptions is
that, for a good model the residuals must follow a white noise process.

For SARIMA(1,0,1)(2,0,0);2-GARCH(1,1) model with Student-t distribution fitted for
OPEL new car sales we get the following results:

Jarque-Bera test statistic=1329.181 (too large) with p-value =0 and

Shapiro Wilk test statistic=0.6313004 with p-value =0.

Both tests are significant and both reject the null hypothesis at 5% level, that means
the distribution is normal. If the volatility clustering is properly explained by the model,
then there will be no autocorrelation in the squared standardized residuals.

It is common in research to do a Box-Ljung test to test for autocorrelation. Table 5.3
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on page 160 gives the output for Box-Ljung on a fit assuming a normal distribution on
returns for Opel new car sales. It shows the p-values of residuals of Box-Ljung Q statistics
of the SARIMA(1,0,1)(2,0,0);2-GARCH(1,1) model with Student-t distributional fitted
for OPEL and Toyota, all are well above 0.05, indicating “non-significance”. This is a
desirable research result, as it shows no significant serial correlation in the residuals. So we

assume that the residuals are uncorrelated.

Table 5.3: Box-Ljung Q-Test of standard. residuals SARIMA-GARCH(1,1)-STD Set A.

OPEL

SARIMA(1,0,1)(2,0,0);o-GARCH(1,1)

Lag | Q-Statistic | p-value

10 | 5.0832 0.8855
15 | 12.6624 0.6283

20 | 16.080 0.71161

TOYOTA

SARIMA(4,0,0)(1,0,0)1,-GARCH(1,1)

Lag | Q-Statistic | p-value

10 | 8.2313 0.6062
15 | 18.6938 0.2279
20 | 25.3744 0.1874

Additionally, the standardized residuals of the SARIMA(1,0,1)(2,0,0);2-GARCH(1,1)
model fitted for OPEL (i.e. the residuals divided by their conditional standard deviation)
are plotted in Figure 5.3 (page 161) for a fat tailed student-t distribution, and appear to
be random.

The plot in Figure 5.3 looks like a white noise expect for the change in spread (variation)
of the series of standardized residuals. Such heteroskedasticity would most likely not be

evident in a truly random data set. Notice the relationship between the standard residuals
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derived from the fitted data and the corresponding conditional standard deviations of Opel
new car sale plots. The Figures show that there are some extreme values especially in the
year 2011 and 2012. The residuals in this Figure display the observed volatility of modeling
sales with a univariate SARIMA(1,0,1)(2,0,0);2-GARCH(1,1) model.

The researcher observed some aspects of volatility clustering phenomenon, which covers
some periods of relative calm and some periods of high volatility, that is a universal attribute
of market data and becomes even more intense in periods of financial crisis.

Figure 5.3 shows an Opel SARIMA (1,0,1)(2,0,0)12 - GARCH(1,1) model with Student-
t distribution model of volatility as it moves around through time, and this indicated that
there is an ARCH effect which means in other words some stationary parts and some more
changeable parts. That is the volatility clustering, the phenomenon of there being periods
of relative calm and periods of high volatility, which is a common attribute of market data,
like car sales.

The GARCH model view is that volatility spikes upwards and then decays away until
there is another spike. The peaks of the model residuals coincide with the peaks of the
standard deviation shown in the graphs in Figure 5.3. Moreover the standard deviation
of the SARIMA (1,0,1)(2,0,0);5- GARCH(1,1) Opel model process shows that there is a
high volatility in the beginning of year 2000 and at the year 2010 and 2012.

Moreover if the model is successful at modeling the serial correlation structure in the
conditional mean and conditional variance then there should be no autocorrelation left in
the standard residuals and squared standard residuals.

The ACF plot of squared standard residuals Figure 5.4 on page 163, show no correlation
left and some peaks of squared standardized Residuals are reduced. Therefore we proceed
to use the model to forecast future values of the Opel new car sales. The second plot in
Figure 5.4 give the ACF of standardized residuals and of squared standardized residual of
the SARIMA (1,0,1)(2,0,0);2 -GARCH(1,1) Opel model process. More specific the graph
of the ACF of standardized residuals (figure show there are peaks i.e. autocorrelations
but within ACF boundary and die out slowly and this indicates that there is correlation

between the magnitude of change in the residuals. Meaning that there is serial dependence
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in the variance of the data that is the variance of residuals is conditional on its past history
and may change over time.

Generally, SARIMA is a model for the realization of a stochastic process imposing
a specific structure of the conditional mean of the process. GARCH is a model for the
realization of a stochastic process imposing a specific structure of the conditional variance
of the process. In this research we use GARCH models to capture volatility dynamics of
SARIMA type models. Fitting SARIMA in mean equation of GARCH model helps correct
the problem of serial correlation and seasonality in the residuals. Once the absence of serial
correlation and seasonality is confirmed by adding required SARIMA terms, the conditional
volatility can be modeled using GARCH. The residuals of GARCH model confirm the

absence of serial correlation and Arch effect.

54 SARIMA-GARCH Prediction Intervals

Volatility forecasting assessments are commonly structured to hold the test asset and
estimation strategy fixed, focusing on model choice. Our pragmatic approach in this re-
search, consider the SARIMA-GARCH model family model for the new car sales and try
to predict volatility and the confidence intervals (CI) of the forecast values within 1.96
standard deviations of the mean. This is done for a range of SARIMA models which differ
in accordance with the different car firm and their new car sales level.

Volatility forecasting focus almost exclusively in how much the confidence intervals are
reduced and provide a better forecast value and how volatility levels can escalate dramati-
cally especially in crisis periods. This thesis research draws attention to the dramatically
improvement of the prediction and the decrease of confidence intervals by the implemen-
tation of SARIMA-GARCH models in forecasting. This is perhaps the most challenging
application of volatility forecasting, however, it is used for developing a volatility inventory
strategy. Decision makers often develop their own forecast of sales volatility, and based
on this forecast they compare their estimate sales level with the market demand of new

car models. The simplest approach to estimating volatility is to use historical standard
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Figure 5.5: Confidence intervals 95% SARIMA-GARCH model (Opel-Set A)

deviation, but there is some empirical evidence, that this can also be improved.

The researcher calculated the SARIMA models, and form the mean equation with the
critical values that delineated the region of rejection, continue with the GARCH(1,1) es-
timation with t-student conditional distribution that predict volatility. For a two-tailed
test the distance to these critical values is also called the margin of error and the region
between critical values is called the confidence interval. Such a confidence interval is com-
monly formed when we want to estimate a population parameter, like sales level, where
the interval estimate contains a range of reasonable or tenable values both the population
mean and population standard deviation.

Since 95.0% of a normally distributed population is within 1.96 (95% is within about
2) standard deviations of the mean, we can often calculate an interval around the statistic
of interest which for 95% of all possible samples would contain the population parameter
of interest. Our 95% confidence intervals are then formed with z==1, 96

A prediction interval gives an interval, within which we expect our predicted value
to lie, with a specified probability. In the SARIMA-GARCH models, for example, if we
assume that the forecast errors are normally distributed, a 95% prediction interval for h-

step forecast is: 41+ Z1_a/2%0,1and for the lower prediction interval:g, 1 —Z1_q/2% 041
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Figure 5.6: Confidence intervals SARIMA-GARCH model(TOYOTA-Set A)

where 9,1 is an estimate of the mean from the SARIMA model and &, is an estimate
of the standard deviation of the n+1 step forecast distribution.

In this study, we calculate 95% intervals and that means that the value of Z;_,/, will
equal 1,96. The important aspects that prediction intervals cover is that they better express
the uncertainty in the forecast and they describe in a better way, how accurate the forecast
are. We must add prediction intervals in our SARIMA-GARCH study as we did in the
rest of the six models we examined, because it helps to make clear how much uncertainty

is associated with each forecast.

Table 5.4: Volatility Forecast for monthly new car sales (Opel).

Horizon 1 2 3 4 5 6 7 8

Mean 6.858 6.223 6.485 6.527 6.607 6.569 6.577 6.506
Volatility | 0.194 0.200 0.206 0.212 0.218 0.225 0.231 0.238

According to the results in Table 5.4 its is obvious that we have very low volatility in

one step ahead horizon forecasts and at the 95%CI it gets wider as time horizon increases.
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More specific in SARIMA-GARCH models, we take the mean equation from the SARIMA
model and the variance equation from the GARCH model, it is important to estimate the
prediction intervals of the volatility, in order to show that we end up with a closer estima-
tion for the variance fluctuations using GARCH models and a more accurate confidence
interval for it.

The plots of 95% prediction intervals illustrate in red lines the upper and the lower
interval for the data set A for Opel and Toyota SARIMA-GARCH models (see figures 5.5
and 5.6) as an example in this section. It is obvious that the SARIMA GARCH models
can be more accurate in the short run than in the long run.

The SARIMA-GARCH models encounter the same weaknesses as the SARIMA-ARCH
models. Firstly, they respond equally to positive and negative shocks. Secondly, the tail
behavior of GARCH models remain too short even with standardized Student-t innovations

as recent empirical studies of high-frequency financial time series indicate.

5.5 Discussion

This chapter is dedicated in addressing the problem of forecasting and volatility fore-
casting in new car sales with the use of SARIMA-GARCH models alone with several other
methods that are heavily used in practice and tested their accuracy using real data from the
Greek market sector (i.e. new car sales of Opel and Toyota from the year 1998 till 2016).
The family of SARIMA-GARCH methods has its advantages and disadvantages which are
described in this study. Some models are simple easy to implement, yet yield good results.
Other methods are more difficult to implement but do not yield always in good results. In
short, there is no single preference approach.

The research found that there was not a very strong ARCH effect on the SARIMA
residuals autocorrelation function (ACF), yet we decided to continue our study since the
Ljung-Box Test gave evidence of autocorrelation in the SARIMA residuals for Opel and
Toyota in Data Set A. The SARIMA-GARCH (1,1) with student-t distribution was pre-

ferred, according to the AIC and BIC information criterion among the normal and the
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generalized alternative distribution. However, the results given in testing the data set A
were encouraging. Based on Table 5.5 the forecasts produced by SARIMA-GARCH(1,1)
model are better, since the root mean squared error (RMSE) metrics are lower than those
produced by SARIMA. So it can be concluded that in the case of monthly car sales of
Opel and Toyota, the SARIMA-GARCH(1,1) model can be an effective way to improve

forecasting accuracy.

Table 5.5: Forecasting Results (RMSE).

RMSE SARIMA | SARIMA-GARCH(1,1)
OPEL(1,0,1)(2,0,0)15 225 110
TOYOTA(4,0,0)(1,0,0) 565 230

It is also incredible, how SARIMA-GARCH models help so much to reduce the predic-
tion intervals of the forecast, and hence can provide a better forecast. On the other hand,
according to the prediction intervals in Figure 5.5 and 5.6, it seems that SARIMA-GARCH
models should better be used for a quick approximation of the volatility forecast in the
short run and not in the long run, since they can produce more accurate forecasts in the
short run. Additionally this is a valuable research experience of implementing the family
of the SARIMA-GARCH models to the new car sales in the Greek market and add value

to science and to the research of the vehicle market sales in Greece.
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Chapter

Data Transformations and Forecasting.

6.1 Introduction.

Historical data can often be adjusted or transformed from their initial values, according
to Box and Cox [1964], to lead forecasting research into a simpler task. Research, in
everyday reality, shows that almost all analyses benefit from improved normality of the
variables, particularly in cases where substantial non-normality is present. Until this point,
we have selected a traditional transformation - log values of the original data - which is
frequently used in research, for improving normality of our data and producing relationships

with more homogeneous residuals, in other words stable variance (Nelson and Granger
[1979]).

However, using a broader class of power transformation, introduced by Box and Cox,
will help us easily find the optimal normalizing transformation for our variables. This
represents a family of power transformations that incorporates and extends the traditional
options. Therefore, we continue our research using the general Box-Cox transformation,
which represents a potential best practice, because normalizing data and equalizing variance
is desired. Additionally this thesis examine the case of using the original data, which
means no transformation at all, and compare the “in-sample” estimation fitting results and

forecasting “out-of-sample” ability of various time series models.

Our main research focus, in this chapter, is on how data transformation effect time

169



Maria K. Voulgaraki

series modelling and forecasting process. As empirical results show, transformation often
considered to stabilize the variance of a series but can also be used to make highly skewed
distributions less skewed or reduce the influence of outliers.

The plan of this chapter is the following. In Section 2, after an short introduction,
a detailed literature review of Box and Cox data transformation is discussed, followed, in
Section 3, by a section of its methodology process and its back transformation methodology.
In Section 4, the empirical results of data transformation are presented initially for the
Exponential smoothing (ETS) model, in an “in-sample” and an “out-of-sample” estimation.
The research goes deeper and examine on the one hand, the case of none transformation at
all, which means the use of original values, and on the other hand the research continues
using several mathematical transformations of the family of Box-Cox transformation for
various values of A. Additionally the research evolves in more time series models and various
data transformation. In Section 5 the confidence interval of the best models are presented

and conclusions are drawn at Section 6 as a sum up of this chapter.

6.2 The Box-Cox Transformation Review.

Tukey [1957] is usually credited with presenting the initial idea that transformations can
be thought of, as class or family of similar mathematical functions. However the theoretical
foundations was set by Box and Cox [1964], who introduced transformation in time series
research, as a way to allow for non-linearity between the original and transformed values,
and to ensure that the disturbance can be well approximated by normal errors, using the
properties of constant variance and uncorrelated errors.

It was Draper and Cox [1969], who first observed the high degrees of inconsistency in
the estimator of A, coming from the skewed observed values of the transformed process.
Later, Box and Jenkins [1970] suggested that, using the Box-Cox transformation to vali-
date not only the constant variance assumption, but all the underlying assumptions of an
Auto - Regressive Integrated Moving Average (ARIMA) model, can be done by estimating

the transformation index (\) together with the model parameters. From the theoretical
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standpoint, Granger and Newbold [1976] provided a general analytical approach, based on
the Hermite polynomials series expansion, to forecasting transformed series.

A more extensive investigation was carried out by Nelson and Granger [1979], who
considered a data set consisting of twenty-one time series. After fitting a linear ARIMA
model to the power transformed series, and using 20 observations for post-sample evalua-
tion, they concluded that the Box-Cox transformation does not lead to an improvement of
the forecasting performance. Another important conclusion, supported also by simulation
evidence, is that the Naive forecasts, which are obtained by simply reversing the power
transformation, perform better than the optimal forecasts based on the conditional expec-
tation. The explanation is that the conditional expectation underlying the optimal forecast
assumes that the transformed series is normally distributed, but this assumption may not
be realistic. In contrast to Nelson and Granger’s results, Hopwood et al. [1981] research,
found for a range of quarterly earnings per share series that the Box-Cox transformation
can improve forecast efficiency.

The family of Box-Cox transformations are a key element in regression analysis and a
useful tool in research [Atkinson, 1985] including both logarithms and power transforma-
tions, and depend on the parameter A that can take both negative and positive values.
Analytic expressions for the minimum mean squared error predictors were provided by
Pankratz and Dudley [1987] for specific values of the Box-Cox power transformation pa-
rameter.

Simple model structure, normal errors and constant error variance of a distribution are
often improved using Box-Cox data transformation, for example, for forecasting volatility
according to Higgins and Bera [1992], but opponents of this application, like Sakia [1992]
and other researchers, have noted that it does not always manage these challenging goals.
Chen and Lee [1997] proposed a Bayesian method to choose the value of A\ for a given
model structure but opponents present the problem that the model form may depend on
the transformation selected.

However, Box and Cox observed that these are all special cases of power transformation

and proposed a more flexible method of transformation for researchers to optimise align-
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ment with assumptions. An extensive literature review of the Box Cox transformation can
be found in Tsiotas [2001] where it is argued that the Box Cox transformation using its
properties of constant variance and uncorrelated error increments can give rise to a normal
analysis.

Gourieroux and Jasiak [2002] have shown that the autocorrelations (hence the ARIMA
model structure) change as function of the nonlinear transformation index could be inap-
propriate in some cases. However there is a solid theoretical foundation in Exponential
smoothing state space models in Hyndman et al. [2002b] and in Hyndman and Khandakar
[2008] and with the use of the programming language R, the attempt to improve forecast
accuracy was made both worthwhile and easy. More recently, Pascual et al. [2005] have
proposed a bootstrap procedure for constructing prediction intervals for a series when an
ARIMA model is fitted to its power transformation, while Fernandes and Grammig [2006]
applied it in financial time series analysis, like price duration.

According to Shumway and Stoffer [2006] and Hyndman and Athanasopoulos [2013]
logarithms are useful because they are interpretable, so changes in a log value are relative
(or percentage) changes on the original scale. For example, if we use the log base of 10, an
increase of 1 on the log scale of sales corresponds to a multiplication of 10 on the original
scale. Additionally, the log transformations constrain the forecasts to stay positive on the
original scale.

According to Osborne [2008] few researchers appear to use Box and Cox transformations
or report data cleaning of any kind. Proietti and Riani [2009] argue that transformations of
seasonal time series are both feasible and relevant, since they can be easily computed and
often result in relevant different estimates from those obtained when logarithms or original
data are used. According to their research, this is usually the case, when we consider
sales, tourism or industrial production, where seasonality is the most prominent source of
variation of the data.

Osborne [2010] argues, that given the potential benefits of utilizing transformation (like
meeting the assumptions of analyses, improving generalized ability of the results, improving

effect sizes) the drawbacks do not seem compelling, in the age of modern computing.
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Osborne paper presents an overview of traditional normalizing transformations and how
Box-Cox incorporates, extends and improves on traditional approaches to normalizing data,
presenting Box-Cox as a potential best practice technique. According to his research Box-
Cox not only does easily normalize skewed data! but normalizing data also can have a
dramatic impact on effect sizes in analyses. Generally, for right-skewed positive skew—data
(i.e. tail is on the right) a common transformations may include square root, cube root,
and log. On the other hand for left-skewed negative skew—data (i.e. tail is on the left) a
common transformations may include square, cube root, and logarithmic.

Additionally according to Goodwin [2010] exponential smoothing state space (ETS) is
still today one of the most practically relevant forecasting methods, available even after
more than fifty (50) years of widespread use. These models have the ability to adapt to
many situations and they are simple in use and transparent in their results. This is the
reason this research starts with the use of the data transformations in ETS models and

then expands in other time series models.

According to Proietti and Luetkepohl [2011] transformations aim at improving the sta-
tistical analysis of time series, by finding a suitable scale for which a model belonging to a
simple and well known class has the best performance. Their research focused in assessing
whether transforming a variable lead to an improvement in forecasting accuracy. Their
empirical evidence shows (in a ratio 1:5) that Box-Cox transformation produces forecasts
significantly better than the non transformed data at a one-step-ahead horizon and in most
cases the logarithmic transformation is the relevant one. However evidence show that as the

forecast horizon increases the evidence in favour of a transformation becomes less strong.

In related work, Liitkepohl and Xu [2011] have investigated whether the logarithmic
transformation (as a special case of a power transformation) leads to improved forecasting
accuracy over the non-transformed series; the target variables are annual inflation rates
computed from seasonally un-adjusted price series. The overall conclusion is that forecasts

based on the original variables are characterized by a lower mean square forecast error.

'If skewness value lies above +1 or below -1, data is highly skewed. If it lies between 40.5 to -0.5, it is

moderately skewed. If the value is 0, then the data is symmetric
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Furthermore Goncalves and N.Meddahi [2011] used Box-Cox transformation for forecasting
volatility with good results .

On the other hand, based on data on a range of monthly stock price indices as well
as quarterly consumption series Liitkepohl and Xu [2012] conclude that using logarithmic
data transformation can be quite beneficial for forecasting, but can also be damaging for
the forecast precision if a stable variance is not achieved. Their paper also points out that
there does not appear to be a reliable criterion, for deciding between logs and levels to
maximize forecast accuracy.

Bergmeir et al. [2016] have presented a novel method of bagging for exponential smooth-
ing methods using Box Cox transformation, STL decomposition and the moving block
bootstrap which is highly recommended to be used for monthly data in practice.

Our main research purpose using Box Cox data transformations is to simplify the pat-
terns in our historical data, by removing variation or by making the pattern more consistent
across the whole data set. We know that some values in business are normally distributed,
but other variables are log-normally distributed, which means there may be many low val-
ues with fewer high values, and even fewer, very high values. There is evidence in the
literature that simpler patterns usually lead to more accurate forecasts.

This chapter contributes to the debate in two ways: first, we propose to use the Box
Cox transformation in estimating Time series Models of sales data of a turbulent economic
period in the Greek market. Our procedure has the advantage that it be compared with
the same models that will use no data transformation at all. Our second contribution is to
assess the empirical relevance of the choice of the transformation parameter by performing
a test whether using Guerrero’s method for choosing the best A is better that using the log
transformation or the original seasonal monthly time series. Furthermore, in the previous
studies only much more limited data sets were used for Greece and by considering the
retail sector of new car sales we hope to get a better overall picture of the sector, and the
situation, and may explain some of our previous results. The challenge is to identify if a
power transformation may help and which model can give the better forecasts.

In the early chapters of this thesis, we stated our research by using the log transfor-
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mation of the original data, which is a relatively strong transformation process. Since our
data show monthly variation, as new car sales increase and decrease monthly, we conclude
that a data transformation would be useful. Therefore, we decided to use the logarithmic
transformation? which was very easy in application and gave empirically very good results.
Researchers agree that there is nothing illicit in transforming variables, however we must
be careful about how the results from analyses with transformed variables will be reported

and analyzed.

6.3 Methodology of Box-Cox Transformations.

The well known Box and Cox [1964] transformation for simultaneously correcting :
normality, linearity and homoscedasticity are presented below.

The Box-Cox transformed values are defined as follows:

log(z;) ifA=0
y = . (6.1)
Wl A #£0.

What makes a good value of A is the one that minimizes the size of seasonal variation
across the whole data set, as that makes the forecasting model simpler.

After the estimation of the one step ahead forecast for the values, the predictions of y;
are considered on its original scale of measurement levels.

The back-transformed mean for Box-Cox transformations, is obtained as a naive proce-
dure simply by reversing Box-Cox transformation [Nelson and Granger, 1979] as follows:

(N :
) exp(y;”™) ifA=0
B = (6:2)

Axy™ 4 1) if X £ 0.
There are methods that can help any researcher to choose the correct A needed for
research. In this study the “forecast” package in R is used. This method produces a point

estimate of the index A by minimizes a coefficient of variation for sub-series of the variable.

2We simply denoted the original observations as 1, . . ., z; and the transformed observations as y1, ...,y

in a mathematical logarithmic transformation as y; = log(xy).
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As already mentioned the Box and Cox family of transformations incorporates many

traditionally transformations, like for example:

2

A = 2.00 : square transformation, i.e. x
e )\ = 1.00 :no transformation needed, produces results identical to original data
e A\ =0.50 : square root transformation,i.e. \/x

A =0.33 : cube root transformation, i.e. /&

e A\ =0.25: fourth root transformation, i.e. /x

A = 0.00 : natural log transformation, i.e. log(z)

e A\ = —0.50 : reciprocal square root transformation, i.e. 1/y/x
e A= —1.00 : reciprocal (inverse) transformation, i.e. 1/x
e )\ = —2.00 : reciprocal (inverse) square transformation,i.e. 1/z?

There are two methods for calculating ), the “Guerrero” and “loglik” method3. In the
Guerrero [1993] paper the researcher have developed an automatic technique to determine
Box and Cox transformation parameter A and most importantly this procedure is model
independent, according to Hyndman and Athanasopoulos [2013]. This method is done by
minimizing the coefficient of variation of time series. On the other hand in the “loglik”
method, the value of A is chosen to maximize the profile log-likelihood of a linear model
fitted to data. According to many researchers, the “Guerrero” method gives good values of A
as compared to the “loglik” method, which helps in better forecasting results. Consequently,
this study is going to implement the “Guerero” method in its empirical testing.

According to Guerrero and Parera [2004] underlying that method is the theoretical

result that states that the choice of the transformation index is done in such a way that :

[var (z,)]'/?

B> ©

3reference is the BoxCox.lambda function in the forecast package
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holds valid for all t and some constant ¢ > 0 (where z; is the original series). To use these
results it is necessary to estimate both the mean and the variance involved. In this thesis
applied research we deal with time series, which means that there is only one observation at
each time t, therefore var(x;) cannot be applied directly. To operationalize the result, we
work with the observations grouped into H > 2 sub-series. This enables the calculations of
pairs of samples means and standard deviations, for example, (T, Sy) for h=1,...., H and
then search for the A value that produces:

Sh

—_1—
Ly

T =c (6.3)

for h=1,.....H for some constant ¢ > 0. The elements in this equation are given by 7; =
% and S? = W, where zj, denotes the rth observation of the subseries
h. The subseries z, 1, ..., Thr, ...., Tn.r, for h=1,... H. are formed by grouping R consecutive
observations of the original series x; : t = 1,..., N, trying to keep homogeneity between
the subseries. For this to happen they must be equal-sized. Therefore some number (n) of
observations, with 0 > n > R, will have to be left out of the length of the seasonality, if

such an effect is present in the series.

The proposed methods stemmed from two empirical interpretations of the equation 6.3.

The first one led to minimizing the coefficient of variation of S as a function of A. This

Eh

method is not linked to a formal statistical model and therefore no assumptions need to
be validated to be applied correctly in practice. The second empirical interpretation led to
a method based on a simple linear regression in logarithms. The assumption of zero error
autocorrelation that underlies this method needs careful attention as it is seldom valid
when working with time series. Thus the main method, because of its robustness against
violation of assumptions, is the one that minimizes relative variation.

Our empirical research, in predicting new car sales levels by using the Box-Cox data
transformation process, goes through the following steps for each one of the data set, firm
and model:

Step 1:Transform original data using Box and Cox and different values of \.

Step 2:Fit Time Series Models (in-sample) and forecasting (out-of-sample).
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Step 3: Back-transform the outcome of the forecast values in original values.
Step 4: Estimate forecasting accuracy measures (like RMSE, MAPE, MAE) for all

time series models using the back-transformed values.

6.4 Empirical Results of Data Transformation.

In the applied research process of this thesis, the aim is to examine whether applying
Box and Cox data transformation gives a better fit and a better forecast for our time series
models.

Firstly, the researcher examines the fit of the exponential smoothing state space (ETS)
model and for that purpose three (3) groups of exponential smoothing state space (ETS)
models are specified, for each one of our four (4) data sets (A, B, C, and D) and for three
(3) different firms (Opel, Toyota, and Fiat) in an in-sample estimation process, ending up
into thirty-six (36) different models in total which are going to be compared based on each

model information criteria results. The three groups are specified as :

e The first model group generates ETS models using the original values with no trans-

formation at all i.e A =1

e The second model group estimates ETS models using the log values of the data i.e.

A=0

e The third model group calculates ETS models using Box-Cox data transformation

where A values will be estimated using Guerrero’s method (1993).

For the purpose of this study, various information criteria are calculated, in order to
compare the fit of the models like the Akaike (AIC) and Schwarz Bayesian (BIC) and the
corrected Akaike (AICc). Thus the ETS model that minimizes those information criteria
is chosen to have the best fit for the data of the whole data sample.

In addition, this research study continues with an out-of-sample estimation, by examin-
ing the forecast accuracy of the ETS models when using Box and Cox data transformation,

original and log values. So each ETS model forecasting results will be compared with the
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actual values in an out-of-sample estimation process, which means that for each data set
80% of the data is selected as a training set to fit the best ETS model and the forecasting
results are compared with the remaining 20% actual data of the test set. Furthermore,
for comparison reasons, in the case data were transformed before fitting the model, then
one more step is needed: the back-transformation of the estimated forecast values of the
ETS models. After that process, the forecast values can be compared with the actual ones.
Accuracy measures, like root mean square error (RMSE), mean absolute percentage error
(MAPE), mean absolute error (MAE) are calculated for comparison reasons. For each data
period, the model that minimizes the accuracy measures give the best forecast values for
new car sales levels and it is interesting to see if the three groups of transformation come

up with the same result in this study.

6.4.1 ETS models and Box and Cox transformation (in-sample).

Since exponential smoothing state space (ETS) models are proven to be one of the best
models in forecasting this thesis various variables, this research continues with the in-sample
estimation of ETS models for 4 different data sets, using Box and Cox transformation, for
three (3) different firms of new car sales i.e. Opel, Toyota, and Fiat. For comparison
reasons the Akaike®(AIC) , the Schwarz Bayesian®(BIC) and the corrected Akaike® (AICc)
information criteria are estimated. After comparing the estimated models the best one is
selected, according to Hyndman et al. [2002a], as the one that minimizes the information
criteria.

The ETS methods used in this research are algorithms that return point forecasts. It
is also possible to use the “Innovation state-space models” that generate the same point
forecast but additionally can generate forecast intervals. That is a stochastic (or random)
data generating process that can generate an entire forecast distribution and can allow

for “proper” model selection according to Hyndman et al. [2002b]. Each model has an

YAIC = —2log(L) + 2k
SBIC = AIC + k(log(T) — 2)
SAICc = AIC + 20t Lk+2
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observation equation and a transition equation, one for each state (level, trend, seasonal)
i.e. state-space models. The taxonomy of exponential smoothing method according to
Hyndman et al. [2005] is used, which is based on characterizing each model against three

dimensions:
E underlined error model: additive (A), multiplicative (M)
T type of trend : none (N), additive (A), damped (Ay)
S type of seasonal: none (N), additive (A), multiplicative (M)

Hence the model ETS refers to error (E), trend (T), and seasonality (S), and these
three components can either be additive (A), multiplicative (M), inexistent/none (N) or
dampened additively (Ad). Therefore when specifying an ETS model, for example, ETS(A,
N, A) then the first letter denotes the error type, the second letter denotes the trend type
and the third denotes the season type.

In Table 6.1 (page 181) it shows that Opel is in favor of the ETS models with additive
errors and additive seasonality while there is no evidence of a clear trend. So the ETS
(A, N, A) is dominant in the in-sample estimation of the ETS model in data set B, C, D
while only in the data set A the models have a dampened additive trend. Furthermore, the
model that takes the log values seems to give a better fit of the ETS model for data set A,
C, D while the Box-Cox transformation with the Guerrero method gives the best results in
the case of Data set B.

In Table 6.2 (page 182) there is evidence that Toyota prefers the ETS(A,N,A) models
with additive errors, additive seasonality and no trend in the in-sample estimation. The
only differentiation is in Data Set A where trend sometimes is additive or damped additive.
From the empirical evidence, the log transformation of the data in data set B gives the best
results while for the data set A, C, and D the Box-Cox transformation with the Guerrero
method is preferred. In Set C the Information criteria are all negative which can happen.

In Table 6.3 (page 183) there is evidence that Fiat is in favor of the ETS(A, N, A)

models i.e. additive errors, additive seasonality and no trend with only one exception in
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Table 6.1: Information Criteria for OPEL with Box-Cox & ETS models (in-sample)

OPEL ETS AIC | AICc | BIC
Data Set A:1998-2016

A =1 Actual (A,Ag,A) | 3917 | 3920 | 3079

A = 0 Logs (A,Ag,A) | 646 | 649 | 707

A = 0,18 Box Cox (A,AgA) | 1228 | 1231 | 1290

Data Set B:2006-2015
A =1 Actual (ANJA) | 1986 | 1990 | 2028
A =0 Logs (AN,A) | 282 |287 |324
A=—-0,10 Box Cox | (AN,A) | 116 | 121 158

Data Set C:2006-2010
A =1 Actual (ANJA) | 968 | 978 999
A =0 Logs (ANJA) |87 98 118
A = 0,59 Box Cox (ANJA) | 610 | 621 641

Data Set D:2002-2011
A =1 Actual (ANJA) | 1985 | 1990 | 2027
A =0 Logs (ANJA) | 231 | 236 273
A = 0,42 Box Cox (ANJA) | 963 | 968 1005

the log transformation of Data Set A where additive trend is noticed. It is also important
to stress that the log transformation is preferred in all data sets in the case of Fiat in
sample estimations with the Box-Cox, Guerrero method as the second-best choice for our
models.

In general, the empirical results as illustrated in Table 6.1, Table 6.2 and Table 6.3, in
page 181, 182 and 183 accordingly, shows that the estimated ETS model specification with
the log values of the series or the Box-Cox transformed data using the Guerrero method
are the two best competing methods for the three different car representatives in the four
different data sets in an in-sample estimation. On the other hand, the estimated ETS
model specification using the original data i.e A = 1, which means with no transformation
at all, was always the last case scenario. That comes as a result of our empirical study since
these are the cases where the estimated values of the information criteria are minimized.

Additionally, the value of the best A according to Box-Cox and Guerrero [1993] method
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Table 6.2: Information Criteria for TOYOTA with Box-Cox & ETS models (in-sample)

TOYOTA ETS Model | AIC | AICc | BIC
Data Set A:1998-2016

A =1 Actual (A AdA) 4089 | 4091 | 4140

A =0 Logs (AJAA) 776 | 778 834

A=0,18 Box Cox | (ANJA) 486 | 489 538
Data Set B:2006-2015

A =1 Actual (ANA) 2053 | 2057 | 2094

A =0 Logs (AN,A) 265 | 270 307

A = —0,10 Box Cox | (A,N,A) 2291 | 2296 | 2333
Data Set C:2006-2010

A =1 Actual (ANA) 972 | 983 1003

A =0 Logs (AN,A) 57 68 88

A=0,59 Box Cox | (A,N,A) -829 | -818 | -798
Data Set D:2002-2011

A =1 Actual (AN,A) 2053 | 2058 | 2095

A =0 Logs (ANJA) 287 | 292 329

A=0,42 Box Cox | (A,N,A) 30 35 72

for the data transformation differs according to the size of the selected sample in research.
Lastly, the specification of the ETS model changes as data sets alter and also differs if A
changes (i.e. data are transformed or not).

The empirical research, in this part of our study, concludes that in general the ETS
models using log values transformation and the Box-Cox transformation with Guerreros’s
method in calculating the A seems both to give better in-sample fit to our data than in the
case of using the original data with no transformation at all. Hence transforming the time

series data used in research always give better empirical results in model specification.

6.4.2 ETS models and Box and Cox transformation (out of-sample).

This research is interesting not only for the model that best fits the data in research

but also for the model that gives the best forecasts. Therefore the study proceeds next to
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Table 6.3: Information Criteria for FIAT with Box-Cox & ETS models (in-sample)

FIAT ETS Model | AIC | AICc | BIC
Data Set A:1998-2016

A =1 Actual (ANA) 3822 | 3825 | 3874

A =0 Logs (AJAA) 672 | 675 730

A=0,14 Box Cox | (AN,A) 1093 | 1095 | 1144
Data Set B:2006-2015

A =1 Actual (ANA) 1864 | 1868 | 1905

A =0 Logs (AN,A) 309 | 314 351

A= —0,02 Box Cox | (A,N,A) 346 | 351 388
Data Set C:2006-2010

A =1 Actual (ANA) 918 | 929 949

A =0 Logs (AN,A) 96 107 128

A = 1,38 Box Cox (ANA) 1243 | 1254 | 1254
Data Set D:2002-2011

A =1 Actual (AN,A) 1918 | 1923 | 1960

A =0 Logs (ANJA) 232 | 237 274

A = 0,26 Box Cox (ANA) 671 | 675 712

see if E'TS models and data transformations can lead to an improvement of the forecasting
performance.

Firstly, the ETS models are estimated for the actual values, the log values, and the
transformed values using Box-Cox with the Guerrero method for all data sets A, B, C, D,
and for Opel, Toyota and Fiat in an out-of-sample estimation. Each model is estimated
using 80% of the data in each set and keeping the remaining 20% of the observations as
the test set, which are needed for measuring the forecasting accuracy of each model. More
specific the ETS models using 80% of the Opel observations of each data set are used
(transformed or not) to give point forecasts for “h” next periods, then these estimations, if
transformed data were used, are back-transformed into original values otherwise they are
used as estimated and they are compared with the actual values using various forecasting
performance measures.

The forecasting accuracy measures used for this purpose are the Root Mean Square
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Error (RMSE), the Mean Absolute Error (MAE), and the Mean Absolute Percentage Error
(MAPE). The same process is used in the case of the original values with no transformation
at all but in that case, there is no need for the step of the back transformation of the forecast

values before calculating the forecast accuracy measures.

Table 6.4: Forecasting Performance of OPEL using Box-Cox & ETS models (out-of-sample)

OPEL ETS Models | RMSE | MAE | MAPE
Alrain:1998-2012, A™*:2013-2016

A =1 Actual (A,Ag,A) 614 533 | 113

A =0 Logs (A ALA) 314 273 34

A = 0,36 Box Cox | (A,N,A) 521 466 | 102
Btrin:2006-2013, B**:2014-2015

A =1 Actual (AN,A) 157 125 27

A = 0 Logs (A,N,A) 147 17 | 22

A = 0,31 Box Cox | (A,N,A) 299 244 | 55
Ctran:2006-2009, C**:2010-2010

A =1 Actual (ANJA) 467 392 47

A =0 Logs (AN,A) 471 393 28

A = 0,77 Box Cox | (A,N,A) 558 468 | 56
Dtrein:2002-2009, D**':2010-2011

A =1 Actual (ANJA) 546 472 55

A = 0 Logs (AN,A) 436 392 |29

A= 0,86 Box Cox | (A,N,A) 539 471 55

In Table 6.4 (page 184) empirical results show the estimated ETS models for Opel with
the original values the log values and the Box-Cox transformed data using the Guerrero
method for the three different car representatives in the four different data sets in an in-
sample estimation. It is worth noticing that the best value of A, estimated with Guerrero’s
method [Guerrero, 1993] in an out-of-sample estimation is different from what was esti-
mated in the in-sample estimation for each one of the data set (see for comparison Table
6.1, page 184). This is expected due to the different size of samples, even if the Guer-

rero method is model-independent. For example in data set A in Table6.1 the monthly

184



Modeling Time Series

observations from 1998 till 2016 (i.e.228 observations) are considered to fit the model in
an in-sample estimation while in Table 6.4 the same data set is studied but we use fewer
observations to fit the model in an out-of-sample estimation considering observations from
1998 till 2012 (i.e. 180 observations). The last 48 observations are left in the test set, which

is used to estimate prediction error for the ETS model selected.

Additionally it is interesting that the Exponential Smoothing state-space models speci-
fications do not change in both tables 6.1 and 6.4. The model that this algorithm is chosen
is the same ETS for each data set for each firm in the in-sample and out of sample estima-
tion. ETS(A, N, A) is preferred in all cases except the case of actual and log values where
ETS (A,A4, A) is chosen as the best one. The same specifications are valid also for tables
6.2 and 6.5 for Toyota and tables 6.3 and 6.6 for Fiat for their in-sample and out-of-sample
estimation. The accuracy measures of Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE) are calculated for comparison

reasons of the out-of sample forecasting.

Our empirical research, in this part of our study, conclude that for Opel, Toyota and
Fiat, the ETS models using log values or Box-Cox transformed values with Guerreros’s
method in calculating the best A\ value, seems to give better out-of-sample forecast accuracy
measures in forecasting against the case of using the original data, with no transformation
at all. However, both cases are all beaten from the log transformation case study, which

seems to give the best forecasts for all data sets according to all the accuracy measures.
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Table 6.5: Forecasting Performance of TOYOTA with Box-Cox & ETS models (out-of-

sample)

TOYOTA ETS Model | RMSE | MAE | MAPE
Atrain:1998-2012, At:2013-2016

A =1 Actual (A Aq4,A) 742 628 76

A =0 Logs (ANJA) 785 667 40

A =—0,14 Box Cox | (A,N,A) 1638 | 1336 | 163
B!%":2006-2013, B™***:2014-2015

A =1 Actual (ANJA) 933 856 95

A = 0 Logs (A,N,A) 533 335 |20

A=0,51 Box Cox | (A,N,A) 840 803 | 87
Ctrein:2006-2009, C*t:2010-2010

A =1 Actual (ANA) 403 308 13

A =0 Logs (A,N,A) 285 229 | 11

A= —0,99 Box Cox | (A,N,N) 283 234 | 0,10
Dtrain:2002-2009, D**:2010-2011

A =1 Actual (A,NA) 865 793 |35

A = 0 Logs (A,N,A) 048 854 | 60

A= —0,18 Box Cox | (A,N,A) 648 534 | 24

In the case of Toyota the results are not so general for all data sets (see Table 6.5, page
186). The log transformation is preferred for all data sets according to MAPE metrics, while
Box-Cox transformation is preferred in data set C and D according to RMSE metrics,
leaving data set A with the best forecasting results when the original value are used,
according to MAE and RMSE metrics. The ETS(A, N, A) model is in favor in most of the
cases and data sets with two exceptions: the first one is in Data Set A when original values
are used where ETS(A,A,, A) is chosen, and in data set C in the case where the Box-Cox
transformation is used where ETS(A, N, N) is chosen. However all model specifications
results come in accordance with the in-sample estimation of Toyota (see Table 6.2 page

182).
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Table 6.6: Forecasting Performance of FIAT with Box-Cox & ETS models (out-of-sample)

FIAT ETS Model | RMSE | MAE | MAPE
Atrain:1998-2012, A'*:2013-2016

A =1 Actual (ANJA) 128 97 31

A =0 Logs (A,N,A) 125 96 30

A=0,10 Box Cox | (A,N,A) 123 92 37
B":2006-2013, B**:2014-2015

A =1 Actual (ANJA) 121 96 42

A = 0 Logs (ANJA) 122 94 28

A = —0,08 Box Cox | (A,N,A) 135 100 | 48
Ctrain:2006-2009, C**:2010-2010

A =1 Actual (A,N,A) 391 348 | 68

X\ = 0 Logs (A,N,A) 382 354 |38

A = 0,63 Box Cox (A,N,A) 413 376 77
Dtrin:2002-2009, D***:2010-2011

A =1 Actual (ANJA) 477 435 95

A =0 Logs (ANJA) 441 407 42

A=0,07 Box Cox | (A,N,A) 509 466 | 101

In the case of Fiat the results are interesting (see Table 6.6, page 187). All data sets
and cases in the out of sample estimation are in favor of the ETS(A,N,A) just like in
the equivalent cases of the in-sample estimation (see Table 6.3). Data A and B give better
forecasts when data are transformed with Box-Cox and Guerrero method according to MAE
metric, while data C and D give better forecasting results when log data are used, according
to MAPE and RMSE metrics. In general, it seems that more than half of the empirical
results in the out of sample estimations give preference to the ETS model with transformed

data, with logs or with Box and Cox transformations with the Guerrero method.

Graphical Presentation of ETS models.

Additionally, the forecasting performance of the ETS models can also be presented
graphically. The ETS model’s forecast values of Opel, Toyota, and Fiat new car sales

levels, for data set D, using Box-Cox transformation, log values, and original data, are
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visually presented in comparison with the actual values of new car sales levels in a forecast

time horizon of two years (i.e. h=24 months).

Forecasting & Box-Cox transformation.OPEL set D

(]
L=
(=1
(o]
©
= —
?
=
e o
o
w2
o
o — Agctual k
= = ETS original data
= - ETS lambda=0.86
uy ETS log data
I | I
2010.0 20105 2011.0 2011.5

Time 2010:01-2011:12

Figure 6.1: Forecasting Opel new-car sales using ETS and data transformation

In Figure 6.1 (page 188) the ETS (A, N, A) models for Opel, in data set D are presented
for the original data the log data and the Box-Cox transformed data. Evidence shows that
ETS with Box-Cox transformation moves almost the same as the E'TS model that uses the
actual values and only the ETS that uses the log values appears to slightly give forecasts

closer to the line of the true sales values.

So the graphical presentation confirms the results from Table 6.4 (page 184) in data set
D which gives ETS with log values as the best model in forecasting performance despite
the very small difference between the models. It is also noticeable that all the models
overestimate the actual sales level of the series and seem to be very close to the actual sales

in the short-run i.e. the 15 quarter of the year.
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Forecasting & Box-Cox transformation. TOYOTA set D

= Actual

= = ETS original data
= = ETS lambda=-0.18
1 = = ETS log data

3000

TOYOTA new-car sales
2000
I

1000
|

2010.0 2010.5 2011.0 2011.5

Time 2010:01-2011:12

Figure 6.2: Forecasting Toyota new-car sales using ETS and Data transformation.

In Figure 6.2 (pagel89) the ETS (A, N, A) models for Toyota in data set D are presented
for the original data the log data and the Box-Cox transformed data. In this case, the ETS
model with Box-Cox transformed data with A = —0, 18 gives the best forecasting results,
then the ETS estimated based on the actual values and last the ETS with the log values.
The graphical presentation confirms the results of forecast performance given by the Table

6.5 (page 186) for data set D and Toyota.

However all the ETS model has the same model type (A, N, A) and the differences are
small but they do exist and that is visually observed in the graphical presentation of the
forecasting performance of the models. Furthermore, all ETS models under-estimate the

actual level of the sales series and never really capture the sharp changes in the sales level.
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Forecasting & Box-Cox transformation.FIAT set D
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Figure 6.3: Forecasting Fiat new-car sales using ETS and data transformation.

In Figure 6.3 (pagel190) the ETS (A,N,A) models for Fiat in data set D are presented for
original data, log data and data transformed with Box-Cox. In this data set, according to
the forecast performance in Table 6.6 (page 187), the ETS estimated with the actual values
is the best one then the ETS with the Box-Cox transformation is the second best one and
last the ETS with the log values. However, differences in the graphical presentation are
small and not very clear. There are only some differentiations when sharp changes happen
in the series. Additionally, all models overestimate the actual level of the sale series and as
time horizon becomes bigger the values range between the actual and the forecast values
become bigger as well.

As a consequence, it is generally observed that:

- ETS models can fit very well with the variations of the actual sales level.

- ETS models can give very good forecasts when data are transformed either with log

values or using the Box-Cox transformation with A chosen by Guerrero method.

- Each data set and time series react differently so research much be done to find the

best transformation of the series
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- When sharp changes are recorded in real data due to economic reasons, ETS models
are very good in following the changes, hence forecast become very efficient due to

the ability of the ETS models to follow the data variations and variability.

These results are well in line with ETS model characteristics as this model can capture
very well trend and seasonality of our seasonal data. In general ETS models usually give
better forecasting results when transformed data are used in model estimation either using
Box-Cox or log values. So in most of the cases, it is better to fit an ETS model after
transforming data using Box and Cox, and Guerrero method but the researcher should also
study log values since they might give very good results. It is hard to decide which method
is the best one since different time series give different results that do not agree with each

other.

6.4.3 Time Series forecasting & transformation (out-of-sample).

Our research continues with an out-of-sample estimation using the Opel, Toyota and
Fiat, new car sales levels for all data sets, in original values (A = 1) and when using two
types of Box-Cox transformation, the log values (A = 0) and the case where A is chosen
based in the Guerrero’s method (A = 0,86). So the research estimates three different cases
for each of our data and for various types of time series models [Mean, Naive, seasonal
Naive, Linear model with seasonal Dummies, Exponential smoothing state space models-
ETS, and SARIMA]. The models were calculated, the forecast values were estimated and
then back-transformed in original values.

Furthermore the accuracy measures were evaluated, like the root mean squared error
(RMSE), the mean absolute percentage error (MAPE) and the mean absolute error (MAE)
for comparison reasons. The model type that minimizes the accuracy measures, gives the
best forecast values for new car sales levels of the firm.

We notice that the accuracy measures in original values and log values for Naive and
Seasonal Naive models give the same results (see Tables 6.7-Table 6.18, pages 209-213).

That makes sense, since the two models basically and give the same forecast values, if we
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take the original or the log values of the series. The fact that, we back transform the log
forecast values of Naive and seasonal Naive models in original values, before calculating
the accuracy measures, results in the calculation of the same values in all accuracy metrics
for original and log data. However this is not valid for other models. For example the
Mean/Average model, which is a basic model as well, but gives different forecast mean

values for original and log series and so on.

The empirical research for Opel in Table 6.10 (page 205) shows that no model can
capture the turbulence movement of the original series. In data set D and Opel new car
sales, if the original data are used to estimate the time series models then the ETS -
Exponential state-space model seems to forecast better and the comes the Seasonal Naive
model as a second choice. The turbulence in the scale of sales is so vast that the Seasonal
Naive seems to be a good forecasting model choice in Opel case using the original data

with no transformation at all.

However when data are transformed either by taking their log values or using the Box-
Cox and Guerrero method the results stay the same with ETS model as a first choice and
the Seasonal Naive model as a second best model in forecasting ability. On the other hand,
if we had to choose which one of the cases: original, log or Box-Cox transformed data is
the best, the log transformed data is giving the best results and the minimum values in all

metrics of forecast performance.
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Graphical Presentation of new car sales forecasts.
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Figure 6.4: Opel new car sales forecasts.Set D-Actual

Furthermore, the results of the empirical research that is presented algebraically in Table
6.10 can also be presented graphically. In Figure 6.4 (page 193) each time series models’

forecast values are illustrated, for h=24 months, using original data in the estimating
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process for Data Set D, and then in Figure 6.5 (page 195 the forecast levels of Opel new
car sales all illustrated when Opel new car sales data are transformed with Box-Cox and
Guerrero method in data set D. Both figures are divided into two different graphs that
represent two groups of forecast values using various time series models and each time the

forecast values line is compared with the actual line of the sales level.

More specific in the first graph of Figure 6.4 a group of simple Time Series Models is
presented i.e. the Mean, the Naive, the Seasonal Naive, the Linear Model with Seasonal
Dummies LMSD forecast values, alone with the original values of Opel new car sales. It is
easily noticed that in the short-run (h < 6 months) the linear model with seasonal dummies

and the seasonal Naive model gives very good forecasts for sales levels but in the long run

they both fail.

Furthermore the second graph in Figure 6.4, present graphically the forecast values of
ETS and SARIMA time series models for data set D using original values for a time horizon
of h=24. Optically it is noticed that in the short-run (at least 3 months ahead) the ETS
model gives very good forecasts for sales levels while in the long run, it overestimates the
level of sales. On the other hand, the SARIMA model starts with underestimating the
level of sales in the short-run (4 months ahead), and then it continues with overestimating
them. Another interesting point between ETS and SARIMA model in this study is that
in our research there are periods where the ETS model corresponds more quickly in sales

levels fluctuations and consequently gives better forecasts.

In Figure 6.5 (page 195) the forecast levels of Opel new car sales are presented when
the Box-Cox data transformation and the Guerrero method to choose the best A, are used
in data set D. According to the results given by Table 6.10 (page 205) the best time series
model for forecasting, when data are transformed using Box-Cox and Guerrero’s method,
is the Linear Model with Seasonal Dummies (LMSD) while the Exponential smoothing
state-space model (ETS) comes as a second-best choice. Both models are presented in
the first part of Figure 6.5 and it seems that they are quite accurate in the short-run but
in the long run they overestimate the level of sales but manage somehow to follow the

fluctuations during the forecast period. On the other hand, the second half of the figure
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LMSD & ETS Forecast using Box-Cox & Guerrero
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Figure 6.5: Opel new car sales forecasts. Set D,Box-Cox/Guerrero

shows the forecast values of sales when using the mean and naive method Seasonal naive,
and SARIMA models with transformed data. The simple mean and naive models are both
out of consideration since they give flat results that do not come close to reality. However
seasonal naive and SARIMA models seem to follow the movement of the actual sales level
with the SARIMA models to perform better forecast than the Seasonal Naive models. Due
to the seasonality of our data, it is very important for the model used to take seasonality
as a major characteristic of the series. However, both SARIMA and Seasonal Naive models

seem to overestimate the level of sales and exaggerate in a slight increase in sales during
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specific periods.

6.5 Confidence Interval.

A confidence interval is how much uncertainty there is with any particular forecasting
method. Confidence intervals (CI) are often used in percentages (for example, a 95% or
90% confidence level) because they include an error margin. This means that if the study
could be repeated over and over again, 95 or 90 percent of the time the outcome results
will match the results of the entire population. Actually, the CI tells us how confident one
is that the results from our empirical study reflect what one would expect to find if it was

possible to test the entire market i.e. the population.

Confidence intervals are the results one gets that are intrinsically connected to con-
fidence levels. In this thesis research work, the interest is to see whether the forecasts
from the best time series models are within the 95% confidence interval and which model
performs best and within these limits. Therefore a graphical presentation for the original
data, using the two best time series models to forecast values for h=24 next months, in a

95% confidence interval is presented.

The forecast values of Opel using the original data for data set D and the model, that
gives the best forecasts according to this research, which is the Exponential smoothing state
space (ETS) model is presented in Figure 6.6 (page 197). This ETS model has the best
forecasting accuracy, for h=24, and is presented along with the actual sales values at a 95%
confidence interval. The researcher noticed that, when the original values in estimating
an ETS model are used, the forecast values are always within the 95% confidence interval
(CI). Additionally, they follow the flow of the variations of the actual value during the time
and at the same pace, for the short-run (h < 3). However, they keep a slightly higher
level of forecasts in the long-run. In this graph, it is remarkable how the actual values stay
within the confidence interval of the forecast values that the ETS model produces for all

the forecast period (h=24).
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Figure 6.7: Seasonal Naive forecasts & 95%CI for Opel (Set D-Original)

Furthermore, the Seasonal Naive model for Opel in data set D using the original values,

which is the second-best forecast model is presented in Figure 6.7 (page 197) for h=24 with
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a 95% confidence interval, along with the actual sales values. The researcher can notice
that when using the Seasonal Naive model, the forecast values underestimate the actual
values in the short-run (h < 4) while in the long run, the forecast values overestimate the
actual values and in many cases, there are big variations from the actual data. It is most
noticeable that the actual values do not always stay within the 95% confidence interval
(CI) and while the actual values decrease and drop below an estimated 95% CI the forecast

values on the contrary have a sharp increase (like a shock).

Additionally in Figure 6.8 (page 199) the forecast values of the Linear Model with Sea-
sonal Dummies is illustrated, which is the best model when using Box-Cox transformation
and Guerrero’s method for choosing the best A\ value ( A = 0,86) and also its 95% CI and
the actual values for comparison reasons. There is a very good short-run forecast (h < 4
months) but in the long run, the model seems to overestimate the actual sales levels. It
is worth mentioning that the actual sales are not always within the 95% CI of this model

especially when changes in the sales level are sharp.

Furthermore, the Exponential state-space smoothing model (ETS), is presented in Fig-
ure 6.9 (page 199), is the best forecasting model, when using Box-Cox transformation and
Guerrero’s method for choosing the best A value. It appears that the model is very good
in the short-run, but overestimates long-term forecasts. The forecast values and the 95%
CI do not always capture the actual sales level. Hence the graph gives evidence of how
turbulent the level of the new car sales is during that period, affected by the unstable
economic Greek market. In general, the out of sample estimation and forecasting led to

sensible results and it was relatively easy to apply the time series models.
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Real&Forecast LM&S.Dum. with Guerrero & Box-Cox
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6.6 Discussion.

This thesis empirical research, concludes that in general the Exponential smoothing
state space (ETS) models using data transformations give quite good (in-sample) fit to

the data, and are more accurate in forecasting (out-of-sample) than the ETS models using
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new car sales data (see Figure 6.11, page 6.10). The ETS models perform very good in
forecasting this thesis’s time series new car sales levels and become even better when the
data are transformed in log values or use Box-Cox and Guerreros’s method in calculating
the best A\ value. Therefore the mathematical transformations in data can be trusted and

used because they give good results.

Furthermore in the short-run (< 6 months) ETS models forecast values can capture the
sales levels movement but in the long-run, they have a tendency to overestimate sales level.
However, the researcher can be 95% confident that it will give a good forecast of the new
car sales as forecast values and real values are all in the range of the 95% confident interval
zone. In some cases, the 95% confidence interval (CI) can not capture the real movement
of the series especially when changes in the sales level are sharp and there is evidence of a

quite turbulent economic environment at that period of time.

In examining the three cases of data (actual, log, BC-Guerrero transformed) in the four
different data sets and the three different firms we can conclude that the log transformation
of the time series is giving the majority of empirical results with the minimum forecasting
accuracy metrics, and should be preferred (see Figure 6.10,page 201). There are of course
some exceptions that lead more towards the Box-Cox transformation with Guerrero case
study. So examining the variable with transformations was worthwhile in this chapter, cause
we can indicate that logarithm and Box-cox transformation are useful, easy to implement

and give interpretable results that can benefit the decisions makers in a firm.

Finally, it is hard to be sure that one single type of time series model or one specific
type of data transformation is the best one for all-time series in general and can capture the
movement of the series or make the best forecasts. Therefore the researcher must carefully
consider the nature of the series and the empirical results obtained here must be interpreted
with attention. This may lead to further research in the area of time series models and
data transformation and more research in the retail sector of the Greek market place in

general.
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Figure 6.11: Forecasting new-car sales and data transformation.
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Table 6.7: Forecasting Performance Comparison, Opel, Set A.

OPEL - SET A (h=48)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 1070 231 1055
Naive 188 27 127
Seasonal Naive 282 29 193
Linear Model with Seasonal Dummies | 1307 281 1256
Exponential Smoothing state space 614 113 233
SARIMA(2,1,1)(2,0,0)12 234 29 171
CASE 2: LOG Values A=
Forecasting Model RMSE | MAPE | MAE
Mean 914 63 896
Naive 188 27 127
Seasonal Naive 282 29 193
Linear Model with Seasonal Dummies | 993 62 938
Exponential Smoothing state space 314 34 273
SARIMA(1,0,1)(2,0,0);9 225 40 156
CASE 3: BOX-COX /Guerrero A=0.36
Forecasting Model RMSE | MAPE | MAE
Mean 1074 232 1059
Naive 1497 278 1304
Seasonal Naive 347 52 249
Linear Model with Seasonal Dummies | 446 91 427
Exponential Smoothing state space 521 102 466
SARIMA(2,1,1)(2,0,0)12 234 29 171
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Table 6.8: Forecasting Performance Comparison, Opel, Set B.

OPEL - SET B (h=24)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 705 149 693
Naive 240 63 202
Seasonal Naive 169 29 133
Linear Model with Seasonal Dummies 309 52 239
Exponential Smoothing state space 157 27 125
SARIMA(1,1,1)(2,0,0)12 304 49 266
CASE 2: LOG Values A=
Forecasting Model RMSE | MAPE | MAE
Mean 526 49 509
Naive 240 63 202
Seasonal Naive 169 29 133
Linear Model with Seasonal Dummies 613 48 551
Exponential Smoothing state space | 147 22 117
SARIMA(1,0,1)(2,0,0);2 234 64 196
CASE 3: BOX-COX /Guerrero A=0.31
Forecasting Model RMSE | MAPE | MAE
Mean 712 150 700
Naive 423 77 342
Seasonal Naive 174 27 139
Linear Model with Seasonal Dummies 178 31 138
Exponential Smoothing state space 299 55 244
SARIMA(1,1,1)(2,0,0)12 304 49 266
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Table 6.9: Forecasting Performance Comparison, Opel Set C.

OPEL - SET C (h=12)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 736 92 645
Naive 668 88 531
Seasonal Naive 782 31 537
Linear Model with Seasonal Dummies 723 7 637
Exponential Smoothing state space 467 47 392
SARIMA(1,0,0)(1,0,0)12 695 69 549
CASE 2: LOG Values A=
Forecasting Model RMSE | MAPE | MAE
Mean 652 36 566
Naive 668 88 531
Seasonal Naive 782 31 537
Linear Model with Seasonal Dummies 644 34 543
Exponential Smoothing state space | 471 28 393
SARIMA(1,0,1)(1,0,0);9 655 33 501
CASE 3: BOX-COX /Guerrero A=0.77
Forecasting Model RMSE | MAPE | MAE
Mean 737 92 647
Naive 644 60 528
Seasonal Naive 790 65 548
Linear Model with Seasonal Dummies 1166 98 1071
Exponential Smoothing state space 594 58 493
SARIMA(1,0,0)(1,0,0)12 695 69 549
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Table 6.10: Forecasting Performance Comparison, Opel, Set D.

OPEL - SET D (h=24)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 797 98 732
Naive 563 75 455
Seasonal Naive 782 30 515
Linear Model with Seasonal Dummies 1079 99 1011
Exponential Smoothing state space 546 5% 472
SARIMA(2,0,0)(1,0,0)12 674 69 563
CASE 2: LOG Values A=
Forecasting Model RMSE | MAPE | MAE
Mean 718 39 649
Naive 563 75 455
Seasonal Naive 782 30 515
Linear Model with Seasonal Dummies 745 39 666
Exponential Smoothing state space | 436 29 392
SARIMA(2,0,0)(2,0,0);2 617 32 501
CASE 3: BOX-COX /Guerrero A =10.86
Forecasting Model RMSE | MAPE | MAE
Mean 797 98 732
Naive 518 45 392
Seasonal Naive 755 60 528
Linear Model with Seasonal Dummies 581 o7 495
Exponential Smoothing state space 593 55 471
SARIMA(2,0,1)(1,0,0)12 674 69 563
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Table 6.11: Forecasting Performance Comparison, Toyota, Set A.

TOYOTA - SET A (h=48)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 852 93 724
Naive 952 42 631
Seasonal Naive 1225 123 1064
Linear Model with Seasonal Dummies | 955 98 844
Exponential Smoothing state space 741 76 628
SARIMA(2,1,0)(2,0,0)1 582 55 489
CASE 2: LOG Values A=
Forecasting Model RMSE | MAPE | MAE
Mean 755 45 999
Naive 927 94 631
Seasonal Naive 1225 48 1064
Linear Model with Seasonal Dummies | 688 39 561
Exponential Smoothing state space 784 40 667
SARIMA (4,0,0)(1,0,0)q2 565 32 396
CASE 3: BOX-COX /Guerrero A=—-0.14
Forecasting Model RMSE | MAPE | MAE
Mean 873 96 749
Naive 1677 184 1478
Seasonal Naive 2719 262 2310
Linear Model with Seasonal Dummies | 749 48 559
Exponential Smoothing state space 1638 1630 1336
SARIMA(2,1,0)(2,0,0)12 582 55 489
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Table 6.12: Forecasting Performance Comparison, Toyota, Set B.

TOYOTA - SET B (h=24)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 1121 130 1045
Naive 885 40 566
Seasonal Naive 1073 87 868
Linear Model with Seasonal Dummies 926 90 842
Exponential Smoothing state space 933 95 859
SARIMA 1015 99 909
CASE 2: LOG Values A=
Forecasting Model RMSE | MAPE | MAE
Mean 783 24 481
Naive 843 57 402
Seasonal Naive 771 21 422
Linear Model with Seasonal Dummies 642 22 419
Exponential Smoothing state space | 533 20 335
SARIMA(1,0,0)(1,0,0);2 731 23 420
CASE 3: BOX-COX /Guerrero A =0.51
Forecasting Model RMSE | MAPE | MAE
Mean 1123 1311 1047
Naive 1630 165 1440
Seasonal Naive 1103 91 899
Linear Model with Seasonal Dummies 1692 99 1386
Exponential Smoothing state space 872 87 803
SARIMA(0,0,3)(2,0,0)12 1015 99 909
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Table 6.13: Forecasting Performance Comparison, Toyota, Set C.

TOYOTA - SET C (h=12)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 539 25 423
Naive 1502 62 1407
Seasonal Naive 464 15 347
Linear Model with Seasonal Dummies 378 13 299
Exponential Smoothing state space 403 13 308
SARIMA(0,0,0)(1,0,0)12 435 16 327
CASE 2: LOG Values A=
Forecasting Model RMSE | MAPE | MAE
Mean 569 23 447
Naive 1502 195 1407
Seasonal Naive 464 20 347
Linear Model with Seasonal Dummies 642 11 220
Exponential Smoothing state space 285 11 229
SARIMA(0,0,0)(1,0,0);2 450 18 336
CASE 3: BOX-COX /Guerrero A=—0.99
Forecasting Model RMSE | MAPE | MAE
Mean 527 25 405
Naive 1326 55 1227
Seasonal Naive 453 14 336
Linear Model with Seasonal Dummies | 292 10 229
Exponential Smoothing state space 283 10 234
SARIMA(0,0,0)(1,0,0)12 435 16 327
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Table 6.14: Forecasting Performance Comparison, Toyota, Set D.

TOYOTA - SET D (h=24)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 964 38 842
Naive 1627 63 1498
Seasonal Naive 533 23 426
Linear Model with Seasonal Dummies | 549 19 469
Exponential Smoothing state space 865 35 793
SARIMA 862 30 735
CASE 2: LOG Values A=
Forecasting Model RMSE | MAPE | MAE
Mean 1151 82 1038
Naive 1627 63 1498
Seasonal Naive 533 23 426
Linear Model with Seasonal Dummies | 1067 73 962
Exponential Smoothing state space 948 60 854
SARIMA(1,0,1)(1,0,0)1 951 56 818
CASE 3: BOX-COX /Guerrero A=—0.18
Forecasting Model RMSE | MAPE | MAE
Mean 953 37 831
Naive 1131 47 986
Seasonal Naive 371 13 295
Linear Model with Seasonal Dummies | 543 20 463
Exponential Smoothing state space 648 24 534
SARIMA(0,1,1)(2,0,0)12 862 30 735
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Table 6.15: Forecasting Performance Comparison, Fiat, Set A.

FIAT - SET A (h=48)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 848 314 835
Naive 209 39 155
Seasonal Naive 164 37 116
Linear Model with Seasonal Dummies 224 71 185
Exponential Smoothing state space 128 31 97
SARIMA(1,1,2)(2,0,0)12 138 43 110
CASE 2: LOG Values A=
Forecasting Model RMSE | MAPE | MAE
Mean 664 247 648
Naive 209 39 155
Seasonal Naive 164 37 116
Linear Model with Seasonal Dummies 125 32 93
Exponential Smoothing state space 123 30 97
SARIMA(1,0,1)(2,0,0);2 230 46 176
CASE 3: BOX-COX /Guerrero A=0.10
Forecasting Model RMSE | MAPE | MAE
Mean 858 317 846
Naive 360 116 295
Seasonal Naive 156 40 103
Linear Model with Seasonal Dummies 752 253 722
Exponential Smoothing state space | 123 37 92
SARIMA(1,1,2)(2,0,0)12 138 43 110
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Table 6.16: Forecasting Performance Comparison, Fiat, Set B.

FIAT - SET B (h=24)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 419 166 400
Naive 157 33 114
Seasonal Naive 134 40 104
Linear Model with Seasonal Dummies | 743 27 658
Exponential Smoothing state space 121 42 96
SARIMA(0,1,3)(2,0,0)12 153 36 119
CASE 2: LOG Values A=
Forecasting Model RMSE | MAPE | MAE
Mean 307 47 283
Naive 157 51 114
Seasonal Naive 134 34 104
Linear Model with Seasonal Dummies | 342 47 326
Exponential Smoothing state space 122 28 121
SARIMA(1,0,1)(2,0,0)12 155 56 122
CASE 3: BOX-COX /Guerrero A= —0.80
Forecasting Model RMSE | MAPE | MAE
Mean 425 168 406
Naive 215 7 179
Seasonal Naive 148 46 105
Linear Model with Seasonal Dummies | 124 43 92
Exponential Smoothing state space 134 48 100
SARIMA(0,1,3)(2,0,0)12 153 36 119
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Table 6.17: Forecasting Performance Comparison, Fiat, Set C.

FIAT - SET C (h=12)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 454 95 392
Naive 482 48 382
Seasonal Naive 524 79 433
Linear Model with Seasonal Dummies | 404 73 367
Exponential Smoothing state space 391 68 348
SARIMA(0,0,0)(1,0,0)12 454 84 405
CASE 2: LOG Values A=
Forecasting Model RMSE | MAPE | MAE
Mean 430 41 383
Naive 482 78 382
Seasonal Naive 524 48 433
Linear Model with Seasonal Dummies | 387 38 359
Exponential Smoothing state space 382 38 360
SARIMA(1,0,0)(1,0,0)1 443 46 391
CASE 3: BOX-COX /Guerrero A =0.63
Forecasting Model RMSE | MAPE | MAE
Mean 455 95 392
Naive 481 74 425
Seasonal Naive 529 81 442
Linear Model with Seasonal Dummies | 411 75 375
Exponential Smoothing state space 413 7 376
SARIMA(1,0,0)(1,0,0)12 854 158 819
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Table 6.18: Forecasting Performance Comparison, Fiat, Set D.

FIAT - SET D (h=24)

CASE 1:ORIGINAL data A=
Forecasting Model RMSE | MAPE | MAE
Mean 605 135 542
Naive 355 38 250
Seasonal Naive 536 87 437
Linear Model with Seasonal Dummies | 482 94 443
Exponential Smoothing state space 477 95 435
SARIMA(1,0,0)(1,0,0);9 556 117 516
CASE 2: LOG Values A=0
Forecasting Model RMSE | MAPE | MAE
Mean 534 46 484
Naive 355 51 250
Linear Model with Seasonal Dummies | 518 45 344
Exponential Smoothing state space 441 42 407
SARIMA(1,0,0)(1,0,0)12 401 41 363
CASE 3: BOX-COX /Guerrero A =0.07
Forecasting Model RMSE | MAPE | MAE
Mean 607 135 044
Naive 612 125 544
Seasonal Naive 615 104 514
Linear Model with Seasonal Dummies | 525 104 483
Exponential Smoothing state space 509 101 466
SARIMA(0,1,1)(2,0,0)1 415 82 380
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Chapter

Forecast Combinations.

7.1 Introduction.

The theoretical foundation of forecast combination started five decades ago, initiated
by the seminar papers of Crane and Crotty [1967] and Bates and Granger [1969]. Since
at least 1969, when Bates and Granger wrote their famous paper on “The Combination of
Forecasts” it has been well-known, that combining forecasts often leads to better forecast
accuracy. Therefore, an easy way to improve forecast accuracy is to use a combination of
several methods on the same time series, like for example to average the resulting forecasts

or to use weights for the forecasts and so on.

In response to the criticisms of the idea of combining, Newbold and Granger [1974]

“...that combination is not a valid proposition if one of the individual forecasts

agreed:
does not differ significantly from the optimum”. However, combining forecasts from very
similar models is also important. Until today there has been considerable research on using
weighted averages or some other more complicated combination approach. An extensive
review of the literature, techniques, and applications of forecast combinations can be found
in Clemen [1989] where he wrote: “The results have been virtually unanimous: combin-

ing multiple forecasts leads to increased forecast accuracy. In many cases, one can make

dramatic performance improvements by simply averaging the forecasts”.

Instability of a model selection has been recognized in statistics and related literature,
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as Breiman [1996] argue. Therefore, when multiple models are considered for estimation
and forecasting, the term “model uncertainty” has been used by several authors to capture
the difficulty in identifying the correct model, according to Chatfield [1996].

Combining forecasts has been studied for the past three decades and various methods
have been proposed. The focus has been on the case where the forecasts to be combined
are distinct in nature (i.e. based on very different methods). For example, Clement and
Hendry [1998] stated that “When forecasts are all based on econometric models, each of
which has access to the same information set, then combining the resulting forecasts will
rarely be a good idea. It is better to sort out the individual models—to derive a preferred
model that contains the useful features of the original models”.

Generally, the ‘true’ model may or may not be in the candidate research list and even if
the true model happens to be included, the task of finding the true model can be very differ-
ent from that of finding the best model for the purpose of prediction. Hoeting et al. [1999]
argues that finding the ‘best’ model may be defined sometimes in terms of an appropriate
loss function (e.g. square error loss in prediction).

Additionally, it is also accepted that different forecasting models deliver different results
at different time periods. There is strong empirical support that the performance of different
models, change over time, according to Elliott and Timmermann [2005] and many others.
Following the advice in Hansen [2005] we abandon the conceptual error of assuming one
true single data generating process, so we are free to include information from different
models. According to Hansen [2005] “Models should be viewed as approximations and
econometric theory should take this seriously”. Thus, selecting a single forecasting model
as the “best one” bears the risk of ending up with a model, which is only accurate when
evaluated using some validation sample, yet might prove unreliable, when applied to new
data.

In general, the combination reduces the information in a vector of forecasts to a single
summary measure using a set of combination weights. The optimal combination chooses
weights that minimize the expected loss of the combined forecast. The technique gives

larger weights to more accurate forecasts and small estimation errors. In a word with
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no model misspecification, infinite data samples (i.e. no estimation error and complete
access to the information sets underlying the individual forecasts) there is no need for
forecast combination. Techniques and applications of forecast combinations can be found
in Timmermann [2006].

There has been in the past and until today, many research papers discussing new com-
binations techniques and stimulate further research, like for example Hansen [2007, 2008]
and Hansenn and Racine [2012]. Furthermore, there is a research of forecast combinations
not only in the ”first moments” but also for higher moments as well, like for volatility
forecasting in Christiansen et al. [2012].

In many cases, according to Hyndman and Athanasopoulos [2013] research evidence,
one can make dramatic performance improvements by simply averaging the forecasts using
a simple average, and furthermore this method has been proven hard to beat. Combining
has great potential to reduce the variability that arises in the forced action of selecting
a single model. The simple combining methods in the literature attempt to improve the
individual forecasts, while the more advanced target is always on the performance of the

best candidate model according to Elliott et al. [2013].

Generally, it is accepted that a combination of forecasts from different models is an
appealing strategy to hedge against forecast risk. According to Graefe et al. [2014] these
are often cases when combined forecasts are more accurate than even their best component.
Additionally, Opschoor et al. [2014] research of forecast combinations is for Value-at-Risk
forecasting, while Morana [2015] introduces a new ”Frequentist” model averaging estima-
tion procedure by minimizing the squared Euclidean distance between actual and predicted
value vectors (MSE metric) that yields more accurate and more efficient estimation. Cheng
and Yang [2015] argues that combining forecasts can also minimize the occurrence of fore-
cast outliers and proposed a synthetic loss function to achieve both the usual accuracy and
outlier-protection simultaneously.

Kourentzes et al. [2019] argues that selecting a reasonable pool of forecast is funda-
mental in the modeling process and considers forecast selection and combination as two

extreme pools of forecasts thus propose a model to construct forecast pools so as to improve
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performance and reduce computational effort.

In macroeconomics and finance, there are many applications using combining different
forecast methods in order to hedge against risk. For example, Avramov [2002], Ravazzolo
et al. [2007] and Rapach et al. [2010] predict stock returns, Stock and Watson [2004] use
forecast combination for output forecasting , Wright [2008] research the exchange rate
forecasts, Kapetanios et al. [2008] and Wright [2009] focus in inflation forecasting research,
Andrawis et al. [2011] consider forecasting unbound tourism figures, Magnus and Wang
[2014] explore growth determinants, Nowotarski et al. [2014] and Raviv et al. [2015] research

electricity price forecasting and Weiss [2017]study health demand forecasting.

In this chapter, the researcher will provide comprehensive implementation of common
ways in which forecasts can be combined. Various estimation methods are going to be
explained for creating a combined forecast and implemented to various data sets in order

to rationalize and visualize the combination results.

The plan of this chapter is the following: we start with the introduction of the forecast
combination theory and an extensive literature review. Section two makes a reference to
the methodology used and divide the combination forecast techniques into two categories:
combination forecast with or without a training set. This training set is needed for the
weights estimation of the individual forecast. So the Simple Average Combination tech-
nique, that works without a training data set is introduced in 4 different combinations

which are easy to implement and hard to beat, due to their excellent results.

On the other hand more complicated techniques, are explained and applied that need
a training set for their calculation, like Bates & Granger (1969) and Newbold & Granger
(1974). Additionally we explain the data generating process of this empirical research.
In section three we illustrate the empirical results of the research both numerically and
graphically for the six (6) different combination forecasts. Lastly we discuss the conclusion

of the forecast combination empirical research.
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7.2 Methodology

There are various frequently used schemes for forecast combinations since the seminal
paper by Bates and Granger [1969]. Research by Batchelor and Dua [1995] showed that
combining was more effective when data and methods differed substantially. In this method,
the averaging is done by using a rule that can be replicated, i.e. take the simple average of
the forecasts. Opponents of this method believe more in traditional statistical procedures
and that there is one right way to forecast and develop a comprehensive model that can

incorporate all relevant information and be more effective than others.

According to Armstrong [2001] combining forecasts sometimes referred to as composite
forecasts, refers to the averaging of independent forecasts. These forecasts can be based
on different data or different methods or both.Some researchers even suggest to combine
“combined forecasts” like the so-called hierarchical forecast combinations of Andrawis et al.
[2011]. The question is which is the best way to combine different forecasts. This unfor-
tunately has no theoretical underpinning and it mainly depends on the data in research

according to Weiss et al. [2018].

However, in practice, combining forecast is an approach with very good results. Based
on the assumption that each model has something to contribute and to improve forecast
accuracy it usually wins the single best method or frame of the research. The combining
method is even more relevant when there is uncertainty about the method or situation
and when it is important to avoid large errors in the future, like for example in inventory

management or sales forecasts.

Due to the lack of theoretical foundation in this area and the empirical lack of evidence
for one single way, which dominates the way forecasts should be combined, various forecast

combinations are presented and applied in this research.

Forecast can be combined in a very simple way and these simple methods there is no
need to exactly estimate the weight each forecast should be given in the overall combination.
Location measures of the cross-sectional distribution of the individual forecasts are used,

as the average, the median, or the mean. However those location measures are all the same
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if the cross-sectional distribution is symmetric, but if the distribution is asymmetric then

one can choose one of these simple measures.

7.2.1 Combining forecasts without training

In this technique measures of central tendency are used, like mean (or median), which
is the most straight forward way of combining forecasts from multiple forecasting methods.
This simple approach requires no additional input besides just the forecasts being combined
which is an appealing practical advantage. On the other hand, combining forecasts with
the help of training data is a more cumbersome and computational expensive approach

compared to the one without training data to produce a more accurate combined forecast.

- Simple Average Combination

The most natural approach to combine forecasts is using the mean of all those fore-
casts. Over the years this innocent approach has been proven as an excellent bench-
mark despite or perhaps because of its simplicity Genre et al. [2013]. This approach
uses the average of all the forecasts to combine them giving equal weights in each

component forecast. The combined forecast is given by :
12
combined
S ; 7.1

where feombined i the combined forecast, fiis the forecast obtained using model i,

where i € (1....P) and P are forecast at each point in time.

7.2.2 Combining forecasts with training

This technique uses information about how the individual forecasting methods pre-
formed and can be utilized and not ignored, to find a more optimal weighting scheme. So
instead of just assuming equal weights, these weights can be obtained by using the histor-
ical forecasts made for the q periods before t, i.e. i=t-1, t-2, ..., t-q, where ¢ is a positive
integer less than t. This is done because the data set could contain valuable information

about how the individual forecasts at t, fi(;) should be weighted optimally.
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There is a two steps procedure in this method:

Step 1.

Step 2.

Actual values and individual forecasts are used, from periods t-q to t-1, to fit an

optimal model and weights.

The fitted model is utilized to construct the predicted combined forecast f; by using

the individual forecasts as input, at period t.

Bates/Granger(1969) Combination

A weighting scheme based on the individual performance of each of the forecast
method can be computed using the mean squared distance between actual value (y;)
and forecast value (f;;) where ¢ =t —1,t —2,...,¢t —¢) and is called the Variance
based weighting method. The mean squared error (MSE) for a particular forecasting
method is computed as,

t—1

MSE; = E > (@i — fiy)” (7.2)

1=t—q

The forecast weights (w,) are then obtained as :

1
MSE,

k 1
Zj:l MSE;

(7.3)

wj:

where the reciprocal of M SE; can be viewed as an accuracy measurement meaning
that higher accuracy generates a higher relative weight and a lower and less and

Z?Zl w; = 1. The combined forecast at period ¢ is therefore computed as:

tcombined — wlft(l) + w2ft(2) - wk:ft(k) (74)

This method is one of the methods mentioned in the seminar paper by Bates and
Granger [1969]. Their approach builds on portfolio diversification theory and uses
the diagonal elements of the estimated mean squared prediction error matrix in order

to compute combination weights.
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- Newbold/Granger (1974) Combination

The methodology of Newbold and Granger [1974] extracts the combination weights
from the estimated mean squared prediction error matrix. Suppose x; is the variable

of interest, there are k not perfectly collinear predictors,

fo=(fitr - fumy) (7.5)

> is the (positive definite) mean squared prediction error matrix of f; and e is an k
* 1 vector of (1,..., 1)” Building on the Bates and Granger [1969] early research this
method is a constrained minimization of the mean squared prediction error using the
normalization condition e w = 1. This yields the following combination weights:

w = —Z_l ¢
S r (7.6

The combined forecast is then obtained by:

tcombined — (ft)/w (77)

This method according to Timmermann [2006] ignores correlations across forecast er-
rors, just like the Bates and Granger [1969] method but on the other hand is more robust
to outliers, since total rankings are mot likely to change dramatically by the presence of
extreme forecasts. While the method dates back to Newbold and Granger (1974), the vari-
ant of the method used here does not impose the prior restriction that »_ is diagonal. This
approach is used by Hsiao and Wan [2014] as a generalization of the original method and
may be viewed as a way to make the forecast more robust against misspecification biases
and measurement errors in the data set.

There are of course the regression-based and the eigenvector-based combination meth-
ods which are a natural extension to the previous approached viewed through the lens of
regression or based on the idea of minimizing the mean squared prediction error subject
to a normalization condition accordingly and are not going to be further discussed for this

study.
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7.2.3 Data generating procedure

According to Weiss et al. [2018] the research function required as inputs a vector of the
actual data and a matrix of the set of component forecasts to be combined. Observation
values refer to sales so they are all non-negative. New-car sales refer to Opel, Toyota and
Fiat operating in the Greek marker, and values in their original form, in log values and in
Box-Cox with Guerrero transformed values are tested.

For each series that is included in the evaluation, the time horizon is divided into
the training and test set with an 80:20 proportion. Forecasts from the various univariate
forecasting methods are generated using the historical values of the training set and these
forecasts are going to be later used as input to combined forecasts. Each test set data has a
different forecast horizon in this study i.e. in A data set there are 48 steps ahead (h=48), in
B data set there are 24 steps ahead (h=24), in C data set there are 12 steps ahead (h=12),
in D data set there are 24 steps ahead (h=24), forecasts horizon.

In the combining forecast methods where test sets are needed, the test set outputs are
divided into half (50%) and the first half is used to compute the combined forecast models
and estimate the weights for each individual forecast, and the other half is used to evaluate

the forecasting results from the combined forecasting models.

7.3 Empirical Results

A set of components forecast is already obtained in our previous research using various
statistical techniques on the new car sales data from the Greek market, and now we seek to
improve accuracy by combining those component forecasts into one. The univariate forecast
models used until this point are the Mean, the Naive, the Seasonal Naive, the Linear model
with seasonal dummies (LMSD), the Exponential smoothing state space (ETS) models,
the Seasonal ARIMA (SARIMA) and the SARIMA-GARCH models with and without
data transformation.

The research continues by choosing the three (3) best performed individual models. In

this research data will have three different forms: original, logs, and transformed using
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Guerrero Method for Box-Cox transformation, as it has been proven to be very effective.
The research will examine if the combined models can produce better forecasts values from
the individual forecasting models, for three different firms (Opel, Toyota and Fiat) in four
different time intervals. The component models to be combined in our empirical study are

the following :

e Secasonal Naive - SN

(produced using the snaive function in forecast package)

e Linear Model with seasonal Dummies - LMSD

(produced using the tsim function in forecast package)

e Exponential smoothing Space state models - ETS

(produced using the ets function in forecast package)

To implement the models we divide the monthly observation of the data sets A, B, C,
and D in a Training set and a Test set, as specified in Table 4.1 page 126. Then estimate
each time series model using the training set observations and produce point forecast for the
next forecast horizon which are compared with the test set actual values for the estimation
of forecasting accuracy measures. Furthermore, to illustrate the combination methodology
we apply the combination techniques of the simple average, the Bates and Granger [1969]
methodology, and the Newbold and Granger [1974] combined forecast model.

The empirical research starts with a variety of simple average combined models, which
combine the forecast values of the various time series forecasting models in equal weights.
For the three (3) individual forecasting models the researcher created four (4) different
combination models: three (3) combinations of two (2) models and one (1) combination
of all three models. In more detail the following models that combined forecast error as a

weighted average of the individual forecast errors are created:
- Combo, =(SN + ETS ) /2

- Comboy =(ETS+ LMSD) /2
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- Comboz =>(SN + LMSD)/2
- Comboy, = (SN + LMSD + ETS) /3

Furthermore the research also focuses on the two more combinations that extract com-

bination weights from the estimated mean squared prediction error matrix :

- Combo; = Bates and Granger [1969] forecast combination or

Variance based weighting method and

- Combog = Newbold and Granger [1974] forecast combination or

Variance based constrained weighting method

7.3.1 Graphical presentation of combination forecasting

We present a visual plot of the forecast values from the combination forecast models
alone with the actual for Opel, Toyota and Fiat values for data set D when the series are

transformed with Box-Cox and Guerrero method.
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Figure 7.1: Simple Average Combination forecasts (Opel-Set D,BC/Guerrero)
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Figure 7.2: Simple Average Combination forecasts (Toyota-Set D,BC/Guerrero)
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Figure 7.3: Simple Average Combination forecasts (Fiat-Set D, BC/Guerrero)

The simple average combined forecast methods in the four (4) different combinations

are presented graphically for Opel, Toyota and Fiat for the D data set in Figure 7.1 (page
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225), Figure 7.2 (page226), and Figure 7.3 (page 226) respectively for the forecast horizon

of 2 years. The actual data are presented in the red line and each Combination has a

different color. It can be visually noticed that in the case of Opel and Fiat Combo, (i.e.

the combination num.2 -green line), which is (ETS + LMSD)/2 simple average combined

forecast model, seems to perform better than the other simple average models. However, in

Toyota case study, Combos (i.e combination num.3 -blue line), which is the (Seasonal Naive

+ LMSD)/2 simple average combined forecast models seem to perform best for Toyota cars.
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Figure 7.6: Selection of the best Combined forecasts (FIAT -Set D, BC/Guerrero)

The four (4) best combined forecasting models of the Opel, Toyota and Fiat for the Data

set D when series are transformed, according to Box-Cox with Guerrero, are illustrated in

228



Modeling Time Series

Figure 7.4 (page227), Figure 7.5 (page228) and Figure 7.6 (page 228). The actual values
of the series and the forecast values of the various combined forecasting models in the test
set are presented in a one-year forecast horizon. We notice that the downfall of the sales is
hard to predict so the various models usually overestimate the sales levels. However, the
model that gives the best forecast, visually is the line that comes closer to the line of the
actual values line (black line) during that period. In other words it is Combog for Opel and

Toyota and C'ombo,y for Fiat.

7.3.2 Accuracy measures of combination forecasting.

The forecasting performance measures of the various combination of different time series
models are illustrated for the Opel, Toyota and Fiat for Combo; till Combog in Table 7.1
till Table 7.3 (page 234 - 236). When forecasts are from the same series and the same data
set, it is reasonable to use the root mean squared error (RMSE), the mean absolute error
(MAE) and the Mean absolute percentage error (MAPE) as metrics in order to compare
the different combination forecast models. However if we need to compare different time
series and different time intervals it is better to use the MAPE metric.

For forecasting purposes, the model with the minimum accuracy measures gives the
better forecasts. Similar empirical studies, often find that simple weighted forecast com-
binations perform very well, compared with more sophisticated combination schemes that
rely on estimated combination weights. This rise a question, as Smith and Wallis [2009]
wonder: “Why is it that, in comparisons of combinations of point forecast based on mean-
squared forecast errors ...a simple average with equal weights, often outperforms more

” According to Timmermann [2006] errors introduced by

complicated weighting schemes.
estimation of the combination weights could overwhelm any gains from setting the weights
to their optimal values overusing equal weights. Furthermore, evidence shows that estima-
tion error might be large and additionally gains from setting the combination weights to
their optimal values might be small relative to using equal weights.

For the case study of Opel (see Table 7.1 p.234) it is clear that Combos (ETS+LMSD) /2

is in favour for the original and all series transformation in set C and also for the log values
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in set D. Combos (SN+LMSD)/2 is in favour for log and Box-Cox values in set B and
Box-Cox values in set A, while Bates and Granger model is in favour for the original values
in set A B and D and the log values in set A. Newbold Granger variance-based constrained
weighted forecast combination method is in favour only for the Box-Cox set D values.

For the case study of Toyota (see Table 7.2, p. 235) it is clear that, Combos (ETS
+ LMSD) /2 is in favour for, the original and all series transformation, in set A and B.
Newbold Granger method, is in favour for all cases, in set C and D, except the Box-Cox
transformation in set C, that prefers the Bates and Granger approach.

For the case study of Fiat (see Table 7.3, p.236) it is clear that Comboy (ETS + LMSD)
/2 is in favour for, the original and all series transformation, in set C, and the case of
Box-Cox transformation of set A and D. Combos (SN + LMSD) /2 is in favour for, the
original and all series transformation, in set B, the original values in set A and D and the

log values of A. Newbold Granger method is in favour only for the case of log values in set

D.

7.4 Discussion

The results from this evaluation study clearly shows that it is possible to combine
univariate forecasts to achieve better forecast accuracy compared to just selecting the best
individual forecast model. This evidence goes hand in hand with previous investigations
Clemen [1989]. However, the choice of method is important since some of the combining
methods perform much worse than even the worse univariate forecasting methods.

Various time series models are considered in this thesis for fitting time-series data. The
task of choosing the most appropriate one for forecasting is proved to be very difficult.
In this last chapter, the use of a combining method is proposed to convexly combine the
candidate models, instead of selecting one of them. The idea is that when there is much
uncertainty in finding the best model, as is the case study of the Greek new car market
empirical application, combining the models may reduce the instability of the forecast and

therefore improve prediction accuracy.
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According to our research there is substantial evidence that forecast combination is ben-
eficial in terms of reducing the forecast errors as well as toning down modeling uncertainty
as the researcher is not forced to choose a single model. Furthermore, it is a good strategy
to hedge against model risk. Combined forecasting data results and actual data examples
indicate the potential advantage of this method over model selection for this case study.

Combinations of forecasts are motivated by misspecified forecasting models due to di-
versification across forecasts and uncertain economic conditions. According to Elliott and
Timmermann [2016] simple, robust estimation schemes tend to work well in small samples
where the estimation of errors is done in combination weight. There is evidence that even
if they do not always deliver the most precise forecasts, forecast combinations, particularly
equal-weighted ones, generally do not deliver poor performance and so from a "risk” per-
spective, they represent a relatively safe choice. Empirically, this thesis research proved
that simple combination forecasts work well for sales of new cars in the Greek market.

The results of the combined forecasting methods in our research data example can be

observed in Figure 7.7 (page 233) and Table 7.4 (page 232) can be summarized as follows:

A Combination of time series models seems to produce forecasts closer to the actual

values of the series and therefore give a better forecast for our variables.

e Simple average combination with equal weights is usually the best model for forecast-

ing purposes. Easy to calculate hard to beat!

e Log transformation in Toyota and Fiat give better combination forecasts (lower

MAPE metric) while original values for Opel data.

e [t is hard to specify one sole model for all cases, each case and each time frame has

to be examined separately and with caution.

This study suggests that combination forecasts are almost certain to outperform the
individual forecasts and avoid the risk of complete forecast failure. Therefore, in circum-

stances where forecasting models are available and the researcher has to generate forecasts
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but is uncertain as to which model is likely to generate the best forecasts, combining the

forecasts from various alternative models would be the best and safest way forward.

To sum up, time series methods, especially combined forecasting is proven to be suc-

cessfully applied in new car sales i.e. marketing data in Greece and give reliable forecasts.

Table 7.4: Summary of Best Forecasting Models(*min value)

MAPE Original Logs Box-Cox

OPEL

A{1998-2012}:2013-16 | Naive/Combo; Naive* SARIMA

B{2006-2013}:2014-15 | C'ombos* ETS S. Naive
C{2006-2009}:2010-10 | S.Naive ETS* Comboy
D{2002-2009}:2010-11 | S.Nailve ETS* Naive
TOYOTA

A{1998-2012}:2013-16 | Naive/Combo; SARIMA* LMSD

B{2006-2013}:2014-15 | Naive ETS* ETS/Combos
C{2006-2009}:2010-10 | C'omboy Combos Combos™*
D{2002-2009}:2010-11 | C'ombog Combog™  Combog
FIAT

A{1998-2012}:2013-16 | ETS ETS* ETS
B{2006-2013}:2014-15 | LMSD* ETS SARIMA
C{2006-2009}:2010-10 | Naive ETS* Naive
D{2002-2009}:2010-11 | Naive* SARIMA  SARIMA
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Table 7.1: Combination Forecast Performance for OPEL.

OPEL Forecasting Model

Original Values A =1

Log Values A =0

Box-Cox/Guerrero A = 0.36

Data Set A (h=48) RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE
Comboi (SN + ET'S) 394.22 | 325.41 | 69.22 341.91 271.87 | 59.41 406.01 344.76 | 75.59
Comboy(ETS + LM SD) 567.72 | 494.58 | 105.98 381.83 | 336.61 | 74.77 497.62 | 443.91 | 97.37
Combos(SN + LM SD) 357.83 | 289.55 | 61.62 354.18 | 283.40 | 61.81 388.38 | 326.18 | 71.36
Comboy(SN + ETS + LMSD) || 433.53 | 368.32 | 78.65 353.64 | 237.29 | 65.33 426.11 370.15 | 81.29
Combos(Bates/Granger) 213.70 | 141.72 | 27.90 242.20 | 197.83 | 41.62 450.30 | 376.92 | 84.49
Combog(N ewbold/Granger) 333.28 | 229.51 | 41.02 360.67 | 273.09 | 59.52 399.77 | 296.72 | 61.52
Data Set B (h=24) A=1 A=0 A=0.03
Combo1 (SN + ETS) 242.24 181.95 | 40.31 192.09 147.94 | 33.11 212.92 162.55 | 36.96
Comboy(ETS + LM SD) 364.44 | 293.34 | 63.63 206.23 159.52 | 36.98 263.11 207.92 | 47.29
Combos(SN + LM SD) 201.95 154.33 | 33.16 168.60 | 133.23 | 28.43 187.10 | 143.94 | 31.93
Comboy(SN + ETS + LMSD) || 263.64 199.87 | 44.21 185.61 143.46 | 32.26 217.91 166.12 | 37.97
Combos(Bates/Granger) 129.43 | 96.48 17.71 218.34 177.00 | 41.75 226.45 182.14 | 43.31
Combog(N ewbold/Granger) 192.03 | 161.75 | 34.10 187.21 | 152.93 | 34.85 194.95 | 160.18 | 36.43
Data Set C (h=12) A=1 A=0 A=0.77
Combo1 (SN + ETS) 637.37 | 490.37 | 58.94 670.61 | 513.79 | 62.51 647.71 | 508.52 | 61.04
Comboa(ETS + LMSD) 578.24 | 474.24 | 56.55 544.39 | 443.69 | 54.80 573.90 | 473.05 | 57.02
Combos(SN + LM SD) 662.45 | 486.03 | 59.25 677.71 504.92 | 62.00 665.85 | 493.91 | 60.75
Combos(SN + ETS + LMSD) || 617.35 | 481.28 | 57.59 625.32 | 486.36 | 59.69 621.69 | 485.57 | 59.23
Combos(Bates/Granger) 802.52 | 654.90 | 90.15 801.43 | 669.63 | 93.68 809.32 | 670.17 | 93.11
Combog(Newbold/Granger) 1508.03 | 1140.48 | 152.36 1091.72 | 815.49 | 110.69 1195.74 | 866.87 | 117.98
Data Set D (h=24) A=1 A=0 A =0.86
Combo1 (SN + ETS) 604.40 | 495.33 | 56.93 626.52 | 513.16 | 59.28 605.58 | 500.18 | 57.95
Comboo(ETS + LM SD) 567.27 | 485.02 | 56.66 497.05 | 444.19 | 52.49 558.77 | 482.88 | 56.88
Combos(SN + LM SD) 632.36 | 505.60 | 57.92 636.15 | 512.19 | 59.09 634.74 | 511.18 | 58.93
Combos(SN + ETS + LMSD) || 590.69 | 495.30 | 57.17 577.38 | 489.84 | 56.95 589.48 | 498.08 | 57.92
Combos(Bates/Granger) 481.66 | 421.68 | 48.91 555.22 | 500.73 | 57.53 596.57 | 533.42 | 60.63
Combog(N ewbold/Granger) 547.25 | 460.36 | 55.94 564.24 | 481.93 | 57.32 535.39 | 454.94 | 56.23
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Table 7.3: Combination Forecast Performance for FIAT.

FIAT Forecasting Model

Original Values A =1

Log Values A =0

Box-Cox/Guerrero A = 0.10

Data Set A (h=48) RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE
Comboi (SN + ETS) 193.11 150.13 | 60.02 134.93 | 95.02 38.98 132.61 94.49 38.16
Comboy(ETS + LM SD) 290.32 | 239.75 | 89.26 124.91 | 93.01 38.66 125.57 | 94.45 | 39.11
Combos(SN + LM SD) 151.61 | 116.17 | 46.07 135.19 93.55 37.36 136.91 95.99 39.37
Comboy(SN + ETS + LMSD) || 201.72 161.26 | 63.69 129.75 | 92.35 | 37.90 129.90 | 93.53 38.47
Combos(Bates/Granger) 180.77 | 136.22 | 54.34 162.90 | 116.91 | 52.99 163.15 | 117.23 | 53.55
Combog(N ewbold/Granger) 187.52 | 138.39 | 53.01 157.89 | 113.47 | 47.38 163.14 | 117.26 | 53.57
Data Set B (h=24) A=1 A=0 A=—-0.08
Combo1 (SN + ETS) 159.88 | 126.73 | 56.70 142.55 | 106.25 | 50.08 136.02 | 100.75 | 46.80
Comboy(ETS + LM SD) 208.22 168.93 | 74.14 138.89 104.71 | 50.43 129.29 | 96.41 46.04
Combos(SN + LMSD) 141.83 | 109.08 | 48.73 133.62 | 98.69 45.54 132.68 | 97.85 44.88
Comboy(SN + ETS + LMSD) || 166.28 133.30 | 59.58 136.80 102.42 | 48.47 131.45 | 98.10 45.84
Combos(Bates/Granger) 182.41 143.23 | 73.36 178.29 140.64 | 75.96 171.45 134.20 | 72.10
Combog(N ewbold/Granger) 168.13 | 130.41 | 65.53 160.27 | 123.66 | 66.11 162.60 | 125.75 | 68.02
Data Set C (h=12) A=1 A=0 A =0.63
Comboi (SN + ETS) 456.95 | 409.46 | 79.42 483.43 | 432.16 | 83.18 456.95 | 409.46 | 79.42
Comboy(ETS + LM SD) 408.80 | 371.85 | 75.42 432.88 | 395.28 | 79.35 412.20 | 375.82 | 76.47
Combos(SN + LMSD) 453.86 | 405.22 | 77.82 475.94 | 425.48 | 81.67 457.35 | 409.19 | 78.80
Combos(SN + ETS + LMSD) || 436.18 | 395.51 | 77.55 460.73 | 417.64 | 81.40 438.52 | 398.16 | 78.25
Combos(Bates/Granger) 529.07 | 504.03 | 125.58 563.65 | 532.92 | 132.15 533.12 | 508.75 | 127.13
Combog (N ewbold/Granger) 699.26 | 680.46 | 181.16 435.75 | 428.41 | 109.66 656.62 | 673.08 | 159.35
Data Set D (h=24) A=1 A=0 A=0.07
Combo1 (SN + ETS) 479.17 | 437.09 | 90.75 592.25 | 534.50 | 112.86 541.81 | 489.89 | 103.23
Comboy(ETS + LM SD) 480.10 442.10 | 94.40 570.01 520.10 | 112.43 517.03 | 474.44 | 102.81
Combos(SN + LM SD) 487.36 | 440.33 | 91.45 558.29 | 503.38 | 105.19 552.19 | 499.04 | 104.47
Combos(SN + ETS + LMSD) || 476.13 | 439.15 | 92.14 568.13 | 518.58 | 110.10 532.20 | 487.79 | 103.50
Combos(Bates/Granger) 548.81 | 526.57 | 114.60 677.10 | 653.20 | 142.43 617.25 | 594.86 | 130.47
Combog(N ewbold/Granger) 570.96 | 546.24 | 118.11 257.30 | 214.65 | 47.26 613.67 | 587.55 | 130.86
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Appendix A

Appendix: New Car Sales Graphs

HYUNDAI new car sales

Boxplot of Hyundai new car sales by month
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FORD new car sales
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Figure A.2: FORD new-car sales (a)Line Plot, (b)Box Plot (¢) ACF, (d)PACF (original

values)
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NISSAN new car sales

Boxplot of Nissan new car sales by month
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Figure A.3: NISSAN new-car sales (a)Line Plot, (b)Box Plot (¢) ACF, (d)PACF (original

values)
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CITROEN new car sales

Boxplot of Citroen new car sales by month
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Figure A.4: CITROEN new-car sales (a)Line Plot, (b)Box Plot (c) ACF, (d)PACF (orig-

inal values)
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PEUGEOT new car sales

Boxplot of Peugeot new car sales by month
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Figure A.5: PEUGEOT new-car sales (a)Line Plot, (b)Box Plot (¢) ACF, (d)PACF

(original values)
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VOLKSWAGEN new car sales

Boxplot of VOLKSWAGEN new car sales by month
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Figure A.6: VOLKSWAGEN new-car sales (a)Line Plot, (b)Box Plot (¢) ACF, (d)PACF

(original values)

262



Modeling Time Series

SKODA new car sales

§ N Boxplot of Skoda new car sales by month
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Figure A.7: SKODA new-car sales (a)Line Plot, (b)Box Plot (¢) ACF, (d)PACF (original

values)

263



Maria K. Voulgaraki

264



Appendix B

Appendix: Autocorelations in Data
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Figure B.1: ACF and PACF of the TOYOTA (logs)
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Figure B.2: ACF and PACF of the VOLKSWAGEN (logs)
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Figure B.3: ACF and PACF of the HYUNDAT (logs)
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Log-Peugeot
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Figure B.4: ACF and PACF of the PEUGEOT (logs)
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Figure B.5: ACF and PACF of the FORD (logs)
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Figure B.6: ACF and PACF of the NISSAN (logs)
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Figure B.8: ACF and PACF of the FIAT (logs)
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Figure B.9: ACF and PACF of the CITROEN (logs)
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Appendix C

List of Abbreviations

e International Monetary Fund (IMF)

e European Central Bank (ECB)

e European Commission (EC)

e Association of Motor Vehicle Importers Representatives (AMVIR)
e Autcorrelation Function (ACF)

e Partial Autocorrelation Function (PACF)

e Autoregressive Intergrated Moving Average Models (ARIMA)
e Autoregressive (AR) models

e Moving Average (MA)

e Autoregressive Moving Average (ARMA)

e p (the number of autoregressive terms)

e ¢ (the number of moving average terms)

e scasonal ARIMA (or SARIMA) models

e Exponential Smoothing State space models (ETS)
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Yuvorntixr Ieplindmn
(Abstract in Greek)

O okomds g Tapoloag S TopLXT SLaTEL3Y| Elval 1) TEAYHATOTOMNCT LG TOLOTIXTG EUTELRIXT|S
€PELVOG OTNV AVAAUGCT] X0l UTOOELYUATOTIOMGT) YPOVOAOYIXWY GEWWY GTNY EAANVIXY aryopd. H
TOGOTIXTY) EQPUPUOCUEVT] €pEUVa TTOU avamTOGoETAL, avalnTd Aboelg xan e€etdlel pedddoug ypeo-
VOAOYIXOV GELRKY, TIOU UTOROVY VoL EQUOUOCTOVY UE ETULTUY LN G BEDOUEVI UGOUETIVY X XOL VL
dwoouy a&iomoteg tpofiéleic. Ilapdho mou 1 mpax T Tng TEOBAEYNS BEBOPEVLY UAPXETIVYX,
OTWS oL TWANOELS, Vol Ulal EUPEWS UEAETNUEVT TEPLOY T, OEV EYEL EQUPUOCTEL EXTEVHS GTOV
EMANVIXO TOUEN TIWOAIOEWY XL CUYXEXQUEVN OTOV TOUEN TWAHOEWY AUTOXWVTWY. Emougvec,
ouTh 1 SlaTEBn amoTehel plal TEWTOTUTY TEOoTEUEL AvaPOopdS Xat GLLATNONG BLUPOPWY VEWY
TEOXTIXWY TEOBAEPNC TWAHCE®Y, X0 APORd TWAHOES QUTOXIVATWY OTNY EAANVIXY oyOpd, €-
vy eCeTdlel Wi Topary (o1 olxovoulxy| Yeovixt Tepiodo yia Tnv EAAGSa, dmou 1 owovouuxn
OEACTNELOTNTA ATAY UTO ETUTARNOT| OE VAL QUG TNEE ETOTTEVOUEVO TERUSUAAOY.

O oyediaouds authG TNG EUTEIPXAG, EEELVITTIXTS, CLUYXPLTIXAGC HEAETNG UPORE OF TROXTL-
%EC TEOPAEYNC TWANOEWY, UE TN YPNOT UNVIieY GTOLYElWY TOu EAANVIXO) TOUEN TOAYOEWY
QUTOXWVATWY, Tou Blatiieviar and to MNivdeopo Ewoaywyéwv Avunpooonwy Autoxvitwy
(XEAA) e EMGBac. O pnviaioc oprdude tavounone vémy outoxivitoy utodétouue 6t
looUTAL PE TO unViako ETINEDO TWAHCEWY VEWY QUTOXWVATWY OTNV EAANVIXT oYORd. LUVETWS UE
N XENOT LOVOUETABANTWY UTOBELYUSTLY YROVOLOYIXMY GELOMY YRUUUIXMY XL 1) YOUUUXOY,
ue otadept] 1) xUUAVOUEVY BlocdUaveT) YIVETOL Lol TpooTdiela vor Jeternoly, va allohoynioly
xou vo TeoPBAepioly Ta eninedo TwARcEwY auToXv TwY oty EAAGSa. Avamtiooetan yio o

OEDOMEVAL Lol CLYXELTIXY avdhuoT) 1) OTtold ETLOTUALVEL OUOLOTNTES XOl OLUPOQEC.
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v

H pebodoroyia ebpeong tou xahhtepou woviehou yenolponotel pedddoug LTOBELYUATOTO-
fnonc xou TEOBAEYN YpOVOLOYIXGY GELR®Y EVTOC Xou EXTOC BelypaTog, ot omoleg epapuoélovTal
EUTELPXE. OF [Lol TOAA( ETOUEELWY TWAACEWY VEWY QUTOXWVATGDY OTNV EAANVIXY| AMavixn o-
Yopd, %ot GE BLdPoEa UTOGUVORA BELYUATOVY, XATE TO YEOVIXO DEC TN TwV 000 TEAEUTHOVY
dexoeTidv (1998 éwe 2016). Tiveton eunelpnr| egappoyn o€ Wi Towthior UTOBELYUETLVY YpOVO-
AOYIXOY CEROVY €V eCETALOVTOL X0 TO TAEOVEXTHUOTY TOU UETUCY NUATIOUOY TWV THIOY TWY

UETABANTOV X TNS EPUPUOYHS CUVOBUAGUOU TwV TROBAEPEWY BIUPOPETINGY UTOSELYUATWY.

LTV EUTELPXY) EPELVAL YENOWOTOOVUVTOL ATTAY UOVTEAN YPOVOAOYIXMY CERMY, OTWS TO
uéoo [Mean/Average|, 1o Ageléc [ Naive] xou to Enoylaxd Agehéc [Seasonal Naive| ahhd xou
o e€ehypéva, onwe to Npoppind povtéda pe enoylaxéc Qevdopetafintéc [Linear with Sea-
sonal Dummies (LMSD)], ta povtéha Exdetinric E€oudhuvong yweou - xatdotaong, [Space
Exponential Smoothing state space (ETS)] to enoytoxd autonodivbpopo povtélo xwvntol
uéoou [SARIMA], xou 10 emoylaxd auTomaAiVOEOUo XvNnTol pécou utd cuV i ETEpOoXEDI-
otxd SARIMA-GARCH xada¢ xan Sidpopol cuvbuacuol twv meofiédeny touc. Emmiéov,
OLEPELVATOL 1) YLYON) UETACY NUATIOU®Y dedouévwy TuTou Box-Cox, ot po tpoondieia Bedtio-
O™¢ TNE TOLOTNTAC XAl TNG ATOBOONG TWV BEBOUEVLY, xAIME X0t TNG TEOBAETTIXNS IXAVOTNTAS
TWY UTOOELYUATWY, OTOU AmOBEXVIETHL OTL TOREYEL €val Loyued epyahelo yiow TV avdmTuln
Toug. Téhog, avagpépeton xou pehetdron 1 allomio o TV TEOBALPEWY TWY UTOBELYHATWY EVE)
e€etdleTan Xal 1) TEOCEYYIGT) TOL GUVBUNCUOU TROBAEPEWY amd BLapopa LOVTEAN YPOVOLOYIXGOY
OELPMV.

To euneipind evpnuata authc TN HEAETNG €dwoay evoeilelc Bedtinong Twv TEoBAédewy
AL TV OLCTNUATOY EUTICTOCUVNG, UE TN YPNHOT TNS XATIAANANG SLodLxaolog UETACY NUATL-
ool Twv dedouevwy. Emmiéov, undoyel Eva xuplapyo ouunepaoua 6Tl 0eV ebval BUVITOV Vo
umdpyet eviafo UOVTEND, Yl OAEC TIC EToupElEG, TOU var umopel TporyuaTnd Vo GUAAGSEL xa
vor TpoBAEPEL TIC VEEC TWANOES AUTOXWVATOY OTNV EAANVIXT aryopd. Kdde etanpelar mpénet va
avTeToTieTan EEYWELOTA OE GUVEETNOT UE TO YEOVIXO OLdG TN oy eEETAleTon XAUE POpAL.
Hopdho auTd, 0 YETATY NUATIOUOC BEBOPEVWLY Xa Ol UEV0D0L GUVOUACUEVNS TEOBAEdYNE amodEL-
xvOovToL ETWPEAELS yior TN Bedtinon Tng axpifeloc TV TEoBAEPE®mY Yo OAEC TIC TEQITTMOELS

QUTAS TNG EPELVOC.



To &eywptotd evilapépoy auThS TN EEEUVOC Efval OTL TEUYUATOTOETOL GE Lot BUGXOAT
Yeoviny| eplodo yia TNV EAANVIXY) owovoula.  Katd tn dudpxeior Tng epeuvnTnrg TEpLodou,
omo 10 €10¢ 1998 €wg tor TéAN Tou 2016 1 EAAGSa unéypade tpla (3) Mvnuévia Yuvepyaoiog,
UE CUYXEXPUEVOUS GPOUC OXOVOULXTC TOAITIXAS, TTOU OB YNooY OTNV OLXOVOUIXY| EToTTEla
NG YWEIC, omd TNV oUdda arogdocwy, Tou avagéoetal wi TPOIKA xau anoteleiton and 1o
Awedvéc Noptopoatind Topeto (ANT), tnv Evpwnaixh) Kevtpi Tednelo (EKT) xaw tnv Eu-
cwnoixh Emtpony) (EE). H ehAnvinr xuBépvnom avoryxdo thxe vor eQopuooel U€Tpo MTOTNnToC,
mou €mAngay Toug TOMTEC xan TNV owovouxr) (wh TNg YOEUS, S CUVETELW TNG ETOTTEINS
oauthc.  Ou 'EAAnveg xotavahwtés, Aoyw g owovouwis aBefoudtntog, g éAAeuPng peu-
oToTNTOC X TG TeAmelXnc xplong, TUEATEIVIVE TNV ayopd OE BLOEXT) XUTOUVOAWTIXG oryordd
(6mwe autoxiviTa, émmha X.T.A.) UE AMOTEAEOUN TNV AMOTOUY TTOOT TWV VEOV TWANCEWY
QUTOXWVATOY GTNY EAANVIXY| oy opdL.

H mpwroturia authic tng dwtpdric elvon 6L, yior TEOTN QORE Ol TWAHCES AUTOXVATWY
OTOV TOUEN TNG EMNVIXNAC oYORAC XOUVOURYIWY QUTOXIVATWY AvVTHIETOTILOVTaL WS YEOVOLOYL-
AEC OELPEC UE DEDOUEV TWANCEWY TV DUO TEASUTUUWY OEXUETIOV YO TNV EAANVIXT| AYOEd.
Emunpoc¥étng, n uehétn auth avadeixviel To tpoSArjuota, Tou dnuoupyRinxay Adyw Tng oL
XOVOUIXY|C %ploNg OTOV XAAB0 TWANCEWY XouwvolEYIwY auToXVATOY TNV EAADA, evey avolyet
VEOUC €pELVNTIXOUC 0pILOVTEC OE EQUPUOYT| OXOVOUETOIXWY UTOBELYUATOV GE OEDOUEVAL oy O-
edc oToV EMABIXG YWEO. Ev xotaxheldl, 1 oupfodn otny emotiun authg Tng dwteydric etvan
OTNV XUADTERT XUTAVONOT| TNG Y 0RAC AUTOXWATWY GTNY EAAGDS ot TNy HEAETY TOU XOAUTEQOU
TeoTOU TEOBAEPNE TOu ETUTEDOU TWARCEWY Xou TN BeEATion TNg ToLOTNTAC X TN axplBetag
ToU, OOTE v emTELYVEl 1 avTioTddlon mavol xwdlvou xat 1) uelworn Tne amotuyla TEo-
BAEPewy, Yo Tic EAANVIKES eTARElEC VEWY aUTOXWVATOY. Ot PETAOYNUATIONO! TwV GECOUEVWLY
BeATUOVOLY ToL ATOTEAEGUATO TNG EPELVAC EVE DEV UTERYEL EVAL XOWO UOVTERD 1S TO XAUADTEQO

Y10 OAEC TIC YPOVOROYIXES OELREC XOU YIoL O TOL YPOVIXGL OLAC THUTAL. 1

L A¢Zeic Khewdud: Xpovoroynée Sewpée, TpoPhéderc, Metaoynuoatioudc Box-Cox, Suvdvaoudc pofiéde-
wv, ENnvuer Ayopd, Hwlioeic Autoxvitoy, Ageréc, Enoylomd Ageréc, ooapuixd pe Enoyloxnés Weudope-
Tainté, Exdetune E€oudhuvone Xapou-Xpovou, Enoylond Autonaiivipopo Kivntod Mécou und cuviixn

ETEPOOHEDUC TLXO.
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Extevnc Ilepiindm

(Extensive Summary in Greek)

Areuxpiotixég mapatneriosls g tepiAndng oo EAANVIXG.

H cuvontue| xan exteviic mepiindm mou axohoudel eivon piar ehebepn yetdppoon and to oy-
YA6 %elUeEVO TNy EAANVIXT YAWooa o€ Uia Tpoomdela vor amodovel G0 To SuvaTdY xahOTERY
TO TEPLEYOUEVO TNE BB TOPIX|C BLoTEBhC 0TV eEAVIXY| YAwooo. H Siateif3ry Tithogopeitan
o¢: “Troderypatonoinon Xeovoroyway Xewpwv. Eumeipmr| diepedvnorn tng ayopds autoxt-
vitwyv oty EAGSo (Modeling Time Series. The case of the Greek new-car sales sector)”.
Emuniéov otny mepidndn ota eAAnvixd mou axohoudel, dev yivovton PiBALoYpapxéc avapopéc
00TE PoINUUTIXEG OVUAUCELS TWV UTOBELYHATWY, TOU YENOLIOTOLOUVTL, OUWS Yo O LTS O
VALY VOGO TNG UTOREL VoL avarTREEEL GTO ary YAIXO Xelpevo xon 0T hoTta BiBAoYpa@uxcy avapopy
e dwaxtopwhc dwtphc. Emlong ou avagopéc oe mivoxeg Bedouévwy 1) oyedlary pouudTLmy
yivetow uévo 600 avagopd otov aptiud Toug, EVEM OEV aVUTUEEYOVTOL GTO EAANVIXG XElue-
VO EQPOCOV UTERYOUY GE EXTEVY| OVOPORE GTO Oy YAXO TEQLEYOUEVO X0t UTOROVY EUXOAX VA
uehetndolv and exel yia omotov emiupel nepetaipn evacydinon 1 euSdduvon.

Kol# Avéryveon,.
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Kegdiowo 1

Eicaywywd Kegdiowo

1.1  Ewaywyn

H avédhuon yeovoloyiney ceipmy elvan €va onuaviind epyohreio ot uToderyUaTonoinoT xaL
TEOPBAEdT otxovouxOY PETUBANTOY. AlaQopeTinég TEYVIXES OVAAUGNC YPOVOAOYIXOY GELRGOV
epopuolovtal o auTh 1) SlaTEYBY| o€ Ui TPOOTAUEL ATOBOTIXOTERTC UETEPNONG Ol OMOTEAE-
oUaTOTEPNC TROBAEYNC BEBOPEVOY UGOXETIVYX Yol VEEC TWANOELC QUTOXIVATWY GTNY EAANVIXN
ayopd. H épeuvd pag Eexvd ye tnv avdAuom dtapopwy HETUBANTGY YEOVOROYIXWDY CELRMY TNG
EMNVIXAC oy0pdE QUTOXIVATLY Yo UEAETOUVTAL Tal G ToLyElo oL adveTtan Vo emneedlouv To
eNimESO TV TWANCEWY AUTOXWVNTLY, XUTA T1) OLEEXELN LG TOROY MBOUS OXOVOULXTS TEPLOBOU
Yo TV EAANVIXT] oucovoula (1998 — 2016). To enixevTpo NG UEAETNG Wog Efvon apyxd 1
EQUQUOYT| DLUPOLOY ATAWY OXOVOUETPIXMY UTODELYUNTODY , OTIWS TO HECO, TO APEAES XOU TO
ETOYto S QPENES UTOOELY U Xatt 1) €peuval GUVEY(CETOL e TIg UEVOBOUC UTOBELYUOTOTOINOTG X0t
¢ Box-Jenkins tou yenowonotobvton oo automohivopopa povtéia xivntod uéoou (ARIMA)
xon T emoyloxd automoAlvopoua xivntol pécou SARIMA, 1o ypouuixd unddeLyuo UE ETOYL-
xé¢ Pevdopetafintéc (LMSD), to unodetypata exdetinic e€oudhuvang yweou yedvou (ETS)
X0l TNV OLXOYEVELXL YEVIXEUPEVWY UTOOELYUATOY AUTOTAAVOROUOU xtvNnToU €GO UTO GUVITXY
etepooxedootivol (GARCH).

To eunelpind otovyeio authc TNE peuvag Belyvouv OTL Tar ATAY UTOBEY AT Y POVOAOYIX®Y

OELPGY, OTKC To EToytoxd aehéc uodelypata umopel vor eivan emopxr Yo Bpoyutpdieoun
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TEOPBAEdT), eV MO TEPImAOXO UTOBEYUOTa, OTKS Tot HovTERR exdeTinrc eCOUGAUVOTS Y OEOU
yeovou (ETS), o ypopuixd povtého pe emoyixée devdopetafintéc (LMSD) xa o emoyto-
%8 owtonahivipopa povtého xwvnrol péoou (SARIMA) eivon xahltepo yia yoxpompdieoyues
TeoPAédeic.

Emunifov, yehetdue tnv axpifBeio 0Ty UTOBELYHATOTOMNONG YPOVOAOYIXMY OELRMY, OTOV
TEOYUAUTOTOOVUE UETUTEOTY| OTal apytxd 0edouéva. Etol, auty| n épeuva napouctdlel anote-
Aéopota Yo TEIC BLOPOPETIXES TEPLTTAOELS XUTA T1) UTODELYUAUTOTOMNONG TWV UETUBANTOY o)oe
opyxéc TWée, B)oe hoyoprdunuéves Tipés xou Y)TLpéC pe ™ yeron ueTaoynuotionol Box-Cox.
Eninpocdétne, tovileton 1 onuacior Tou cUVBUNCUOU BLUPORETIXWY UTOBELYUATLY YPOVOLOYL-
AWV CEWRGY Yoo TNV Tpaypatonoinot teofrédewy. Etot, avtl va facillopacte o €va povo
UTOBELY UL Yo TIC TEOPBAEDELS, YENOULOTOLOUUE €Vol GUVOLAOUG UTOOELYUATWY XOL UE TOV TEOTO
OUTO PELOVOUUE TOV XIVOUVO YEMOUIOTIOWWVTOS OES TIS Olordéotueg TAnpogopiec. Auto yive-
Tou €lte unodétovtag wa eviador otdduon oe xdde TEdPAedn eite ye TN ypron cuvtEAEcTMV
otdduong avdroya pe TV axpifea tng meoBiedng tou xde umodeiyuatog. H teyvin tng
ouvbuaouévng TeOPBAedne Eemepvd Tic TpofBAédelc xdde evOC amd Tol HELOVGUEVY UTOBELYHOTY
OE QUTAY TNV EUTELRXT) UEAETT).

Auth 1 St xaAUTTEL e TNV €pELVAL TNG YEOVIXE €V BUGKONO DLUCTNUO YL TNV EA-
Anvixty otxovoula 6Tic opyéc Tou 21ou cuwva, and To 1998 we to €tog 2016. ¢ ex ToUTOU,
oUTY| 1) HEAETY EVOLAQERETOL TTOESAANACL YIoL TNV OLXOVOULXY) XATAGTACT) GTNV EAANVIXT| aryopd,
xou mpoonadel vor avadeilel Eupeca, OTL 1) oLxovouXT| XploT xou To BETEA AlTOTNTOC, Tou TEVT-
xay o€ oYV UETA TNV egapuoyr Twv Myvnuoviewy Yuvepyaoioc tne ehhnvixrc xuBéovnong ue
v Evpwnoixf Emtponyy (EK), v Euvpwroixt Kevtpwr, Tednelo (EKT) xou to Aedvég
Nouopotixd Toyeio (ANT) ), dhho€av Ty oixovouixr dpac tTneldTnTo 6Tov Topéd Mavixig
TOANOTNS AVTOXWATWY 6Ty EAAGSa, avtixatonTtelloviag TIC TUQUTETUUEVES OXOVOUXES BU-
OoxOMES TNG EAANVIXTC oy ORdC.

Avohutindtepa, To TEOTO XEQIANO TN SLTEYBHAC Blvel Uior GUVTOUN ElGUYWYT| 0To Véua,
0xONOLVYOVUEVO ATd TOUC OXOTOUC TNG EQEUVICG, EVE VETEL TA EQEUVNTIXG EQOTAUATA TIOU TEO-
BAnudTicay TNy epeuvhTela xotd Ty epiodo g uehétng. O oxomdg authg TG UEAETNS Xou

oL gpeuvnTxol otdyoL dnhwvovTon Ue caprvelo xot Vo avamtuyJoly TAREMS 0T ETOUEVA XE-
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pdhonar LTS TNG OLaTEPhC, EEnyolvTaL Tar xEvNTEN TNG EPELVAC, EVE OL EPELVNTIXES EQMOTACELS
Yo amovToly MO TNUOVIXG X0t ATOTEAECUOTIXG BACEL TN EQUOUOCUEVNC OIXOVOUETEIXNG Ve-
0plAG XL TNG TEOXTIXTG TOU Y ENOWOTOLE(TOL GE DEGOUEVA YPOVOROYIXWY GELRMY. Avapéoouue
TNV TNYY| TV OEBOUEVLY, Tou fval 0 BIxTUaXOE TOTOC ToL LuvdEcuou Ewoaywyény avtinpo-
oWTwV outoxvitwy ot dixixhov (https://seaa.gr), to hoyouxd R, mou yenotwonothinxe
yioo Ty enedepyacion TV OE00UEVWLY, YRUPXE, CTATICTIX AVIAUCT UTOBELYUOTOTOINGY Xou
Te0T, xou To TpodYpoppa HTEX mou yenowonotfinxe yio TNy EMOTrHoviXy cUVTaLY TNS Tapo-
Voo daTeBhc.

H emoxénnon g dwate3ric Bondd otny xatavénor tng doprc . H epeuvntinr cuuBoin
x0T TEALXS GUUTIEPAOHATA AUTAC TNG OLATEBNS UTOPOUY VoL BWGOLY YEHOWES TANPOPOpleS,
ot omoleg unopolv va Bondfoouy toug utedYuvoug Adng amopdoewy va xatapTicouy GTEo-
TNYWES Yoo TNV 0pdr) Btayeipion Twv amoVeudTtey, yio EQUEROYES avipmOTIVOU SUVOLXOD XAl
yioe TV drayelplon g £podlac Tix g dALGEBUC GTOV ToPE TOU ALavixo) EUToplou VEWY oUTO-
xwhtwy oty EANGSa. EmnAéov, cuufdAier onpovtind 6Tny oovouxy emo T, Aoyw tng
EMQAVAC EAAELPNC EUTERPLO TATWUEVNC EQEUVOC OE AUTOV TOV TOUEN TNG EAANVIXYC oY 0RAIC oL TNG
EQUQUOYNG CUYXELITIXAG UEAETNG YPNOWOTOLOVTOS TO VewpenTxd untdfudpo xou Tig pedodoug

YEOVOLOYIXWY CELRMV.

1.2 Alota dnuoocteboeswy & €peuvVNTIXWY TALOUGL-
ACEWV.

Efuon euyvouwy xan aroddvouar wiaitepa Tuyeer, Tou pou d6UNXe 1 euxotpiol Vo TIROUCLIGE
MEPOC TNG EEEUVOG MOL XATA TN OLIEXEL UAOTIONONG TN, OE GUVEDELY, GUUTOCLO XL GUVO-
VINOELS Xt VoL AGBw TOROTUIO X0 ETOXOBOUNTIXE OO YLOL T1) CUVEYLOT) TNG EQEUVAS UOU.
[Swdtepec evyopiotiec oto Topupa A. I'. AePévtn (A.G Leventis Foundation) yio tnv eu-
yevixy| yopnyla Tou xar TNV xdALdN péooug Ty eEH0WY Lo, YL TN CUPKETOY T HWou o€ B0
Yupmoota yio dudoxtopixolg gortnteg EARGSag xou Kinpou, mou dopydvwoe to EAAnvixé Tla-
catnenthelo Tou Eupwroixol Ivotitodtou tou Iavemotnuiov London School of Economics

and Political Science- LSE , 1o Aovdivo, tng AyyMag.
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O %otdhoYoC TwV TUPOUGIAGEWY 1| ONUOCLEVGEWY, TOU TEOEXUPOY XATA T1) SLIPXELNL AUTAC

NG OWaxTopNC BlatEBric He Ypovohoyixt| oelpd lvon ol e€rg:

- Voulgaraki K. Maria (2019), Box Cox transformation in Forecasting sales. Evidence
of the Greek market. ITopousiaon ota mAaiow Tou Suvedpiou 39" International Sy-
mposium on Forecasting (ISF 2019), mou Swopyaveydnxe and tn Sledv emo TnUovix

opydvworn International Institute of Forecasters-11F, otn Osocurovinn, oty EANES.

- Voulgaraki K. Maria (2017), Forecasting sales using switching regime models in the
Greek market. Ilapoucioon ot mhaiowr tou Yuvedpiou 8™ Biennial Hellenic Obse-
rvatory Ph.D. Symposium on Contemporary Greece and Cyprus, oto IlavemotAuio
London School of Economics and Political Science, European Institute, The Hellenic

Observatory, oto Aovdivo, tng Ayyiiog.

- Voulgaraki K. Maria (2016), Modeling and Forecasting sales in the Greek market.
The case of the Greek new car sales sector. Ilopouciacn ota Thalow Tou Muvedplou
IMAEF 2016-Ioannina Meeting on Applied Economics and Finance, otnv Képxupa,
otnv EANGOa.

- Voulgaraki K. Maria (2014), Forecasting Sales of durable products in the Greek mar-
ket. Empirical evidence from the new car retail sector. Ilapouciaon ota mhaicla
Ethotou Metantuytoxol Lepwvapiov (13-04-2014), oto Tuhua Owovouxdv Enotnudy
Tou [lavemotnuiou Kertng, oto Pédupvo, Keftne otnv EA&da.

- Voulgaraki K. Maria (2013), Forecasting sales and intervention analysis of durable
products in the Greek market. Empirical evidence from the new car retail sector.
IMapouciaon oto mhadotae Tou Tuvedpiou 6 Biennial Hellenic Observatory Ph.D. Sy-
mposium on Contemporary Greece and Cyprus, oto [lavemotAuio London School of
Economics and Political Science, European Institute, The Hellenic Observatory, oto

Aovdivo, tng AyyAag.

- Voulgaraki K. Maria (2013), Exponential Smoothing Time Series Forecasts. Ilopou-

oloon oo mhadoto Etiotou Metamtuytoaxol Xepwvapiou (09-01-2013), oto Tunuo Owxo-
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vouwxayv Emotnuev tou Iavemotrnuiov KeAtne, oto Péduuvo, Kertng otnv EAAGSa.

1.3 Xuvelogopd SLaTtplfBNg oTNY ETCTAUN.

Me v napoloa dratelfr unootneilouue 6T GEGOUEVA OOVOUIXG BEACTNELOTNTAS, OTWS Ot
TWAAOEL QUTOXWVATOY OTNY EAANVIXT| oyopd, Utopoly e0xola va Yetendoly xon vor tpofBhe-
@UolY ETTUYOC YENOLWOTOWWVTAS HeEYodohoY o Xou BladAGIEC TOU YENOWOTOUVTAL Yio TNV
0CLOAOYNOT YPOVOROYIXWY OELOWY GTNY OLXOVOUXT EMCTAUN. AUt 1 UeAéTn avTipeTwRilEL pe
HOVABIXO YO TR TOTUTIO TEOTO TO TEOBATUA TNS Topaxoloinong xou TeoBAedng Twv TwAroe-
OV XAUVOURYLWY QUTOXWVATWY TNV EAANVIXT oYORd, OF iol TOAD Topay (0T oovouxy tepiodo
yioo v EAAESo. Ta uétpar MTdTNTOG TOU EQUEUOCTIXAY, AOYW TNG AUCTNENG EQPUPUOYTC
TWV UVUOVIXDY CUPPOVLOY, ETNREACAY TNV EAANVLXY) OLXOVOuid X0t Bpao TNELOTNTO, CUVETGG
xon oL ETUTMEDN TWANCEWY AUTOXIVATOY. Me T1 ¥proT LOVOUETUBANTOY UTOBELYUSTWY YOOVO-
AOYIXWY GELOWY YOUUUXOY XOL U1 YROUUUIXGY, PE oTadepn 1) XUpovoueYY dloxduavoT €yve
wa tpoomdiela var uetendoly, vo altohoyndolv xo va mpoBie@dolyv ta emiNEdH TWARCEWY
QUTOXWVATLY oTNV EAAGDA.

H eunelpur} egopuoyy| TEpLocOTERMY antd ENTE UTOBELYUATMY YPOVOLNOYIXWY CELRMY XAl ETIL-
TEOGVETWC 1) EQUEUOYT) GLVOUAGHOV TEOBAEPENMY BLUPORETIXWY UTOBELYUATOV ONOXATIOWVOUY
U0l EXTEVH X0 AETTOUEQRT] UEAETT] TWV OLXOVOUETELXWY UTOOELYUGTLY YPOVOROYIXWY GELOMY,
TOU UTOEOVY VoL EQUOUOCTOVY GE BEBOPEVAL 0y ORAC X0 TOU UTOPOVY VoL ATOTUTICOUY UE o&Lo-
moTio T Topelo TV TWOY TV HETUBANTGY ahhd xou Vo Ty TeoBiédouy.

H Sielodunr| eunetpe] eQopuoYT| TOU UETATY NUATIOUOU DEBOUEVWY YPTOYLOTOLOVTIS T1) HE-
Yodoroyioa Box-Cox évavt Twv apytx®y TYoOVY Bivel ttar XxahOTERT XaTavonoT) TOU AGYOU ToU
EQUNVEVEL YTl 0 UETACY NUATIONOS TwV Bedouévey Umopel Tdvto va fonifoet otny meoBiedn
ulag petaPintrc. H €peuva mpoogépel Briuato Tpog Uiot XoAUTERT XATUVONCT, TNG UETOPAN-
TOTNTOC XU TN TOAUTIAOXOTNTOG TNG EAANVIXAG Y ORAIC o GUUTERALVEL OTL OGO TEQLOGOTEQES
TAnpogopieg umopel xavelg va ypnotuonotioel 1660 xahiteen Yo etvon 1 TeoBAedn TG Tiung.
Kotohfiyoupe 610 cupmépaoua 6Tl 0 GUVOLIOUOE TANPOPOELKY TOU TUREYOVTOL ATtO BLAPOPE-

T povTéda TeoPBAedNe Blvel xahOTEPR AMOTEAEGUOTA OO TN YPHOT ATOTEAECUATOV UEUOVE-
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uévwy unodelypdtoy. Iopdha autd clvar 80oxoAo vo TpocdloptoTel €va udvo UTOBELY U YLot
ONEC TIC YPOVONOYIXEG GEWREC Xal OhaL Tar Ypowxd Ot Thata. [t To Adyo autd amouteiton
TdvTa TEOOEXTIXY ETLAOYY| TOU LTIOOElYHATOC TToL fval XUTdAANAO Yol T CUYXEXELUEVA Xdie

(popd o ToLyElol XL TO BEBOYEVO YPOVIXG BLIC TN ToU EEETALETAL.



Kegpdhaio 2

Avdiuon XpoVohoyIx®y 2ELP®Y

2.1 Ewaywyn

H oulhoyt| mapoatneroewy o mpoxadoplopévee NeToBANTES xoTd T BLEEXEL TOU YEOVOU GE
TEOXUVOPLOUEVES ETOVOAUBAVOUEVES OTIYHES, OTWS xdle Nuépa, eBOoudda, Ufve XTA. OVO-
ualeTon Ypovohoywt| oelpd. Xe auTh) TN OlTedr| 1 eUmELp) UEAETN XAAOTTEL TNV ovVEAUOT)
YPOVOROYIXWY GELRMY TNG TOEVOUNCNES VEOY ETBATIXOY aUTOXIVH TRV 6Ty EAAGDo yior opl-
OUEVES Amd TIC UEYAUADTEQPES AVTITPOOMTIEG AUTOXWVATWY TOU ELOAYOLY ETBaTind ouToxivnTa
Tou TEoopilovTal Yo To Alovixd eumoplo 0TV eAAnvixy) ayopd. H ta&vouncn towv véwv e-
TBoTIXOY auTOXWVATOY (Uéoa and To cvotnuo tne Aveldptnine Apync Anuociwy Ecddwyv
-AAAE) eivor copéotata tpoxadoploUév), UTOYeEWTIXT Yl OAd Tar VEX AUTOXEVITOL, TOU XU-
A(hOPOPOUY GTO EANUBIXG YWEO XL GUC TNUATIXG XATAYEYPUUUEVT], OF (G0 YEOVIXS OLUC THUTA
eved OlveTon Yo Tepoutépw enelepyaoia oe dedopéva unviadag Bdong. Xuvemm UTopoUUE Vo
uno¥€ooude pe ac@dhetar OTL 1) unviodor THEVOUNGCT TWV VEWY AUTOXIVATWY LOOBUVONEL UE TIC
UnVialeg TWAAOES QUTOXWVATLY YLol xGUE pior eTMASYHEVT avTITpoowTio Tou AetTovpyel oTnV
eMNVL ayopd. AUTEC oL TORAUTNEHOELS AVTIETWTILOVTAL (¢ BEBOPEVI YPOVOAOYIXOY CELRWY,
X0l 1) avdAUGT) TOUG, EYEL YOEUXTNELO TG OTIWC Lo AVAUGT) TTOU YIVETOL GE XAVOVIXE BEQOUEVXL
udexetvyx. Emniéov, n UEAETN TV VEOY BEDOUEVWY TOANCEWY AUTOXIVATOVY TEQLAAUPBAVEL UE-
V660UC avdhuoTc SeBOUEVWLY, EE0YWYTNC CTUOVTIXWY G TUTIO TIXOY X0l GAAWY YUEUXTNOIO TIXWV.

Avant)ooeTal 0E AUTO TO XEPIANO Lo CLUYXELTIXTH AVAAUGT), 1) OTolol ETLOTUALVEL OUOLOTNTES

9
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X0l OLAPOPES OTOL DEDOUEVIL TWV YPOVOAOYIXMY CELRMY TTOU EPELVOLUVTOL.

H avdhuorn twv dedopévenv Eextvdel and Ny mapouciaon Tng eEAMNVIXAS ayopds oauToXI-
VATV ot GUVEYLLEL UE Lol TILO EUTIEQLO TUTWUEVY) TEQLYRUPT) TWV ETUAEYUEVGY OELYUATOY. LTNV
EUTIELQIXT] EQEUVY, 1) TIEQLYQUPIXT] OTATIOTIXY, TEPLAAUPBAVEL TOV UTOAOYLONO TOU UECOU, NG
SLoxOpavoT), e x0pTwone, e AoZotntac/acuppetpiog yior xdde plo and g déxa (10) ye-
YOAOTEREC EAANVIXES AVTITPOOWTIES aUTOXWVATLY. ‘Ohat Tot OTATIOTING YAEUXTNPIG TIXE. TOV
oelpyv dtvovton pall ue dvo (2) teot ENEYYOU TNG XUVOVIXOTNTAS XOU TNG TUYOLOTNTOG /omo-
EUOXOTNTAS TOV OELYUdTLY pag. H ypopuer| anemdvion 1wy SEB0UEVODY aUTHS TNG EUTELOIXS
OVAAUONC TOEOUCLALETOL GE YROUUOYQUPHUOTO TUMOY Xol YpophHuata xouTtiwy Box- Plots oe
unviado Béom Ty oy @y SedoUEVKY Yoll UE To XOPEAOYPUUUOTA TWY CUVIPTACEWY AUTOGU-
OYETNONG XU PEPLXAS AUTOCUCYETNONG (Belte avohuTtind oto Hopdptnuo A).

H emoyixdtnta, 1 onola etvan 1) ouyvd emavahopfBovopuevn adinom A Lelwon Twv UETUBANTOY
OE GUYXEXQWEVA YOVIXE DL TAUATH XoTd TNV OLdEXeld Tou £€Toug, umopel va mopoutnendet
0T OYEDILYPUUUOTA X0l OE GUVEETNOT UE TOUC UAVEC vl €TOC, EUXOAA €YOUHE XYoL OTTIXY
CUUTEQAOUOTA Y10l TOUG PAVEG UE TIC LPNAOTERES X YOUUNAOTEREC TWAHOELS OE eTHOL Bdon
oV eTonpela.

Ev cuvtoula, to xegahaio autd avontiooeton wg e€g 1 Apyd €youue plo uixer eloo-
YWy 6mou culnTeiton Plar YEVIXT] avapopd OTr GUVOALXT) EANANVIXY) oryOopd oUTOXIVATWY, UE
ol GUVTOUY) avopopd. GE TOMTIXG. X0 OLXOVOULXE YEYOVOTO. TNV CUVEYELX, ToEouctdlovTal
TOL CUVOTITIXG OTATIOTIXG UM TNV EUTELOLXT AvEAUCT) TV YETABANT®Y, oTotyelo TEpLYpuPLxng
OTATIO TIXNG AVIAUGOTG BEBOPEVMY, XAl YRAUPXT TopoustacT) Twy oelptvy. Axoloudel 1 BiBAlo-
YEUPLXT) AVAUOXOTNCT) TIOU TOPEYEL TEPLOGOTEQEC AEMTOUEREIEG OYETIXG UE TN OYETIXY| EpYasia
ToU €YEL YIVEL GTOV TOUEN TOU QUTOXIVATOU Xl TNV EQUEUOCUEVT ueodoloyio yior UTODELY-
LaToToinaT yeovohoyx®y oelpdy o dedopéva pdpxetivyx (6nwe twifoew). Topovoidleta,
ev ouvtopio, 1 epeuvnTixy pedodoloyla xar ot uédodol TEOBAEdNC YEOVOROYIXMY CELRMY Xol
UTIOBELYUATOY, PE WLalTepT ugact oto Yewpnuixd toug utoBadeo xou Tr uedodoroyia Touc.
Yt ouvéyela yivetar Topoucioon Twv YeVddwy TEOBAEdNS xou avahleETaL €VVOLa TNG TOLOTIXHS
EVovTL TooOTXAC TEOPBAEPNE o 6NV TEAEUTAO EVOTNTAL, EYOUNE Wiot GUVOYT TWV TOPIGUTEV

aUTOU TOU XEPaAafoL.
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2.2 Yuunepdopata

Kotd 0 Sudpxeior Tov 800 TEAELTAUWY OEXAETIOY, 1) VEXL oyopd auToXiviTwv oTtnv EAAddo
UTLEOTT| OPIOUEVES COPBUREC AANAYES AOYW TNG DUOXOANG OLXOVOULXYIC XATUOTACTC OTN Y WP
O TwAROEC ®ouvoLEYIWY AUTOXIVATWY GUEEIXVOUTNXAY XL BEV XATAPERPAY TOTE VoL EENERACOUY
NV owovoux xplon, Wlwg HETd TNV TayxdouLa otxovouxt| xplon tou 2007-2008.

2NV EAANVIXY Ay 0pdl AUTOXVATWY AELTOURYOUY TEQIGGOTEREG ATtO 35 BLOPOPETIXES ETALOEL-
ec oe eUvixd eminedo, oAAd uovo 2-3 amd autéc €youv Pepldlo ayopdc oe T0COGTO TEPiTOU
10% tou cuvohou g ayopdc. Meletrioope 8éxa (10) and tic xopugaies etonpelec o TOAROELS
otnv eAMVr) ayopd. Ta amoteAéouata TEQLYQUPIXNC CTATIOTIXAC AVIAUOTC OF UPYIXES XAl
AoyopLdUNUEVES TUIES (TMivaor 2.1 SLotetfric) debyvouv 6Tl GTay YENOWOTOLUVTOL Ol Ry IXES
TéG NG oElpdc, 0 PECOS HPOG TNG OELRdC Bev elval {00o¢ ue Tov BLduEcO, OTOTE UTOBNAGDVEL
OTL BEV €YOLY XAVOVIXT] XATAVOUY|, O ool Ao TIG OEXA OLUPOPETIXES YPOVOAOYIXES OELREC.
Emniéov, n acuppetpla (S) xou 1 xuptétnta (K)ne oetpdc dtapépouv and autd tou cuvidng
OMAVTOVTAUL OE XAVOVIXE. XoTaveUnUEVeS oelpée (dnhady) S=0, K=3). Ta anoteréopata de-
byvouv 6t o oipyxd deBopéva €youv Vetinr aouuuetpio (8e€Ld) xan eivor mhatdxvpta (K<3),
EVE 0L MNOYOPLOUNUEVES TYES TOUC €Y0LV apvnTixh acuuuepia (aptoTtepd) xat bvar TAaTOXLETO
(pe S0 eZoupéoelg tnv VolksWagen xou tnv Nissan).

Q2ot600, 6Tav efetdlouye TIc hoYoRLIUNUEVES TWES TNE OELRAC, TOTE OL DLUPORES UETAED
Tou PECOU XL TOU PEGOU 6poU YIVOVTOL WXEOTERES, OTOTE UTHPYEL UL XAVOVIXOTNTO OTA
OEDOMEVY, GAAG BLaTnEOUY axdpa Ui Uixper) andxhion. Emmiéov, 1o téot twv Jarque-Bera
YLt TOV EAEYYO TNG XUVOVIXOTNTAS, ATMOPEITTEL TNV XAUVOVIXOTNTO Yidl OAES TIC AOYUPLIULUEVES
TIES TWV OELRMV (extoc and NV TepinTwon Fiat), evey otig apy g THéES povo 1 Toyota xou
1 VolksWagen qalvetan vor xatavEUOVTOL Xovovixd.

Metd tny mapoustacn tng oyetinic BidAoyeapiog tapatideton Eva chvtopo Yewpntind mha-
(o010 TWV BLPOPWY LOVTEAWY YPOVOAOYIXMY GELRMY, TOU TEOXELTUL VO EPUOUOC TOLY EUTELOINY
oTo EMOPEVAL XEQdhona e TN puedodoroyio TedPAedng, mou Ya axorouvdroouue. H eumeipm
€peuva ouveyileton UE TNV YEHON TWV AOYUQIIUNUEVWDY TWOY XL dpYOTERO Xl GAAWY UETO-

OYNUATIOUOY TV TYOY TOUC, YL ot To oxeUB31) xou Yeryoer enclepyacia Tomv BEBOUEVLDY XAl
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yioo T OteuxohuVoT) xou o€ Baog Tapoustaong TWY ATOTEAECUATMY OE Lol UTOOELY UXTOTO(Mo
EVTOC- %o EXTOC- OelypaTog xou TNV Tpoondetla extiunong Tou BEATIOTOU UOVTEAOU Xou TNV

TEOYUATOTOMOT TO ATOTEAECUATIXGY TEOPAEPEWY.



Kegpdiowo 3

Y rooelypatonolnorn evtog-0elydatog

3.1 Ewaywyn

Y€ auTo To xEPAALO TNG DTEBNC, EEXWVAUE TNV EUTELRXT AVEAUGCT| UE UTOOELYUaTOTIONGT €-
VTOC BELYHOTOC TWV YPOVOVOMXGY GELp®Y oy e€eTdloupe. Ot unviaieg TWAHOELS AUTOXIVTOVY
amo TIC X0PUPaES ETAUPELES, TOU AEITOUEYOUY GTNY EAANVIXT oyORd AVTIMETOTLOVTAL WS Y PO-
VOAOYWES OELREC, Xou 1) UEAETT EExuvdl UE ATAGL OLXOVOUETEXE LTODELYUATY, OTIWS TO HOVTEAD
Méoou(Mean), 1o Ageréc (Naive) xou to enoyixd ageréc (Seasonal Naive) xat otn cuvéyeLa
TPOYWPEGEL OE PEPIXY TO TEONYUEVA HOVTEAN 6Tk To uTodelypata Exdetinrc ECopdhuvorng
ypeou xau yeovou (Exponential Smoothing state space -ETS) xat ta ypopuixd urodelypota
ue enoytoxéc PeudouetoPintéc ((Linear Model with Seasonal Dummies-LMSD)).

Emunicov, 1 €peuva EMXEVIPWVETOL GTN CUCYETION TN THEOVCHS TWAC TNG OElpdS, OF
TEONYOUUEVES TWEC X0 OE GPIAUOTO TEONYOUUEVNS TEOBAEYNS, OTOTE YENOWOTOLEL JOVTERX
YPOVOROYIXODY OELpMY OTwe Tor auTomoAAivdpoua xwvntol uéoou (AutoRegressive Integrated
Moving Average - ARIMA) xou 6e8ouévou 6Tl tor SeBOPEVIL oG €YOLY ETOYIXOTATA, TOL UTIO-
derypotor auTd Aoufdvouy umddn xar Ty enoyxétnTo (Seasonal AutoRegressive Integrated
Moving Average -SARIMA). T'i v dnuiovpyior twv UTOBELYUdT®Y YenotLonoLelTon 1) Ue-
Yodoroyla Box and Jenkins. Auth n eumeipinn €peuva oAoXANEOVETUL PE TNV EXTUNOY TOU
UPELOWOY UTOBELYUUTOS TTOU EYEL TO YEAUUUIXO ETOYLAXE AUTOTOAAVDPOUO UTOBELYUA XV TOU

uéoou (SARIMA) yia tnv extiunom Tou JEGOU X0t TO U YROUUIXO UTOBELYUN TNG YEVIXEUUEVNS

13
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awtomoAAivopounc etepooxeducpixiic utd cuvixne extiunone (GARCH) yio tnv unoderyyo-
Tomolnon e doxduavong tne oeleds. O €Aeyyog TG AmOTEASOUATIXOTNTOC XU TNG XAUANC
EQUPUOYTC TOV UTOOELYUATWY TocoTixoTolelTon Ue T Yprom Tou pllixol U€cou TETPAUYWVIXO0
og@dluotoc (Root Mean Square Error - RMSE), 10 yéco anéhuto tetpdywvo opdiua (Mean
Absolute Square Error - MASE) xat 1o xpitfiplo allohdynone Akaike (AIC) oe optoyéveg

repintooeg. H avdhuon npaypatonoleiton ypnowonoumviag to hoylouxd R.

To oxentind Tng YEHoNS BLUPOPETIXDY TUTWY UTOBELYHATWY EYXEITOL OTO YEYOVOS OTL
OLaPOPETIXOL TUTOL OIXOVOUETEXMY HOVTEAWY €Youv UeheTnUel xou oyedlHGTEL Yiol VoL ATOTU-
TOVOLY BLUPORETIXG YUPAXTNELC TIXA TwV DEBOUEVKY Tou LYV HwS cuoyeTiovtal Ye yeovolo-
yiég oetpéc. [ mopddetypor ouyva oL Y eovoloyixég oelpéc epgavilouy ToxiAes BlaxLUdVoELS,
vdmiéc ouyvoTNTEG OF aMPULES TLIES (fat tails), OLOCOUOVOT) UE OUUDOTIONUEVY] CUUTERLPOES
(volatility clustering) xou oUtw xadedhic xatd T Sidpxeta ToU YEOVIXOU SLUG THUATOS TOU
eZetdletan. QoT6C0, LTHPYEL TEVTO TO TEOBANU TOU TEOTOU ETMAOYHC TOU OWOTOV UTOBElY-
uotog, mou Yo Toupldlel xohlTeRa 0T *de PeTUBANTH. AuTtod To TEOBANUA ETAVETOL UE TOV
UTOAOYLOUO TNG BlaxOaveNg 0T oelpd xde uTodelyuatog. Troloyllouue hotmdy Ta Ay Lo Ta
teTpayoVd o@dhpoto (Mean Square Error -MSE) nou npoxintouy and tny eqapuoyn tomv
BLoupbpwy UTOBELYUATLY ahhd xon Ti¢ pilec Toug (Root Mean Square Error - RMSE) mou eivou
OTNV TEAYHATIXOTNTO OL TUTIXES ATOXAICES TwV OElpnY. Eminhéoy, eva dhho pétpo olyxpion
oty evidg Selypatog avdluor eivon to eNdylotor o@dhpoto oe anoluto tococtéd (MAPE).

‘Oc0 apopd o u€tpa GUYXELONE YL TNV XAADTERT ATOB00T] ot oxEiBEL TWV UTODELYUATLY,
o RMSE, mou ebvan 1 tetpaymvix plla Tou U€ooU 6pou OAWY TWV TETPAYOVOY GQUMIATLY,
AYVOEL TUYOV UTEPEXTIUNACELS 1} UTOEXTIUNONG TN OELRAC, EVE OEV ETUTEENEL CUYXQLOT| HETO-
E0 DLUPOPETIXMY YPOVIXWY CELRMY XL DLUPORETIXMY YPOVIXMY OLUCTNUATOY. Ao TNV GAAN
mhevpd, To MAPE, emtpénel T 00yxpiom UETAUED SLOPORETIXMDV YPOVOLOYIXDY GELRWY X0l Blo-
(POPETIXWY YLEOVIXGY DLUC TNUATWY Xou €lvor OLUTEPA YENOWO OTUY OL HOVABES UETENONG TNG
ueTOBANTAC ebvan oyeTind PEYSAeS. 2Tol EUTELOIXE ATOTEAECUATO TOU TUPOUCLALOVTOL OE UTO
TOo eI xou Tor 600 péTpa olyxelong uToloyiCovTa Yo Uil ToLaAio UTOBELYUTOY YT
OLUOTOLWVTAC TIC THIES TWY YPOVOAOYIXWY GELRMY Yia T0 cUYOAO Tou delypatoc. Télog, dha

Tot UTOBElY AT CUYXEIVOVTAL YENOLLOTOLOVTAS TIC UETPNOE Tou UéTpou axpifeioac MAPE,
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Tou EMTEETEL oluPoVE PE TN BBAoypapia T cUYXELoT UETAUED BLOPORETIXAOV YPOVOLOYIXOY
OELPWY, TEOXEWEVOL Va atohoynUel 1} evTOC OelyUaToc xUAUTERY AmOBOCT) TWV OLUPOLETIXMY

UTTOOELY ATV

3.2 Xuunepdopata

Yuvodilovtag, o€ aUTO TO XEPAANLO TUPOUCLALOUUE TOL ATOTEAECUATA TG EUTELOIX|C OVIAUOTG
EVTOC OElYHATOC TOV OEXU XOPUPULLY ETOUEELWY TWACENY AUTOXVATWY GTNY EAANVLXY ayopd.
H épeuva Selyvel 6TL petd v alloAdYNoT TEQIOGOTERWY amd EEL UOVTEAWY YPOVOLOYIXOVY
oelpyv oe xde Pio and TIC oelpéc BEBOPEVWY Tou EEETACOUNE, TO UTOOELYUO TTou Tanptdlel
xohOTepar o €yel ueyahltepn axpiBela eivon to umdderypo exdetinic eCopdiuvone  ETS.
Auté 10 amotéheopa elvar xowd OE OAEC TIC YPOVOMOYIXEC OEéC UTO eZétaoT), xadde To
HovTélo €yl T UixpoTtepn Tin uéteou axplBeioc MAPE oe dheg tic oeipéc. O Adyog eivan to
YEYOVOS OTL, TO OLXOVOUXO TERYBEAAOY Efvan apxeTd aoTadég xoTd T BLIEXEL AUTMY TWV 500
TeEheLTUWY BEXAETIOY, xat To poviého ETS. €yel 1o mAcovéxtnua v dlvel yeydAn onuocio
OTIC TEAEUTALES TTUPUTNENOELS TNS OELRAC, ETOUEVKS BIVEL WE amoTENEHA XoAUTERPES TPOBAEPELC
YioL TN YPOVOAOYIXT GELRAL.

261600 dhha umodelypato 6mwe To SARIMA xou to emoytaxd povtéha Naive, €pyovtan
©¢ O0eUTEPN xahUTERN ETAOYT, xou divouv eniong MOAD xahd amoteléouato oe oOYXELOT UE
GANoL LOVTEAA YPOVOROY WGV oelpwy. To cuumépaoua autd €xel voruo BEGOUEVOU OTL T UTO
eZ€taon dedopéva €youv emoyxoTNTa ToL e&nyeltan TOAD xoAd ue tar umodetyuoto SARIMA
xou Seasonal Naive mou Aaudvouy untddm o WIaTEPO AUTO YUPAXTNEIOTIXO.

Emmiéov, xadog to pétpo axpifelag, to MAPE, unopel va emtpédel tn obyxplon puetald
OLOUPOPETIXY YPOVOROYIXWY OELPMY, UTOPOVUE Vol GUUTERAVOUNE OTL €QV EEETACOUPE TNV €-
popuoyr Tou yoviéhou ETS oe dAeg Ti¢ YpoVOLOYIHES OELRES, EYOUUE TNV XUAVTERT) EQUPUOYT
Tou 6TV TepinTwon Twv Opel, Toyota, Fiat xou otn cuvéyeta VolksWagen, Hyundai, Ford
xou 00Tw xoerg. T to povtého SARIMA éyoupe mopduola armoteAéopota, 1 XoaAITERY €-
popuoY T duwe etvar oto delypa twv VolksWagen, Hyundai, Citroen, Opel, Peugeot, Nissan,

Skoda, Ford, Fiat xot Toyota.
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Hapatneolue 6Tt oL etonpeieg mou divouy xahOTEPU ATOTEAEGUOTA UE TIC THO ULXPES TUIES
ot pé€tpa oxpifetag elvon auTég Tou BlaTNEOVY TO UEYUAUTERO UER(BLO (trocootd nw)\ﬁoswv)
oTNV ayopd, xatd T SLdipxela Twv 1wV Tou e€etdlouue. Enopéveg, to ototyela Hog Belyvouy
6TL oL etoupelec mou elyay to peyahlitepo pepidlo (oyedov o 10% TV GUVOMXGY TOARCENY)
oty eMnwixr| ayopd avtoxvitwy (6nwe  Opel, Toyota, VolksWagen) diotnpolv éva mo
otolepd eninedo nwhRoewy xou ebvon euxohdTepo Vo avadetydel amd TNy Epeuva To xahlTEQY
UOVTENO YPOVOAOYIXWY OELRMV GE AUTE To DEQOUEVO TOPY OE ETAUEEIEC UE UXPOTEQO UEQIDLO
ayopdic xou Ayotepo otatept| 9€on otn eAANVIXT oryopd auTOXWVATWY. AUTH 1 UEAETN xoTéEANEE
oto ouunépacya OTt ta umodelypato ETS xow SARIMA eivon xotadAAnAdTepa yior ThY €VTOC
OElYUUTOG UEAETT) TOV TOANOEWDY AUTOXIVATOV.

Auth 1 eunelpuer) evtdg Selypatog épeuva e€€Tace entiong Tl xATAAOLTA TN EXTUNOTNG TOU
uovtéhou SARIMA. Trrpyav evOellelc €TEQOOHEDCTIXOTNTIUC OTO TETEAYWVO TWV XOUTUAO-
imwv twv uroderyudtwy SARIMA nou umodnhovouy 6Tt 1 épeuva umopel vor BEATIOOEL TO
uovtérho SARIMA yéow umoderyuotonolnong g METUBANTOTNTOC X0 £TOL EXTUACUUE TOL O-
viého SARIMA-GARCH vy dhec Tic oepéc. Eved o éheyyoc Engle LM Test €oeile éva
pawvopevo ARCH poévo oe o pixet| opddo etonpetodyv (Opel, Peugeot, Ford, Fiat) xou ta oto-
TioTxd ototyelor Box-Pierce xou Ljung-Box delyvouv 6Tt tar TETdy VoL TwV XATohoinwy ToV
umoderyudtov SARIMA twv etatpeidv  Volkswagen xou Nissan unogépouy xuplwg and cetplo-
x1) oLUCYETION, AUTH 1) UEAETT cuvey (el TNV €peuva TNG UE TNV EXTIUNOT) BLUPOLETIXGDY TOTIWY
vnodetyudtwv SARIMA-GARCH. Extyfooue 618(popec TEOdLOypapes aUTOY TV LOVIEADY
X0 XATOUAYOUUE 0T0 oupmépooua 6TL, yevxd to poviého SARIMA-GARCH (1,1) efvor o
TO ONUOPUAES, Yl EXTIUACELS OF Oelypata, xadag Eyel tn younidtepn tur AIC and dila
urodelyyoto. Mropolue vo untovécoude 6Tl 1) UETABANTOTNTA TNG OELRd e&nyeltar XaA)TERPX
YETOULOTOLOVTOS AUTAY TNV OUEO0 UTOOELYUATOY, dhhd OEV UTopoUUE Vo oo Te Glyoupol OTL
QUTEG OL TEODBLOYPAUPES UTOBELYUATWY UTopolV Vo BEATIOC0UY TNV avetnTa Tedliedng. T
™V extiunon tne axpBetag tng mEoBAedng TV YovTérnmy cuVEYICOUUE YE UL EXTOC BELYUOTOG

€0ELUVOL OTAL ETOUEVOL XEPANOLAL.



Kegdhawo 4

Y rnoodetypatonolnon xou ITooBAedeig

EXTOC-OELYATOG

4.1 Ewoaywyn

H npofBhedm etvan i mpoondetar mpdyvwons e LEAOVTIXAS TNG Hlag PETOPANTAS, UE 600
TO BUVUTOV PEYORDTERT oxplBELal, AouBavOUEVKDY OAwY TV BECLUMY TANEOPORLLY, CUUTE-
ELAOPPBUVOUEVKY TWV LG TOPIXMY DEBOUEVHV XAl TWY YVOOEWY YL TUREAIOVTA, TOPOVTA 1) UEA-
AOVTIXG YEYOVOTA, TOU BUVOTAL Vol ETNEEACOLY TIC TWES TV TEolAédeny. Autd eivor évag
oUVNIeC OTATIOTIXG €PYO GTNV OWOVOUXT ETLCTIUY], TOU TOREYEL YENOWES TANPOPORIES Yo
Toug umeduvoug AMdne amogdoewy, xdle Touéa Tou dNUOGIOL 1) TOU WLWTIXOL Topéa. Eivar
o uetlovog onuaciog oe {NTAUATA, OTKS O TEOYRUUUITIONOS TORAYWYNS, 1) OloyElplon Teo-
OWTX0V, O GTEATNYIXOS OYEDBLIOUOS, 1 Yenon uedodwy mpofiedne. Mtnv mpdln, kwoToco, N
TEOBAEYN TWAACEWY GE GUYXEXPWEVES ETAURELES, YIVETOL GUY VA UE TN YEHON ATAGY UeVEdWY
TeoPAedng, mou ouyvd dev Bacilovtoan ot oTUTIO TG UTOBElYHOTOL Y AUTHY TNV EQELVAL 0
VOTOGOETOL 1) YPNOT CTATIO TGOV TEOBAEPEWY GTNY ayopd auTtoXivATwy 6Ty EAAGSa, e T
Yenion LeVodwY TEOBAEPNC YEOVOROYIXODY CELRMY.

o vor a€lohoyioOUUE Tolo elvor TO XATIAANAO UTOBELY U TEOBAEdNE, UTopoUUE Vo Yenot-
UOTOLACOUUE [Lor eVTOC-Oebyal 1) Uiar XTOC-OelyuoTog Btadxactar EXTIUNONS TV UTOBELYUATOY.

YNy evtog-Oelypoatog teyvixy| Aoufdvouus Lol Gha Tor GEDOPEVAL Yia TOV UTOAOYIOUO TOU

17
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UTOOELYUATOG. TNV EXTOC-OElYHATOC TEYVIXT| EXTWATE TO UTOOELYUN UE TN YPHOT HEPOUS TWV
TOEATNEACEWY, EVE OL UTOAOLTES TURATNENOELS TOU UEVOLY EXTOG DELYHATOS YENOWLOTOLOUVTAL
Yoo TNV a€loOAGYNOT) TV THOY TwV TEoBAEYewY o8 GUYXELON UE TIC TEAYUUTIXES TOUG TUIES.
Y& auth) TN PERETN 1) EpELVTELL Yenoulomotel uia pedodoroyia TedBAedne extoc- delypatoc.

To ypovixd didotnue 1998-2016, 1o onolo emexTelvovTon To BEBOUEVA TV YPOVOAOYIXMY
oelpwyv oy e&etdlouye, ywplletou o Téooepa (4) UXQEOTEQX DLAPORETING UTTOGUVOANL YLOL TIG
aVEYxES TNG TopoUoaG EpeLVaS. To BLdpopa UTOGUVOAN BEBOUEVKY TNG EUTELRIXNC UEAETNS UG
xadoptlovton cUgwva ue Ty avoroyio 8:2 YeTadl) Tou UTOCUVOROL EXTIUNOTC TOU UTOOELY-
HOTOC X0l TOU UTOGUVOROL EAEYYOU. AVUALTIXOTEQRX, TO UTOGUVORO EXTIUNONEC TKV BEBOUEVWY
YENOWOTOLELTOL YLoL TNV EXTIUNOT TV TOEAUETEMY TOU LOVTEAOU Xot XohUTtTeL Tepitou to 80%
TOU GUVOAOU TOU OElYUATOG, EVG TO UTOGUVOAD EAEYYOU YPNOUIOTOLETOL YLl TN HETENOT TNG
oxpiBetag e medBAedne xou xohbntel to undhomo 20% Tou cuVolxoL BelyuaTog TWY Oe-
OOMEVWV. XE AUTHY TNV EUTELRLNY| UEAETT EXTOC-OElYMATOC ONULOURYOUUE CUVORLXY TEGOEQY
urnocOvord A, B, C xar D mou yweilovton oe ypovixd dwoo ot (avokutind otov Hivaxa 4.1
e BrotetPric).

To npdto oet (A) autrc g perétne xohbvmter 19 ypdvia. Zexwvd ue évol UTocUVoho
extiunone umodetyuatog and tov Tavoudplo 1998 éwe tov Aexéufelo tou 2012 mou xohOmTeL
15 ypovia ue 180 pnviaieg mopotnenoels, xaL €vol GUVOAO EAEYYOU TIOU XUAOTTEL TA ETOUEVAL
téooepa (4) étn and tov Iavoudplo tou 2013 éwe tov Aexéufpelo tou 2016 pe 48 nopatnerioetc.

To debtepo unocivolo (B) authc e épeuvag xahimtet 10 ypdvia. To utochvolo extiun-
onec Lexwvd amd tov Tavoudplo tou 2006 €we tov Aexéufoeto tou 2013 xou xoAlTTEL 8 Yedvia
ue 96 unviadeg TapATNENOELS, EVE TO UTOGOVOAO EAEYYOUL EYEL 24 TUPATNEHOELS Xot XUAOTTEL
o endueva 800 (2) étn amd tov Lavoudpro tou 2014 éwe tov Aexéufpto tou 2015.

To tpito unoaivoro (C) autrc tne eumelphic pehétne Eexwvd tov Tavoudelo tou 2006 éwg
Tov Aexéufplo tou 2009 xon xohintel t€ooepa (4) €t pe 48 punviodo Sedopéva, mou xoopilouv
%(&de popd TO HOVTENO xoL EAEYYOLY TNV ATOBOCT) TOU GE £Va UTOCUVOAO 12 TapATNEHCEWY
TOU XUAUTITOUV TOV ETOUEVO YeoVo amd Tov Tavoudplo éwm¢ tov Aexéufpelo tou 2010.

To tétopto utosivoro (D) auvthc tne perétne Zexwvd tov Tavoudpio tou 2002 éwe Tov

Aexéufpto tou 2009 xar xohOTerL oxte (8) étn e 96 pnviodo dedopéva mou xodopilouv xde
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(pOpd TO UTOBELYUA X0t EAEYYOUV TNV AmOB0CT TOU UE VO UTOGUVOAO 24 TopUTNeRCcEWY Tou
xoNUTTEL To empEva 800 (2) étn amd tov Tavoudpto tou 2010 émc tov AexéufBpto tou 2011.

Emniéov Yewpolue Tt 1) ueydhn Opeon oTnv eAAnvxt| aryopd Eextvnoe oTic apyég Tou 2008
woll pe v mayxdoue yenuotomo wtixy xplon (GFC) 2007-2008 xou éytve axdun yerpdtepn
METE TNV avoxoivwon TN OLXovVoUXAS oupgpoviag g eAnvixic xuPéovnong ue to Aieidvég
Nowopatixd Tayeio (ANT/(IMF) tov Mdwo tou 2010. Ot nwhfoeic égtacay GTo 10 ToptX6
Toug xaTOTATO onuelo To 2012 xou u€ypl To Téhog tou 2016 1 eAANVIX ayopd BEYUNXE Ue-
YOAN Ttleom xon Yo TapaTEToUEVT TEptodo owxovouxng xplone. H egapuoyy| pétpwy Aitdtnrog
avéyxaoe toug EAnveg mohiteg var avaBdhouy 1 vo xaduGTERHOOLY TNV ay0pd ALTOXIVATLY,
oL tedmelec dev EBvay OYEBOY XAVEVOL BAVELD YIoL 0YOEE XAUTAVUAWTIXWY oyaddV Xol dUTOXL-
VATOV XU ¢ €X TOUTOL UTHREE Wial Spouatix) ohhory | oTol EMiNEda TWANCEWY To TEAEU TN
YeOVLaL.

Y€ AUTO TO XEPAANLO, UETH OO AUTAY T UXET| ELOAYWYY), avahbovTon UEPIXd amd To Baot-
%0Tepa PETEA 0ELoAGY OGS TG axpifelac Twv TpoBAédewy Tou yenowonotodvTal oThY Tapolod
eunetptnry perétn (Iivoog 4.2). Emmhéov, extyoltvton xon oflohoyolvton outd tor pétpo o-
xp(Betog Twv TEOPAEPEWY EUTELPXE OTOL BEBOUEVA YPOVOROYIXWY GELRMY KOS YENOULOTOLOVTS
wor extiunomn extoc-oelypatog. 1o cuyxexpiueva, YETE and Evay 0pLOUO XL Lol GUVTOUY| O-
vapopd ot Bihoypacpio yior T pétea axpifelog mpoBiedng mou yenowonoifinxay, 1 épeuva
ouveylleTal UE Yol EUTELOIXT) EQUPUOYT| TOUS GE OLAPOPX LOVTEND YOOVOROYIXWY GELROV.

To eunelpind anoteréopota TN TEOBAEPNC TWANCEWY EXTOC-OElYHoTOC BlBOVTAL YLol Blopo-
CETIXG HOVTEAA YPOVOROYIXWY CELRWY PE Btdpopa pétea axpiBelag mpdPBiedne. H Sodixacia
umohoytopol ebvon 1 axdroudn: extiunomn xdle ToPUUETEOU TOU UTOBELYUOTOS Y ENOULOTOL-
OVTOC TIC TWES TORUTNENOEWY TOU UTOGUVOAOL Yol TNV EXTIUNGCT) TWV UTOBELYUITOY, ONULIoUp-
yio TpoPBhedng onuetou yia v meplodo TEdPAedng o xdle clvoho xon EXTIUNGCT TWY YETEWY
oxpifeloc TEOBAEPNC YENOWOTOLOVTAC TIC TWES EXTIHOUEVES TIES TEOBAEYNC TOU HoVTENOU
X0 TG TROYUOTIXES TYES Yl xde uTocoUvoho Tou €youv xpatniel extodc delyuatoc.

Emmiéov, ol unviaieg mpofiédelc mwifoenmy napouotdlovton xou Yeopixd YLl TIC OLepopeES
ueddo0ouUC TEOBAEYNC YEOVOLOYIXDY GEWRWY, GE GUYXQLOT| UE TOL TEAYHUTIXE ENUITEDN TWANCEWY

ue Sdotnua eymiotootvne 95% o T BloxOpovon xdde LOVTEAOU, YLl TIC TOAACELS VEWY
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avtoxwvitwy e Opel oty EXAEBa (oyedidypauua 4.2-4.5).

Auth elvon o tpoomdielar vor Sei€ouye OTTIXG Tol AMOTEAECUATA TNG EUTEIPIXNAC UG YE-
Atne. Téhog, culntdue To €lpNU QUTAS TNG EUTEIPXAC MEAETNG YPTNOULOTOLOVTUC DLAPOPE-
Tiég pedOdoUG xo LOVTENX YPOVOLOYIXGOY OELR®Y TEOBAeYNE xan eumAouTiCoVUE Tar EVERUATA

UE OWOVOUXT avEAUGT) TOU CUYXEXQPUIEVOU TOPEN MAVIXTG TNG EAANVIXS ay0pdc.

4.2  Yuvunepdopato

Ye autd 10 xEPdAO, 1) EpELVE EG TINGE OTNY AMHBOOT TwY TEOPAEPEwY exToC-OelypaTog €EL (6)
OLOUPOPETIXY UOVTEAWY YPOVOLOYIX®Y OELpwV: Tou Mécou 6pou, Tou Agelés , TOu EmOyLoxd
Ageléc povtélou, tou unodelypotog exleTinic eCOUIALYOTS YMEOU YPOVOU, TOU YRUUULXO-
U unodetypatog Ue emoyloxés PeudoucTaSAnTés, Tar emoytaxd auTomahhivopoua UTOdEly T
XWVNTOU UECOU X0l TA YEVIXELUEVO UTO cLVITXN eTepooxedacTixd unodetyuota. O ypdvog
OUAOYAG TV Unviodwy dedouévey ftay and Tic apyés Tou 1998 €we to téhog Tou 2016 xau
ywelotnxe oe tooepa (4) dtapopeTind utocivola dedouévmy, ye Bdon tov xavdvae tou 80:20
YL o BIEUXOADVEL Tot UTTOGUVOAD EAEYYOL Xan Boxuny. O oTdyog ftay va e€eTacTel TO0Oo
XohGL efvon T Tor UTOBELYHOTA Y POVOROYIXWY CGELRWY 0TNV TEOBAEYN TwV EMTESWY UnVioiwy
TWAHCEDY AUTOXWVATWY OE BUOXOAEC OLXOVOUIXES XATAC TUOELS, OTWS OUTY| TOU AVTYETOTLLE
1 EAMANVIXA owovopio Tig TeEAsuTaleg 600 dexacTieg.

Mehethtnxoy euneipind ototyeta yio Teelg daopeTtinég etonpeieg Opel, Toyota xa Fiat.
To anoteréoparta 6etyvouv 6Tt To Pooind utodelypopto Mécou dpou xon To Ageréc UTOBELY U
Aoy TOAD Alyor oty meoBredn Twy emmESwY TWANCEOY. Xe aUTHY TNV EUTELOINY) EQUPUOYN
xde etonpelar avTIOPOUOE BLUPOPETIXNG XL oUTO Efvan Pualohoyixd, xodwe xde etonpeto mo-
EOUGLALEL DLUPOPETIXG ETUTEDN TWANCEWY Xat dloxupdvoelc. Emmiéov, to pétpa axplBelag towv
TeoPAéewy Bev €Btvay mdvTa To (Blo amotéAeoua. Autd Ntav avouévouevo, xadane 1 eila
TOU UECOU TETEAY WVIXOV GOIAIUTOS (RMSE) METES TO PECO PEYEDOC TOU GOIAUATOC (Bn)\cxﬁr']
elvan 1) TeTpaywvxt| pilo Tou UECOU GPOU TNG TETPAYWVIXNG Blapopds ueTall TEoBAedn xou
TEAYHOTIXT oot ienoT), eV 1o Yéco andhuto ntocootd o@dlpotoc (MAPE) petpd to puéoo

ueyedog Twv oQuAdTwY 0T0 GUVOAO TwV TEOPBAEYewY w¢ TocooTd. H xdpta Slapopd uetalld
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QUTOVY TV 60 YETpwV eivor 6Tt To RMSE 6ivel éva oyetind udgnid Bdpog oe yeydia opdhuata.
Auto onuabver 6Tt To RMSE unopel va etvar o yprowo étav tar ueydha Adim eivon iadtepa
avemunToL ETEDY| TUWPEEL TEPLOCOTERO ToL UEY A AT,

Ytov Ilivaxa 4.7 napovoidleton 1 oUVOPT TWV EUTELPIXDOY EPEUVITIXOY OTOTEAEGUSTCV
ETAOYHC TOU XOAUTEQOU UTOBELYUATOS, OF UEAETH TNG TEOPAETTIXAC IXAVOTNTAG UE TN uevo-
dohoyla extoc-Oetyuatog ehéyyou, olupmnva ue To pétpa axplBetag mpoBiedng tne eiloug tou
uéoou tetpaywvixol o@dlpotoc (RMSE) xou yéoou andhutou nocootol ogdhpatoc (MAPE).

To eunelpwd amoteréopota yioo Ty etonpeio Opel divouy wg mewmTn emAoyh 0 Ageiég
wovtého otic petprioeic RMSE xou MAPE vyl to utocivolo 8edopévev A, 1o omolo €yel 15
YeOVLaL unviaieg TopaTNEY|OEC 0TO UTOGUYOAO EXTIUNGNE TOL HOVTEAOU Xt Bivel paxpoTpdleoun
TEOBAed Yo Tor emdpueva T€acepa (4) ypovia. Qotdoo, aTo uocUvolo dedouévev B, C xau D,
ol twAroelg Tng etonpetog Opel mpoPfAérovton xahltepa amd Tor povtéda exdeTinic e€oudALVoNg
ETS, xuplwg enetdr To umocivolo extiunomng xahOmTeL Lo Teplodo opxeTd Tapay HOOUE XIVNoNG
xan Badhdic Ve Yio TIC TWAHOELS AUTOXWVATWY, AOY® TNG OXOVOUIXHC Xplong GTNY oyopd,
Tou NTay TEoavhc xuplng petd To 2010. Emniéov, autd to yoviého exdetinng eCopdhuvorng
otver Toh) xoAuTépa amoteréopata 6Tay 1 TeofBiedn elvan Boayurpdieoun.

H peretn vy tic mwAroelg vEov autoxvAtov tng etaupeloc Toyota divel mpotiunon oto
vrnoderyuor SARIMA vt poxponpdieoun medfredn oto unocivolo Bedopévev A xou
Beayumpdteoun npoBiedn otny eyt tne Podidc mepLddou LYeoTC XaL TEOTYE TO UTOBELY UL
exdeTnric e€oudiuvone ETS vy 1o unocUvoro 6edopévev B xow C, xoatd 0 didpxeta tne
Badidg meprddou Lgeong. H emoywdtnTa elvon Toh) xadoploTiny| OTIC VEEG TWANOELS AUTOXL-
VATOV, %ot To EToyLoxd Ageréc undderyUa PAETOUUE Vo ETAEYETAL (G TO XUAVTEPO UTODELYUAL
TeoBAedne Yo To 6UVOAO BedouEveY D.

[Na i twiroeg vEwv autoxwvhtwy tne ctonpelog Fiat, to mpdryuarta etvar mo Eexddopa,
1 poaxponpodeoun xou Beayunpdleoun TEOBAedn exTudTl »C O axEPBAC ond To UOVIERO
extetinhc eZopdhuvone (ETS) vy ta deBopéva v utoouvorwy A, B xa C. Qotdoo, yio
70 UTOGUVOLO BEdoUEVLWY D éyoupe xolbTepa amotehéopata GTay YeNotLonololue To AQerég
1 0 emoylaxd automoAivdpouo untdderypo xvntol uéoou (SARIMA), clugpnvo ye to yétpo

axpBetac mpofAédewyv RMSE xou 1o MAPE avtictouyo.
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Y€ YEVIXES YRUUUES, BEV UTHPYEL £VOL HOVO UTIOOELYUA, TOU VoL EfVaL TO XOADTEQO UTOOELY U
TEOBAEYNC Yot OAEC TIC MEQIMTMOOELS, TOU UEAETAUNMAY o€ auTAY TNV eumelpiny| €peuva. Kde
etanpelor €yel T 016 NG ENINEDO TWAHCEWY, TO OO TNG TEOYPOUUA UGEXETIVY X, TNV BT TNG
EeYwELoTH XA @un xou medoteio 1 onola xadopiler TNV avtikndn xou TN CUUTERLPOEE TCV
TEAATOY GTNY ayopd. Enopévwe, 1 xdide etoupelo avtamoxplvetar SlopopeTind oxdua xou oe uio
dLoXOAT Teplodo owovouxrg xplong. O dlaywploUog TV UTOGUVOALY EXTIUNCNE Xot BOXIUNG
™G MeAéTNG, gaivetan va eivon xardoaptoTind xpiowog yio Ty emtuyio Tng mpoBiedng xar Tov
xadoploud Tou xahiTepou LTodElyUaToC. Emouévng o epeuvnTtic, TEETEL Vol XAVEL TROCEXTIXS
TNV ETAOYY] TWV UTOCGLVOAWY auT®Y, BLOTL xadopilouv 10 TEAXG amoTéAEoUAL.

Emniéov, to dapopetind pétpa oxplBetag 0ev GUUP®VOUY TaVTa UETAE) TOUC (S TPOS Tl
EUTELPIXY ATOTEAECUATA ETOUEVS OEV DIVOLY TIEVTA TO (B0 UTOOELY A G TO XUAUTEQO. U-
vidwe to pétpo RMSE bivel ta (Bl amoteréopata ue 1o MAPE, adhd undpyouy xon eConpéoelg,
ONAOY| TEPLTTAOCELS TOU BEV GUUPWVOUV XalL Blvouv BlaopeTixd anoteAéopata. ‘Oneg yia mo-
eddetyua, otny etapela Fiat oto unocivoho D diveton 1 duvatdtnta emhoyric tou Ageréc
umodetyuatog 1) Tou Enoyloxol autonaAlvdpouou utodelyatog Xvntol UEGoU GUUPYY UE TO
RMSE 7 to MAPE avdioya.

Fevid, o oprduntind amoTehéouator ToU UTOROYICTNXAY GTIC UETPHOELS Yia ThV axpifela
v unoderyudtwy (Iivaxeg 4.4 - 4.6), cuupovody xou pe TV onTtixy Topoucioon tou dive-
Tou amd T ypoupruarta (Lyedaypdupata 4.2 - 4.5) twv TEoPAETOUEVOY TGV TV SlapopmY
UTIOBELYUATOV OE GUYXELON UE TIC TEAYMATIXES THIES xde eTonpelag.

‘Ocov agopd o StactApote eumiotooivng (CI), gaiveton 61t edv €youue wua Bpoyunpddeoun
neptodo mpdPiedne (m.y. éva étog, 6mwe ato unocivolo C), ol Tiwée TeEdBAedng amoTuyydvouy
OTNV TEOGEYYIOT TWV TEAYHATIXWY TWOV TNG METUPANTAS, xodng ol mpoflAédelc mnyatvouv
TEpa and TNV TEOPBAETOUEVY] TEPLOY T BlaoTHUNTOS eumioToouvne. ‘Eyovtag 600 ypdvia wg
neplodo mpoPBredng, N meoBiedn qoiveton xahlteeT, xodoe ol Twég meoBiedne Beloxovta
EVTOC TV 0plwV TOU BLUCTAUNTOS EUTLOTOCUVNG XL OUTO QUUVETAL VoL EIVOL AGPUAEGTEQD YL
TeoPAEdeLS.

Emuniéov, 660 1o 6tevo elvan To €0p0¢ TOU BLUC TAUATOS EUTLOTOGUVNG, TOGO TO XAAITEQO,

X OTaV Ol TEUYUUTIXES THESC Xou Ol TWES TV TEoPAEPewy elvar evide Tou Blao THUNTOS
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EUTLOTOCUYNG. € AUTEC TIC TEPLTTAOELS, Ol TWES TEOBAEdYNC elvon opXETA XOVTA OTIC TEAYHO-

TIXEC TWES xou ETTAEOV TO GpdAua uropel vo efvon mdavo ohhd teptoplouévo.
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Kegdhawo 5

ITooBAedec ue SARIMA-GARCH

5.1 Ewoaywyn

Y€ auTO TO XEPIAALO TOPOVGIALOUUE Ulal CUYXELTIXY| UEAETH TEOPBAEYNC TV PETUBANTGY TTw-
AOEWY VE®Y QUTOXVATOY UE TN Y01 TWV ETOYLUXDY AUTOTUANVOPOUMY UTODELY ATV XvNTOO
uéoou (SARIMA) otnyv cuvdptnom Tou HEGOU XaL TOL YEVIXEUUEVO AUTOTIUANVOPOUN UTIO GUV-
W etepooxedaotind unodelyuata (GARCH) yio tnv ouvdptnon g Stoxduavonc. Xt6yoc
uoc etvon v tpoodlopicoupe edv éva povtého SARIMA-GARCH umnoget vo mpofBAédel emitu-
X®S TNV Ao Tddelo Tou EMNESOU TWARCEWY AUTOXWVATLY O Lot TEPiodO ouxovouxhc xplomng
oTNV EAANVIXY| oY ORd.

H petafrntotnra tne mpofredng eivon onuavtind v teeic Poaocikolc oxonolc: Suyeipion
VOOV, AATAVOUY| TTEPLOUCLOXOY GTOLyElwY xa Yo T A amo@doewy yio T0 UEAAOVTIXG
eninedo tou anodépatoc. O Robert Engle to 1982 avéntule ta autonahhivipoua eTepooxedo-
oTxd povtéha utd 6pouc (ARCH), yia vor uTOSELY OO GEL TIC BLOXUUEVOELS TTOU TTOWXAAOUY
YEOVIXAL, TIOU TOQUTNEOUVTAL GUY VA GE OLXOVOUXE DEDOUEVA YPOVOROYIXWY oetp®y. ot auth)
TN GUVELGPORd Tov, xépdiloe To Beofelo Noumeh ota Owovopwrd tou 2003. Ta yovtéia ARCH
umo¥E€ToUY OTL 1) BLIXUUAYOT) TOU TEEYOVTOS OPOL GPIAUATOC 1) TNG XawvoTtoplug elivon Guvdp-

TNON TWV TEUYUATIXGY PEYEDDY TV 6pwV GOIAUATOS TWV TEOTYOUUEVWY YPOVIXDY TEQLODWY

25
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xou oLYVE 1) SlaOavo oyeT(ETon UE Tal TETEEYWVA TWY TEOTYOVUEVLY XATUAOITWY.

"Eyovtag diepeuvioet T yevixr Yewplo Twv ETOYLUXOY AUTOTAAVBOOUWY UTOBELYUATWY Xi-
wntoU péoou (SARIMA) xau tar yevixeupéva autonahivipouo uto cuVIXY ETEPOOXESUC TIXE.
urtodetypata (GARCH) ota tponyolueva xegdhota, outh 1 UEAETN EGAYEL To HOVO-PETABANTE
umodetypato SARIMA-GARCH, oce uo mpoomdielo vo e€eTtdoetl Ty TRoBAETTIXNY TOUC IX0-
votntd toug. H owxoyévela twv povtéhwv GARCH eivon yprioyun eneidr) unopel o epeuvntric
var TeoBAEDEL xahOTERa TNV ac TdEL TWV UETUBANTOY Ye auTd Tar uTtodetyuata. {2ot600, civa
Wovixd o Ty Peoyunedleoun TeOBAed), SNAUDT UEQIXWY HOVO YEOVIXMY TEQLODWY UTEOCTd,
OAAG Oyt 1600 Yo TN daxponedVeoun meofiedn. Autd ta povtéda Bondolv otny eméxtoon
TOU PUVOUEVOL TNE OUadOTOINOTE TNG METUBANTOTNTAUC TNG DL OUVOT) TN TWAC LotadTepa EGv
ouTY| eppavilel ot TEPLOBOUC GYETIXTE NEEUiNG xou TEPLOd0UC UPNATC ueTofAnTdTnTOC TToL Efvan
OUYVES OTA DEBOPEVA TNG AYORAS, OGS Ol TWATCELS.

To povtéha ARCH uno¥étouv oti 1 Soxduavor tou tpé€yoviog 6pou cpdhuatog etval
CLVAETNOT TWY TEAYUATIXOV UEYEVMY TWV 0PV COIAIAUTOS TV TEONYOUUEVLY YROVIXOY TE-
ELOBLY oL GLY VA 1) Bl OPaVOT) OYETI(ETAL UE TAL TETEAYWVAL TWYV TROTYOUUEVODY CQUMIATLY.
21N LEAETN HOG, 1) OLOXOUAVOT] TV TWOY TV TWARCEWY AUTOXVATOY Xivelton Je ao Tdeta oy
XL O YEOVOC XAl 1) ETOYIXOTNTA Tou eC0PTATAL ATO T CUYXEXPWIEVT aYOopd, OTIOU TEAYHATO-
mooUvTaL oL cuvahhayéc. ‘Erol, 1 odvieon evéog unodeiypatoc GARCH Ya fondnoer oty
XOTAY PAPY) TNG BLOXVPAVOTS TNE TUNE TOL AUEAVETOL TIEOC TOL TIAVG X0l GTY) GUVEYELOL UELDVETOL
€w¢ OTOL UTAEEEL GANT Uiot ETOUEVT arvodixT| TopEta.

M autonaivipoun tpocéyyion Pondd oty dnutovpyio allOTO TV UTOBELYUATOY YE YE-
Yo oxpifeta. Xougovo ye to Tsay (2005) n yetofSAntétnto tne ayopds eivon yvwoto 6T
ovoowpeveTon (cluster), npdyupa Tou onuatver dtt, ot e€onpeTixd eupeTdBANTES TEpiodot Tetvouy
VoL TROPEVOUY Y10l XATOL0 YeoVIXd BLEo TN TeoToU 1) ayopd emoTEEPEL ot éval o oToepd
nepBdihov. H owoyévewo povtéhov GARCH ypnowonoteiton evpéwe oty mpdln yio Ty
TEOBAEYN TNS UETAUBANTOTNTOC XU TWV ATOBOCEWY TNG YENUATOTIC TWTIXAS oY 0RdS.

Ev cuvtouia, 10 oy€dlo autod tou xegouiatou elivon to axdroudo: petd T oOviourn Ei-
cayoY") eZeTdlOUUE TEAOTO €4V UTEPYEL TO QOUVOUEVO TN AUTOCUCYETIONG TWY XATUAOITCV

oo SARIMA unodetypota, tor onola divouv xdmota €VOEIEr aUTOGUCYETION. LT GUVEYELQ,
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e&etdloupe edv o xatdhoina twv SARIMA unobderyudtwy epgaviCouy gavouyevo ARCH, yen-
owwomoiwvtag To teoT Ljung-Box xou 1o Lagrange Multiplier. Tao 600 teoT delyvouv xdmowa
otouyeio enidpaong Arch ota xatdhoima. YuveyiCoule Ue TOV TEOGOLOPIOUO UTOBELYUSTCV
SARIMA-GARCH (1,1) yw x&de etoupeio. Hpoodopilloupe v e&iowan tou yéoou omd ta
mpoemheypéva povtéha SARIMA xou cuveyiCoupe pe v e&ioworn dloxduavene, Yenotlotol-
oGvtog to anhé povtého GARCH (1,1). Auth 1 Herétn eetdlel eniong, TEEW EVUANAXTIXES
xotavopéc ota povtéha SARIMA-GARCH (1,1) dote va Peedel 1 mo xatdhhnin. To e-
umelpxd otoryelo delyvouv 6TL 1 xotavouy| t-student eivon 1 xoAbteEN TERinTWON EVOVTL TNG
HAVOVIXAC XL TNG YEVIXEUUEVNG XATAVOUTG CQUNIGTOV.

Eminhéov xdvoule Tov Blary veo Tind EAEY Y0 TwV UTOASWUATOY TwV UToderypdtwy SARIMA-
GARCH xau 1o gupfjporta Tng €peuvag emPBeBatcyvouy OTL BV UTEEYEL CUCYETIOT GTO UTOAELU-
MOt X0 OTL 1) EQUPUOYY| TV LTOOELYHdTLY lvon oyetnd xohr. H perétn xdvel oldyxplon twv
unodetyudtwv SARIMA-GARCH (1,1) ue dA\ot UTOSElyaTa Y pOVOAOYIXWDY GELOWY, TIOU £YOUY
gpeuvniel yioo Ty meoBredn twv Twioewy. Téhoc eotidlovye otor Slao THoTA TEOBAEYNC
SARIMA-GARCH xo e€etdCoupe €4V UELOVOVTOL VLol VoL TOREYOLY XOAITERES TPOBAEYELC.
To xe@dhono xotarfyet o€ o GLLATNON YioL T EVPHHATA QUTHG TNG EUTELRXNC EPELVOC YiXL

o povtéda SARIMA-GARCH oty ehhnvixr} ayopdt autoxtvi|Tov.

5.2 Xvunegdouata

Auté 10 xePANaO vl APIERWUEVO GTNV AVTETOTION TOL TEOBANUATOC TNS TEOBAEYNS TGOV
xou NG TEOPBAEYNC UETUBANTOTNTOC OTIC TWANOELS VEDY QUTOXIVATWY UE TN YENOT HOVTEAWY
(SARIMA-GARCH o€ alyxplon e mohhéc dhhec uedb6d0ug TOU YpNOLUOTOLOUVTOL GE YEYANO
Bordud oty mEdln xoun €xel Soxuac TeL 1) axpiBeLd TOUS YENOULOTOUMVTOS TEOYUUTIXG OEOOUEVH
ord Tov Topéd TG EMNIXAC ayopds (BnA. TwAhoele véwy autoxvitwy (Opel xou (Toyota and
0 1998 €w¢ 10 2016). H owxoyévero twv pedddwyv (SARIMA-GARCH  éyet micovexthpoto
xa PElOVEXTHUOTS TN Oplopéva UTOBELYUUTA YOVOAOYIXWY CELPGMY Elval amthd EUXOAX GTNV
EQOPUOYT|, OANS amodidouy xaAd amoteréoyata. ‘ANheg ué€dodol elvon To BUGXOAO VoL EPUPUO-

010UV ahAd Bev amodidouy TévTa xaAd anoteAéopata. Ev ollyolg, dev umdpyet xapio Eexddopn
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TEOGEYYLON TEOTIUACEWY.

H €peuva damictwoe otL 6ev unpye ToAL woyuet| enldpacn ARCH otov éheyyo autoou-
oyétiong xatoroinwy SARIMA pehetdvTtog T0 X0peAGYRUUU TNG CUVERTNOT AUTOCUCYETNONG
ACF |, wotéco anogacicaue va cuveylooupe T LEAETN pog, xodwe To TeoT Ljung-Box €6w-
oe oTolyela autocuoyétione ot xatdhotna Tou unodelypatoc SARIMA yuo v Opel xau
v Toyota oo clvoho dedouévev A. Hpotwhinxe to SARIMA-GARCH (1,1) pe xatavop
woInTA-T, clUPwva Ue To xpLthpto TAneogoplny AIC xa BIC petall tng xavovixrig xan tng
YEVIXEUPEVNS evahhaxTixg Slavourc. 201600, Ta anoTtehéopota Tou 06UNXAY ot doxiun
TOu GUVOAOU Bedopévey A fTav eviappuvtixd. Me Bdon tov Ilivaxa 5.5 ou mpofBiédeic mou
mopdyoviar and to yoviého SARIMA-GARCH (1,1) etvan xohOtepee, xodde oL UETEHOELS TOU
RMSE ebvar younhotepeg and avtéc nou mapdyovtoaw and 1o SARIMA. Etol urnopolue va
CUUTERAVOUNE OTL GTNY TERITTWON TwV Unviolwy TwAiceny autoxvitewy Opel xou Toyota,
10 povtéro (SARIMA-GARCH(1,1) unopel vo eivon évog amoteleopatinds tpomog Bektinong
e axp{Betag Twv TEoPAEPEwY.

Ebvar enioneg anloteuto, mwe ta ovtéha yevixr) Vemplor TV ETOYLOXGY GUTOTOANVOROU®Y
umodetyudtov xvntol wéoou SARIMA-GARCH Bondolv 1600 mohd ot peiwon towv dlo-
OTNUATOY TEOBAedne TN mEoBAedng, X w¢ ex TOUTOU UTOPEL Vo TPOCHEREL [Ulal XUADTER
TeoBhedn. And tnv AN Thevpd, cUUPLVL PE Tar Slao THUNTA TROBAEdINS 6To oy juar 5.5 xau
5.6 , gaivetan 6Tt tor povtéha SARIMA-GARCH da mpémer xahtepa v yenotponointoly
yio o Bpoayuneddeoun Teoo€yyiorn TNe TEOBAEdYNS UETABANTOTNTAC X Oyt HoxpoTeOUECU,
xad¢ umopolv va mapdyouv o axpiBeic tpoBiédelc Peayunpdieoua. Emmiéov, auth| elvou
Uter TOAOTIUY EQELVNTIXY EUTELRLOL YLOL TNV EQUPUOYY) TNG OXOYEVELNS TV UovTEAWY SARIMA-
GARCH omig véeg TOAOEC qUTOXIVATWY GTNV EAANVIXT oryopd ot TNV Tpoo Tidéuevn ol

OTNV ETUCTAUN XU OTNY EQEUVIL TWV TWANCEWY GTNY oyopd oY NUdTwy 6Ty EAAGDq.



Kegpdhowo 6

MeTaoynuatiopol GEOOUEV®Y X

ITooPBAedeic.

6.1 Ewoaywyn

To 1oTopXd BedoPéva UTOEOUY LY VY Vo TEOGUPUOGTOUY 1| VoL HETUTEATOUY Amtd TIG UOYIXES
TOUG TYEC, Yt var od1yioouy Ty €peuva TedPBAedng ot pa o amhovotepn epyacio. H épeuva,
OTNY XNUERIV TEAYUOTIXOTNTO, OElYVEL OTL OYEDOY OAEC OL AVOAVOELS ETHPEAOUVTAL A6 TN
BEATIOUEVT OPOAOTNTA TOV PETOBANTOV, WOLETEQN OE TEPLTTWOELS OTIOU UTEQRYEL OUCLUGTIXY U
xavovotnTo. Méypl autd to onuelo, Eyoude ETAECEL EVay TOEAUDOCLUXO UETACY NUATIOUS — TIC
ANOYORUIUNUEVES TUES XATAYRUPHC TV aEYIX®Y DEBOUEVLY - 1) OTtolaL YENOWOTOLELTAL GUY VA
oTNV €pELVA, YL TN BEATIWON TNG OPUAGTNTAS TGV OEBOUEVKY UG XOL TNV TORXYWYT| OYECEWY
UE TO OMOLOYEVY| UTOAELUaTa, U dAhat AdyLlor oTardeptr SoncduaveT).

261660, YENOOTOLOVTAC ULt EVEUTERT) XATNYORId UETACY NUATIOUOU Loy Yog, Tou Elor|y i
ané v Box-Cox (1964), do poag Bondhoet va Bpolue evxoho T0 BEATIOTO PETACY NUATIONS
mou Yo opohomotel Tig PETUBANTES pag. AUTO AVTITPOCKTEVEL ULdl OLXOYEVELX UETACY NUATIOUODY
1o 00C TOU EVOOUITOVEL X0l ETEXTEIVEL TIC THURUBOCIAXES ETIAOYES. LUVETWS, oUVEYILOUUE TNV
€PELVEL O YPNOUOTIOLOVTOG TOV YEVIXO Uetaoynuatiopd Box-Cox, o omolog aviimpocnmnedel
war miovr BEATIO T Tpo T, ETELDY| elvon emduuNnTY| 1 OUUAOTOINCT TWV OEQOUEVMV oL 1)

ellooppomnon g andxhone. Emmiéov, auty| 1 Swtp3| e€etdlel tny meplntwon yerong twv
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APV DEBOUEVWY, TEAYUA TOU ONUUVEL XAJONOU UETUCYNUATIONO XAl CUYXQEIVEL TNV IX0-
VOTNTO EXTINACEWY EVIOC-OElYUOTOC X EXTOC — OElyUTOC OTIC TEOPBAEPELC xou TNV IxavoTNTA
OLUPOPWY HOVTEADY YPOVOROYIXWY GELOMV.

To x0plo epeuvnTINd U ENIXEVTPO, OE AUTH TO XEPIANO, elvon O TEOTOC Ue TOV oTolo 1|
UETATEOTH| BEBOUEVKY eMnpeedlel Tn Sladxacio uTodelypatonoinong xou TEOBAEdYNS yeovoloyL-
%WV oelp®Y. ‘Omewe delyvouy Tal EUTELRIXG ATOTEAECUATA, O UETUCY NUATIONOS Vewpeitar cuyvd
OTL otadepoTolel T OLaXOUAVOT) UG OELRdS, aAAd umopel eniong va yenowonondel yia vo
OWOEL TIG AloM 1) VoL UEWDOEL TNV ETULEEOT| TWV AXEUWY THIWY.

To oyédo autol Tou xeparafou elvar to axdroudo. Metd and po chvToun eloaywY,
ou{nreiton pLor Aemtopephc BIBAMOYEAUPIXT avVIoXOTNOY TOU UETACY NUATIOUOU dedouévewy Box-
Cox, oxohoutoluevn, and wor evotnTa Tne dladixacioc yedodoroyiog xou tne pedodohoylag
TOU OVACYNUATIOUOD TwV Bed0UEVWY. Tao EUTELOIXd AMOTEAECUATA TOU UETACY NUAUTIOUOU OE-
Souévwy mopovatdlovtal apyxd yio To povtého exdetinnc e€oudhuvone (ETS), oe extiunon
evToc o extog delypatoc. H €peuva mpoywedel Barditepa xon e&etdlel agevog, Ty meplnte-
o1 xIOAOU PETACYNUATIOHOV, TTOU OUALVEL TN YENOT TWV 0EYIXMY THOY Xul Ad TNV GAAT
Theupd cuvey (el va ypnouonotel apxeToU LadNUATIXOUS PETUOY NUATIONOUS TNG OLXOYEVELXS
uetaoynuatiopoy Box-Cox yio didgpopec Tée tou A, Emmiéov, 1 épeuva avanticoeToal G
TEPLOCOTEQU UOVTEAN YPOVOAOYIXWY CELPMY XUl OF BLAPOEOUS UETACY NUATIOUOVS OEBOUEVMYV.
Ko téhog tar Sloo THUATor EUTETOGUVNG TV XAADTERKY UTOSELYUATwY Topouatdlovta poli pe

TOL CUUTERACUATA TNG EPELVAC.

6.2 Xvunepdopato

Auth 1 eunelper) €pEUVa, XATAARYEL OTO GUUTEQUOUA OTL YEVIXG Tal UTOBEYUOTol EXVETIXAC
e€oudhuvone yopou-yeovou (ETS), mou yenowonotoly yetaoynuatiopols dedouévewy, divouv
evdellelc ploag opxetd xahic eQoupuoyic ota dedouéva, xon elvon To axplfr oty TeolAedn
(extoe-Oelypotoc) omd Ta (Blor LTOBElYUATA TOU GUKS YENOLLOTOLOVY To apyXd SeBOUEVA, Y-
olc xoddrou petacynuationd. To umodelyuata ETS anodidouv mohd xoAd, xo mpoBiénouv

OEXETY GWOTA TAL YPOVOSLIYEAUUATH AUTAC TN OLTEBrc Ye VEo emimeda TWANOEWY AUTOXL-



6.2. YTMIIEPAYMATA 31

VAT®V X0 YIVOVTOoL oXOUT xaAUTERX OTOY TOL DEDOUEVY UETUUORPOVOVTOL O TUYES XATAYQUPHC
1 Yenotonooly tn pédodo Box-Cox xouw Guerrero yia Tov unohoyloud tne xaibtepne oliog A.
Enopéveg, ot podnuotixol petaoynuotiopol oo dedouéva Unopoly va eival aflOTIG TOL X0 Vo
Yenoulomoinoly eneldr) dvouy xohd AmOTEAEGUITAL.OYECEMY UE TIHO OUOLOYEVY] UTOAE(UUOTA,
UE dAAo Aoytar otadepy| BloOUavoT).

Emm\éov, Bpoyumpddeoua (v éwg 6 ufvec) ta povtéha ETS mpofiénouv 6t or tiég
TEOPBAETOLY TNV %ivnom TV ETTEdWY TWARCEWY, ahhd paxpoTpdlecya, €youy TNV Tdom Vo
UTIEEEXTLHOVY TO ETNEDO TwARoEWY. 26TOC00, PECK TN EPELVAS UTOROUUE Vo eluaoTe 95 TIg
exat6 BEBaot oL Yo Swoer par xoht) TEOBAEdT Yl TIC VEEC TWANOES QUTOXIVATWY, Xl ot
TWée meoPBhedne xan ol mporypoTixée Tég ebvan Ol 6To ebpog g Lwvng Tou 95 TN exatd
OLUCTHUOTOG EUTIOTOCOVNG. L€ OPIOUEVES TEQLTTWOELS, TO OWUOTNUA EUTLOTOCUVNG (CI) dev
UTOPEL VO AMOTUTMOEL TNV TRyt xivnom Tng oeLpds, ewdixd 6Tay ot dAAxYEC 0To ETUNEDO
TV TOACEWY Vol AmOTOUES XL UTEEYOLY EVOEILELS VLol €VOL OPXETA TURAUYOES OLXOVOULXO
TEPYBAANOV %UTE T1 CUYREXEWEVY YpovixT| TEpiodo.

E&etdlovTag TiC TRELC TEQITTMOOELS OEDOUEVLY (npowpauxég TWECS, hoYoptdunuEVES TYES xou
ueTaoy NUoTopos TV pe Box-Cox pe tn pédodo Guerrero yio Ty mAOYT ToU A) ot Téo-
OEQO OLUPOPETIXG UTOGUVORA XAl OTIS TEELS OLUPORETINES ETAUPELES, UTOPOUUE VoL GUUTERAVOUUE
OTL 0 hoYoELIUIXOC UETACY NUATIOUOS TWV YPOVOAOYIXMY GELRMY Blvel 6Ny TAEodNpio TwV €-
UTEELRLXOY OTOTEAEGUATOVY TNV EALYLO TN TYL| oTa U€TPa aplBetag Twv TpofBiéewy xa Yo mpénet
Vo TeoTdTe. 201600 UTAEYOUY XaL OPIOUEVES ECAUPECELS, TTOU 0BNYOUY TMEPLOGOTERD OTNV
TeoTiuNoN TNS ETAOYYC TOU UETACYNUUTIONOU T TWOVY Pe T pédodo tou Box-Cox xou tnv
uedodo tou Guerrero. Emoueveg, 1 UEAETN TV OLUPORETIXMY UETACY NUAUTIOUWY G GOYXQLOT
UE TNV UEAETN TV 0OYIXOV TGV ATAY Ao 08 auTOd TO XEQdAo, Yiotl amodewvieTal
TEMXE OTL 0 AoYUELIUIXOC UETACY NUATIOUOS XL 0 PETaoY NuaTiouds Box-cox eivon yerotuot,
€0X0AOL OTNV EQAQUOYT| Xt BIVOLY EQUNVEUCIUN OMOTEAECUATA, TOU UTOROVY VO WPEACOUV
Toug urevYuvoug APng aro@dcewy ot i eTonpeia.

Télog, elvan 00oxolo va elgacte clyoupol 6Tl Evag Lovadixog TOTOC UTOOEYATOSC YEOVO-
AOYIXWY OELROY 1) EVOC CUYXEXPUIEVOS TUTOG UETACYNUATIOUOU BEBOPEVGLY Elval O XUAUTEROG

Yot OAEC TIC OELREC OAWY TWV EMOYMY TOL Vol UTOREL YEVIXE VoL AmOTUTOEL TNV xivnorn Tng
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POTC TWV TOANCEWY 1) Vo XAVEL TI¢ xaAUTepeg Tpofiédeic. Enopévee, o epeuvntic mpénet va
eZetdlel mpooexTd TN OO TNG GELRAC *AVE POE OAAS %ot TOL EUTELOIXY ATOTEAECUATO TOU
AopPBdvovtar and auth TN oeed xan Yo TEETEL Vo EUNVELDOUY Tol ATOTEAECUATA UE TROCOYY).
Auté unopel var 081 yHOEL O TEPOUTERE EQPEUVOL OTOV TOUEN TWY UTOBELYHATWY YOOVOROYIXWY
OELPWY X0 UETACY NUATIOUOV TV DEDOUEVHY XL OE TEQLOCOTEQRT) EQEUVOL OTOV TOUEN TNG EAAT-

VXS ALoVIXTG oY 0p4S YEVIXOTEQA.



Kegdhowo 7

Yuvotacuog ITooBAedewy.

7.1 Ewoaywyn

O Yewpnuind Yepéhiog Aldog Tou cuvduaouol TeofBiédeny Cextvnoe o and Tévie dexaeTie,
otav to €1og 1969, o1 Bates-Granger éypadoav to Sidomuo delpo Toug Yo TO GUVBUAUOUS TGV
TeoPAédewy. Q¢ Yvwo 16, 0 cuVdLAoUOS TEOBAEYEWY amd BLdpOpa UEUOVLUEVO UTOOELY AT,
oLy va 0dnyel ot xohUTeEN axpBeta Twv TEolAédeny. Emouévue, évag ebxolog Tpdmog Yo va
Behtiwiel n axplBeta Tov Teofrébewy yac, etvar va yenotuoromniet Evag cuvbuaouds TeoBréde-
OV TOM®Y UTOBELYUITWY OTIC (BLEC YPOVIXEC OELREC, OTWE YLol TURADELY A VO GUVOUBGOUUE
ue (o Baplntar TIc TPOoXUTTOVCES TEOPBAEYELC 1) var yenoylomoniel BlapopeTiny| PopdTnTo oE
autéc otaduiCovtac ye uPMAdTERO CUVTEAEGTH TIC xaAUTERES TPOPBAEDELC xou 00Tw xadedHc.
O emxpitéc authc g Uedodou unootneilouy 6TL 0 GUVBLACUOS BevV elvar i €yxupn
TEOTOON EQV Wi omd Ol UEHOVOUEVES TROPBAEPELC BEV BLoPEPOLY GNUAVTIXE amd To BEATIOTO
amotéheoua. 201600, 0 GUVBUUCUOS TV TEOBAEPEWY amd TOA) TaEOUOLN UTOOELYUoTa EYEL
amodery Vel onuavtinog. Meéypet ofjuspa €yel yiver onpoavtind €peuva oyeTixd pe T yeror oTo-
WOUEVLY PECWLY OpwVY 1| xdmola GAAN To mepimhoxn Tpocéyyiorn cuvduaouol. Mo extevic
avaoxOTNon NS PUBAOYEAUPIIC, TWV TEYVIXOY XUl TWV EQUQUOYMY GUYOLAOUMY TEOBAEPEWY
umopel va Beedel oto Clemen, 1989 6mou woyupiletar 6TL To ATOTEAEOUATO TNV EQEUVAS TOU
OYEBOV OUOPWVYL BELYVOLY OTL O GUYBUACUOC TOMATAOY TEOBAEYEWY 0bNYEl o aUENUEVN o-

xp{Bela Twv TpofBAédEwy. e TOAES TEPITTWOELS, UTOPEL XAVELS VOU XAVEL DRUUAUTIXES BEATIOOELS
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amOBOONC ATAWS UE TOV UEGO 6p0 TwV TEOBAEPEMY.

Trdpyet ¥oTOGO Lo BUGKOALL GTOV TEOGOLOPIGUO TOLU GG TOU UOVTEAOU GUVOUAGHOUV TRO-
BrEDewY xan autd dnuovpyel pa uxey| offefondtnto. Kdmolol untostneilouy 61l oL tpofrédeic
mou Bacilovton 6e 0oVouETEXE HovTEA, Xxadéva and To onola €yel Tpdcfoon 6To (Blo chvo-
Ao TANPOYOELLY, Bivouv Oyl xot 1660 xaholg cuVBLACHOUS TEOPBAEEwY. Eivar (owe xahitepa
VoL TAELVOUOUVTOL To UEMOVWUEVOL LOVTEAA Xo VoL ONULoURYELToL €Vl UTOBELY U TTOU Vo TIEQLEYEL
TAL YEAOULO YOEAXTNELO TIXG TV OPYIXWY UTOOELYUSTWY .

Fevixd, 10 «<xohbTEPO» LTEdEY U uTtopet Vo BploxeTon otn AoTta utodnelwy LTOBELYUdTEY
NG EEEUVOC 1) OYL 0L OXOUY XL OV TO TEAYHATIXG HOVTENO Tuyalvel Vo cuureptAngUel, To
€oyo g ebpeECTC TOU TEAYHATX0) YoVTEAOU UTopel vor lvor TOAD BLapopeTind amd auTd TNG
€0PEOTC TOU XAADTEQOU HOVTEAOU Yiol TOUG 0XOT0UE 0BV TEOPAEYEWY.

Emniéov, etvar entiong amodextéd Tt SLopopeTind LovTEL TPOBAEdNG Tapéyouv BlapopeTixd
OMOTEAEOUATOL OE DLUPORETIXES YPOVIXES TiEpLOdoUC. 'Etot, 1 emhoyr evog yovtéhou medfBiedng
0OC HOAITEPOUY QEEEL TOV %(VOUVO v xaTahhEeL oe €val LoVTEND, TO oTolo elvon oxpl3éc novo
OTay 0LONOYELTOL YENOWOTOLWVTOS X3molo Oelyuo emxdpwong, ohhd umopel vo amodetydet
avaglOTIGTO, OTaY EQuUPUOLETOL OE VEO BEDOPEVAL.

I'evixd, o cuvbuoouog TEoBAEPewY YelVEL TIC TANPoQopieg o €va popéa TEoPAEYewY, ot
€VOL UOVO GUVOTITIXG PETEO YENOLLOTOWOVTAS €Va GUVORO G TOUIOUEVRDY Bop®y GUVOLICUOY
v TeofAédeny. O Bértiotog cuvduaoude Teoliédeny mpa and TNy ion oTdiuon TV Tpo-
BAEpewy unopet va emhé€el T oTtdduion Pop®dy ToU ENXYLOTOTOO0V TNV AVOUEVOUEVY) ATTWAELYL
e ouvduaouévne meoPiedne. H teyvinn auth diver peyokitepa Bdpn o mo oxeifeic wpo-
BrEDec wan pixed A& extiunong, xou wxpotepa Bden o avaxplBelc meofrédeic xan peydha
A& extiunong pe dAlo Aoyla o€ ot} TEOBLYEApY| HOVTEAOU.

Y& TOAEG TEQIMTWOELS, UTOpel xavelg vor xdvel DpopaTixée BEATIOOES anddoong UmAd
YENOWOTOIOVTOS €vay amhd Yéco 6po oTic TEOPAEPeLS, xat emmAéoy auTy| 1 uédodog €yet
amodetydel dloxolo va Lemepaotel. O GUVBLAUOUOS €YEl UEYAAEC BUVITOTNTES WElwoNS NG
oBeBadTNTOC TOU TEOXVTTEL AT TNV AVAYXACTIXT| ETLAOYTHG EVOC UEUOVOUEVOU UTOBELYHATOG.
Ov amhol cuvduacuol pedodwy otn BiBioypagpia tpooTaloly va BEATIOCOUY TIC UEHOVWUEVES

TEOPBAEEIC, EVE O TO TPOYWENUEVOS 0ToY0C elvor TévTa 1) EDPECT) TOU UTOBELYUATOC UE TNV
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AAOTEPT TEOPAETTIXY LXAVOTNTAL

Y€ auTO TO XEPAALO, O EQEUVNTAG Vol TTUPEYEL ONOXANPWUEVT] EQUPUOYT] XOWV®Y TEOTWY
UE TOug oToloug uTopolV Vo uYVBUAGTOUV ol TeofAédelc. Audgopeg pédodol extiunong Vo
e&nyndoly yio T Onuovpyio pag ocuvduaouévne TedBAedng xan Yo epoppootoly oe dLdgopa
oUVOAa GEBOUEVOY TPOXEWEVOL Vo EE0pHONOYIGTOUY XL VO OTELXOVIOTOUY TO AmOTEAECUATO
TOU GUVOUACUOU.

To oyédio autol Tou xepahaiou elvon To e€nc: Eexvdpe Ue TNV eloaywyy| TN Yewplac cuv-
oLaopo) TEOBAEPEWY Xou Uiar EXTETOEVT avaoxdTnon tne Bioypaplag. XuveyiCoupe ue ula
avapopd o1 ueodoroyia Tou yenotuoTolElTaL XaL T OUABOTIOMOT TWV TEYVIXGY CUVOLICUOU
TeoPBrédeny ot 600 xatnyoplec: TEOBAedN cuvdLacUoU UE 1| Ywelc cOvoho eAéyyou. Autd To
UTOGUYORO EAEYYOU OmOUTELTAL Yiot TNV EXTUNOT TV OTUVUOUEVWY BopmY TV UEUOVWUEVGY
meoPAédewy. Erot, n teyvixr Tou aniol yécou cuvduaouol TEolBAEdEny, Tou hertoupyel yw-
plc évor umooUvoho eréyyou, elodyetan oe T€ooeplc (4) BlapopeTinolc GUVBLACUOUC ToU Efval
€0%0A0 VoL QP0G TOOY Xou Efvat 500%0A0 Vo Vixn o0y, Aoy TwV EEAPETIXMY ATOTEAECUATWY
Toug.

And v AN Theupd, e€nyolvton xou eqapuolovial 8Vo (2) mo mepimhoxes TEYVIXES TTOU
yeetdlovTon €va UTOGUVORO EAEYYOU Yla TOV UTOAOYLOUO TOUG, OTWE Ol TEYVIXEC Twv Bates-
Granger (1969) xou twv Newbold-Granger (1974). Emniéov e€nyolye tn Swadicacio dnuioue-
yiog OEBOPEVLV QUTAC TN EUTEIDIXAC EPEUVAC. LTNY CUVEYELN TTEOUGLACOVTOL Tol EUTELRLXS
OMOTEAEOUATA TNG EPELVOC, TOCO APIIUNTIXG GO XaL YRUPIXA, YLt TOUG EEL (6) OLUPOPETIXO-
U¢ ouvbuaouols TeoPAédewy. Télog, Bivovtal Tol CUUTEPACUTO TNG EUTERXAC EPEUVIC TOU

oLVBUACUOL TEOPBAEPEWV.

7.2 Yuunepdopato

To anotehéopota auThC TNG LEAETNE alloAdynorng detyvouy exdiapa OTL Elvor BUVITO VoL GUV-
0LaoTOUV HovTERX TEOPBAEYEWY uiog ueTaBANnTrg, yio var emitevy Vel xolbTepn oxpifBeia TedPAe-
Ine, oe obyxplon pe TNV AmAY| ETAOYT TOU XUAUTEPOU UEUOVOUEVOU HOVTEAOU TEOBAednC.

Autd ta otoyeia ougPadilouv pe nponyoluevee épeuvee (Clemen 1989). Qotdoo, 1 enthoyr
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ueddoou cUVBUUCUOU TEOPBAEPEWY Elva oNUaVTIXT BEBOUEVOU OTL OPLOPEVES oMo TG YeYdBoUC
amod{BoLY TOAD YELROTEQY A0 TIC YELPOTERES HEVOBOUC UEUOVOUEVGDY TEOBAEPEMY.

Yy mopovoa dratelf) eCetdlovTon Bidpopo UTOBELYUOTH YPOVOAOYIXMDY CEIRMOY S TEOG
TNV XOAOTEQT TPOCUPUOYT) TOUG GTA DEDOPEVA OAAS o TNV TEoPBAen Tt Toug Wavotnta. To
€0Y0 TNG EMAOYTC TOU XUTUAANAGTEPOL UTOBELYHATOS Yo TNV TEOBAedn amodenvieTon TOAD
0LOX0AO. YE aUTO TO TEAELTULO XEPIANLO, TPOTEIVETOL 1) YEHON LG CLUVBUUC TIXAG UEVHOOU
Y10 TOV GUVOLAOUO BLOPORETIXDY UTOPHPLLY LOVTEAWY, avTl TNG EMAOYTC EVOC UEUOVOUEVOU
uovtélou. I'vwpiCovtog 6Tl untdpyel ueydhn aefondtntor 0TV €0PECT) TOU XUAVTEQOU UEUO-
VOUEVOU UTOOELYUATOS, OTNY TERPITTWOT TNG EUTELOIXNG EQPUQUOYHG OTNY VEX EAANVIXT| aryopd
QUTOXVITWY, O GUVOUICUOC TV UTOOELYUATWY UTOREL VoL UELWOEL TNV oo Tdiela Tne TedBAedng
xa ETOPEVLS VoL BEATIOCEL TNV axpifelo Twv TpoBAédewy pag.

LOUPWVOL UE TNV EREUVE OIS, UTERY 0LV OTUaVTIXES EVOEIEEIC OTL 0 GUVBUUOUOE TEOPBAEPEWY
elvol ETOPEAS, 600V aPopd TN Uelwon TwV cQaludtny TeoBiedne xadde xou ) pelwon tne
oPeBandTNToC EMAOYHC TOU XATUAANAOTEPOU UTOBELYHATOC, XS O EQEVVNTAC BEV UTOYPEO-
Uton vor emAEEeL éval povo povtého. Emmiéov, etvan par xah) o toatryins yiot Ty avTio Téduion
ToL xvdLUVou. To cuvbuaouéva uTodelypoaTta TEOBAEYNC (VDS Xou Tal EUTELPXE ATOTEAECUATA
OElYYOUV TO TAEOVEXTNUA QUTAC TNG UEVOOOU OE OYECT UE TNV ETAOYT EVOC UEUOVWUEVOU
UTOBELYUOTOS YLl TNV TERIMTWOT TOU MavixoU EUTOpiou auToXVTeY Tou e€eTAlOUUE.

Or cuvduaouol TV TEoBiédewy, BnutoupyYolVTAL amt6 SLaPOoRETIXG UTOOE Y UaTa TEOBAEPEWY
YPOVOROYIXWY GEWWY, ToL elte €youv ctoduioel ioa Tic TEoBAEEIC elte €youv BHOOEL Blaope-
| Bopltnta o xdide yio amd awtE. TroxvAunxoy xupleg Adye TV SLPOPOTOLACEWY TOU
Teox0OTTOLY 0TS TEOPAEPELC Hdde LOVTENOU Xou AOY L TV oBERowY OLXOVOUIXMY CUVITHDY.

Epeuvntéc unootneilouv 61t amhd, toyued oy ot extiunone Tetvouy vor Aettovpyolv xa-
A& oe uixpd Oetyuata, 6mou 1 extiunon Twv cPoAudTLY YiVETL Ue CUVTEAECTES PoplTnTog.
Trdpyouv evdellelc OTL axdun xou ov Sev TopEyouy TavTa Ti¢ o axpifelc mpolAiédeic, ol
ouvduaopol TEofAEPewy, Wwitepa 6cot oToduilouy (oo Tor UTOBELYUATY, YEVIXE TEOG(ECOUY
wee xahy) am6d00T xou €10l and dnodr xv8UVoU, OVTITPOCWTEDOUY Uldl CYETIXE OOQUAT] ETL-
AoyY. Eumepwd, autr 1 epeuvntiny epyaocio anédelle 6Tt ol anhéc mpoPAédelc cuVBLUCUOU

UTIOBELYUATOVY, AELTOURYOUY XA Y10l TIC TWAHOELS VEWY QUTOXWVATWY GTNY EANNVIXT| oy 0pd.
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To anoteréoparto TG GUVBUACUEVNC UETHO0U TEOBAEPNC OTO TUPABELY O TCV EPEUVITIXGDY

uoc dedopévwy cuvodilovtal we e€ng:

o 'Evog cuVBLUCUOC HOVTEAWY YPOVOAOYIXMY GELRMY QufveTon Vo Topdyel TeoBAéels o
XOVTE OTIC TEUYUAUTIXES TWEC TNG OELRAS XAl WG EX TOUTOU BIVEL Lol XahOTERT TEOBAEdN

YioL TiC UETABANTES Yog amd TIC UEPOVWUEVES TTpoPBAEYELC.

e O amhdg péoog cuvduoouog pe on oTtdduion Twv TEORAEYEWY BLUPORETIXGDY UTOOELY-
udTeV etvar cuVHBne 10 xahlTERD HOVTELD Yiol oxonolg TpofBiedngc. Edxolo vo utolo-

yiotel dUoxoho va vixniet !

Auth 1 peéTn uTOBNAGVEL 6TL oL GUVBLACTIXEC TEOPAEYELC elvon oyeddy BéBateg oTL Var
Eemepdioouy TiC emuépoug TeofBAédelc xar Yo amo@lyouy Tov xivduvo TARpoug arotuyiag Twv
TeoPAédewy. Enouévwe, o mepintioelg 6mou ta wovtéda mpdfiedng etvan drardéoua xon o
EQEUVNTAC MEETEL Var Snptovpyioet TeofAédels, oAAd dev etvan BEBoto we mpog To Tolo Yoviéro
elvon mdavo vor BNULoLEYNoEL TIC XUAUTERES TPOBALPELS, 0 CUVBLACUOS TV TEOBAEEwWY amd
OLdpopar EVOAACTIXG HovTENX Vo HToy 0 XAADTEPOSG XAl ACPANECTEPOG TEOTOG TPOHOOU.

YuvoliCovtag, ot uédodol TEOBAEPYNS YPOVOLOYIXOY GEWMY , X0l EWBXE O GUVOVAOUOS TGV
TEOPBAEPENDY TV UELOVOUEVKY UTOBELYHATWY, ATOOEXVOETOL OTL EQuEUOCETAL UE ETITLUY A OTIC
VEEC TWANOELS QUTOXWVATOY, ONAADY| OE DEDOUEVOL USOXETIVY X OTNV EAANVIXY| 0y ORd XalL THEEYEL

aflomoteg mpofAéderc.
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