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Abstract

Industrial processes and research activities quite often involve interactions between self-
interested participants. Game theory is a standard tool to analyze and study these interactions,
but usually comes along with the assumption that the participants (i.e. agents, players) have
a common and correct (albeit not always complete) knowledge with regards to the abstract
formulation of the interaction. However, in many real-world situations, it could be the case
that (some of) the agents are misinformed with regards to the game that they play, essentially
having an incorrect understanding of the setting, without being aware of it. This would
invalidate the common knowledge assumption. To study this phenomenon in this dissertation
we establish a new framework.

We initiate our study by presenting a new game-theoretic framework, called misinformation
games, that provides the formal machinery necessary to study this phenomenon, and present
some basic results regarding its properties. Interestingly, the new concept provides new
equilibrium concepts, related to the Nash equilibrium. Thereupon, we introduce a new metric,
called Price of Misinformation, in order to quantify the influence of misinformation in the
efficiency of the interaction. Furthermore, we apply our framework in a variety of well-known
classes of games.

Afterwards, we expand the misinformation game model, by developing a discrete-time
iterative procedure, where in each time step each agent chooses an action according to the
(possibly erroneous) game specification that she possesses. Then, the actual payoffs that
correspond to the agglomeration of the agents’ choices are publicly announced, thus allowing
agents to update their information. Consequently, agents may re-evaluate their behaviour in
the next time step. We call this process Adaptation Procedure, and we provide various results
regarding its properties. Further, we present a complete analysis of the behaviour of the
agents as their game specifications are updated, and show that this leads to new equilibrium
concepts.

Thereafter, we enrich the Adaptation Procedure by incorporating the epistemic view
that each agent has regarding the interaction. Towards this direction, we formally define
the epistemic perspective of Adaptation Procedure in misinformation games. Namely, we
construct a process, called Epistemic Adaptive Evolution, where agents revise both their
information and their epistemic knowledge according to the game they play. This also provides
new equilibrium concepts. With this at hand, we complete our framework, through which we
can study the phenomenon of agent interaction with incorrect information.

Evidently, in several cases in our model, it is necessary to compute several equilibrium
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concepts. For that, we introduce a novel online learning algorithm. Specifically, we propose a
novel variant of the multiplicative weights update method using best-response strategies, that
guarantees last-iterate convergence for zero-sum games with a unique Nash equilibrium.

Next, we consider the case of misinformation games where the misinformation is due
to random noise that additively distorts the payoff matrices of the agents (e.g., due to
communication errors). We call this setting noisy games. We analyze the general properties
of two-players noisy games and we derive theoretical formulas which determine the probability
that the noise will significantly affect the strategic behaviour of the agents, based on the noise
intensity and pattern.

Following the analysis and study of interaction from the perspective of the participants, we
approach the problem from the perspective of the game’s designer. In particular, we introduce
a novel approach for Coordination mechanisms in games, based on the idea of misinforming
agents about the game formulation, in order to steer them towards a behaviour that leads to
an improved outcome in terms of social welfare. We propose a mechanism that provides the
agents with the right incentives to adopt a socially optimal behaviour by misinforming them.

Keywords: Misinformation games, Adaptation Procedure, Epistemic Adaptive Evolution,
natural misinformed equilibrium, stable misinformed equilibrium, Epistemic games, epistemic
natural equilibrium, stable epistemic natural equilibrium.

Supervisor: Dimitrios Plexousakis
Professor

Computer Science Department
University of Crete
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Περίληψη

Συχνά οι βιομηχανικές διεργασίες και οι ερευνητικές δραστηριότητες περιλαμβάνουν αλλη-

λεπιδράσεις μεταξύ συμμετεχόντων (ήτοι πράκτορες, παίχτες). Η Θεωρία Παιγνίων αποτελεί,

συχνά, το εργαλείο με το όποιο μελετάμε τέτοιου είδους αλληλεπιδράσεις· συνήθως περιλ-

αμβάνοντας την υπόθεση ότι οι πράκτορες έχουν κοινή και σωστή (χωρίς να είναι πάντοτε

πλήρης) πληροφορία σχετικά με την δραστηριότητα στην οποία συμμετέχουν. Ωστόσο, στον

πραγματικό κόσμο οι πράκτορες συχνά ενεργούν έχοντας λανθασμένη πληροφόρηση σχετικά

με την αλληλεπίδραση και τις συνθήκες της, χωρίς να το γνωρίζουν· ακυρώνοντας κατ΄ αυτόν

τον τρόπο την υπόθεση της κοινής και σωστής πληροφόρησης. Για να μελετήσουμε αυτό το

φαινόμενο, στην παρούσα διατριβή θεμελιώνουμε μια καινούργια δομή.

Αρχικά, εισάγουμε στην δομή μας μια καινούργια κλάση παιγνίων, την οποία ονομάζουμε

παίγνια εσφαλμένης πληροφορίας, η οποία μας παρέχει όλα τα αναγκαία θεωρητικά εργαλεία ώστε

να μελετήσουμε το φαινόμενο της αλληλεπίδρασης υπό εσφαλμένη πληροφορία. Αξιοσημείωτο

είναι ότι αυτή η κλάση παιγνίων παρέχει καινούργια σημεία ισορροπίας, τα οποία βασίζονται στα

σημεία ισορροπίας Nash. Παράλληλα, παρουσιάζουμε βασικές ιδιότητες της δομής αυτής και
την εφαρμόζουμε σε διάφορες κλασσικές κλάσεις παιγνίων. Ταυτοχρόνως, ορίζουμε μια νέα

μετρική η οποία ποσοτικοποιεί την επίδραση της εσφαλμένης πληροφορία στην απόδοση της

αλληλεπίδρασης.

Εν συνεχεία, επεκτείνουμε το μοντέλο των παιγνίων εσφαλμένης πληροφορίας, αναπτύσσοντας

μια επαναληπτική διαδικασία διακριτού χρόνου, όπου σε κάθε χρονικό βήμα κάθε πράκτορας

διαλέγει μια ενέργεια σύμφωνα με τις (πιθανώς εσφαλμένες) προδιαγραφές της αλληλεπίδρασης

που κατέχει. Κατόπιν, ανακοινώνονται δημόσια οι πραγματικές ανταμοιβές που λαμβάνουν

οι πράκτορες, σύμφωνα με τον συνδυασμό των επιλογών που έχουν κάνει· ενημερώνοντας

κατ’ αυτόν τον τρόπο την πληροφορία που κατέχουν. Ονομάζουμε αυτή την διαδικασία Δι-

αδικασία Προσαρμογής και παρουσιάζουμε θεωρητικά αποτελέσματα σχετικά με τις ιδιότητες

της. Περαιτέρω, αναλύουμε την συμπεριφοράς των πρακτόρων καθώς η πληροφορία που κατέχουν

ενημερώνεται, και αποδεικνύουμε ότι αυτή οδηγεί σε καινούργια σημεία ισορροπίας.

΄Επειτα, διευρύνουμε την Διαδικασία Προσαρμογής ενσωματώνοντας την γνωσιολογική θεώρηση

που έχει ο κάθε πράκτορας σχετικά με την αλληλεπίδραση στην οποία συμμετέχει. Προς αυτή

την κατεύθυνση, ορίζουμε τυπικά την γνωσιολογική θεώρηση της Διαδικασίας Προσαρμογής

στα παίγνια εσφαλμένης πληροφορίας. Συγκεκριμένα, κατασκευάζουμε μια διαδικασία, την οποία

ονομάζουμε Γνωσιολογική Προσαρμοστική Εξέλιξη, κατά την οποία οι πράκτορες αναθεωρούν

τόσο την πληροφορία που κατέχουν όσο και την γνωσιολογική πληροφορία σχετικά με την

αλληλεπίδραση στην οποία συμμετέχουν. ΄Οπως και στα προηγούμενα σκέλη του μοντέλου μας,
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αναδύονται καινούργια σημεία ισορροπίας. Με αυτό το μέρος της μελέτης, ολοκληρώνουμε την

δομή μέσω της οποίας μπορούμε να μελετήσουμε το φαινόμενο της αλληλεπιδράσης πρακτόρων

με εσφαλμένη πληροφορία.

Γίνεται άμεσα αντιληπτό ότι είναι σημαντικός ο υπολογισμός σημείων ισορροπίας (π.χ. Nash)
σε διάφορα σημεία του μοντέλου μας. Για τον λόγο αυτό, αναπτύσσουμε έναν καινούργιο on-line
αλγόριθμο μάθησης. Πιο συγκεκριμένα, προτείνουμε μια παραλλαγή της multiplicative weights
update μεθόδου, χρησιμοποιώντας best-response στρατηγικές, η οποία εγγυάται κατά σημείο
σύγκλιση για παίγνια μηδενικού αθροίσματος με μοναδικό σημείο ισορροπίας Nash.
Ως συνέχεια της μελέτης του φαινομένου της επίδρασης της εσφαλμένης πληροφορίας σε

αλληλεπιδράσεις πολλών πρακτόρων, αναλύουμε την επιρροή της δομής της εσφαλμένης πληρο-

φορίας στην αλληλεπίδραση. Συγκεκριμένα, εισάγουμε μια νεα οικογένεια παιγνίων εσφαλμένης

πληροφορίας, την οποία ονομάζουμε παίγνια θορύβου, όπου η εσφαλμένη πληροφορία εξαρτάται

από τυχαίο θόρυβο, ο οποίος προστίθεται στις τιμές των ανταμοιβών. Κατόπιν, αναλύουμε τις

γενικές ιδιότητες των παιγνίων θορύβου δύο παιχτών και εξάγουμε θεωρητικά αποτελέσματα

ως προς την επίδραση του θορύβου στην στρατηγική συμπεριφορά των πρακτόρων.

Τέλος, η μελέτη ολοκληρώνεται με την ανάλυση της αλληλεπίδρασης από την σκοπιά του

σχεδιαστή της. Πιο συγκεκριμένα, παρουσιάζουμε μια νεα προσέγγιση στην περιοχή των Co-
ordination mechanisms, βασιζόμενοι στην ιδέα ότι παρέχοντας εσφαλμένη πληροφορία στους
πράκτορες, σχετικά με τις προδιαγραφές της αλληλεπίδρασης, μπορούμε να τους κατευθύνουμε

σε συμπεριφορές που βελτιώνουν την απόδοση της αλληλεπίδρασης, με όρους συλλογικής πρόνοιας.

Προτείνουμε έναν μηχανισμό που παρέχει στους πράκτορες τα κατάλληλα κίνητρα ώστε να υιο-

θετήσουν μια συλλογικά καλύτερη συμπεριφορά.

Λέξεις κλειδιά: Παίγνια εσφαλμένης πληροφορίας, Διαδικασία Προσαρμογής, Γνωσιολογική

Προσαρμοστική Εξέλιξη, φυσικό σημείο ισορροπίας εσφαλμένης πληροφορίας, ευσταθές φυσικό

σημείο ισορροπίας εσφαλμένης πληροφορίας, Γνωσιολογικά Παίγνια, γνωσιολογικό φυσικό σημείο

ισορροπίας, ευσταθές γνωσιολογικό φυσικό σημείο ισορροπίας.

Επόπτης: Πλεξουσάκης Δημήτρης
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Τμήμα Επιστήμης Υπολογιστών

Πανεπιστήμιο Κρήτης

x



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Περίληψη (Abstract in Greek) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Modeling misinformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Misperception in games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Games with distorted payoff matrices . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Quantifying socially sub-optimal behaviour . . . . . . . . . . . . . . . . . . . 11
2.4 Iterative interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Dynamics in games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Structure of misinformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Coordination mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Normal-form games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Zero-sum games and approximate equilibria . . . . . . . . . . . . . . . . . . . 21
3.3 Learning Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Load-balancing games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Congestion games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Misinformation Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Normal-form games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Equilibria for Misinformation normal-form games . . . . . . . . . . . . 30
4.2.2 Price of Misinformation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Misinformation in load balancing games . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Equilibria in Misinformation load balancing games . . . . . . . . . . . 34
4.3.2 Price of Misinformation in load balancing games . . . . . . . . . . . . 35

4.4 Misinformation in non-atomic congestion games . . . . . . . . . . . . . . . . . 38

xi



5 Epistemic Adaptive Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 The Adaptation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Informal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.3 Stabilisation of the Adaptation Procedure . . . . . . . . . . . . . . . . 45

5.3 Adaptation Procedure: Visualisations . . . . . . . . . . . . . . . . . . . . . . 46
5.3.1 Adaptation Procedure Graph (AP-Graph) . . . . . . . . . . . . . . . . 46
5.3.2 Adaptation Procedure Induced Graph (API-Graph) . . . . . . . . . . 46

5.4 Adaptation Procedure: Properties . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.1 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.2 Termination, and existence of smes . . . . . . . . . . . . . . . . . . . . 48
5.4.3 Estimating the length of the Adaptation Procedure . . . . . . . . . . . 51

5.5 The Epistemic Adaptive Evolution . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5.1 Informal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5.3 Players’ Epistemic game . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.4 Epistemic Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5.5 Epistemic game playing . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Learning Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Informal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.2 A Revealing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Forward Looking Best-Response Multiplicative Weights Update Method . . . 67
6.2.1 Definition of the Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7 Noisy Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Noisy Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2.2 Strategies, strategy profiles and equilibria in misinformation games . . 91
7.2.3 Behavioural Consistency and ε-closeness . . . . . . . . . . . . . . . . . 92

7.3 Probabilities for Behavioural Consistency . . . . . . . . . . . . . . . . . . . . 94
7.3.1 Determining equilibrium strategies . . . . . . . . . . . . . . . . . . . . 94
7.3.2 Misinformation games . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.3 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 Results for Noisy games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.4.1 Effect of modifying tolerance (ε) . . . . . . . . . . . . . . . . . . . . . 108

xii



7.4.2 Effect of changing the game (G0) and the mean (M) . . . . . . . . . . 113
7.4.3 Effect of modifying noise intensity (D) . . . . . . . . . . . . . . . . . . 117

7.5 Discussion and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.5.1 Theoretical and Experimental Computation of the Probability that a

Game is (Inverse-)ε-misinformed . . . . . . . . . . . . . . . . . . . . . 125
7.5.2 Optimal strategy profiles in terms of efficiency . . . . . . . . . . . . . 129
7.5.3 PoM vs PoA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8 Mechanism Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2 The waterfilling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.3 Coordination mechanisms with misinformation . . . . . . . . . . . . . . . . . 135

9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.1 Research path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.2 Synopsis of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.2.1 Misinformation Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.2.2 Adaptation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.2.3 Epistemic Adaptive Evolution . . . . . . . . . . . . . . . . . . . . . . . 140
9.2.4 Learning Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2.5 Noisy Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2.6 Mechanism Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.3 Directions for Future Work and Research . . . . . . . . . . . . . . . . . . . . 142
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Appendices
A Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
B Supplementary material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.1 Basic Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.2 Kullback-Leibler divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
B.3 Auxiliary definitions and results . . . . . . . . . . . . . . . . . . . . . . . . . . 160
B.4 Jacobian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
B.5 Numerical experiments in noisy games . . . . . . . . . . . . . . . . . . . . . . 163

B.5.1 Case OP G
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.5.2 Case OMG
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.5.3 Case ROMG
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xiii



xiv



List of Figures

1.1 Games with information assumptions: (a) complete/correct, (b) incomplete/correct. 3
1.2 Schematic representation of two players’ games with misinformation. . . . . . 4
1.3 Graphical representation of misinformation in multi-agent systems. . . . . . . 5
1.4 Road map of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Graphical representation for the sequence of iterative approximations of MWU
(green), OMWUM (blue) and EG (red) from time step t− 1 to time step t + 1.
The dashed red curves represent the intermediate step of EG. . . . . . . . . . 25

4.1 Load balancing game and misinformed load balancing game: (a) optimal assign-
ment, (b) worst Nash equilibrium allocation, (c-d) worst natural misinformed
equilibrium allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Non-atomic congestion game with 2 parallel links. . . . . . . . . . . . . . . . . . . 40

5.1 Schematic representation of the functionality of Adaptation Procedure from
time step t to time step t + 1, that is ADt+1 (mG). . . . . . . . . . . . . . . . 45

5.2 AP-Graph of Adaptation Procedure for misinformation game in Example 5.2,
with {mG(1), mG2a} ∈ AD(1) ({mG}) and {mG(2b), mG(3c)} ∈ AD(2) ({mG}). 47

5.3 API graph in mG’s games for Example 5.2. . . . . . . . . . . . . . . . . . . . 47
5.4 Player q revises his/her beliefs. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Revision for each player when information about position VA is publicly an-

nounced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Schematic representation of the epistemic adaptive evolution with the epistemic

evolution and the adaptive update of the agents. . . . . . . . . . . . . . . . . 64

6.1 Schematic representation of the convergence path of OMWU (red) and FLBR-MWU
(black), starting from the uniform point (x0, y0). . . . . . . . . . . . . . . . . . . 68

6.2 A random realization of the learning dynamics for three variants of MWU. . . 68
6.3 The DKL between the Nash equilibrium and the FLBR-MWU dynamics for

two instances and no rescaling of x-axis (upper panels) and with rescaling
(lower panels). The relationship between the number of steps and learning rate
is inversely proportional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xv



6.4 The value of the game as a function of the number of steps for the three MWU
variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 The dynamics of the update step per coordinate (solid), as well as the IBR
step (dashed) for the row player. For the equilibrium strategy x∗, it holds that
supp(x∗) = {1, 2, 4, 5, 7, 9}. Note that xt converges to the same support. . . . 81

6.6 Same as Figure 6.5, but in logarithmic scale. . . . . . . . . . . . . . . . . . . 82
6.7 The dynamics of the update step per coordinate (solid), as well as the IBR

step (dashed) for the column player. For the equilibrium strategy y∗, it holds
that supp(y∗) = {2, 4, 5, 8, 9, 10}. . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.8 Same as Figure 6.7, but in logarithmic scale. . . . . . . . . . . . . . . . . . . 84
6.9 Boxplots for the number of steps until convergence for various values of ξ and

two payoff matrix sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.10 Boxplots for the number of steps until convergence for various payoff matrix

sizes under FLBR-MWU (left) and OMWU/OMD (right). The computational
gains when FLBR-MWU is used are striking. . . . . . . . . . . . . . . . . . . 86

6.11 KL divergence and l1 norm difference for tmax = 5× 106 and two values for the
learning rate: η = 0.1 (upper row of panels) and η = 0.02 (lower row of panels). 86

7.1 Behavioral consistency between interaction with real specifications and interac-
tion with misinformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Example showing that P [mG : ε-misinformed] (blue), P [mG : inverse-ε-misinformed]
(orange) (vertical axis) have non-monotonic dependence to noise (horizontal
axis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Test cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4 Monte Carlo (MC) simulation and probabilistic formulas for Prisoner’s Dilemma

and Win-Win games. Vertical axis: (7.4a) P [mG : ε-misinformed], (7.4b)
P [mG : inverse-ε-misinformed]. Horizontal axis: noise intensity d. . . . . . . 126

7.5 Monte Carlo (MC) simulation and probabilistic formulas for Matching Pennies.
Vertical axis: (7.5a) P [mG : ε-misinformed], (7.5b) P [mG : inverse-ε-misinformed].
Horizontal axis: noise intensity d. . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.6 Monte Carlo (MC) simulation and probabilistic formulas for Battle of the Sexes.
Vertical axis: (??) P [mG : ε-misinformed], (??) P [mG : inverse-ε-misinformed].
Horizontal axis: noise intensity d. . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.7 Strategy profiles in terms of efficiency. . . . . . . . . . . . . . . . . . . . . . . 129
7.8 PoM plane for games in Table 7.3. . . . . . . . . . . . . . . . . . . . . . . . . 131

8.1 Two possible cases of waterfilling with different budget of power. . . . . . . . 134
8.2 Coordination mechanism with misinformation. . . . . . . . . . . . . . . . . . 138

9.1 Top view of the structure of misinformation games model. . . . . . . . . . . . 139

xvi



B.1 Illustration of water-filling algorithm. The height of each patch is given by αi.
The region is flooded to a level 1/nu∗ which uses a total quantity of water
equal to one. The height of the water (shown shaded) above each patch is the
optimal value of x∗

i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B.2 Cases OP G

x : (a) Prisoners’ Dilemma, (b) Matching Pennies, and (c) Battle of
the Sexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.3 Cases OMG
x : (a) Prisoners’ Dilemma, (b) Matching Pennies, and (c) Battle of

the Sexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.4 Cases ROMG

x : (a) Prisoners’ Dilemma, (b) Matching Pennies, and (c) Battle
of the Sexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

xvii



xviii



List of Tables

4.1 Payoff matrices for the PD and mPD. . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Statistics on the number of steps till convergence for various values of ξ and n.
The maximum number of steps was set to tmax = 106. . . . . . . . . . . . . . 78

6.2 Statistics on the number of steps till convergence for various sizes of the game.
The maximum number of steps was set to tmax = 5× 106. . . . . . . . . . . . 79

6.3 Quantile statistics on the number of steps till convergence for various values of
ξ and n. The maximum number of steps was set to tmax = 2× 106. . . . . . . 85

6.4 Statistics on the number of steps till convergence for OWMU, OMD and FLBR-
MWU and various payoff matrix sizes. The maximum number of steps was set
to tmax = 5× 106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1 Visualising the cases of Proposition 22, for x = r. . . . . . . . . . . . . . . . . 98
7.2 Scenarios for ε-misinformed and inverse-ε-misinformed . . . . . . . . . . . . . 102
7.3 Formulas related to U(y, x, i) for a given mG ∼ G0 +N (M , D). . . . . . . . 103
7.4 Various probabilities pertaining to a given mG ∼ G0 +N (M , D) (see also

Proposition 25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5 Probabilities for ε-misinformed and inverse-ε-misinformed (Pmis

r · Pmis
c and

P inv
r · P inv

c respectively – see also Theorems 7, 8) . . . . . . . . . . . . . . . . 107
7.6 Effect of tolerance on behavioural consistency (monotonicity) . . . . . . . . . 108
7.7 Minimal and maximal values for the probabilities of mG being (inverse-)ε-

misinformed (resulting by multiplying Pmis
r with Pmis

c and P inv
r with P inv

c

respectively) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xix



xx



List of Algorithms

1 Optimistic Multiplicative Weights Update method. . . . . . . . . . . . . . . . 23
2 Extra-gradient method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Waterfilling approach algorithm for computing a pure Nash equilibrium in
single-commodity non-atomic congestion games with n parallel links and affine
latency functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4 Linear program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5 Coordination mechanism algorithm for an abstract partition (k1, . . . , km) of n 137
6 Coordination mechanism algorithm . . . . . . . . . . . . . . . . . . . . . . . . 137

xxi



xxii



Chapter 1
Introduction

On the turn of the Century, we have witnessed an unprecedented growth in almost any
scientific field and discipline. Data sciences, sensing, communications, computations, and
automata, are only some of the research areas that have flourished, drastically changing the
way our society functions. A prominent role in this change is the way we collect, process
and integrate information. The recent progress in robotics, actuation and sensor network
make more and more evident the possibility of autonomous agents helping us achieve tasks
that are otherwise hazardous or impossible. Thus, unsurprisingly, the growing importance of
multi-agent systems has also been heavily acknowledged by the research community.

Specifically, a multi-agent system is a system composed of multiple interacting autonomous,
self-interested and intelligent agents†, and their environment. Typically, agents need to be
incentivized to choose a plan of action. Game theory [Nisan et al., 2007a] is a branch of
mathematics that models and analyzes the behavior of agents that have preferences over
possible outcomes and have to choose actions in order to implement these outcomes, when the
success of these outcomes also depends on the actions of other agents. Thus, it is perfectly
suited to provide a theoretical foundation for the analysis of a multi-agent system.

In general, game theory analyses many interaction settings considering several assumptions
as to agents’ perception, from the more strict consideration of common/correct information to
the thinner of imperfect/incomplete information. In the case of common/correct information
every specification of the interaction is known to the agents, whereas in the case of imper-
fect/incomplete assumption agents are unsure as to the specifications, they are well-aware of
that, and they do their best out of the uncertainty that they have. Hence, in either case agents
have at least some common perception (information, uncertainty etc.) about the underlying
interaction. For example, uncertainty is modeled in some formal means, usually through a
distribution that determines the probability of the different possible outcomes.

As game theory approaches becomes more involved in the development of modeling tools,
many issues arise regarding the aptness of such approaches. A reasoning agent is often faced
with erroneous and misleading information as regards the state of the world, and the possible

†Note that we use the terms “agent” and “player” interchangeably throughout the document.
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outcomes of his/her actions (see [Luce and Raiffa, 1957,Bennett, 1980,Feinberg, 2020]). This
could happen on purpose (e.g., by deceptive agents communicating wrong information), due
to random effects (e.g., noise in the communication channels, or erroneous sensor readings),
by design (e.g., when the game designer deceives the players to enforce a socially-optimal
behaviour) or due to environmental changes (e.g., when the game changes due to external
factors, without players’ knowledge). Moreover, this discrepancy may be the result of players’
limited awareness, bounded computational capacity, and cognitive restrictions. So, some
aspects of the situation, or the modeling and reasoning with regards to the situation leads
the players to incorporate only a selection, possibly incorrect, of the real aspects. Thus, they
may miss the most crucial specifications of the interaction, and they may interact relying on
a restricted and incorrect perception of the game. In a nutshell, players interact strategically
having been misinformed about the real situation.

The present dissertation addresses this problem, i.e., the game-theoretic scenarios where
players have been misinformed about the state of affairs, without being aware that such a
misinformation may exist. To address this problem, we establish a game theoretic model that
allows the players to have subjective specifications for their interaction, to interact with other
players’ different perceptions, to adapt their behaviour according to the information they
receive from the environment and from the decisions of other participants , and to agglomerate
these inferences to properly adapt their strategic behaviour; while allowing these subjective
views to (possibly) differ from reality.

1.1 Modeling misinformation
The modeling of multi-agent systems has been an active field of research for scholars in
Game theory. A common assumption in Game theory is that agents have a common (and
correct) knowledge with regards to the abstract formulation of the game (players, payoffs,
and strategies). This view is called games with complete information, i.e. see Figure 1.1a.
Nevertheless, often (some of) the players lack complete information as to the game they
participate. However, in many real-world situations it could be the case that (some of) the
players have incorrect information with regards to the game that they play. In this dissertation
we study the case where players are misinformed, meaning that they have different and/or
incorrect knowledge about the rules of interaction.

To study these situations, we relax the assumption that agents know the correct information
related to the abstract formulation of the game, and introduce the formal machinery necessary
to study multi-agent interactions where the agents may be misinformed with regards to the
game definition (players, strategies, payoff matrices). In a nutshell, the actions of the players
are dictated according to the subjective views they possess regarding the specifications of
the interaction. As these subjective views may differ from player to player, may emerged
many interesting or even “unexpected” behaviours. We call such games misinformation
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(a) (b)

Figure 1.1: Games with information assumptions: (a) complete/correct, (b) incom-
plete/correct.

games [Varsos et al., 2021].
Obviously, in such settings, game theory and logic dictate the strategic decisions and

actions of a player according to his/her view. On the other hand, the feedback, reward or
penalty that is received by the players is provisioned according to the real specifications,
which may differ from the ones that the players assume, see Figure 1.2.

Scenarios where agents lack complete information about the game specification have also
been considered in other contexts, e.g. interactions with incomplete knowledge [Harsanyi,
1967,Zamir, 2009], probabilistic views [Harsanyi, 1967,Zamir, 2009], misspecified views [Luce
and Raiffa, 1957] and utility theory [Peterson, 2009]. A popular approach that deals with
situations where players lack complete information is that of Bayesian game [Harsanyi,
1967, Zamir, 2009], where a critical assumption is that the agents are not sure about the
specifications of the game they participate, thus they take a “what if” stance. However, in
several cases this typically limits the alternative scenarios considered to a small number, i.e.,
the agents will associate a positive probability to only a (possible) small number of alternative
scenarios (specifically the scenarios that are aware of), see Figure 1.1a-1.1b. Thus, despite
the rigorous tools, solid results and clear insights in the multi-agent interactions provided
by Bayesian games, the issue of computational and cognitive limitations of the agents is not
addressed. In a nutshell, in Bayesian games agents know that they do not know, while in
misinformation games they do not know that they do not know.

On the other hand, utility theory is based on the assumption of rationality and describes
all decision outcomes in terms of the utility (or value) placed on them by agents. Within this
framework, decisions can be understood in terms of rationally ordered levels of utility attached
to different outcomes. Furthermore, uncertainty in utility theory is described by a class of
models designed to formalize the manner in which an agent chooses among alternative courses
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of action when the consequences of each course of action are not known at the time the choice
is made. But the concept of rationality is a great debate until now among utilitarians. Thus,
this theory can not approach players with misinformation.∗

Figure 1.2: Schematic representation of two players’ games with misinformation.

1.2 Research Questions
Having at hand the motivation we provide the main research questions that this thesis aims:

1. How do we model the concept of misinformation formally? [Chapters 4, 5, 7, 8]

2. How can we explain and predict, in formal terms, the difference in behavior in the
presence of misinformation? [Chapters 4, 5, 7, 8]

3. How decisive is the misinformation in various scenarios? [Chapters 4, 5, 7, 8]

4. How do we study the above in different classes of games? [Chapters 4, 7, 8]

5. How the different types of misinformation (i.e. undeliberate, random, by design) can be
modeled and what can we show for each? [Chapters 7, 8]

6. What equilibrium points exist in games with misinformation? [Chapters 4, 5]

7. How can we analyze the beliefs of misinformed players? [Chapter 5]

8. What happens in the misinformed views of the players when they interact with each
other? [Chapter 5]

9. Can we compute the equilibrium concepts arise from misinformation games in an learning
manner? [Chapter 6]

∗In general, game theory (Bayesian games) and utility theory interlinked in several concepts (e.g. utility
function), thus the differences between Bayesian games and misinformed games also hold for the framework of
utility theory under uncertainty.



1.3. Outline and Contribution 5

1.3 Outline and Contribution

In this thesis, we address the concept of misinformation games from various perspectives,
and for different problems that are related to the idea. Each of these different perspectives is
considered in its own chapter of this thesis. In more details, this thesis is organized as follows.

In Chapter 2 we present a literature review of the publications related to our study, this
review is quite extensive, as our work expands in several areas of game theory, using a range
of techniques and ideas.

Thereafter, in Chapter 3 we provide the basic game-theoretic background in order to
establish our theory. This chapter is provided to allow a self-contained dissertation, and is
meant to contain only the concepts, aspects, techniques and methodologies of game theory
that will be useful in the following; therefore, it should not be treated as a complete account
of game theory. Supplementary, the reader should look at the appendix sections, where we
present concepts that are used in the analysis and lie in mathematical fields other than game
theory.

Next, in Chapter 4 (see Misinformation games box in Figure 1.4) we present our game
theoretic framework, called misinformation games, that provides the formal machinery neces-
sary to study the phenomenon of misinformation with regards to the abstract formulation of
a game (players, payoffs, and strategies). We establish our theory for the case of normal-form
games [Shoham and Leyton-Brown, 2008]. As misinformation could play a prominent role
in the outcome of the game, without necessarily negative effects, we provide a metric that
measures the effect of misinformation on social welfare (compared to the optimum of the
actual game), that is called Price of Misinformation. Furthermore, we transfuse the concept
of misinformation games in the context of two other classes of games, load balancing games
and congestion games, so as to show the applicability of our method. This work was held
in collaboration with Dr. Giorgos Flouris, Dr. Marina Bitsaki and Dr. Michail Fasoulakis,
resulting in a presentation in the PRICAI 2021 conference, alongside with a publication [Varsos
et al., 2021].

In Chapter 5, we first develop and formulate mathematically a procedure for determining
the outcome of a sequential interaction between the players in misinformation games. In-
terestingly, the equilibrium point of this procedure does not coincide with any equilibrium
concept in the literature (see Adaptation Procedure box in Figure 1.4). Second, we enhance
this approach providing epistemic characteristics to the interaction. Specifically, a player can
infer the knowledge and beliefs that each participant possesses, by observing the decisions
that have been made (see Epistemic Adaptive Evolution box in Figure 1.4). Further, she/he
can take advantage of this higher-level information and take advantage of the opponents’
misinformation to his/her own benefit. Again, this analysis provides novel solution concepts.
This study was held in collaboration with Dr. Giorgos Flouris and Dr. Marina Bitsaki.

Furthermore, in Chapter 6 (see Learning Algorithm box in Figure 1.4) we study mis-
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Figure 1.3: Graphical representation of misinformation in multi-agent systems.

information games from a different perspective. Initially, we develop a no-regret learning
algorithm in order to compute the equilibrium points of a classical zero-sum game. To-
wards that direction, we propose a novel variant of multiplicative weights update method
with forward-looking best-response strategies that guarantees last iteration convergence for
zero-sum bimatrix games with unique Nash equilibrium; we call this method Forward Looking
Best Response Multiplicative Weights Update method (FLBR-MWU). The proposed algo-
rithm offers substantial gains compared to the state-of-the-art approaches [Mertikopoulos
et al., 2019, Daskalakis and Panageas, 2019]. With this at hand, we have an alternative
method to compute equilibria concepts that arise in misinformation games, and fulfill the
zero-sum condition. This part of the study was accomplished in collaboration with Dr. Michail
Fasoulakis, Prof. Vaggelis Markakis and Dr. Yannis Pantazis, resulting in a presentation in
the AISTATS 2022 conference, alongside with a publication [Fasoulakis et al., 2021].

Afterwards, we study a special case of misinformation, attributed to noise and signal errors,
a situation often occurring in distributed multi-agent systems. Specifically, in distributed multi-
agent systems, agents are equipped with an internal logic that allows them to autonomously
solve problems of a given nature. However, at deployment time, the precise specification of
these problems is often unknown; instead, the details are communicated as needed at operation
time, during the so-called “online phase” [Brown et al., 2017]. In such cases, unexpected
communication errors, malfunctions in the communication module or noise may cause the
agents to operate under a distorted problem specification, leading to unexpected behavior,
we address this problem in Chapter 7 (see Noisy games box in Figure 1.4). This part of the
study carried in collaboration with Dr. Giorgos Flouris and Dr. Marina Bitsaki, resulting in
a manuscript to be submitted soon in IEEE Transactions on Games journal.

Typically, agents need to be incentivized to choose a desirable plan of action. In Chapter 8
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Figure 1.4: Road map of the thesis.

we introduce a novel application of misinformation games for coordination mechanisms in
games, based on the idea of misinforming the players with regards to the game formulation to
lead them to a situation with an improved outcome in terms of social welfare (see Mechanism
Design box in Figure 1.4). For this, we study single-commodity non-atomic congestion games
with n parallel links and affine cost functions, where the players have a potentially different
view of the actual game that is being played. This study held in collaboration with Dr.
Michail Fasoulakis, Dr. Giorgos Flouris and Dr. Marina Bitsaki, resulting in a presentation
in the ICAART 2022 conference, alongside with a publication [Varsos et al., 2022].

Concluding, in Chapter 9 we provide a summary and conclusions of our study alongside
with short-term and long-term future directions.

Finally, the reader should consult Figure 1.4 where we present the interconnection between
all different aspects of the thesis. In the brackets inside each box we highlight the number
of research questions that are studied in the respective part of the thesis. Blue colored
boxes denote the areas that already exist in literature, and in which we contribute, whereas
the brown colored boxes represent the new areas that we introduce. Also, the yellow thick
boundary indicates our framework.
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Chapter 2
Related Work

There are several main strands of work on game theory that related to the concept of
misinformation games. These are:

1. Works that study misperception of the real situation.

2. Works that consider various settings and contexts in which the players play under payoff
matrices that are different than the actual one.

3. Works that study and quantify the deviations of players’ behaviour compared to the
socially optimal one, a concept that is very similar to the deviations in players’ behaviour
due to misinformation.

4. Works that study how the players behave in case of iterative interactions.

5. Works that study online learning.

6. Works that study how the structure of misinformation affects the behaviour of the
players.

7. Works that study the Coordination mechanisms.

We analyse these seven strands below, and elaborate on their relationship with misinformation
games.

2.1 Misperception in games
Starting from the concept of games with misperceptions (see Chapter 12 in [Luce and Raiffa,
1957]) many studies model subjective knowledge of players with regards to game specifications,
leading to the introduction of hypergames (HG) (e.g. [Bennett, 1980, Vane and Lehner,
2002, Sasaki and Kijima, 2012, Kovach et al., 2015, Cho et al., 2019, Bakker et al., 2021])
and games with unawareness (GwU) (e.g. [Copic and Galeotti, 2006,Schipper, 2014,Sasaki,
2017,Schipper, 2017,Feinberg, 2020]), where players may be playing different games. Although

9
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we share motivation with these approaches, there are also some crucial distinctions. First,
HG/GwU are behaviour-oriented (what the players will play), whereas misinformation games
are outcome-oriented. Furthermore, HG focus on perceptional differences among players, and
do not model the “actual game”, hence, HG lack grounding to the reality of the modelled
situation. In misinformation games we close this gap, modelling also the environment, and
allowing differences to also occur between each player and the environment. Moreover, in
GwU, though the “actual game” is used as the basis of the models, the analysis based on
consistency criteria and belief hierarchies. In misinformation games we do not make such
assumptions.

In [Halpern and Rêgo, 2014] authors define the notion of games with awareness based
on an extensive-form game; they agglomerate descriptions of reality, changes in players’
awareness and players’ subjective views. Also, they define a generalized Nash equilibrium that
is similar with our equilibrium concept. Nevertheless, their analysis is behaviour-oriented.
The work in [Feinberg, 2020] incorporates game and unawareness as interrelated objects,
whereas in [Copic and Galeotti, 2006] awareness architectures are provided to study players’
limited awareness of strategies. Further, in [Thadden and Zhao, 2014] authors focus on how
unawareness affects incentives, whereas [Schipper, 2018] provides a dynamic approach for
extensive-form games with unawareness. Moreover, [Ozbay, 2007] proposed a model for games
with uncertainty where players may have different awareness regarding a move of nature.

In [Chaib-Draa, 2001,Gharesifard and Cortés, 2011] studied the case where one of the
players knows the (mis)perceptions of the opponents. Also, in [Teneketzis and Castañón,
1983] the concept of subjective games is proposed, but without introducing any equilibrium
concept. Another approach is given in [Esponda and Pouzo, 2016a] where an equilibrium
concept is defined, but has a probabilistic dependence on the actual game specifications.

Further, [Antos and Pfeffer, 2010, Banks et al., 2020, Roponen et al., 2020] the case of
uncommon priors was studied, but without addressing the scenario of private priors, which is
the case considered in misinformation games.

2.2 Games with distorted payoff matrices
The idea of agents understanding a different payoff matrix than the actual one has been
considered for non-atomic routing games [Meir and Parkes, 2015b,Meir and Parkes, 2018], and
for normal-form games [Acar and Meir, 2020]. In these studies, the authors suggest that the
players play a modified game with cost functions potentially different than the actual game.
In our methodology we generalize this idea and propose that each player plays according to
the Nash equilibria of his/her own view of the game taking into account the optimal strategies
of the other players’ behaviour in this specific view of the game. Thus, the approach of [Meir
and Parkes, 2015a] can be considered as a case of misinformation games as it is described in
our framework. Moreover, in our more general setting, misinformation is not restricted to
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bias, but may have other causes (e.g., noise, deception etc.), or could be deliberate on behalf
of the designer.

Although selfish attitude is considered as basic test tube for most of the literature, many
modern approaches study the effect of different attitudes (e.g., altruism) in the performance of
a multi-agent procedure (see [Chen et al., 2014,Caragiannis et al., 2010b,Brown, 2020]). From
a game-theoretic aspect, the differences in agents’ attitudes can be described and modelled as
a misinformation game, where each agent’s payoff is not purely determined by his/her own
payoff (as described by the actual game), but is also affected by his/her altruistic motives.

The effect of additional knowledge in agents’ behavior in the context of congestion games
is studied in [Acemoglu et al., 2018], whereas exogenous distortions in the cost structure are
examined in [Balcan et al., 2009]. The effect of information heterogeneity in a congestion game
is studied in [Wu et al., 2020]; in this thesis different populations of agents receive a private
signal from their traffic information system, while maintaining a belief about the signals
received by other populations. In [Bilò et al., 2010], each player is unaware of agents outside
his/her social neighborhood, thus his/her individual cost and strategy selection are not affected
by them. Moreover, in [Brown et al., 2017] authors studied the effect of communication
failures to the solutions (equilibria) of a game.

All the above works essentially study special cases of misinformation. In these works,
internal agent characteristics or external conditions (e.g., bias or altruism), cause the agents
to play using a payoff matrix that differs from the actual one in certain aspects. However,
their settings are very limited in the sense that misinformation in each case has a specific
form or affects a specific part of the payoff matrix. Our work provides a unifying, more
general framework that can model all different types of misinformation, including the scenarios
described in these papers; thus, our work allows a uniform formal description of these settings,
and may act as a testbed for comparing their characteristics and uncover commonalities or
differences.

Another scenario where the original payoff matrices are modified, can be found in works
where tolls, penalties, rewards or other similar methodologies are applied to modify the
payoff matrix of players towards some aim (e.g. [Caragiannis et al., 2006,Kleer and Schäfer,
2017b,Kleer and Schäfer, 2017a] etc.). Although in such games the payoff matrix is modified
due to tolls or some similar mechanism, the new payoff matrix is the actual one, and is also
the one perceived by all players, so these are not misinformation games.

Moreover, there is another stream of studies considering random payoff matrices, (i.e.
[Daskalakis et al., 2007,Takahashi, 2008,Stanford, 1996,Rinott and Scarsini, 2000,Bárány
et al., 2007,Dresher, 1970]) but authors focus in the distribution of pure Nash equilibria. A
tweak of this methodology presented in [Quattropani and Scarsini, 2020] where authors study
the distribution of players’ average social utility.
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2.3 Quantifying socially sub-optimal behaviour

Inspired by the seminal work of [Koutsoupias and Papadimitriou, 1999] and the introduction
of the Price of Anarchy (PoA) metric, many studies analyze the deviation of the behaviour of
a multi-agent system from the optimal one. Initially, PoA was applied to traffic networks
[Roughgarden and Tardos, 2002, Roughgarden, 2003, Correa et al., 2008], where players’
strategies depend on their types in terms of available paths and costs. The Bayesian setting
of PoA was introduced in [Leme and Tardos, 2010]. The Price of Risk Aversion measure was
introduced in [Nikolova and Moses, 2015] to deal with uncertainty and risk in selfish routing
games with homogeneous risk profiles, an assumption that was dropped in [Cole et al., 2018].
In [Balcan et al., 2009] the term Price of Uncertainty was defined to capture the resilience of
games to imperfections in agents’ dynamics. Additionally, the deviation ratio was introduced
in [Kleer and Schäfer, 2016] to capture the diversity in agents’ decisions. In [Meir and Parkes,
2015b,Meir and Parkes, 2018] the Biased Price of Anarchy (BPoA) was introduced to measure
the ratio of the equilibrium under biases in knowledge compared to the optimal outcome.

All the above metrics quantify the deviation of a system’s behaviour (social welfare
of equilibria) compared to the socially optimal one under various settings. The Price of
Misinformation (PoM) metric introduced in the thesis is similar, capturing the effect of
misinformation on social welfare compared to the optimal outcome. Moreover, our work shows
that misinformation can be used as a mitigation measure against the sub-optimal behaviour
quantified by these studies, as it may lead players to the optimal outcome and, thus, is a
valuable tool for mechanism design.

2.4 Iterative interactions

Authors in [Esponda and Pouzo, 2016b] studied asymptotic beliefs and behavior in Markov
decision processes, where the players have a prior over a set of possible transition probability
functions and update their beliefs using Bayes’ rule. Furthermore, in [Esponda and Pouzo,
2019] the authors consider an agent whose uncertainty about the environment is represented
by a misspecified model and uses Bayes’ rule to update his/her belief about the environment.
They focus on the frequency of actions, as opposed to the action itself or the beliefs.

In [Arrow and Green, 1973] the authors provide a learning framework that makes distinc-
tions between objective and subjective games, but they make the assumption that players are
completely ignorant with regards to the decisions of their opponents. Further, each player
applies Bayes theorem after receiving a new observation and no equilibrium point is considered.
Contrary to this study, we allow the existence of more general types of misinformation, any
new information is automatically integrated, and we establish the equilibrium concept of
stable misinformed equilibrium.

Next, in [Spiegler, 2016], a framework is presented where each player makes decisions
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under imperfect understanding of correlation structures, and fits his/her personal beliefs to
an objective long-run probability distribution. In the same spirit, in [Easley and Kiefer, 1988]
examined a procedure where players express beliefs about unknown parameters in terms of
distributions. In [Lerer et al., 2019] the authors describe approaches to search in partially
observable cooperative games, but they assume perfect knowledge of other players’ policies.

Further, in [Jordan, 1991] a class of Bayesian processes for iterated normal form games
is studied, where each player knows his/her own payoff function, but is uncertain about
the opponents’ payoffs. In [Esponda and Pouzo, 2016a] authors provide a time dependent
learning mechanism in games where players have subjective views of an objective game.
Specifically, at each time step t each player updates his/her beliefs using Bayes rule and
the information obtained in all previous time steps. A new equilibrium concept is defined,
Berk-Nash equilibrium, where the admissible strategic behaviour derived as a probabilistic
distance between the behaviour of the players in their subjective and objective specifications.

In the same manner, in [Ray et al., 2008], behavioral-based model are provided in terms
of partial observable Markov decision processes using belief hierarchies, in order to model
the ignorance of each player about the opponent. Further, in [Shalizi, 2009] the author
gives sufficient conditions for the convergence of the posterior without assuming that the
subjective views are part of actual specifications. Also, in [Fudenberg et al., 2016] a complete
characterization of the limit behavior of actions in cases with misspecified Bayesian players is
provided.

As opposed to the stream of works that rely on probabilistic or Bayesian techniques, in
this dissertation we take no probabilistic considerations with regards to the beliefs of the
players. Our study focuses on the effect of new information in the misinformed views of the
players.

A significant number of works focuses on the limit behaviour of players whose strategic
choices are evolving, for various reasons. In [Nyarko, 1991] an example was presented where the
agent’s actions cycle ad infinitum. Authors in [Romanyuk et al., 2017] based on a continuous
time model with beliefs over types, provide characterization of asymptotic behaviour and
beliefs. Moreover, in [Heidhues et al., 2017] a convergence analysis was introduced in case
where players bias their observations, while in [Heidhues et al., 2018] authors establish
convergence of beliefs, and actions, in a misspecified model with endogenous actions.

Besides that, in [Gharesifard and Cortés, 2012] authors introduce a swap learning method
in a 1-level HG, where players can change their beliefs according to the information they gain
by observing the opponents’ actions. Specifically, a player decreases his/her misperception at
the cost of potentially incurring inconsistencies in his/her perception. In our framework, we
make no considerations as to the revealing inconsistencies. Additionally, authors in [Burkov
and Chaib-draa, 2009] provide an approach for learning in adaptive dynamic systems, where
a player learns an efficient policy over the opponents’ adaptive dynamics, and obtain a lower
bound of the utility which is guaranteed to be reached by that approach against any opponent.
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Though, they did not consider any concept of incorrect or subjective information.
Further, as strategic reasoning does not always suffice to explain equilibrium behavior,

there is a substantial stream of works regarding the epistemic conditions for equilibrium
concepts (e.g. [Aumann and Brandenburger, 1995,Bach and Tsakas, 2014] for Nash equilibrium,
[Aumann, 1987] for correlated equilibrium). Another equilibrium concept that have been
introduced is that of self-confirming solution concept [Fudenberg and Levine, 1993], in
which each player’s strategy is a myopic best response to his/her beliefs about the play of
the opponents and are consistent with what is observed when the player plays the game.
Moreover, in [Fudenberg and Levine, 1993] authors provide an epistemic model assuming
almost common certainty of payoffs with independent beliefs. Additionally, in [Dekel et al.,
1999] authors define the rationalizable self-confirming equilibrium, where players see the
realized terminal node at the end of each play of the game in extensive-form games. Towards
this direction, authors in [Fudenberg and Kamada, 2015] study the case where there are
independent beliefs. Here, the equilibrium concept arises from misinformation game, the
natural misinformed equilibrium, is just the agglomeration of player’s choice, thus may or may
not be consistent with the beliefs of each agent. Though stable natural equilibrium and stable
epistemic natural misinformed equilibrium are self-confirming equilibria, they derived as a
product of adaption procedure and epistemic adaptive evolution concept respectively.

Considering epistemic approaches in HG, authors in [Sasaki, 2014] introduced a new
solution concept such that every player takes a best response to expected choices of the others,
every player thinks every player takes a best response to expected choices of the others, and
so on. This approach constrained in one-shot HG, thus addressing only one-shot interaction
as opposed to our multi-turn processes.

For the case of GwU, in [Heifetz et al., 2008] established, in terms of logic, a state-space
model that allows for non-trivial unawareness among several individuals with subjective views
and strong properties of knowledge, whereas the model is designed to capture mutual beliefs
about unawareness.

In [Meier and Schipper, 2014] authors combine unawareness belief structures and Bayesian
games in order to establish Bayesian games with unawareness, applying their idea to strategic
games. Thereupon, a methodology to construct unawareness belief structures is given
in [Heifetz et al., 2013, Heinsalu, 2011]. Meanwhile, in [Fagin and Halpern, 1987] authors
study the lack of logical omniscience (lack of awareness and local reasoning) presenting the
Logic of General Awareness and providing the concept of awareness function, which further
expanded in [Heifetz et al., 2006,Belardinelli and Rendsvig, 2020]. The main difference of
our study with these streams of work is that misinformation is conceptually distinct than
unawareness, ignorance, incomplete information or faulty analysis. Namely, misinformation
has to do with the lack of conception and knowledge combined. Marginally, if we have only
lack of conception we fall in the case of unawareness, while if we have only lack of knowledge
misinformation collapses to the other cases.
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2.5 Dynamics in games

In terms of games with subjective views, such as HG and GwU, there is no implementation of
online algorithms in order to compute equilibria concepts. Nevertheless, in this Section we
provide some key works so as the presentation of our work in Chapter 6 to be more complete.

Several approaches have been proposed throughout the past decades, for the development
of fast, iterative learning algorithms, starting with fictitious play [Robinson, 1951]. Recently,
some of the more standard methodologies include the family of no-regret algorithms as well as
several classes of first-order methods (see [Cesa-Bianchi and Lugosi, 2006,Hoi et al., 2018] for
an overview). To mention a few examples, the important class of Multiplicative Weights Update
(MWU) method [Littlestone and Warmuth, 1994,Freund and Schapire, 1999], together with
Gradient Descent, Mirror Descent, and Extra Gradient methods (for a survey see [Bubeck,
2015] and [Beck, 2017]), all fall within the above approaches. Unfortunately, most of the
standard no-regret algorithms exhibit convergence in an average sense, (e.g. [Bailey and
Piliouras, 2018] for MWU methods for constrained problems; [Mertikopoulos et al., 2018] on
variants of Gradient Descent/Ascent (GDA) methods).

Due to the importance of achieving last-iterate convergence for zero-sum games for
applications on learning, such as training GANS, and boosting, [Daskalakis et al., 2018]
and [Liang and Stokes, 2019] studied an optimistic variant of GDA (OGDA); proving that
OGDA exhibits last-iterate convergence for the unconstrained minmax problem with bilinear
functions.

Driven by the progress made by OGDA, [Daskalakis and Panageas, 2019] proposed to
study the constrained version of minmax problems, i.e., finding equilibria in zero-sum games,
via an optimistic variant of MWU methods, termed Optimistic Multiplicative Weights Update
OMWU. Their main result is that for games with a unique Nash equilibrium, OMWU
converges in the last-iterate sense to the equilibrium. The sequence of approximations in
OMWU uses two previous steps in order to compute the next update, where the extra
term corrects the behaviour of MWU dynamics and can be seen as a negative momentum.
Moreover, the performance of OMWU provides a strengthening to the experimental results
in [Syrgkanis et al., 2015], which indicated pointwise convergence of the optimistic version.
An alternative view on the convergence behavior of OMWU by studying volume contraction
is given in [Cheung and Piliouras, 2020]. Further generalizations of OMWU and more
convergence results were obtained in [Lei et al., 2021] for convex-concave landscapes.

As show in [Daskalakis et al., 2018] and [Bailey and Piliouras, 2018] for gradient descent
and Follow-The-Regularized-Leader respectively, gradient/mirror descent methods do not
suffice to address the bilinear case.

To cope this issue authors in [Mertikopoulos et al., 2019] introduce a gradient-like method,
where they first compute an intermediate approximation, by taking a prox step, and then
go back to the original state and compute the new state using the former, intermediate,
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approximation. This method is known as Optimistic Mirror Descent (OMD) (see [Chiang
et al., 2012, Rakhlin and Sridharan, 2013]), or mirror-prox [Nemirovski, 2004]. A similar
approach was introduced by [Gidel et al., 2019] where extra gradients introduced in order to
minimize the computational overhead of back-propagation. All these techniques fall under the
umbrella of extra-gradient method, a classical method which was introduced in [Korpelevich,
1976] (for more details see [Facchinei and Pang, 2003]).

Several streams of works focus on the convergence of Extra-gradient methods (EG).
In [Liang and Stokes, 2019] authors prove linear convergence of the EG with the assumption
that the payoff matrix of the bilinear function is square and full rank. Using the same
assumption, authors in [Mokhtari et al., 2020] study the EG for the general saddle point
problem and provide linear rates of convergence. In the very recent work of [Wei et al.,
2021], a new theoretical analysis is provided for both OMWU and OGDA, with the goal
of quantifying the progress in the divergence decrease with respect to the number of steps
(applicable also to some more general problems).

Finally, authors in [Azizian et al., 2020] provide a similar in spirit approach with FLBR-
MWU (Proposition 7), though there are also differences on the dynamics and the step sizes α

and η are more constrained than in our setting. Most importantly, the analysis in [Azizian
et al., 2020] addresses the unconstrained bilinear case. Even further, they show only local
convergence (starting from a point near the fixed point), whereas we do not need such a
condition, and their result also holds under certain spectral assumptions.

2.6 Structure of misinformation
As noisy games are a subclass of misinformation games, automatically are related to works
in the area of games with misperceptions. Nevertheless, there is no consideration about the
structure of misperception this area. As opposed to Bayesian games, where there is a rich
literature that studies the influence of the structure of uncertainty in the knowledge of the
players to their strategic behaviour. Thus, conceptually we are close to the first group of
works. On the other hand though, we also study the effect of distributions in the knowledge
of the players as to their strategic behaviour, thus our results can be related to the latter
stream of works.

In [Balcan et al., 2009], the authors consider the impact of small fluctuations in the cost
functions or in players’ perceptions of the cost structure in congestion and load balancing
games, and study its effect on players’ behaviour. A fluctuation is a departure from the
classical viewpoint that treats payoffs as a number; under [Balcan et al., 2009], the payoff is a
range of values “close” to the actual payoff. An extension of [Balcan et al., 2009] considered
normal-form games, aiming to define a new notion of equilibrium that maximizes the worst
case outcome over possible actions by other players [Aghassi and Bertsimas, 2006] in the
presence of fluctuations, whereas a further extension (see [Balcan and Braverman, 2017])
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studied the robustness of this equilibrium solution, utilizing the notion of approximations
of payoffs using a fuzziness to the values of payoff matrices. There are several differences of
the concept of fluctuation as compared to misinformation. First, the players are aware of
the fluctuations and, thus, take them into account while deciding on their strategic choices.
Second, fluctuations affect all players and all payoffs uniformly. Third, fluctuations have a
limited effect, whereas the noise considered in our work may have unlimited effect (subject to
a certain probability function).

Further, in [Brown et al., 2017] the authors study how resilient is the strategic behaviour
of players when an unexpected communication loss occurs, and explore game settings in which
communication failures can/cannot cause harm in the strategic behaviour of players. They
introduce the notion of proxy payoffs in order to funnel communication failures and show that,
in several settings, loss of information may cause arbitrary strategic behaviours. Our work has
a similar contribution as both works prove that in presence of communication inefficiencies
any strategic behaviour is possible. Though, authors in [Brown et al., 2017] focus on how the
agents can be provided with policies so as to cope with communication failures, in this study
we analyse the impact of disorder in the strategic behaviour of the players. Also, we model
communication failure using probabilities, and provide formulas that quantify the probability
of arbitrariness in the strategic behaviours, when information is degraded due to noise.

2.7 Coordination mechanism
The idea of designing mechanisms to improve coordination in multi-player systems with selfish
players is not new. One approach is to introduce taxes (e.g. [Fleischer et al., 2004,Fotakis
and Spirakis, 2008,Caragiannis et al., 2010a]), e.g. in congestion games players pay a toll for
every edge they use. Specifically, in [Cole et al., 2003] the authors showed that there exist
taxes that reduce the Price of Anarchy to 1. There are two major issues for this approach: i)
taxes may be very high, and ii) in the case where taxes are part of the cost, then the Price of
Anarchy is not improved. As another approach, rewards and payments have been used so
as to improve coordination [Lavi and Swamy, 2007,Seregina et al., 2017,Turrini, 2016]. An
alternative approach was given in [Monderer and Tennenholtz, 2003] that extends the game
by adding new strategies for the players, such that all Nash equilibria of the new game involve
strategies of the original game exclusively. In that case the Price of Anarchy is decreased.
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Chapter 3
Theoretical Background

In this chapter we provide all the classical game-theoretic definitions and concepts that are
necessary for the chapters to come. Reader, should consider this chapter as the initial point
of the thesis and he/she can recur at will.

3.1 Normal-form games
A game in normal form is represented by a payoff matrix that defines the payoffs of all players
for all possible combinations of pure strategies. Formally:

Definition 1. A normal-form∗ game G is a tuple ⟨N , S, P ⟩, where:

• N is the set of the players,

• S = S1 × · · · × S|N |, Si being the set of pure strategies of player i ∈ N ,

• P = (P1, . . . , P|N |), Pi ∈ R|S1|×...×|S|N|| is the payoff matrix of player i.

When player i randomly selects a pure strategy, then he plays a mixed strategy σi =

(σi,1, . . . , σi,|Si|) which is a discrete probability distribution over Si.
Let the set of all possible mixed strategies σi be Σi. A strategy profile σ = (σ1, . . . , σ|N |)

is an |N |-tuple in Σ = Σ1× . . .×Σ|N |. We denote by σ−i the |N − 1|-tuple strategy profile of
all other players except for player i in σ.

We call a position a vector of integers that determines a specific item in a payoff matrix.
We denote by Pos the set of all positions. Formally (and given the above assumptions on the
dimensions of a payoff matrix), Pos = [|S1∥]× . . .× [|S|N ||], i.e., a position is a tuple of the
form v⃗ = (v1, . . . , v|N |) ∈ Pos, where 1 ≤ vi ≤ |Si∥ (for all i ∈ [|N |]).

The payoff function of player i is defined as: hi : Σ→ R, such that:

hi(σi, σ−i) =
∑

k∈S1

· · ·
∑

j∈S|N|

Pi(k, . . . , j) · σ1,k · . . . · σ|N |,j , (3.1)

∗In other words, we define normal-form games as finite, noncooperative strategic games. In case, where the
games are either non-finite or cooperative we will state it and we will modify our concepts accordingly.
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where Pi(k, l, . . . , j) is the payoff of player i in the pure strategy profile (k, l, . . . , j), and
(k, l, . . . , j) ∈ Pos. In other words, hi(σi, σ−i) represents player’s i expected payoff as a
function of σ. Further, in case where |N | = 2 we have two player normal-form game, called
bimatrix game. The Nash equilibrium in a normal-form game is defined as follows:

Definition 2 (see [Nash, 1951]). A strategy profile σ∗ = (σ∗
1, . . . , σ∗

|N |) is a Nash equilibrium,
if and only if, for any i and for any σ̂i ∈ Σi, hi(σ∗

i , σ∗
−i) ≥ hi(σ̂i, σ∗

−i).

In the rest of the dissertation we will denote as NE(G) the set Nash equilibria of a game
G = ⟨N , S, P ⟩ (or simply NE, when G is obvious from the context). This notation will be
slightly abused in case we focus only in the payoff matrix of a G and would become NE(P ).

Definition 3 (i-neighbours). Given a player i and two strategy profiles σ = (str1, . . . , strn),
σ′ = (str′

1, . . . , str′
n), the profiles σ, σ′ are called i-neighbours if and only if stri ̸= str′

i and
for all j ̸= i, strj = str′

j.

Definition 4 (best response). Consider a normal-form game G = ⟨N , S, P ⟩ and a player
i, a best response strategy function BR(i, h, σ−i) ⊆ Σi for player i is a strategy of i player
against the strategy σ−i of the other players if and only if

BR(i, h, σ−i) := arg max
z∈Σi

hi(z, σ−i)

Lemma 1. Consider a normal-form game G = ⟨N , S, P ⟩, where N = [|N |] and S =

S1 × · · · × SN . Consider also some player x ∈ N . We create the game G̃ = ⟨Ñ , S̃, P̃ ⟩,
such that Ñ = {x, y}, S̃ = S̃x × S̃y, S̃x = Sx, S̃y = S1 × · · · × Sx−1 × Sx+1 × · · · × SN ,
and P̃ is such that for any sx ∈ S̃x, sy = (s1, . . . , sx−1, sx+1, . . . , sN ) ∈ S̃y it holds that
P̃ (sx, sy) = P (s1, . . . , sN ). Then, for any strategy profile σ = (σ1, . . . , σN ), it holds that:
σx ∈ BR(x, P , σ−x) if and only if σx ∈ BR(x, P̃ , (σ1, . . . , σx−1, σx+1, . . . , σN )).

Proof. Since sy = (s1, . . . , sx−1, sx+1, . . . , sN ) ∈ S̃y, then σy = (σ1, . . . , σx−1, σx+1, . . . , σN ) ∈
Σ̃y. Thus, we have that BR(x, P , (σ1, . . . , σx−1, σx+1, . . . , σN )) = arg maxz∈Σx

hx(z, σ−x) =

arg maxz∈Σx
h̃x(z, σy) = BR(x, P̃ , (σy)).

A useful concept in the analysis of games is the support of a mixed strategy σi, consisting
of pure strategies with a positive probability under σi, i.e., supp(σi) = {j : σi,j > 0}. It is easy
to see that at an equilibrium σ∗, any pure strategy si, with i ∈ supp(σ∗

i ), is a best-response
against σ∗

−i ∀i ∈ [|N |].

Definition 5. We define as social welfare function the function h(σ) that measures the
players’ welfare given a strategy profile σ.

Among many social welfare functions we use the utilitarian or Benthamite social welfare
function that measures social welfare as the total or sum of individual incomes (rewards,
payoffs).
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Having at hand the definition of the Nash equilibrium, authors in [Koutsoupias and
Papadimitriou, 1999] introduce a metric that measures the efficiency of a game due to selfish
behavior of its players in the worst case. Thus, we can compare the behavior of the players in
the worst case against the social optimum, based of a social welfare function h. We denote by
opt the socially optimal strategy profile, i.e. opt = arg maxσ h(σ). In terms of normal-form
games this becomes:

Definition 6 (see [Koutsoupias and Papadimitriou, 1999]). Given a normal-form game G,
the Price of Anarchy (PoA) is defined as

PoA =
h(opt)

minσ∈NEh(σ)
(3.2)

3.2 Zero-sum games and approximate equilibria
Now, we consider a subclass of normal-form games, the finite two player zero-sum games, with
payoff matrix R ∈ (0, 1]|S|×|S|, where without loss of generality, we assume both players have
|S| pure strategies. Thus, by Definition 1 we have the game G = ⟨N , S1 × S2, P = (R,−R)⟩,
with |S1| = |S2| = S. Further, we refer to the two players as the row player x and the
column player y respectively. As before, if the row player plays the i-th row and the column
player plays the j-th column, then the payoff of the row player is Rij , and the payoff of
the column player is −Rij . Again mixed strategies are probability distributions (column
vectors) on the pure strategies. E.g., a mixed strategy for the row player will be denoted as
σx = (σx1 , . . . , σxn), where σxi is the probability of playing the i-th row. For convenience, we
will denote the i-th pure strategy of a player by the unit vector ei, which has probability one
in its i-th coordinate and 0 elsewhere.

Given such a strategy profile σ = (σx, σy), the expected payoff of the row player is σT
x Rσy,

whereas for the column player, it is −σT
x Rσy; whereas the Nash equilibrium definition in case

of finite two player zero-sum games becomes:

Definition 7. A strategy profile (σ∗
x, σ∗

y) is a Nash equilibrium in the zero-sum game defined
by matrix R, if and only if, for any i, j ∈ [|S|],

σ∗
x

T Rσ∗
y ≥ eT

i Ry∗ and σ∗
x

T Rej ≥ σ∗
x

T Rσ∗
y ,

Furthermore, the payoff of the row player at an equilibrium, v = σ∗
x

T Rσ∗
y, is referred to as the

value of the game.

In several cases in game theory the condition of Nash equilibrium is weakened to allow
the possibility that a player may have a small incentive to deviate. For that is introduced the
concept of ε−Nash equilibrium, that approximately satisfies the condition of the Definition 7.
Formally, this concept defined as:
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Definition 8. A strategy profile (σ∗
x, σ∗

y) is an ε-Nash equilibrium in the zero-sum game
defined by matrix R, if and only if, for any i, j

σ∗
x

T Rσ∗
y + ε ≥ eT

i Rσ∗
y and σ∗

x
T Rej ≥ σ∗

x
T Rσ∗

y − ε

This solution concept may be preferred to Nash equilibrium due to being easier to
compute. In that direction, there are several algorithms (e.g. online, learning, distributed
etc.) that rely on the computation ε-Nash. As we will see in Chapter 6, our work focuses
on approximating equilibria, and in order to define the relevant notion of approximation, we
start with approximate best responses. Given a profile (σx, σy), we say that a strategy σ′

x

is an ε-best-response strategy to σy with ε ∈ [0, 1], if it yields a payoff that is at most ε less
than the best-response payoff. We can define now an approximate Nash equilibrium, as a
profile (σx, σy) where σx and σy are both approximate best responses to each other. This is
precisely the standard notion of additive, approximate equilibria [Nisan et al., 2007b].

Obviously, any zero-Nash equilibrium is an exact equilibrium of the game.

3.3 Learning Dynamics
A central problem in game theory and optimization is computing a pair of probability vectors
(x, y), solving

min
y∈Y

max
x∈X

g(x, y) (3.3)

where X ,Y are closed convex sets. In case where g is a bilinear function, that is g(x, y) = xT Ry

and R ∈ Rn×m, X and Y are simplex, (3.3) is known as the classical two-player zero-sum
game in normal form. Thus, any pair of probability vectors (x, y) corresponding to a strategy
profile (σx, σy)†. The celebrated minmax theorem provided by von Neumann’s [von Neumann,
1928] results in

min
y∈Y

max
x∈X

g(x, y) = max
x∈X

min
y∈Y

g(x, y)

Hence, all solutions of miny∈Y maxx∈X xT Ry are also solutions to the maxx∈X miny∈Y xT Ry,
and vice versa‡.

Interestingly, a solution to (3.3) constitutes an equilibrium in case where xT Ry is the
payment of the min player to the max player; when the former selects a distribution y over
columns and the latter selects a distribution x over rows of matrix R. This equilibrium point
is often called minmax equilibrium, and fulfills the condition of Definition 2.

Meanwhile, (3.3) can be solved using any Linear Programming technique. Fortunately,
author in [Adler, 2013] proved that any linear program can be addressed by solving some

†Abusing notation, in the part of the study dealing with dynamics we use (x, y) as strategy profiles instead
of (σx, σy).

‡This result is considered as one of the founding stones in the development of game theory.
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minmax problem of the form (3.3). Thus, the linkage between the minmax theorem and the
Linear Programming paved the way for the development of dynamics for solving minmax
optimization problems of the form (3.3).

After arguing about the necessity of learning techniques in game theory, we turn our
attention in the no-regret learning algorithms in order to compute Nash-equilibria. Specifi-
cally, we focus on multiplicative weights update (MWU) methods that use an exponential
multiplication function, as in [Freund and Schapire, 1999]. Below we define one of the popular
versions of MWU, that is resulted from the FTRL dynamics (Follow-The-Regularized-Leader),
when the regularizer is the negative entropy function, (see [Hoi et al., 2018]). In particular, if
(xt, yt) is the strategy profile at iteration t, and η is the learning rate parameter, the update
rule of the method, for all i, j ∈ [n] is as follows.

xt
i = xt−1

i · eηeT
i Ryt−1∑n

j=1 xt−1
j eηeT

j Ryt−1 , yt
j = yt−1

j · e−ηeT
j RT xt−1∑n

i=1 yt−1
i e−ηeT

i RT xt−1 (3.4)

In the sequel, we often provide the optimistic variant proposed by [Daskalakis and Panageas,
2019], which exhibits last-iterate convergence in zero-sum games, unlike the dynamics of (3.4),
referred to as the Optimistic Multiplicative Weights Update (OMWU) method. The idea
of “optimism” is derived from the notion of predictable processes [Rakhlin and Sridharan,
2013]. OMWU takes advantage of a given predictable process that takes into account two
previous iterations in order to compute the next update, where the extra term can be seen as
a negative momentum, correcting the behavior of MWU dynamics.
The dynamics of OMWU are described below for all i, j ∈ [n].

xt
i = xt−1

i · eηeT
i (2Ryt−1−Ryt−2)∑n

j=1 xt−1
j eηeT

j (2Ryt−1−Ryt−2)
,

yt
j = yt−1

j · eηeT
j (−2RT xt−1+RT xt−2)∑n

i=1 yt−1
i eηeT

i (−2RT xt−1+RT xt−2)

(3.5)

and provided by Algorithm 1§.
Next, we replace optimism with an extra-gradient step which uses the obtained information

to “amortize” the next prox step (possibly outside the convex hull of generated states). This
methodology initiated in [Korpelevich, 1976].

The main idea of the Extra-gradient (EG) method is to use the gradient at the current
point to find a mid-point, and then use the gradient at that mid-point to find the next iterate.
To be more precise, given a stepsize η > 0, the update of EG at step t solves the bilinear
problem generating an intermediate, “waiting” point, equation (3.6). Instead of continuing
from that intermediate point, the method samples the gradients and goes back to the original

§⟨x, y⟩ denotes the standard inner product xT y in the Euclidean space.
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Algorithm 1 Optimistic Multiplicative Weights Update method.
Input :Stepsize η > 0,

Vectors x0, y0, x1, y1 = 1n/n.

Output: (x∗, y∗).
for t = 1, 2, . . . do

xt+1
i = xt

i ·
exp(−2η∇xf(xt, yt) + η∇xf(xt−1, yt−1)i

⟨xt, exp(−2η∇xf(xt, yt) + η∇xf(xt−1, yt−1)⟩

yt+1
i = yt

i ·
exp(2η∇yf(xt, yt)− η∇yf(xt−1, yt−1)i

⟨yt, exp(2η∇yf(xt, yt)− η∇yf(xt−1, yt−1)⟩
end

point x in order to generate a new approximation, equation (3.7).
The dynamics of EG are described below for all i, j ∈ [n].

xt−1/2
i = xt−1

i · eηeT
i Ryt−1

n∑
j=1

xt−1
j eηeT

j Ryt−1
, yt−1/2

j = yt−1
j · e−ηeT

j RT xt−1

n∑
i=1

yt−1
i e−ηeT

i RT xt−1
(3.6)

xt
i = xt−1

i · eηeT
i Ryt−1/2

n∑
j=1

xt−1
j eηeT

j Ryt−1/2
, yt

j = yt−1
j · e−ηeT

j RT xt−1/2

n∑
i=1

yt−1
i e−ηeT

i RT xt−1/2
(3.7)

Algorithm 2 Extra-gradient method.
Input :Stepsize η > 0,

Vectors x0, y0 ∈ Rn.

Output: (x∗, y∗).
for t = 0, 1, . . . do

Compute : xt+1/2
i = xt

i ·
exp(−η∇xf (xt,yt))i

⟨xt,exp(−η∇xf (xt,yt))⟩

yt+1/2
i = yt

i ·
exp(η∇yf (xt,yt))i

⟨yt,exp(η∇yf (xt,yt))⟩

Update : xt+1
i = xt

i ·
exp(−η∇xf (xt+1/2,yt+1/2))i

⟨xt,exp(−η∇xf (xt+1/2,yt+1/2))⟩

yt+1
i = yt

i ·
exp(η∇yf (xt+1/2,yt+1/2))i

⟨yt,exp(η∇yf (xt+1/2,yt+1/2))⟩

end
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(xt−1, yt−1)

(xt, yt)

(xt+1, yt+1)

(x̂t, yt)

(xt, ŷt)

(x̂t−1, yt−1)

(xt−1, ŷt−1)

Figure 3.1: Graphical representation for the sequence of iterative approximations of
MWU (green), OMWUM (blue) and EG (red) from time step t− 1 to time
step t + 1. The dashed red curves represent the intermediate step of EG.

and provided by Algorithm 2.

3.4 Load-balancing games
In this section, we provide the framework in the case of load balancing games, as defined
in [Nisan et al., 2007a], where the tasks selfishly choose to be assigned to machines, in such a
way that no task has any incentive to deviate from its machine. Formally:

Definition 9. A load balancing game (LBG) is a tuple G = ⟨k, m, s, w⟩, where k =

{1, . . . , |k|} is the set of tasks, each associated with a weight wj ≥ 0, and m = {1, . . . , |m|} is
the set of machines, each with speed si > 0.

Here, we consider the case where the tasks play only pure strategies. Under this assumption,
the assignment of tasks to machines is determined by a mapping A : k → m (note that each
task is assigned to exactly one machine). The load of machine i ∈ m under A is defined as
li =

∑
j∈k:i=A(j) wj/si. The cost of task j for choosing machine i is ci

j = li. Furthermore, the
social cost of assignment A is defined as cost(A) = maxi∈m(li), in other words the makespan
under the assignment A. An assignment A∗ is optimal if cost(A∗) ≤ cost(A) for all possible
assignments A. An assignment A is a pure Nash equilibrium, if and only if, for any j and for
any î ∈ m, c

A(j)
j ≤ cî

j , in other words for any alternative assignment of task j (say to machine
î) the cost is worse.

3.5 Congestion games
We continue by defining the single-commodity non-atomic congestion game with player-specific
costs similar to the approach of [Meir and Parkes, 2015b].

Definition 10. A single-commodity non-atomic congestion game (NACG) with player-specific



26 Chapter 3. Theoretical Background

costs is a tuple Γ = ⟨G, M , li, s, t, r⟩, where:

• G = (V , E) is a directed graph,

• M is the set of different types of costs of the players,

• li is the set of the non-decreasing, continuous, and non-negative latency cost functions
with lie(x) : R≥0 → R≥0 (one for each edge e ∈ E and for each cost type i ∈M of the
players),

• s ∈ V is the source,

• t ∈ V is the destination,

• r ∈ R
|M |
≥0 is the total mass of flow.

The total mass of flow for players of cost type i is ri such that ∑i∈M ri = r. We consider
that any player of cost type i controls an infinitesimal amount of the flow ri. In this paper,
we assume, without loss of generality, that r = 1.

Let P be the set of total paths from s to t, then we define as g(ri) ∈ [0, r]|P |×1 a feasible flow
of cost type i of the players routing ri units of flow on the paths and g(r) = (g(r1), . . . , g(r|M |))

be the tuple of all flows routing r1, . . . , r|M | units of flow, respectively. We define as gp(ri)

the flow of players of cost type i that follows the path p ∈ P , gp(r) the total flow that follows
the path p ∈ P with ∑i∈M gp(ri) = gp(r). The flow of cost type i of the players of the edge
e ∈ E is ge(ri) and ge(r) =

∑
i∈M ge(ri) is the total flow of the edge e ∈ E.

The cost of following a path p of a player of cost type i is Ci
p(gp(r)) =

∑
e∈p lie(ge(r)) and

the total social cost of the flow g(r) is

SC(g(r)) =
∑
i∈M

∑
e∈E

ge(ri)l
i
e(ge(r))

The socially optimal flow is the feasible flow g(r) such that SC(g(r)) is minimum. We
now continue with the definition of a pure Nash Equilibrium, or in other words Wardrop
Equilibrium.

Definition 11 (Pure Nash Equilibrium [Nash, 1951]/Wardrop Equilibrium [Wardrop, 1952]).
A pure Nash Equilibrium is a feasible flow g∗(r) such that for any p, p̂ ∈ P , and for any
i ∈M ,

Ci
p(g

∗
p(r)) ≤ Ci

p̂(g
∗
p̂(r)),

in other words, a flow is an equilibrium if no player has any incentive to deviate from her
path.

It has been proved that any non-atomic game with player-specific costs has at least one
equilibrium, see Theorem 9 in Appendix B.3.



Chapter 4
Misinformation Games

4.1 Introduction
In this chapter, initially, we provide an intuitive example so that to reveal even better
the concept of misinformation games. Consider the classical Prisoner’s Dilemma (PD)
game [Osborne and Rubinstein, 1994], where two suspects (the players) are being interrogated,
having the option to betray the other (B), or stay silent (S). Each of them will get a penalty
reduction if he betrays the other, but if they both remain silent, the police can only convict
them for lesser charge and not for the principal crime; if they both betray, they will get a
reduced penalty for the principal crime. Using classical game theory, this situation is modelled
by payoff matrix presented in Table 4.1a, where the only Nash equilibrium is for both players
to betray.

Now suppose that the cogent evidence regarding the lesser charge has been obtained in an
illegal manner, and thus cannot be used in court. As a result, players’ actual payoffs are as
shown in Table 4.1b; however, this is not disclosed to the suspects, who still believe that they
play under Table 4.1a. This would lead players to betray, although, had they known the truth
(Table 4.1b), they also had other options (Nash equilibria), e.g., to both stay silent. We will
refer to this game as the misinformed Prisoner’s Dilemma (mPD) in the rest of this paper.

As shown in Figure 1.2, the main defining characteristic of misinformation games is that
agents are unwitting of their misinformation, and will play the game under the misconceived
game definition that they have. This essentially means that the assumption of common
knowledge is dropped as well.

S B
S (-1, -1) (-3, -1/2)
B (-1/2, -3) (-2, -2)

(a) Payoffs (in PD); also, players’
view (in mPD).

S B
S (0, 0) (-3, -1/2)
B (-1/2, -3) (-2, -2)

(b) Actual game (in mPD).

Table 4.1: Payoff matrices for the PD and mPD.

27
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Obviously, in such a setting, game theory dictates the actual player behavior in her own
view, which may be different from the behavior regarding the actual game. On the other
hand, the payoffs received by the players are the ones provisioned by the actual game, which
may differ from the ones they assume.

Therefore we introduce the formal machinery necessary to study misinformation games.
Specifically, this Chapter is consisted of: i) defining misinformation games and recasting
basic game-theoretic concepts without the assumption of common and correct knowledge, ii)
introducing a new metric, called the Price of Misinformation (PoM), to quantify the effect of
misinformation on the social welfare of players, and iii) applying our ideas to load balancing
games and non-atomic congestion games.

4.2 Normal-form games
Misinformation captures the concept that different players may have a different view of the
game they play. This leads to the following definition:

Definition 12. A misinformation normal-form game (or simply misinformation game) is a
tuple mG = ⟨G0 , G1, . . . , G|N |⟩, where all Gi are normal-form games and G0 contains |N |
players.

In Definition 12, G0 is called the actual game and represents the game that is actually
being played, whereas Gi (for i ∈ {1, . . . , |N |}) represents the game that player i thinks that
is being played (called the game of player i). We make no assumptions as to the relation
among G0 and Gi, and allow all types of misinformation (or no misinformation at all) to
occur.

We define the following interesting special class of misinformation games:

Definition 13. A misinformation game mG = ⟨G0, G1, . . . , G|N |⟩ is called canonical if and
only if:

• For any i, G0, Gi differ only in their payoffs.

• In any Gi, all players have an equal number of pure strategies.

The first requirement associated with canonical games restricts misinformation to payoffs,
and thus avoids the more eccentric cases where misinformation “creates” new, non-existing
strategies or players, or cases where players are unaware of certain strategies or players.
The second requirement is convenient, since payoff matrices have equal-sized dimensions, an
assumption often made (without loss of generality) in standard settings as well.

Although less common, non-canonical misinformation games may occur, e.g., when
communication problems, ignorance, or lack of imagination deprives a player from the option
to use a viable strategy. However, from a technical perspective, non-canonical misinformation
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games are not relevant, because every misinformation game can be transformed into an
equivalent game (in terms of its strategic behavior) that is canonical, using the simple process
of inflation described as follows.

Let mG be a non-canonical misinformation game. To transform it into a canonical
misinformation game with the same strategic behavior, we compare G0 with each Gi (i > 0).
Then:

1. If Gi does not include a player that appears in G0, then we “inflate” Gi by adding
this new player, with the strategies that appear in G0 for this player. We extend the
elements of the payoff matrix of Gi to represent the payoffs of the new player, using
any fixed constant value. Moreover, the current payoff matrix of Gi is increased by
one dimension, by replicating the original payoff matrix as many times as needed (to
accommodate the new player’s strategies).

2. If Gi contains an imaginary player not included in G0, then we add a new player in G0,
using the process described in #1 above. In addition, since Definition 12 requires that
each player in G0 is associated with a game in mG, we add a new game in mG, which
is a replica of G0.

3. If Gi does not contain a certain strategy which appears in G0 (for a certain player),
we just add this new strategy, with payoffs small enough to be dominated by all other
strategies.

4. If Gi contains an imaginary strategy that does not appear in G0 (for a certain player),
we inflate G0 as in #3 above.

Repeating the above process a sufficient (finite) number of times, we will eventually derive
a misinformation game that satisfies the first condition of Definition 13 and has the same
strategic properties as the original. To satisfy the second condition also, we just inflate the
games again according to the largest dimension (number of strategies) of the largest game,
using the process described in #3 above. This way, we can always transform a misinformation
game into a canonical one with the same strategic properties (the formal proof of this result is
quite technical and omitted). Due to this fact, without loss of generality, we will only concern
ourselves with canonical misinformation games, thus avoiding the need to study the more
eccentric cases.

The definition of misinformed strategies and strategy profiles is straightforward, once
noticing that they refer to each player’s own game:

Definition 14. A (pure or mixed) misinformed strategy, mσi of a player i is a (pure or
mixed) strategy of i in the game Gi. We denote the set of all possible misinformed strategies
of player i as Σi

i.
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Definition 15. A misinformed strategy profile of mG is an |N |-tuple of misinformed strategies
mσ =

(
mσ1, . . . , mσ|N |

)
, where mσi ∈ Σi

i.

As usual, we denote by mσ−i the |N − 1|-tuple strategy profile of all other players except
for player i in a misinformed strategy mσ.

The payoff function hi of player i under a given profile mσ is determined by the payoff
matrix of G0, and is defined as hi : Σ1

1 × · · · × Σ|N |
|N | → R, such that:

hi(mσi, mσ−i) =
∑

k∈S1
1

· · ·
∑

j∈S
|N|
|N|

P 0
i (k, . . . , j) ·mσ1,k · . . . ·mσ|N |,j ,

where P 0
i (k, l, . . . , j) is the payoff of player i in the pure strategy profile (k, l, . . . , j) under

the actual game G0. Also, Sj
i denotes the set of pure strategies of player i in game Gj .

It is interesting to note that, although each player’s strategic decisions are driven by the
information in her own game (Gi), the received payoffs are totally dependent on the actual
game G0, which may be different than Gi. Another important point is that the payoff function
would be ill-defined without the assumption that the underlying misinformation game is
canonical (because then the strategy profiles of players would have different dimensions).

4.2.1 Equilibria for Misinformation normal-form games

We can now define two alternative notions of equilibria. The first is based on the idea that
the players will study their own game, and play one of their Nash strategies, without regards
to what other players know or play. Formally:

Definition 16 (Natural misinformed equilibrium). A misinformed strategy, mσi, of player i,
is a misinformed equilibrium strategy, if and only if, it is in a Nash equilibrium strategy profile
in game Gi. A misinformed strategy profile mσ is called a natural misinformed equilibrium if
it consists of misinformed equilibrium strategies.

In the following, we denote by NME(mG) (or simply NME, when mG is obvious from
the context) the set of natural misinformed equilibria of mG.

The second type of equilibrium is closer to the idea of the Nash equilibrium in normal-form
games. It is based on the notion that the players will choose what is best according to their
own game, given the actual strategies of the other players (i.e., best response), although such
strategies may seem sub-optimal from the player’s perspective.

To define this, set hi
i the payoff function that player i expects to obtain in her game.

Formally, f i
i is defined as hi

i : Σi
1 × · · · × Σi

|N | → R, such that:

hi
i(mσi, mσ−i) =

∑
k∈Si

1

· · ·
∑

j∈Si
|N|

P i
i (k, . . . , j) ·mσ1,k · . . . ·mσ|N |,j , (4.1)
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where Σi
j denotes the set of all possible mixed strategies of player j according to the game of

player i (Gi).
Now we are ready to define the second type of equilibrium as described in the previous

paragraph:

Definition 17 (Pseudo misinformed equilibrium). A misinformed strategy profile mσ∗ =

(mσ∗
1, . . . , mσ∗

|N |) is a pseudo misinformed equilibrium, if and only if, for any i and for any
misinformed strategy mσ̂i,

hi
i(mσ∗

i , mσ∗
−i) ≥ hi

i(mσ̂i, mσ∗
−i)

Computing misinformed equilibria is straightforward given the respective results in game
theory, as one needs to simply compute the equilibria of each Gi and compose the equilibrium
strategies of player i in Gi for all i. However, for pseudo misinformed equilibria, things are
not as obvious. The following notion will be helpful in this respect:

Definition 18. Consider the canonical misinformation game mG = ⟨G0, G1, . . . , G|N |⟩. Then,
we call the merged game of mG the game G̃ = ⟨N , S, P ⟩, such that N is the set of players in
G0, S is the set of strategies in G0 and P = (P 1

1 , . . . , P
|N |
|N | ) (where P i

i represents the payoffs
of player i in game Gi).

Essentially, the merged game is created by the agglomeration of the different Gi, such that
the payoffs of player i are taken from Gi. We can easily note that the pseudo misinformed
equilibria of a misinformed game mG coincide with the Nash equilibria of its merged game.
This is immediate from the fact that the computation of a pseudo misinformed equilibrium in
Definition 17 depends only on the strategies of each player in her own game:

Proposition 1. Consider a canonical misinformation game mG and its merged game G̃.
Then a strategy profile is a pseudo misinformed equilibrium of mG, if and only if, it is a Nash
equilibrium of G̃.

An important corollary of Proposition 1 (and [Nash, 1951]) is that a pseudo misinformed
equilibrium always exists. The same is of course true for the natural misinformed equilibrium
(because each game Gi has at least one Nash equilibrium, by [Nash, 1951]):

Proposition 2. Any canonical misinformation game has at least one natural misinformed
equilibrium, and at least one pseudo misinformed equilibrium.

Clearly, the misinformed equilibria and the pseudo misinformed equilibria of a misinfor-
mation game need not coincide. The following example shows this:

Example 4.1. Consider the canonical misinformation game mG = ⟨G0, G1, G2⟩ with payoffs:

(R0, C0) :=

(
(2, 1) (0, 0)
(0, 0) (1, 2)

)
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,

(R1, C1) :=

(
(0, 0) (2, 1)
(1, 2) (0, 0)

)
, (R2, C2) = (R0, C0).

Note that G0 (and G2) is the well-known Battle of the Sexes game, whereas G1 is the same
game whose payoff matrix has been rotated by 90o. The Nash equilibria of G2 are ((1, 0), (1, 0)),
((0, 1), (0, 1)) and ((2/3, 1/3), (1/3, 2/3)), whereas the Nash equilibria of G1 are ((1, 0), (0, 1)),
((0, 1), (1, 0)) and ((2/3, 1/3), (1/3, 2/3)). Thus the equilibrium strategies of row player in
G1 are A = {(0, 1), (1, 0), (2/3, 1/3)}, and the equilibrium strategies of column player in G2

are B = {(1, 0), (0, 1), (2/3, 1/3)}. According to Definition 16 the misinformed equilibria
of mG are the elements of A×B. On the other hand, mG has one pseudo misinformed
equilibrium, namely ((2/3, 1/3), (1/3, 2/3)), as given by the merged game, whose payoff matrix
is (R1, C2).

It is also easy to see that the computation of natural/pseudo misinformed equilibria has
the same computational complexity as the computation of a Nash equilibrium in a normal-
form game. Indeed, the computation of a natural misinformed equilibrium amounts to the
computation of the Nash equilibrium of |N | different games (the games of the players, i.e.,
G1, . . . , G|N |), whereas the computation of the pseudo misinformed equilibrium is performed by
computing the Nash equilibrium of the merged game. Thus, using [Chen et al., 2009,Daskalakis
et al., 2009]:

Proposition 3. The computation of a misinformed equilbrium and of a pseudo misinformed
equilibrium of a misinformation game is PPAD-complete.

4.2.2 Price of Misinformation

Inspired by Definition 6, we define a metric to measure the effect of misinformation compared
to the social optimum, based on a social welfare function h.

Definition 19 (see [Varsos et al., 2021]). Given a misinformation game mG, the Price of
Misinformation (PoM) is defined as:

PoM =
h(opt)

minσ∈NME h(σ)
(4.2)

Using the definition of PoA [Koutsoupias and Papadimitriou, 1999] and (4.2) we derive
the following formula that links the two metrics:

PoM

PoA
=

minσ∈NE h(σ)

minσ∈NME h(σ)
(4.3)

for NE the Nash equilibria of G0 and mE the misinformed equilibria of mG.
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Given an mG = ⟨G0, G1, . . . , G|N |⟩, interesting results can be derived by comparing the
optimal Nash equilibrium of G0 with the optimal natural misinformed equilibrium of mG

(or, equivalently, through equation 4.3, by comparing PoA of G0 with PoM of mG). If
PoM < PoA, then misinformation has a beneficial effect on social welfare, as the players are
inclined (due to their misinformation) to choose socially better strategies. On the other hand,
if PoM > PoA, then misinformation leads to a worse outcome, from the perspective of social
welfare.

The following proposition essentially says that misinformation can steer the players to any
desired behaviour. In other words, regardless of the actual game G, we can use misinformation
to make the players behave as if they were playing any other game G′, i.e., enforce any desired
behaviour:

Proposition 4. For any G = ⟨N , S, P ⟩, G′ = ⟨N , S, P ′⟩, we have:

1. There is a misinformation game mG = ⟨G0, G1, . . . , G|N |⟩ such that G0 = G and the
set of natural misinformed equilibrium strategies of player i in mG are identical to the
Nash equilibrium strategies of i in G′, ∀i ∈ N .

2. There is a misinformation game mG = ⟨G0, G1, . . . , G|N |⟩ such that G0 = G and the
set of pseudo misinformed equilibria of mG are identical to the Nash equilibria of G′.

Proof. To show both cases, take mG = ⟨G, G′, . . . , G′⟩.

Proposition 4 shows the power of misinformation as a tool for mechanism design. Similarly,
we can show that we can use misinformation to enforce any given behaviour to the players of
a game, including the socially optimal one. The proof is easy, using Proposition 4, by showing
that there exists a normal-form game G′ whose only Nash equilibrium is the desired one:

Proposition 5. For any normal-form game G and strategy profile σ:

1. There is a misinformation game mG = ⟨G0, G1, . . . , G|N |⟩ such that G0 = G and the
only natural misinformed equilibrium of mG is σ.

2. There is a misinformation game mG = ⟨G0, G1, . . . , G|N |⟩ such that G0 = G and the
only pseudo misinformed equilibrium of mG is σ.

Corollary 1. For every normal-form game G there is a misinformation game mG =

⟨G0, G1, . . . , G|N |⟩ such that G0 = G and PoM = 1.

The above results show that, given sufficient misinformation, anything is possible in terms
of improving (or deteriorating) the social welfare. An interesting follow-up question is to
explore the limitations of mechanism design using misinformation, if we impose restrictions
on the type or amount of misinformation possible.
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4.3 Misinformation in load balancing games
Introducing misinformation in LBGs follows similar patterns as in Section 4.2:

Definition 20. A misinformation LBG is a tuple mG = ⟨G0, G1, . . . , G|k|⟩, where all Gj are
LBGs and G0 contains |k| tasks.

As before, G0 is called the actual LBG, whereas Gj is the LBG that task j understands.
The notion of canonical misinformation games applies here as well:

Definition 21. A misinformation LBG mG = ⟨G0, G1, . . . , G|k|⟩ is called canonical, if and
only if, for any j, G0, Gj differ only with regards to the weights of the tasks and the speeds of
the machines.

All misinformation games can be transformed into canonical through the process of
inflation described in Subsection 4.2: we compare each Gj with G0, and, when tasks are
missing, we add tasks with 0 weight; when machines are missing, we add machines with a
speed small enough so that a task does not have any incentive to move to the new machines,
even if all tasks are assigned to the slowest machine. Therefore, in the following, we only
consider canonical misinformation LBGs.

Like in the standard case, a misinformed assignment mA is a mapping of tasks to machines
mA : k → m, where any task j chooses a machine according to its game Gj . Given a specific
misinformed assignment mA, the actual load of a machine i is l0i =

∑
j∈k:i=mA(j) w0

j /s0
i ,

whereas the perceived load of a machine i for task h is lhi =
∑

j∈k:i=mA(j) wh
j /sh

i . The actual
cost of task j for choosing machine i is ci,0

j = l0i , whereas the perceived cost is ci,j
j = lji .

Similarly, the actual social cost of mA is cost(mA) = maxi∈m(l0i ).

4.3.1 Equilibria in Misinformation load balancing games

As mentioned above, equilibria are achieved when tasks have no incentive to change their
assignments. As with normal-form games, this can be formalised in two ways: either the tasks
choose the Nash equilibrium assignments in their own game (without regards to what other
tasks do), or they choose to adapt their behaviour based on the other assignments. Formally:

Definition 22. A misinformed task assignment mA(j) of task j is a pure misinformed
equilibrium task assignment, if and only if it is a pure Nash equilibrium assignment for game
Gj. A misinformed assignment mA is called a pure misinformed equilibrium assignment if
and only if it consists of pure misinformed equilibrium task assignments.

Definition 23. A misinformed assignment mA is a pure pseudo misinformed equilibrium
assignment, if and only if, ∀j ∈ k ∀i ∈ mj : c

mA(j),j
j ≤ ci,j

j .

As each Gj is an LBG, the existence of a pure Nash equilibrium assignment in every
Gj is warranted by the results of [Nisan et al., 2007a,Rosenthal, 1973,Nash, 1951], thus a
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misinformed equilibrium assignment in misinformation LBGs always exists. Moreover, using
complexity results for standard LBGs [Nisan et al., 2007a], we can show the following:

Proposition 6. Consider a misinformation LBG mG with k tasks, such that each Gj has
m identical machines. Then, the computational complexity of computing a misinformed
equilibrium assignment in mG is O(k2 log k).

Proof. On identical machines we can transform any assignment A into a pure Nash equilibrium
in time O(k log k) [Nisan et al., 2007a]. To find a misinformed equilibrium, we repeat this
once for each Gj (j > 0), which requires O(k2 log k) time.

Unfortunately, unlike pure misinformed equilibria, a pure pseudo misinformed equilibrium
is not guaranteed to exist. This is a corollary of the following counter-example:

Example 4.2. Consider a misinformation LBG with 3 tasks and 2 identical machines with
misinformation only in the weights of the tasks. Also assume that task 1 knows the weights
w1 = (w1

1 = 1, w1
2 = 10, w1

3 = 100), task 2 knows the weights w2 = (w2
1 = 100, w2

2 = 1, w2
3 =

10) and task 3 knows the weights w3 = (w3
1 = 10, w3

2 = 100, w3
3 = 1). It is easy to see that

there is no assignment such that Definition 23 holds, i.e., in any assignment, at least one of
the tasks has an incentive to change machine, according to its own game.

As Example 4.2 shows, the existence of a pure pseudo misinformed equilibrium assignment
is not warranted. Thus, although a pure Nash equilibrium is guaranteed to exist in LBGs,
this is not the case for pure pseudo misinformed equilibria in misinformation LBGs, not even
if we assume identical machines and misinformation restricted to weights only. As another
corollary of this result, we get that the “merged LBG” (i.e., the counterpart of the merged
game – Definition 18) does not exist in the general case. An interesting relevant question
(reserved for future work) would be to discover the conditions that allow the existence of a
pure pseudo misinformed equilibrium assignment and/or the “merged LBG”.

Note that, since LBGs are special cases of normal-form games, one could transform a
misinformed LBG into a misinformed normal-form game, and compute the merged game
from there. The above counter-example shows that this process does not always result to a
(merged) game that has an LBG counterpart (because if it did, it would have a pure Nash
equilibrium, and thus the original misinformation LBG would have a pure pseudo misinformed
equilibrium).

4.3.2 Price of Misinformation in load balancing games

The Price of Misinformation (PoM) in misinformation LBGs is defined analogously to Definition
27, but note that here we talk about a minimisation game:

PoM =
maxA∈NME cost(A)

cost(A∗)
, (4.4)



36 Chapter 4. Misinformation Games

(a) (b) (c) (d)

Figure 4.1: Load balancing game and misinformed load balancing game: (a) optimal
assignment, (b) worst Nash equilibrium allocation, (c-d) worst natural misin-
formed equilibrium allocation.

where cost(A) is the worst cost among the pure misinformed equilibria assignments and
cost(A∗) is the cost of the optimal assignment in the actual game.

The following example is illustrative of the concepts presented in this section:

Example 4.3. Suppose that there are two identical machines with speed s = 1 and four tasks
with w1 = w2 = 1 and w3 = w4 = 2. The optimal assignment maps a task of weight 1 and a
task of weight 2 to each of the machines (A∗ = (1, 2, 1, 2)).

It is obvious that the worst pure Nash equilibrium assignment is A = (1, 1, 2, 2) with
cost(A) = 4, Figure 4.1-(b).

Now, consider the misinformation game mG in which tasks have different information
on the weights. Let w1 = (w1

1 = 6, w1
2 = 1, w1

3 = 2, w1
4 = 2) be the weights in G1 and

wj = (wj
1 = 7, wj

2 = 1, wj
3 = 1, wj

4 = 1) in Gj, for j = {2, 3, 4}. The pure Nash equilibrium
assignments in each game Gj are A1 = (1, 2, 2, 2) and A2 = (2, 1, 1, 1), thus the pure
misinformed equilibrium assignments are all combinations aligned with i) task 1 is assigned to
a different machine than tasks {2, 3, 4} or ii) all tasks are assigned to the same machine. From
the above, the worst misinformed equilibrium assignment is derived to be mA = (1, 1, 1, 1) (or
mA = (2, 2, 2, 2)) with cost(mA) = 6.

On the other hand, the pure pseudo misinformed equilibrium assignments are those in
which task 1 is assigned to a different machine than tasks {2, 3, 4}, Figure 4.1-(c-d). It is
interesting that in this example PoA = 4/3 and PoM = 2 implying that misinformation
worsens the behaviour of the game.

Misinformation, as a tool for mechanism design, is equally strong and flexible for LBGs as
for normal-form games. In particular, propositions analogous to Propositions 4, 5 hold:
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Proposition 7. For any G = ⟨k, m, s, w⟩, G′ = ⟨k, m, s′, w′⟩, we have:

1. There is a misinformation LBG mG = ⟨G0, G1, . . . , G|N |⟩ such that G0 = G and the set
of pure misinformed equilibrium assignments of player i in mG are identical to the pure
Nash equilibrium assignments of i in G′, i ∈ N .

2. There is a misinformation LBG mG = ⟨G0, G1, . . . , G|N |⟩ such that G0 = G and the set
of pure pseudo misinformed equilibrium assignments of mG are identical to the pure
Nash equilibrium assignments of G′.

Proof. To show both cases, take mG = ⟨G, G′, . . . , G′⟩.

Proposition 8. For any LBG G and assignment A:

1. There is a misinformation LBG mG = ⟨G0, G1, . . . , G|N |⟩ such that G0 = G and the
only pure misinformed equilibrium assignment of mG is A.

2. There is a misinformation LBG mG = ⟨G0, G1, . . . , G|N |⟩ such that G0 = G and the
only pure pseudo misinformed equilibrium assignment of mG is A.

Proof. For each task j, such that A(j) = i, we create a game Gj with sufficiently high speed for
i and sufficiently low speed for all machines i′ ̸= i. We now create mG = ⟨G, G1, . . . , G|k|⟩.

Corollary 2. For every LBG G there is a misinformation LBG mG = ⟨G0, G1, . . . , G|k|⟩
such that G0 = G and PoM = 1.

Due to the special form of LBGs, we can prove various bounds regarding their cost and
PoM, based on the task weights and machine speeds. Propositions 9, 10, 11 show some such
results:

Proposition 9. Consider a canonical misinformation LBG mG = ⟨G0, G1, . . . , G|k|⟩, such
that G0 = ⟨k, m, s, w⟩ and si > 0 for all i. Then, for any assignment mA, cost(mA) ≤∑k

j=1 wj/ mini si.

Proof. The worst possible assignment mA∗ (from the social cost perspective) is to assign
all tasks to the slowest machine, with cost(mA∗) =

∑k
j=1 wj/ mini si. Misinformation can

achieve this effect, so the result follows.

Proposition 10. Consider a misinformation LBG mG = ⟨G0, G1, . . . , G|k|⟩, such that G0

has m identical machines and finite task weights. Then, the Price of Misinformation is
PoM ≤ m.

Proof. We know that the cost of an optimal assignment cost(A∗) cannot be smaller than
the average load over all machines (i.e., (∑j∈[k] wj)/m). Also, the worst scenario is that all
tasks are assigned into one machine, with cost (

∑
j∈[k] wj). Then, using Equation 4.4, we

conclude.
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Next, we consider the case of uniformly related machines. We can show the following:

Proposition 11. Consider a misinformation LBG mG = ⟨G0, G1, . . . , G|k|⟩, such that
G0 = ⟨k, m, s, w⟩ with m uniformly related machines and finite task weights. Then, the Price
of Misinformation is

PoM ≤ k · S
s
·O
( log m

log log m

)
, (4.5)

where s is the slowest speed and S is the fastest speed.

Proof. Since there is the case that all tasks be assigned to the slowest machine we have that
cost(mA) ≤

∑k
i=1 wi/s ≤ k ·M/s, where M is the largest weight.

Also, we have that
PoM = PoA · maxA∈mA Cost(A)

maxB∈NE Cost(B)

with A be the worst misinformed equilibrium assignment and B the worst Nash equilibrium
assignment. Furthermore, we have that maxB∈NE Cost(B) ≥M/S. Finally, by Chapter 20
of [Nisan et al., 2007a] we have that PoA ≤ O

(
log m

log log m

)
.

4.4 Misinformation in non-atomic congestion games
In this Section, we use an analogous approach as in Section 4.3 to define misinformation
games for the case of non-atomic congestion games, where each player has a subjective view
about the game he plays, which may be different from the others. Formally:

Definition 24 (Misinformation game [Varsos et al., 2022]). A misinformation non-atomic
congestion game mΓ with θ splitting is an (N + 1)-tuple mΓ = ⟨Γ0, Γ1, . . . , ΓN ⟩, where N is
the number of different views of the game that different players may assume, Γ0 = ⟨G, l, s, t, r⟩
is the actual game, Γj = ⟨G, lj , s, t, rj⟩ are the different subjective game specifications assumed
by the players, of which each player assumes only one, and θ = ⟨θ1, . . . , θN ⟩, where θi is the
portion of players that experience view Γi.

Here, we assume that the total mass of flow across all Γj (for j > 0) is equal to the
respective mass in Γ0, rj = r. Further, it must hold that ∑i∈[N ] θ

i = 1.
Thus, the players have the correct view of the graph and the flow at hand, although they

may assume different cost functions. In this case we call the misinformation single commodity
non-atomic congestion games as canonical. This is analogous to the concept of canonical
misinformation games, as defined in Definition 13.

Definition 25 (Misinformed equilibrium strategy). A misinformed strategy is a flow for
portion θj, that θj with with subjective view Γj follows in a pure Nash equilibrium strategy of
its game view Γj.
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Definition 26 (Natural Misinformed equilibrium). A natural misinformed equilibrium (NME)
is a flow f such that each portion θj plays a misinformed equilibrium strategy according to its
game-specific view j.

Since any non-atomic congestion game has at least one Nash equilibrium, it is easy to see
that any misinformation game of a non-atomic congestion game as defined above has at least
one natural misinformed equilibrium.

Having at hand the formal definition of the natural misinformed equilibrium, we measure
the deterioration/leverage in efficiency of a non-atomic congestion game due to misinformation.
For that, we adapt Definition 27 and the concept of Price of Misinformation (PoM) in the
case of non-atomic congestion games becomes:

Definition 27 (Price of Misinformation). Given a misinformation congestion game, the Price
of Misinformation (PoM) is defined as

PoM =
max

fNME∈NME
SC(fNME)

SC(fopt)
, (4.6)

where fopt is the flow that minimizes the Social Cost in the actual game Γ0 and the nominator
is the worst (maximum) value of the Social Cost of the set NME as computed with regards to
the actual game.

We can show the following:

Proposition 12. For every misinformation non-atomic congestion game, we have that:

1 ≤ PoM ≤
(

r ·max
p∈P

Cp(r)

)
/opt (4.7)

Proof. In the worst case, all flow will be routed through the most costly routes, which leads
to a Social Cost of r ·max

p∈P
Cp(r). Thus, PoM ≤

(
r ·max

p∈P
Cp(r)

)
/opt. Moreover, PoM ≥ 1

by definition.

Note that when Γ0 = Γj for any j, then PoM coincides with the PoA. Using the definition
of PoA and (4.6), we can derive the following formula that links the two metrics in the general
case:

PoM = PoA ·

 max
fNME∈NME

SC(fNME)

max
fNE∈NE

SC(fNE)

 , (4.8)

where NE is the set of all Nash equilibria of the actual game Γ0.
Interesting results can be derived by comparing the worst Nash equilibrium of Γ0 (or

PoA of Γ0) with the worst natural misinformed equilibrium of mΓ (or PoM of mΓ). If
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(a) Actual game.
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(b) Misinformed view of the game.

Figure 4.2: Non-atomic congestion game with 2 parallel links.

PoM < PoA, then misinformation has a beneficial effect on social welfare, as players are
inclined (due to their misinformation) to choose socially better strategies. On the other hand,
if PoM > PoA, then misinformation leads to a worse outcome from the perspective of social
welfare.

A metric similar to PoM was introduced in [Meir and Parkes, 2015b], called the Biased
Price of Anarchy, which measures the ratio of the equilibrium under biases in knowledge
compared to the optimal outcome. In this concept, all players play a game with modified
costs and, thus, (possibly) different than the actual costs. In our concept, all players play a
game according to the misinformation that they assume that is the same for anyone resulting
to different outcomes, so in general the two concepts PoM and Biased Price of Anarchy are
not equal.

Next, we provide an illustrative example of the above concepts.

Example 4.4. We consider the non-atomic congestion game as depicted in Figure 4.2a
(known as Pigou network [Pigou, 1920]), with latency functions l1(x) = εx+ 1, l2(x) = x+ ε,
r = 1 and x ∈ [0, 1]. It is clear that selfish players in a pure Nash equilibrium will choose all
to route through r2, resulting to a Social Cost equal to 1 + ε ≈ 1, as we take arbitrarily small
ε > 0. On the other hand, the social optimum can be achieved by allocating the flow as follows:
≈ 1/2 through route r1 and ≈ 1/2 through route r2. Thus, the optimal cost is SC(fopt) ≈ 3/4,
and the Price of Anarchy is PoA ≈ 4/3.

Now, consider the actual game Γ0 as depicted in Figure 4.2a and the game Γ1 as depicted in
Figure 4.2b. Also, assume the misinformation game mΓ = ⟨Γ0, Γ1, Γ2⟩ with θ splitting, where
Γ0 = ⟨G, l, s, t, r⟩, Γ1 = ⟨G, l1, s, t, r1⟩, and Γ2 = ⟨G, l2, s, t, r2⟩, and θ = ⟨θ1, θ2⟩. Further,
θ1 = 2/3 of the players have the view Γ1, and the rest the view Γ2.

In this example, l2 = l0 = l, l11(x) = εx + 1, and l12(x) = x + 1. In Γ1 the equilibrium is
to choose the route r1, while in Γ2 the equilibrium is to route through r2. Thus, the natural
misinformed equilibrium is that ≈ 2/3 of the players choose r1 and the remaining ≈ 1/3 choose
r2, leading to SCNME(fNME) ≈ 7/9 in the mΓ. So, the Price of Misinformation for this game
is PoM ≈ 28/27 < PoA. Thus, the players improve their behaviour, despite the selfishness
and the misinformation.



Chapter 5
Epistemic Adaptive Evolution

5.1 Introduction
In the last chapter we introduce the concept of misinformation games; without considering
the reaction of the players upon their realization that the received payoffs are different than
expected. In other words, our model until now addresses only one-shot games. To cope with
this limitation, it is important to consider the reaction of players as they observe unexpected
outcomes or (seemingly) irrational decisions made by other players.

To address these issues, initially, we develop an iterative methodology, called the Adaptation
Procedure , which models the evolution of the strategic behaviour of rational players in a
misinformation game, as they obtain new information and update their (erroneous) game
specifications. We consider the following setting: time is discrete and players take an action
in each period. They update their game specifications according to the payoff they receive.
This new information may lead them to a different strategic choice in the next period, so
the procedure is iterative and stabilizes when the players do not deviate from their current
choices, based on what they know so far. Note that this does not necessarily mean that all
players have the correct game specification, i.e., the procedure may stabilize before the players
get the chance to update their entire payoff matrix.

Nevertheless, the reactive nature of the players does not mean that they make their
decisions in a mechanistic manner only. The most effort for a decision to be made requires a
thorough understanding and reasoning regarding the players and their perspective about the
interaction. This depends on the information that the player possesses and the information
that he/she gains from the opponents, e.g. observing the decisions they made. In the
scope of misinformation games, the players have (possible) incorrect subjective information.
Hence, each observation (possible) contradicts their beliefs about the undergoing interaction.
Inevitably, we need to enrich Adaptation Procedure so that to capture revisions in the beliefs
of the players.

For that we establish the subjective epistemic views of the interaction that each player has,
and we call it epistemic misinformation games. Afterwards we develop an iterative procedure
that captures the changes in the epistemic views of the players due to the new information
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or unexpected choices, we call this procedure Epistemic Adaptive Evolution, and marginally
coincides with Adaptation Procedure.

5.2 The Adaptation Procedure
We first provide an informal description of the adaptation process and the related assumptions.

5.2.1 Informal Description

The adaptation begins with a finite misinformation game, say mG(0), where each player has
his/her own subjective view of the interaction which may differ from the actual one. As
explained in Chapter 4, this will cause each player to employ one of the equilibrium strategies
in his/her own game, leading to the emergence of a natural misinformed equilibrium. The
payoff received from the players’ combined strategic choices will be provided by the actual
game, and this may be different from what each player knows in his/her subjective game.
Note that we assume that the payoffs received by each player for their strategic choices are
publicly announced, thus are common knowledge. As a result, players will update their payoff
matrices by replacing the erroneous payoffs with the correct ones just received, leading to a
new misinformation game.

It should be noted that the above process is not, in general linear. When the misinformation
game has more than one natural misinformed equilibria, and/or when there exist mixed
strategic choices in them, each of these choices will be considered in a separate branch of the
process. As a result, mG(0) will in fact spawn several new misinformation games, one for each
element of the support of the natural misinformed equilibria.

The process continues recursively for each branch, creating new misinformation games.
When no new misinformation games are spawned (i.e., all misinformation games spawned will
already be in the tree), the Adaptation Procedure terminates.

Observe that the Adaptation Procedure produces new games (and thus new nmes) in each
time step. The nmes of the games appearing in the leaves of the recursive tree at the time
when the Adaptation Procedure terminates, determine a new equilibrium concept. Specifically,
a strategy profile that is an nme of one of the leaves is a stable misinformed equilibrium, if the
players choosing it have no incentive to deviate from it, even in the presence of the updated
payoff information.

5.2.2 Formal Definition

Consider a multidimensional matrix A, and a vector v⃗ ∈ Pos of matrix A. We denote by Av⃗

the element of A in position v⃗. For example, A(1,2) is the top right element of a 2× 2 matrix
A. We define the operation of replacement of element Av⃗ with b as follows.
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Definition 28. Consider set F , matrix A ∈ F n1×n2×...×nm , vector v⃗ indicating a position in
A and some b ∈ F . We denote by A⊕v⃗ b the matrix B ∈ F n1×n2×...×nm, such that Bv⃗ = b

and Bu⃗ = Au⃗ for all u⃗ ̸= v⃗.

As explained above, the Adaptation Procedure is based on the replacement of an element
in the subjective payoff matrices of players, with the respective element in the actual payoff
matrix. This is formalised below:

Definition 29. Consider a canonical misinformation game mG = ⟨G0, G1, . . . , G|N |⟩, where
Gi = ⟨N , S, P i⟩ (for 0 ≤ i ≤ |N |), and some vector v⃗. We define the v⃗-update of mG, denoted
by mGv⃗, to be the misinformation game ⟨G0, G1′, . . . , G|N |′⟩, where Gi′

= ⟨N , S, P i ⊕v⃗ P 0
v⃗ ⟩,

for 1 ≤ i ≤ |N |.

Definition 29 tells us how to perform the update process that the Adaptation Procedure
requires.

It is easy to show that the following hold:

• (mGu⃗1)u⃗1 = mGu⃗1

• (mGu⃗1)u⃗2 = (mGu⃗2)u⃗1

Abusing notation, for a set of positions X = {u⃗1, . . . , u⃗k}, we denote by mGX the game
mGX = (. . . (mGu⃗1)u⃗2 . . . )u⃗k

. Given the properties above, the notation mGX is well-defined.
The position where the update takes place (denoted by v⃗ in Definition 29) is determined

by the strategic choices of the players, and can be “extracted” using the following definition:

Definition 30. Consider a strategy profile σ = (σ1, . . . , σN ) with σi ∈ R|Si| and Si =

{si1, . . . , si|Si|}. The characteristic strategy set of vectors of σ is χ(σ) = χ(supp(σ1))× · · · ×
χ(supp(σN )), with χ(supp(σj)) = {i|sji ∈ supp(σj)}.

This definition can be clarified with the following example:

Example 5.1. Assume a 4× 3 bimatrix game. Then, the characteristic strategy set of vectors
of σ = ((1/2, 0, 1/3, 1/6), (0, 0, 1)) is χ(σ) = {(1, 3), (3, 3), (4, 3)}.

As explained above, the Adaptation Procedure occurs in discrete time steps t ∈ N0 =

N ∪ {0}. It starts from t = 0 where player i has the view Gi,(0), ∀i ∈ [|N |], and in each
time step t we implement the update operation described in Definition 29 for the vector(s)
that correspond to the strategic choices of the players. The following example illustrates this
procedure using the above notions, and is also visualised in Figure 5.2:

Example 5.2 (Running Example). Consider the canonical misinformation game mG(t) =

⟨G0, G1,(t), G2,(t)⟩, where Gi,(t) = ⟨{1, 2}, S = {s1, s2}, P i,(t)⟩, with i ∈ {1, 2} and

P 0 = P 1,(0) =

(
(2, 2) (0, 3)
(3, 0) (1, 1)

)
, P 2,(0) =

(
(1, 1) (3, 0)
(0, 3) (2, 2)

)
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In t = 0, player 1 has equilibrium strategy s2 in G1,(0), while player 2 has equilibrium strat-
egy s1 in G2,(0). Thus the nme corresponds to (s2, s1) and has strategy profile ((0, 1), (1, 0)).
Using the characteristic strategy vector we take χ((0, 1), (1, 0)) = {(2, 1)}.

The update operator gives mG(1) = ⟨G0, G1,(1), G2,(1)⟩ with the following payoff matrices
(note how the bottom-left payoff has been updated):

P 1,(1) =

(
(2, 2) (0, 3)
(3, 0) (1, 1)

)
, P 2,(1) =

(
(1, 1) (3, 0)
(3, 0) (2, 2)

)

■

The procedure shown in Example 5.2 is formalised as follows, taking into account the fact
that the process may branch when χ(σ) is not a singleton set:

Definition 31. For a set M of misinformation games, we set:

AD(M) = {mGu⃗ | mG ∈M , u⃗ ∈ χ(σ), σ ∈ NME(mG)}

Thus, we define as Adaptation Procedure the iterative process that{
AD(0) (M) = M

AD(t+1) (M) = AD(t) (AD (M))

for t ∈N0.

The functionality of the Adaptation Procedure between two consecutive time steps t and
t + 1, as provided by Definition 31, is depicted in Figure 5.4.

Note that the Adaptation Procedure is defined over a union of a set of misinformation
games. Although our intent is basically to apply it over a single misinformation game, the
branching process, along with the recursive nature of the definition, forces us to consider the
more general case right from the start. Note also that we will often abuse notation and write
AD (mG) (or ADt (mG)) instead of AD ({mG}) (or AD(t) ({mG})).

The following example shows how the Adaptation Procedure of Example 5.2 continues in
its second step. Interestingly, mG(1) includes a hybrid natural misinformed equilibrium, thus
illustrating the branching process mentioned above.

Example 5.2 (continued). In t = 1, player 1 has equilibrium strategy s2 in G1,(1), while
player 2 has a mixed equilibrium strategy (randomizes between s1 and s2) in G2,(1). The
corresponding nme has strategy profile ((0, 1), (1/3, 2/3)). Using the characteristic strategy
vector we take χ(nme) = {(2, 1), (2, 2)}. Notice that, as one player randomized, χ(nme)

has more than one elements, and the Adaptation Procedure branches, resulting to two new
misinformation games, say mG(2a), mG(2b).
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. . .

nme1

nmek

G1,(t)

G2,(t)

...

G|N |,(t)

ne

ne

...

ne

mG(t)

1.Compute
supports

of all
nmes

mG1,(t+1)

. . .

mG#1,(t+1)

Figure 5.1: Schematic representation of the functionality of Adaptation Procedure from
time step t to time step t + 1, that is ADt+1 (mG).

Let us first consider the element (2, 1) of χ(nme) (which leads to mG(2a))). We note that
the payoff matrices of mG(1) are already updated with the correct value with respect to the
bottom-left element, therefore mG(2a) = mG(1).

Similarly, for the element (2, 2) of χ(nme), we update the bottom-right element of P 1,(1)

and P 2,(1), so mG(1) leads to mG(2b) = ⟨G0, G1,(2b), G2,(2b)⟩ with payoff matrices:

P 1,(2b) =

(
(2, 2) (0, 3)
(3, 0) (1, 1)

)
, P 1,(2b) =

(
(1, 1) (3, 0)
(3, 0) (1, 1)

)

From the above, we conclude that AD(2)({mG(0)}) = {mG(1), mG(2b)}. ■

5.2.3 Stabilisation of the Adaptation Procedure

The following definition determines when the procedure is assumed to have “terminated”; this
corresponds to the time point where any further iterations do not provide new information to
the players:

Definition 32. We say that the Adaptation Procedure stops at step t, if and only if t is the
smallest integer for which

AD(t+1)(M) = AD(t)(M)

for t ∈ N0. We call this t the length of the Adaptation Procedure and we denote it as
LAD (M ).

In other words, the Adaptation Procedure ends at the first time step in which all of the
spawned misinformation games already appear in the recursive tree (though not necessarily
in the same branch). As we will show later (Proposition 16), all finite misinformation games
terminate, so the notion of termination is well-defined (at least for finite games).
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To simplify presentation in the following, we will denote by AD∗ (M) the set of all
misinformation games created by M through successive applications of the AD (·) function,
i.e., AD∗ (M) =

⋃∞
t=0AD(t) (M ). Moreover, we will denote by AD∞ (M) the misinformation

games that AD (·) produces after its termination point, i.e., AD∞ (M) = AD(t) (M) for
t = LAD (M).

Definition 33. Consider a misinformation game mG. Then, σ is a stable misinformed
equilibrium (or sme for short) of mG, iff there exists some m̂G ∈ AD∞({mG}) such that
σ ∈ NME(m̂G) and, for all v⃗ ∈ χ(σ), m̂Gv⃗ = m̂G.

We denote by SME(mG) the smes of mG.

Example 5.2 (continued). For t = 2, let us first consider mG(2a). As mentioned, mG(2a) =

mG(1) so, for reasons analysed in Example 5.2, it branches into mG(3a) = mG(1), mG(3b) =

mG(2b).
As regards mG(2b), we note that the nme of mG(2b) is σ = ((0, 1), (1/2, 1/2)), for which

χ(σ) = {(2, 1), (2, 2)}. Observe that both positions in χ(σ) (namely, (2, 1), (2, 2)) are known
to the players, i.e., it holds that P

i,(2b)
v⃗ = P 0

v⃗ , for i ∈ {1, 2}, v⃗ ∈ {(2, 1), (2, 2)}. Thus,
mG(3c) = mG(2b).

Combining the above, we observe that AD(3)({mG(0)}) = {mG(1), mG(2b)} = AD(2)({mG(0)}),
so the Adaptation Procedure terminates at step 2, i.e., LAD({mG(0)}) = 2.

Now let us identify the smes of mG(0). As explained above, and in Example 5.2 NME(mG(1)) =

{((0, 1), (1/3, 2/3))}, NME(mG(2b)) = {((0, 1), (1/2, 1/2))}. As regards σ1 = ((0, 1), (1/3, 2/3)),
we note that it is not an sme, because there exists a position (2, 2) ∈ χ(σ1), for which
mG

(1)
(2,2) = mG(2b). On the other hand, σ2 = ((0, 1), (1/2, 1/2)) is an sme, because, as men-

tioned above, P
i,(2b)
v⃗ = P 0

v⃗ , for i ∈ {1, 2}, v⃗ ∈ {(2, 1), (2, 2)}, so mG
(2b)
v⃗ = mG(2b) for

v⃗ ∈ {(2, 1), (2, 2)}. ■

5.3 Adaptation Procedure: Visualisations
5.3.1 Adaptation Procedure Graph (AP-Graph)

The Adaptation Procedure can be visualized in various ways. The most natural one, which is
described in this subsection, visualises the Adaptation Procedure as a graph, where nodes are
misinformation games, and arrows represent “transitions”, i.e., how each misinformation game
was produced by another through the AD (·) function. Figure 5.2 visualizes the AP-Graph of
the Adaptation Procedure of our running example above.

More formally, the AP-Graph of a misinformation game mG is defined as follows:

Definition 34 (AP-Graph). Consider a misinformation game mG. The Adaptation Proce-
dure Graph (AP-Graph for short) of mG is the graph G(mG) = (V , E), where:
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AD(1)({mG})

AD(2)({mG})AD(0)({mG})

mG(0) {
mG(1)

mG(2a)

} {
mG(2b)

mG(3c)

}(2, 1)

(2, 1) (2, 2)

(2, 2)

Figure 5.2: AP-Graph of Adaptation Procedure for misinformation game in Exam-
ple 5.2, with {mG(1), mG2a} ∈ AD(1) ({mG}) and {mG(2b), mG(3c)} ∈
AD(2) ({mG}).

• V = AD∗ ({mG})

• E = {(mG1, mG2) | mG1 ∈ V , mG2 ∈ V and mG2 ∈ AD ({mG1})}

As is obvious by the definition, in the AP-Graph, the nodes are the misinformation games,
and two nodes are connected with a directed link if and only if the target node was “produced”,
through AD (·), by the source node.

5.3.2 Adaptation Procedure Induced Graph (API-Graph)

The second representation formalism to be considered is again a graph, whose nodes are the
different positions in the payoff matrix of the original game, whereas edges show how the
players transition from one position to another during the Adaptation Procedure.

To describe the API-Graph formally, we will need a set enumerating all possible positions
in the payoff matrices of a misinformation game. This set is denoted by S#(mG). Formally,
consider a misinformation game mG = ⟨G0, G1, . . . , G|N |⟩ such that G0 = ⟨N , S, P ⟩, S =

S1 × · · · × S|N |, and suppose that |Si| = ni. We denote by S#(mG) the set S#(mG) =

[n1]×· · ·× [n|N |]. Observe that the elements of S#(mG) are |N |-tuples of numbers, indicating
one position in the payoff matrix of Gi.

The API-Graph is formally defined as follows:

Definition 35 (API-Graph). Consider a misinformation game mG. The Adaptation Proce-
dure Induced Graph (or API-Graph for short) of mG is the graph G∗(mG) = (V∗, E∗) such
that:

• V∗ = S#(mG)

• E∗ = {(u⃗, v⃗) ∈ V∗× V∗ | there exists mG1 ∈ AD∗ ({mG}) and σ1 ∈ NME(mG1), such
that u⃗ ∈ χ(σ1) and v⃗ ∈ χ(σ2) for some σ2 ∈ NME(mG1

u⃗)}
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{1, 1} {1, 2} {2, 1} {2, 2}

Figure 5.3: API graph in mG’s games for Example 5.2.

As is clear by the definition, to connect two positions u⃗, v⃗ through an edge in the API-
Graph, it should be the case that, when updating the position u⃗ at some step of the Adaptation
Procedure, the misinformation game produced has an nme whose relevant positions (through
the χ function) include v⃗. In other words, it links together potential player behaviours: if u⃗

becomes a possible player behaviour at some step, and u⃗ points to v⃗ in the API-Graph, then
the next step will include v⃗ as a possible player behaviour.

Figure 5.3 shows the API-Graph the produced by the Adaptation Procedure in Example 5.2.

5.4 Adaptation Procedure: Properties

5.4.1 General Properties

We will start by providing two useful properties of the Adaptation Procedure:

Proposition 13. Consider the AD (M), then

AD (M) =
⋃

mG∈M

AD ({mG})

Proof. By definition:

AD (M) = {mGu⃗ | mG ∈M , u⃗ ∈ χ(σ), σ is a nme of mG}
=

⋃
mG∈M

{mGu⃗ | u⃗ ∈ χ(σ), σ is a nme of mG}

=
⋃

mG∈M

AD ({mG})

Proposition 14. Consider the a finite misinformation game mG such that {mG, mG′} =
AD ({mG}), with mG ̸= mG′. Then,

AD ({mG}) ⊆ AD (AD ({mG}))

Proof. Observe that, by Proposition 13,

AD (AD ({mG})) = AD ({mG, mG′}) = AD ({mG}) ∪AD ({mG′}) ⊇ AD ({mG}) .



5.4. Adaptation Procedure: Properties 49

5.4.2 Termination, and existence of smes

In this Subsection we show that the adaptation procedure will always terminate when mG is
finite itself. Firstly, we focus our attention on a single branch of the Adaptation Procedure.

Let us fix some (arbitrary) selection function φ : 2S# \ ∅ 7→ S# , such that φ(X) ∈ X for
all X ∈ 2S# \ ∅. A selection function essentially picks a position out of a set of positions, and
can be used to determine a branch in the Adaptation Procedure, as the following definition
shows:

Definition 36 (Branch). Consider a misinformation game mG and some selection function
φ. We define the branch determined by the selection function φ as the sequence (Ht)t≥0

where:

H0 = ∅,

Ht(mG) = Ht−1(mG) ∪φ
(
{χ(σ) | σ ∈ NME(mGHt−1(mG))}

)
, for t > 0

Using the notion of the branch, we can show the following, which essentially shows that
the notion of the branch, as defined in Definition 36 indeed corresponds to a branch in the
adaptation process:

Proposition 15. Consider a finite misinformation game mG. Then, for any branch (Ht)t≥0,
and any t ≥ 0, there exists some mG′ ∈ AD(t) ({mG}) such that mG′ = mGHt(mG).

Proof. Take some branch (Ht)t≥0. For t = 0, H0 = ∅ and mGH0 = mG ∈ AD(0) ({mG}), so
the result holds.

Assume that the result holds for t = k. For t = k + 1, we take an m̂G ∈ AD(k+1) ({mG}).
Thus, m̂G = m̃Gb, for some position b ∈ Hk+1(mG) and m̃G ∈ AD(k) ({mG}). From the
inductive step, m̃G = mGHk(mG), thus m̂G = (mGHk(mG))b = mGHk+1(mG).

Theorem 1. Consider a finite misinformation game mG. Then, for all mG′ ∈ AD(t) ({mG})
it holds that, either mG′ ∈ AD(t−1) ({mG}), or there exists a branch (Ht(mG))t≥0 such that
mG′ = mGHt(mG) and |H(mG)t| = t.

Proof. For t = 0, obviously mG ∈ AD(0) ({mG}), so the result holds. Assume that the
result holds for t = k. For t = k + 1, by definition, mG′ = AD ({mG′′}) for some mG′′ ∈
AD(k) ({mG}). If mG′ = mG′′ the result holds trivially, so let us assume that mG′ ̸= mG′′.
Note that the inductive hypothesis holds for mG′′, so there are the following two cases with
regards to mG′′:

1. If mG′′ ∈ AD(k−1) ({mG}), then obviously mG′ ∈ AD(k) ({mG}), so the result holds.
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2. If there exists a branch (Ĥt(mG))t≥0 such that mG′′ = mGĤk(mG) and |Ĥk(mG)| = k,
then we note that mG′ = mG′′

v⃗ for some position v⃗, i.e., mG′ = (mGĤk(mG))v⃗. If
v⃗ ∈ Ĥk(mG), then mG′ = mG′′, a contradiction by our hypothesis. So Ĥk(mG) ∪ {v⃗}
contains k + 1 elements. Moreover, there exists some branch (Ht(mG))t≥0 such that
Hk+1(mG) = Ĥk(mG) ∪ {v⃗}. This concludes the proof.

We continue by showing that the Adaptation Procedure will always terminate when mG

is finite itself:

Proposition 16. Consider a finite misinformation game mG. Then LAD (mG) is finite and
AD∞ ({mG}) is finite.

Proof. Observe that as mG is finite, the different positions are finite, so Ht is finite. Thus,
from Theorem 1, the Adaptation Procedure terminates.

Unfortunately, a similar result cannot be shown for infinite games. The following counter-
example proves this fact:

Example 5.3. Consider G0 = ⟨N , S, P 0⟩ such that N = {r, c}, Sr = {1, 2, . . . }, Sc = {1, 2},
S = Sr × Sc, and the payoff for a position (x, y) ∈ Sr × Sc is computed as follows:

P 0
(x,y) =

(1
x

, y

)
As a result of this definition, the only (pure) nash equilibrium for G0 is in position (1, 2),
where the payoff is (1, 2).

Now consider the misinformation game mG = ⟨G0, Gr, Gc⟩, where Gr = ⟨N , S, P r⟩ such
that P r

(x,y) = ( 1
x + 1, y), and Gc = G0. By the definition of mG we note that player c knows

the correct payoffs and will always play strategy 2. On the other hand, player r knows the
correct payoffs as far as player c is concerned, but his own payoffs are distorted, and he believes
that their actual value is 1 point more than they really are. The key observation here is that,
for player r, any of his subjective payoffs is better than any of the actual ones. Therefore,
when he learns any position, this position becomes highly unattractive and cannot be selected
again.

More formally, we note that NME(mG) = {σ0}, where χ(σ0) = {(1, 2)}. Thus,
AD(1) ({mG}) = {mG(1)}, where mG(1) = mG(1,2). It is easy to see that NME(mG(1)) =

{σ1}, where χ(σ1) = {2, 2}. Continuing this process, we observe that AD(i) ({mG}) =

{mG(i)}, where mG(i) is such that the positions (1, 2), (2, 2), . . . , (i, 2) have been learnt. But
the only (pure) nme of mG(i) corresponds to the position (i + 1, 2). As a result, the Adap-
tation Procedure will continuously lead to the learning of new positions (and, thus, to new
misinformation games), which shows that the Adaptation Procedure will not terminate.
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Due to this negative result, all subsequent analysis focuses on finite misinformation games.
We will now show that all finite misinformation games have an sme. To start with, we

show the following result, which describes a condition sufficient for the existence of an sme:

Lemma 2. If mG′ ∈ AD∗ ({mG}) and AD ({mG′}) = {mG′} then NME(mG′) ⊆ SME(mG).

Proof. Suppose that mG′ ∈ AD(t0) ({mG}) for some t0 ≥ 0. Since mG′ ∈ AD ({mG′}),
it follows that mG′ ∈ AD(t) ({mG}) for all t ≥ t0, thus, mG′ ∈ AD∞ ({mG}). Since
AD ({mG′}) = {mG′}, it is clear that for all σ ∈ NME(mG′) and for all v⃗ ∈ χ(σ), it holds
that mG′

v⃗ = mG′. Now the result is direct from Definition 33.

Lemma 3. Take some finite mG1, . . . , mGn such that mGi+1 ∈ AD ({mGi}), for i =

1, . . . , n− 1 and mG1 ∈ AD ({mGn}). Then, mGi = mGj for all i, j.

Proof. Observe that mGi ∈ AD (AD (. . .AD ({mGi}))) = AD(n) ({mGi}) ∀i ∈ [n]. Sup-
pose, for the sake of contradiction, that mGi ̸= mGj for some i, j, and assume, without
loss of generality, that i < j. Then, it holds that mGj ∈ AD(j−i) ({mGi}), i.e., mGj has
resulted from mGi by updating some (at least 1 and at most j − i) elements of the respective
payoff matrices of mGi. But then, we also have that mGi ∈ AD(n−j+i) ({mGi}) (by the
periodic pattern above), so again, mGi has resulted from mGj by updating some (at least
1 and at most n− j + i) elements of the respective payoff matrices of mGj . But this is an
absurdity, because replacements are cumulative and cannot be “undone” by subsequent ones
(see Definitions 29 and 31).

Proposition 17. If mG is finite, then SME(mG) ̸= ∅.

Proof. Set S = AD∞ ({mG}). For any given mG1, mG2 ∈ S, we define the relation 7→, such
that mG1 7→ mG2 if and only if mG1 ̸= mG2 and mG2 ∈ AD ({mG1}). Now let us suppose,
for the sake of contradiction, that mG has no sme. By Lemma 2, it follows that for any
mG′ ∈ S there exists some mG′′ ∈ S such that mG′ 7→ mG′′ (otherwise SME(mG) ̸= ∅ by
Lemma 2, which contradicts our hypothesis). Since S is finite (see Proposition 16), there
must exist a sequence of mG1, . . . , mGn ∈ S, such that mGi 7→ mGi+1 (for i = 1, . . . , n− 1)
and mGn 7→ mG1. Which is an absurdity by the definition of 7→ and Lemma 4.

5.4.3 Estimating the length of the Adaptation Procedure

The only input to the Adaptation Procedure is the original misinformation game, say mG.
Therefore, the entire Adaptation Procedure, as well as the determination of the related
quantities (e.g., SME(mG), LAD (mG) etc.) are essentially determined by mG. However, in
order to compute these, we need to perform the entire recursive process.

An interesting research question is what can be said about the Adaptation Procedure
by just looking at mG, i.e., without necessarily “running” the Adaptation Procedure. In
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this subsection, we derive upper bounds for LAD (mG) in an “a priori” manner, i.e., by just
looking at mG, and without computing the nmes of mG.

To do this, we start by defining the neighborhood of a position v⃗:

Definition 37. Consider a pair of positions v⃗, u⃗. We say that v⃗, u⃗ are neighbours if and
only if they differ exactly in one element. We define the neighbourhood of v⃗ as the set
N (v⃗) = {u⃗ | v⃗, u⃗ are neighbours}. Further, we define the k-neighbor of v⃗ to be the set of
vectors that differ from v⃗ in the kth position only, denoted by Nk (σ).

Example 5.2 (continued). Consider the game G1,(0) and the strategy profile σ = ((0, 1), (1, 0)),
then the neighborhood of σ is N (σ) = {((1, 0), (1, 0)), ((0, 1), (0, 1))}. Also, N1 (σ) =

{((0, 1), (0, 1))} and N2 (σ) = {((1, 0), (0, 1))}. ■

Our estimate is based on the following idea: consider a pair of neighbouring positions v⃗, u⃗

in a misinformation game mG, and some player x. If the payoff for x that corresponds to v⃗ is
better than the one corresponding to u⃗, then the pure strategy profile corresponding to u⃗

is not an nme. If, additionally, the payoff corresponding to v⃗ remains better, even after the
players learn the actual payoffs associated with v⃗, then u⃗ can never be part of an nme, or
learnt by the players. It is thus called an impossible position, and will never be visited during
the Adaptation Procedure. Formally:

Definition 38. Consider a finite misinformation game mG = ⟨G0, G1, . . . , GN ⟩, such that
the payoff matrix of Gi is P i. Consider also a position v⃗. v⃗ is called an impossible position
for mG iff there exists some i ∈ [N ] and some u⃗ ∈ Ni (v⃗) such that:

P i
v⃗ < P i

u⃗ and P i
v⃗ < P 0

u⃗

A position will be called possible iff it is not impossible.

Using the concept of impossible positions, we can set an upper bound for LAD (mG) using
the simple idea that, in the worst case scenario, each branch of the Adaptation Procedure
will visit, at most, the possible positions.

Proposition 18. Consider the misinformation game mG, some t > 0, and some mG(t) such
that mG(t) ∈ AD(t) ({mG}). Then, there exists some mG(t−1) ∈ AD(t−1) ({mG}) and some
possible position v⃗ such that mG

(t−1)
v⃗ = mG(t).

Proof. By the definition of the Adaptation Procedure, indeed there exists some mG(t−1) ∈
AD(t−1) ({mG}) and some position v⃗ such that mG

(t−1)
v⃗ = mG(t). It remains to show that v⃗

is possible.
Suppose, for the sake of contradiction, that v⃗ is impossible. By the construction of v⃗,

it holds that v⃗ ∈ χ(σ) for some σ ∈ NME(mG(t−1)). Thus, the respective position will
be the best response against σ−i, for all players i, which means that it is preferred over
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other positions. However, since v⃗ is impossible, there exists some u⃗ ∈ NBGiv⃗ such that
P

i,(t−1)
v⃗ < P

i,(t−1)
u⃗ and P

i,(t−1)
v⃗ < P

0,(t−1)
u⃗ . Thus, if the payoffs related to u⃗ have not been

updated in any of the previous steps in the Adaptation Procedure, then v⃗ cannot be preferred,
so σ cannot be an nme of mG(t−1) due to the first relation above; similarly, if the payoffs
related to u⃗ have been updated in some previous step in the Adaptation Procedure, then v⃗

cannot be preferred, so σ cannot be an nme of mG(t−1) due to the second relation above.
Consequently, we reach a contradiction, which shows the result.

Proposition 19. For any misinformation game mG, LAD (mG) ≤ K, where K is the number
of possible positions in mG.

Proof. Given the fact that the same position cannot be “learnt twice”, and Proposition 18,
the result is direct.

Note that this is another way to prove Proposition 16, as in the worst-case scenario, the
number of possible positions are all the possible positions, i.e., |S#(mG)|, so LAD (mG) ≤
|S#(mG)|.

An interesting observation that is derived from the above proposition is that there is a
limit on the portion (percentage) of the actual specifications that players learn. It is not
hard to see that this is bounded by the ratio between the number of possible positions and
the number of total positions, that is |S#(mG)|, of mG. Thus, Adaptation Procedure could
terminate without the players knowing the whole G0 when impossible positions exist.

5.5 The Epistemic Adaptive Evolution
Until now we have developed a procedure where each player mechanistically absorbs any new
information that is publicly announced. Nevertheless, as have been already mentioned, in
a multi-turn process players reconsider not only the values of the payoffs they have, but a
whole mindset. In this section we develop such a framework.

5.5.1 Informal Description

The input to the epistemic game-playing process is a finite misinformation game mG(0), where
each player i receives his/her own game, Gi,(0), and initially assumes that this is the game
being played. Therefore, he/she will play one of his/her equilibrium strategies. The chosen
strategies for each player are then publicly announced, along with the payoffs associated with
the emerging strategy profile.

At that point, each player realizes that (some of the) other players play in an unexpected
manner. Given the assumption that players are rational, this can only be explained by
assuming that there is an error in the payoff matrix of said player. Therefore, the player takes
two actions:
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• First, he/she updates the payoff matrix in such a way that the other players’ choices
make sense (i.e., they are equilibrium strategies of the new matrix). Any changes made
should be minimal, i.e., the resulting matrix should be one with the above property,
but also being “as close as possible” to the one the player originally believed. This is
called epistemic evolution.

• Second, he/she replaces (in the respective positions in the payoff matrix) the payoffs
that were communicated by the environment (i.e., the real payoffs associated with the
strategy profile that was played). This is called adaptive update. Note that adaptive
update is the same as adaptation procedure in Section 5.2.

There are various subtleties in the above analysis, some of them are analogous with that
of Section 5.2 while others are new. Namely, the procedure is iterative, i.e., it continues until
it “stabilizes” somewhere. Stabilization will occur at a state where all players receive input
(strategic choices of opponents and payoffs) that are consistent with what they believe.

Second, the epistemic evolution may lead to a set of possible payoff matrices that are
“equally close” to the original one(s). Therefore, the entire process should be general enough
to allow for updating sets of payoff matrices.

Third, at each stage, each of the players may have to choose among more than one
possible equilibrium strategies. In this case, we assume that all such choices are explored in
independent “branches” of the procedure. In other words, the process is not, in general linear.

As in Adaptation Procedure, the Epistemic Adaptive Evolution produces new games in
each time step. Here, the concept of natural misinformed equilbrium changes slightly in order
to capture the consistency of a player’s decision with his/her epistemic view. We call such an
equilibrium epistemic natural equilibrium. Similarly with Section 5.2 an epistemic natural
equilibrium in the time step where Epistemic Adaptive Evolution stabilizes is called stable
epistemic natural equilibrium.

In conclusion, our approach makes the following assumptions:

1. The input is a canonical misinformation game with N players, each of them having S

available strategies.

2. Each player is informed about his/her own game, as dictated by the misinformation
game, but he/she has no knowledge of the actual game or the other players’ games.

3. In each round, all players assume that all other players have the same game as themselves.

4. In each round, all players assume that the game they have is the correct one.

5. In each round, the players will communicate all Nash equilibrium strategies (of their
own game). Each of these strategies is assumed to be communicated independently, i.e.,
in different branches of the process.
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6. In each round, when the players receive unexpected equilibrium strategies from their
opponents, they will assume that all players are “right”, so they will update their games
in such a way that the equilibrium strategies received make sense. Afterwards, they
will receive their payoffs (from the environment, and further update their payoff matrix
accordingly.

7. If the above updates can be made in multiple, equally plausible ways (resulting in
different, but equally plausible alternative payoff matrices), then the players will make
no arbitrary choice; instead, they will keep all such matrices, awaiting future input to
disambiguate the various options.

Before present formally our methodology we provide a real-life scenario in order to highlight
and explain our setting. Specifically, consider the case where two or more financial groups
invest over the same commodities and goods. Each company has his/her own view about the
interaction that, possible, differs from the actual specification, and make his/her decisions
according to his/her view. Further, in order to decide, each company, assumes: i) that any
other has the same view as he/she has, and ii) that this view is the correct one. Though,
we can allow the companies to incorporate a Bayesian opponent we restrict our analysis the
simpler form of our model. Next, in each round every company plays a Nash equilibrium
strategy according to his/her view; the agglomeration of all individual decisions, is the joint
decision and is publicly announced with the relevant actual values at the end of each turn.

For the last assumption, consider the case where a company receives an unanticipated
decision from a rival company. One way to mitigate this issue is to allow the company to
assume that the rival is irrational; this is the case where the company relies only in his/her
knowledge, so is highly unsophisticated and non-realistic. A second way is to wipe out any
knowledge he/she has and rely on the received information. This produces computational and
conceptual issues (e.g. how he/she would produce the necessary information from a single
decision?) in our analysis. The only plausible way to cope with an unanticipated behavior is
to combine the two previous ways, namely to allow the company to reconsider what he/she
knows in order to fit it with the joint decision.

In the rest of this section, we assume fixed mG, as above.

Example 5.3 (Running example). Consider the canonical misinformation game mG(0) =

⟨G0, G1,(0), G2,(0)⟩ with S = S1 × S2, |S1| = |S2| = 2 and payoff matrices,

P 0 =

(
(2, 2) (0, 3)
(3, 0) (1, 1)

)
, P 1,(0) =

(
(1, 1) (3, 0)
(0, 3) (2, 2)

)
, P 2,(0) =

(
(2, 1) (0, 0)
(0, 0) (1, 2)

)

with nme = {((1, 0), (1, 0)), ((1, 0), (0, 1)), ((1, 0), (1/3, 2/3))}. Notationally, player 1 takes
the payoff values by P

x,(0)
1 and player 2 takes the values P

x,(0)
2 , where x = {0, 1, 2}. Fur-
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ther, the matrix P
x,(0)
1 has elements (P

x,(0)
1 )ij = aij and (P

x,(0)
2 )ij = bij. Further, Pos =

{(1, 1), (1, 2), (2, 1), (2, 2)}. ■

5.5.2 Preliminaries

We consider a normal-form game G = ⟨N , S, P ⟩, with |S| pure strategies per player, hence P

is an |N |-dimensional matrix, where each dimension has m elements and each element is a
|N |-tuple. We denote by P all the matrices with this property, i.e.:

P = 2
(
(R|N|)

|S|
)|N|

As we focus on the payoff matrices we change slightly the notation of Definition 3.1.
Namely, given a position v⃗ = (v1, . . . , v|N |) ∈ Pos, the payoff of the player i (according to the
matrix P ) in the position determined by the strategies (sv1 , . . . svn) is hi(v⃗) = Pi(v⃗).

A value assignment function VA is a partial function VA : Pos 7→ R|N |. Intuitively, VA is a
partial specification for a payoff matrix, so VA(v⃗) returns a vector representing the payoffs of
all players for the pure strategy profile represented by v⃗, under this partial matrix specification.
I.e., if v⃗ = (v1, . . . , v|N |), then VA(v⃗) returns the payoffs of the partial matrix specification
when the players play (sv1 , . . . , sv|N|). If VA(v⃗) = (ρ1, . . . , ρ|N |), we say that the value of VA

for player i ∈ N is ρq. We denote by VAi(v⃗) the value of V A for i. We denote by Dom(VA)

the domain of VA, i.e., the subset of Pos for which VA is defined. Note that we allow that
Dom(VA) = ∅ in which case we say that we have an empty assignment function. The empty
assignment function will be denoted by VA∅.

For two value assignment functions VA1, VA2, such that Dom(VA1) ∩Dom(VA2) = ∅, we
denote by VA1

⊎
VA2 the value assignment function VA such that:

• Dom(VA) = Dom(VA1) ∪Dom(VA2)

• VA(v⃗) = VA1(v⃗) for all v⃗ ∈ Dom(VA1)

• VA(v⃗) = VA2(v⃗) for all v⃗ ∈ Dom(VA2)

Given a value assignment function VA and a payoff matrix P , we say that P satisfies VA

(denoted by P ⊢ VA) if and only if Pi(v⃗) = VAi(v⃗) for all i ∈ N , v⃗ ∈ Dom(VA). Abusing
notation, for a set of payoff matrices P, we similarly write P ⊢ VA (and say that P satisfies
VA) if and only if P ⊢ VA for all P ∈ P.

Finally, we will use the symbol NE(P ) to denote the set of all Nash equilibria of the
payoff matrix P .
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5.5.3 Players’ Epistemic game

In each step of the epistemic game-playing procedure, each player has a belief about the
state of the world (i.e., the game’s payoff matrix); however, as already mentioned, such a
belief does not necessarily identify some payoff matrix in a unique manner. To capture this
intuition, we assume that each player believes that the actual interaction is governed by one
of the payoff matrices found in a set, all of them equally plausible. This leads to a generalised
definition of a misinformation game, where each player’s subjective view is a set of different
payoff matrices, rather than a unique one. We call these games epistemic misinformation
games. Additionally, we incorporate in the epistemic misinformation games a value assignment
function, representing the payoffs that the players already know (i.e., have already been
communicated by the environment). Formally:

Definition 39. An epistemic misinformation game (or simply epistemic game) E is a tuple

E = ⟨N , S, VA, P 0,P1, . . . ,P|N |⟩

where:

• N = {1, . . . , n} is the set of players.

• S = S1 × · · · × S|N |, is the set of strategies, where, for any i ∈ N it holds that Si =

{s1, . . . , s|S|}.

• VA : Pos 7→ R|N | is a value assignment function.

• P 0 ∈ P is a payoff matrix that satisfies VA, i.e., P 0 ⊢ VA.

• For all i ∈ N , ∅ ⊂ Pi ⊆ P is a non-empty set of payoff matrices that satisfies VA, i.e,
Pi ⊢ VA.

Intuitively, Pi represents the beliefs of the player q regarding the rules of the interaction.
As we deal with canonical games, the set of players and strategies are constant, so, essentially,
Pi is a shorthand for the set of games {⟨N , S, P ⟩ | P ∈ Pi}, all of which are considered as
equally plausible to be the actual game, from the perspective of i. The set {⟨N , S, P ⟩ | P ∈ Pi}
is called the subjective epistemic game of player i, and we denote it by Ei. Further, in case we
refer to specific time step t of a multi-turn interaction we’ll denote an epistemic game as E (t),
and the subjective epistemic game player i as E (t)i .

Example 5.3 (continued). The epistemic misinformation game in time step t = 0 is E (0) =
⟨N , S, VA, P 0, P 1,(0), P 2,(0)⟩, where N , S, P 0, P 1,(0) and P 2,(0) provided by the misinformation
game mG(0) = ⟨G0, G1,(0), G2,(0)⟩ and VA : Pos(P 0)→ R|N |. ■

Next, the equilibrium concept that emerges from an epistemic misinformation game defined
as follows:
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Definition 40. Consider an epistemic misinformation game E = ⟨N , S, VA, P 0,P1, . . . ,P|N |⟩.
The strategy profile σ = (σ1, . . . , σ|N |) is called an epistemic natural equilibrium (ene) of E if
and only if for all i ∈ N , there exists Pi ∈ Pi and σ′ = (σ′

1, . . . , σ′
|N |) ∈ NE(Pi), such that

σq = σ′
q.

The set of enes of an epistemic misinformation game E is denoted by ENE(E).

Example 5.3 (continued). In t = 0 the interaction we have three enes, that is

ENE = {((1, 0), (1, 0)), ((1, 0), (0, 1)), ((1, 0), (1/3, 2/3))}.

■

5.5.4 Epistemic Update

We observe that a player must epistemically adapt his/her payoff matrix in two distinct ways.
First, when a player learns about the behaviour (chosen strategies) of other players, he/she
has to adapt his/her beliefs regarding the other players’ payoffs, in order for these payoffs to
be consistent with the chosen strategies. Secondly, he/she has to update the values of her
payoff matrix according to what was communicated to his/her by the environment.

The former update is due to the fact that each player considers that his/her view is also
the view of the rest of the players. The latter update is due to the fact that each player trusts
its sensory input as regards the payoffs received when a given strategy profile was played.

The two aforementioned operations are applied sequentially, and have a different nature.
The first is called epistemic evolution, whereas the second is called adaptive evolution. We
define them in the following subsubsections.

Epistemic evolution

Given a game G = ⟨N , S, P ⟩, a player i ∈ N , some strategy σi ∈ Σi, and a (possibly empty)
value assignment function VA, we denote by:

P(i, σi, VA) = {P ∈ P | P ⊢ VA and ∃σ−i ∈ Σ−i such that (σi, σ−i) ∈ NE(P )}

In words, P(i, σi, VA) contains all the payoff matrices P , for which: (a) σi is a Nash
equilibrium strategy of i in P ; and (b) P has the values dictated by VA in all positions where
VA is defined.

In the context of epistemic evolution, ⋂i∈N P(i, σi, VA) contains exactly the matrices that
the other players may have, given that σi has been played as an equilibrium strategy of i,
and that the values determined by VA are common knowledge for all players.
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Lemma 4. For every VA, there exists a strategy profile σ = (σi, σ−i) such that P(i, σi, VA) ̸=
∅.

Proof. Given a value assignment function, there exists at least one payoff matrix P for
which P ⊢ VA. Moreover, there exists at least one σ = (σi, σ−i) ∈ NE(P ). It follows that
P ∈ P(i, σi, VA), so P(i, σi, VA) ̸= ∅.

Next, we define the Hamming distance∗ between two payoff matrices P , Q ∈ P as follows:

dist(P , Q) = |{(i, v⃗) | Pi(v⃗) ̸= Qi(v⃗)}|

The following can be easily shown:

Lemma 5. The Hamming distance dist between two matrices is a metric.

Proof. We observe the following:

• dist(P , P ) = 0, ∀P ∈ P.

• dist(P , Q) = dist(Q, P ), ∀P , Q ∈ P.

• It holds that:

dist(P , Q) = |{(i, v⃗) | Pi(v⃗) ̸= Qi(v⃗)}|
= |{(i, v⃗) | Pi(v⃗) ̸= R1(v⃗)}\{(i, v⃗) | Ri(v⃗) ̸= Qi(v⃗)}|

∪ |{(i, v⃗) | Ri(v⃗) ̸= Qi(v⃗)}\{(i, v⃗) | Pi(v⃗) ̸= Ri(v⃗)}|
≤ |{(i, v⃗) | Pi(v⃗) ̸= Ri(v⃗)} ∪ {(i, v⃗) | Ri(v⃗) ̸= Qi(v⃗)}|
≤ |{(i, v⃗) | Pi(v⃗) ̸= Ri(v⃗)}|+ |{(i, v⃗) | Ri(v⃗) ̸= Qi(v⃗)}|
= dist(P , R) + dist(R, Q), ∀P , Q, R ∈ P.

The epistemic revision of a set of matrices (say P1) with another one (say P2) can now
be defined as the set of matrices which belong in P2 and are “as close as possible” (based on
the metric dist, defined above) to some matrix in P1. This follows the intuition of classical
works in belief revision, where the revision of a Knowledge Base K with a formula ϕ should
be a Knowledge Base K ′ that implies ϕ (i.e., the models of K ′ should be a subset of the
models of ϕ), and should be as close as possible to K (i.e., the models of K ′ should as close
as possible to the models of K) under some given distance metric. The above intuition is
expressed formally as follows:

∗See Definition 56 in Appendix B.3.
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Definition 41. Given two sets of payoff matrices P1,P2 ⊆ P, the epistemic revision of P1

with P2 is defined as follows:

P1 ⋆P2 = {P ∈ P2 | ∃P1 ∈ P1 such that ∀P ′
1 ∈ P1, P ′

2 ∈ P2 : dist(P , P1) ≤ dist(P ′
1, P ′

2)}

As explained above, the set of payoff matrices produced from the epistemic revision of P1

with P2 contain the payoff matrices of P2 for which there is a minimal-distance corresponding
matrix in P1. The following can be shown for the ⋆ operator:

Lemma 6. For any P1,P2 ⊆ P, P1 ⋆P2 = ∅ if and only if P2 = ∅.

Proof. If P1 = ∅, then P1 ⋆P2 = P2 (by definition) so the result is obvious. So let us assume
that P1 = ∅.
Assume initially that P1 ⋆P2 = ∅, and suppose, for the sake of contradiction, that P2 ̸= ∅.
The distance between any two matrices P1 ∈ P1, P2 ∈ P2 is finite, given that the matrices are
finite. Therefore, we can always find at least one pair P1 ∈ P1, P2 ∈ P2 such that dist(P1, P2)

is minimal among all other such pairs. Therefore, P2 ∈ P1 ⋆P2, a contradiction.
For the opposite, note that, if P2 = ∅, then P1 ⋆P2 = ∅ by definition.

Lemma 7. For any P1,P2 ⊆ P, the following are equivalent:

1. P1 ⊆ P2

2. P1 ⋆P2 = P1

Proof. (1) ⇒ (2): Take any P ∈ P1. Then P ∈ P2, so for P ∈ P2 there exists some
P1 = P ∈ P1 for which dist(P , P1) = 0, thus, minimal. Therefore, P1 ⊆ P1 ⋆ P2. Now
consider some P /∈ P1. Then for any P1 ∈ P1, it holds that dist(P , P1) > 0, so P /∈ P1 ⋆P2.
We conclude that P1 ⋆P2 = P1.
(2) ⇒ (1): By Definition 41, P1 ⋆P2 ⊆ P2, so the result is obvious.

Definition 41 is a prerequisite for the following, which shows how the epistemic misinforma-
tion game is epistemically revised based on a strategy profile and a value assignment function.
This corresponds to the first type of evolution above, namely the change of a player’s view of
the world, based on what the others players play:

Definition 42. Consider an epistemic misinformation game E = ⟨N , S, VA, P 0,P1, . . . ,P|N |⟩,
and some strategy profile of P 0, σ = (σ1, . . . , σ|N |). The epistemic evolution of E by σ is
the epistemic misinformation game EE(E , σ) = ⟨N , S, VA, P 0,P′

1, . . . ,P′
|N |⟩, where, for all

i ∈ N ,

P′
q = Pq ⋆

⋂
i∈N

P
(
i, σi, VA

) .
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...

P1

P2

P|N|−1

P|N|

φ1

...

φk

Pq

ene σq̂

⋂⋂⋂
P′

q

Pq⋆

Figure 5.4: Player q revises his/her beliefs.

Obviously, it holds that P′
i ⊢ VA.

The following example shows that the set ⋂i∈N P(i, σq, VA) may be empty; thus, according
to Lemma 6, it could be the case that

(⋂
i∈N P(i, σi, VA)

)
= ∅.

Example 5.4. We will consider a scenario where |N | = |S| = 2, and tables:

P1 =

(
(2, 2) (3, 3)
(1, 1) (0, 0)

)
, P2 =

(
(2, 2) (3, 3)
(1, 1) (4, 0)

)

We observe that NE(P1) = {((1, 0), (0, 1))} and NE(P2) = {((0.5, 0.5), (0.5, 0.5))}.
Now we construct the epistemic game E = ⟨N , S, VA, P 0,P1,P2⟩ where:

• N = {1, 2}

• S = {s1, s2} × {s1, s2}

• VA is a value assignment function, such that Dom(VA) = {(1, 1), (1, 2), (2, 1)} and:
VA(1, 1) = (2, 2), VA(1, 2) = (3, 3), VA(2, 1) = (1, 1).

• P 0 = P1

• P1 = {P1}

• P2 = {P2}

We observe that P1 ⊢ VA and P2 ⊢ VA, so E is indeed an epistemic game under Definition 39.
By the values of NE(P1), NE(P2) above, we observe that ENE(E) = {((1, 0), (0.5, 0.5))}.

Set σ1 = (1, 0), σ2 = (0.5, 0.5), σ = (σ1, σ2) ∈ ENE(E), and P∗ = P(i, σi, VA). We will
show that P∗ = ∅.
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Indeed, suppose that P ∈ P∗. It follows that P ⊢ VA, so P is of the form:

P =

(
(2, 2) (3, 3)
(1, 1) (a, b)

)

for appropriate a, b ∈ R. Moreover, there must exist σ′
1, σ′

2 such that (σ′
1, σ2) ∈ NE(P ) and

(σ1, σ′
2) ∈ NE(P ).

Equivalently, there should exist σ′
1, σ′

2 such that:

• σ′
1 ∈ BR(1, P , σ2)

• σ2 ∈ BR(2, P , σ′
1)

• σ1 ∈ BR(1, P , σ′
2)

• σ′
2 ∈ BR(2, P , σ1)

We show below that there is no appropriate choice for the value of the parameter a that
satisfies the above condition. Indeed:

• If a ≤ 3 then BR(1, P , σ2) = {(1, 0)}, so σ′
1 = (1, 0). However, BR(2, P , σ′

1) = {(0, 1)},
thus σ2 /∈ BR(2, P , σ′

1), a contradiction.

• If a > 3 then BR(2, P , σ1) = {(0, 1)}, so σ′
2 = (0, 1). However, BR(1, P , σ′

2) = {(0, 1)},
thus σ1 /∈ BR(1, P , σ′

2), a contradiction.

Example 5.3 (continued). Let’s analyze the case where the ENE = ((1, 0), (1, 0)) is been
publicly announced. This strategy profile is plausible for both players thus they take no further
epistemic action.

In case that ENE = ((1, 0), (0, 1)) is been publicly announced. Then P′
1 is the set of

payoff matrices with elements:

(a11 ≥ a21) ∧ (b11 ≥ b12)

For the second player ((1, 0), (0, 1)) is plausible, thus P′
2 remains unchanged, that is P′

2 = P2.
In case that ENE = ((1, 0), (1/3, 2/3)) is been publicly announced. Then P′

1 is the set
of payoff matrices with elements:

(a11 ≥ a21) ∧ (b11 = b12)

As (1, 0) strategy for player 1 is anticipated from player 2 gain P′
2 remains unchanged.

In both cases the epistemic evolution EE(E (0), ((1, 0), (0, 1))), provide the epistemic game
E ′(0) = ⟨N , S, VA, P 0,P′

1,P2⟩. ■
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Adaptive evolution

Now let us turn our attention to the second type of evolution, the adaptive evolution. The
adaptive evolution takes place when the players update their payoff matrices based on the
information received by the environment (i.e., the actual payoffs).

We first define the replacement operation for matrices:

Definition 43. Consider a payoff matrix P , and a value assignment function VA. We denote
by P ⊕ VA the matrix P ′, such that, for all i ∈ N , and v⃗ ∈ Pos:

P ′
i (v⃗) =

VAi(v⃗) , when v⃗ ∈ Dom(VA)

Pi(v⃗) , otherwise

The matrix P ⊕ VA is called the VA-replacement of P .

We extend Definition 43 to apply for sets of payoff matrices, in the obvious manner:

Definition 44. For a set of payoff matrices P, and a value assignment function VA, we set:

P⊕ VA = {P ⊕ VA | P ∈ P}

As before, P⊕ VA is called the VA-replacement of P.

Observe that P⊕ VA ⊢ VA.
Finally, we apply Definition 44 to define the adaptive evolution of an epistemic misinfor-

mation game, when some new payoffs are learnt. The learnt payoffs are determined by the
support of some strategy profile σ ∈ Σ:

Definition 45. Consider an epistemic misinformation game E = ⟨N , S, VA, P 0,P1, . . . ,P|N |⟩,
and some strategy profile of P 0, σ = (σ1, . . . , σ|N |). Set VA0 to be the value assignment function
such that Dom(VA0) = supp(σ) \Dom(VA), and VA0

q(v⃗) = P 0
i (v⃗) for all v⃗ ∈ Dom(VA0).

The adaptive evolution of E by σ, denoted by AD(E , σ) is the epistemic misinformation
game: AD(E , σ) = ⟨N , S, VA′, P 0,P′

1, . . . ,P′
|N |⟩, where, for any i ∈ N , P′

i = P⊕ VA0 and
VA′ = VA

⊎
VA0.

Example 5.3 (continued). In case that ENE = ((1, 0), (0, 1)) is been publicly announced.
Then P′

1 is the set of payoff matrices with elements:

(a11 ≥ 3) ∧ (b11 ≥ 3)

For the second player ((1, 0), (0, 1)) is plausible, thus

P2 ⊕ V A((1, 2)) =
(

(2, 1) (0, 3)
(0, 0) (1, 2)

)
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mG EmG EE(E , VA) AD(E , VA)

Ψ(EmG)

⊕VA

Figure 5.5: Revision for each player when information about position VA is publicly
announced.

, where VA1((1, 2)) = 0 and VA2((1, 2)) = 3. The adaptive evolution of epistemic misinfor-
mation game E is AD(E ′(0), ((0, 1), (0, 1))) = AD(EE(E (0), ((0, 1), (0, 1)))) and provides the
epistemic game E (1) = ⟨N , S, VA, P 0,P′

1,P′
2⟩.

5.5.5 Epistemic game playing

We now have the necessary tools to define how players play and how their knowledge about
the game evolves as time goes by. This evolution happens in turns. In each turn, the ENE is
announced, and the players “learn” their new payoff matrix as determined by the EE and
AD operations above. An important issue to consider is what happens when the ENE is
not unique. In this case, our operators consider all possible ENEs in parallel (independent)
branches, thereby exploring all relevant possibilities.

In more details, the interaction starts with one epistemic misinformation game E =

⟨N , S, VA, P 0,P1, . . . ,P|N |⟩, where Dom(VA) = ∅ (i.e., VA = VA∅), and each of the players’
subjective view (Pi) is a singleton set consisting of the respective player’s subjective game
(as determined by the misinformation game provided in the input). Then, the ENEs are
computed. For each σ ∈ ENE(E), the operators EE and AD are applied on the epistemic
misinformation game (for this σ) to produce the new epistemic game, see Figures 5.5-5.6. As
there may be multiple ENEs, the original epistemic misinformation game may spawn multiple
new ones. The process then starts over. Note that, in subsequent turns, when multiple
epistemic misinformation games exist, the process is executed for each one independently.

Let us now formalize the above ideas:

Definition 46. Consider an epistemic misinformation game EmG = ⟨N , S, VA, P 0,P1, . . . ,P|N |⟩
and some strategy profile of P 0 σ = (σ1, . . . , σ|N |). The epistemic adaptive evolution of EmG

by σ is defined as follows: Ψ(EmG, σ) = AD(EE(EmG, σ), σ).
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1. Initialization
2. Computation of
anticipated behaviours

3. Take
Decision

4. Computation of
new information

︸ ︷︷ ︸Specifications

N ,S P,VA Eq

Epistemic
Nash
Equilibrium

Computation of new Pqs and VA

Revision Update

Figure 5.6: Schematic representation of the epistemic adaptive evolution with the epis-
temic evolution and the adaptive update of the agents.

We can now apply this definition for the generic case, when we may have more than one
epistemic misinformation games. In other words, we generalize Definition 46 to be applicable
over sets of epistemic misinformation games:

Definition 47. Consider a set of epistemic misinformation games EmG. The epistemic
adaptive evolution of EmG, denoted by Ψ(EmG) is the set of epistemic misinformation games
defined as follows:

Ψ(EmG) = {Ψ(EmG, σ) | E ∈ EmG, σ ∈ ENE(EmG)}

Finally, we define the iterative version of Ψ as follows:

Definition 48. Consider a canonical misinformation game mG = ⟨G0, G1, . . . , G|N |⟩, where
Gi = ⟨N , S, P i⟩ for i ∈ [|N |]. We define the respective epistemic misinformation game
EmG = ⟨N , S, VA∅, P 0, {P 1}, . . . , {P |N |}⟩. The k-level epistemic adaptive evolution of mG

(for k ≥ 0), denoted by Ψ(k)(mG) is the set of epistemic misinformation games defined as
follows:

Ψ(k)(mG) =

{EmG} , when k = 0
Ψ(Ψ(k−1)(mG)) , when k > 0

Definition 49. We say that the epistemic sequence of play for mG stabilises after k steps, if
and only if Ψ(k+1)(mG) = Ψ(k)(mG), and k is the smallest integer with this property.
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A strategy σ is called a stable epistemic Nash equilibrium if and only if it is the ENE at
the time when the epistemic sequence of play stabilises. Formally:

Definition 50. Consider a misinformation game mG, some k ≥ 0, and a set of epistemic
games EmG such that EmG = Ψ(k)(mG) = Ψ(k+1)(mG). Then, a strategy profile σ is called a
stable epistemic natural equilibrium (SENE) of mG, if and only if there exists some E ∈ EmG

such that σ ∈ ENE(E). The set of all SENE of mG is denoted by SENE(mG).

By Definition 50, it is obvious that, if the epistemic procedure for mG stabilises after k

steps, then SENE(mG) = {σ | σ ∈ ENE(E) for some E ∈ Ψ(k)(mG)}.



Chapter 6
Learning Dynamics

6.1 Introduction
Having introduced the concept of misinformation games, Chapter 4, and the following
Epistemic Adaptive Evolution, Chapter 5 it is evident that the computation of the emerged
equilibrium concept is crucial, and especially the computation of Nash and natural misinformed
equilibrium. In this chapter we provide an alternative way to compute Nash equilibria in
two players’ normal-form games. Specifically, we focus on the problem of designing learning
algorithms, and we restricted in the class of zero-sum games.

Although one can solve a zero-sum game by centralized linear programming algorithms,
the application areas (e.g. boosting and reinforcement learning [Dai et al., 2018], and
their relevance in formulating GANs in deep learning [Goodfellow et al., 2014]) highlight
the importance of developing fast, iterative learning algorithms, resulting in approximate
equilibria.

In the stream of work presented in Section 2.5, we are interested in methods that exhibit
last-iterate convergence, a property most desirable from an application point of view, meaning
that the strategy profile (xt, yt), reached at iteration t of an iterative algorithm, converges to
the actual equilibrium as t→∞. Unfortunately, many of the methods mentioned above do
not satisfy this. No-regret algorithms, like the MWU method, are known to converge only in
an average sense, resulting in an ε-Nash equilibrium in expectation (see [Arora et al., 2012])
for ε > 0. In fact, it was shown in [Bailey and Piliouras, 2018] that several MWU variants do
not satisfy last-iterate convergence. Similarly, the same can be shown for many descent-based
methods (see e.g., [Mertikopoulos et al., 2019]).

Fortunately though, OMWU [Daskalakis and Panageas, 2019] and OMD [Mertikopoulos
et al., 2019] variants of MWU have provided positive results and have generated more interest
on the behaviour and limitations of such approaches, which is not yet fully understood.
Namely, they give rise to further questions, such as:

(i) Can we prove last-iterate convergence for other related dynamics?

(ii) Can we establish faster convergence rates?

67
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These questions are the main focus of this chapter.
Having at hand a learning algorithm that computes Nash equilibria in two players’ general

zero-sum games, we can implement it in case of two players zero-sum misinformation games
in order to compute: i) the natural misinformed equilibria, and ii) the stable misinformed
equilibrium.

6.1.1 Informal Description

We introduce a simple yet substantially different variant of Optimistic Mirror Descent method
with entropy regularization [Mertikopoulos et al., 2019], for the case of zero-sum games.
OMD is an extra gradient method, i.e., it contains an intermediate gradient step before
the final update step, and each iteration is characterized by its learning rate parameter,
which is the same for both steps (and often the same across all iterations). Our tweak is
that the intermediate step uses a different learning rate parameter from the update step
in each iteration. In fact, we set this to be sufficiently large, which yields a game-theoretic
interpretation, namely that we compute (approximate) best response strategies against the
profile of the previous iteration, as a look ahead move. Then, during the final update step,
we apply multiplicative weights updates by rewarding more the pure strategies that perform
better against the best responses that we found in the intermediate step. Consequently, we
refer to this OMD variant as Forward-Looking Best-Response - Multiplicative Weights Update
(FLBR-MWU) method.

At first sight, this may look counter-intuitive, since learning rates are usually kept small
in classic MWU algorithms and, more generally, in any kind of iterative gradient-type
optimization algorithms (apart from the notable exception of [Bailey and Piliouras, 2019]).
However, our theoretical and experimental study reveal the following promising findings:

• In Subsection 6.2, we investigate theoretically the convergence properties of FLBR-
MWU. If η is the standard learning rate parameter used in the update step, and ξ

is the corresponding parameter in the intermediate step, then FLBR-MWU exhibits
last-iterate convergence for games with a unique equilibrium, when ξ is sufficiently large
and ηξ < 1. Our proof employs a similar methodology to [Daskalakis and Panageas,
2019], adapting convergence tools from the field of dynamical systems. Our method also
appears to attain faster convergence, quantified in terms of η, compared to OMD and
OMWU. In particular, we prove that the decrease in the divergence from the equilibrium
is at least Ω(η1+1/ρ) per iteration, for any ρ > 1, until we reach an approximate
O(η1/ρ)-equilibrium, by which time, our rule becomes a contraction map (see also
Figure 6.2). This improves on the Ω(η3) bound established for OMWU in [Daskalakis
and Panageas, 2019]. Although our bounds do not translate into bounds with respect
to time, we suspect a linear convergence rate is highly likely (supported also by our
experiments). This has been recently established for OMWU in [Wei et al., 2021], and
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is left as an open problem for FLBR-MWU.

• In Subsection 6.3, we perform numerical experiments, using randomly generated data,
comparing FLBR-MWU with OMWU∗. Our experiments reveal that in practice our
method achieves indeed a much faster convergence rate, showing an average speedup by
a factor of 10 for small size games and up to hundreds, or even higher, for larger games
compared to OMWU.

6.1.2 A Revealing Example

The plot in Figure 6.1 attempts to demonstrate the differences we observed in convergence
between the proposed FLBR-MWU and the OMWU dynamics in a qualitative manner. The
two phases of the learning dynamics (decrease of divergence, followed by contraction) are
highlighted along with the regions of convergence.

A quantitative presentation is shown in the lower plots of Figure 6.2 which depict the
convergence behavior of MWU (blue lines), OMWU (red lines) and FLBR-MWU (black lines)
for a random realization of a 10× 10 payoff matrix with learning rate η = 0.1. We provide two
measures of convergence, the Kullback-Leibler Divergence (DKL, see Appendix B.2) of the
Nash equilibrium with respect to the learning dynamics (lower left panel) and the respective
l1 norm difference (lower right panel), which reveal different aspects of the dynamics.

As expected by [Bailey and Piliouras, 2018], MWU fails to converge and a smaller learning
rate η would not fix this issue. OMWU does converge but in a very slow pace requiring an
enormous number of steps (see also the supplementary material for a longer simulation). On
the other hand, FLBR-MWU converges until the machine precision is hit, as revealed by both
DKL and l1 metrics. Indeed, FLBR-MWU is able to escape from the DKL plateau (seen
in the lower left panel), where the learning dynamics are moving towards a direction with
slow DKL decline and ultimately converges to Nash equilibrium in an oscillatory manner
with decreasing amplitude (damped oscillations), as it is evident from the l1-norm difference
(lower right panel). Moreover, this realization underlines the need for a two-step proof of
FLBR-MWU’s convergence as in [Daskalakis and Panageas, 2019]. Overall, FLBR-MWU
dynamics has more than one order of magnitude faster convergence rate relative to OMWU
and furthermore tolerates larger values for the learning rate, thus the speed of equilibrium
computation is significantly accelerated.

∗We note that for the case of zero-sum games, it has been shown in [Wei et al., 2021] that OMWU can be
seen as a variant of OMD with entropy regularization.
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FLBR-MWU

OMWU
(x∗, y∗)

Figure 6.1: Schematic representation of the convergence path of OMWU (red) and FLBR-MWU
(black), starting from the uniform point (x0, y0).
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Figure 6.2: A random realization of the learning dynamics for three variants of MWU.

6.2 Forward Looking Best-Response Multiplicative Weights
Update Method

6.2.1 Definition of the Dynamics

We now present the method studied in this work, which we refer to as Forward Looking
Best-Response Multiplicative Weights Update method (FLBR-MWU). We provide first a
short description of the main idea behind the dynamics. This is an extra gradient method and
each iteration has an intermediate and a final step. Suppose that starting from some initial
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profile, we reach the profile (xt−1, yt−1) by the end of iteration t− 1. In the intermediate step
of iteration t, we compute a strategy x̂t for the row player (resp. ŷt for the column player),
which is an approximate best-response strategy to yt−1 (resp. to xt−1). This serves as a look
ahead step of what would be the currently optimal choices. In the final step of iteration t, we
compute the new mixed strategy xt for the row player, by performing multiplicative weights
updates, but after assuming that the opponent was playing ŷt.

Formally, the first step of the dynamics, denoted as the intermediate best response (IBR)
step, is defined below, at iteration t, and for all i, j ∈ [n], given a non-negative parameter
ξ ∈ R+ (ξ will be chosen sufficiently large, as will become clear from Lemma 8).

x̂t
i = xt−1

i · eξeT
i Ryt−1∑n

j=1 xt−1
j eξeT

j Ryt−1 , ŷt
j = yt−1

j · e−ξeT
j RT xt−1∑n

i=1 yt−1
i e−ξeT

i RT xt−1 . (6.1)

The second step, which updates the profile (xt−1, yt−1) to (xt, yt) is below, given the
learning rate parameter η ∈ (0, 1). We assume that we use the same fixed constants η and ξ

in all iterations.

xt
i = xt−1

i · eηeT
i Rŷt∑n

j=1 xt−1
j eηeT

j Rŷt
, yt

j = yt−1
j · e−ηeT

j RT x̂t∑n
i=1 yt−1

i e−ηeT
i RT x̂t

. (6.2)

Remark 1. By setting ξ = η in Equation (6.1) above, the proposed method becomes the same
as OMD with entropic regularization [Mertikopoulos et al., 2019], which can also be viewed as
OMWU [Wei et al., 2021]. In our method however, η and ξ differ substantially across both
theoretical and experimental results.

6.2.2 Main Results

We consider games with a unique Nash equilibrium, as in [Daskalakis and Panageas, 2019],
since it has been argued that the set of zero-sum games with non-unique equilibrium has
Lebesgue measure equal to zero [van Damme, 1991]. For convenience, we also assume that the
initial strategy profile consists of the uniform distribution for each player. However, our results
hold for any fully-mixed initial profile, with a non-zero probability to all pure strategies.

The main result of our work is the following theorem.

Theorem 2. Consider a zero-sum game with a unique Nash equilibrium (x∗, y∗). Starting
with the uniform distribution for each player, the FLBR-MWU dynamics attain last-iterate
convergence to the Nash equilibrium, i.e., limt→∞(xt, yt) = (x∗, y∗), for sufficiently small η,
and big enough ξ, as long as ηξ < 1.
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The goal of the remaining subsection is to establish the proof of Theorem 2. Towards this,
we start with the choice of ξ. The next lemma provides the important observation, that as
ξ → ∞, the strategy x̂t, computed in the first step of iteration t, becomes a best response
against yt−1 (analogously for ŷt).

Lemma 8. Given any round t of the dynamics, let x̂t, ŷt be the strategies produced by the
first step of iteration t. As ξ → +∞, then x̂t becomes a best-response strategy against yt−1

(similarly for ŷt against xt−1).

Proof. Fix t and let us consider the formula that produces the coordinates of x̂t, given
xt−1, yt−1. For simplicity in writing, we drop the superscript t− 1 and refer to x, y as the
strategies of the two players computed at the end of the previous round. Focusing on the row
player (the same argument follows for the column player too), we know that

x̂t
i = xi ·

eξeT
i Ry∑n

j=1 xjeξeT
j Ry

.

We want to compute for every i the limit limξ→∞ x̂t
i. Using the Taylor expansion for the

exponential terms in the above equation, the limit we are interested in can be written as:

lim
ξ→∞

x̂t
i = xi · lim

ξ→∞
lim

ℓ→∞

∑ℓ
k=0

(ξeT
i Ry)k

k!∑n
j=1 xj

∑ℓ
k=0

(ξeT
j Ry)k

k!

= xi · lim
ℓ→∞

lim
ξ→∞

∑ℓ
k=0(ξeT

i Ry)k∑n
j=1 xj

∑ℓ
k=0(ξeT

j Ry)k
.

In order to compute first the limit w.r.t. ξ, notice that both the nominator and the
denominator can be written as polynomials of ξ where the highest power is ξℓ. To proceed,
let also B(y) denote the set of pure best response strategies of the row player against y. We
now have:

lim
ξ→∞

x̂t
i = xi · lim

ℓ→∞

(eT
i Ry)ℓ∑n

j=1 xj(eT
j Ry)ℓ

= xi · lim
ℓ→∞

(eT
i Ry)ℓ∑

j∈B(y) xj(eT
j Ry)ℓ +

∑
j ̸∈B(y) xj(eT

j Ry)ℓ
.

We can now consider two cases. Suppose first that i ∈ B(y). For any j ∈ [n], let
pj = eT

j Ry. Since i is a best response pure strategy, we have that pi = pj for any j ∈ B(y),
and pi > pj for j ̸∈ B(y). We can now conclude that as l→∞ we have:

lim
ξ→∞

x̂t
i = xi · lim

ℓ→∞

1∑
j∈B(y) xj(pj/pi)ℓ +

∑
j ̸∈B(y) xj(pj/pi)ℓ

=
xi∑

j∈B(y) xj
,

where the last equality above holds because pj/pi < 1 for any j ̸∈ B(y) and the second
sum in the denominator tends to 0. In a similar way we can also show that when i ̸∈ B(y),
the limit is zero. Hence, as ξ → ∞, the strategy x̂ contains only best responses of y in its
support, and therefore forms a best response too.
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In the sequel, we assume that ξ has been chosen sufficiently large, so that x̂t is an ϵ-best
response with ϵ→ 0. For appropriate choices of ξ in practice, we refer to the discussion in
Section 6.3.

The proof of Theorem 2 is split into 3 parts. The first part establishes that after a certain
number of iterations, the dynamics reach a profile (xt, yt), that is an O(η1/ρ)-Nash equilibrium
with ρ > 1. The second part shows that the profile (xt, yt) lies within a neighborhood of the
actual equilibrium (x∗, y∗). Finally, the last part shows that the update rule of FLBR-MWU is
a contracting map, i.e., once we are within a neighborhood of (x∗, y∗), the dynamics converge
to their fixed point, which directly implies last-iterate convergence. These three parts are
established in Theorems 3, 4 and 6 respectively. The structure of the proof is similar to
the convergence proof of OMWU in [Daskalakis and Panageas, 2019]. There are however
differences in various parts of the analysis. Most importantly, in the first part, we are able to
establish a better convergence rate to an approximate equilibrium, whereas OMWU achieves
an Ω(η3) decrease rate. Furthermore, in the third part, the analysis of our Jacobian matrix
(proof of Theorem 6) is also different since we are analyzing sufficiently different dynamics.

To proceed with the first part of the proof, we will use the Kullback-Leibler (KL) divergence
as a measure of progress. The KL divergence quantifies the similarity between two distributions,
and here we will consider the divergence between a profile (xt, yt) and the equilibrium (x∗, y∗),
which equals:

DKL((x
∗, y∗)||(xt, yt)) =

n∑
i=1

x∗
i ln(x∗

i /xt
i) +

n∑
j=1

y∗
j ln(y∗

j /yt
j). (6.3)

Note that by the initialization and the definition of the dynamics, xt
i > 0, yt

j > 0 for any
given t, and any i, j, so that the logarithmic terms above are well-defined.

Theorem 3. Consider a zero-sum game with a unique Nash equilibrium (x∗, y∗). Assume
that we run the FLBR-MWU dynamics with the uniform distribution as the initial strategy
for both players, and using a sufficiently small η and a big enough ξ. Then, for any ρ > 1,
the KL divergence DKL((x∗, y∗)||(xt, yt)) decreases at every iteration with a rate of at least
Ω(η1+1/ρ), until we reach an O(η1/ρ)-Nash equilibrium of the game.

Proof. Let (x∗, y∗) be the Nash equilibrium of the game, and let v be the value of the
game, v = (x∗)T Ry∗. We take the difference of the KL divergences between two consecutive
iterations:

DKL((x
∗, y∗)||(xt, yt))−DKL((x

∗, y∗)||(xt−1, yt−1)) =

−
( n∑

i=1
x∗

i ln(xt
i/xt−1

i ) +
n∑

j=1
y∗

j ln(yt
j/yt−1

j )

)
.

We show that this difference is negative and we quantify the decrease in the KL divergence,
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till we reach an O(η1/ρ)-Nash equilibrium. Analytically, we have that

DKL((x
∗, y∗)||(xt, yt))−DKL((x

∗, y∗)||(xt−1, yt−1))

= −
n∑

i=1
x∗

i ln eηeT
i Rŷt

+ ln
( n∑

i=1
xt−1

i eηeT
i Rŷt

)
−

n∑
j=1

y∗
j ln e−ηeT

j RT x̂t

+ ln
( n∑

j=1
yt−1

j e−ηeT
j RT x̂t

)
= −ηx∗T Rŷt + η(y∗)T RT x̂t + η(xt−1)T Ryt−1 − η(yt−1)T RT xt−1

+ ln
( n∑

i=1
xt−1

i eηeT
i Rŷt−η(xt−1)T Ryt−1

)
+ ln

( n∑
j=1

yt−1
j e−ηeT

j RT x̂t+η(yt−1)T RT xt−1
)

.

Notice that in the last expression above, the third term (η(xt−1)T Ryt−1) cancels out with
the fourth term. Also, since (x∗, y∗) is an equilibrium, it holds that x∗T Rŷt ≥ v and
(y∗)T RT x̂t ≤ v. Therefore, the first and second terms also cancel out and yield an upper
bound with the two logarithmic terms.

We now apply the Taylor expansion of ex. For convenience, let pi(η) = η(eT
i Rŷt −

(xt−1)T Ryt−1), and let qj(η) = η(−eT
j RT x̂t + (xt−1)T Ryt−1). The difference of the KL

divergences is upper bounded by

ln
(

1 + η((xt−1)T Rŷt − (xt−1)T Ryt−1) +
n∑

i=1
xt−1

i

∞∑
k=2

(pi(η))k

k!

)

+ ln
(

1 + η(−(yt−1)T RT x̂t + (yt−1)T RT xt−1) +
n∑

j=1
yt−1

j

∞∑
k=2

(qj(η))k

k!

)
.

It is easy to see that |pi(η)| ≤ η and |qj(η)| ≤ η. This means that for any k ≥ 2 (i.e., for
both odd and even values of k), (pi(η))k ≤ ηk and (qj(η))k ≤ ηk. By using the geometric
series, we have that

∞∑
k=2

(pi(η))k

k! ≤ η2/(1− η), and similarly for the series concerning qj(η). If

we also use the inequality ln(x) ≤ x− 1, we obtain the following sequence of steps.

DKL((x
∗, y∗)||(xt, yt))−DKL((x

∗, y∗)||(xt−1, yt−1))

≤ ln
(

1 + η((xt−1)T Rŷt − (xt−1)T Ryt−1) +
η2

(1− η)

)
+ ln

(
1 + η(−(yt−1)T RT x̂t + (yt−1)T RT xt−1) +

η2

(1− η)

)
≤ η((xt−1)T Rŷt − (xt−1)T Ryt−1 + (xt−1)T Ryt−1 − x̂tRyt−1) + 2 η2

(1− η)

= −η(ε1 + ε2) + 4η2 ≤ −η(max{ε1, ε2}) + 4η2,

(6.4)

where ε1 = x̂tRyt−1 − (xt−1)T Ryt−1, ε2 = (xt−1)T Rŷt − (xt−1)T Ryt−1, and the last
inequality holds because η ≤ 1/2. Let us look now more carefully at ε1 (an analogous



6.2. FLBR-MWU Method 75

argument holds for ε2). The term ε1 expresses the additional benefit for the row player, if
at the profile (xt−1, yt−1), he deviates to x̂t. By Lemma 8, we know that as ξ →∞, then x̂t

tends to his best response against yt−1. Hence when we select ξ sufficiently large, ε1 tends to
the best possible deviation gain of the row player at the profile (xt−1, yt−1) (resp. for ε2 and
the column player).

To finish the proof, suppose that the profile (xt−1, yt−1) is not an O(η1/ρ)-Nash equilibrium.
Then there exists a deviation that provides additional gain of Ω(η1/ρ) to one of the players.
This implies that max{ε1, ε2} = Ω(η1/ρ). Hence, by (6.4), and since η < 1, we can see that
as long as we have not reached an O(η1/ρ)-Nash equilibrium, the KL divergence will keep
decreasing by at least ηΩ(η1/ρ)− 4η2 = Ω(η1+1/ρ). As the KL divergence cannot decrease
forever, eventually, our dynamics will reach an O(η1/ρ)-Nash equilibrium.

Consider now the first iteration t of the dynamics, where (xt, yt) forms an O(η1/ρ)-Nash
equilibrium for some fixed ρ > 1. The next step is to show that if we make η small enough,
this profile falls within a neighborhood of the equilibrium (x∗, y∗).

Theorem 4. Let (x∗, y∗) be the unique Nash equilibrium of the zero-sum game, and let (xt, yt)

be the first profile reached by the dynamics, that is an O(η1/ρ)-Nash equilibrium for some
ρ > 1. Then

lim
η→0
||(x∗, y∗)− (xt, yt)||1 = 0,

Proof. The proof is based on the following lemma, shown in [Etessami and Yannakakis, 2010],
which we state here for the case of zero-sum games:

Lemma 9. Consider a zero-sum game given by matrix R with a unique Nash equilibrium
(x∗, y∗), and let |R| be the number of bits needed for the representation of R. There exists
a polynomial p such that for every δ > 0, every ε-Nash equilibrium (x, y) satisfies that
|x∗

i − xi| < δ, as long as ε ≤ 1/2p(|R|+size(δ)), where size(δ) = O(log(1/δ)) is the number of
bits needed for representing δ.

By the assumptions in the statement of Theorem 4, we fix ε = c · η1/ρ, for some constant
c, so that (xt, yt) is an ε-Nash equilibrium. We claim that there exists δ(η) such that ε and
δ(η) satisfy the inequality stated in Lemma 9. In particular, by looking more carefully at the
desired inequality and solving with respect to δ, one can construct a function δ(η), such that
for the given ε we have selected, it holds that

ε ≤ 1/2p(|R|+size(δ(η))) and limη→0 δ(η) = 0.

Hence, we can now apply Lemma 9 and obtain that for any ε-Nash equilibrium (x, y) we
have that |x∗

i − xi| ≤ δ(η) and |y∗
i − yi| ≤ δ(η). The proof now of Theorem 4 is immediate,

since ||(x∗, y∗)− (xt, yt)||1 =
∑n

i=1 |x∗
i − xi|+

∑n
i=1 |y∗

i − yi| ≤ 2n · δ(η), which goes to 0 as
η → 0.
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The next and final step of our proof is to show that our dynamics induce a contracting
map. An update rule with a fixed point x is called a contraction, if there exists a region U

around x, such that for any starting point in U , the rule converges to its fixed point as t→∞.
In our case, the Nash equilibrium (x∗, y∗) of the game is a fixed point of the FLBR-MWU
dynamics and Theorem 4 guarantees that we can reach a neighborhood around (x∗, y∗). To
proceed, we state a sufficient condition for a dynamical system to converge to its fixed point.

Theorem 5 (see [Galor, 2007]). Let x∗ be a fixed point for the dynamical system x(t+1) =

g(x(t)). If all eigenvalues of the Jacobian matrix of g at x∗ have absolute value less than one,
then there exists a neighborhood U of x∗ such that for all x ∈ U , g converges to x∗, starting
from x.

Using Theorem 5, we show the following theorem.

Theorem 6. The update rule of FLBR-MWU is a contraction, as long as ηξ < 1, i.e.
limt→∞(xt, yt) = (x∗, y∗).

Proof. First we describe first the discrete dynamical system that captures the FLBR-MWU
dynamics, and we will prove that for an appropriate norm of the Jacobian matrix of the
system, its value is less than one †. The update rule φ of FLBR-MWU is

φ(x, y) = (φ1(x, y), φ2(x, y)), where

φ1,i(x, y) = (φ1(x, y))i = xi
eηeT

i
Rf (x,y)∑

ℓ
xℓe

ηeT
ℓ

Rf (x,y) ,

φ2,i(x, y) = (φ2(x, y))i = yi
e−ηeT

i
RT h(x,y)∑

ℓ
yℓe

−ηeT
ℓ

RT h(x,y) ,

(6.5)

where f(x, y) and h(x, y) are column vectors with (f(x, y))i = yi
e−ξeT

i
RT x∑

ℓ
yℓe

−ξeT
ℓ

RT x
, and (h(x, y))i =

xi
eξeT

i
Ry∑

ℓ
xℓe

ξeT
ℓ

Ry
, for all i ∈ {1, . . . , n}.

Clearly, the dynamics of FLBR-MWU are captured by (xt+1, yt+1) = φ(xt, yt). The
Jacobian of φ is a 2n× 2n matrix, which can be written in the form of a 2× 2 block matrix,
as follows:

J =

(
∂φ1
∂x

∂φ1
∂y

∂φ2
∂x

∂φ2
∂y

)
(6.6)

In order to use Theorem 5 and prove that ϕ is a contraction, we need to argue about the
eigenvalues of J at the equilibrium (x∗, y∗). Towards this, in Appendix B.4, we provide the

†Besides [Galor, 2007], readers could advise Chapter 7 [Quarteroni et al., 2006].
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exact form of each entry of J at (x∗, y∗) (after some simplification steps by exploiting the
fact that (x∗, y∗) is an equilibrium).

We analyze first the eigenvalues that are derived by the rows of J that correspond to φ1,i

for some i ̸∈ supp(x∗) and to φ2,i for some i ̸∈ supp(y∗). Let x∗T Ry∗ = v be the value of the
game. By referring to Appendix B.4, we have that for any i ̸∈ supp(x∗):

∂φ1,i
∂xi

(x∗, y∗) =
eηeT

i Ry∗

eηv
, ∂φ1,i

∂xj
(x∗, y∗) = 0 for any i ̸= j, and ∂φ1,i

∂yj
(x∗, y∗) = 0, for any j.

Hence, the i-th row of the upper block of J has only one non-zero entry, namely, the diagonal
element, provided that i ̸∈ supp(x∗). Thus, eηeT

i
Ry∗

eηv is an eigenvalue of J at (x∗, y∗). We
note also that‡ eT

i Ry∗ < v for i ̸∈ supp(x∗), hence |∂φ1,i
∂xi

(x∗, y∗)| < 1. Analogously, for

i ̸∈ supp(y∗) we have that ∂φ2,i
∂yi

(x∗, y∗) = e−ηeT
i

RT x∗

e−ηv , whereas all other partial derivatives

of φ2,i are zero. Thus, e−ηeT
i

RT x∗

e−ηv is also an eigenvalue of J , with | e
−ηeT

i
RT x∗

e−ηv | < 1, since
eT

i RT x∗ > v for i /∈ supp(y∗), by Lemma 18 in Appendix B.3.
We now focus on the rows and columns that correspond to the support of x∗ and y∗. We

denote this submatrix as J̃ , with k1 = |supp(x∗)|, k2 = |supp(y∗)| and k = k1 + k2. Thus,
J̃ ∈ Rk×k. It can been seen that J has eigenvalues with absolute value less that one iff the
same holds for J̃ as well.

Using equations (B.7) and computing ((1k1 , 0k2)
T · J̃)j for an arbitrary coordinate j, we

end up with the quantity ∑i x∗
i

∑
k Riky∗

kRT
kj −

∑
i x∗

i

∑
k x∗

k

∑
l Rkly

∗
l RT

lj , that equals zero.
Thus, (1k1 , 0k2) is a left eigenvector of J̃ corresponding to the zero eigenvalue. Using the
same argumentation we have that (0k1 , 1k2) is also a left eigevector of J̃ with eigenvalue zero.

We will make use of the following claim, regarding orthogonal pairs of eigenvectors.

Claim 1. Consider a matrix A ∈ Rn×n, an eigenvalue λ and a left eigenvector uT , corre-
sponding to λ. Then for every right eigenvector v that does not correspond to λ, it holds that
uT v = 0.

The proof of the claim, which is a simple linear algebra exercise, is at the end of this
section. From Claim 1, it follows that for any right eigenvector (x̃, ỹ) corresponding to a
nonzero eigenvalue, we have

x̃T 1k1 = 0 and ỹT 1k2 = 0. (6.7)

With that in hand, let us now rewrite J̃ , as J̃ = J ′ + A, where J ′ is produced by deleting
the term −x∗

i (resp. −y∗
i ) from every element of the upper left (resp. lower right) block of

J̃ . I.e., A contains −x∗
i in all entries of the i-th row in the upper left block, and −y∗

i in all
entries of the i-th row in the bottom right block. The other two blocks of A contain only

‡A unique Nash equilibrium of a zero-sum game is also a quasi-strict equilibrium (Theorem 1 in [Norde,
1999]), meaning that strategies that are not in the support of the equilibrium have strictly less payoff than the
best-response payoff.
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zeros. Using (6.7), we can see that for every non-zero eigenvalue λ of J̃ , that corresponds to a
right eigenvector (x̃, ỹ), it holds that A · (x̃, ỹ) = 0, thus λ is also an eigenvalue of the matrix
J ′. By the equations in Appendix B.4, we can write J ′ as a 2× 2 block matrix, as follows.

J ′ =

(
Ik1×k1 + ηξDxx ηDxy

ηDyx Ik2×k2 + ηξDyy

)
,

with

Dxx
ij = −x∗

i

(∑
k Riky∗

kRT
kj −

∑
k x∗

k

∑
l Rkly

∗
l RT

lj

)
with i, j ∈ [k1],

Dyy
ij = −y∗

i

(∑
k RkjRT

ikx∗
k −

∑
k y∗

k

∑
l RT

klx
∗
l Rlj

)
with i, j ∈ [k2],

Dyx
ij = −y∗

i

(
RT

ij − eT
j Ry∗

)
e

ξeT
j

Ry∗

eξv with i ∈ [k2], j ∈ [k1],

Dxy
ij = x∗

i

(
Rij − eT

j RT x∗
)

e
−ξeT

j
RT x∗

e−ξv with i ∈ [k1], j ∈ [k2].

We now consider the diagonal elements of Dxx and Dyy. For Dxx, and for any i, its i-th
element along the diagonal is

−x∗
i

(∑
l
R2

ily
∗
l −

∑
k

x∗
k

∑
l
Rkly

∗
l RT

li

)
We establish the following useful property.

Lemma 10. For any i ∈ [k1], Dxx
ii < 0, and for any j ∈ [k2], Dyy

jj < 0.

Proof of Lemma 10. We first prove that for any i, Dxx
ii ≤ 0. For the sake of contradiction,

assume that there exists an index i, such that Dxx
ii > 0. This means that∑

l
R2

ily
∗
l <

∑
k

x∗
k

∑
l

Rkly
∗
l Ril.

To proceed, we claim that
v ≤

∑
l
Rilzl, (6.8)

where zl =
Rily

∗
l

v , and z = (zl)l∈[n]. To see this, it is crucial to notice first that both y∗ and z

are probability vectors and also that v =
∑

l Rily
∗
l . Hence, the LHS and the RHS of Equation

(6.8) are two different convex combinations of the Ril values. To go from the LHS to the RHS,
we simply replace y∗

l by zl. For each Ril that is itself less than v, the coefficient y∗
l is replaced

by a smaller coefficient, since zl < y∗
l in this case (by the definition of zl). On the contrary, for

each Ril with Ril > v, it holds that zl > y∗
l (and we also have zl = y∗

l when Ril = v). Hence,
we can think of the move from the LHS to the RHS of (6.8), as transferring probability mass



6.2. FLBR-MWU Method 79

from the lowest valued Ril’s to the highest ones. Let ∆ be the total amount of probability
mass that was transferred. Then ∆ =

∑
l:Ril<v

(y∗
l − zl) ≥ 0. Note that it also holds that

∆ =
∑

l:Ril>v
(zl − y∗

l ). If we compare now the LHS with the RHS, the RHS has a deficit of
a total value of at most ∆ · v from the terms with Ril < v, compared to the corresponding
terms of the LHS. At the same time, it has a surplus of at least ∆ · v from the terms with
Ril > v. Combining the deficit and the surplus, this proves Equation (6.8).
Using (6.8), we can now obtain the following contradiction:

v ≤
∑

l
Rilzl < x∗T Rz = v,

where the strict inequality above follows by the condition stated just before Equation (6.8), and
the final equality holds since x∗T Rej = v for any j ∈ supp(y∗) (and so for any j ∈ supp(z)).

Thus, we have reached a contradiction, which means that Dxx
ii ≤ 0 for every i ∈ [k1]. In

addition, it is not difficult to see that in case Dxx
ii = 0 for some i, the strategy profile (i, y∗)

is also a Nash equilibrium. But this would imply that there also exists a pure equilibrium
formed by i and its best response, contradicting the fact that we have a unique equilibrium.
Hence, Dxx

ii is strictly negative for every i ∈ [k1].
Similarly, the same analysis holds for the matrix Dyy, completing the proof of the lemma.

□

To finish the proof, we estimate an upper bound on the p-norm of J ′ for p ∈N. We have that

∥J ′∥pp =
∑

j

(∑
i |J ′

ij |p
)
≤ k maxj

(∑
i |J ′

ij |p
)

≤ k(|1 + ηξDxx
j′j′ |p + ηpξp∑k1

i=1,
i ̸=j

|Dxx
ij′ |p + ηp∑k2

i=k1+1 |D
yx
ij′ |p)

≤ k(|1 + ηξDxx
j′j′ |p + ηpξpk1 + ηpk2),

where j′ is the column of J ′ that achieves the maximum in the above expression, and we
assumed without loss of generality that j′ belongs to {1, . . . , k1}. We can now see that since
Dxx

j′j′ is negative, then if ηξ < 1, and η is sufficiently small, there exists an appropriate p so
that ∥J ′∥pp < 1. However, it is well known that the maximum absolute value of an eigenvalue
of a matrix is bounded by the induced matrix norms, therefore is suffices to check that
∥J ′∥ < 1 for some matrix norm, see [Quarteroni et al., 2006]. Thus, the absolute value of the
maximum eigenvalue of J ′ is less than one, and this concludes our proof.

Proof of Claim 1. Consider two distinct eigenvalues of A λ1 and λ2, such that v is the
corresponding to λ1 left eigenvector, while u is the corresponding to λ2 right eigenvector [Strang,
2009]. In other words, v is the corresponding to λ1 right eigenvector for AT . We observe that,
vT (AT u) = (vT AT )u = (Av)T u. So, λ1vT u = (AT v)T u = vT (Au) = vT λ2u = λ2vT u. Thus,
vT u = 0. □
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6.3 Numerical Experiments
The theoretical results of Subsection 6.2.2 present a clear advantage of FLBR-MWU dy-
namics over the OMWU approach in terms of convergence speed-up. In this section, we
empirically demonstrate these acceleration improvements, along with the assessment of the
IBR step in our dynamics, i.e., the step defined by (6.1). Additional supporting figures and
an Octave/Matlab implementation of the dynamics are provided in the supplementary material.

Nash equilibrium estimation. In order to make comparisons, we need first to compute
the equilibria of the generated instances. Instead of using a linear programming solver,
the equilibrium computation is performed using the proposed FLBR-MWU algorithm with
η = 0.05. FLBR-MWU is an iterative approach thus a convergence criterion to ensure that
the Nash equilibrium has been reached is required. We propose as a convergence criterion
the DKL between the update step and the IBR step of our dynamics: DKL((xt, yt)||(x̂t, ŷt)).
This metric is sufficient because the best response strategy at Nash equilibrium is exactly
the equilibrium strategy, thus limt→∞ DKL((xt, yt)||(x̂t, ŷt)) = 0 (for small enough η). We
return the solution when the convergence criterion becomes 10−15, which is approximately
the machine’s arithmetic precision, or when the maximum number of steps, denoted by tmax,
–typically millions of steps– has been reached. In the infrequent latter case (it happened in
less than 0.1%), we discard the returned solution.

Effect of the intermediate rate (ξ). In our learning dynamics, the best response
strategy is approximated by the softmax function (a.k.a., the normalized exponential function
or the Gibbs measure in statistical physics). Sending ξ to infinity, one out of the potentially-
many best response strategies is obtained as intermediate dynamics by (6.1). However, ξ

should be finite from a practical point of view. Since it appears at the exponentials’ argument,
very high values of ξ may result in arithmetic imprecision. Therefore, we conducted a numerical
study to assess the effect of ξ on the convergence of the algorithm. Table 6.1 presents various
statistics about the number of steps required for several values of ξ and for two values of
the size of the payoff matrix R, with η = 0.1. We average over 103 repetitions using random
payoff matrices whose elements are iid sampled from U([0, 1]). Evidently, as ξ increases, the
FLBR-MWU dynamics require fewer steps in order to reach a specific threshold of accuracy
(set to 10−10 for the DKL between the Nash equilibrium and the FLBR-MWU dynamics).
However, the solution occasionally produces ‘NaN’ for values of ξ above 200 due to overflow
in the exponentials§. Overall, values between 50 and 100 are a sufficient compromise between
the best response approximation and machine precision trade-off. We set ξ = 100 in the
remaining experiments of this section, even though larger values can be tolerated especially
when both n≫ 1 and x∗

i , y∗
j ≪ 1 hold.

§Overflow can be easily fixed by subtracting the maximum value but with an increased underflow risk.
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Table 6.1: Statistics on the number of steps till convergence for various values of ξ and
n. The maximum number of steps was set to tmax = 106.

Matrix size Statistic ξ = 20 ξ = 50 ξ = 100 ξ = 200

n = 10
Mean 85.9K 52.7K 41.6K 57.6K

Median 32.0K 22.3K 19.8K 18.0K
tmax was hit 0.9% 0.0% 0.0% 2.2%

n = 20
Mean 352.1K 233.3K 173.6K 141.4K

Median 225.0K 123.4K 82.2K 65.6K
tmax was hit 13.5% 5.9% 3.5% 2.5%

Effect of the learning rate (η). The first row of panels in Figure 6.3 shows the DKL

between the Nash equilibrium and the FLBR-MWU dynamics for the same payoff matrix
instance as in Figure 6.2 and for various values of the learning rate, η. The difference between
the left and right panels is that for the right column of panels, the x-axis has been rescaled
by multiplying each run with the respective learning rate. A linear scaling is numerically
observed showing that the number of steps is effectively of order O(η−1) for a fixed accuracy
level. This inversely-proportional behavior is observed not only during the convergence to the
approximate Nash equilibrium, but also during the contraction period. As a rule of thumb,
we propose to increase the rate η, because it accelerates the convergence, but with caution
since a very large η might result in an oscillatory solution, thus failing to converge (blue line
in second row of panels).

Effect of the payoff matrix size (n). The rate of convergence is sensitive to the size of
the payoff matrix and the number of steps is expected to substantially increase on average as
the size of the game increases. We performed a numerical comparison between FLBR-MWU
and OMWU to evaluate the number of steps required to achieve a predefined level of accuracy.
Table 6.2 presents statistics on the number of steps for each learning algorithm computed on
100 repetitions using element-wise uniformly-sampled and iid random payoff matrices. The
learning rate was set to η = 0.1. Given that FLBR-MWU requires almost twice as many
calculations per iteration, relative to OMWU, it is fair to multiply the number of steps of
FLBR-MWU with two and then compare it with the number of steps of OMWU. We observe
that FLBR-MWU is approximately 15 times faster on average when n = 5. As the size of
the payoff matrix increases, the performance gap in convergence rate as measured by the
number of steps also increases. Indeed, even for n = 10, OMWU requires more than 4.2M

steps in half of the runs, while the respective number for FLBR-MWU is 16.3K, implying
that FLBR-MWU is 100 times faster than OMWU in the median sense. Larger game sizes
make OMWU essentially impractical while FLBR-MWU is still able to converge in less than
5M steps.

Next, we demonstrate the properties of the FLBR-MWU algorithm using additional
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Figure 6.3: The DKL between the Nash equilibrium and the FLBR-MWU dynamics for
two instances and no rescaling of x-axis (upper panels) and with rescaling
(lower panels). The relationship between the number of steps and learning
rate is inversely proportional.

Table 6.2: Statistics on the number of steps till convergence for various sizes of the
game. The maximum number of steps was set to tmax = 5× 106.

Learning alg. Statistic n = 5 n = 10 n = 50

FLBR-MWU
Mean 33.7K 103.3K 984.9K

Median 9.8K 16.3K 409.3K
tmax was hit 0.0% 0.0% 1.0%

OMWU
Mean 1088.8K 3323.2K 5000.0K

Median 353.8K 4208.1K 5000.0K
tmax was hit 9.0% 46.0% 100.0%

metrics and perform further comparisons.

Convergence to the value of the game. Figure 6.4 shows the evolution of the current
value of the game at each iteration, with the same payoff matrix as that used in the example
of Figure 6.2. The current value of the game at iteration t is defined as vt = xtT Ryt, and it
serves as another convergence measure to Nash equilibrium. MWU (blue) oscillates around the
true value of the game (v = 0.529677) without converging, while OMWU (red) oscillates with
decreasing amplitude and eventually it converges to the true value. The current game value
for the FLBR-MWU dynamics (black) converges much faster requiring only a few thousand
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steps.
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Figure 6.4: The value of the game as a function of the number of steps for the three
MWU variants.

Dynamics trajectories. Figures 6.5 and 6.6 show the trajectories of the row player (i.e.,
xt

i for i = 1, . . . , 10) in linear and log scale, respectively. Similarly, Figures 6.7 and 6.8 show
the trajectories of the column player (i.e., yt

i). Again, the payoff matrix is the same as in
Figure 6.2, and the Nash equilibrium is estimated as:(

x∗T

y∗T

)
=

(
0.126766, 0.276988, 0, 0.22506, 0.081435, 0, 0.191705, 0, 0.098045, 0
0, 0.058227, 0, 0.298188, 0.213176, 0, 0, 0.283403, 0.000376, 0.146628

)
.

First, we note that for all pure strategies that do not belong to the support of x∗ or y∗,
the corresponding probabilities in xt and yt converge to 0 under FLBR-MWU, after a few
thousand steps. Additionally, we observe interesting patterns during the evolution of the
learning dynamics in both scales which are intimately connected with the KL divergence
trajectory shown in Figure 6.2. Indeed, it is worth looking at yt

9 (log scale; Figure 6.8), which
shows the most interesting pattern. Initially it seems that this is not a surviving strategy
of the dynamics and its probability decreases for the first 10K steps. However, and, despite
its very low value, it recovers to the actual Nash equilibrium value. Similarly, we observe
that the non-zero elements of xt (linear scale; Figure 6.5) are linearly evolving for several
thousands of steps. Those changes in the dynamics correspond to the plateau of the KL
divergence observed in Figure 6.2. Our explanation of the dynamics trajectories is as follows:
starting from the uniform state, the FLBR-MWU algorithm first finds an approximate Nash
equilibrium with a value close to the true value of the game but then escapes from it until it
eventually converges to the actual Nash equilibrium.
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Figure 6.5: The dynamics of the update step per coordinate (solid), as well as the IBR
step (dashed) for the row player. For the equilibrium strategy x∗, it holds
that supp(x∗) = {1, 2, 4, 5, 7, 9}. Note that xt converges to the same support.

Another interesting observation is that the dynamics of the IBR step (recall Equation
(6.2)) drive the FLBR-MWU dynamics in the sense that when the IBR dynamics are above
the FLBR-MWU dynamics, then the corresponding probabilities in the update step of FLBR-
MWU increase, while the opposite is true when the IBR dynamics are below the FLBR-MWU
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Figure 6.6: Same as Figure 6.5, but in logarithmic scale.

dynamics.
Effect of the intermediate rate (ξ). We present further statistical information on the

effect of ξ. Figure 6.9 shows the distribution of the number of steps as a boxplot for n = 10
(left) and n = 20 (right). The red line in the boxplot corresponds to the median value while
the blue box corresponds to the area covered by the 2nd and 3rd quantiles. The distribution
of the number of steps till convergence is positively (or right) skewed. Therefore we also
report the statistics of the right tail in Table 6.3. The presented results further validate the
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ŷt1
yt1

×10
4

0 2 4 6
0

0.1

0.2 ŷt2
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ŷt5
yt5

×10
4

0 2 4 6
0

0.05

0.1
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Figure 6.7: The dynamics of the update step per coordinate (solid), as well as the IBR
step (dashed) for the column player. For the equilibrium strategy y∗, it holds
that supp(y∗) = {2, 4, 5, 8, 9, 10}.

suggested value for ξ.We also remark that the product ηξ is not always less than 1 in our
experiments. Hence, although we needed the condition ηξ < 1 to prove our theoretical result
in Section 6.2, the numerical evidence shows that the product can take values greater than 1
and still attain convergence (however ηξ should not become arbitrarily large).

Number of steps. Moving on, we present additional comparisons between FLBR-MWU
and OMWU. Figure 6.10 demonstrates the distribution of the number of steps till convergence
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Figure 6.8: Same as Figure 6.7, but in logarithmic scale.

for FLBR-MWU (left) and OMWU (right). Interestingly, the distribution for payoff matrix
size n = 50 with the FLBR-MWU algorithm is similar to the distribution for n = 5 with
the OMWU algorithm. The computational gains are expected to be even more dramatic for
larger games.

MWU, OMWU, and OMD. We also present a comparison among the MWU, OMWU
and OMD dynamics (where for OMD we implemented the version of [Mertikopoulos et al.,
2019] with entropy regularization). Figure 6.11 shows the evolution of a long run of 5 million
steps and two values for the learning rate, η. We use the same payoff matrix as in Figure 6.2
and recall that the proposed FLBR-MWU method converged after only 100K steps (see
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Figure 6.9: Boxplots for the number of steps until convergence for various values of ξ
and two payoff matrix sizes.

Table 6.3: Quantile statistics on the number of steps till convergence for various values
of ξ and n. The maximum number of steps was set to tmax = 2× 106.

Matrix size Quantile ξ = 10 ξ = 20 ξ = 50 ξ = 100 ξ = 200

n = 10
75% 127.1K 83.3K 54.5K 44.1K 43.6K
90% 346.7K 209.1K 137.9K 111.3K 110.3K

97.5% 1035.2K 640.3K 322.1K 228.7K 372.8K

n = 20
75% 1957.2K 1127.2K 576.9K 441.3K 342.7K
90% 2000.0K 2000.0K 1644.8K 1076.0K 830.8K

97.5% 2000.0K 2000.0K 2000.0K 2000.0K 2000.0K

Figure 6.2). It is evident from the KL divergence in Figure 6.11 (leftmost panels) that the
OMWU and OMD algorithms have almost the same behavior, as expected by [Wei et al.,
2021], and they both converge, but in a very slow pace. The oscillatory behavior is prominent
even after a large number of steps, as quantified by the l1 norm difference (rightmost panels
of Figure 6.11).

Finally, we report in Table 6.4 several convergence statistics between OWMU, OMD and
FLBR-MWU algorithms with η = 0.1. This table is an extension of Table 6.2. Once again,
the proposed FLBR-MWU algorithm is orders of magnitude faster while the closeness of
the statistics between OWMU and OMD reveals the (almost) equivalence between the two
algorithms.

As a concluding remark, the reduction of acceleration gain as n increases in our last
experiment, it is artificial due to the use of a limit on the number of steps (denoted tmax in
the manuscript) which was set to 5M steps. Actually, if the allowed number of steps left
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gains when FLBR-MWU is used are striking.
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Figure 6.11: KL divergence and l1 norm difference for tmax = 5× 106 and two values for
the learning rate: η = 0.1 (upper row of panels) and η = 0.02 (lower row of
panels).
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Table 6.4: Statistics on the number of steps till convergence for OWMU, OMD and
FLBR-MWU and various payoff matrix sizes. The maximum number of steps
was set to tmax = 5× 106.

Matrix size Statistic n = 5 n = 10 n = 20 n = 50

OWMU
Mean 1287.3K 3280.9K 4997.8K 5000.0K

Median 631.9K 3697.8K 5000.0K 5000.0K
tmax 12.0 44.0 98.0 100.0

OMD
Mean 1287.6K 3292.9K 4997.8K 5000.0K

Median 631.9K 3629.1K 5000.0K 5000.0K
tmax 12.0 44.0 98.0 100.0

FLBR-MWU
Mean 18.8K 45.9K 267.1K 1130.8K

Median 8.0K 21.4K 64.0K 701.3K
tmax 0.0 0.0 0.0 2.0

unlimited, then the relative computational gains of FLBR-MWU is even higher for larger n’s.



Chapter 7
Noisy Games

7.1 Introduction
In previous chapters are identified various different causes of misinformation, including
deception and misleading reports, human errors, deliberate attempts by the game designer to
channel players into different behaviours, erroneous sensor readings and random effects. Here
we focus on a special case of misinformation, attributed to noise and signal errors, a situation
often occurring in distributed multiagent systems. This class of misinformation games will be
called noisy games.

Specifically, in distributed multiagent systems, agents are equipped with an internal logic
that allows them to autonomously solve problems of a given nature. However, at deployment
time, the precise specification of these problems is often unknown; instead, the details are
communicated as needed at operation time, during the so-called “online phase” [Brown et al.,
2017]. In such cases, unexpected communication errors, malfunctions in the communication
module or noise may cause the agents to operate under a distorted problem specification,
leading to unexpected behaviour.

For example, consider the scenario where we have two autonomous self-interested agents,
already deployed in an unfriendly environment. At some point in time, the human controller
asks each of the agents to choose among two actions, also specifying the payoffs for each
combination of choices. If the communication goes through as expected, then the behaviour
of the agents is predictable by the well-known results of game theory. However, if one (or
both) of the agents’ communication module malfunctions, or if there is unexpected noise in
the communication channel, the signal may arrive distorted. This could lead agents to receive
an erroneous payoff matrix, essentially causing them to believe that they play a game different
from the one communicated to them, with unpredictable results (Figure 1.2).

Note that, if, at deployment time, the designer had foreseen the possibility for the agents
to receive an erroneous game specification, then the agents would have been programmed to
treat all signals as uncertain (i.e., true under a certain probability). In this case, the possibility
of error is integrated in the agents’ logic (even when no communication error occurs), and
their behaviour can be modelled using the rich results on Bayesian games and games with

91
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incomplete information [Zamir, 2009]. On the other hand, if such a scenario had not been
foreseen at deployment time, then the agents will operate under the payoff matrices received,
without considering the possibility that the payoff matrices are not the correct ones. This is
quite different, as the agents’ decisions will be totally misled by the erroneous setting, and
will not consider mitigation measures “just in case” the specification that they received is
wrong.

The aim of this chapter is to provide the theoretical machinery necessary to study scenarios
of this kind. In particular, the main research question to be addressed is:

Given a game and a specific noise pattern affecting the players’ perceived payoff matrices,
compute the probability that players’ behaviour (i.e., chosen strategies) will be as close as
possible (in a manner to be formally defined later) to the behaviour that they would have in
the absence of noise.

In summary, the main contributions of this chapter are the following:

1. Provide motivation for the need to define misinformation in the context of noisy games,
by positioning our work with respect to other similar efforts in the literature, in particular
related to games with uncertainty, and games where the players have some kind of
misconception related to the game’s payoffs (Section 2.6).

2. The definition of a formal model for the description of misinformation in noisy games
(Section 7.2).

3. The computation of the probability that the players’ behaviour is unaffected by random
noise, a feature that we call behavioural consistency (Section 7.3).

4. Experimentation to visualize and validate our main results (Section 7.5).

7.2 Noisy Games
7.2.1 Basic Definitions

Noisy games are a special class of misinformation games, where misinformation is due to a
random distortion in the original payoff matrix. Formally:

Definition 51 (Noisy game). A noisy game is a canonical misinformation game mG =

⟨G0, G1, . . . , G|N |⟩, where Gi = G0 + ∆i for some matrix ∆i whose elements follow a certain
probability distribution.

Note that the restriction of a noisy game being canonical implies that noise only affects
the payoff matrix. In a more general scenario, noise could also affect the number of players
and/or the strategies that a player understands (knows) regarding a game. However, as shown
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in [Varsos et al., 2021], we do not need to consider this case separately, and we can restrict
ourselves to canonical games as above for simplicity.

In this chapter, we concentrate on noisy games whose actual game is a 2× 2 bimatrix
game, and where each element of ∆i follows the normal distribution. We call such games
normal noisy games. Therefore:

Definition 52 (Normal noisy game). A normal noisy game is a tuple mG = ⟨G0, Gr, Gc⟩,
where:

• G0, Gr, Gc are 2× 2 bimatrix games

• For x ∈ {r, c}, Gx = G0 + ∆x, where ∆x is a bimatrix whose elements follow the normal
distribution (possibly for a different mean and normal deviation)

Notational conventions and shorthands To avoid confusion caused by the use of
multiple indices in subsequent sections, we will use the notation A[i, j] to refer to the element
in the ith row and jth column of a matrix A, i.e., if A = (aij), then A[i, j] = aij .

We will use boldface to indicate tables whose elements are all equal to a certain value. For
example [b]n×m represents the n×m table B, such that B[i, j] = b for all i, j. The n×m

subscript will be omitted when obvious from the context.
For three tables A, M , D of the same dimensions, we write A ∼ N (M , D) to indicate that

A[i, j] ∼ N (M [i, j], D[i, j]) for all i, j.
We define operators on payoff matrices as follows. Consider a 2 × 2 bimatrix game

G = ⟨N , S, P ⟩, where P = (Pr; Pc). Then:

• For 2× 2 tables Mr, Mc, Dr, Dc, the expression G ∼ N ((Mr; Mc), (Dr; Dc)) indicates
that Pr ∼ N (Mr, Dr) , Pc ∼ N (Mc, Dc)

• For a 2× 2 bimatrix A = (Ar; Ac) and λ ∈ R, the result of the operation λG+A is the
2× 2 bimatrix game G′ = ⟨N ′, S′, P ′⟩, where N ′ = N , S′ = S, P ′ = λP + A

7.2.2 Strategies, strategy profiles and equilibria in misinformation games

Here we will use the main definitions of Section 4.2 (strategies, strategy profiles, equilibrium).
For simplicity, we will only consider normal noisy games, although it is trivial to extend the
definitions for arbitrary misinformation games (see [Varsos et al., 2021] for details). So let us
fix some normal noisy game mG.

Notationally, as we consider normal noisy games with two players, we denote the misin-
formed strategy profile for the individual game, and is defined as a pair σ = (σr, σc), where
σx is a misinformed strategy of x ∈ {r, c}. Due to our assumption of mG being a canonical
game, a misinformed strategy (and misinformed strategy profile) is also a strategy (strategy
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profile) in G0. Due to this fact, we will simply use Σx to denote the misinformed strategies of
player x in mG, and Σ to denote the misinformed strategy profiles of mG.

As normal noisy games are a subgroup of misinformation games, the decisions of a player
are made based on his own payoff matrix (the one in Gx), payoffs are computed on the basis
of the actual payoff matrix (the one in G0). This is reflected in the definition of payoffs, note
that this is equivalent with equation (4.1).

Indeed, set P 0 = (P 0
r ; P 0

c ), P r = (P r
r ; P r

c ), P c = (P c
r ; P c

c ) the payoff matrices of G0, Gr, Gc

respectively. Then:

• The actual payoff function of player x, under a given strategy profile σ = (σr, σc),
ux : Σ→ R, is defined as:

ux(σr, σc) = σT
r P 0

x σc

• The misinformed payoff function of player x, under the viewpoint of player y and the
strategy profile σ = (σr, σc), uy

x : Σ→ R, is defined as:

uy
x(σr, σc) = σT

r P y
x σc

As in Chapter 4 the actual payoff function represents the payoff that player x will really
receive as a response to his strategic choices. On the contrary, the misinformed payoff function
represents the payoff of player x, under the (erroneous) view of the game that player y has.
Note that the equilibria concepts derived using Definitions 16-17, as Price of Misinformation
metric, see Definition 27.

Again, if PoM = 1, the players adopt optimal behaviour, due to misinformation. Moreover,
interesting results can be derived by comparing the PoA of G0 with the PoM of mG: if
PoM < PoA, then misinformation has a beneficial effect on social welfare, as the players are
inclined (due to their misinformation) to choose socially better strategies; on the other hand,
if PoM > PoA, then misinformation leads to a worse outcome, from the perspective of social
welfare.

7.2.3 Behavioural Consistency and ε-closeness

Given that the misinformed equilibria of a normal noisy game may be different than the Nash
equilibria of the actual game, it makes sense to define a metric to quantify the distance among
these equilibria and their respective strategies, essentially measuring the effect of noise on the
behaviour of the players:

Definition 53 (ε-closeness). Let σ = (σ1, σ2), σ′ = (σ′
1, σ′

2) be two strategies and ε ≥ 0. Then
we say that σ, σ′ are ε-close if and only if supp(σ) = supp(σ′) and max{|σ1−σ′

1|, |σ2−σ′
2|} ≤

ε. For a strategy σ, the set of strategies that are ε-close to it, is denoted by Clε(σ).
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The above definition applies on strategies in general, and, thus, allows us to apply it also
to check ε-closeness among strategies and/or misinformed strategies, as long as they contain
the same number of pure strategies. Moreover, although the definition applies for normal
noisy games, it is trivial to generalize it for non-normal ones. Finally, note that ε-closeness
requires identical supports. This requirement is based on the idea that adding (or removing) a
pure strategy to (from) the support of a strategy is considered a major change in the player’s
behaviour.

We extend Definition 53 to (misinformed and non-misinformed) strategy profiles (and
equilibria), in the obvious manner: σ = (σr, σc) is ε-close to σ′ = (σ′

r, σ′
c) if and only if σr is

ε-close to σ′
r and σc is ε-close to σ′

c. We denote by Clε(σ) the strategy profiles that are ε-close
to σ. For a set of strategy profiles Σ∗, we set Clε(Σ∗) =

⋃
σ∈Σ∗ Clε(σ), i.e., the strategy

profiles that are ε-close to at least one of the strategy profiles in Σ∗.
The definition of ε-closeness gives formal substance to the idea of the behaviour of the

players (expressed as an equilibrium) being “similar”: two equilibria that are ε-close are
“similar” (and vice-versa), see Figure 7.1. This notion allows us to formally define the
behavioural consistency of players in the presence of noise, which amounts to checking whether
the equilibria of the noisy game are similar (i.e., ε-close) to the “expected” ones under the
actual game. Formally:

Definition 54. Consider a normal noisy game mG and some tolerance ε ≥ 0. Then,

• mG is ε-misinformed iff for every natural misinformed equilibrium σ∗ of mG, there is
a Nash equilibrium σ0 of G0, such that σ∗ ∈ Clε(σ0).

• mG is inverse-ε-misinformed iff for every Nash equilibrium σ0 of G0, there is a natural
misinformed equilibrium σ∗ of mG, such that σ∗ ∈ Clε(σ0).

The following example will be used as a running example for the rest of this Chapter to
illustrate our results.

Example 7.1 (Running example). We consider two autonomous robotic agents r, c, deployed
in a remote environment. At some point in time, the human controller asks each of the agents
to choose among two actions s1, s2, also specifying the payoffs for each combination of choices,
as shown in matrix P 0 below.

P 0 =

(
(3, 2) (0, 0)
(0, 0) (2, 3)

)

The above payoff matrix corresponds to the well-known Battle of the Sexes (BoS) game
[Osborne and Rubinstein, 1994] , which has 3 Nash equilibria, namely σ0

1 = ((1, 0), (1, 0)),
σ0

2 = ((0, 1), (0, 1)), σ0
3 = ((3/5, 2/5), (2/5, 3/5)).
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Figure 7.1: Behavioral consistency between interaction with real specifications and inter-
action with misinformation.

However, one of the components of the central communication module has received damage,
unknowingly to the agents or the human controller, causing it to introduce a random noise
(δ ∼ N (0, 1)) to each of the values in P 0 during transmission. The above setting can be
modelled as a normal noisy game mG = ⟨G0, Gr, Gc⟩ ∼ G0 +N

(
Mx

y , Dx
y

)
, where Mx

y =

[0]2×2, Dx
y = [1]2×2 for all x, y ∈ {r, c}, and the payoff matrix of G0 is P 0.

Our objectives are:

1. To compute the probability that the robotic agents will exhibit behavioural consistency
(Definition 54), despite the noise caused by the malfunction

2. To determine whether minor inconsequential modifications in P 0 (e.g., multiplication of
all its elements by a constant) would modify the above probability, and by how much

The above questions will be addressed and analysed in Sections 7.3 and 7.4 below. ■

7.3 Probabilities for Behavioural Consistency
In this section, we will compute the probabilities for a normal noisy game being (inverse-)ε-
misinformed. For better readability, we split our analysis in 3 subsections. In Subsection
7.3.1, we recast some known results from game theory in a way that is more suitable for our
analysis, whereas in Subsection 7.3.2, we develop some results that determine necessary and
sufficient conditions for a misinformation game to be (inverse-)ε-misinformed. These results
are then employed in Subsection 7.3.3 to compute the required probabilities. The respective
results are summarized in Table 7.1 (for Subsection 7.3.1), Table 7.2 (for Subsection 7.3.2)
and Tables 7.3, 7.4 and 7.5 (for Subsection 7.3.3).
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7.3.1 Determining equilibrium strategies

For a 2× 2 bimatrix game G, we denote by ugainG(x, i) the utility gain of strategy s1

(compared to s2) for player x ∈ {r, c} when his/her opponent plays si, in game G. The
reference to G will be omitted when obvious from the context. Note that ugain(x, i) is
determined by the elements of the payoff matrix of G (say P = (Pr; Pc)) as follows:

• For x = r, ugain(r, i) = Pr[1, i]− Pr[2, i]

• For x = c, ugain(c, i) = Pc[i, 1]− Pc[i, 2]

Intuitively, ugain(x, i) > 0 would mean that player x would play s1, if his/her opponent
chose to play si, i.e., that s1 is the best response (for x) to si. Similarly, ugain(x, i) < 0
would mean that player x would play s2, if his/her opponent chose to play si, i.e., that s2 is
the best response (for x) to si. Finally, when ugain(x, i) = 0, then player x is indifferent as
to whether to play s1 or s2, i.e., it has two pure best responses for his/her opponent’s pure
strategy si, indicating that the game is degenerate.

Example 7.1 (continued). We have ugain(r, 1) = 3, ugain(r, 2) = −3, ugain(c, 1) = 2,
and ugain(c, 2) = −2. ■

Some well-known results from game theory for bimatrix games can be recast using the
concept of ugain(x, i). For example, the following proposition gives an equivalent formulation
of the degeneracy criterion for 2× 2 bimatrix games:

Proposition 20. A 2× 2 bimatrix game G is degenerate if and only if ugain(x, i) = 0 for
some x ∈ {r, c}, i ∈ {1, 2}.

Proof. Let’s consider G = ⟨N , S, P ⟩, for P = (Pc; Pc). Suppose that G is degenerate. By
definition, there is a pure strategy (say si, by player x ∈ {r, c}) that has two pure best
responses. Suppose that x = r, i = 1. Then, since s1, s2 are equally preferred by c, it follows
that Pc[1, 1] = Pc[1, 2], i.e., ugain(c, 1) = 0. The other cases (i.e., when x = c and/or i = 2)
are analogous.

For the opposite, suppose that ugain(r, 1) = 0. Then Pc[1, 1] = Pc[1, 2], so c has two
pure best responses for the strategy s1 of r, which means that G is degenerate. The proof is
analogous for the other cases.

When a non-degenerate 2× 2 bimatrix game has a mixed Nash equilibrium, then its value
is determined by ugain(x, i):

Proposition 21. Consider a non-degenerate 2× 2 bimatrix game G = ⟨N , S, P ⟩, for P =

(Pr; Pc). If (p, 1− p) ∈ NEx(G) for some 0 < p < 1, x ∈ {r, c}, then:

p =
ugain(x̄, 2)

ugain(x̄, 2)− ugain(x̄, 1)
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Proof. Suppose that x = r. From classical game theoretic results (e.g., see [Nisan et al.,
2007a,Osborne and Rubinstein, 1994]), and our assumptions, we get that p will satisfy the
following equation:

p · Pc[1, 1] + (1− p) · Pc[2, 1] = p · Pc[1, 2] + (1− p) · Pc[2, 2]

The result now follows trivially by solving this equation and applying the definition of
ugain(c, i).
Analogously, for the case where x = c, we get the following equation:

p · Pr[1, 1] + (1− p) · Pr[1, 2] = p · Pr[2, 1] + (1− p) · Pr[2, 2]

Solving it, as above, will give the required result.

Now consider a non-degenerate 2× 2 bimatrix game G and some player x ∈ {r, c}. From
classical results in game theory, we know that there are 4 possible cases for NEx(G), namely
NEx(G) = {(1, 0)}, NEx(G) = {(0, 1)}, NEx(G) = {(p, 1− p)} for some 0 < p < 1 and
NEx(G) = {(1, 0), (0, 1), (p, 1− p)} for some 0 < p < 1. If the game is degenerate, then there
is one additional possibility, namely that NEx(G) = {(p, 1− p) | 0 ≤ p ≤ 1} = Σx.

For non-degenerate games, the value of NEx(G) can be determined using the following:

• NEx(G) = {(1, 0)} if and only if s1 is dominant for x, or si is dominant for x̄ and s1 is
the best response for x on si.

• NEx(G) = {(0, 1)} if and only if s2 is dominant for x, or si is dominant for x̄ and s2 is
the best response for x on si.

• NEx(G) = {(p, 1− p)} for some 0 < p < 1 if and only if no strategy is dominant for
either player and no pure Nash equilibrium exists.

• NEx(G) = {(1, 0), (0, 1), (p, 1− p)} for some 0 < p < 1 if and only if no strategy is
dominant for either player and two pure Nash equilibria exist.

The above conditions can also be expressed in terms of ugain(x, i), as shown in Table
7.1. In the table, the various (mutually exclusive) cases are visualised for player r and for a
non-degenerate game. The small figure in the rightmost column shows the depicted condition
in terms of the relative order among the elements of Pr (blue lines) or Pc (yellow lines), which
is determined by the sign (positive or negative) of ugain(x, i). The first column provides
a reference to the formulation of Proposition 22, where the above are formally stated and
proved.

Before showing Proposition 22, for brevity, we introduce the following predicates to refer
to the different cases with regards to the value of NEx(G):
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• Only-pure: opG
x (i), which is true if and only if the only equilibrium strategy for player

x in game G is to play si, i.e.:
opG

x (1) if and only if NEx(G) = {(1, 0)}
opG

x (2) if and only if NEx(G) = {(0, 1)}

• Only-mixed: omG
x (p), which is true if and only if the only equilibrium strategy for player

x in game G is (p, 1− p) (where 0 < p < 1), i.e.:
omG

x (p) if and only if NEx(G) = {(p, 1− p)}

• Pure-and-mixed: pmG
x (p), which is true if and only if player x has 3 equilibrium strategies

in game G, two pure and one mixed, and the mixed one is (p, 1− p) (where 0 < p < 1),
i.e.:
pmG

x (p) if and only if NEx(G) = {(1, 0), (0, 1), (p, 1− p)}

• Ranged-only-mixed: romG
x (ω1, ω2), which is true if and only if omG

x (p) is true for some
ω1 < p < ω2, i.e.:
romG

x (ω1, ω2) if and only if NEx(G) = {(p, 1− p)} for some p such that ω1 < p < ω2

• Ranged-pure-and-mixed: rpmG
x (ω1, ω2), which is true if and only if pmG

x (p) is true for
some ω1 < p < ω2, i.e.:
rpmG

x (ω1, ω2) if and only if NEx(G) = {(1, 0), (0, 1), (p, 1− p)} for some p such that
ω1 < p < ω2

• Infinite-Nash: inG
x , which is true if and only if player x has an infinite number of

equilibrium strategies, namely the entire Σx (note that this is possible only for degenerate
games), i.e.:
inG

x if and only if NEx(G) = Σx

When the game G is obvious from the context, we will omit the superscript G from the
above. Now we can formally state Proposition 22, which formalizes the intuition of Table 7.1:

Proposition 22. For any non-degenerate 2× 2 bimatrix game the following hold:

1. opx(1) if and only if either one of the following is true:

(a) (ugain(x, 1) > 0)∧(ugain(x, 2) > 0)

(b) (ugain(x, 1) > 0)∧(ugain(x, 2) < 0)∧(ugain(x̄, 1) > 0)∧(ugain(x̄, 2) > 0)

(c) (ugain(x, 1) < 0)∧(ugain(x, 2) > 0)∧(ugain(x̄, 1) < 0)∧(ugain(x̄, 2) < 0)

2. opx(2) if and only if either one of the following is true:

(a) (ugain(x, 1) < 0)∧(ugain(x, 2) < 0)

(b) (ugain(x, 1) < 0)∧(ugain(x, 2) > 0)∧(ugain(x̄, 1) > 0)∧(ugain(x̄, 2) > 0)
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Case (from Value of ugain(x, i), for: Nash equilibrium Schematic

Proposition x =
r

x =
r

x =
c

x =
c

strategies for x = r depiction

22) i = 1 i = 2 i = 1 i = 2 (NEr(G)) of the case

(1a) >0 >0 <>0 <>0 {(1, 0)}
(1, 1) (1, 2)

(2, 1) (2, 2)

> >

<>

<>

(1b) >0 <0 >0 >0 {(1, 0)}
(1, 1) (1, 2)

(2, 1) (2, 2)

> <

>

>

(1c) <0 >0 <0 <0 {(1, 0)}
(1, 1) (1, 2)

(2, 1) (2, 2)

< >

<

<

(2a) <0 <0 <>0 <>0 {(0, 1)}
(1, 1) (1, 2)

(2, 1) (2, 2)

< <

<>

<>

(2b) <0 >0 >0 >0 {(0, 1)}
(1, 1) (1, 2)

(2, 1) (2, 2)

< >

>

>

(2c) >0 <0 <0 <0 {(0, 1)}
(1, 1) (1, 2)

(2, 1) (2, 2)

> <

<

<

(3a) >0 <0 <0 >0
{(p, 1− p)}

p = ugain(c,2)
ugain(c,2)−ugain(c,1)

(1, 1) (1, 2)

(2, 1) (2, 2)

> <

<

>

(3b) <0 >0 >0 <0
{(p, 1− p)}

p = ugain(c,2)
ugain(c,2)−ugain(c,1)

(1, 1) (1, 2)

(2, 1) (2, 2)

< >

>

<

(4a) >0 <0 >0 <0
{(1, 0), (0, 1), (p, 1− p)}
p = ugain(c,2)

ugain(c,2)−ugain(c,1)

(1, 1) (1, 2)

(2, 1) (2, 2)

> <

>

<

(4b) <0 >0 <0 >0
{(1, 0), (0, 1), (p, 1− p)}
p = ugain(c,2)

ugain(c,2)−ugain(c,1)

(1, 1) (1, 2)

(2, 1) (2, 2)

< >

<

>

Table 7.1: Visualising the cases of Proposition 22, for x = r.
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(c) (ugain(x, 1) > 0)∧(ugain(x, 2) < 0)∧(ugain(x̄, 1) < 0)∧(ugain(x̄, 2) < 0)

3. omx(p) if and only if p = ugain(x̄,2)
ugain(x̄,2)−ugain(x̄,1) and either one of the following is true:

(a) (ugain(x, 1) > 0)∧(ugain(x, 2) < 0)∧(ugain(x̄, 1) < 0)∧(ugain(x̄, 2) > 0)

(b) (ugain(x, 1) < 0)∧(ugain(x, 2) > 0)∧(ugain(x̄, 1) > 0)∧(ugain(x̄, 2) < 0)

4. pmx(p) if and only if p = ugain(x̄,2)
ugain(x̄,2)−ugain(x̄,1) and either one of the following is true:

(a) (ugain(x, 1) > 0)∧(ugain(x, 2) < 0)∧(ugain(x̄, 1) > 0)∧(ugain(x̄, 2) < 0)

(b) (ugain(x, 1) < 0)∧(ugain(x, 2) > 0)∧(ugain(x̄, 1) < 0)∧(ugain(x̄, 2) > 0)

Proof. By Proposition 20, we conclude that ugain(x, i) ̸= 0 for all x ∈ {r, c}, i ∈ {1, 2}. This
means that the different (mutually exclusive) cases of the formulation of the proposition cover
all possible cases for a non-degenerate game (see also Table 7.1). Thus, it suffices to show the
“only if” part for each different case.
For (1a), note that player x will play (1, 0) (i.e., s1) regardless of the choice of x̄, so
NEx(G) = {(1, 0)} and opx(1) is true.
For (1b), note that the only Nash equilibrium of G is ((1, 0), (1, 0)), which proves the result.
Next, (1c) is analogous to (1b).
The cases (2a), (2b), (2c) are analogous to (1a), (1b), (1c) respectively.
With regards to (3a), it can be easily shown that the game can have no pure Nash equilibrium.
Thus, it must have a mixed one (by the result of Nash [Nash, 1951]). Moreover, it cannot
have more than one mixed, as this would render it degenerate∗ (see [Nisan et al., 2007a], [Avis
et al., 2010], [Osborne and Rubinstein, 1994]).

Thus, NEx(G) = {(p, 1− p)}, for some 0 < p < 1. By Proposition 21, it follows that
p = ugain(x̄,2)

ugain(x̄,2)−ugain(x̄,1) , which shows the result.
The case (3b) is analogous.
For (4a), we observe that the values of ugain(x, i) imply that the game has exactly two pure
Nash equilibria, namely: ((1, 0), (1, 0)) and ((0, 1), (0, 1)). By [Nisan et al., 2007a], [Osborne
and Rubinstein, 1994], it must also have one (unique) mixed equilibrium.
Thus, NEx(G) = {(1, 0), (0, 1), (p, 1− p)} for some 0 < p < 1. Again, using Proposition 21,
it follows that p = ugain(x̄,2)

ugain(x̄,2)−ugain(x̄,1) , which shows the result.
For (4b) the proof is analogous, except that here the pure Nash equilibria of G are:
((1, 0), (0, 1)) and ((0, 1), (1, 0)).

An analogous set of conditions determines whether the “ranged” versions of the above
predicates are true:

Corollary 3. Given a non-degenerate 2× 2 bimatrix game G, the following hold:

∗Immediate consequence of Corollary 3.7 [Nisan et al., 2007a].
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1. romx(ω1, ω2) if and only if ω1 < ugain(x̄,2)
ugain(x̄,2)−ugain(x̄,1) < ω2 and either one of the

following is true:

(a) (ugain(x, 1) > 0)∧(ugain(x, 2) < 0)∧(ugain(x̄, 1) < 0)∧(ugain(x̄, 2) > 0)

(b) (ugain(x, 1) < 0)∧(ugain(x, 2) > 0)∧(ugain(x̄, 1) > 0)∧(ugain(x̄, 2) < 0)

2. rpmx(ω1, ω2) if and only if ω1 < ugain(x̄,2)
ugain(x̄,2)−ugain(x̄,1) < ω2 and either one of the following

is true:

(a) (ugain(x, 1) > 0)∧(ugain(x, 2) < 0)∧(ugain(x̄, 1) > 0)∧(ugain(x̄, 2) < 0)

(b) (ugain(x, 1) < 0)∧(ugain(x, 2) > 0)∧(ugain(x̄, 1) < 0)∧(ugain(x̄, 2) > 0)

Example 7.1 (continued). We have that in Proposition 22 holds the case:

(ugain(x, 1) > 0)
∧
(ugain(x, 2) < 0) ∧ (ugain(x̄, 1) > 0)

∧
(ugain(x̄, 2) < 0)

for all {x, x̄} ∈ {r, c}, thus this game has both pure and mixed Nash equilibria. Further,
according to Corollary 3, if exist ω1 and ω2 then this game has Ranged-pure-and-mixed
equilibria.

7.3.2 Misinformation games

In this subsection, we provide necessary and sufficient conditions for a misinformation game
to be (inverse-)ε-misinformed. These are given in Propositions 23, 24, and use the notation
previously introduced. Note that the propositions apply for all canonical misinformation
games, not just noisy games. The results of this subsection are summarized in Table 7.2.

Proposition 23. Consider a canonical misinformation game mG = ⟨G0, Gr, Gc⟩, where G0

is a 2× 2 bimatrix game and Gr, Gc are non-degenerate. Then, mG is ε-misinformed if and
only if, for all x ∈ {r, c}, one of the following is true:

1. opG0
x (i) and opGx

x (i) for some i ∈ {1, 2}

2. omG0
x (p0) for some 0 < p0 < 1 and romGx

x (ω1, ω2), where ω1 = max{0, p0 − ε}, ω2 =

min{1, p0 + ε}

3. pmG0
x (p0) for some 0 < p0 < 1 and opGx

x (1)∨opGx

x (2)∨romGx

x (ω1, ω2)
∨

rpmGx

x (ω1, ω2),
where ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε}

4. inG0
x
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Proof. By definition, mG is ε-misinformed if and only if for all σ∗ = (σ∗
r , σ∗

c ) ∈ NME(mG)

there exists σ0 = (σ0
r , σ0

c ) ∈ NE(G0) such that σ∗, σ0 are ε-close. More formally:

mG : ε misinformed
⇔ ∀σ∗ = (σ∗

r , σ∗
c ) ∈ NME(mG) ∃σ0 = (σ0

r , σ0
c ) ∈ NE(G0) : σ∗ ∈ Clε(σ0)

⇔ ∀σ∗ = (σ∗
r , σ∗

c ) ∈ NME(mG), σ∗ ∈ Clε(NE(G0))

⇔ ∀σ∗ = (σ∗
r , σ∗

c ) ∈ NME(mG)
(
σ∗

r ∈ Clε(NEr(G
0)) ∧ σ∗

c ∈ Clε(NEc(G
0))
)

⇔ ∀σ∗
r ∈ NEr(G

r), σ∗
r ∈ Clε(NEr(G

0)) ∧ ∀σ∗
c ∈ NEc(G

c), σ∗
c ∈ Clε(NEc(G

0))

⇔ ∀x ∈ {r, c} ∀σ∗
x ∈ NEx(G

x), σ∗
x ∈ Clε(NEx(G

0))

Now let us fix some x and consider the different cases with regards to NEx(G0):

• If NEx(G0) contains a single pure strategy, i.e., opG0
x (i) is true for some i ∈ {1, 2}, then

the expression ∀σ∗
x ∈ NEx(Gx), σ∗

x ∈ Clε(NEx(G0)) is true if and only if NEx(Gx)

contains the same pure strategy, and no other, i.e., if and only if opGx

x (i) is true.

• If NEx(G0) contains a single mixed strategy, i.e., omG0
x (p0) is true for some 0 < p0 < 1,

then the expression ∀σ∗
x ∈ NEx(Gx), σ∗

x ∈ Clε(NEx(G0)) is true if and only if NEx(Gx)

contains a single mixed strategy that is ε-close to (p0, 1− p0), i.e., romGx

x (ω1, ω2) is
true, where ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε}. Note that the max, min are
necessary to cater for the case where p0 − ε, p0 + ε are smaller than 0 or greater than 1,
respectively.

• If NEx(G0) contains two pure and one mixed strategies, i.e., pmG0
x (p0) is true for some

0 < p0 < 1, then the expression ∀σ∗
x ∈ NEx(Gx), σ∗

x ∈ Clε(NEx(G0)) is true if and
only if NEx(Gx) contains either a pure or a mixed strategy that is ε-close to (p0, 1− p0).
This is expressed by the expression in bullet #3 of the proposition.

• If NEx(G0) = Σx, i.e., inG0
x is true, then, no matter the contents of NEx(Gx), the

expression ∀σ∗
x ∈ NEx(Gx), σ∗

x ∈ Clε(NEx(G0)) is true.

This, combined with the fact that these are the only cases with regards to the value of
NEx(G0), conclude the proof.

Proposition 24. Consider a canonical misinformation game mG = ⟨G0, Gr, Gc⟩, where G0

is a 2× 2 bimatrix game and Gr, Gc are non-degenerate. Then, mG is inverse-ε-misinformed
if and only if, for all x ∈ {r, c}, one of the following is true:

1. opG0
x (i) and opGx

x (i)
∨

rpmGx

x (0, 1) for some i ∈ {1, 2}

2. omG0
x (p0) for some 0 < p0 < 1 and romGx

x (ω1, ω2)
∨

rpmGx

x (ω1, ω2), ω1 = max{0, p0−
ε}, ω2 = min{1, p0 + ε}
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3. pmG0
x (p0) for some 0 < p0 < 1 and rpmGx

x (ω1, ω2), where ω1 = max{0, p0 − ε}, ω2 =

min{1, p0 + ε}

4. inG0
x and ε > 0.5 and rpmGx

x (ω′
1, ω′

2), where ω′
1 = max{0, 1− ε}, ω′

2 = min{1, ε}

Proof. By definition, mG is inverse-ε-misinformed if and only if for all σ0 = (σ0
r , σ∗

c ) ∈
NE(G0) there exists σ∗ = (σ∗

r , σ∗
c ) ∈ NME(mG) such that σ∗, σ0 are ε-close. More formally:

mG : inverse-ε-misinformed
⇔ ∀σ0 = (σ0

r , σ0
c ) ∈ NE(G0) ∃σ∗ = (σ∗

r , σ∗
c ) ∈ NME(mG) : σ∗ ∈ Clε(σ0)

⇔
(
∀σ0

r ∈ NEr(G
0) ∃σ∗

r ∈ NEr(G
r) : σ∗

r ∈ Clε(NEr(σ
0
r ))
)

∧
(
∀σ0

c ∈ NEc(G
0) ∃σ∗

c ∈ NEc(G
c) : σ∗

c ∈ Clε(NEc(σ
0
c ))
)

⇔ ∀x ∈ {r, c}∀σ0
x ∈ NEx(G

0) ∃σ∗
x ∈ NEx(G

x) : σ∗
x ∈ Clε(NEx(σ

0
x))

Now let us fix some x and consider the different cases with regards to NEx(G0):

• If NEx(G0) contains a single pure strategy, i.e., opG0
x (i) is true for some i ∈ {1, 2},

then the expression ∀σ0
x ∈ NEx(G0) ∃σ∗

x ∈ NEx(Gx) : σ∗
x ∈ Clε(NEx(σ0

x)) is true if
and only if NEx(Gx) contains the same pure strategy, possibly in addition to others,
i.e., (given that Gx is non-degenerate) if and only if opGx

x (i)
∨

rpmGx

x (0, 1) is true.

• If NEx(G0) contains a single mixed strategy, i.e., omG0
x (p0) is true for some 0 < p0 < 1,

then the expression ∀σ0
x ∈ NEx(G0) ∃σ∗

x ∈ NEx(Gx) : σ∗
x ∈ Clε(NEx(σ0

x)) is true if
and only if NEx(Gx) contains a mixed strategy that is ε-close to (p0, 1− p0), possibly in
addition to others, i.e., (given that Gx is non-degenerate) romGx

x (ω1, ω2) is true, where
ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε}. Note that the max, min are necessary to
cater for the case where p0 − ε, p0 + ε are smaller than 0 or greater than 1, respectively.

• If NEx(G0) contains two pure and one mixed strategies, i.e., pmG0
x (p0) is true for some

0 < p0 < 1, then the expression ∀σ0
x ∈ NEx(G0) ∃σ∗

x ∈ NEx(Gx) : σ∗
x ∈ Clε(NEx(σ0

x))

is true if and only if NEx(Gx) contains two pure and a mixed strategy that is ε-close
to (p0, 1− p0), i.e., (given that Gx is non-degenerate) rpmGx

x (ω1, ω2) is true, where
ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε}.

• If NEx(G0) = Σx, i.e., inG0
x is true, then, ∀σ0

x ∈ NEx(G0) ∃σ∗
x ∈ NEx(Gx) : σ∗

x ∈
Clε(NEx(σ0

x)) is true if and only if at least one of the strategies in NEx(Gx) is ε-close to
each strategy in NEx(G0). Given that NEx(Gx) is finite (because Gx is non-degenerate),
this can only hold if pmGx

x (px) for some px such that (p, 1− p) ∈ Clε((p, 1− p)) for
all 0 < p < 1. From the latter, we conclude that ε ≥ 0.5 and max{0, p0 − ε} < px <

min{1, p0 + ε}, which leads to the requirement in bullet #4 of the proposition.
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This, combined with the fact that these are the only cases with regards to the value of
NEx(G0), conclude the proof.

Condition on
G0

Condition on Gx

For ε-misinformed For inverse-ε-misinformed

opG0
x (i) opGx

x (i) opGx

x (i)
∨

rpmGx

x (0, 1)
omG0

x (p0) romGx

x (ω1, ω2) romGx

x (ω1, ω2)
∨

rpmGx

x (ω1, ω2)

pmG0
x (p0) rpmGx

x (ω1, ω2)
∨

romGx

x (ω1, ω2)
∨

opGx

x (1) ∨
opGx

x (2)

rpmGx

x (ω1, ω2)

inG0
x Always true If ε < 0.5: always false

If ε ≥ 0.5: rpmGx

x (ω′
1, ω′

2)
In all the above:
0 < p0 < 1,
ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε},
ω′

1 = max{0, 1− ε}, ω′
2 = min{1, ε}

Table 7.2: Scenarios for ε-misinformed and inverse-ε-misinformed

7.3.3 Probabilities

We will now exploit the results of the previous subsections, in order to compute the probabilities
associated to various events, eventually leading up to the computation that a given normal
noisy game mG is (inverse-)ε-misinformed. The results are summarized in Table 7.5, whereas
intermediate results necessary to compute the above probabilities appear in Tables 7.3 and
7.4.

For a normal noisy game mG ∼ G0 +N (M , D), we define the family of random variables
U(y, x, i), such that, for any x, y ∈ {r, c}, i ∈ {1, 2}:

U(y, x, i) = ugainGy
(x, i)

Applying formula (B.3) from Subsection B.1, we observe that U(y, x, i) ∼ N
(
µU(y,x,i), dU(y,x,i)

)
for µU(y,x,i), dU(y,x,i) as shown in Table 7.3. The cdf and pdf of U(y, x, i) (as resulting from
formula (B.2) in Subsection B.1), as well as the probabilities for U(y, x, i) taking certain
values are also shown in the same table.



106 Chapter 7. Noisy Games

Results related to U(y, x, i)

µU(y,r,i) =(P 0
r [1, i] + My

r [1, i])− (P 0
r [2, i] + My

r [2, i])

dU(y,r,i) =
√
(Dy

r [1, i])2 + (Dy
r [2, i])2

µU(y,c,i) =(P 0
c [i, 1] + My

c [i, 1])− (P 0
c [i, 2] + My

c [i, 2])

dU(y,c,i) =
√
(Dy

c [i, 1])2 + (Dy
c [i, 2])2

fU(y,x,i)(u) =
1

dU(y,x,i)
ϕ

(
u− µU(y,x,i)

dU(y,x,i)

)

FU(y,x,i)(u) =Φ

(
u− µU(y,x,i)

dU(y,x,i)

)
P [U(y, x, i) < 0] =FU(y,x,i)(0)
P [U(y, x, i) > 0] =1− FU(y,x,i)(0)
P [U(y, x, i) = 0] =0

Table 7.3: Formulas related to U(y, x, i) for a given mG ∼ G0 +N (M , D).

Propositions 20 and 22 can now be employed to determine the probability that NEx(Gx)

takes a certain value, based on the probabilities that U(y, x, i) take certain values. More
precisely, Lemma 11 is the counterpart of Proposition 20:

Lemma 11. In any normal noisy game mG = ⟨G0, Gr, Gc⟩, the probability that Gx is
degenerate (for x ∈ {r, c}) is 0.

Proof. The result is direct from Proposition 20 and the fact that P [U(x, y, i) = 0] = 0 for
any x, y ∈ {r, c}, i ∈ {1, 2}.

To formulate the counterpart of Proposition 22, the following lemma will prove helpful:

Lemma 12. Consider two independent random variables X ∼ N (µX , dX) , Y ∼ N (µY , dY ),
with pdfs fX , fY respectively, and some Ω1, Ω2 ∈ R∪ {−∞} such that −∞ ≤ Ω1 < Ω2 ≤ 0.
Then:

P
[
Ω1 ≤

X

Y
≤ Ω2, X < 0, Y > 0

]
=
∫ +∞

0

(∫ Ω2y

Ω1y
fX(x) dx

)
fY (y)

y
dy

P
[
Ω1 ≤

X

Y
≤ Ω2, X > 0, Y < 0

]
=
∫ 0

−∞

(∫ Ω2y

Ω1y
fX(x) dx

)
fY (y)

y
dy
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Proof. For the first result, we observe that, since Ω1 < Ω2 ≤ 0:

Ω1 ≤
X

Y
≤ Ω2

∧
X < 0

∧
Y > 0⇔ Ω1 ≤

X

Y
≤ Ω2

∧
Y > 0

Thus, it suffices to compute the probability of the latter (simpler) event.
Now, set Z = X

Y . Then fZ|Y (z|y) = fX(zy), so:

fZY (z, y) = fZ|Y (z|y) · fY (y) = fX(zy) · fY (y)

Therefore:

P
[
Ω1 ≤

X

Y
≤ Ω2, X < 0, Y > 0

]
= P [Ω1 ≤ Z ≤ Ω2, Y > 0]

=
∫ +∞

0

∫ Ω2

Ω1
fZY (z, y) dz dy

=
∫ +∞

0

∫ Ω2

Ω1
fX(zy) · fY (y) dz dy

=
∫ +∞

0

(∫ Ω2

Ω1
fX(zy) dz

)
fY (y) dy

=
∫ +∞

0

(∫ Ω2y

Ω1y

1
y

fX(x) dx

)
fY (y) dy

=
∫ +∞

0

(∫ Ω2y

Ω1y
fX(x) dx

)
fY (y)

y
dy

The proof of the second result is completely analogous.

The next proposition determines the probability that NEx(Gx) will have each of its
possible values (see also Table 7.4):

Proposition 25. Consider a normal noisy game mG ∼ G0 +N (M , D), and some x ∈ {r, c}.
Then, the probabilities P

[
opGx

x (1)
]
, P

[
opGx

x (2)
]
, P

[
romGx

x (ω1, ω2)
]
, P

[
rpmGx

x (ω1, ω2)
]

and P
[
inGx

x

]
are as shown in Table 7.4.

Proof. The results on opGx

x (i) (i ∈ {1, 2}) are direct consequences of Proposition 22, the
fact that U(y, x, i) are normal random variables as described in Table 7.3, and the inde-
pendence/mutual exclusiveness of the involved random variables (which allow us to use the
restricted disjunction/conjunction formulas from formula (B.4), Subsection B.1).
For the case of romGx

x (ω1, ω2), applying Corollary 3, we get that romGx

x (ω1, ω2) is true if
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Results related to NEx(Gx) (Proposition 25)

P
[
opGx

x (1)
]
=(1− FU(x,x,1)(0)) · (1− FU(x,x,2)(0))

+ (1− FU(x,x,1)(0)) · FU(x,x,2)(0) · (1− FU(x,x̄,1)(0)) · (1− FU(x,x̄,2)(0))
+ FU(x,x,1)(0) · (1− FU(x,x,2)(0)) · FU(x,x̄,1)(0) · FU(x,x̄,2)(0)

P
[
opGx

x (2)
]
=FU(x,x,1)(0) · FU(x,x,2)(0)

+ FU(x,x,1)(0) · (1− FU(x,x,2)(0)) · (1− FU(x,x̄,1)(0)) · (1− FU(x,x̄,2)(0))
+ (1− FU(x,x,1)(0)) · FU(x,x,2)(0) · FU(x,x̄,1)(0) · FU(x,x̄,2)(0)

P
[
romGx

x (ω1, ω2)
]
=(1− FU(x,x,1)(0)) · FU(x,x,2)(0)·∫ +∞

0

(∫ ω2−1
ω2

u2

ω1−1
ω1

u2
fU(x,x̄,1)(u1) du1

)
fU(x,x̄,2)(u2)

u2
du2

+ FU(x,x,1)(0) · (1− FU(x,x,2)(0))·∫ 0

−∞

(∫ ω2−1
ω2

u2

ω1−1
ω1

u2
fU(x,x̄,1)(u1) du1

)
fU(x,x̄,2)(u2)

u2
du2

P
[
rpmGx

x (ω1, ω2)
]
=(1− FU(x,x,1)(0)) · FU(x,x,2)(0)·∫ 0

−∞

(∫ ω2−1
ω2

u2

ω1−1
ω1

u2
fU(x,x̄,1)(u1) du1

)
fU(x,x̄,2)(u2)

u2
du2 +

FU(x,x,1)(0) · (1− FU(x,x,2)(0))·∫ +∞

0

(∫ ω2−1
ω2

u2

ω1−1
ω1

u2
fU(x,x̄,1)(u1) du1

)
fU(x,x̄,2)(u2)

u2
du2

P
[
inGx

x

]
=0

Table 7.4: Various probabilities pertaining to a given mG ∼ G0 +N (M , D) (see also
Proposition 25).

and only if:

(ugainGx
(x, 1) > 0)

∧
(ugainGx

(x, 2) < 0)
∧
(ugainGx

(x̄, 1) < 0)
∧

(ugainGx
(x̄, 2) > 0)

∧(
ω1 <

ugainGx
(x̄, 2)

ugainGx(x̄, 2)− ugainGx(x̄, 1) < ω2

)
∨
(ugainGx

(x, 1) < 0)
∧
(ugainGx

(x, 2) > 0)
∧
(ugainGx

(x̄, 1) > 0)
∧

(ugainGx
(x̄, 2) < 0)

∧(
ω1 <

ugainGx
(x̄, 2)

ugainGx(x̄, 2)− ugainGx(x̄, 1) < ω2

)
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Obviously, the above disjunction contains mutually exclusive events, so the probability
P
[
romGx

x (ω1, ω2)
]

is the sum of the probability of each disjunct (by the restricted disjunctive
formula – see formula (B.4), Subsection B.1). So, let us compute the probability of the first
disjunct.
We observe that the events ugainGx

(x, 1), ugainGx
(x, 2) are independent to each other and

also independent to the other conjuncts. Moreover:

ω1 <
ugainGx

(x̄, 2)
ugainGx(x̄, 2)− ugainGx(x̄, 1) < ω2 ⇔

ω1 − 1
ω1

<
ugainGx

(x̄, 1)
ugainGx(x̄, 2) <

ω2 − 1
ω2

Thus, we can apply Lemma 12 for the last three conjuncts (for Ω1 = ω1−1
ω1

, Ω2 = ω2−1
ω2

),
getting that the probability of the first conjunction is equal to:

(1− FU(x,x,1)(0)) · FU(x,x,2)(0) ·
∫ +∞

0

(∫ Ω2u2

Ω1u2
fU(x,x̄,1)(u1) du1

)
fU(x,x̄,2)(u2)

u2
du2

Working analogously for the second disjunct, and summing the resulting probability with
the one above, we get the result.
For rpmGx

x (ω1, ω2), we work analogously, applying the second bullet of Corollary 3 as above.
For inGx

x , we observe that if inGx

x is true, then Gx is degenerate, which has probability 0.

Proposition 25 (and the respective Table 7.4), combined with Proposition 23 (and the
respective Table 7.2) easily leads to the following theorems (summarized in Table 7.5):

Theorem 7. Consider a normal noisy game mG ∼ G0 +N (M , D). Then:

P [mG : ε-misinformed] = Pmis
r · Pmis

c

where, for x ∈ {r, c}, Pmis
x is determined by the second column of Table 7.5.

Proof. The proof is direct from Proposition 23 (and the respective Table 7.2), combined with
the fact that the different cases in the disjunction are mutually exclusive, so we can use the
restricted disjunction formula of (B.4) in Subsection B.1.

Theorem 8. Consider a normal noisy game mG ∼ G0 +N (M , D). Then:

P [mG : inverse-ε-misinformed] = P inv
r · P inv

c

where, for x ∈ {r, c}, P inv
x is determined by the third column of Table 7.5.

Proof. The proof is direct from Proposition 23 (and the respective Table 7.2), combined with
the fact that the different cases in the disjunction are mutually exclusive, so we can use the
restricted disjunction formula of (B.4) in Subsection B.1.
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Condition on G0

(value of NEx(G0))
Probability
Pmis

x (x ∈ {r, c})
for ε-misinformed
(Theorem 7)

Probability
P inv

x (x ∈ {r, c}) for
inverse-ε-misinformed
(Theorem 8)

opG0
x (i) P

[
opGx

x (i)
]

P
[
opGx

x (i)
]
+

P
[
rpmGx

x (0, 1)
]

omG0
x (p0) P

[
romGx

x (ω1, ω2)
]

P
[
romGx

x (ω1, ω2)
]
+

P
[
rpmGx

x (ω1, ω2)
]

pmG0
x (p0) P

[
rpmGx

x (ω1, ω2)
]
+

P
[
romGx

x (ω1, ω2)
]
+

P
[
opGx

x (1)
]
+

P
[
opGx

x (2)
]

P
[
rpmGx

x (ω1, ω2)
]

inG0
x 1 If ε ≤ 0.5: 0

If ε > 0.5: P
[
rpmGx

x (ω′
1, ω′

2)
]

In all the above:
i ∈ {1, 2}, 0 < p0 < 1,
ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε},
ω′

1 = max{0, 1− ε}, ω′
2 = min{1, ε}

Table 7.5: Probabilities for ε-misinformed and inverse-ε-misinformed (Pmis
r · Pmis

c and
P inv

r · P inv
c respectively – see also Theorems 7, 8)

7.4 Results for Noisy games
The results of Section 7.3 provide the formulas to compute the probability of a given normal
noisy game to be (inverse-)ε-misinformed (i.e., behaviourally consistent). In this section, we
explore the properties of these formulas, to understand better their behaviour.

To do so, we first observe that the probability of a normal noisy game mG ∼ G0 +N (M , D)

being behaviourally consistent is essentially a function of:

• The tolerance ε.

• The payoff matrix of the actual game of mG. This affects the probabilities in two ways:
first, because it determines the equilibria of G0, and, thus, the case to consider in Table
7.5; second, because it affects µU(y,x,i) (see Table 7.3).

• The noise pattern, determined by the matrices M , D.

In the following subsections, we study the effect of each of these parameters on the probability
of mG being (inverse-)ε-misinformed, as well as the relationship between the two metrics of
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behavioural consistency.

7.4.1 Effect of modifying tolerance (ε)

With regards to tolerance (ε), we expect that larger values of tolerance would translate to
higher probability of behavioural consistency. Although this is true, we also observe that there
are several cases where increasing tolerance does not affect the probability of behavioural
consistency. The following proposition clarifies the situation:

Condition on G0 Monotonicity properties

(value of NE(G0)) For ε-misinformed For
inverse-ε-misinformed

opG0
r (i) ∧ opG0

c (j)
for some
i, j ∈ {1.2}

Constant for all ε ≥ 0

omG0
r (p0) ∧ omG0

c (q0)
for some
0 < p0 < 1, 0 < q0 < 1

Strictly increasing for
0 ≤ ε ≤ max{p0, q0, 1− p0, 1− q0},

constant otherwise

pmG0
r (p0) ∧ pmG0

c (q0)
for some
0 < p0 < 1, 0 < q0 < 1

Strictly increasing for
0 ≤ ε ≤ max{p0, q0, 1− p0, 1− q0},

constant otherwise

inG0
r ∨ inG0

c Constant for all ε ≥ 0
Strictly increasing for
0.5 ≤ ε ≤ 1, constant

otherwise

Table 7.6: Effect of tolerance on behavioural consistency (monotonicity)

Proposition 26. Consider some mG ∼ G0 +N (M , D) and non-negative ε1, ε2, such that
ε1 < ε2. Then:

1. If NE(G0) contains a single pure strategy, then:

• P [mG : ε1-misinformed] = P [mG : ε2-misinformed]

• P [mG : inverse-ε1-misinformed] = P [mG : inverse-ε2-misinformed]

2. If NE(G0) is finite and ((p0, 1− p0), (q0, 1− q0)) ∈ NE(G0) for some 0 < p0 < 1,
0 < q0 < 1, then:

(a) If max{p0, q0, 1− p0, 1− q0} ≤ ε1, then:

• P [mG : ε1-misinformed] = P [mG : ε2-misinformed]
• P [mG : inverse-ε1-misinformed] = P [mG : inverse-ε2-misinformed]
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(b) If max{p0, q0, 1− p0, 1− q0} ≤ ε1, then:

• P [mG : ε1-misinformed] < P [mG : ε2-misinformed]
• P [mG : inverse-ε1-misinformed] < P [mG : inverse-ε2-misinformed]

3. If NE(G0) is infinite, then:

(a) If ε1 ≥ 1 or ε2 ≤ 0.5, then:

• P [mG : ε1-misinformed] = P [mG : ε2-misinformed]
• P [mG : inverse-ε1-misinformed] = P [mG : inverse-ε2-misinformed]

(b) If ε1 < 1 and ε2 > 0.5, then:

• P [mG : ε1-misinformed] = P [mG : ε2-misinformed]
• P [mG : inverse-ε1-misinformed] < P [mG : inverse-ε2-misinformed]

Proof. We first observe that, for any x ∈ {r, c} and any a, b, c such that: 0 ≤ a ≤ b ≤ c ≤ 1,
we have that:

P
[
romGx

x (a, c)
]
= P

[
romGx

x (a, b)
]
+P

[
romGx

x (b, c)
]

(ROM1)

P
[
romGx

x (a, c)
]
= 0⇔ a = c (ROM2)

P
[
rpmGx

x (a, c)
]
= P

[
rpmGx

x (a, b)
]
+P

[
rpmGx

x (b, c)
]

(RPM1)

P
[
rpmGx

x (a, c)
]
= 0⇔ a = c (RPM2)

From Theorem 7, and for i = 1, 2:

P [mG : εi-misinformed] = Pr,i · Pc,i,

where Pr,i, Pc,i are determined by the second column of Table 7.5 for the respective εi.
Similarly, from Theorem 8, and for i = 1, 2:

P [mG : inverse-εi-misinformed] = P ′
r,i · P ′

c,i,

where P ′
r,i, P ′

c,i are determined by the third column of Table 7.5 for the respective εi.
Now, let us focus on the first bullet of the proposition. By Tables 7.3, 7.4, 7.5, it is easy to
conclude that, for any x ∈ {r, c}, i ∈ {1, 2}, the computation of Px,i, P ′

x,i is not affected by
the value of εi, and, thus: Px,1 = Px,2, P ′

x,1 = P ′
x,2 for x ∈ {r, c}, which shows the result.

Now, let us focus on the second bullet, and let us consider Pr,i, P ′
r,i first. Set:

ω1,1 = max{0, p0 − ε1}, ω2,1 = min{1, p0 + ε1},
ω1,2 = max{0, p0 − ε2}, ω2,2 = min{1, p0 + ε2}
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Since 0 ≤ ε1 < ε2, we get that: 0 ≤ ω1,2 ≤ ω1,1 ≤ ω2,1 ≤ ω2,2 ≤ 1. Moreover, since
ε1 < ε2, it follows that:

ω1,1 = ω1,2 ⇔ ω1,1 = ω1,2 = 0⇔


p0 ≤ ε1

and
p0 ≤ ε2

⇔ p0 ≤ ε1

Analogously:

ω2,1 = ω2,2 ⇔ ω2,1 = ω2,2 = 1⇔


1− p0 ≤ ε1

and
1− p0 ≤ ε2

⇔ 1− p0 ≤ ε1

Using the order among ωi,j , and by applying (ROM1) twice, we get that:

P
[
romGr

r (ω1,2, ω2,2)
]
= P

[
romGr

r (ω1,2, ω1,1)
]
+P

[
romGr

r (ω1,1, ω2,1)
]
+P

[
romGr

r (ω2,1, ω2,2)
]

Now given the fact that probabilities are non-negative, and (ROM2), we have:

P
[
romGr

r (ω1,1, ω2,1)
]
≤ P

[
romGr

r (ω1,2, ω2,2)
]

and:

P
[
romGr

r (ω1,1, ω2,1)
]
= P

[
romGr

r (ω1,2, ω2,2)
]
⇐⇒

ω1,1 = ω1,2 and ω2,1 = ω2,2

Using analogous reasoning we get:

P
[
rpmGr

r (ω1,1, ω2,1)
]
≤ P

[
rpmGr

r (ω1,2, ω2,2)
]

and:

P
[
rpmGr

r (ω1,1, ω2,1)
]
= P

[
rpmGr

r (ω1,2, ω2,2)
]
⇐⇒

ω1,1 = ω1,2 and ω2,1 = ω2,2

Using the above, and Tables 7.3, 7.4, 7.5, we can easily conclude that Pr,1 ≤ Pr,2 and
P ′

r,1 ≤ P ′
r,2. Moreover:

Pr,1 = Pr,2 ⇔


ω1,1 = ω1,2

and
ω2,1 = ω2,2

⇔


p0 ≤ ε1

and
1− p0 ≤ ε1


Analogously:

P ′
r,1 = P ′

r,2 ⇔


p0 ≤ ε1

and
1− p0 ≤ ε1
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Reasoning analogously for the case of Pc,i, P ′
c,i, we get:

For Pc,1 ≤ Pc,2 : Pc,1 = Pc,2 ⇔


q0 ≤ ε1

and
1− q0 ≤ ε1



For P ′
c,1 ≤ P ′

c,2 : P ′
c,1 = P ′

c,2 ⇔


q0 ≤ ε1

and
1− q0 ≤ ε1



By the hypothesis of the second bullet with regards to NE(G0), Tables 7.3, 7.4, 7.5, and
the above relations, the cases (2a), (2b) of the Theorem follow easily.
Now let us focus on the third bullet. First, we observe that, by Table 7.5, the result is obvious
for the case of ε-misinformed, so let us focus on the case of inverse-ε-misinformed. If ε2 ≤ 0.5,
then ε1 ≤ 0.5, so the result is again obvious by Table 7.5. So let us focus on the scenario
where ε2 > 0.5.
To show the result for this case, we use an approach similar to the one employed for the
second bullet. In particular, we consider P ′

r,i first. Set:

ω′
1,1 = max{0, 1− ε1}, ω′

2,1 = min{1, ε1},
ω′

1,2 = max{0, 1− ε2}, ω′
2,2 = min{1, ε2}

Using an analogous procedure (as in the second bullet), and the fact that 0 ≤ ε1 < ε2, we
conclude that:

0 ≤ ω′
1,2 ≤ ω′

1,1 ≤ ω′
2,1 ≤ ω′

2,2 ≤ 1
ω′

1,1 = ω′
1,2 ⇔ ε1 ≤ 1

ω′
2,1 = ω′

2,2 ⇔ ε1 ≤ 1

Also, using (RPM1), (RPM2), and the fact that probabilities are non-negative, we get, as in
the second bullet:

P
[
rpmGr

r (ω′
1,1, ω′

2,1)
]
≤ P

[
rpmGr

r (ω′
1,2, ω′

2,2)
]

P
[
rpmGr

r (ω′
1,1, ω′

2,1)
]
= P

[
rpmGr

r (ω′
1,2, ω′

2,2)
]

⇔ ω′
1,1 = ω′

1,2 and ω′
2,1 = ω′

2,2

Therefore, given that ε1 > ε2 > 0.5:

P ′
r,1 ≤ P ′

r,2 and P ′
r,1 = P ′

r,2 ⇔ ε1 ≤ 1
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Working analogously for P ′
c,i, we get:

P ′
c,1 ≤ P ′

c,2 and P ′
c,1 = P ′

c,2 ⇔ ε1 ≤ 1

By the hypothesis of the second bullet with regards to NE(G0), Tables 7.3, 7.4, 7.5, and
the above relations, the remaining subcases of (3a), (3b) of the Theorem follow easily.

Condition on G0

(value of NEx(G0))
Minimal value for probability
Px (x ∈ {r, c}) for
ε-misinformed

Minimal value for probability
Px (x ∈ {r, c}) for
inverse-ε-misinformed

opG0
x (i)

for some
i ∈ {1, 2}

P
[
opGx

x (i)
]

P
[
opGx

x (i)
]
+

P
[
rpmGx

x (0, 1)
]

omG0
x (p0)

for some
0 < p0 < 1

0 0

pmG0
x (p0)

for some
0 < p0 < 1

P
[
opGx

x (1)
]
+

P
[
opGx

x (2)
] 0

inG0
x 1 0

(a) Minimal values

Condition on G0

(value of NEx(G0))
Maximal value for probability
Px (x ∈ {r, c}) for
ε-misinformed

Maximal value for probability
Px (x ∈ {r, c}) for
inverse-ε-misinformed

opG0
x (i)

for some
i ∈ {1, 2}

P
[
opGx

x (i)
]

P
[
opGx

x (i)
]
+

P
[
rpmGx

x (0, 1)
]

omG0
x (p0)

for some
0 < p0 < 1

P
[
romGx

x (0, 1)
]

P
[
romGx

x (0, 1)
]
+

P
[
rpmGx

x (0, 1)
]

pmG0
x (p0)

for some
0 < p0 < 1

1 P
[
rpmGx

x (0, 1)
]

inG0
x 1 P

[
rpmGx

x (0, 1)
]

(b) Maximal values

Table 7.7: Minimal and maximal values for the probabilities of mG being (inverse-)ε-
misinformed (resulting by multiplying Pmis

r with Pmis
c and P inv

r with P inv
c

respectively)
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Proposition 26 has several interesting consequences. First, we note that the probability
for a given mG to be (inverse-)ε-misinformed is non-decreasing with respect to ε. When there
is a pure Nash equilibrium, the choice of ε is irrelevant to the value of these probabilities.
When there is a mixed Nash equilibrium (case 2 of the proposition), there is a limit above
which ε does not affect the value of the related probability; this limit depends on the actual
mixed equilibrium, but it is always equal to, or larger than 0.5, and smaller than 1. Finally,
in the case where there is an infinite number of equilibria, ε affects the probabilities only for
certain values (between 0.5 and 1, and only for the inverse-ε-misinformed case), as detailed in
case 3 of Proposition 26. These are summarised in Table 7.6.

Our results (and Table 7.6) indicate that the minimal value for the probability of mG

being (inverse-)ε-misinformed is given for ε = 0. Its maximal value is taken for an appropriate
ε (depending on the case); in all cases ε = 1 would also give that maximal value. These
maximal/minimal values can be easily deduced by Table 7.5 for the above choices of ε, and
are given in Table 7.7 for convenience. Note that the actual result for the minimal/maximal
values results by multiplying Pmis

r with Pmis
r , and P inv

r with P inv
r for ε-misinformed and

inverse-ε-misinformed respectively.
Another important result (albeit relatively obvious) is that the probability of mG being

(inverse-)ε-misinformed, viewed as a function of ε, is continuous. This is a direct consequence of
the results in Tables 7.3, 7.4, 7.5. An important consequence of this fact, by well-known results
of calculus, is that, for any given target value for the probabilities of (inverse-)ε-misinformed,
there exists some ε whose application would result to that value for the respective probability.

7.4.2 Effect of changing the game (G0) and the mean (M)

Consider a misinformation game mG ∼ G0 +N (M , D), and let us informally ponder on the
effect of bias in the noise of a game. A biased noise is noise whose mean M is non-zero, i.e.,
M ̸= [0]. Let us consider only player r, for simplicity. In such a scenario, we know that Gr ∼
G0 +N (M r, Dr). Observe that this is the same as writing Gr ∼ (G0 + M r) +N ([0], Dr).
Using this simple reasoning, the computation of the probabilities of behavioural consistency
for mG for biased noise can be reduced to computations related to some mG with unbiased
noise (M = [0]), whose actual game will be the sum of G0 and Mx.

However, there are two caveats here. First, since M r may be different than M c, our
original misinformation game is essentially reduced to two different misinformation games (say
mGr, mGc), i.e., one per player. Second, in the case where the equilibria of G0 are different
than the equilibria of G0 + Mx, care should be taken to consult the proper line in Table 7.5
while computing the probability of mG being (inverse-)ε-misinformed. In particular, the line
to consider should be the one related to the equilibria of G0, not G0 + Mx. This means that
the probability of mG being (inverse-)ε-misinformed may not be the same as the respective
probability for mGr, mGc.
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To prove the above ideas formally, we start with the following proposition:

Proposition 27. Consider two noisy games mG ∼ G0 +N (M , D), mG ∼ G0 +N
(
M , D

)
.

Suppose that there exists a ∈ R, x ∈ {r, c} such that G0 + Mx = G0 + Mx + [a]. Then:

• For any i ∈ {1, 2},
P
[
opGx

x (i)
]
= P

[
opGx

x (i)
]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,

P
[
romGx

x (ω1, ω2)
]
= P

[
romGx

x (ω1, ω2)
]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,

P
[
rpmGx

x (ω1, ω2)
]
= P

[
rpmGx

x (ω1, ω2)
]

Proof. From Table 7.3, we observe that, for the given x, and for any i ∈ {1, 2}:

µU(x,r,i) = (P 0
r [1, i] + Mx

r [1, i])− (P 0
r [2, i] + Mx

r [2, i])

= (P 0
r [1, i] + Mx

r [1, i] + a)− (P 0
r [2, i] + Mx

r [2, i] + a) = µU(x,r,i).

Analogously, we can show that µU(x,c,i) = µU(x,c,i) for any i ∈ {1, 2}. Also, it is clear that
dU(x,y,i) = dU(x,y,i) for any y ∈ {r, c}, i ∈ {1, 2}. Combining these two facts, the results are
obvious.

Proposition 27 implies that, given a noisy game mG ∼ G0 +N (M , D) and a player
x ∈ {r, c}, we can generate some other noisy game (say mG), whose probabilities related to
the various outcomes (equilibria) of the game Gx of mG are identical to the respective ones
for Gx (in mG). As a matter of fact, there is an infinite number of noisy games that satisfy
this property: for any given G0 we can find an infinite number of M that do this, and for any
given M we can find an infinite number of G0 that do this. This observation motivates us to
consider some interesting special cases, formalised as corollaries below.

The first interesting case is when M = [0]. Given a noisy game mG, the following
corollary shows that the probabilities related to the various outcomes (equilibria) of the game
Gx in mG can be predicted by looking at a properly defined noisy game mG where the noise
is unbiased (i.e., M = [0]). Formally:

Corollary 4. Consider a noisy game mG ∼ G0 +N (M , D), and some x ∈ {r, c}. Set
G0 = G0 + Mx, and mG ∼ G0 +N ([0], D). Then:

• For any i ∈ {1, 2},
P
[
opGx

x (i)
]
= P

[
opGx

x (i)
]



118 Chapter 7. Noisy Games

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,

P
[
romGx

x (ω1, ω2)
]
= P

[
romGx

x (ω1, ω2)
]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,

P
[
rpmGx

x (ω1, ω2)
]
= P

[
rpmGx

x (ω1, ω2)
]

Combining Corollary 4 with Theorems 7, 8, it is easy to compute the probability that mG

is (inverse-)ε-misinformed, using the respective probabilities for mG. This is one of the main
results of this subsection, as it allows us to restrict our study to noisy games with unbiased
noise only.

An interesting observation is that Corollary 4 applies for some x ∈ {r, c}. Thus, we need
to define two different mG (one for each player x ∈ {r, c}) in order to compute the probability
that mG is (inverse-)ε-misinformed. The following corollary holds for both x ∈ {r, c} (and
thus foregoes this need), but applies only when M r = M c, i.e., when the noise received by
the two players has the same bias:

Corollary 5. Consider a noisy game mG ∼ G0 +N (M , D), where M = (M∗; M∗). Set
G0 = G0 + M∗, and mG ∼ G0 +N ([0], D). Then:

• For any i ∈ {1, 2} and x ∈ {r, c},

P
[
opGx

x (i)
]
= P

[
opGx

x (i)
]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1 and x ∈ {r, c},

P
[
romGx

x (ω1, ω2)
]
= P

[
romGx

x (ω1, ω2)
]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1 and x ∈ {r, c},

P
[
rpmGx

x (ω1, ω2)
]
= P

[
rpmGx

x (ω1, ω2)
]

Proposition 27 and Corollary 4 provide the probability of the different events to occur (e.g.,
the probability that Gx has a certain equilibrium), but do not directly provide the probability
for mG being (inverse-)ε-misinformed. Indeed, since G0 and G0 may have different equilibria,
the computation of the probabilities for mG and mG being (inverse-)ε-misinformed may use
different rows in Table 7.5. This is unnecessary only when the two games have the same
equilibria:
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Corollary 6. Consider a noisy game mG ∼ G0 +N (M , D). Set:

G0 = G0 + M r, Ĝ0 = G0 + M c, mG ∼ G0 +N ([0], D) , m̂G ∼ Ĝ0 +N ([0], D)

If NE(G0) = NE(G0) = NE(Ĝ0) then:

• P [mG : ε-misinformed] = Pmis
r · P̂mis

c

• P [mG : inverse-ε-misinformed] = P inv
r · P̂ inv

c

where Pmis
r , P inv

r , P̂mis
c , P̂ inv

c are the probabilities of Table 7.5 for mG, m̂G respectively.

Note that, in Corollary 6, the computation of the probability for mG to be (inverse-
)ε-misinformed, occurs via the combination of quantities from two different noisy games
(mG, m̂G). As with Corollary 4, this can be avoided when the noise received by the two
players has the same bias, in which case we get a direct computation of the related probability:

Corollary 7. Consider the noisy game mG ∼ G0 +N (M , D), where M = (M∗; M∗). Set
G0 = G0 + M∗ and mG ∼ G0 +N ([0], D). If NE(G0) = NE(G0) then:

• P [mG : ε-misinformed] = P
[
mG : ε-misinformed

]
• P [mG : inverse-ε-misinformed] = P

[
mG : inverse-ε-misinformed

]
Corollary 7 is the most specific result, as it gives us a method of computing the probabilities

of a noisy game being (inverse-)ε-misinformed using the respective probabilities of another
noisy game, under specific assumptions.

The last proposition of this subsection follows easily from Proposition 27, and shows an
elegant, and expected, property of noisy games. In particular, changing the payoff matrix of
a game by adding any fixed constant number to all payoffs, does not modify the probability
of the respective noisy game to be (inverse-)ε-misinformed (for a fixed noise pattern). This is
expected, because the addition of a fixed number in the payoffs does not change the structure
of the game, and, thus, the two games are considered “equivalent” in standard game theory.
The proposition below includes a more complex version of this statement, showing that the
same is true for the noise pattern: adding a fixed amount of bias across the board does not
modify the respective probabilities. Formally:

Proposition 28. Consider a noisy game mG ∼ G0 +N (M , D), and constant numbers
aG, ar, ac ∈ R. Set G0 = G0 + [aG] and M = (M r; M c), where Mx = Mx + [ax] for
x ∈ {r, c}. Moreover, set mG ∼ G0 +N

(
M , D

)
. Then:

• P [mG : ε-misinformed] = P
[
mG : ε-misinformed

]
• P [mG : inverse-ε-misinformed] = P

[
mG : inverse-ε-misinformed

]
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Proof. Take any x ∈ {r, c}. Set bx = −aG− ax. We observe that G0 +Mx = G0 +Mx + [bx].
Thus, by Proposition 27, we get, for x ∈ {r, c}:

• For any i ∈ {1, 2},
P
[
opGx

x (i)
]
= P

[
opGx

x (i)
]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,

P
[
romGx

x (ω1, ω2)
]
= P

[
romGx

x (ω1, ω2)
]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,

P
[
rpmGx

x (ω1, ω2)
]
= P

[
rpmGx

x (ω1, ω2)
]

In addition, game theoretic results tell us that NE(G0) = NE(G0). Combining the above
with Theorems 7, 8 and Table 7.5, the result follows directly.

7.4.3 Effect of modifying noise intensity (D)

Given a misinformation game mG ∼ G0 +N (M , D) the distortion in the behavior of the
agents regarding the limit cases in the deviation d of the noise. Initially, we prove the effect
of d in two independent random variables that follow the normal distribution. With that in
hand, we can provide the results regarding the probabilities of behavioural consistency for
mG for d→ {0,+∞}.

Lemma 13. Take a random variable X such that X ∼ N (µ, d). Then, the following hold:

lim
d→0

F (x) =


0 , when x < µ

0.5 , when x = µ

1 , when x > µ

lim
d→+∞

F (x) = 0.5

lim
d→0

f(x) =

0 , when x ̸= µ

+∞ , when x = µ

, and
lim

d→+∞
f(x) = 0
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Proof. For the first and second equation, the result follows from equation B.2 from Subsec-
tion B.1, by observing the value of the quantity lim

d→0

x− µ

d
, for the various cases related to µ,

given that d > 0.
For the third and fourth equation, we observe, using equation B.2 from Subsection ??, that,
for x = µ, we get that f(x) = f(µ) = 1

d
√

2π
, so the result is direct for x = µ. For x ̸= µ, the

following hold:

f(x) = 1
d
√

2π
e

−
(

x−µ

d
√

2

)2

= 1√
2π

e
−
(

log d+

(
x−µ

d
√

2

)2
)
= 1√

2π
e

−
(

log d

(
1+ (x−µ)2

2
1

d2 log d

))

We also observe that, using L’ Hospital’s rule, the following can be shown (given that d > 0):

lim
d→0+

1
d2 log d

= lim
d→0+

d−2

log d
= lim

d→0+
−2d−3

d−1 = lim
d→0+

−2d−2 = −∞

Using the latter, we conclude that:

lim
d→0+

f(x) = lim
d→0+

1√
2π

e
−
(

log d

(
1+ (x−µ)2

2
1

d2 log d

))
= 0

when x ̸= µ, which concludes the proof.

Lemma 14. Take a random variable X such that X ∼ N (µ, d). Consider also some
α, β ∈ R∪ {−∞,+∞} such that α ≤ β. Then, the following hold:

lim
d→0

(∫ β

α
f(x) dx

)
=



1 , when α < µ < β

0.5 , when α = µ < β

or α < µ = β

0 , otherwise

, and

lim
d→+∞

(∫ β

α
f(x) dx

)
= 0

Proof. We observe that
∫ β

α f(x) dx = F (β)− F (α). The results now follow from Lemma
13.

Lemma 15. Take two independent random variables X, Y such that X ∼ N (µX , dX),
Y ∼ N (µY , dY ), where µX ̸= 0 or µY ̸= 0. Set Z = X

Y . Then:
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1. When µY ̸= 0:

lim
dX→0

lim
dY →0

FZ(z) =


0 , when z < µX

µY

0.5 , when z = µX
µY

1 , when z > µX
µY

2. When µY = 0, µX ̸= 0:
lim

dX→0
lim

dY →0
FZ(z) = 0.5

Proof. For any z ∈ R the following holds:

FZ(z) = P
[

X

Y
≤ z

]
= P

[
X − zY

Y
≤ 0

]
Now set W = X − zY . By the above, we get that:

FZ(z) = P
[
W ≤ 0

∧
Y > 0

]
+P

[
W ≥ 0

∧
Y < 0

]
We also note that W ∼ N

(
µX − zµY , dX + z2dY

)
. Therefore: limdX→0 limdY →0 FW (w) =

limdW →0 FW (w), for which Lemma 13 applies.
Now we will consider various cases.
Case 1: µY > 0.
We observe that:

0 ≤ P
[
W ≥ 0

∧
Y < 0

]
≤ P [Y < 0]

and
lim

dX→0
lim

dY →0
P [Y < 0] = 0

Therefore,
lim

dX→0
lim

dY →0
P
[
W ≥ 0

∧
Y < 0

]
= 0

Moreover,

P
[
W ≤ 0

∧
Y > 0

]
= P [W ≤ 0] +P [Y > 0]−P

[
W ≤ 0

∨
Y > 0

]
and

1 ≥ P
[
W ≤ 0

∨
Y > 0

]
≥ P [Y > 0]

and
lim

dX→0
lim

dY →0
P [Y > 0] = 1

Therefore,
lim

dX→0
lim

dY →0
P
[
W ≤ 0

∨
Y > 0

]
= 1



7.4. Results for Noisy games 123

Hence,
lim

dX→0
lim

dY →0
P
[
W ≤ 0

∧
Y > 0

]
= lim

dX→0
lim

dY →0
P [W ≤ 0]

Combining the above results we get that

lim
dX→0

lim
dY →0

FZ(z) = lim
dX→0

lim
dY →0

P [W ≤ 0]

Consequently,
lim

dX→0
lim

dY →0
FZ(z) = lim

dX→0
lim

dY →0
FW (0)

Therefore, by Lemma 13:

lim
dX→0

lim
dY →0

FZ(z) =


0 , when 0 < µX − zµY

0.5 , when 0 = µX − zµY

1 , when 0 > µX − zµY

Considering also the fact that µY > 0, the result follows easily for this case.
Case 2: µY < 0.
Set Y ′ = −Y . Then, Y ′ ∼ N (−µY , dY ), i.e., µY ′ = −µY > 0. Moreover, set Z ′ = X

Y ′ . For
Z ′, case 1 applies, thus:

lim
dX→0

lim
dY →0

FZ′(z) =


0 , when z < µX

µY ′

0.5 , when z = µX
µY ′

1 , when z > µX
µY ′

Equivalently,

lim
dX→0

lim
dY →0

FZ′(z) =


0 , when z < −µX

µY

0.5 , when z = −µX
µY

1 , when z > −µX
µY

Furthermore:

FZ(z) = P
[

X

Y
≤ z

]
= P

[
X

−Y ′ ≤ z

]
= P

[
X

Y ′ ≥ −z

]
= 1−P

[
X

Y ′ ≤ −z

]
= 1−P [Z ′ ≤ −z] = 1− FZ′(−z)

Combining the above equations, the result for this case follows easily. This concludes the
proof for the scenario where µY ̸= 0.
Case 3: µY = 0, µX > 0.
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We observe that, in this case, µW = µX > 0, and thus:

lim
dX→0

lim
dY →0

P [W ≤ 0] = 0, lim
dX→0

lim
dY →0

P [W ≥ 0] = 1

Using analogous arguments with case 1, we get:

0 ≤ P
[
W ≤ 0

∧
Y > 0

]
≤ P [W ≤ 0]

and
lim

dX→0
lim

dY →0
P [W ≤ 0] = 0

Therefore,
lim

dX→0
lim

dY →0
P
[
W ≤ 0

∧
Y > 0

]
= 0

Moreover,

P
[
W ≥ 0

∧
Y < 0

]
= P [W ≥ 0] +P [Y < 0]−P

[
W ≥ 0

∨
Y < 0

]
and

1 ≥ P
[
W ≥ 0

∨
Y < 0

]
≥ P [W ≥ 0]

and
lim

dX→0
lim

dY →0
P [W ≥ 0] = 1

Therefore,
lim

dX→0
lim

dY →0
P
[
W ≥ 0

∨
Y < 0

]
= 1

Hence,
lim

dX→0
lim

dY →0
P
[
W ≥ 0

∧
Y < 0

]
= lim

dX→0
lim

dY →0
P [Y < 0]

Combining the above results with Lemma 13 and the fact that µY = 0 we get that, for all
z ∈ R:

lim
dX→0

lim
dY →0

FZ(z) = lim
dX→0

lim
dY →0

P [Y < 0] = 0.5

This proves the result for this case.
Case 4: µY = 0, µX < 0.
Set X ′ = −X. Then, X ′ ∼ N (−µX , dX), i.e., µX′ = −µX > 0. Moreover, set Z ′ = X′

Y . For
Z ′, case 3 applies, thus, for all z ∈ R:

lim
dX→0

lim
dY →0

FZ′(z) = 0.5
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Furthermore, for all z ∈ R:

FZ(z) = P
[

X

Y
≤ z

]
= P

[−X ′

Y
≤ z

]
= P

[
X ′

Y
≥ −z

]
=

= 1−P
[

X ′

Y
≤ −z

]
= 1−P [Z ′ ≤ −z] = 1− FZ′(−z)

Consequently,
lim

dX→0
lim

dY →0
FZ(z) = 1− lim

dX→0
lim

dY →0
FZ′(−z) = 0.5

This concludes the proof.

Lemma 16. Take two independent random variables X, Y such that X ∼ N (µX , dX),
Y ∼ N (µY , dY ), where µX ̸= 0 or µY ̸= 0. Consider also some Ω1, Ω2 ∈ R ∪ {−∞,+∞}
such that Ω1 < Ω2. Then:

1. When µY ̸= 0:

lim
dX→0

lim
dY →0

P
[
Ω1 ≤

X

Y
≤ Ω2

]
=


1 , when Ω1 < µX

µY
< Ω2

0.5 , when µX
µY
∈ {Ω1, Ω2}

0 , otherwise

2. When µY = 0, µX ̸= 0:

lim
dX→0

lim
dY →0

P
[
Ω1 ≤

X

Y
≤ Ω2

]
=



1 , when Ω1 = −∞, Ω2 = +∞

0.5 , when Ω1 = −∞, Ω2 ̸= +∞

, or Ω1 ̸= −∞, Ω2 = +∞

0 , otherwise

Proof. Set Z = X
Y . We observe that:

P
[
Ω1 ≤

X

Y
≤ Ω2

]
= FZ(Ω2)− FZ(Ω1)

The result now follows by considering the various cases and applying Lemma 15 as appropriate.

Lemma 17. Take two independent random variables X, Y such that X ∼ N (µX , dX),
Y ∼ N (µY , dY ), where µX ̸= 0 and µY ̸= 0. Consider also some Ω1, Ω2 ∈ R∪ {−∞} such
that −∞ ≤ Ω1 < Ω2 ≤ 0. Set:

I(X, Y ) =
∫ +∞

0

(∫ Ω2y

Ω1y
fX(x) dx

)
fY (y)

y
dy
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Then, the following hold:

lim
dX→0

lim
dY →0

I(X, Y ) =


1 , when µX < 0 and µY > 0 and Ω1 < µX

µY
< Ω2

0.5 , when µX < 0 and µY > 0 and µX
µY
∈ {Ω1, Ω2}

0 , otherwise

, and
lim

dX→+∞
lim

dY →+∞
I(X, Y ) = 0.

Proof. By Lemma 12, it follows that:

I = P
[
Ω1 ≤

X

Y
≤ Ω2, X < 0, Y > 0

]

When µX > 0:
0 ≤ P

[
Ω1 ≤

X

Y
≤ Ω2, X < 0, Y > 0

]
≤ P [X < 0]

Then,

0 ≤ lim
dX→0

lim
dY →0

P
[
Ω1 ≤

X

Y
≤ Ω2, X < 0, Y > 0

]
≤ lim

dX→0
lim

dY →0
P [X < 0] = 0

Analogously, when µY < 0:

0 ≤ P
[
Ω1 ≤

X

Y
≤ Ω2, X < 0, Y > 0

]
≤ P [Y > 0]

Then,

0 ≤ lim
dX→0

lim
dY →0

P
[
Ω1 ≤

X

Y
≤ Ω2, X < 0, Y > 0

]
≤ lim

dX→0
lim

dY →0
P [Y > 0] = 0

When µX < 0, µY > 0, we observe that:

lim
dX→0

lim
dY →0

P [X < 0, Y > 0] = lim
dX→0

lim
dY →0

P [X < 0]P [Y > 0] = 1

and

lim
dX→0

lim
dY →0

P
[
Ω1 ≤

X

Y
≤ Ω2

∨
(X < 0, Y > 0)

]
≥ lim

dX→0
lim

dY →0
P [X < 0, Y > 0] = 1
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Therefore:

lim
dX→0

lim
dY →0

I(X, Y ) = lim
dX→0

lim
dY →0

P
[
Ω1 ≤

X

Y
≤ Ω2, X < 0, Y > 0

]
= lim

dX→0
lim

dY →0
P
[
Ω1 ≤

X

Y
≤ Ω2

]
+P [X < 0, Y > 0]

−P
[
Ω1 ≤

X

Y
≤ Ω2

∨
(X < 0, Y > 0)

]
= lim

dX→0
lim

dY →0
P
[
Ω1 ≤

X

Y
≤ Ω2

]
Combining the above results with Lemma 16, and by considering the various cases on µX ,

µY and µX
µY

, the result follows.

Although adding a fixed constant number to the game’s payoffs does not modify the
respective probabilities (Proposition 28), this is not the case when changing the “scale” of
a game (by multiplying all its payoffs by a constant number, say λ > 0). In particular,
changing the scale of a game will affect its “resilience” to noise, without changing the game’s
properties and behaviour, because it increases the “amount of noise” necessary to change the
sign of the various ugain(y, x)i. As a matter of fact, multiplying the payoffs by a sufficiently
large number would minimize the effect of the noise, as its effects on the payoffs would be,
comparatively smaller (analogously, using a sufficiently small positive number would maximize
the effect of the noise).

In Proposition 29 (and especially in Corollary 8), we quantify this effect, by showing that
we need to multiply the noise intensity (standard deviation) by λ2 in order for the noise to
have the same effect on a game scaled by λ. Formally:

Proposition 29. Consider a normal noisy game mG ∼ G0 +N (M , D) and some λ > 0.
Set: G0 = λG0, M = λM and D = λ2D, and consider the normal noisy game mG =

G0 +N
(
M , D

)
. Then:

• P [mG : ε-misinformed] = P
[
mG : ε-misinformed

]
• P [mG : inverse-ε-misinformed] = P

[
mG : inverse-ε-misinformed

]
An obvious and interesting corollary of Propositions 28 and 29 is the following:

Corollary 8. Consider a normal noisy game mG ∼ G0 + N ([0], D) and some λ > 0,
k ∈ R. Set: G0 = λG0 + k and D = λ2D, and consider the normal noisy game mG =

G0 +N
(
[0], D

)
. Then:

• P [mG : ε-misinformed] = P
[
mG : ε-misinformed

]
• P [mG : inverse-ε-misinformed] = P

[
mG : inverse-ε-misinformed

]
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Figure 7.2: Example showing that P [mG : ε-misinformed] (blue),
P [mG : inverse-ε-misinformed] (orange) (vertical axis) have non-monotonic
dependence to noise (horizontal axis).

From the previous theoretical results, the effect of noise in the outcome of an abstract
2× 2 bimatrix game has the following characteristics: for small values of the noise intensity
(standard deviation), players almost surely have the same behaviour as in the actual game,
whereas for large noise intensity, the behaviour of players cannot be predicted as their games
will be almost random. Also, observe that the formulas giving the probabilities for (inverse)-
ε-misinformed are continuous with respect to the standard deviation. Given the above, one
would expect that, by increasing the standard deviation, we would monotonically transit
from the first extreme to the second. However, this does not always hold, as the following
counter-example shows.

Example 7.2. Consider as actual game the classical Prisoner’s Dilemma (see Figure 7.3a),
which has a pure Nash equilibrium with strategy profile ((0, 1), (0, 1)). We produce a noisy
game, in which the noise only affects the upper left elements of the actual payoff matrix, where
we add noise according to a random variable following the normal distribution N

(
0, d2). From

Theorems 7, 8, we can compute the probabilities for this game to be (inverse-)ε-misinformed.
The result is shown in Figure 7.2, where we plot P [mG : ε-misinformed] (blue line) and
P [mG : inverse-ε-misinformed] (orange line), for d ∈ (0, 10). As is obvious by this figure,
these functions are not monotonic with respect to d.

7.5 Discussion and Experiments
In this section we report on experiments that validate our basic results, and we investigate the
effect of noise on the players’ decisions, for the four 2× 2 bimatrix games shown in Figure ??.
The games were chosen to capture the following cases: i) dominant equilibrium (Prisoner’s
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Dilemma), ii) unique mixed Nash equilibrium (Matching Pennies), iii) multiple Nash equilibria
(Battle of the Sexes), and iv) dominant equilibrium that coincides with the optimal outcome
(Win-Win).

(
(2, 2) (0, 3)
(3, 0) (1, 1)

)
(a) Prisoners’ Dilemma

(
(1,−1) (−1, 1)
(−1, 1) (1,−1)

)
(b) Matching Pennies

(
(2, 1) (0, 0)
(0, 0) (1, 2)

)
(c) Battle of the Sexes.

(
(3, 2) (4, 4)
(1, 1) (2, 3)

)
(d) Win-Win

Figure 7.3: Test cases.

7.5.1 Theoretical and Experimental Computation of the Probability that
a Game is (Inverse-)ε-misinformed

We consider that the actual game undergoes an additive noise that follows the normal
distribution N ([0], [d2]) where d ∈ {0.001, 0.5, 1, . . . , 10}. We compare the theoretical values
of probabilities that we get from Theorems 7, 8, with the respective values calculated through
Monte Carlo simulations. The Monte Carlo simulations were conducted as follows: we generate
a game G0, which can be one of the four games shown in Figure 7.3. Then, for each of the
above values for d, we create the respective noisy game mG = G0 +N

(
[0], [d2]

)
. To be

more precise, we generate a misinformation game, where the misinformation stems from the
incorporation of additive noise stemming from one random experiment that follows the above
distribution (N

(
[0], [d2]

)
). We derive the natural misinformed equilibrium and check about

ε-closeness. We perform 3, 000 repetitions of the above process and calculate:

a) the percentage of games that are ε-misinformed (i.e., all nmes of mG are ε-close to one
Nash equilibrium of G0, according to the first bullet of Definition 54),

b) the percentage of games that are inverse ε-misinformed (i.e., all Nash equilibria of G0

are ε-close to one nme of mG, according to the second bullet of Definition 54).

We repeat the simulations for two different values of ε (ε ∈ {10−2, 10−3}). The results are
shown in Figures 7.4-7.6. As the Prisoner’s Dilemma and the Win-Win games both have a
unique pure Nash equilibrium, their behavioural consistency is similar. Hence, Figure 7.4
shows both cases. In all subplots, we have plots of two colours. The blue ones depict the
computations for ε = 10−2, whereas the red ones depict the computations for ε = 10−3.

In part (a) of the figures, the horizontal axis depicts the different values for the standard
deviation d of the noise, and the vertical axis depicts the probability of a game being
ε-misinformed according to Theorem 7 (solid line) or the probability of a game being ε-
misinformed according to the Monte Carlo simulations (dotted lines). The same hold for part
(b) of the figures, but for the inverse-ε-misinformed case (Theorem 8). In both subfigures, a
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high value of the probability calculated in the vertical axis implies a small effect of noise on
players’ decisions. As expected, the theoretical results are very close to the experimental ones.

These figures give rise to various remarks concerning the influence of noise to players’
strategic choices. Although some general patterns emerge, the effect of noise in the behavioural
consistency of the game greatly depends on the type and number of Nash equilibria that it
has, so we split our analysis in 3 different cases.

Case 1: Unique Pure Nash equilibrium

The case of a unique pure Nash equilibrium appears in the Prisoner’s Dilemma and
Win-Win games, whose behaviour is depicted in Figure 7.4.

(a) ε misinformed. (b) inv ε misinformed.

Figure 7.4: Monte Carlo (MC) simulation and probabilistic formulas for Prisoner’s
Dilemma and Win-Win games. Vertical axis: (7.4a) P [mG : ε-misinformed],
(7.4b) P [mG : inverse-ε-misinformed]. Horizontal axis: noise intensity d.

For Prisoner’s Dilemma, we observe that, for small values of the standard deviation
(d ≪ 1), the nme of mG will usually be the same as the NE of the original game (G0).
Thus, both probabilities Pemis [mG; ε] and Pinvemis [mG; ε] will have values close to 1. As
d increases, noise will produce misinformation games Gr, Gc with different Nash equilibria
than that of the actual game (different means non-close, by definition, in this case) with an
increasing probability, thereby reducing the probability for behavioural consistency.

As d increases further, each of the different possible sets of equilibria will appear with
almost equal probability in Gr, Gc, leading to a convergence in the plots of Figure 7.4. In
particular, Pemis [mG; ε] converges to approximately 14%, whereas Pinvemis [mG; ε] converges
to approximately 25%. This can be theoretically predicted by observing Table 7.1. For a
large enough noise, the original orderings among the elements of the payoff matrix become
increasingly irrelevant, and the actual orderings in each of Gr, Gc become totally random.
As a result, the equilibrium strategy for r in Gr will be a pure one with a probability of
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6/8 (3/8 for each strategy), a mixed one with 1/8 probability, and pure-and-mixed with
1/8 probability. The same is true of course for c in Gc. Combining these observations with
Table 7.5 and Theorems 7, 8, we get the above numbers for the convergence of Pemis [mG; ε],
Pinvemis [mG; ε].

Similar remarks hold for the Win-Win game that has one pure Nash equilibrium strategy
profile (namely, ((1, 0), (0, 1))).

Case 2: Unique Mixed Nash equilibrium

The case of a unique mixed Nash equilibrium appears in the Matching Pennies game,
which has one Nash equilibrium strategy profile ((1/2, 1/2), (1/2, 1/2)), and whose behaviour
is depicted in Figure 7.5.

(a) ε misinformed. (b) inv ε misinformed.

Figure 7.5: Monte Carlo (MC) simulation and probabilistic formulas for Match-
ing Pennies. Vertical axis: (7.5a) P [mG : ε-misinformed], (7.5b)
P [mG : inverse-ε-misinformed]. Horizontal axis: noise intensity d.

As in case 1, we observe that for small values of the standard deviation (d ≪ 1), mG

will have the same nme as the NE in G0. Thus, both probabilities Pemis [mG; ε] and
Pinvemis [mG; ε] will have values close to 1. As d increases, noise will produce games Gr, Gc

with different Nash equilibria than that of the actual game G0, and the respective probabilities
fall sharply (much faster compared to the Prisoner’s Dilemma case), converging to a value
close to 0 for large values of the standard deviation. This is explained by the fact that,
although a mixed nme is achieved in some of the produced games, this is often not close to
the actual mixed one, leading to games that are (usually) not (inverse-)ε-misinformed. For
example, for ε = 10−2, the function Pemis [mG; ε] convergences at around 0.03%.

Case 3: Multiple Nash equilibria
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The case of two pure and one mixed Nash equilibrium appears in the Battle of the Sexes
game, whose behaviour is depicted in Figure 7.6. The Nash equilibrium strategy profiles of
Battle of the Sexes are: {((1, 0), (1, 0)), ((0, 1), (0, 1)),
((2/3, 1/3), (1/3, 2/3))}.

(a) ε misinformed. (b) inv ε misinformed.

Figure 7.6: Monte Carlo (MC) simulation and probabilistic formulas for Bat-
tle of the Sexes. Vertical axis: (??) P [mG : ε-misinformed], (??)
P [mG : inverse-ε-misinformed]. Horizontal axis: noise intensity d.

Unlike other games, we observe that the Battle of the Sexes has zero probability of being
ε-misinformed for small values of d. This is explained by the fact that, for small values of
d, Gr, Gc will be very similar to G0, each giving 3 equilibrium strategies (for the respective
player). Thus, there are 9 nmes, one for each combination of equilibrium strategies (see
Definition ??), so some of them will not be ε-close to one of the three equilibria of G0. By
Definition 54 this means that the respective game is not ε-misinformed, so Pemis [mG; ε] will
be close to 0.

As d increases, and the games Gr, Gc become less and less predictable, the probability
of being ε-misinformed becomes larger, reaching a plateau at around 72%. The explanation
here is analogous to the one given for the other two cases: in order for a misinformation game
to not be ε-misinformed, it should either have one pure equilibrium (but not one of the two
that are in the equilibria of G0), or it should have one mixed equilibrium (but not ε-close to
the one of G0). Based on the analysis of the Prisoner’s Dilemma game, the probability of the
former is around 28%; based on the analysis of the Matching Pennies game, the probability
of the latter is close to 0; combining these observations, we conclude that a plateau at around
72% is reasonable.

For the inverse-ε-misinformed case (part (b) of Figure 7.6), small values of d result to high
values for Pinvemis [mG; ε], as expected. As d increases, the probability decreases at a rate
even faster than the one observed for Matching Pennies, eventually converging at a value close
to 0. This is explained by the fact that, in order for the game to be inverse-ε-misinformed,
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(a) Percentage of misinformation games that
result in the best nme.

(b) Percentage of misinformation games that
result in the worst nme.

Figure 7.7: Strategy profiles in terms of efficiency.

it should have, among other things, also a mixed equilibrium that is close to the respective
mixed of G0. As we established in Case 2 above, this has a very low probability for large
values of d.

7.5.2 Optimal strategy profiles in terms of efficiency

In this subsection, we report on experiments that investigate whether the misinformation
game mG that results from a given actual game G0 has natural misinformed equilibria that
are best or worst in terms of efficiency (social welfare). We then evaluate the effect of noise
on each of the four games under consideration.

We performed Monte Carlo simulations as in the previous section and calculated:

a) the percentage Pbest of misinformation games that have a natural misinformed equilib-
rium that maximizes social welfare (best nme),

b) the percentage Pworst of misinformation games that have a natural misinformed equilib-
rium that minimizes social welfare (worst nme).

We repeat the simulations for all values of d in {0.02, 0.04, . . . , 10} and for ε = 10−2. The
results are shown in Figures 7.7a and 7.7b.

In Matching Pennies, as it is a constant-sum game, all strategy profiles provide the same
level of social welfare, so the respective line is flat, regardless of the value of d (see Figures 7.7a
and 7.7b). In other words, the noise has no effect with respect to the optimal outcome.

In Prisoners’ Dilemma, the best strategy profile is ((1, 0), (1, 0)) and the worst one is
((0, 1), (0, 1)) which coincides with the pure NE of the actual game G0. We observe that, for
small values of d, only a few repetitions provide the best nme (Figure 7.7a), while most of
them provide the worst nme (Figure 7.7b); this is in line with the results given in the previous
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subsection. As d increases, the percentage of games resulting in the best strategy increases
too, implying that noise has a positive effect on Prisoners’ Dilemma.

In the Battle of the Sexes, the best strategy profiles are ((1, 0), (1, 0)) and ((0, 1), (0, 1))
(these are also the pure Nash equilibria of the actual game), and the worst strategy profiles
are ((1, 0), (0, 1)) and ((0, 1), (1, 0)). We observe that, for small values of d, most of the
misinformation games result in one of the best strategy profiles (Figure 7.7a). As d increases,
this percentage decreases, implying that noise has a negative effect on the Battle of the Sexes:
players are not forced to choose better strategies.

In the Win-Win game, the best strategy profile is ((1, 0), (0, 1)) and the worst one is
((0, 1), (1, 0)). The same observations as in the Battle of the Sexes hold for the Win-Win
game.

To summarize, as the percentage Pbest increases (or Pworst decreases) with respect to d,
noise is beneficial. This is the case for Prisoners’ Dilemma. On the contrary, noise deteriorates
the efficiency of the system if the percentage Pbest decreases (or Pworst increases) with respect
to d as in Win-Win and Battle of the Sexes games. Finally, the efficiency of the system is
independent of the noise in the Matching Pennies game.

Given the above, as expected, noise deteriorates the social welfare in games where the
original Nash equilibrium is already “good” for the social welfare (Battle of the Sexes, Win-
Win), as it induces a more “random” behaviour. On the contrary, it improves the situation in
games where the original equilibrium is “bad” (e.g., Prisoner’s Dilemma). In constant sum
games (e.g., Matching Pennies), noise has no effect with regards to the social welfare.

7.5.3 PoM vs PoA

In this subsection, we compare the price of anarchy PoA with the price of misinformation
PoM for the four games of interest. Both metrics measure social welfare, with or without
misinformation respectively, and take values that are higher than or equal to 1.

Given a bimatrix game G with payoff matrix P = (Pr; Pc) we use Definition 27 to compute
PoM for all values of pairs (p, q), where p, q ∈ [0, 1]. The values of p, q are non other than
the values in the joint strategy profile σ = (p⃗, q⃗) = ((p, 1− p), (q, 1− q)). In formula 4.2, the
quantities in the fraction are given by the formula SW (σ) = pT (Pr + Pc)q. The respective
graphs are shown in Figures 7.8a-7.8d.

We can make the following observations on social welfare planes of Figures 7.8a-7.8d that
present the range of values of PoM :

1. In Prisoner’s Dilemma we note that the social welfare plane is monotonic (see Figure 7.8a).
The minimum value is in the bottom left corner (“bluest”) and the maximum value is
in the upper right corner (“redest”). We know that the PoA in this game is 2, which
is equal to the minimum social welfare, so any distortion in the payoff matrices of the
game does not deteriorate the efficiency of the game, and PoM ≤ PoA, for every level
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(a) PoM plane for the Prisoner’s Dilemma. (b) PoM plane for the Matching Pennies.

(c) PoM plane for the Battle of the Sexes. (d) PoM plane for the Win-Win.

Figure 7.8: PoM plane for games in Table 7.3.

of noise.

2. In Matching Pennies we observe that the social welfare plane is constant (Figure 7.8b).
That is, PoM remains constant as any combination of the values of the payoff matrix
results in the same social welfare value. Thus, noise may affect the strategic behaviour
of players, but keeps the social welfare constant. Note that, in zero-sum games such as
Matching Pennies, the value of PoM and PoA cannot be calculated (the denominator
of the respective formulas takes the value of zero). To mitigate this inconvenience we
add proper values to each element of the payoff matrices and produce a constant-sum
game, without affecting the strategic behaviour of players.

3. In Battle of the Sexes we observe that the two pure Nash equilibria of the game are
the optimal strategic behaviours (Figure 7.8c). Thus, PoA depends on the mixed Nash
equilibrium, and noise could improve or degrade the efficiency of the system.
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4. In Win-Win, the unique Nash equilibrium coincides with the optimal one, thus PoA = 1
(Figure 7.8d). Therefore, any misinformation cannot improve the outcome of this game,
and PoM ≥ PoA.

Further numerical experiments provided in Section B.5.



Chapter 8
Mechanism Design

8.1 Introduction
In Chapter 4 proved that given a sufficient misinformation, anything is possible in terms of
social welfare, Propositions 4-5 and Corollary 1. Therefore, in this chapter, we investigate
methods to lead players’ behaviour to a socially improved outcome. Coordination mechanisms
were introduced for this purpose in [Christodoulou et al., 2009,Christodoulou et al., 2014], in
which the authors propose a theoretical framework where modifications of the game lead to a
reduced fraction, compared to the PoA, of the worst Nash equilibrium in the modified game
to the social optimum of the original game. This has been applied to many classes of games
such as load balancing and congestion games [Nisan et al., 2007b].

Clearly, misinformation could lead players to strategic choices that are different from
the ones they would make in the absence of misinformation. This includes choices that are
actually beneficial (from the perspective of social welfare) for the players. Inspired by this
observation, we combine misinformation games and coordination mechanisms in order to deal
with the following main question:

Is it possible for the designer of a game to misinform players regarding the game parameters,
in order to provide incentives for a better (or even optimal) behaviour in terms of social welfare?

We positively answer this question, and provide a novel way for applying coordination
mechanisms using the concept of misinformation, thereby establishing a connection between
the classical coordination mechanisms and misinformation games. Towards this direction, we
introduce a modification of PoM metric to measure the impact of misinformation in games
compared to the socially optimum situation.

As in classical coordination mechanisms, where the designer modifies the game in order to
minimize the ratio between the worst Nash equilibrium of the modified game and the social
optimum of the original game, we propose a similar approach where the designer misinforms
players. Next, we compare the worst natural misinformed equilibrium (i.e., the worst result
of misinformation) with the social optimum of the actual game. The resulting ratio is the

137
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Price of Misinformation, Definition 4.2. Observe that the Price of Misinformation could be
less than the Price of Anarchy, resulting in an improved behaviour (from the perspective of
social welfare) of the players, compared to the scenario without misinformation.

A key difference between classical coordination mechanisms and coordination mechanisms
with misinformation is that in the first case the designer can determine and influence the
actual interaction as a whole, whereas in the latter the designer chooses and imposes the
subjective views of the players, i.e., the misinformed views. Thus, in the first case the designer
modifies the actual game specification, whereas in mechanisms with misinformation the
designer changes players’ (subjective) information, but has no power over the actual game
specification, In this chapter, we consider this setting, i.e., scenarios where the designer cannot
impose a different game specification, but can misinform players about the actual set up.

We consider the problem under assumptions about the number of misinformed views that
the designer can spawn. In particular, we study scenarios where the designer has bounded
capabilities with regard to the number of different misinformed views that can be spawned
(see Section 8.3).

We apply the above ideas for single-commodity non-atomic congestion games with n

parallel links and affine cost functions. We first adapt the concept of misinformation to the
class of non-atomic congestion games, (see Section 4.4). Further, we design a polynomial-time
algorithm for computing a pure Nash equilibrium in a network, based on Information Theory
techniques (see Section 8.2), and more specifically on the waterfilling solution, [Cover and
Thomas, 2006,Fasoulakis et al., 2019]∗. Moreover, we describe a mechanism for designing
misinformation games with an optimal Price of Misinformation (and thus better social
outcomes) under various assumptions, (Section 8.3).

8.2 The waterfilling algorithm
In this Section, we provide an algorithm that computes a pure Nash equilibrium in a single-
commodity non-atomic congestion game with n parallel links, and affine latency functions,
inspired by the well-known waterfilling theorem of Information theory. To the best of our
knowledge, there is not a similar algorithm in the bibliography.

One of the fundamental problems in wireless communications is the problem of the
allocation of a budget of power in a constant number of different quality (different noise
levels) and independent wireless communication channels in order to maximize the sum of the
transmission rate. The optimal solution of this problem is given by the well-known waterfilling
theorem. Namely, the algorithm fills with water (power) the channels in a way that minimizes
the maximum level of water, where the level of water is the maximum value of power plus
noise in the channels that are used. At the end of the algorithm, the noise plus the water in
the channels that are used is the same (see Figure 8.1 for two different waterfilling allocations

∗Further, see Example B.1 in Appendix B.3.
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Transmitter

Noise

Figure 8.1: Two possible cases of waterfilling with different budget of power.

depending on the transmitter’s power).

Interestingly, this idea can be used to find a Nash equilibrium flow allocation in a single-
commodity non-atomic congestion game with n parallel links, and affine latency functions.
Below, we give a polynomial-time algorithm based on this idea.

Algorithm 3 Waterfilling approach algorithm for computing a pure Nash equilibrium in
single-commodity non-atomic congestion games with n parallel links and affine latency
functions.
Input: n parallel links with affine latency functions akxk + bk, with ak, bk > 0, for any

k ∈ {1, 2, . . . , n}.
Output: A pure Nash equilibrium allocation.
Sort links in an increasing order based on bk.
for 1 ≤ i ≤ n do

Solve the Linear program (Algorithm 4), for t = bi+1 and j = i. If it returns a feasible
solution x∗, then STOP and return x∗.

end

By the definition of Nash equilibrium, we know that there is at least one Nash equilibrium
in which all links that are used have the same latency, v = aixi + bi, and any link k that is not
used has a latency no less than v, or in other words ak · 0 + bk ≥ v. However, we do not know
a priori the value of v, but we do know that the possible values are between the intervals
of [b1, b2], (b2, b3], . . . , (bn−1, bn], (bn,+∞), since bis are sorted in an increasing order. Note
that if the optimal threshold is in interval [bk−1, bk], then in the Nash equilibrium allocation
we will have exactly k− 1 links. We exhaustively search the optimal values in an increasing
order for any possible interval, see Algorithm 3. For any interval we solve a linear program
to check if there is an allocation with the Nash equilibrium properties, if there is such an
allocation we return it. Since, we know the existence of such an equilibrium, our algorithm
always returns a feasible solution at the end. It is easy to see that the total computational
time of the algorithm is polynomial.
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Algorithm 4 Linear program
Input: A positive threshold t and an index j.
Output: x.

minimize v

s.t.

xi =
v− bi

ai
, for i ≤ j.

n∑
i=1

xi = r.

xi ≥ 0, v ≥ 0 and v ≤ t.

8.3 Coordination mechanisms with misinformation
Now let us focus on the case of single-commodity misinformation non-atomic congestion
games, where the actual game has n parallel links and affine latency functions. Further, we
restate the main question of the paper, that is how we can use misinformation in order to
improve the performance of single-commodity non-atomic congestion games with n parallel
links in terms of Social Cost.

Specifically, note that if we properly change the coefficients of the latency functions of the
misinformed games then the flow according to the worst natural misinformed equilibrium will
change. To that direction we choose to increase the coefficients of the latency function from
ak, bk to âj

k, b̂j
k (one for each different subjective view Γj respectively). Further, we assume

that the designer has the constraint that he can provide a limited number of misinformed
views.

We will show that it is always possible to find a unique natural misinformed equilibrium
that coincides with the optimal allocation, in terms of social welfare, by appropriately changing
the coefficients. The constructed misinformation game mΓ = ⟨Γ0, Γ1, . . . , ΓN ⟩, with θ splitting,
that will be derived in the next Subsection, will have the following properties:

i) Γ0 = Γ (the case of n parallel links),

ii) Γ0 = ⟨G, l, s, t, 1⟩ and Γj = ⟨G, lj , s, t, 1⟩, with lk(xk) = akxk + bk and lj,k(xk) =

âj
kxk + b̂j

k, respectively.

iii) θ = ⟨θ1, . . . , θN ⟩.

Next, we provide a methodology so as to construct a misinformation game in such a way
that the unique natural misinformed equilibrium in the misinformation game is an optimal
allocation of the actual game. Towards that direction we give a simple algorithm that takes
as input a single-commodity non-atomic congestion game Γ0, the optimal allocation in Γ0,
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and an arbitrary break down (partition) of the links that are used in the optimal flow. Let
x∗ = (x∗

1, x∗
2, . . . , x∗

n) be the optimal solution, which we can easily find in polynomial time as a
minimization of a convex function, and an abstract partition (k1, . . . , km) of the allocation x∗

over the parallel links that are used; m is the number of misinformed views that the designer
provides to the players. E.g., if n = 3 with x∗

i > 0 for any i, then k1 = {1, 2}, k3 = {3} is a
possible partition. With Algorithm 5 we construct a misinformation game mΓ, where players
perform optimally in terms of Social Cost.

Algorithm 5 Coordination mechanism algorithm for an abstract partition (k1, . . . , km) of n

Input :An actual game Γ0 = ⟨G, lj , s, t, 1⟩
An optimal allocation x∗ = (x∗

1, . . . , x∗
n)

A partition over the links, (k1, . . . , km).
Output: A misinformation game mΓ.

A splitting θ.

while 1 ≤ i ≤ m do
New allocation y∗:

y∗
j =


x∗

j∑
t∈{ki} x∗

t
, j ∈ ki

0, elsewhere
Apply Algorithm 6 for y∗ to
construct the latency functions of Γi.
θi =

∑
j∈{ki} x∗

j .

end
mΓ← ⟨Γ0, Γ1, . . . , Γm⟩.
θ ← ⟨θ1, . . . , θm⟩.

We run Algorithm 5 and we get the misinformation game. Note that, it produces one
misinformation view Γi at a time. Then, calling Algorithm 6 inside Algorithm 5, we take the
coefficients for the latency functions for Γi. Then, Γi is entailed with ease, to produce mΓ.

At the beginning of Algorithm 6, we initialize v by setting it equal to the maximum of
the costs of the latency functions over the links that are used in the allocation y∗. Then, we
increase the bi for the links that are not used in the allocation y∗ in order to make them no less
than the cost v. For any link i that is used in the allocation y∗ we can increase the bi in such
a way that the cost of this link with the allocation y∗

i is equal to the cost v. This procedure
can be done in polynomial-time by solving a system of linear inequalities. For any y∗ it is
easy to see that Algorithm 3 gives a unique pure Nash equilibrium in the modified game for
the players that have this view. Taking the natural misinformed equilibrium we construct the
allocation x∗, which is the optimal allocation of the actual game, hence PoM = 1.

In Figure 8.2 we provide schematically the pipeline regarding coordination mechanism
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Algorithm 6 Coordination mechanism algorithm
Input :Coefficients ai, bi of latency functions

for any link i. The allocation y∗.

Output: New coefficients of latency functions.
Put v = max

i:y∗
i >0
{aiy

∗
i + bi}.

Find b̂i, for any i,

s.t.
b̂i ≥ v, for any i such that y∗

i = 0,
aiy

∗
i = v− b̂i, for any i such that y∗

i > 0,
b̂i ≥ bi, for any i.

return b̂.

with misinformation.

Γ0, x∗,

partition k

Network,

latencies

minimize convex

function

Algorithm 3

Algorithm 4

Algorithm 5

Algorithm 6

mΓ, θ

b̂ix∗
i

y∗
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i

ai

bi

x∗
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index

Figure 8.2: Coordination mechanism with misinformation.

Further, similar mechanism can be used in the case where the designer can influence only
a fragment of the players. Hence, he/she can construct a mechanism where the θ1 portion
gets misinformed in order to improve Social Cost, whereas the rest use the actual game, i.e.,
the resulting misinformation game would be mΓ = ⟨Γ0, Γ1, Γ2⟩, where Γ2 = Γ0. In parallel,
the splitting θ becomes ⟨θ1, θ2⟩.

The first step is to reconsider the optimal allocation for the θ1 fragment of the flow,
taking into account the fact that there is a fixed part of the players θ2 will route according to
Γ2, which has the same latency functions as Γ0. There we reconsider the coefficients of the
latency functions as they experience the additional cost of the Nash equilibrium flow of the
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unmisinformed fragment θ2. Afterwards, we implement our mechanism and get the desired
mΓ.

Observe that as we can affect only θ1 portion of the players, the rest should route (possibly
sub-optimally) according to the actual specifications. Thus, is evident that in case where
designer can influence a limited part of the flow it is possible that PoM > 1.
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Chapter 9
Conclusions

After presenting our work, its applicability and the relevant results we now revisit the main
outcomes from a more high-level standpoint providing a research path and the contributions
regarding each area of the dissertation. Afterwards, we remark prominent future research
directions.

9.1 Research path

In this dissertation, we studied the effect of misinformation in a multi-agent system, considering
that the participants are intelligent and rational. Namely, each agent possibly has the wrong
information regarding the actual interaction. Initially, starting from classical games in game
theory we presented the basic setting of our model, in Chapter 4, and we provided several
classes of games where it can be applied, but we restricted in “single shot” interactions.
Then, in Chapter 5, we expanded our model so as to include interactions where agents take
several decisions sequentially. The sequential interaction raises several issues in respect of
the reconsideration and introspection that agents had to do. Hence, in Chapter 5, we further
established an epistemic approach, see Figure 9.1. Afterwards, we presented a learning
algorithm in order to compute the equilibria concepts that have emerged from our model, in
Chapter 6. Then, we studied the vulnerability of agents’ decisions in the case where their
information is susceptible to noise, in Chapter 7. Finally, in Chapter 8, we presented and
analyzed a setting where a designer can take advantage of the misinformation and improved
the efficiency of the multi-agent system.

9.2 Synopsis of Contributions

9.2.1 Misinformation Games

Chapter 4 is the bedrock of this dissertation. It is motivated by the idea that misinformation
is a fact of life in most multi-player interactions, and thus having the formal machinery to
analyse misinformation can help understand many real-world phenomena. Towards this aim,
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Epistemic Adaptive Evolution

Adaptation Procedure

Misinformation Games

Games

Figure 9.1: Top view of the structure of misinformation games model.

we introduced a novel game-theoretic framework, called misinformation games. Further, we
provided a metric that measures the deterioration/improvement of a system, in terms of
social welfare, due to misinformation in the views of the players, we called this metric Price
of Misinformation (PoM). Afterwards, we applied misinformation games in the areas of
load-balancing games and congestion games, thus establishing the applicability of our model.

9.2.2 Adaptation Procedure

Next, we enriched misinformation games with a methodology for studying game-playing
scenarios where misinformed players revised their game-related information as they interact
with their environment. We considered the case where the revision is based on the received
payoffs, which are publicly announced in each game iteration. To formalize the process, we
defined the Adaptation Procedure, which describes the changes in the decisions of the players
as they obtain new information for the environment. This leads to a new equilibrium concept,
called the stable misinformed equilibrium, which is the strategy profile(s) that the players
choose when the Adaptation Procedure has stabilized. Unsurprisingly, players do not need to
fully learn the actual specifications of the interaction in order for the Adaptation Procedure
to end.

9.2.3 Epistemic Adaptive Evolution

Afterwards, we expand our methodology so as to provide the players with the formal machinery
to revise their knowledge and beliefs with regards to: i) the information that their opponents
have, and ii) the way they make their decisions. Initially, each player has his/her own subjective
view that is provisioned by his/her knowledge and beliefs. We expand misinformation games in
order to include the beliefs of each participant, we call such games epistemic misinformation
games. Moreover, since each participant comes along with an “irrational” decision must
reconsider his/her mindset regarding the other participants, we call this process Epistemic
Adaptative Evolution. With this at hand, each player can learn the way that other players
interact and exploit this. This lead to a new equilibrium concept, called the stable epistemic
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misinformed equilibrium.
We also provided different ways to visualize the process and showed several properties

related to the aforementioned procedures and the respective equilibria, pertaining to its
existence, termination, length etc.

9.2.4 Learning Dynamics

In Chapter 6 we presented a novel learning algorithm that obtains last-iterate convergence to
the equilibrium point for a zero-sum game, called Forward Looking Best-Response Multiplica-
tive Weights Update (FLBR-MWU) method. A structural characteristic of our methodology
is that given a state x, the FLBR-MWU method first generates an intermediate state taking a
best-response step. However, instead of continuing from that step, it goes back to the original
state x in order to generate a new state x′. As both theoretical and experimental results show
FLBR-MWU dynamics attain significant acceleration regarding the state-of-the-art dynamics
such as OMWU and OMD, see Section 6.3.

With this at hand, we have an online learning technique to compute natural and stable
misinformed equilibria in the case where both subjective and actual specifications belong to
the class of zero-sum games.

9.2.5 Noisy Games

Afterwards, in Chapter 7 we introduce a subclass of misinformation games called noisy games,
where players receive the information of the game with a distortion affecting the elements
of the payoff matrices, due to additive noise that follows a normal distribution. We study
the influence of the parameters of the noise in the strategic behavior of the players, and we
derive probabilistic formulas that capture this influence. Namely, we analyze the cases where
a player suffering from noise would not alter his/her choices if the noise disappears and vice
versa, we call this analysis behavioural consistency, see Subsection 7.2.3. As a result, we
define the concepts of (inv)ε−misinformed players, and we establish probabilistic formulas
that quantify the probability of a strategy profile to be (inv)-e-mis due to noise, Section 7.3.
Our analysis restricted in the case of two players’ bimatrix games with two strategies per
player, due to highly intricate formulas and complex mathematical objects that are hard to
be represented.

Afterwards, we perform numerical experiments using four benchmark bimatrix games, see
Figure 7.3. Initially, we compare the probabilistic formulas with Monte Carlo simulations.
Then, we derive general remarks as to the efficiency of the system regarding the additive
noise, in terms of social welfare. We quantify these results using the Price of Misinformation
metric, in order to depict how benevolent/malevolent could be the noise regarding game’s
performance.

Undeniably the two players’ bimatrix games with two strategies per player is a very
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restricting setting. Unsurprisingly, however, even in this simple setting our analysis highlighted
the richness, intricacy and interdependence of the probabilistic events, mathematical objects
and techniques that are involved, which further resulted in complex formulations.

9.2.6 Mechanism Design

Finally, we explored the use of misinformation as a novel and powerful method for Coordination
mechanisms, in Chapter 8. We applied this idea in single-commodity non-atomic congestion
games with parallel links and affine latency functions. Specifically, our goal was to steer
players’ behaviour towards the socially optimum allocation, by misinforming them regarding
the latency functions of the network.

Towards that direction, we provide two polynomial-time algorithms. The first finds a
Nash equilibrium flow allocation in a single-commodity non-atomic congestion game with n

parallel links and affine cost functions. The second takes as input an abstract partition over
the links that are used in the optimal allocation and creates a misinformation game whose
subjective games follow the required specification. Consequently, its natural misinformed
equilibrium is the optimum allocation in the actual game.

9.3 Directions for Future Work and Research
We argue that the concept of misinformation games has the potential to explain various
phenomena, and raises several interesting problems to be studied from different perspectives.

Misinformation Games. An interesting future work would be in the directions of: i)
proving tighter bounds regarding PoM , and ii) transfusing misinformation game framework
in several areas of game theory.

Adaptation Procedure Initiated by the ending notes of Chapter 5, we acknowledge
that there are many directions for improvement such as: i) dropping the assumption that
players fully update their information (e.g., they may not be able to observe other players’
payoffs); ii) considering different players’ attitudes towards the new information and/or
towards the realization that their knowledge is inaccurate; iii) considering the case where
players experiment with sub-optimal actions; iv) considering cases where the players attempt
to exploit other players’ inaccurate knowledge, (e.g., by playing non-equilibrium, higher-payoff
strategies), by observing their actions and making inferences as to what they know and what
they don’t; v) considering the scenario where the actual game specifications also evolve over
time.

Epistemic Adaptive Evolution. As this part concludes the misinformation games frame-
work there are a lot of different directions where we can expand our methodology, such as: i)
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study the ways a player exploits the strategic thinking of his/her opponent, ii) implement
our framework using Logical Calculus, and iii) evaluate it in real-life situations. Further,
the follow-ups of the Adaptation Procedure can also be considered as future work for the
Epistemic Adaptive Evolution.

Learning Dynamics Here, future directions are three-folded. First, the enhancement
of FLBR-MWU method in order to compute all the equilibria concepts that arise in this
dissertation, without the zero-sum constraint. Second, from an algorithmic perspective, as our
results suggest, the implementation of a best-response step is a flexible add-on that can be
easily attached to a wide variety of GAN training methods and provides noticeable gains in
performance and stability. Third, we consider as a very interesting future step to implement
FLBR-MWU method for more general classes of games and objective functions. Additionally,
it could be interesting to examine modifications of FLBR-MWU method, such as adaptive
schemes for ξ and η throughout the iterations.

Noisy Games. There are several potential research directions for this part of the study.
Specifically, we could derive analogous probabilistic formulas for other classes of noise dis-
tributions. Further, it would be very intriguing to expand our formulas in cases of bimatrix
games with abstract, yet bounded, number of pure strategies, or in cases of N > 2 number of
players.

Moreover, an intriguing future step would be to provide tools to quantify the sensitivity
of a game to random noise, i.e., determine “how much noise” the game can withstand so
that the behaviour of the players remains close (under the above sense) to the expected
ones, with a certain probability. A related research question is how sensitivity is affected
by inconsequential changes in the game specification (e.g., change of scale). This could be
used as a tool for game designers to improve their designs and make them more robust to
unexpected circumstances. Thus, enhancing the theoretical results presented in Chapter 8.

Mechanism Design An immediate future direction is to use the methodology of misinfor-
mation games in order to design mechanisms for serial-parallel networks and general latency
functions. It is also interesting to prove bounds regarding PoM .

Recently, authors in [Omidshafiei et al., 2019] introduced a general descriptive multi-agent
evaluation method, called α-Rank. They focus on Empirical game theory and specifically on
the concept of empirical games, or meta-games, and the convergence of their dynamics to the
Nash equilibria [Tuyls et al., 2018]. Interestingly, they provide a new paradigm. In particular,
they allow the dynamics to roll out and enable strong (i.e., non-transient) agents to emerge
and weak (i.e., transient) agents to vanish naturally through their long-term interactions. On
the contrary, the classical Nash approach tries to identify static points in the simplex that



150 Chapter 9. Conclusions

capture simultaneous best response behaviours of the agents. In other words, the strategies
chosen by the new approach are those favored by evolutionary selection, as opposed to the
Nash strategies, which are simultaneous best-responses.

The new approach provides substantial gains regarding many pathologies of the Nash
equilibrium concept, such as the tractability issue. Further is a natural candidate to resolve
the incompatibility of the classical Nash approach with the dynamic behaviours of agents in
interacting systems.

In the case of the misinformation games framework, we use the classical Nash equilibrium
concept as an ingredient of our model, whereas the resulting equilibrium concepts (nme, sme,
ene, and stene) can be considered as weak Nash equilibrium concepts. The paradigm we
offer with this framework is that: i) interactions should be analysed under the perspective
of the subjective views of the participants, and ii) the revision of the views is taking place
simultaneously in the knowledge and the beliefs of the participants.

Bringing together these two paradigms, we may come up with a unified framework where
the interaction in a multi-agent system unfolded in an evolutionary manner and the solutions
are justified through epistemic revision techniques. This agglomeration would provide a strong
evolutionary revision methodology. Thus, it would be very interesting to plug in the α-Rank
method into our framework.

To sum up, we deem that this dissertation could be expatiated and applied to several
and diverse areas of Discipline, such as Economics (i.e. in stock markets where dealers
try to manipulate their opponents), (Cyber-)security (i.e. defenders and attackers with
limited resources), Telecommunications (e.g. in cases where information passes through
communication channels), and Artificial Intelligence (i.e. intelligent agents learn a procedure
or derive conclusions as to the information of the others).

While the road ahead is still long, we have come far enough to say with some confidence
that there is a lot of promise in the paradigm presented in this thesis. As we surround
ourselves with more and more technology, data, complex social rules, inconsistent news,
cognitive inadequacy, conflicting theories, non-provable assumptions, etc. maybe it is time
to start thinking about interactions under the scope that participants are far from being
considered as correctly informed.

Taking a distant stance against this dissertation we should wonder what’s the meaning
of misinformation games paradigm. We can consider the core of this as a low knowledge
process, meaning that the participants do not and shall not ever be in place to know (and to
know that they know, etc.) entirely the correct specifications (“truth”). Contrary to high
knowledge process, such as probabilistic approaches, where the state of mind of the participants
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is something like “the truth is out there”, or in other words the “truth is consist of elements
on my grasp (or near grasp)” that need to be tuned properly. But how plausible is the latter
paradigm in real-life interactions? What is that prominent “truth”? Is it everlasting? Are
we, even slightly, certain of what we are looking for? In case scholars can provide affirmative
answers to that questions, and many more of the same spirit, then low knowledge process is
just an exercise without any interest and high knowledge process is inapt per mare per terra.
Otherwise, the low knowledge process is the man of the hour.
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Appendix B
Supplementary material

B.1 Basic Probability theory
We provide here some basic knowledge on probability theory that will be useful in the following
sections. The interested reader is referred to [Shiryayev, 1984] for further details.

A random variable X is characterized by its probability density function (pdf), denoted by
fX , which represents the “intensity” of the probability in each given point. The pdf can be
used to compute the probability that X falls within a given range, say [a, b], for any a ≤ b.
Formally, fX is such that:

P [a ≤ X ≤ b] =
∫ b

a
fX(x)dx

We denote by FX the cumulative distribution function (CDF) of a random variable X,
which equals the probability that the value of X is at most x. Formally:

FX(x) =
∫ x

−∞
fX(t)dt = P [X ≤ x]

In this document, we focus on random variables X following the normal distribution,
denoted by X ∼ N

(
µ, d2) (for some mean µ ∈ R and standard deviation∗ d > 0). For

the special case where µ = 0, d = 1 (i.e., when X ∼ N (0, 1)), we get the standard normal
distribution, with the following pdf (ϕ) and cdf (Φ):

ϕ(x) = 1√
2π

e− x2

2

Φ(x) = 1√
2π

∫ x

−∞
e− t2

2 dt
(B.1)

∗In probability theory, the standard deviation is typically denoted by σ. To avoid confusion with the
strategies of normal form games which use the same symbol (see Subsection ??), we use d as a symbol for
standard deviation in the thesis.
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For the general case, where X ∼ N
(
µ, d2), the pdf and cdf are:

fX(x) =
1
d

ϕ

(
x− µ

d

)
= 1

d
√

2π
e

−
(

x−µ

d
√

2

)2

FX(x) = Φ
(

x− µ

d

)
= 1√

2π

∫ x−µ
d

−∞
e− t2

2 dt

(B.2)

It has been shown that, if Xi ∼ N
(
µi, d2

i

)
, c0, ci ∈ R, then:

c0 +
∑

ciXi ∼ N
(
c0 +

∑
ciµi,

∑
c2

i d2
i

)
(B.3)

Given two events A, B, the symbol P [A|B] denotes the conditional probability of A given
B, which amounts to the probability that A is true under the condition that B is true.

When combining events, the following are true:

General Conjunction Rule: P [A∧B] = P [B]P [A|B] = P [A]P [B|A]

Restricted Conjunction Rule: P [A∧B] = P [A] · P [B]

(when A, B are independent)
General Disjunction Rule: P [A∨B] = P [A] +P [B]−P [A∧B]

Restricted Disjunction Rule: P [A∨B] = P [A] +P [B]

(when A, B are mutually exclusive)

(B.4)

B.2 Kullback-Leibler divergence

To measure the difference between two probability distributions over the same variable x,
we use a measure, called the Kullback-Leibler divergence, or simply, the KL divergence, (see
p.361 [Boyd and Vandenberghe, 2004]). The KL divergence, closely related to relative entropy,
information divergence, and information for discrimination, is a non-symmetric measure of
the difference between two probability distributions p(x) and q(x). Formally,

Definition 55. Let p(x) and q(x) are two probability distributions of a discrete random
variable x. The Kullback-Leibler (KL) divergence of q(x) from p(x), denoted DKL(p(x), q(x)),
is a measure of the information lost when q(x) is used to approximate p(x). DKL(p(x), q(x))

is defined as

DKL(p(x), q(x)) =
∑
x∈X

p(x) ln p(x)

q(x)
(B.5)



B.3. Auxiliary definitions and results 169

B.3 Auxiliary definitions and results

Definition 56. The Hamming distance between two equal-length strings of symbols is the
number of positions at which the corresponding symbols are different.

Theorem 9. (Theorem 2 of [Schmeidler, 1973]) Consider a non-atomic congestion game.
Suppose that the cost functions satisfy: ci

r(·) is continuous for every arc r and user i, and
i 7→ ci

r(x) is measurable for every x ∈ [0, r]. Then there exists a Nash equilibrium.

Lemma 18. (Lemma C.3 of [Mertikopoulos et al., 2018]) Let R ∈ Rm×n be a game matrix
for a two-player zero-sum game with value ρ. Then exists a Nash equilibrium (x∗, y∗) such
that

(Ry∗)i = ρ ∀i ∈ supp(x∗)

(Ry∗)i < ρ ∀i ̸∈ supp(x∗)

(RT x∗)i = ρ ∀i ∈ supp(y∗)

(RT x∗)i > ρ ∀i ̸∈ supp(y∗)

Example B.1. (Water-filling solution. Example 5.2 in [Boyd and Vandenberghe, 2004]) We
consider the convex optimization problem

minimize −
n∑

i=1
log(αi + xi)

subject to x ≥ 0, 1T x = 1,

where αi > 0. This problem arises in information theory, in allocating power to a set of n

communication channels. The variable xi represents the transmitter power allocated to the
ith channel, and log(αi + xi) gives the capacity or communication rate of the channel, so the
problem is to allocate a total power of one to the channels, in order to maximize the total
communication rate.

Introducing Lagrange multipliers λ∗ ∈ Rn for the inequality constraints x∗ ≥ 0, and a multiplier
ν∗ ∈ R for the equality constraint 1T x = 1, we obtain the KKT conditions

x∗ ≥ 0, 1T x = 1, λ∗ ≥ 0, λ∗x∗
i = 0 i = 1, . . . , n

and
− 1

αi + x∗
i

− λ∗
i + ν∗ = 0, i = 1, . . . , n

We can directly solve these equations to find x∗, λ∗, and ν∗. We start by noting that λ∗ acts
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Figure B.1: Illustration of water-filling algorithm. The height of each patch is given by αi.
The region is flooded to a level 1/nu∗ which uses a total quantity of water
equal to one. The height of the water (shown shaded) above each patch is
the optimal value of x∗

i .

as a slack variable in the last equation, so it can be eliminated, leaving

x∗ ≥ 0, 1T x = 1, x∗
i

(
ν∗ − 1

αi + x∗
i

)
= 0, i = 1, . . . , n

Thus,
ν∗ ≥ 1

αi + x∗
i

, i = 1, . . . , n

If ν∗ ≥ 1
αi

, this last condition can only hold if x∗
i > 0, which by the third condition implies that

ν∗ = 1
αi+x∗

i
. Solving for x∗

i , we conclude that x∗
i = 1

ν∗ −αi if ν∗ < 1
αi

. If ν∗ ≥ 1
αi

, then x∗
i > 0

is impossible, because it would imply ν∗ ≥ 1
αi

> 1
αi+x∗

i
, which violates the complementary

slackness condition. Therefore, x∗
i = 0 if ν∗ ≥ 1

αi
. Thus we have

x∗ =

{ 1
ν∗ − αi, ν∗ < 1

αi

0, ν∗ ≥ 1
αi

or, put more simply, x∗
i = max{0, 1/ν∗bĹ′′αi}. Substituting this expression for x∗

i into the
condition 1T x = 1 we obtain

n∑
i=1

max{0, 1/ν∗ − αi} = 1

The lefthand side is a piecewise-linear increasing function of 1/ν∗, with breakpoints at αi,
so the equation has a unique solution which is readily determined. This solution method is
called water-filling for the following reason. We think of αi as the ground level above patch i,
and then flood the region with water to a depth 1/ν, as illustrated in Figure B.1. The total
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amount of water used is then
n∑

i=1
max{0, 1

ν∗ − αi}.

We then increase the flood level until we have used a total amount of water equal to one. The
depth of water above patch i is then the optimal value x∗

i .

B.4 Jacobian matrix

Recall the form of the Jacobian of our dynamical system in Equation (6.6).

We compute the form of each entry of J at the point (x, y). Let Qx =
∑

ℓ xℓe
ηeT

ℓ Rf (x,y),
Qy =

∑
ℓ yℓe

−ηeT
ℓ RT h(x,y), Sx =

∑
ℓ xℓe

ξeT
ℓ Ry, and Sy =

∑
ℓ yℓe

−ξeT
ℓ RT x.

∂φ1,i
∂xi

= eηeT
i Rf (x,y)

Qx

(
1+ηxi

∂
∂xi

(eT
i Rf (x,y))

)
−xi

∂
∂xi

Qx

Q2
x

, i ∈ [n],

∂φ1,i
∂xj

= xie
ηeT

i Rf (x,y) ηQx
∂

∂xj
(eT

i Rf (x,y))− ∂
∂xj

Qx

Q2
x

, i, j ∈ [n] and i ̸= j,

∂φ1,i
∂yj

= xie
ηeT

i Rf (x,y) ηQx
∂

∂yj
(eT

i Rf (x,y))− ∂
∂yj

Qx

Q2
x

, i, j ∈ [n],

∂φ2,i
∂xj

= yie
−ηeT

i RT h(x,y) −ηQy
∂

∂xj
(eT

i RT h(x,y))− ∂
∂xj

Qy

Q2
y

, i, j ∈ [n],

∂φ2,i
∂yi

= e−ηeT
i RT h(x,y)

Qy

(
1−ηyi

∂
∂yi

(eT
i RT h(x,y))

)
−yi

∂
∂yi

Qy

Q2
y

, i ∈ [n],

∂φ2,i
∂yj

= yie
−ηeT

i RT h(x,y) −ηQy
∂

∂yj
(eT

i RT h(x,y))− ∂
∂yj

Qy

Q2
y

, i, j ∈ [n] and i ̸= j.

(B.6)

At the point (x∗, y∗), after exploiting the fact that this is an equilibrium profile, and simplifying
some of the calculations, we obtain the following forms.
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∂φ1,i
∂xi

= 1− x∗
i

(
ηξ
(∑

k
R2

iky∗
k −

∑
k

x∗
k

∑
l
Rkly

∗
l RT

li

)
+ 1

)
, i ∈ supp(x∗),

∂φ1,i
∂xi

= eηeT
i

Ry∗

eηv , i ̸∈ supp(x∗),
∂φ1,i
∂xj

= −x∗
i

(
ηξ
(∑

k
Riky∗

kRT
kj −

∑
k

x∗
k

∑
l
Rkly

∗
l RT

lj

)
+ 1

)
, i ∈ supp(x∗), i ̸= j,

∂φ1,i
∂xj

= 0, i ̸∈ supp(x∗) and i ̸= j,

∂φ1,i
∂yj

= x∗
i η(Rij − eT

j RT x∗) e
−ξeT

j
RT x∗

e−ξv , for all i ∈ supp(x∗),
∂φ1,i
∂yj

= 0, i ̸∈ supp(x∗),

∂φ2,i
∂xj

= −y∗
i η(RT

ij − eT
j Ry∗) e

ξeT
j

Ry∗

eξv , for all i ∈ supp(y∗),
∂φ2,i
∂xj

= 0, i ̸∈ supp(y∗),
∂φ2,i
∂yi

= 1− y∗
i

(
ηξ
(∑

k
(RT

ik)
2x∗

k −
∑

k
y∗

k

∑
l
RT

klx
∗
l Rli

)
+ 1

)
, i ∈ supp(y∗),

∂φ2,i
∂yi

= e−ηeT
i

RT x∗

e−ηv , i ̸∈ supp(y∗),
∂φ2,i
∂yj

= −y∗
i

(
ηξ

(∑
k

RkjRT
ikx∗

k −
∑

k

y∗
k

∑
l

RT
klx

∗
l Rlj

)
+ 1

)
, i ∈ supp(y∗), i ̸= j,

∂φ2,i
∂yj

= 0, i ̸∈ supp(y∗) and i ̸= j,

(B.7)

B.5 Numerical experiments in noisy games

In this section, we demonstrate further numerical results regarding the formulas in noisy
games. Particularly, we consider the case where: i) a player has only pure equilibrium strategy,
ii) a player has only a mixed equilibrium strategy, and ii) a player has only mixed equilibrium
strategy within a tolerance range, predicates OP G

x , OMG
x , and ROMG

x respectively, see
Section 7.3. We examine these settings for the benchmark games in Figure 7.3. As Prisoner’s
Dilemma and Win-Win are both games with dominated pure strategies, their experimental
behavior is similar, thus we provide results only for Prisoner’s Dilemma game.
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B.5.1 Case OP G
x

(a) (b) (c)

Figure B.2: Cases OP G
x : (a) Prisoners’ Dilemma, (b) Matching Pennies, and (c) Battle

of the Sexes.

Observe that in the case where D < 0.5 the strategic behavior of the players are similar
enough to their behavior in the games without noise. On the other hand, as D increases
players start to deviate from the un-misinformed behavior, meaning that the noise affects
their choices. Finally, for large enough D players play randomly.

B.5.2 Case OMG
x

(a) Prisoners’ Dilemma. (b) Matching Pennies. (c) Battle of the Sexes.

Figure B.3: Cases OMG
x : (a) Prisoners’ Dilemma, (b) Matching Pennies, and (c) Battle

of the Sexes.

In Figure B.4a the mixed strategy profiles have small probability to occur for D < 0.5, as
initially, the distortion provided by the noise does not alternate the strategic behavior of the
players. Nevertheless, as D increases players may end up deciding on a mixed strategy profile.

In Figure B.4b, for small values of D, there is a high probability for the players to end
up in a mixed strategy profile. As D increases, these probabilities decrease. Thus, the noise
made less possible the occurrence of mixed strategy profiles, in the case of the Matching
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Pennies game.
Finally, in Figure B.4c, the strategic behaviour of the player is affected similarly as in the

Matching Pennies case. This happens because in the Battle of the Sexes a mixed strategy
profile is “by default”, without noise, in the ease of the players.

B.5.3 Case ROMG
x

(a) (b) (c)

Figure B.4: Cases ROMG
x : (a) Prisoners’ Dilemma, (b) Matching Pennies, and (c) Battle

of the Sexes.

Observe that in the case where D < 0.5 the strategic behavior of the players are similar
enough to their behavior in the games without noise. On the other hand, as D increases
players start to deviate from the un-misinformed behavior, meaning that the noise affects
their choices. Finally, for large enough D players play randomly.
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