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ABSTRACT

Ancient DNA (aDNA), derived mainly from archaeological findings, is a snap-
shot into the past, enabling researchers to obtain insights into the human evolu-
tionary history. Due to its age, aDNA is highly degraded and damaged, leading
to limited, often low-quality, extracted information. aDNA studies unravel the
complex evolutionary history of human demography, such as the past population
size changes, gene flow events as well as adaptive processes that contributed to
the survival of our species. The demographic inference of ancient populations
sheds light on the genetic relationships between them assisting us to understand
the present-day structure and the common origins of human populations. In this
study, we describe and evaluate widely-used methods for the inference of popu-
lation structure, focusing on the Dimensionality Reduction techniques. We high-
light the biases, introduced by the inevitable missing data in aDNA. We propose
a novel imputation approach that is based on the phylogeny of the samples un-
der study. Using simulations, we tested the accuracy of our imputation approach
and we showed that is superior to the widely-used mean imputation and has a
similar performance to the state-of-the-art kNN imputation. In conclusion, this
thesis draws attention to the challenges accompanying the usage and analysis of
aDNA data to infer population relationships and, in addition, proposes a novel
imputation approach to retrieve the missing information of aDNA genotypes.
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CHAPTER 1 : INTRODUCTION

1.1 GENETIC VARIATION

If we compare the nuclear DNA between any two humans, it will be approxi-

mately 99.9% identical. The differences of 0.1% shape the total variation, which,

combined with environmental factors, is reflected in phenotypic level. The human

genetic diversity is substantially lower than that of many other species, includ-

ing our nearest evolutionary relatives (Jorde, 2020). The knowledge of genetic

variation has broadened the research in fields such as understanding evolutionary

history or finding the genetic causes of diseases. The markers of genetic variation

can vary, from protein polymorphism to restriction fragment length polymorphism

(RFLP) and lastly to single nucleotide polymorphism (SNP). Current sequencing

technology advances, the so-called ‘next generation sequencing’ (NGS) technology

enabled the sequencing of whole genomes fast and at a low cost. Differences in

frequencies of genetic variants within the population over time can provide insights

into variant selection, while differences between populations can reflect either pop-

ulation structure or local adaptation. In any case, the origin and evolution of the

variability should be the central key in human population genetics studies.

1.1.1 Single Nucleotide Polymorphisms (SNPs)

Single nucleotide polymorphisms (SNPs) refer to substitution of a single nu-

cleotide at a specific position in the genome and they are the most prevailing class

of genetic variation. Approximately 90% of variation in a population is due to

SNPs (Bush and Moore, 2012). Their sites are spread across the genome, indicat-

ing that they can be found both in coding and non-coding regions. SNPs constitute

the mainly used markers in population and association studies because they are

easy to genotype on large scale and they can give answers to research questions
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such as the demographic history of populations or the detection of causative vari-

ants of diseases or traits. The source of SNP data is either SNP arrays or Next

Generation Sequencing. SNP arrays are designed to capture particular positions

in the genome and they are based on preexisting knowledge of mapped genetic

variants in a wide range of populations. Their cost is relatively low, enabling

the capture of many samples. However, they might be subject to ascertainment

bias (Clark et al., 2005). In particular, informative SNPs for the SNP array are

discovered on a subset of the entire population and SNPs indicative of non-sampled

groups will be missed, leading to biased interpretation of genetic variation in these

groups. The most widely used human SNP arrays contain polymorphisms, ascer-

tained in samples with ancestry of Europe, Asia or West Africa. On the other

hand, NGS captures the entire genetic variation in the sampled individuals and

it can be used for the detection of new, non prior characterized, SNPs. The cost,

though, is raised and there is still a remarkable rate of sequencing error, keeping

the debate of quantity versus quality open.

Figure 1.1: Single Nucleotide Polymorphisms (SNPs) among individuals.
(Source: https://www.idtdna.com/pages/education/decoded/article/gen

otyping-terms-to-know)

1.1.2 Origin of genetic variation

The main sources of haplotypic variability in the human genome are the pro-

cesses of mutation and recombination. The first generates new alleles and so is

considered crucial in evolution, while the second combines pre-existing alleles at

https://www.idtdna.com/pages/education/decoded/article/genotyping-terms-to-know
https://www.idtdna.com/pages/education/decoded/article/genotyping-terms-to-know
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different loci, generating novel haplotypes. A mutation is defined as a random

change in the nucleotide sequence of a genome and it can be due to error dur-

ing DNA replication or external, usually environmental, factors. Mutations can

affect a single nucleotide, which take the form of an insertion, deletion or sub-

stitution or wider fragments of the genome, which are referred to as structural

variants and include deletions, insertions, duplications and translocations of DNA

segments. When mutations occur in germ cells, they are transmitted to offspring,

contributing to changes in future generations. Consequently, these polymorphisms

are highly significant from an evolutionary perspective. The mutation rate across

the human genome is estimated at 1−1.2 ·10−8 per base pair per generation (Con-

sortium et al., 2010).

The second source of genetic variation, recombination, occurs in (at least)

diploid organisms during meiosis when homologous chromosomes cross-over and

exchange genetic material. This process leads to new combinations of variants

at loci, increasing the genetic diversity. Recombination does not occur uniformly

across the genome, while there are regions in which recombination is not allowed at

all, such as the mitochondrion, the centromere and the Y chromosome. Other than

ensuring the proper segregation of chromosomes, recombination also serves as a

repairing mechanism for damaged DNA molecules. Moreover, it contributes to the

adaptation of organisms to changing environments, by combining advantageous

alleles at different loci.

1.1.3 Evolutionary processes

Genetic variation, which is generated as we mentioned above, passes down

through generations and under the pressure of different evolutionary forces a com-

plex history is created. The main processes that shape the genetic variation are

genetic drift, gene flow and selection.

Genetic drift refers to the change in allele frequencies in a finite population
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due to the random sampling of its alleles from generation to generation. Since the

number of offspring of an individual is random, genetic drift is driven by stochas-

ticity. The magnitude of frequency changes depends mainly on the population

size. In a small populations allele frequencies are more easily disturbed from gen-

eration to generation since slight disturbances in sampling can cause considerable

allele frequency changes. In the absence of new mutations, genetic drift leads to

decrease of intra-population variation (diversity) because of the existence of two

absorbing points for the allelic frequencies (at 0 and 1). On the other hand, it

may lead to an increase of inter-population variation. According to the neutral

theory most variation is shaped by drift, rather than natural selection, but this

still remains controversial in the evolutionary community.

Natural selection refers to the evolutionary force which causes differences in

the survival and reproductive rates of individuals in populations. These differences

are due to mutations, whose frequency tends to be differentiated, because of their

effect. There are mainly three types of selection, affecting the allele frequencies

in a population. Positive selection acts on alleles with a selective advantage, in-

creasing the fitness of the individual carrying it. As a consequence, its frequency

rises and the allele spreads through the population until its fixation. Conversely,

negative selection tends to decrease the frequency of alleles that impair the fit-

ness of the individual until their removal of the population. The third type of

selection is balancing selection, which favors multiple alleles at a locus and main-

tains their frequency at higher levels than expected from genetic drift. One of the

mechanisms of balancing selection is heterozygous advantage, where heterozygous

individuals are better adapted than homozygous. Signatures of natural selection

can be detected and the advent of whole-genome sequencing facilitated this at-

tempt, making available a dense map of markers in order to be analyzed in the

context of genome-wide empirical distribution. Gene flow describes the migration

of genetic variants between populations, following the migration movements of
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individuals. By this process, new alleles can be introduced within a population,

pointing out its evolutionary significance. At the intra-population level, gene flow

increases the diversity due to the movement of alleles. However, genetic differenti-

ation among populations is on decline, enabling diverged populations to increase

their genetic similarity. In the current world, humans are spread around the world,

shaping thousands of populations, while cases of totally isolated populations are

very rare. Thus, the population set forms a network with interconnections influ-

enced by social structure and culture. Population interconnections are governed

by varying levels of gene flow.

1.1.4 Linkage Disequilibrium (LD)

The non-random association between loci is termed linkage disequilibrium

(LD). LD arises from genetic drift, population admixture and selection, while

it decays by recombination in each generation. It is, therefore, clear that close

loci will be in higher LD and it will decrease with increasing physical distance.

However, even really distant markers have been found to be under LD, either due

to selection or non-adaptive stochastic processes (Reich et al., 2001). The pattern

of LD is characteristic of the population, since the rate of the decay is related to

the number of generations for which the population has existed. Consequently, LD

can be used to study both recombination rate and demographic history. There

are different ways to measure LD, but a popular one is with r2. This statistic

measures the squared correlation between the alleles of two positions. r2 ranges

between zero and one, indicating no linkage to ‘complete’ linkage, respectively.

1.2 POPULATION GENETICS

The field of population genetics is an expansion of evolutionary biology that

studies the genetic diversity and structure within and among populations and the

factors that influence the distribution of this diversity (Hartl et al., 1997). The

field was born in the 1920s, when the debate about inheritance was still ongoing.
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There were two schools of thought; the one viewed inheritance as the mixing of

the parental traits into the offspring and it was focused on continuous traits, while

the other in was influenced by Mendel’s work and considered the the transmission

of traits to be done via discrete characters, segregating with equal probability.

The work of Fisher (1919) was clarifying, demonstrating how multiple genes of

small quantitative effect could segregate according to Mendel’s law of inheritance

but still create seemingly continuous traits. The boost of population genetics

took several decades and it was marked by the investigation of genetic variation

at the molecular level. A classical work was the one of Lewontin and Hubby

(1966), revealing much more genetic variation within populations than previously

anticipated. This result, consequently, challenged the view that natural selection

was the main driving force of evolution, because selection would lead to reduced

variation. This study raised the question of selection versus neutrality and a

notable paper in this discipline was that of Kimura (1968), which showed that the

large amount of genetic variation within the population could only be explained

by the abundance of neutral or nearly neutral mutations, giving rise later to the

neutral theory of evolution (Kimura, 1983). Since then, population genetics is at

the center of evolutionary biology, studying the processes that shape the allele

frequencies over time with mathematical models.

1.2.1 The Wright-Fisher model

The Wright-Fisher model, developed by S. Wright and R. Fisher, describes

the transmission of alleles from the parental pool to the offspring. It refers to

a random-mated population with discrete non-overlapping equal size generations

and absence of selection and migration. Real populations do not meet all these

assumptions, but the provided model is a simplification which can be used to

study how complex evolutionary forces affect a simple model. Given that the

population size is N, the probability of a parental allele to be passed in the offspring
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is 1
2N

. More generally, the probability of two particular alleles to share their first

common ancestor at exactly k generations back in time is (1− 1
N
)k−1 · 1

N
. Since the

population size is finite and offspring are chosen at random, some parental alleles

do not contribute to the next generations, while others can contribute multiple

times. Thanks to its simplicity, the Wright-Fisher model can be used to simulate a

population over time and observe the fate of the different alleles in the population.

1.2.2 Coalescent Theory

The coalescent (Kingman, 1982) is a model describing how gene variants sam-

pled from a population have originated from a common ancestor and it is based on

the Wright-Fisher model. When the ancestral lineages of two gene copies meet in

a common ancestor, it is said that they coalesce and such an event is called coales-

cence. Coalescent theory seeks to estimate the expectation of this time period and

its variance. The probability of coalescence at each generation is geometrically dis-

tributed, while when time is considered in continuous scale the probability is well

estimated by the exponential distribution. The coalescent, due to its property of

following the lineages backwards in time, allows for simulations of population ge-

netics data. Even though it was first proposed for the simplest population model,

it has since been advanced to include almost any possible scenario.

Figure 1.2: Coalescent principle. a) The complete genealogy of a population. b)
The genealogy of 3 samples from the population backwards to their common

ancestor. c) The genealogy of the samples, showing the coalescent events and the
time to their Most Recent Common Ancestor (MRCA). (Credit: R. Leblois)



8

1.2.3 Population structure

The grouping of individuals in discrete subpopulations is called population

structure or population stratification. Broadly, population structure refers to any

deviation from random mating, leading to accumulated genetic and phenotypic dif-

ferences between populations. These differences are noticed as differences in allele

frequencies and the study of their source is crucial for understanding the genetic

ancestry of populations. Some of the issues that population structure research ad-

dresses are: how to distinguish a structured from an homogenous population, what

is the evidence for substructure in the data and how it can be quantified. Next we

mention metrics and methods used to detect and describe population structure.

F statistics, described by Sewall Wright (Wright et al., 1950) are well- established

metrics in population genetics, partitioning genetic variability as measured by

levels of heterozygosity into components of within and between population vari-

ation. The most cited statistic is FST , which describes the proportion of total

heterozygosity (HT) that is explained by within population heterozygosity (HS).

The formula for FST is given below (Equation 1.1). FST ranges between 0 and

1. When the subpopulations are genetically close, as in continuous admixture,

high gene flow or recent split, FST should be close to 0. In the case of highly

differentiated subpopulations, the measure should be closer to 1.

FST =
HT −HS

HT

(1.1)

The common methodologies for detection of population structure could be

broadly categorized into two approaches; parametric and non parametric. Para-

metric methods utilize statistical models to infer population structure and as-

sign individuals into subpopulations (Pritchard et al., 2000; Purcell and Sham,

2004). The assignment is based on the calculated likelihood that each individ-

ual belongs to a specific subpopulation. An issue with parametric approaches
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is that they are based on several assumptions. Especially regarding genotype

datasets, they assume Hardy-Weinberg equilibrium for populations, as well as

linkage equilibrium among the genetic sites within each population. Such a para-

metric method is ADMIXTURE, which infers ancestral proportions for each indi-

vidual and consequently multiple individuals are grouped based on their similar

patterns of ancestry (Alexander et al., 2009). On the other hand, non para-

metric approaches include the techniques for dimensionality reduction with the

well-established Principal Component Analysis (PCA), which places the data on

inferred axes of maximum variation. PCA has been widely used for the detection

of population structure from genetic data. Liu and Zhao (2006) have proposed a

two-stage non parametric approach for analyzing population structure; dimension-

ality reduction followed by clustering applications, in order to reveal substructure

in the reduced dataset.

1.3 ANCIENT DNA & ARCHAEOGENOMICS

1.3.1 Characteristics of aDNA

Ancient DNA (aDNA) refers to the genetic material found in remains, dated

back hundreds or even thousands of years. This material can come from hominins,

other animals, plants or microbes and is obtained from archaeological or palaeon-

tological findings. Hard tissues, such as bones and teeth, are very common remains

of humans and animals, due to their resistance and preservation (Hagelberg et al.,

1991). In 1984 the aDNA research was marked by the DNA extraction and se-

quencing from a specimen (dried muscle) of Equus quagga, an extinct species of

zebra (Higuchi et al., 1984). Since then, aDNA research is growing steadily, extend-

ing our knowledge of genetic variation beyond the present-day populations across

the world. Human demographic history, animal and plant domestication and char-

acterization and evolution of pathogens and microbes are some of the topics that

aDNA has attempted to address. aDNA due to its post-mortem age and its long
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exposure to the environment has specific characteristics, which contribute to its

low quality and reduce the retrievable genetic information (Dabney et al., 2013).

DNA fragmentation is one of them, which leads to ultra-short fragments usually

shorter than 100bp in almost all ancient remains. The mechanism of fragmenta-

tion in aDNA consists of hydrolytic depurination which results in an abasic site,

followed by beta elimination causing the fragmentation of the DNA strand (Lin-

dahl, 1993). Moreover, chemical damages can occur in the nucleobases, leading

to miscoding lesions in aDNA. The most common is the deamination of cytosine

to uracil, by an hydrolytic degradation reaction. Such damages are accumulated

in the single-stranded overhangs of aDNA fragments. The process of deamination

has a significant effect because it leads to sequencing artifacts observed as C to T

and also G to A misincorporations. In order to limit these effects, there is a com-

mon approach of treating extracted aDNA with uracil-DNA-glycosylase (UDG) to

remove uracils prior to library construction for sequencing. Other than the chem-

ical damages, a notable issue in the studies of aDNA, which has led to erroneous

inferences (Pääbo et al., 2004) and affects the authenticity of the samples is their

contamination by environmental microorganisms or human modern DNA during

the handling procedures. Several improved experimental protocols have been de-

veloped to keep introduced contamination as low as possible (Poinar and Cooper,

2000). Additionally, from an in-silico point of view, developed frameworks target

to isolate exclusively endogenous aDNA sequences based on their post-mortem

degradation patterns (Skoglund et al., 2014).

1.3.2 Applications of aDNA studies

The field of human population history has received heightened attention with

the advent of NGS technologies and the corresponding flourishing of aDNA studies.

The wealth of available data, due to the relative ease in its production, has given

rise to answer fundamental evolutionary questions. A key point was the finding
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and sequencing of two archaic hominins, the Neanderthals (Green et al., 2010) and

Denisovans (Reich et al., 2010), which revealed their genetic contribution to the

ancestry of modern non-African populations and modern populations of Australa-

sia and Oceania, respectively (Reich et al., 2011). In the last decade, the human

ancient genomics field has grown rapidly and many sequences, some of them in

high-coverage, have been available for genome-wide population studies. Thus,

there is now well established knowledge about the demographic human history

of various regions, such as America, East and Southeast Asia and Africa (Lipson

et al., 2018; Raghavan et al., 2014; Wang et al., 2020; Yang et al., 2020). Other

studies have given insights into natural selection, utilizing information about ge-

nomic variation from aDNA (Dehasque et al., 2020; Fehren-Schmitz and Georges,

2016). Great progress has been made in the field of animal domestication, as

well. The genomic data of both ancient and modern animal samples contributed

to the establishment of domestication models, by identifying signatures of intro-

gression between wild and domesticated forms. Such models have been described

for dogs (Bergström et al., 2020), wolves (Skoglund et al., 2015), cats (Ottoni

et al., 2017) and pigs (Frantz et al., 2019). Paleomicrobiology and paleopathol-

ogy are two related areas of research, which exploit ancient material and focus on

microorganisms, in order to study their evolution or to provide insights into the

life of ancient humans, by characterizing their dietary habits or the pathogens af-

fecting them. By such studies, pathogens such as Mycobacterium tuberculosis and

Yersinia pestis, responsible for tuberculosis and plague respectively, have been

detected and contributed to the origin and expansion of infectious diseases (Bos

et al., 2011, 2014).

1.3.3 Sequencing approaches

The first studies concerning aDNA used bacterial cloning for the amplification

of small DNA sequences, retrieved from ancient specimens. Later, the develop-
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ment of PCR (polymerase chain reaction) enabled the amplification even from

low copies of initial material. However, with this approach, modern DNA from

contamination was easily amplified, causing misleading interpretations. For this

reason, many studies of that period have been disputed. The great growth of

the field of aDNA, though, is associated with the advent of next-generation se-

quencing (NGS) technologies, which replaced the classical methodology of Sanger

sequencing. Since 2005, when NGS was first introduced (Margulies et al., 2005),

the methodologies have evolved, enabling fast and relatively low cost sequencing.

The most common NGS method used in aDNA is the sequencing by synthesis,

provided by Illumina Solexa Genome Analyzer. It is preferred because it can suffi-

ciently handle the highly fragmented aDNA. The first step of Illumina sequencing

is the library preparation, during which in the extracted DNA fragments, adapters

are attached to both ends. The adapters contain an anchor sequence, necessary for

the sequencing process. The resulting fragments are then amplified by PCR. The

sequencing process consists of libraries transfer to a flowcell with complementary

nucleotide sequences to the sequences of the adapters. Thus, the DNA fragments

are immobilized on the surface of the flowcell. These fragments serve as template

for the binding of fluorescently labeled nucleotides, which when binded in each cy-

cle, are detected by a laser that induces the fluorescence and excites light, which

is measured. For the next cycle, the excess nucleotides are washed off and the

procedure is repeated. The DNA fragments in the genomic libraries can be single

or double-stranded, leading to the corresponding nature of reads. In the studies of

aDNA, different sequencing approaches can be preferred, depending on the project

goal and the available material. Shotgun sequencing is a very common approach,

in which the extracted material is sequenced without any a priori selection of

the target. The short-length reads, raised from the sequencing, are identified by

matching to sequence databases and they are assembled. This approach has also

been used widely for metagenomic analysis of ancient samples, in order to identify
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all possible microorganisms in a specimen. With shotgun sequencing we are able to

reconstruct whole ancient genomes, if the depth of sequencing is sufficient. How-

ever, regarding aDNA whole-genome sequencing (WGS) is not always advisable.

Mainly, in cases when the endogenous DNA is very low, WGS would not be suitable

because the cost would be increased in order to sufficiently sequence the endoge-

nous target. Thus, approaches for capture and enrichment have been developed

and have gained the acceptance of the researchers. The aim of these approaches in

aDNA is to enrich endogenous target DNA (Bos et al., 2015; Schuenemann et al.,

2013) and specific markers of interest in a population genetics perspective (Haak

et al., 2015). The most widely used are the in-solution hybridization capture

methods, in which biotinylated oligonucleotide baits (probes) are used to capture

specific regions of interest in the DNA libraries. After hybridization, streptavidin

is used to separate the baits, resulting in target enriched libraries that can be

sequenced in the same way as normal DNA libraries. The 1240K SNP capture

panel has been an established approach since its development in 2015 (Haak et al.,

2015) with an ever-increasing number of aDNA publications utilizing it.

1.4 HUMAN DEMOGRAPHIC HISTORY

1.4.1 Origin and expansion of modern humans

The study of genetic variation and how it is shaped through the years can

unravel the demographic history of populations. Human demographic history has

been a wide field of research, since it would provide insights on the history of

present-day populations and their connections in the past. Two key models have

been proposed to explain modern human evolution; the multiregional model and

the model of replacement. Both models agree with the African origin of Homo

erectus and its expansion to Eurasia about one million years ago. Although, they

diverge on the origin and expansion of modern humans, i.e. Homo sapiens sapi-

ens. According to the multiregional model of evolution, the regional lineages of
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early human populations remained interconnected through gene flow and modern

humans evolved in different regions of the Old World at different rates, depend-

ing on factors such as selection, gene flow and drift (Thorne and Wolpoff, 1992).

In contrast, the replacement model, also known as the out of Africa hypothesis,

supports the idea that modern humans have a relatively recent African origin

and dispersed throughout the Old World, by completely replacing the existing

archaic populations (Disotell, 1999). A combination of these two stands as a third

model, known as the assimilation model. Assimilation model accepts the mono-

centric African origin, but argues, as well, for the contribution of Eurasian archaic

populations to early modern humans. Both archaeological and genetic data tend

to provide supportive evidence for the out of Africa model. Fossils record indi-

cates that the first migration event from Africa occurred around 100,000 years

ago (Schwarcz and Grün, 1992). It is believed that this migration into Eurasia

occurred via the Levantine corridor. Additional evidence suggests a second ex-

pansion dated around 50,000 years ago (Henn et al., 2012; Stringer, 2012) with

its route remaining controversial (Balter, 2011). The most prevalent scenario is

the route over the Arabian peninsula at the southern end of the Red Sea (Fer-

nandes et al., 2012; Melé et al., 2012). Two archaic genomes from the groups of

Neanderthals and Denisovans questioned the monocentric African origin, provid-

ing evidence for limited gene flow of these two species to modern humans in two

discrete events (Green et al., 2010; Reich et al., 2010). The first occurred at an

early stage of out of Africa expansion, while the second concerned the ancestors

of Oceanian populations.

1.4.2 Demographic history of Europe

Modern humans arrived in Europe by 45kya and it is estimated that they

were mixed with Neanderthals, already dominant in the region. At 15kya Europe

was dominated by an homogeneous group of hunter-gatherers, while in the eastern
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Figure 1.3: The out-of-Africa expansion of modern humans with reference to
possible admixture events with Neadernthals and Denisovans.

part of the continent local hunter-gatherers were admixed with a discrete group

of Siberian hunter-gatherers. Thus, European hunter-gatherers could be better

described if splitted to two groups; Western hunter-gatherers (WHG), inhabited

across western and southeastern Europe (González-Fortes et al., 2017; Mathieson

et al., 2018) and Eastern hunter-gatherers (EHG) with the contribution of Upper

Paleolithic Siberian ancestry which mainly contributed to the ancestry of northern

Europeans (Günther et al., 2018). A major event which is of great interest not

only in evolutionary biology but also in a historical and social perspective, is the

Neolithic Revolution, i.e. the development of agriculture in Europe. This event led

to the transition of hunter-gatherer to agriculturist lifestyle and based on genetic

evidence is related to population migrations. In particular, migrants from the

Near East, also referred to as Anatolian farmers, settled in southeastern regions

of Europe at 8-9kya and expanded throughout most of mainland Europe, replac-

ing the dominant WHG (Hofmanová et al., 2016; Mathieson et al., 2015). Other

than the population movements, the Neolithic Revolution is associated with cul-
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tural differentiation (Gronenborn, 1999), drastically altered diet (Richards et al.,

2005), the spread of previously unseen infectious diseases and the emergence of

the Indo-European language (Renfrew, 1989). Europe at 5kya (Eneolithic pe-

riod) experienced a second migration wave, in which migrants from the Steppe

reached eastern Europe, making a massive impact in central and northern regions

until the start of the Bronze Age (Allentoft et al., 2015; Haak et al., 2015). These

migrations had a crucial role in shaping the mosaic of ancestry in contemporary

Europeans. According to Lazaridis et al. (2014), most present Europeans have

derived from at least three ancestral populations; the WHG who contributed to

all Europeans except of Near Easterners, the Early European Farmers (EEF) orig-

inated in Anatolia and the Ancient North Eurasians (ANE) who were related to

Upper Paleolithic Siberians from Steppe.

Figure 1.4: The known expansions in Europe during Neolithic and early Bronze
Age.

1.5 MISSING DATA AND IMPUTATION

The issue of missing data is common in different fields of data science, since

it can limit and potentially bias downstream analyses. The structure of missing
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data is decisive for its effect and it is shaped by the data collection. Broadly, four

mechanisms of missing data have been described; structurally missing (SMD),

missing completely at random (MCAR), missing at random (MAR) and missing

not at random (MNAR) (Rubin, 1976). In SMD a missing entry is not supposed

to have a value. In such a case, the missing values are excluded from the anal-

ysis. MCAR in a dataset is independent from both observed and unobserved,

yet it does not introduce bias but may affect only the statistical power of down-

stream analyses. MAR, in contrast, depends on observed and unobserved values,

indicating a structure behind missing entries. Finally, MNAR is shaped by fac-

tors, not measurable by the researcher, usually in a systematic manner. This

kind of missing data derives from the collection process. The growth of Next

Generation Sequencing (NGS) technologies has yielded huge amounts of data. In

genomic datasets, multiple missing entries might be introduced, belonging mainly

to MNAR and reflecting systematic errors or artifacts from the sequencing and

genotyping processes. Moreover, the capability of sequencing to high coverage,

especially regarding aDNA, is often limited by sample quality or cost. A classical

approach to handle missing data is the complete-case analysis, in which exclu-

sively individuals and features with no missing data are included in the analysis.

This approach, however, other than it may introduce bias, it leads to significant

loss of valuable information. Thus, the need to retrieve missing data has arisen.

Imputation is the process that predicts a missing value and it usually creates a

predictive distribution based on the observed data, leading to inferred values that

fill in the missing ones. A common imputation approach is the single imputation,

which imputes missing values by a unique value. In this category is the mean

imputation, which fills in the missing data of a variable with the mean of the ob-

served values for the same variable. The issue with this approach is that it leads

to several biases even in the pattern of missing data is MCAR (Jamshidian and

Bentler, 1999). More advanced approaches include imputation methods, based
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on machine learning (ML) techniques. These techniques have been found to per-

form better than the traditional statistical approaches (Rahman and Davis, 2012;

Silva-Ramírez et al., 2011). A recent work by Petrazzini et al. (2021) evaluated the

performance of five imputation approaches in genomic datasets, including two ML-

based; a Random Forest and a Nearest Neighbors based framework. They showed

that the ML-based methods had the best performance and they gave preference

to the kNN approach, due to its computational simplicity. Especially regarding

genotype data, the most widely used imputation methods rely on sequential prob-

abilistic models, in which missing genotypes are inferred based on reference panels

of haplotypes. Such methodology is used by the tools IMPUTE2 (Howie et al.,

2009), PHASE (Stephens et al., 2001) and the recent one GLIMPSE (Rubinacci

et al., 2020). Another established tool is Beagle (Browning and Browning, 2007),

which is based on a model of local haplotype clusters, derived from the similarity

of the reference haplotypes at nearby markers. These approaches, as mentioned,

are based on a reference panel of haplotypes, which may not be an optional idea for

imputation in aDNA data because they capture solely the present-day variation.

An empirical evaluation of genotype imputation for aDNA data, including these

methods, is provided by Ausmees et al. (2021). The issue of genotype imputation

in aDNA has to be handled with caution, ensuring that it will not introduce any

bias and will lead the research to robust results. In that context, the ML-based

approaches as well as the development of new imputation methods, utilizing ex-

clusively the information of the observed genotypes should be taken into serious

consideration.



CHAPTER 2 : MATERIALS & METHODS

2.1 DATA AND PREPROCESSING

The Allen Ancient DNA Resource (AADR) is a repository for published an-

cient and present-day DNA data, released by David Reich lab (https://reich.

hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genot

ypes-present-day-and-ancient-dna-data). It consists of two datasets; the

1240K from shotgun or target capture sequencing at approximately 1 million sites

and the 1240K + HO dataset with data from the 1240K merged with present-day

individuals from the Human Origins array with 597,573 sites. The 1240K dataset

includes approximately 1.24M SNP sites first described in 2015 (Mathieson et al.,

2015) and used in numerous studies since. It contains sites polymorphic in diverse

modern and ancient populations. The set includes over 1.15M autosomal sites, 49

K on the X chromosome and 33K on the Y. The Human Origins array has been

designed specifically for studies of human population and evolutionary genetics,

the array includes SNPs selected using a simple and clean ascertainment strat-

egy that permits evolutionary hypotheses to be studied in a straightforward and

quantitative way, thus enabling valuable inferences about human history. For the

purposes of this thesis, we downloaded the 1240K + HO dataset on v.44.3 release,

consisting of 13,197 ancient and present-day individuals and 597,573 SNPs. The

data was in Eigenstrat format, organized in four files; the binary file of genotypes,

two files of information about the SNPs and the individuals respectively and an

annotation file with rich meta-information of each individual. Each dataset that

we used for the analyses was a subset of the 1240K + HO dataset. Initially, the

binary genotype file, followed by the files of SNP and individual information was

transformed into binary plink format, using the convertf program of Eigenstrat

software. The subsetting of individuals, as well as the following preprocessing,

https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
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were performed in PLINK 2.0 software. We pruned for linkage disequilibrium (LD

pruning) in order to remove correlated sites, using a r2 threshold of 0.5 and a

sliding window of 50 variant counts shifted each time by 5. LD pruning is sug-

gested for downstream population genetics analyses to reduce the computational

burden since the SNPs that remain in the dataset are nearly uncorrelated. For

PCA analysis, LD pruning is used to avoid capturing too much variance of linkage

disequilibrium (LD) regions (Prive et al. 2018). Lastly, we excluded the sites of

the chromosome Y and sites totally missing across all individuals. The ancient

DNA genotype data was in pseudo-haplotype format, which means that a single

allele appears in each site. This is a typical step in ancient DNA analysis to avoid

misidentification of heterozygotes due to low sequencing coverage. In order to an-

alyze together ancient and modern genetic data, we pseudo-haploidize the modern

data as well, by randomly selecting one allele in cases of heterozygous sites.

2.2 POPULATION STRUCTURE AND ORIGIN ANALYSIS; ADMIXTURE

ANALYSIS

During their evolutionary history, populations have experienced complex de-

mographic nonadaptive (neutral) processes, consisting of population size changes

and transfer of genetic material between populations. As a result, the genetic

material of one individual in a given population might comprises fragments that

originate in different (ancestral) populations. The detailed sequence of demo-

graphic events is usually too complex in real populations to be captured entirely.

Admixture events are only one of the factors that determine population structure.

In admixture analysis, partitions of ancestry are estimated from multi-locus geno-

type data and can be used to obtain insights into the origin of populations as well

as for more accurate inference of population structure. This analysis was imple-

mented by the ADMIXTURE software (Alexander et al., 2009). ADMIXTURE

performs the estimation of ancestries in a random set of unrelated individuals using
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a model-based approach and delivers directly admixture fractions. The underlying

admixture coefficients and ancestral allele frequencies are estimated based on the

maximum likelihood methodology.

The model does not take into consideration the linkage disequilibrium (LD),

thus it is preferable to thin the dataset before running the software. The user also

has to provide the value of K, which is the number of the ancestral populations

from which the analyzed samples have derived. In case of unknown K, the software

provides a cross validation procedure, in which multiple values of K are tested and

for each of them the cross validation error is calculated. The K value that yields

the minimum error should be the most appropriate for the analysis. The output

estimates consist of the ancestry fractions and the allele frequencies of the inferred

ancestral populations.

2.3 DIMENSIONALITY REDUCTION TECHNIQUES

Due to the rapid development of NGS technology, large biological datasets are

increasingly analyzed to obtain insights into the evolutionary processes of species.

The dimensionality of such datasets is represented by the number of SNPs, i.e.

several millions for realistic datasets of most well-studied organisms. Dimensional-

ity reduction techniques aim at reducing the dimensions of the data, thus making

feasible to plot them in two or three dimensions, thus obtaining a visual repre-

sentation of the data. Therefore, computational methods that reduce the dimen-

sionality of such datasets lead to increased interpretability. Inevitably, however,

some amount of data information will be lost as a consequence of the dimension-

ality reduction. Dimensionality reduction techniques focus on reducing the data

dimensions in a way that minimizes loss of information. Such methods are widely

used in modern genomic analyses, mainly because they allow the visualization of

the data in the inferred lower dimensions.
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2.3.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is one of the oldest and most widely

used dimensionality reduction techniques, aiming to preserve as much variability

as possible. This translates into creating new uncorrelated variables that are linear

functions of those in the original dataset and successively incorporate an increas-

ing amount of data variance. Such new variables, named Principal Components,

represent the variance in descending order, i.e. the first Principal Component de-

picts the axis with the maximum variance of the data and so on. One of the first

applications of PCA in genetics was conducted in 1978, in a study which confirmed

the hypothesis of the demic spread of early farming from the Near East in Eu-

rope, by creating ‘synthetic’ maps using Principal Components in gene frequency

data (Menozzi et al., 1978). In population genetics PCA has been widely used for

studying population structure, visualizing genetic variation and probing demo-

graphic history (Fumagalli et al., 2013; Novembre and Stephens, 2008; Patterson

et al., 2006).

The role of PCA is more descriptive and exploratory, rather than inferential.

Regarding population genetics inference, there are different, often opposing, views.

Many studies support the efficiency of the method in the recognition of ancestry

and migrations events (Paschou et al., 2007; Reich et al., 2008), while others stand

cautious about PCA, mentioning that it is affected by the sampling schemes as

well as that it is difficult to interpret underlying demographic processes (McVean,

2009; Novembre and Stephens, 2008). Recently, Elhaik (2021)supports that PCA

is inaccurate in both simple and complex scenarios and Yi and Latch (2022) raises

the issue of missing data, proving that nonrandom missingness leads to biased

PCA-based inference of population structure.

PCA of real data was implemented by the smartpca software of the EIGEN-

SOFT package (Patterson et al., 2006; Price et al., 2006). A common approach,

when handling both ancient and modern samples, is to construct the Principal
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Components only from the high quality modern samples and then project the an-

cient, usually low-coveraged data, onto these PCs. The projection step is carried

out by solving least squares equations, rather than an orthogonal projection. This

approach is considered to give unbiased inference of the position of samples in the

presence of missing data that are extremely common in ancient samples and it is

applied with the lsqproject:YES option in the parameter file for executing the

program. In data without missingness, such as the simulated data or real data

after imputation, the PCA was implemented by the prcomp function in R.

2.3.2 Multidimensional Scaling (MDS)

Multidimensional scaling is an established multivariate analysis technique for

obtaining quantitative estimates of similarity/dissimilarity of the data. The pair-

wise distances among the objects of the dataset are used for their configuration

into an optimal low-dimensional space. When the data configuration is based on

their geometric coordinates, e.g. the Euclidean distance, the type of MDS is met-

ric and it is also known as Principal Coordinate Analysis (PCoA) (Cox and Cox,

2007; Gower, 1966). The non-metric MDS deals with non-numerical distances and

it is preferred for ordinal data. For sequencing data, metric MDS is applied, using

the pairwise distances of sequences to map the samples based on them. MDS,

similarly to PCA, has been used in sequence data for the detection of population

structure (Clemente et al., 2021; Maceda et al., 2021; Verdu et al., 2014). Metric

MDS was implemented by the cmdscale function in R.

2.3.3 EMU

The population structure is used for many downstream analyses, such as for

understanding population demography (Patterson et al., 2006) or for association

studies (Marchini et al., 2004). Thus, an accurate inference of population structure

is crucial. Large-scale sequencing studies are becoming more prevalent, since the

advent of whole-genome sequencing technologies because they enable population
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genetics analysis on a much broader scale. Such large-scale datasets, though,

accumulate greater levels of missing information. The problem with PCA is that

it cannot handle missing data in an appropriate manner, thereby leading to biased

results as individuals are projected into the PC space based on their amount of

missingness.

Recently, a method that deals with large-scale genetic data with high levels

of missingness was proposed (Meisner et al., 2021). The algorithm, called EMU

(EM-PCA for Ultra-low Coverage Sequencing Data), performs PCA with an ac-

celerated expectation-maximization (EM) algorithm for modeling the missingness

in an iterative manner.

2.4 F-STATISTICS

A common approach in population genetics for phylogeny and admixture infer-

ence is the toolkit, known as f-statistics, developed by the group of Reich (Patter-

son et al., 2012; Reich et al., 2009). The basic concept of the statistic is to measure

correlations in allele frequencies among sets of two, three or four populations, cor-

responding to f2, f3 and f4 statistics respectively. Their interpretation can be re-

lated to population split orders and past gene flow events. Usually, f-statistics are

used for formally testing hypotheses about admixture and constructing admixture

graphs, i.e. phylogenetic trees augmented with admixture events. In our study, we

utilized f4-statistic values to obtain insights into the population structure. Thus,

the f4-statistic values were exploited in a PCA framework. This approach was

originally developed in a study about the population history of prehistoric dogs,

in which PCA was performed on all possible f4-statistics among ancient and mod-

ern dogs (Bergström et al., 2020). In this way, we can study population structure

among ancient samples, without having to project them into axes of differentiation

defined by the modern samples.

The f4-statistic is of the form f4(A,B;C,D) and measures the average cor-
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relation in allele frequency differences between (i) populations A and B and (ii)

populations C and D. The allele frequencies are typically averaged over many bial-

lelic SNPs. When the f4-statistic is zero, or not statistically different from zero,

it corresponds to the phylogenetic relation depicted in Figure 2.1 ,indicating that

no admixture has occurred. Thus, the allele frequency differences between popu-

lations A and B should be completely independent from the differences between

populations C and D. Otherwise, when the statistic is different from zero, gene

flow events can be deduced. Specifically, negative value indicates gene flow be-

tween either A and D or B and C, while positive implies gene flow between either

A and C or B and D. In another perspective, f4 can be considered as the branch

length, derived from the intersection between the path from A to B with the path

from C to D.

Figure 2.1: The phylogenetic relation among 4 populations (A,B,C,D), when the
corresponding f4-statistic is zero

Respectively, f3 statistic is of the form f3(A,B;C) and measures allele fre-

quency correlations among three populations. More precisely, the average over all

genotyped sites of the product of allele frequency differences between the target

population C to A and B, respectively is calculated. The f3-statistic can be used

as a test of whether the population C is admixed between A and B, referred to as

admixture f3, or as a measure of shared drift between populations A and B from

an outgroup population C, referred to as outgroup f3. In the first case, negative

value of f3 indicates admixture between the two source populations, A and B,

while in the case of outgroup f3 the higher the value, the more genetic similarity
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between A and B exists.

2.5 IMPUTATION METHODOLOGIES

2.5.1 Mean imputation

The imputation by mean is a common practice for handling missing data in

many data science fields Lee (2011). It is achieved by replacing the missing obser-

vations of a variable with the mean of the observed values for the same variable.

Mean imputation method, however, can lead to biased estimates, mainly if the

number of missing data is large, because the variance following the imputation

will be strongly underestimated and data with many missing sites will tend to

exhibit small distances between them.

2.5.2 kNN imputation

The kNN imputation is based on the weighted k nearest neighbors (kNN) clas-

sification algorithm. Implementation of this algorithm for imputation was firstly

proposed for microarrays data Troyanskaya et al. (2001), while in 2012 it was

implemented for sequence genetic data (Schwender, 2012). Later, a kNN-based

imputation algorithm was developed, which took into account the linkage disequi-

librium (LD) between SNPs when choosing the nearest neighbors (Money et al.,

2015). The imputation algorithm broadly consists of three steps: (i) the construc-

tion of a distance matrix of the data, using a distance metric, e.g. the Euclidean

distance; (ii) the definition of the number k and finally (iii) the estimation of a

missing observation, using a distance-weighted voting scheme by the k nearest

neighbors.

In the example below (Figure 2.2), the genotype of sample X for a specific

SNP is missing and has to be imputed. The number k of neighbors, i.e. other

samples from the dataset, is arbitrarily defined as 4. The distances of the neighbors

from the sample X are calculated and they are used as weighting factors of their

genotypes, as shown in equation 2.1. Finally, the genotype state (0, 1, or 2) with
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the maximum score will be selected for the imputation of X.

Figure 2.2: An example of kNN imputation. As X is depicted the missing
genotype at a specific site. In the dotted circle is the neighborhood of genotypes,

which contributes to the estimation of the genotype X in a distance-weighted
manner.

gi(si,pj) = argmax
∑

a∈(0,1,2)

I(g(s,pj) = a)

dn(si,s)
(2.1)

2.5.3 Phylogeny-based imputation

We propose a tree-based imputation method for imputing missing genotypes

that utilizes the existing information of the data and its structure in a phyloge-

netic tree. First, the phylogenetic tree of the sequences is constructed using the

maximum likelihood method. Then, in each site with a missing genotype, every

possible genotype state is tested and in each trial the likelihood across the tree

is calculated. The likelihood calculation is based on Falsenstein’s pruning algo-

rithm (Felsenstein, 1973). Thus, for every missing genotype in a given site, the

whole tree as well as the site itself is taken into account. We use the generalized

time-reversible (GTR) model of sequence evolution, even though other models can

be readily employed.

In each node of the tree, the conditional likelihood for each genotype state

is calculated (equation 2.2) and this process is iterated via a post-order traver-

sal of the tree. The conditional likelihood of a genotype at an ancestral node is
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the probability of obtaining the descendant states given the state of that geno-

type at the ancestral node. The likelihood value depends on the transition rates

between the four nucleotides. Therefore, different evolutionary models describ-

ing such transition ratios have been developed. The simplest evolutionary model

(the Jukes-Cantor model) Jukes et al. (1969) states that the rates for all possi-

ble transitions are equal. In other words, the Jukes-Cantor model assumes that

the substitution of a base with any other base occurs with equal probability. In

contrast, the most complex model (GTR) states that each transition might have

a different value Tavaré et al. (1986). Therefore, a transition probability matrix

is used for the calculation of the probability terms in 2.2. The final calculation

includes the conditional likelihoods at the root, resulting in the likelihood across

the whole tree using the equation 2.3.

The predicted state for the missing genotype is the state (A,C,G or T) that

yields the maximum likelihood of the given tree. This procedure is repeated for

every missing genotype and it is unaffected by the imputation in previous sites,

since the already imputed genotypes are not used in the calculations as imputed

genotypes but in their original missing state. The likelihood calculations were

conducted using the pml function of the phangorn package in R.

Lp(i) = (
∑
x∈k

P (x|i,tL)LL(x))(
∑
x∈k

P (x|i,tR)LR(x)) (2.2)

In equation 2.2, the conditional likelihood calculation in a node for state i.

The two pieces of the equation refer to the left and right descendant, while x is

the index of the k states. Each piece represents the probability of observing the

state x in the descendant, given the state i in the node and the branch length t.

L =
∑
x∈k

πxLroot(x) (2.3)

The likelihood calculation across the tree. Lroot(x) is the conditional likelihood
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for the state x at the root of the tree, while πx is the equilibrium probability of

the state x.

In Fig 2.3, we demonstrate an example of eight samples (sequences), from

which a phylogenetic tree has been already constructed using the whole sequence

information. In a particular site (SNP), there is a missing genotype for one (or

more) sample(s). Given the tree, every possible genotype state (0,1 and 2) will

be tested and the likelihood for the tree will be re-calculated using each imputed

genotype. Eventually, the genotype that maximizes this likelihood score will be

reported as the imputed genotype.

Figure 2.3: An example of phylogeny-based imputation. This is the phylogenetic
tree of 8 sequences, with the genotypes at a specific site, in which the third one
is missing. The red boxes on the left and the right represent the genotypes at the

specific site before and after imputation, respectively.

2.6 GENERATING ARTIFICIAL DATA TO TEST IMPUTATION METHODS;

THE MS SIMULATOR

The ms software (Hudson, 2002) is used to generate samples from evolving

populations according to the Wright-Fisher neutral model. The model suggests

finite population size, discrete generations and multinomial sampling to produce

successive generations (Ewens, 2004). The simulator is based on the coalescent, a

stochastic process to generate genealogies from a population by tracing randomly

sampled alleles backwards in time (Kingman, 1982). The program assumes an

infinite-site model of mutation, and thus no recurrent mutation can occur.

The following argument flags of the ms software were employed to generate the
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simulated datasets:

MUTATION (-T THETA) The number of mutations across the simulated

locus is determined by the parameter θ. The parameter θ is defined as the product

of the mutation rate, µ, and 4 times the diploid population size N0, θ = 4N0µ.

RECOMBINATION In order to include recombination in the model, the flag

-r was used. Similarly to the mutation parameter, the population recombination

rate ρ is defined as ρ = 4N0r, where r is the probability of recombination per gen-

eration across the simulated locus. Additionally to the parameter ρ, the number

of possible recombination breakpoints should be defined.

MIGRATION Besides the simulation of populations and their structure, one

could include migration in the model so as each population could receive migrants

at the same rate from each of the other populations. The migration parameter

is defined as M = 4N0m, where m is the fraction of each population made up of

new migrants in each generation. The flag -eM of the ms was employed.

POPULATION SPLITS In order to simulate more realistic scenarios, a range

of past demographic events can be included in the simulator. One of these is to

define a population split. Using the flag -ej t i j, all lineages in the population i

are moved to the population j at time t (backward in time). The time is measured

from the present in units of 4N0 generations.

The simulations used for the purpose of this study were generated with the

following commands and more information about the parameters can be found

in 2.6:

1. ms 100 1 -I 5 20 20 20 20 20 1 -ej 0.2 2 1 -ej 0.2 3 4 -ej 0.5 1 4 -ej 0.8 5 4 -t 500 -r

0 100

2. ms 60 1 -I 3 20 20 20 0 -ej 2 2 1 -ej 4 1 3 -t 500 -r 0 100
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3. ms 60 1 -I 3 20 20 20 0 -ej 0.2 2 1 -ej 0.4 1 3 -t 500 -r 1500 100
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METHODS APPENDIX

Table 2.1: Parameter values used in the simulations: Sample size, number of
populations, mutation rate, migration rate and recombination rate

Parameter Simulation 1 Simulation 2 Simulation 3
Sample size (individuals) 100 60 60
Number of populations 5 3 3

Mutation rate (per i,n,g∗) 1.25 · 10−8 1.25 · 10−8 1.25 · 10−8

Migration rate (per i,n,g∗) 2.5 · 10−5 - -
Recombination rate (per i,n,g∗) - - 3.75 · 10−8

∗ per i.n.g: per individual, nucleotide and generation

Table 2.2: Software used and their objective.

Software Objective
convertf convert Eigenstrat to Plink file format
plink2.0 Missingness filtering and LD pruning
smartpca PCA and FST calculations

emu EMU (EM-PCA)
admixtools f3 and f4-statistic calculations

ms generation of simulated genetic data
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CHAPTER 3 : RESULTS

The results are organized as follows: (i) we present the results from the appli-

cation of the dimensionality reduction techniques, demonstrating potential sources

of misinterpretation of results applicable to aDNA sequence analysis. Then, (ii) we

show the results of admixture analysis and (iii) the application of the f3-statistic

and FST statistical approaches. In the dimensionality reduction section we have

included two recently developed state-of-the-art methods in order to compare their

results with more established approaches. Lastly, we demonstrate the results re-

garding the imputation of missing data. We present the outcome of imputation

approaches, followed by the evaluation of the proposed phylogeny-based imputa-

tion and the application in real data.

3.1 DIMENSIONALITY REDUCTION TECHNIQUES

3.1.1 Principal Component Analysis (PCA)

Here, we used a dataset of 225 ancient human samples from regions of South-

eastern Europe, described in Mathieson et al. (2015) and performed PCA using

the Eigensoft software. We can notice some discrete population clusters, such as

the clusters of hunter-gatherers from Latvia and the Iron Gates hunter-gatherers,

which both have a relatively big sample size. However, the group of Neolithic in

Ukraine, over-represented as well, is more disperse across the PC2 (Figure 3.1).

Overall, the fact that the samples are originated from the same geographic region

(Southeastern Europe) and are exclusively ancient from a range of time periods

might not be sufficient to infer more reliable population relationships.

In the context of a comprehensive analysis of ancient genetic data, it is pre-

ferred to use a merged dataset of ancient and modern samples. In this way, modern

variation can be taken into account. Furthermore, the relationships between an-
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cient and modern populations can be assessed. For this purpose, we used a merged

dataset of 15 populations, both ancient and modern. We performed PCA by pro-

jecting the ancient samples on the principal components calculated by the modern

samples.

Surprisingly, we noticed that the ancient samples are mainly placed in a small

region in the center of the PCA space (in the proximity of the origin (0, 0)). In

contrast, modern genetic variation is well depicted in discrete population clusters

(Figure 3.2). Even though it is plausible that ancient variation is considerably

decreased in relation to the present-day genetic variation, a more plausible ex-

planation suggests an artifact due to the mean imputation of the EIGENSOFT

in aDNA data that are characterized by a significantly higher amount of missing

data.
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Figure 3.1: PCA of a genotype dataset of ancient individuals, originated in
Southeastern Europe, implemented in smartpca software.
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3.1.2 Multidimensional Scaling (MDS)

MDS is an alternative technique for dimensionality reduction, based on the

pairwise similarities (or distances) among the samples. Since the distances between

the samples are calculated in a pairwise manner, MDS might be a more appropriate

method than PCA when the amount of missingness increases.

We performed MDS on both the ancient and the merged datasets. Interest-

ingly, a completely different structure emerges compared to the PCA. Regarding

the ancient dataset, we can observe the discrete clusters of the PCA, but also

other smaller clusters are created (Figure 3.3), which in PCA were linearly de-

picted. The greatest difference, though, between MDS and PCA, was observed

in the dataset of both ancient and modern samples, in which across the Coor-

dinate 1 a clustering between modern and ancient samples is formed. However,

other than this clustering there is discrete subgrouping, allowing for population

structure inference.

To understand whether the amount of missingness has contributed to the ob-

served structure patterns, we labeled the samples with a color gradient scheme

based on their percentage of missingness. We noticed that the samples with high

missingness -actually the ancient samples- are slightly spread, compared with their

clustering in PCA. However, a cline of missingness along the first Coordinate is

still apparent (Figure 3.4).
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Figure 3.3: MDS in two dimensions for the dataset of ancient individuals.
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Figure 3.4: MDS in two dimensions for the dataset of both ancient and
present-day individuals. The color gradient indicates the percentage of missing

data.

3.1.3 State-of-the-art approaches; EMU and f4-PCA

Since no consistency between the results of PCA and MDS was observed,

we further analyzed the data with two novel approaches. EMU is a PCA-based

method for inference of population structure in the presence of high missingness.

When running EMU for the ancient dataset we, surprisingly, observed a very sim-

ilar structure with that of MDS. Actually, EMU achieved to better distinguish the

clusters of Iron hunter-gatherers and hunter-gatherers from Latvia (Figure 3.5).
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Other than that, the observed population structure was similar to that of MDS.

The other approach is also based on PCA, but instead of the genotype in-

formation the dimensionality reduction occurred in the space of the f4-statistics

values. Since the f4 value is referred to a population, this approach allows for

population depiction in the PCA space, instead of individuals as usual. We per-

formed f4-PCA in the dataset of 15 ancient and modern populations. We, first,

calculated the f4-statistics for all possible population combinations and then we

organized these values in a matrix of dimensions n ∗ x, where n is the number

of populations and x is the number of all possible triplets of populations used

in the calculation of f4. On this matrix, PCA was performed and as depicted

in Figure 3.6 ancient and modern populations shape discrete clusters across the

PC1, except of two ancient populations; an Armenian from the Middle Bronze

Age and a Czech from the Early Bronze Age. We have not any evidence on why

this occurs, but we suspect that the clustering is based on the amount of missing

data and that these two ancient populations have less missing data, placing them

closer to the modern populations. It might, also, be possible that we introduced

a bias by substituting with zero the f4 values, for which the calculation was not

supported. These were the cases with population duplication in the quadruple of

populations. More cautious implementation is needed, in order to evaluate the

accuracy of f4-PCA for the inference of population structure.



41

−0.1

0.0

0.1

−0.05 0.00 0.05 0.10
PC1

P
C

2

Population
Balkans_BronzeAge

Balkans_Chalcolithic

Balkans_Chalcolithic_outlier

Balkans_IronAge

Balkans_MP_Neolithic_1d_rel_I1108

Balkans_Neolithic

Globular_Amphora

Globular_Amphora_brother_of_I2407

Globular_Amphora_brother_of_I2435

Iron_Gates_HG

Iron_Gates_HG_brother_I4880

Iron_Gates_HG_daughter_I5236

Iron_Gates_HG_outlier

Krepost_Neolithic

Latvia_HG

Latvia_LN

Latvia_MN

LBK_Austria

Lepenski_Vir

Malak_Preslavets

Peloponnese_Neolithic

Romania_HG

Trypillia

Ukraine_Eneolithic

Ukraine_Mesolithic

Ukraine_Neolithic

Ukraine_Neolithic_1d_rel_I5870

Ukraine_Neolithic_brother_I8590

Ukraine_Neolithic_father

Ukraine_Neolithic_father

Ukraine_Neolithic_outlier

Varna

Varna_outlier

Vucedol

WHG

Yamnaya_Bulgaria

Yamnaya_Ukraine

Yamnaya_Ukraine_outlier

EMU

Figure 3.5: EMU in two dimensions for the dataset of ancient individuals.
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3.2 ADMIXTURE ANALYSIS

We performed admixture analysis, using the ADMIXTURE software, in the

ancient dataset, assuming 4 ancestral populations. This assumption is based on

the hypothesis of 3 ancestries in present-day Europeans; from early farmers, in-

digenous hunter-gatherers and north Eurasians. Splitting of hunter-gatherers in

western and eastern forms the 4 ancestries. We can notice an ancestry-based clus-

ter of WHG and HG from Latvia, while some the Iron Gates HG have a small

proportion of this ancestry and the rest are modeled by a distinct one. Moreover,

Ukrainian Neolithic and Balkans Neolithic are modeled by two discrete sources of

ancestry (Figure 3.7).

However, there is a degree of uncertainty in the reliability of these results,

if we take into account the accuracy of the model. The cross validation (cv)

error measures how accurately the data fit into the model. When the number of

ancestral populations is unknown, it is preferred to test a range of K and select

the one with the minimum cv error. Surprisingly, when we evaluated the cv error

for a range of K from 1 to 5, we noticed that the minimum cv error is for the K=1,

which is not informative for population structure. We, then, tested the merged

dataset of ancient and modern populations, resulting in the same suggestion of

a single source population. Although this is not informative and probably does

not reflect real ancestry, it points out a known issue of admixture modeling; the

difficulty of automating the selection of K in a robust way.

Nevertheless, we estimated the proportions of ancestry assuming 2 ancestral

populations. We observed a cluster of individuals having almost the entire ances-

try of one population, while the ancestry of the rest was mainly from the other

population with a low percentage of admixture (Figure 3.8). Surprisingly, the

same pattern was observed in the percentage of missing data across the indi-

viduals (Figure 3.9). Consequently, the clustering did not represent the actual

proportions of ancestries, but the amount of missing data in each individual, and
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it could lead to misinterpretation. Even if the number of K was bigger, we suspect

that some missingness-based structure would be hidden in the proportions of an-

cestry. Thus, the presence of missing data should not be ignored and the results

of ADMIXTURE should be treated with caution and critical thinking.
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2 ancestral populations (K=2) (A) and the cross-validation error for a range of K

values (B).

E
zi

d
E

zi
d

E
zi

d
B

u
lg

a
ri

a
n

B
u

lg
a

ri
a

n
B

u
lg

a
ri

a
n

G
re

e
k

G
re

e
k

G
re

e
k

G
re

e
k

G
re

e
k

G
re

e
k

G
re

e
k

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

Tu
rk

is
h

R
o

m
a

n
ia

n
R

o
m

a
n

ia
n

R
o

m
a

n
ia

n
C

ze
ch

_
E

B
A

C
ze

ch
_

E
B

A
C

ze
ch

_
E

B
A

re
e

ce
_

M
in

o
a

n
_

L
a

ss
ith

i
e

e
ce

_
M

in
o

a
n

_
O

d
ig

itr
ia

e
e

ce
_

M
in

o
a

n
_

O
d

ig
itr

ia
Tu

rk
e
y_

N
Tu

rk
e
y_

N
Tu

rk
e
y_

N
Tu

rk
e
y_

N
Tu

rk
e
y_

N
A

rm
e

n
ia

_
M

B
A

.S
G

B
u

lg
a

ri
a

_
N

_
p

u
b
lis

h
e

d
B

u
lg

a
ri

a
_

N
_

p
u

b
lis

h
e

d
It

a
ly

_
S

ic
ily

_
E

B
A

G
re

e
ce

_
P

e
lo

p
o

n
n

e
se

_
N

G
re

e
ce

_
P

e
lo

p
o

n
n

e
se

_
N

It
a

ly
_

S
ic

ily
_

E
B

A
S

a
rd

in
ia

n
.S

D
G

It
a

lia
n

_
N

o
rt

h
.S

D
G

S
a

rd
in

ia
n

.S
D

G
S

a
rd

in
ia

n
.S

D
G

S
a

rd
in

ia
n

.S
D

G
S

a
rd

in
ia

n
.S

D
G

It
a

lia
n

_
N

o
rt

h
.S

D
G

S
a

rd
in

ia
n

.S
D

G
S

a
rd

in
ia

n
.S

D
G

S
a

rd
in

ia
n

.S
D

G
S

a
rd

in
ia

n
.S

D
G

S
a

rd
in

ia
n

.S
D

G
S

a
rd

in
ia

n
.S

D
G

S
a

rd
in

ia
n

.S
D

G
It

a
lia

n
_

N
o

rt
h

.S
D

G
B

u
lg

a
ri

a
_

N
_

p
u

b
lis

h
e

d

p
e
rc

e
n
ta

g
e
 o

f 
m

is
si

n
g
n
e
ss

0.0

0.2

0.4

0.6

0.8

Ezid
Bulgarian
Greek
Turkish
Romanian
Czech_EBA
Greece_Minoan_Lassithi
Greece_Minoan_Odigitria
Turkey_N
Armenia_MBA.SG
Bulgaria_N_published
Italy_Sicily_EBA
Greece_Peloponnese_N
Sardinian.SDG
Italian_North.SDG

Figure 3.9: Barplot of the percentage of missing data across individuals.
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3.3 FST AND F3-STATISTIC

With the advent of aDNA sequencing technology, population structure infer-

ence can be accomplished using genome-wide information from sampled individ-

uals. Appropriate statistical measures are calculated from the genetic polymor-

phism information and they can reflect population relationships. FST measures

population differentiation in a pair of populations and f3-statistic measures allele

frequency correlations among 3 populations. We used ancient Greek individuals,

who lived in mainland Greece and the island of Crete and dated 4000 to 3250

years before present (BP), merged with a set of present-day individuals from a

wide range of European countries. The ancient genomes from Crete were sampled

from three distinct regions of the island. The samples of mainland Greece obtained

from the Peloponnese region, in which the Mycenaean civilization was developed.

FST was calculated for each pair of ancient and modern populations, using the

smartpca software of the Eigensoft package with the parameter fstonly:YES in

the parameter file. FST ranges between 0 and 1 and the higher the value, the

greater the differentiation between the tested populations. For the calculation of

the f3(A,B;C) value, population A was ancient, population B was modern and C

was represented in all cases by the Mbuti population, an indigenous group in the

Congo region of Africa. This approach of f3, also referred to as ‘outgroup f3’, is

used to measure shared drift between populations A and B, compared to an out-

group population C. Since the analyzed populations are non-Africans, Mbuti can

be used as the outgroup. High values of f3 indicate close relatedness between pop-

ulations A and B. The f3 calculations were implemented by the qp3Pop program

of the AdmixTools software.

Surprisingly, the maps of FST show higher differentiation between the ancient

Greek samples and the Mediterranean countries, which is at first dubious. The

values ranged between 0 and 0.6 and in most of the cases the FST between the

present-day Greek population and the ancient one was higher than 0.4. Only the
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ancient sample of Crete, Armenoi yielded an intermediate value with the present-

day Greek population. However, low to indermediate FST values between ancient

Greek populations and Balkan countries might reflect the close population rela-

tionships and extensive gene flow over time between the area of Greece and the

Balkan peninsula. Also, we noticed an northeast to west cline, which could poten-

tially reflect known migration waves during the Bronze Age period (Figure 3.10).

The f3-statistic, as depicted in Figure 3.11, indicates higher genetic relations of

the ancient Greek samples with present-day Bulgarian and Hungarian populations.

Italy, France and Great Britain yielded a relative high value, as well. Croatia,

Russia and Israel had the lowest values of f3 in all of the cases, which is not in

accordance with the results of FST . We suspect that the different set of variants

(SNPs) used for the calculations in each pair of population tested, due to the high

missingness, may introduce some bias, obscuring the real population relations.
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present-day populations, measured using outgroup f3-statistic. Error bars show

the standard error of the f3-statistic.
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3.4 IMPUTATION APPROACHES

The aforementioned analyses are frequently used for the inference of population

relations in aDNA studies. Nevertheless, as we showed, they might be influenced

by the missing data, which is usually remarkably high in aDNA. Furthermore,

datasets obtained from different research groups and possibly sequenced with dif-

ferent technologies, might be characterized by a non-uniform distribution of miss-

ing data that potentially introduces biases in the analysis (see, for example (Yi

and Latch, 2022) and Figures 3.133.163.22). Consequently, the interpretation of

the results could be misleading. Thus, imputation of missing data, i.e. the substi-

tution of missing values with reliable ones, is a crucial step which is necessary and

it has to be taken with caution in order to perform reliable downstream analyses.

3.4.1 Mean, kNN and phylogeny-based imputation

In this part, we are focused on imputation of missing data and we test three

different approaches on simulated data and real data. The first is mean imputa-

tion, which is used by the Eigensoft software for the smartPCA function. Then,

we test the kNN algorithm for imputation and lastly, an approach based on the

phylogeny, developed during the current thesis. The data was produced by the ms

coalescent simulator under different evolutionary scenarios (see METHODS AP-

PENDIX 2.6). The workflow to test the efficiency of imputation approaches was

as follows: i) from the simulated data we removed observations, following specific

patterns of missingness ii) we performed imputation of missing observations by

mean, kNN and phylogenetic tree iii) we evaluated the effect of imputation on

downstream analyses, both PCA and MDS. Thus, we could compare the effect of

different patterns of missingness, the performance of each imputation approach as

well as the two commonly used methods for dimensionality reduction, PCA and

MDS. In simulation 1, we created 5 equal-sized populations, allowing migration

among them at a rate of 2.5 · 10−5 , while recombination was not taken into ac-
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count. When removing observations, we followed a pattern of extreme missingness

of 90% in the individuals of the last population, while all the rest had a percentage

of missing data around 20%. The missingness across variants was random (Fig-

ure 3.12). Simulation 2, the simplest one, has three well-separated populations

of equal size and neither migration nor recombination was allowed. We created

two different patterns of missingness for this simulation; first, we tested a gradient

increasing missingness in the individuals of each population and then we had uni-

form distribution across all individuals in a percentage of around 25%. Regarding

the missingness across sites, we tested three different patterns; an accumulation

at the start or the end of the SNPs set and a uniform distribution, similar to

the previous simulation. In the first case, these three patterns were following the

three populations respectively, but in the second case they were organized within

each population (Figure 3.15, Figure 3.18). Lastly, in simulation 3 we introduced

recombination in a model of 3 populations, while migration was not allowed. Here,

two individuals of each population had an extreme missingness of 90%, while the

missing data of the rest was around 20%. The missingness across SNPs was in-

troduced randomly (Figure 3.21). We impute the missing data based on each

imputation approach and perform PCA and MDS for the initial full dataset as

well as for the imputed datasets. Especially regarding MDS, we can also visualize

the dataset with the missing data, which is very informative about the disruption

of the population structure. In the cases of extreme missingness in some individu-

als or even in a whole population, we observe that when the dataset is imputed by

the mean, both in PCA and MDS those samples are dragged away from their real

population cluster and tend to be grouped together near to the origin (the point

(0,0)). Interestingly, in the case of gradient increasing missingness we can see the

respective gradient pulling of the samples. Nevertheless, the imputation by kNN

and tree seems to be accurate, since it conserves the real population structure

even in the presence of extreme missingness. Low-rate and uniformly distributed
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missing data among individuals does not introduce bias in downstream analyses,

which is also the case for non random missingness among the variants. In the

presence of recombination, all imputation approaches are accurate in the conser-

vation of within population variation, but the mean imputation is limited to low

percentage missingness, while the kNN and the tree-based are precise even in the

samples with a high amount of missing data. In all of the cases, MDS had similar

performance to PCA, but MDS still remains an advantageous method because it

can be applied directly to the dataset with missing data. In that case, we observed

a partial disruption of the real structure, driven by the amount of missing data.
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simulation 1.
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Figure 3.17: MDS before and after imputation for the simulation 2 (scenario 1).
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Figure 3.19: PCA of the initial and imputed datasets of simulation 2 (scenario 2).
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Figure 3.20: MDS before and after imputation for the simulation 2 (scenario 2).
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3.4.2 Evaluating the phylogeny-based imputation

In order to expand the evaluation of our proposed tree-based imputation ap-

proach beyond the downstream analyses of PCA and MDS, we detected and stud-

ied further the sites in which the imputation was unsuccessful. We focused on

the last simulation, the one with recombination and extreme missingness in two

individuals of each population. The percentage of these sites, also referred to as

mis-imputed or in genotype discordance, was 7.5%. The initial dataset, simu-

lating genotypes, had two distinct values; 0 indicating the ancestral state and 1

indicating the derived state. We, first, examined which state was most frequently

imputed incorrectly. As depicted in Figure 3.24, most of the genotype discordance

concerned sites of the derived state. This result is plausible, since initially the

sites of the derived state were fewer and as a consequence the information about

them for the imputation was hardly accessible. We, then, summarized the dis-

tribution of derived state frequencies by constructing the site frequency spectrum

(SFS) (Figure 3.25). Based on that, we estimated the distribution of mis-imputed

sites across the classes of the SFS (Figure 3.26). Interestingly, we noticed that

intermediate frequency polymorphic sites are more frequently imputed incorrectly.

This may be useful for improvement of imputation efficiency, by removing these

sites in advance.
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3.4.3 Imputation on real data

Since kNN and tree imputation seemed to be accurate on simulated data, we

implemented these approaches on real data, as well. We used a dataset of four an-

cient populations; Western Hunter Gatherers (WHG) and Neolithic from Anatolia,

mainland Greece and Crete. The dataset consisted of 38 individuals and 10000

SNPs. The percentage of missing data was 35.5% and it was not uniformly dis-

tributed across the individuals, as depicted in Figure 3.27. We imputed the missing

data by mean, kNN and tree approach and we performed PCA (Figure 3.28). The

mean imputation clustered all the individuals with missingness greater than ap-

proximately 20% in the origin of PCA space, as observed on simulated data. kNN

and phylogeny-based imputation had better performance, shaping the same pat-

tern of population structure. We did not notice clear population clusters, but this

does not mean that the observed representation does not reflect the real structure.

As it is known, WHG used to live in Europe before the appearance of farmers from

Anatolia during the early Neolithic. Thus, it is expected that these two groups

were admixed. Such an admixture could easily occur also between Neolithic Ana-

tolians and Greeks, both from mainland and Crete, as the former passed by Greece

during their spread in Europe.
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Figure 3.27: Percentage of missing data across individuals.
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CHAPTER 4 : DISCUSSION

4.1 DIMENSIONALITY REDUCTION METHODS

Dimensionality reduction methodologies have been widely-used for the detec-

tion of population structure in modern and ancestral populations using modern

DNA and aDNA, respectively. They facilitate efforts to unravel the evolutionary

history and connect the ancient genetic information with present-day variation by

offering a visual representation of high-dimensional genetic data. The smartpca

software Patterson et al. (2006) performs PCA on genotype data and is the most-

widely used software to perform a PCA analysis on aDNA data. Typically, when

aDNA data are analyzed, an approach for projection of ancient data on present-

day data is followed. Often, such an approach results in PCA plots in which aDNA

data are placed in the origin of the axes, mainly due to the vast amount of missing

data that characterizes them Yi and Latch (2022). Similarly to Yi and Latch

(2022), our results suggest that individuals biased with missing data would be

placed progressively away from their real population clusters towards the origin of

PCA plots as the amount of missingness increases, making them indistinguishable

from true admixed individuals and potentially leading to misinterpreted popula-

tion structure. Even though smartpca is extensively used in aDNA studies, in

our analyses its performance was doubtful. The ancient samples were clustered

together, albeit they were chronologically and geographically diverged. On top

of that, the placement of their cluster in the PCA origin points out the bias in-

troduced by the mean imputation, since the data are mean-centered prior to the

eigenanalysis. This bias, which is related to the amount of missing data, is also

demonstrated both in our simulated scenarios and in recent studies (Malan et al.,

2020; Yi and Latch, 2022), supporting that missingness, especially non-uniformly

distributed, leads to biased PCA-based inference of population structure. Fur-



66

thermore, Elhaik (2021) carried out an extensive empirical evaluation of PCA

for a wide range of test cases and demonstrated that PCA fails to extract accu-

rate conclusions in both simple and complex scenarios. More importantly, PCA

results can be easily manipulated by intentionally introducing sampling biases.

Since PCA is governed by data variance, sample size is a crucial factor of such an

analysis. As Elhaik (2021) states, ‘we do not believe that PCA can provide evi-

dence of important migration events. Instead, our example shows how PCA can

be used to generate multiple and alternative scenarios, all mathematically correct

but, obviously, biologically incorrect’.

Prior work of our group (Aspa Orfanou, 2021, unpublished work) has shown

that under scenarios with high migration or bottleneck, which are more realistic,

PCA becomes weak and should not be trusted. Thus, PCA, especially when it

is performed with smartpca, on aDNA data with high amounts of missing data

should be handled with caution.

The alternative approaches tested for dimensionality reduction and detection of

population structure seemed more accurate. MDS is advantageous since it ignores

the presence of missing data in the calculation of the pairwise distances, so it does

not require imputation. In our simulations, we noticed that even in datasets with

sequences harboring 60% of missing data, MDS analysis is able to reconstruct the

true population structure. Therefore, our results suggest that MDS could be used

as an exploratory tool prior to other more statistically elaborated analyses (for

example, selective sweep detection and/or approximate Bayesian computation).

Similarly, a state-of-the-art methodology that employs f4-statistics values in a

PCA framework (f4-PCA) is a valuable approach that can visualize relations di-

rectly among populations, rather than individuals as in typical PCA (Bergström

et al., 2020). Other than that, it allows us to analyze both ancient and mod-

ern populations, releasing the need to project ancient samples on axes of modern

variation and making it ambitious for accurate detection of population structure.
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However, one should be mindful of potential bias that could be introduced both in

f4-PCA and in MDS, because each pair of populations (or individuals) is charac-

terized by a different set of common SNPs that are used for the pairwise analyses.

Ideally, the set of SNPs with existing genotype information should be common

across the dataset, but this is unrealistic due to the high amount of missing data.

The alternative, recently developed, approach for PCA for low coverage se-

quencing data, EMU (Meisner et al., 2021), was tested and obtained similar re-

sults with MDS. This method performs PCA but allows missing data, by modeling

the missingness iteratively utilizing an expectation-maximization (EM) algorithm.

We propose that both EMU and f4-PCA could be used as exploratory tools for the

investigation of the relations among individuals or populations and the detection

of population structure as a pre-analysis step, when necessary.

4.2 POPULATION STRUCTURE

The admixture analysis, a model-based approach, has been used for the clas-

sification of individuals based on their proportions of ancestry from K defined

populations. Here, we pointed out that the estimation of the number K based

on the cross-validation error of the model is inaccurate, since a single population

source was suggested even if the samples were diverged. This issue of admix-

ture modeling has been a long-standing discussion topic, as raised in Chapter 4

of Dutheil (2020). It is preferred to estimate the model for each K in a given

range and observe how the patterns of ancestry proportions are shaping. In this

approach, meaningful population substructure could be defined.

Conclusively, we propose not to base the interpretation in just one type of anal-

ysis. It is preferred to combine dimensionality reduction methods with admixture

analysis, in order to reach more reliable results about population structure.
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4.3 MISSING GENOTYPE DATA

The results of the above analyses have raised the issue of missing data and

how it affects the inference of population structure. aDNA data is usually accom-

panied by extreme proportions of missing data, due to its low depth sequencing.

Since the DNA from ancient specimens is valuable and can provide significant

information about human history, such samples, even in low quality, cannot be

ignored. Although, the requirement of full dataset in downstream analyses, such

as PCA, limits the utilization of this data. Thus, the inference of unobserved

genotypes, a process known as imputation is crucial for aDNA studies. We devel-

oped a novel method for imputation, which is based on the phylogenetic tree of

the sequences and we compared it with the common approach of mean imputation

and the clustering-based kNN imputation approach. Both tree-based and kNN ap-

proaches were efficient in our simulated scenarios. In contrast, we demonstrated

the strong bias introduced by the mean imputation. In fact, samples with rela-

tively high proportion of mean imputed data tend to be clustered in the proximity

of the origin of a PCA plot, making the interpretation of the population relations

misleading. It is important to note that the effect of mean imputation were solely

observed when the missingness was non-randomly distributed across individuals.

During the evaluation of the tree-based imputation, studied which types of

dataset sites (columns in a multiple sequence alignment) tend to give most of

the erroenous imputation results. We found that classes of polymorphic sites with

intermediate frequency tend to have high levels of genotype discordance. Thus, we

propose a priori removal of such sites, in order to improve the imputation accuracy.

In our third simulated scenario, recombination was taken into consideration. The

phylogenetic tree-based and kNN-based imputation were efficient and the inter-

population variation was conserved. This was a rather unexpected result since we

strongly acknowledge the detrimental effect of the recombination in the accurate

tree estimation. Even though population structure was successfully recovered,
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within population diversity was probably reduced as a result of the ‘guidance’

provided by the phylogenetic tree. This intra-population effect will be the subject

of a future work plan.

We extended our primary single-tree-based imputation by employing ‘local’

trees from defined regions of the genome, using information about recombination

across the genome. In this way, each region would be represented by a local tree

that would possibly be more accurate for the specific region from the tree inferred

using the whole genome, leading to more precise imputation. Also, this approach

accounts for linkage disequilibrium, since all SNPs located proximal to each other

have been evolved under the same genealogy (and therefore they may have high

levels of LD). However, due to the limited amount of information that is present

locally, the process of tree reconstruction might be inaccurate. Thus, the idea

of imputation based on local trees is still ongoing and we aspire for more robust

results in the upcoming time.
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CHAPTER 5 : CONCLUSIONS

This study set out to describe and evaluate methodologies for the inference of

population structure, using data from ancient DNA (aDNA). We focused on Di-

mensionality Reduction techniques and admixture analysis and we pointed out the

effect of missing data on these methods. A major finding concerns the widely used

approach of projecting ancient individuals onto Principal Components inferred

from the present-day variation in PCA, implemented by the smartpca software,

which was proven doubtful and could produce misleading results. The alternative

approaches of MDS and the state-of-the-art EMU and f4-PCA seemed more ac-

curate than PCA and further studies concerning them would be worthwhile. The

raised issue of the introduced bias by the missing data was followed by imputation

approaches in order to overcome it. This study revealed the weakness of mean

imputation and demonstrated the accuracy of kNN imputation in all of the simu-

lated scenarios. Importantly, it contributed to the development of new imputation

approaches as well, with our proposed phylogeny-based imputation which yielded

as accurate results as kNN. However, it is preferable to kNN because it takes

into account the evolutionary distances among the individuals. Summarizing, this

work highlights the caution with which the interpretation of population relation-

ships should be treated, especially in the presence of high missingness which is

very common in aDNA and addresses the arised challenges of information loss by

imputation, paving the way for more robust inferences in aDNA studies.



72



BIBLIOGRAPHY

D. H. Alexander, J. Novembre, and K. Lange. Fast model-based estimation of ancestry
in unrelated individuals. Genome research, 19(9):1655–1664, 2009.

M. E. Allentoft, M. Sikora, K.-G. Sjögren, S. Rasmussen, M. Rasmussen, J. Stenderup,
P. B. Damgaard, H. Schroeder, T. Ahlström, L. Vinner, et al. Population genomics
of bronze age eurasia. Nature, 522(7555):167–172, 2015.

K. Ausmees, F. Sanchez-Quinto, M. Jakobsson, and C. Nettelblad. An empirical evalu-
ation of genotype imputation of ancient dna. bioRxiv, 2021.

M. Balter. Was north africa the launch pad for modern human migrations?, 2011.

A. Bergström, L. Frantz, R. Schmidt, E. Ersmark, O. Lebrasseur, L. Girdland-Flink,
A. T. Lin, J. Storå, K.-G. Sjögren, D. Anthony, et al. Origins and genetic legacy of
prehistoric dogs. Science, 370(6516):557–564, 2020.

K. I. Bos, V. J. Schuenemann, G. B. Golding, H. A. Burbano, N. Waglechner, B. K.
Coombes, J. B. McPhee, S. N. DeWitte, M. Meyer, S. Schmedes, et al. A draft
genome of yersinia pestis from victims of the black death. Nature, 478(7370):506–510,
2011.

K. I. Bos, K. M. Harkins, A. Herbig, M. Coscolla, N. Weber, I. Comas, S. A. Forrest,
J. M. Bryant, S. R. Harris, V. J. Schuenemann, et al. Pre-columbian mycobacterial
genomes reveal seals as a source of new world human tuberculosis. Nature, 514(7523):
494–497, 2014.

K. I. Bos, G. Jäger, V. J. Schuenemann, Å. J. Vågene, M. A. Spyrou, A. Herbig,
K. Nieselt, and J. Krause. Parallel detection of ancient pathogens via array-based
dna capture. Philosophical Transactions of the Royal Society B: Biological Sciences,
370(1660):20130375, 2015.

S. R. Browning and B. L. Browning. Rapid and accurate haplotype phasing and missing-
data inference for whole-genome association studies by use of localized haplotype clus-
tering. The American Journal of Human Genetics, 81(5):1084–1097, 2007.

W. S. Bush and J. H. Moore. Chapter 11: Genome-wide association studies. PLoS
computational biology, 8(12):e1002822, 2012.

A. G. Clark, M. J. Hubisz, C. D. Bustamante, S. H. Williamson, and R. Nielsen. Ascer-
tainment bias in studies of human genome-wide polymorphism. Genome research, 15
(11):1496–1502, 2005.

F. Clemente, M. Unterländer, O. Dolgova, C. E. G. Amorim, F. Coroado-Santos,
S. Neuenschwander, E. Ganiatsou, D. I. C. Dávalos, L. Anchieri, F. Michaud, et al.
The genomic history of the aegean palatial civilizations. Cell, 184(10):2565–2586,
2021.

. G. P. Consortium et al. A map of human genome variation from population scale
sequencing. Nature, 467(7319):1061, 2010.



74

Cox and Cox. Multidimensional scaling in Handbook of data visualization. Springer
Science & Business Media, 2007.

J. Dabney, M. Meyer, and S. Pääbo. Ancient dna damage. Cold Spring Harbor perspec-
tives in biology, 5(7):a012567, 2013.

M. Dehasque, M. C. Ávila-Arcos, D. Díez-del Molino, M. Fumagalli, K. Guschanski,
E. D. Lorenzen, A.-S. Malaspinas, T. Marques-Bonet, M. D. Martin, G. G. Murray,
et al. Inference of natural selection from ancient dna. Evolution Letters, 4(2):94–108,
2020.

T. R. Disotell. Human evolution: origins of modern humans still look recent. Current
Biology, 9(17):R647–R650, 1999.

J. Y. Dutheil. Statistical population genomics. Springer Nature, 2020.

E. Elhaik. Why most principal component analyses (pca) in population genetic studies
are wrong. BioRxiv, 2021.

W. J. Ewens. Mathematical population genetics: theoretical introduction, volume 1.
Springer, 2004.

L. Fehren-Schmitz and L. Georges. Ancient dna reveals selection acting on genes asso-
ciated with hypoxia response in pre-columbian peruvian highlanders in the last 8500
years. Scientific reports, 6(1):1–11, 2016.

J. Felsenstein. Maximum-likelihood estimation of evolutionary trees from continuous
characters. American journal of human genetics, 25(5):471, 1973.

V. Fernandes, F. Alshamali, M. Alves, M. D. Costa, J. B. Pereira, N. M. Silva, L. Cherni,
N. Harich, V. Cerny, P. Soares, et al. The arabian cradle: mitochondrial relicts of the
first steps along the southern route out of africa. The American Journal of Human
Genetics, 90(2):347–355, 2012.

R. A. Fisher. The causes of human variability. The Eugenics Review, 10(4):213, 1919.

L. A. Frantz, J. Haile, A. T. Lin, A. Scheu, C. Geörg, N. Benecke, M. Alexander,
A. Linderholm, V. E. Mullin, K. G. Daly, et al. Ancient pigs reveal a near-complete
genomic turnover following their introduction to europe. Proceedings of the National
Academy of Sciences, 116(35):17231–17238, 2019.

M. Fumagalli, F. G. Vieira, T. S. Korneliussen, T. Linderoth, E. Huerta-Sánchez, A. Al-
brechtsen, and R. Nielsen. Quantifying population genetic differentiation from next-
generation sequencing data. Genetics, 195(3):979–992, 2013.

G. González-Fortes, E. R. Jones, E. Lightfoot, C. Bonsall, C. Lazar, A. Grandal-
d’Anglade, M. D. Garralda, L. Drak, V. Siska, A. Simalcsik, et al. Paleogenomic evi-
dence for multi-generational mixing between neolithic farmers and mesolithic hunter-
gatherers in the lower danube basin. Current Biology, 27(12):1801–1810, 2017.

J. C. Gower. Some distance properties of latent root and vector methods used in multi-
variate analysis. Biometrika, 53(3-4):325–338, 1966.



75

R. E. Green, J. Krause, A. W. Briggs, T. Maricic, U. Stenzel, M. Kircher, N. Patterson,
H. Li, W. Zhai, M. H.-Y. Fritz, et al. A draft sequence of the neandertal genome.
science, 328(5979):710–722, 2010.

D. Gronenborn. A variation on a basic theme: the transition to farming in southern
central europe. Journal of world prehistory, 13(2):123–210, 1999.

T. Günther, H. Malmström, E. M. Svensson, A. Omrak, F. Sánchez-Quinto, G. M. Kılınç,
M. Krzewińska, G. Eriksson, M. Fraser, H. Edlund, A. R. Munters, A. Coutinho,
L. G. Simões, M. Vicente, A. Sjölander, B. Jansen Sellevold, R. Jørgensen, P. Claes,
M. D. Shriver, C. Valdiosera, M. G. Netea, J. Apel, K. Lidén, B. Skar, J. Storå,
A. Götherström, and M. Jakobsson. Population genomics of mesolithic scandinavia:
Investigating early postglacial migration routes and high-latitude adaptation. PLOS
Biology, 16(1):1–22, 01 2018. URL https://doi.org/10.1371/journal.pbio.20037
03.

W. Haak, I. Lazaridis, N. Patterson, N. Rohland, S. Mallick, B. Llamas, G. Brandt,
S. Nordenfelt, E. Harney, K. Stewardson, et al. Massive migration from the steppe
was a source for indo-european languages in europe. Nature, 522(7555):207–211, 2015.

E. Hagelberg, L. S. Bell, T. Allen, A. Boyde, S. J. Jones, and J. B. Clegg. Analysis
of ancient bone dna: techniques and applications. Philosophical Transactions of the
Royal Society of London. Series B: Biological Sciences, 333(1268):399–407, 1991.

D. L. Hartl, A. G. Clark, and A. G. Clark. Principles of population genetics, volume
116. Sinauer associates Sunderland, 1997.

B. M. Henn, L. L. Cavalli-Sforza, and M. W. Feldman. The great human expansion.
Proceedings of the National Academy of Sciences, 109(44):17758–17764, 2012.

R. Higuchi, B. Bowman, M. Freiberger, O. A. Ryder, and A. C. Wilson. Dna sequences
from the quagga, an extinct member of the horse family. nature, 312(5991):282–284,
1984.

Z. Hofmanová, S. Kreutzer, G. Hellenthal, C. Sell, Y. Diekmann, D. Díez del Molino,
L. van Dorp, S. López, A. Kousathanas, V. Link, K. Kirsanow, L. Cassidy, R. Martini-
ano, M. Strobel, A. Scheu, K. Kotsakis, P. Halstead, S. Triantaphyllou, N. Kyparissi,
and J. Burger. Early farmers from across europe directly descended from neolithic
aegeans. Proceedings of the National Academy of Sciences, 113:201523951, 06 2016.
doi: 10.1073/pnas.1523951113.

B. N. Howie, P. Donnelly, and J. Marchini. A flexible and accurate genotype imputation
method for the next generation of genome-wide association studies. PLoS genetics, 5
(6):e1000529, 2009.

R. R. Hudson. Generating samples under a wright–fisher neutral model of genetic vari-
ation. Bioinformatics, 18(2):337–338, 2002.

M. Jamshidian and P. M. Bentler. Ml estimation of mean and covariance structures with
missing data using complete data routines. Journal of Educational and behavioral
Statistics, 24(1):21–24, 1999.

https://doi.org/10.1371/journal.pbio.2003703
https://doi.org/10.1371/journal.pbio.2003703


76

L. Jorde. Genetic variation and human evolution. https://education.nsw.gov.au/c
ontent/dam/main-education/teaching-and-learning/curriculum/key-learnin
g-areas/science/s-6/biology/Genetic_variation_and_human_evolution_resou
rce.pdf, 2020. Accessed: 2022-04-27.

T. H. Jukes, C. R. Cantor, et al. Evolution of protein molecules. Mammalian protein
metabolism, 3:21–132, 1969.

M. Kimura. Genetic variability maintained in a finite population due to mutational
production of neutral and nearly neutral isoalleles. Genetics research, 11(3):247–270,
1968.

M. Kimura. The neutral theory of molecular evolution. Cambridge University Press,
1983.

J. F. C. Kingman. The coalescent. Stochastic processes and their applications, 13(3):
235–248, 1982.

I. Lazaridis, N. Patterson, A. Mittnik, G. Renaud, S. Mallick, K. Kirsanow, P. H. Sud-
mant, J. G. Schraiber, S. Castellano, M. Lipson, et al. Ancient human genomes
suggest three ancestral populations for present-day europeans. Nature, 513(7518):
409–413, 2014.

S.-Y. Lee. Handbook of latent variable and related models. Elsevier, 2011.

R. C. Lewontin and J. L. Hubby. A molecular approach to the study of genic heterozy-
gosity in natural populations. ii. amount of variation and degree of heterozygosity in
natural populations of drosophila pseudoobscura. Genetics, 54(2):595, 1966.

T. Lindahl. Instability and decay of the primary structure of dna. nature, 362(6422):
709–715, 1993.

M. Lipson, O. Cheronet, S. Mallick, N. Rohland, M. Oxenham, M. Pietrusewsky, T. O.
Pryce, A. Willis, H. Matsumura, H. Buckley, et al. Ancient genomes document multiple
waves of migration in southeast asian prehistory. Science, 361(6397):92–95, 2018.

N. Liu and H. Zhao. A non-parametric approach to population structure inference using
multilocus genotypes. Human genomics, 2(6):1–12, 2006.

I. Maceda, M. M. Álvarez, G. Athanasiadis, R. Tonda, J. Camps, S. Beltran, A. Camps,
J. Fàbrega, J. Felisart, J. Grané, et al. Fine-scale population structure in five ru-
ral populations from the spanish eastern pyrenees using high-coverage whole-genome
sequence data. European Journal of Human Genetics, 29(10):1557–1565, 2021.

L. Malan, C. M. Smuts, J. Baumgartner, and C. Ricci. Missing data imputation via the
expectation-maximization algorithm can improve principal component analysis aimed
at deriving biomarker profiles and dietary patterns. Nutrition Research, 75:67–76,
2020.

J. Marchini, L. R. Cardon, M. S. Phillips, and P. Donnelly. The effects of human
population structure on large genetic association studies. Nature genetics, 36(5):512–
517, 2004.

https://education.nsw.gov.au/content/dam/main-education/teaching-and-learning/curriculum/key-learning-areas/science/s-6/biology/Genetic_variation_and_human_evolution_resource.pdf
https://education.nsw.gov.au/content/dam/main-education/teaching-and-learning/curriculum/key-learning-areas/science/s-6/biology/Genetic_variation_and_human_evolution_resource.pdf
https://education.nsw.gov.au/content/dam/main-education/teaching-and-learning/curriculum/key-learning-areas/science/s-6/biology/Genetic_variation_and_human_evolution_resource.pdf
https://education.nsw.gov.au/content/dam/main-education/teaching-and-learning/curriculum/key-learning-areas/science/s-6/biology/Genetic_variation_and_human_evolution_resource.pdf


77

M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka,
M. S. Braverman, Y.-J. Chen, Z. Chen, et al. Genome sequencing in microfabricated
high-density picolitre reactors. Nature, 437(7057):376–380, 2005.

I. Mathieson, I. Lazaridis, N. Rohland, S. Mallick, N. Patterson, S. A. Roodenberg,
E. Harney, K. Stewardson, D. Fernandes, M. Novak, et al. Genome-wide patterns of
selection in 230 ancient eurasians. Nature, 528(7583):499–503, 2015.

I. Mathieson, S. Alpaslan-Roodenberg, C. Posth, A. Szécsényi-Nagy, N. Rohland,
S. Mallick, I. Olalde, N. Broomandkhoshbacht, F. Candilio, O. Cheronet, et al. The
genomic history of southeastern europe. Nature, 555(7695):197–203, 2018.

G. McVean. A genealogical interpretation of principal components analysis. PLoS ge-
netics, 5(10):e1000686, 2009.

J. Meisner, S. Liu, M. Huang, and A. Albrechtsen. Large-scale inference of population
structure in presence of missingness using pca. Bioinformatics, 37(13):1868–1875,
2021.

M. Melé, A. Javed, M. Pybus, P. Zalloua, M. Haber, D. Comas, M. G. Netea, O. Bal-
anovsky, E. Balanovska, L. Jin, et al. Recombination gives a new insight in the effective
population size and the history of the old world human populations. Molecular biology
and evolution, 29(1):25–30, 2012.

P. Menozzi, A. Piazza, and L. Cavalli-Sforza. Synthetic maps of human gene frequencies
in europeans: These maps indicate that early farmers of the near east spread to all of
europe in the neolithic. Science, 201(4358):786–792, 1978.

D. Money, K. Gardner, Z. Migicovsky, H. Schwaninger, G.-Y. Zhong, and S. Myles.
Linkimpute: fast and accurate genotype imputation for nonmodel organisms. G3:
Genes, Genomes, Genetics, 5(11):2383–2390, 2015.

J. Novembre and M. Stephens. Interpreting principal component analyses of spatial
population genetic variation. Nature genetics, 40(5):646–649, 2008.

C. Ottoni, W. Van Neer, B. De Cupere, J. Daligault, S. Guimaraes, J. Peters, N. Spassov,
M. E. Prendergast, N. Boivin, A. Morales-Muñiz, et al. The palaeogenetics of cat
dispersal in the ancient world. Nature Ecology & Evolution, 1(7):1–7, 2017.

S. Pääbo, H. Poinar, D. Serre, V. Jaenicke-Després, J. Hebler, N. Rohland, M. Kuch,
J. Krause, L. Vigilant, and M. Hofreiter. Genetic analyses from ancient dna. Annu.
Rev. Genet., 38:645–679, 2004.

P. Paschou, E. Ziv, E. G. Burchard, S. Choudhry, W. Rodriguez-Cintron, M. W. Ma-
honey, and P. Drineas. Pca-correlated snps for structure identification in worldwide
human populations. PLoS genetics, 3(9):e160, 2007.

N. Patterson, A. L. Price, and D. Reich. Population structure and eigenanalysis. PLoS
genetics, 2(12):e190, 2006.

N. Patterson, P. Moorjani, Y. Luo, S. Mallick, N. Rohland, Y. Zhan, T. Genschoreck,
T. Webster, and D. Reich. Ancient admixture in human history. Genetics, 192(3):
1065–1093, 2012.



78

B. O. Petrazzini, H. Naya, F. Lopez-Bello, G. Vazquez, and L. Spangenberg. Evaluation
of different approaches for missing data imputation on features associated to genomic
data. BioData mining, 14(1):1–13, 2021.

H. N. Poinar and A. Cooper. Ancient dna: do it right or not at all. Science, 5482(1139):
416, 2000.

A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich.
Principal components analysis corrects for stratification in genome-wide association
studies. Nature genetics, 38(8):904–909, 2006.

J. K. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using
multilocus genotype data. Genetics, 155(2):945–959, 2000.

S. Purcell and P. Sham. Properties of structured association approaches to detecting
population stratification. Human heredity, 58(2):93–107, 2004.

M. Raghavan, P. Skoglund, K. E. Graf, M. Metspalu, A. Albrechtsen, I. Moltke, S. Ras-
mussen, T. W. Stafford Jr, L. Orlando, E. Metspalu, et al. Upper palaeolithic siberian
genome reveals dual ancestry of native americans. Nature, 505(7481):87–91, 2014.

M. M. Rahman and D. N. Davis. Fuzzy unordered rules induction algorithm used as
missing value imputation methods for k-mean clustering on real cardiovascular data.
Lect Notes Eng Comput Sci, 2197(1):391–4, 2012.

D. Reich, A. L. Price, and N. Patterson. Principal component analysis of genetic data.
Nature genetics, 40(5):491–492, 2008.

D. Reich, K. Thangaraj, N. Patterson, A. L. Price, and L. Singh. Reconstructing indian
population history. Nature, 461(7263):489–494, 2009.

D. Reich, R. E. Green, M. Kircher, J. Krause, N. Patterson, E. Y. Durand, B. Viola,
A. W. Briggs, U. Stenzel, P. L. Johnson, et al. Genetic history of an archaic hominin
group from denisova cave in siberia. Nature, 468(7327):1053–1060, 2010.

D. Reich, N. Patterson, M. Kircher, F. Delfin, M. R. Nandineni, I. Pugach, A. M.-S. Ko,
Y.-C. Ko, T. A. Jinam, M. E. Phipps, et al. Denisova admixture and the first modern
human dispersals into southeast asia and oceania. The American Journal of Human
Genetics, 89(4):516–528, 2011.

D. E. Reich, M. Cargill, S. Bolk, J. Ireland, P. C. Sabeti, D. J. Richter, T. Lavery,
R. Kouyoumjian, S. F. Farhadian, R. Ward, et al. Linkage disequilibrium in the
human genome. Nature, 411(6834):199–204, 2001.

C. Renfrew. Models of change in language and archaeology. Transactions of the Philo-
logical Society, 87(2):103–155, 1989.

M. P. Richards, R. Jacobi, J. Cook, P. B. Pettitt, and C. B. Stringer. Isotope evidence
for the intensive use of marine foods by late upper palaeolithic humans. Journal of
Human Evolution, 49(3):390–394, 2005.

D. B. Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.



79

S. Rubinacci, O. Delaneau, and J. Marchini. Genotype imputation using the positional
burrows wheeler transform. PLoS genetics, 16(11):e1009049, 2020.

V. J. Schuenemann, P. Singh, T. A. Mendum, B. Krause-Kyora, G. Jäger, K. I. Bos,
A. Herbig, C. Economou, A. Benjak, P. Busso, et al. Genome-wide comparison of
medieval and modern mycobacterium leprae. Science, 341(6142):179–183, 2013.

H. P. Schwarcz and R. Grün. Electron spin resonance (esr) dating of the origin of modern
man. Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences, 337(1280):145–148, 1992.

H. Schwender. Imputing missing genotypes with weighted k nearest neighbors. Journal
of Toxicology and Environmental Health, Part A, 75(8-10):438–446, 2012.

E.-L. Silva-Ramírez, R. Pino-Mejías, M. López-Coello, and M.-D. Cubiles-de-la Vega.
Missing value imputation on missing completely at random data using multilayer
perceptrons. Neural Networks, 24(1):121–129, 2011.

P. Skoglund, B. H. Northoff, M. V. Shunkov, A. P. Derevianko, S. Pääbo, J. Krause, and
M. Jakobsson. Separating endogenous ancient dna from modern day contamination
in a siberian neandertal. Proceedings of the National Academy of Sciences, 111(6):
2229–2234, 2014.

P. Skoglund, E. Ersmark, E. Palkopoulou, and L. Dalén. Ancient wolf genome reveals an
early divergence of domestic dog ancestors and admixture into high-latitude breeds.
Current Biology, 25(11):1515–1519, 2015.

M. Stephens, N. J. Smith, and P. Donnelly. A new statistical method for haplotype
reconstruction from population data. The American Journal of Human Genetics, 68
(4):978–989, 2001.

C. Stringer. The status of homo heidelbergensis (schoetensack 1908). Evolutionary
Anthropology: Issues, News, and Reviews, 21(3):101–107, 2012.

S. Tavaré et al. Some probabilistic and statistical problems in the analysis of dna se-
quences. Lectures on mathematics in the life sciences, 17(2):57–86, 1986.

A. G. Thorne and M. H. Wolpoff. The multiregional evolution of humans. Scientific
American, 266(4):76–83, 1992.

O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Bot-
stein, and R. B. Altman. Missing value estimation methods for dna microarrays.
Bioinformatics, 17(6):520–525, 2001.

P. Verdu, T. J. Pemberton, R. Laurent, B. M. Kemp, A. Gonzalez-Oliver, C. Gorodezky,
C. E. Hughes, M. R. Shattuck, B. Petzelt, J. Mitchell, et al. Patterns of admixture
and population structure in native populations of northwest north america. PLoS
genetics, 10(8):e1004530, 2014.

K. Wang, S. Goldstein, M. Bleasdale, B. Clist, K. Bostoen, P. Bakwa-Lufu, L. T. Buck,
A. Crowther, A. Dème, R. J. McIntosh, et al. Ancient genomes reveal complex patterns
of population movement, interaction, and replacement in sub-saharan africa. Science
Advances, 6(24):eaaz0183, 2020.



80

S. Wright et al. Genetical structure of populations. Nature, 166:247–49, 1950.

M. A. Yang, X. Fan, B. Sun, C. Chen, J. Lang, Y.-C. Ko, C.-h. Tsang, H. Chiu, T. Wang,
Q. Bao, et al. Ancient dna indicates human population shifts and admixture in north-
ern and southern china. Science, 369(6501):282–288, 2020.

X. Yi and E. K. Latch. Nonrandom missing data can bias principal component analysis
inference of population genetic structure. Molecular Ecology Resources, 22(2):602–611,
2022.


	1 Introduction
	1.1 Genetic Variation
	1.1.1 Single Nucleotide Polymorphisms (SNPs)
	1.1.2 Origin of genetic variation
	1.1.3 Evolutionary processes
	1.1.4 Linkage Disequilibrium (LD)

	1.2 Population Genetics
	1.2.1 The Wright-Fisher model
	1.2.2 Coalescent Theory
	1.2.3 Population structure

	1.3 Ancient DNA & Archaeogenomics
	1.3.1 Characteristics of aDNA
	1.3.2 Applications of aDNA studies
	1.3.3 Sequencing approaches

	1.4 Human Demographic history
	1.4.1 Origin and expansion of modern humans
	1.4.2 Demographic history of Europe

	1.5 Missing data and imputation

	2 Materials & Methods
	2.1 Data and preprocessing
	2.2 Population structure and origin analysis; Admixture analysis
	2.3 Dimensionality Reduction Techniques
	2.3.1 Principal Component Analysis (PCA)
	2.3.2 Multidimensional Scaling (MDS)
	2.3.3 EMU

	2.4 f-statistics
	2.5 Imputation methodologies
	2.5.1 Mean imputation
	2.5.2 kNN imputation
	2.5.3 Phylogeny-based imputation

	2.6 Generating artificial data to test imputation methods; the ms simulator

	3 Results
	3.1 Dimensionality reduction techniques
	3.1.1 Principal Component Analysis (PCA)
	3.1.2 Multidimensional Scaling (MDS)
	3.1.3 State-of-the-art approaches; EMU and f4-PCA

	3.2 Admixture analysis
	3.3 FST and f3-statistic
	3.4 Imputation approaches
	3.4.1 Mean, kNN and phylogeny-based imputation
	3.4.2 Evaluating the phylogeny-based imputation
	3.4.3 Imputation on real data


	4 Discussion
	4.1 Dimensionality reduction methods
	4.2 Population structure
	4.3 Missing genotype data

	5 Conclusions
	BIBLIOGRAPHY

