UNIVERSITY OF CRETE
SCHOOL OF SCIENCES AND ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE

Autonomia: A knowledge-based framework for
realistic agent behaviours in dynamic video
game environments

Zacharias Pervolarakis

Thesis submitted in partial fulfillment of the requirements for' the
Masters’ of Science degree in Computer Science and Engineering

Thesis Advisor: Constantine Stephanidis

"This work has been performed at the University of Crete, School of Sciences and Engineering, Computer Science
Department.

The work has been supported by the Foundation for Research and Technology Institute of Computer Science
(ICS).

UNIVERSITY OF CRETE
SCHOOL OF SCIENCES AND ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE

Autonomia: A knowledge-based framework for realistic
agent behaviours in dynamic video game
environments

by Zacharias Pervolarakis

In partial fulfillment of the requirements for the
Master of Science degree in Computer Science

APPROVED BY:

Author: Zacharias Pervolarakis, Urfﬁersity of Crete

[

Thesis Supervisor: Constantine Stephanidis, Professor, University of Crete
W
Committee Member: Kostas Magoutis, Associate Professor, University of Crete

Committee Member: Xenophon Zabulis, Research Director, FORTH

Director of Graduéte Studies: Polyvios Pratikakis, Professor, University of Crete

Heraklion, November 2023

This thesis is dedicated to my family

to my father Lefteris who taught me practicality and wisdom,

my mother Katerina who taught me how to love and dream,

and my brother Manos who taught me how to understand and learn.

Vi

Abstract

Video games are a popular form of entertainment that offer interactive and
immersive experiences to the players. A key element of these experiences is the
presence of non-player characters (NPCs), which are autonomous agents that
populate the game world and interact with the player and the environment. NPCs
can enhance the realism and diversity of the game scenarios by exhibiting human-
like behaviours that are consistent, adaptive and believable. However, creating
such behaviours is a complex and challenging task that requires a combination of
artificial intelligence (Al) techniques and game design principles. Current methods
and frameworks for NPC decision-making often rely on predefined scripts or rules
that limit the NPC’s capability to adapt to dynamic situations. Moreover, NPCs
usually lack autonomy, as they are unable to pursue their own goals, as well as to
interact with other NPCs or the player. Therefore, there is a need for novel
approaches that can improve the credibility and adaptability of NPC behaviours in
video games.

This work introduces Autonomia, an innovative knowledge-based framework for
realistic agent behaviours in dynamic video game environments. Autonomia is
deeply rooted in the Theory of Mind (ToM), leveraging a knowledge graph to depict
the world's state, with each NPC possessing a replica of this world state in its
“‘memory”. This “memory” is designed to support higher orders of ToM while
constantly evolving as the NPC perceives the world around it and interprets events.
Autonomia uses a modular system to define the functionality and behaviour of
different types of nodes in the graph, such as physical objects, animals or people.
The framework as structured, allows NPCs to dynamically react to changes in the
environment purely based on its ability to perceive and hold memory. In this
context, Autonomia introduces a new way to model behaviours and goals, enabling
them to be treated as knowledge that can be communed, discovered or even
forgotten just like any other part of the NPC's “memory”. Basing everything on their
acquired knowledge, NPCs utilize a Goal-Oriented Action Planning (GOAP)
algorithm to come up with plans in any dynamic environment.

Lastly, an implementation of Autonomia is provided for the Unity game engine,
including the “Prometheus Tavern” case study, on which a two-part expert-based
evaluation was conducted. The first part confirmed that the provided features and
the architecture of the Autonomia framework deliver solutions that can improve the
credibility of NPC behaviours, whereas the second showed that the agents of the
system have the capability to adapt to their environment and behaviour in a realistic
manner.

Keywords: Game Al, Autonomous Agents, NPC, NPC Behaviours

Vii

viii

MepiAnyn

Ta Bvteomalxvidla eival pa dNUoPpIAng popdn Puxaywyiag kat gropouv
va TPOoOoPEPOUV JladPAOTIKEG Kal KABNAWTIKEG eUMelpieq OTOUG TAIKTEG.
Baolkd oTolXEIO AUTWYV TWV EUTELPLOV €ival N TApousia XapaKTnpwyv TUToU
Non-Playing Character (NPC) dnAadn mpaktopwv mou dev eAEyxovTal anod Tov
naiktn 1N Toug maikteg Tou TalVvidloU. OL mpdktopeg NPC eival autoévopol
XAPAKTNPEG TIOU KATOLKOUV OTOV KOOWO ToU TatXVIdloU Kat aAAnAetudpouyv e
Tov maiktn Kat To meptBairiov. OL mpdkTopeg autoi pnmopolv va evioxUoouv
TOV pPeaAlond Kal Tnv TolkIlopgopdia Twv oevapiwv Tou maixvidlou,
napouctdlovtac cuunepldpopég Tou Buuifouv avBpwriuveg, eival CUVETEIG,
aAnBoodaveic kat mpooapudlovtal aviloya Pe To dUVAULKO ToUug TiEPIBAAAOV.
Qot600, 1 dnuoupyia TETOWWV OUMPTEPLPOPWY eilval é€va TOAUTAOKO Kal
dUoKoAo €pyo mou araltei pedBodoAoyia, KaAd oxedlaoud Kal cuvduaouo
TMOAAQTA@V TEXVIKWV TEXVNTNG vonuoouvng (Al). Ot tpéxouoeg pnéBodoL Kat
TIPOYPAUMATIOTIKA TAQ(oLa yla TNV UAOTIOINON TNG IKAvOTNTAG TWV TPAKTOPWV
NPC va naipvouv anogaocelg, cuxva Bacifovtal o mpokaboplopéva aevapla
N Kavoveg Tou Teplopifouv TNV TPOCAPHOOTIKOTNTA TOUG O OUVAMIKA
petaBaAldueveg kataotdoelg. Emm\éov, ouxva ot Tmpaktopeg NPC
Xapaktnpifovral andé EAAewPn autovouiag, KaBwWG dev €Xouv TNV LKAVOTNTA
va emdlw&ouv Toug S1KoUG TOUG OTOXOUG 1) aKOPa Kal va aAAnAemudpacouv
phe aAAoug mipdktopeg NPC 1 pe tov (B0 Tov maiktn. Q¢ ek ToUToU, UTIAPXEL
avaykn yta Kawvotopeg AUoelg Tou va YnopoUv va BeATiwoouv tnv a€lotuoTia
Kal v 1KavotnTa TwvV Ouurneplipopwv Twv Tmpaktépwv NPC ota
Bvteomalyidia.

H mapoUoca petarmuxlakn epyacia eiodyel 1o cuotnua Autonomia, éva
KALVOTOUO TIPOYPAUMATIOTIKO TIAA{Ol0 BACIOMEVO OTNV YVWON, OXESIAOUEVO
va mpoodidel pealloTikég ouprmeplpopég mpaktopwv NPC oe duvaukd
neplBaillovta Bvteormaixvidiwyv. To cuotnua Autonomia BepeAlwveTal otn
Oewpia tou Nou (O©TN) KalL xpnolporotei ypadnuata yvwong (knowledge
graphs) yla Tv amnelkovion NG Kataotaong tou kéopou. O kKaBe mpaktopag
NPC dwabétel éva avtiypado autng Ing kKaraotaong otn “dvAun” Tou.
JUYKEKPLUEVQA, N OXedlaon NG “UvAUNG” eTUTPETIEL TOOO TNV ouvexn €EEAIEN
g, 600 KAl TNV UTooTNPLEN uYnAoTepwy emmedwv OTN KabBwg o MPAKTOPAg
avTiAapBavetal 1o MePIBAANOV Kal oXnUaTilel TPOOWTIKN €IKOvVA Yld TOV
KOouo. 'Eva ouotnua dopooTtolxelwv (modular system) xpnotuormoleital yia va
opifeTal n AelTOUPYIKOTNTA KAl] CUUTEPLPOPA DAPOPETIKWV TUTIWV KOPBWV
TOU Ypadou, 61w avTikeiyeva, {wa 1} avBpwrol. H oxediaon Tou oCUCTAUATOG
Autonomia emutpémel otoug mpdktopeg NPC va avtidpolv duvaplkd oTig
aAAayécg Tou mieplBdAAovTtog pe Bdon TNV IKavotnTd Toug va avtihapBdavovTal
Kal va epunvelouv yeyovota otn “Uviun” toug. Eniong, elcayoupe €vav véo

TPOTIO HPOVTEAOTIOINONG TWV OCUUMEPLPOPWV KAl TwV OTOXWV, O Oroiog
ETUTPETEL TNV XPNON TOUG WG YvWon n orola uropel va petapepbel péow
dlaAdyou, va avakaAudBei 1) akdpa kal va Eexaotei 6Tiwg KdBe AAAO KOUMATL
“uvnung” tou mpaktopa NPC. Baoilovtag Ta nMAvTa otnv MKTNTN YVWOon Tou,
o npaktopag NPC xpnoiporolel évav Goal-Oriented Action Planning (GOAP)
aAyoplBuo yia va propei va “okapolotel” aluoideg ouuneplpopwv o KABe
OUVAULKO TEPLBAANOV.

TENOG, MapéXETAL Jla UAOTIOMNON TOUu ouoTAPATOG Autonomia atnv pnxavn
maxvidiwv Unity n ormola mepiExel v HeAETN Teplmtwong “TaBépva Tou
MpounBéa“ upe TNV ormoia mpaygatoromenke pia a&loAdynon e
EMTEIPOYVWHOVES TNV oroia xwpiloupe oe dUo pépn. Ta amoTeAéopata Tou
MpwToU HéEpoug eruBeBaimoav OTL N TPOOHEPOUEVN AEITOUPYIKOTNTA KAl N
UPXITEKTOVIK] TOU TIPOYPAUMATIOTIKOU TAaloiou Autonomia TmpoodEépouv
AUoelg yia Ttnv BeAtiwon g aflormoTiag KAl NG LKAvOTNTAG TWV
OUUTEPLPOPWYV TWV TIPAKTOPWY, EVW TA ATIOTEAEOUATA TOU deUTepoU £delEav
OTL Ol TPAKTOPEG TOU CUOTAMATOG £XOUV TNV LKAvOTNTA va Tpooapudlovral
oTO TEPIBAAAOV TOUG KAl VA CUPTIEPLPEPOVTAL UE PEAALOTIKO TPOTIO.

Keywords: Game Al, Autonomous Agents, NPC, NPC Behaviours

Contents

1 121 oo [T Loz 1 T o LN 1
1.4 Motivation........e 1
1.2 Thesis StruCture ..o 3

2 Background Theory and Related WOrKcoeeeeeeeeeeeeeseeeeesenenesennnnnnnnns 4
2.1 Background TREOIYcccccccciiririrrrr s sssssssssssnnnes 4

2.1.1 The importance of Video Games..........cccoovuvieiiiiiiiie i 4
2.1.2 Artificial Intelligence in Video Gamesccoceeriieiniieinieeeniee e 5
2.1.3 Suspension of Disbelief..........cooiiii 6
2.1.4 Believability of Non-Player Characterscccoooiiviiiiieeeiinieee e, 7
2.2 Related WOrK........oooooceenr e ssmn s 8
2.2.1 Behaviour MOAEISooooiiieeee e 8
2.2.2 Machine Learning in Game Al ..o 15
2.2.3 Social NPCS MOELcccooueiiieiiiee e 15
2.2.4 World State Representation..........cccooecveeeiiiiiee e 17
2.3 Progress beyond the state of the art...........ccccoomrrrriircccccceeeeeeee, 17

3 Framework ArCRIte@CHUIEueeemmeeeeeeeeeeeeeereeeeesesessssnennne e e nesesessamnnnnenes 19
B g B 4 =Y = S 19
K 00 ' 1= 1 4 Lo To Lo [o 20

3.2.1 Literature Review and Theoretical Foundation...........c.c.cccooiieeen.. 20
3.2.2 lterative Prototyping and Developmentccccoviiiiieeineeciieeee, 20
3.3 Theory of Mind & World Representation..........ccccccccriiiimriiniiennnninns 21
3.3.1 Theory Of MiNdccoceiiiieiie e e 21
3.3.2 World State in Video Games..........cooviieieiiiiiiene e 22
3.3.3 Autonomia World Stateccceevveeeiicce e 22
3.4 Module Systemccoiccciiiiiiiiirirssre s 23
3.4.1 Active Events ModUIE.............oeiiiiiiii e 23
3.4.2 Event Interpreter Modulecoooviiiiiiiiiiiee e 24
3.4.3 Perception MOAUIEccooiiiiiiiiee e 25
3.4.4 Memory Module and the Theory of Mind............ccccoiiiiiieeiiiicene. 26
3.4.5 Behaviour Controller Modulecccoeveiiiiiiei e 29
3.4.6 Intended Uses ModUIEcoccuiiiiiiiiiiiee e 30
3.5 Expressions, Behaviours and Goalscccccccmmmriiicciiceernnnnnnsscssnnee 30
3.5.1 EXPreSSIONSttt 30

Xi

4

5

B.5.2 BENAVIOUIS ..o et e et e e e e e e e e 31

B.5.3 G0AIS oo e 33
3.5.4 Abstract Nodes and Wildcard values.........cccccooiiiiieeiiiininiiiiiieeeen. 33
3.5.5 EBG MOGEIeeiiieicieiee ettt 34
3.6 Goal Planningccccuurmmiiiiiniiinnsns s s 34
3.6.1 Autonomia’s GOAP A* S€arCh........cccooceeiiiiiiiiieeiee e 35
3.6.2 SChEAUIE.......coiiiiee e 36
3.6.3 The PlanBehaviour............ccuiiiiiiiiie e 37
3.7 Compatibility with other Al models...........cccoomrririiicccirr e 37
3.8 Scalability and Performance..........ccccoiiricicccsmermennnnsssccsssseerseseessssssnnes 37
3.9 The Autonomy ParadoX.......ccccceevmmmmrrmrsssssssssmsenssssssssssssssssssssessssssssnnns 38
Framework Implementationeeeeeeeeeeeeeeeuesesenesesesesesnsesasnsnsnsasssans 39
4.1 Third-Party TOOIS......cccouciiriiriirrrnerr s 39
o O O SR 39
o IO N [T 3 40
4.2 AUutoNOMIA.COreceviiiieiriirirr e 42
2 B C T - o] o TSP 43
4.2.2 Injector and INjectables ... 45
ViSRG I \[oo [3N - Tex (o] oY 2RSSR 46
2 |V [Yo [= PR 47
4.2.5 Memory MOUIE............oooiiiiiie e 49
4.2.6 Perception MOAUIEccoouiiiiiiiiie e 50
4.2.7 Other MOAUIEScccoeieeeeeeeee et 52
4.2.8 Events, Abstractions and Wildcardscccooooviiiiiivceiiiiieiiieeiee e 52
4.2.9 AUTONOMYDBoiiiiiee e 55
4210 ENQING ... 56
4.2.11 System ClOCKovvieeiieeieeee e 57
4.2.12 EXPrESSIONS.....uceiiiiiiieee ettt e e e e s et e e e e e e e e e e e e e e e s s eneraeeeeaens 57
4.2.13 BEhaVIOUrSeeeiiiiieee e 60
4.2.14 Goals and Planning AIgorithmsccccociiiiiiiinie e 64
0L 113 VA 1 C=To [- 11 Lo o T 69

L g B O 1 =Y 69
5.2 Autonomia’s Designer TOOISccconrmmmiinismnnsss s e 70
5.2.1 NodeRef SCriPL....coiiiiiiie e 70
5.2.2 DESIGNEIVAlUEcciiiiiiie ittt 72
5.2.3 Intended USES DIaWeruuiiiiiiiiiiiiiieee e 72
5.2.4 NOAE DEDUGQET ...ttt 72

Xii

6

7

5.2.5 Expression Graph EditOr..........oocoeeiiiiiiiiii e 73

5.2.6 EXPression LIDrary ... 74
5.3 Use Case: Prometheus TaVerNcccomeeiiirmeessinmmesssiemessssssressssssrensses 80
5.3.1 Prometheus Tavern SCENEccooooiiiiieeeieeee e 81
B.B.2 NP C GOAIS .ottt 82
5.3.3 Prometheus Tavern Challengesccccoceeiiiiiniieeneeeeeeee e 84
5.3.4 Happy Surprises during Development...........ccccooiieeiiiiieee e 85
Expert-Based Evaluationeeeeeeeeeeeeeeueeeunsnsnnnnsnnsanans 87
6.1 EVvaluation Part |o.ooeeiiieiiieiireei e i rrmseressssem s rensssensssemssssnsssrenssrenns 87
L0 I I 0 TS0 e (0 1 =1 TR 87
LT B2 S YT U1 T 88
6.2 Evaluation Part Il ... e i rrmiess e re s rems s e ma e rmn s s mn s smm s renan 89
L2 I N o TSN o (0 T =Y 1= SRR 89
LSRR o =Y 01| T 89
Conclusions and FULUIE WOTIK..........cccouueeveimreevsisssessssssnesssissssssssssnssssssens 93
% TR oY 1 To [0 1= oY o 13 93
T.2 FULUIE WOPKK .ooeeiieeiieiirreiiree s rem s remssem s emn s sensssemsssensssenssremnsssnnssrensnrnnnn 93
7.2.1 Documentation and EXamples ... 94
7.2.2 Standardized Protocols and Design Principlesccccoceviiiiniieens 94
7.2.3 Refactored User INterfaCec.uuiiiiiiiii i 94
7.2.4 Advanced Debugging TOOIS.........ccoociiiiiiiiiieecece e 95
7.2.5 Player, Dialogues and EMOtioNccccocvviiiiiiiiiiiiiiie e 95
7.2.6 More Case Studies and User Casesccuueeeeeeeeeeiieeeiiieeieeeeeeeeeeenn 95

Xiii

Xiv

List of Figures

Figure 1: Example of @ knowledge graphccceeeeeiiiesiee e 23
Figure 2: ActiveEvents, Perception and Eventinterpreter...............uuueeeeeevevvvevevennnnnn, 25
Figure 3: Perception system structure of AUtONOMI@...............cccceveeecciereasiieaeesnae 26
Figure 4: Memory Module representation structurallyeeeeeeeeeeeveveevvevevevennnn, 27
Figure 5: lllustration showcasing the infinite recursionccccccccoevvvvivveennnannn. 28
Figure 6: Graph, Node and Edge class diagrams..............ccccccvveeeeeeeesesssiiirreennnaann, 44
Figure 7: Injectable attribute class diagramccoeoiioiiioiiiiciiieieieceeeeae e 45
Figure 8: Specific behaviour being injected using node labels...................cccccccu..... 46
Figure 9: Node Factory class diagramccoouoeeeiiiciiieiiiiieeeeee e 47
Figure 10: Example of adding custom dispatch methods to the Node Factory........ 47
Figure 11: Class diagram of the Module class and derived classes......................... 48
Figure 12: Class diagram Of MEMOIYcoouceeevueeeeeeeeeeeeeeciieeeee et 50
Figure 13: Class diagram of the Perception and stimulus modules......................... 51
Figure 14: Class diagram for Event, Abstractions and Wildcard............................. 54
Figure 15: IDatabaseClient interface diagram with our Neo4JClient........................ 55
Figure 16: Engine class diaQram............ccccuuiuiuuiie e 56
Figure 17: Class diagram Of EXPreSSIONc.uuuuiieueieeieieeeeeeieee e 58
Figure 18: Class diagrams of behaviour's metadatacccccovvceeeisccineennne. 61
Figure 19: Side-by-side comparison of recursive listener events versus using

aSyNChronOUS PrOGramUTUNG.coeeeeeeeeee e et a e e e e e e eeeaaae e 62
Figure 20: Class diagram Of BERAVIOULccccccueeeeeeeeieeesiieeeeseae e 64
Figure 21: Class diagram of Goal and Plan.cccccccoeeeceviveeeeeaeeeecsiiiireeeaaaaen, 65
Figure 22: Class diagrams of Schedule, ScheduledSlot, and ScheduledGoal........ 67
Figure 23: NodeRef drawer eXamplecooooueeeeieciieeesieeeeeee e 71
Figure 24: Expression Graph of DrinkTemporaryOwnedDrink goal......................... 74
Figure 25: Primitive @XPIreSSIONSccccueeee ettt 75
Figure 26: Logic and Math expression examplesccccccoccveeeeeeceeeeisciieeeeine 76
Figure 27: NOGE ©XPIESSIONSeeeeieieeeieeee et 77
Figure 28: A grab event created through the expression graph.............cccccceeveune.. 78
Figure 29: Commonly used utility @XPreSSIONScccwcceeeeeseiieeeesieaeesiaae e 79
Figure 30: MatchNodePropertiesExpression and IfExpression example................. 80
Figure 31: Prometheus Tavern case Study SCENEuuweeeeeeeeeeeeeereieneressesseseannnnns 81

XV

XVi

List of Tables

Table 1: Expression base class methods.................uueeeeeiieeeieeeee e 59
Table 2: Behaviour base class core methods.............ccccovoeiiiciiieeiieeeieeeeeeee 62
Table 3: Main exposed behaviours in the Prometheus Taverccccccceee..... 81
Table 4: Waiter gOQIS tabIE..............oeeeeeeeeeeeeieeeiiiiiiiiieieieieatiaitaeassassassssssssssssssssssssnsnnes 83
Table 5: Customer goalS tableeeeeeeeeeeeeeeeeee et 84
Table 6: Extracted results from the expert-based evaluation.cccoouveenn..... 90

XVii

XViii

Chapter 1: Introduction

Chapter 1
1 Introduction

In this chapter, we delve into the motivation and background behind the
development of the Autonomia Framework. We explore the challenges associated
with creating believable [1]-[3] and intelligent non-player characters (NPCs) in the
context of video games and interactive simulations. Additionally, we provide an
overview of the objectives and structure of this thesis, setting the stage for a
comprehensive examination of Autonomia's architecture, implementation, and
contributions to the field of artificial intelligence in gaming.

1.1 Motivation

Video games, as a widely enjoyed form of entertainment and art, have the
potential to deliver captivating experiences [4], [5]. A central part within these
games is the interaction with non-player characters (NPCs)—computer-controlled
entities that assume roles of allies, adversaries, or neutrals [2] and NPCs hold the
ability to craft those immersive and lifelike scenarios by simulating emotions,
personalities, motivations, and social dynamics akin to human beings. Yet, crafting
truly convincing NPCs remains a formidable challenge, necessitating a blend of
technical skills, artistic ingenuity, and psychological understanding. Unfortunately,
the current state of most NPCs falls short of authenticity, often adhering to scripted,
predictable, or inconsistent behaviours that shatter the illusion of reality and reduce
or even diminish players' enjoyment [6]-[8]. The lack of NPCs' believability often
becomes evident when they encounter intricate situations that haven't been
anticipated by the designer or programmer. For the most part, NPCs depend on
rigid, pre-defined rules or scripts dictating their responses to specific in-game
situations. Unfortunately, these rules often lack flexibility, sophistication, and fail to
capture the dynamic nature of the game world and player actions. Furthermore,
most NPCs lack a unified model encompassing their perceptions, memories, goals,
and plans. This absence impedes their capacity to reason over actions, predict
outcomes, or collaborate effectively with other NPCs and players. Consequently,
NPCs often manifest as superficial, artificial entities, lacking the depth of human-like
intelligence or agency [9].

To illustrate this problem further, we can examine some examples of games that
have attempted to create believable NPCs, and discuss their strengths and
limitations. For instance, The Sims [10] is a popular life simulation game that allows

1.1 Motivation

players to create and control virtual people with various personality traits. The game
uses a complex system of needs, motives, skills, and relationships to determine the
behaviour and emotions of the NPCs. However, some critics [11], [12] have argued
that the NPCs in The Sims are still too simplistic and deterministic, lacking the
ability to form meaningful bonds or exhibit moral agency. Similarly, Mass Effect [13]
is a sci-fi role-playing game that features a rich cast of NPC companions with
distinct backgrounds, personalities, and moral alignments. The game allows players
to interact with these NPCs through dialogue choices and influence their loyalty and
romance. However, some reviewers [14], [15] have noted that the NPCs in Mass
Effect are still constrained by predefined scripts and branching paths, limiting their
autonomy and responsiveness to player actions. Another example is Detroit:
Become Human [16], a narrative-driven game that explores the themes of artificial
intelligence and androids. The game features multiple playable characters that can
make choices and face moral dilemmas that affect the story’s outcome. The game
also uses advanced facial animation and voice acting to convey the emotions and
expressions of the NPCs. However, again some critics [17], [18] have pointed out
that the NPCs in Detroit: Become Human [16] are still influenced by clichés and
stereotypes, lacking the subtlety and complexity of human psychology.

These examples underscore the intricate nature of crafting convincing NPCs in
the realm of game development, revealing persistent challenges and unmet
aspirations. It's worth noting that these examples originate from the game
development industry, where talented programmers have long pursued the elusive
goal of achieving lifelike game Al. Yet, even with their dedicated efforts, the industry
has not fully realized this ambition.

In this thesis, we aim to contribute to this field by proposing a novel approach
for creating believable NPCs based on a realistic NPC memory representation
grounded in acquired knowledge, an extendable modular architecture, a novel way
of defining behaviours and lastly, encapsulate everything in an open-source
framework which could serve as common ground for game Al research.

Chapter 1: Introduction

1.2 Thesis Structure

The remainder of this master's thesis is divided into seven chapters, as
indicated in the table of contents. Below, a summary of each chapter is provided:

e Chapter 2: This chapter provides a comprehensive literature review of
previous works that have greatly contributed to the field of game Al. It traces
the evolution of Al techniques, from early finite state machines to
contemporary state-of-the-art behavior modeling methods.

e Chapter 3: The third chapter delves into the theoretical foundations of
Autonomia, explaining the architectural decisions that underpin this thesis'
work.

e Chapter 4: In this section, the implementation of the theoretical framework
outlined in Chapter 3 is described. It covers the essential components and
design patterns employed in Autonomia.

e Chapter 5: This chapter focuses on the integration of Autonomia into the Unity
game engine. It also elucidates the various designer tools developed in this
thesis and presents the Prometheus Tavern case study, offering insights into
its exploration.

e Chapter 6: The sixth chapter details the heuristic evaluation, including its
methodology and its findings.

e Chapter 7: This final chapter provides a summary of the work undertaken in
this thesis and offers a discussion of potential future directions and
aspirations for Autonomia.

2.1 Background Theory

Chapter 2

2 Background Theory and Related
Work

In this chapter, we explored the existing body of research and development in
the fields of game Al, human-computer interaction (HCI), and computer science.
We conducted a comprehensive review of relevant literature to inform the design
and development of Autonomia. This exploration of related work was a vital process
in shaping the framework's features and capabilities. Our related work process
involved a systematic approach to gathering and synthesizing information from
various sources. We employed a combination of academic journals, conference
papers, books, and online resources to ensure a comprehensive review of the
subject matter.

First, we delve into the foundational concepts of our research field, which form
the basis of our Background Theory. Subsequently, we examine existing works that
align with or partially address our objectives concerning Autonomia. This structured
approach offers readers a coherent journey, starting with the essential theoretical
framework and culminating in a comprehensive understanding of Autonomia's
relevance in the broader research context.

2.1 Background Theory

In this section, we delve into the foundational principles and theories that
underpin the field of research relevant to Autonomia. We explore the core concepts
and pillars that form the basis of intelligent NPC behaviour and game Al. This
provides readers with a solid understanding of the theoretical framework upon
which Autonomia is built.

2.1.1 The importance of Video Games

In the early 2000s, there was a prevailing belief that video games had a
detrimental impact on the mental health of young people. The media often launched
verbal attacks on gaming culture, though rarely with concrete evidence. While some
earlier studies did suggest potential negative effects of arising from gaming, this
has created a somewhat unjust stigma around video games. Even today,
accusations of video games being a harmful habit persist.

However, it's important to note that more recent research has uncovered a

Chapter 2: Introduction

multitude of benefits associated with gaming. These studies have shed light on both
the positive aspects of gaming and the valuable insights we can gain regarding the
learning process through video games and interactive experiences. This evolving
body of research challenges the notion that gaming is inherently harmful and
highlights the potential for constructive and educational outcomes from video game
engagement.

Isabela et al. [19] conducted an overview of the benefits of video gaming. They
summarize that games can improve the cognitive, motivational, emotional and
social skills of a person. More specifically, cognitive improvements were researched
on various aspects; from better spatial cognition [20] to better attention allocation
control [21]. Among other benefits for motivation, Isabela et al. consider games to
be “an ideal training ground” for acquiring an incremental theory of intelligence [22].
Games can also make people feel in the “zone” [283], increase their overall
happiness and relaxation and even provoke a sense of “intense pride” [24]. In their
work, they also highlight that contrary to stereotypes, the average gamer is not
socially awkward, nor does he enjoy being locked up in his room alone [teens and
something]. Most gamers prefer to play games with friends, either cooperatively or
competitively. Cooperative games usually reward effective cooperative and
supportive actions, promoting prosocial behaviours to the players [19].

Moreover, games possess an inherent ability to sustain user engagement, as
evidenced by research [25], [26]. Serious gaming is a field of research that tries to
capitalize from this engaging quality of games by trying to adapt non-game
contexts, such as education and training, into gaming experiences. The aim is to
engage the player in such a way that they unwittingly acquire knowledge and
comprehension in areas they might not typically have the patience to learn about.

2.1.2 Artificial Intelligence in Video Games

Artificial intelligence (Al) represents a field within computer science dedicated to
the creation of machines and systems capable of executing tasks that typically
demand human intelligence. These tasks encompass activities like reasoning,
learning, planning, decision making, perception, and natural language processing.
Al finds application across diverse domains, addressing challenges in areas such
as robotics, medicine, education, finance, and entertainment [27]-[35].

Within the broader scope of Al, “Game Al” stands as a distinct subfield [36]. It
concentrates on the development of intelligent agents and systems capable of
interacting with or simulating games. Games, defined as formal systems with rules,
goals, challenges, and feedback mechanisms, also function as environments to
assess the skills of both human and artificial agents [37], [38]. Game Al serves
various purposes, primarily enhancing the gameplay experience of the human

2.2 Related Work

player but it can also contribute to content generation, game design testing and
balancing mechanics, as well as serve as a research platform for other Al
techniques [36].

One of the most formidable challenges encountered in game Al is performance
optimization. To create games that feel realistic and immersive, multiple systems
must operate in tandem, all within the constraints of an extremely tight timeframe.
Game development typically allocates approximately 16.67 milliseconds per frame
to achieve the requisite 60 frames per second (FPS) performance, which is
considered the common acceptable standard [39]. Within this limited timeframe, a
game must handle tasks ranging from rendering graphics and animations to
managing NPC Al and numerous other functions.

To achieve such performance, many functions in a game become
approximations trying to oppose an optical illusion to the player as of to what is real.
As technology continues to advance, games become increasingly impressive,
raising player expectations with each release. The player's willingness to suspend
disbelief becomes harder to satisfy, emphasizing the importance for the game
development community to continually push boundaries and explore new
techniques to deliver captivating and cutting-edge gaming experiences.

2.1.3 Suspension of Disbelief

Suspension of disbelief is a term coined by Samuel Taylor Coleridge to describe
the willingness of a reader or a viewer to accept the fictional premises of a story,
even if they are implausible or contradictory to reality [40]. It is a crucial concept for
understanding the immersive and emotional effects of narrative media, such as
literature, film, and games.

In the context of games, suspension of disbelief can be seen as a skill that
players use to construct narrative coherence from the often dissonant elements of
gameplay and story [8]. For example, players may ignore the unrealistic aspects of
game mechanics, such as health bars, inventory systems, or save points, and focus
on the narrative aspects, such as characters, dialogue, or plot. Alternatively, players
may integrate the game mechanics into their interpretation of the story, such as by
rationalizing them as part of the game world or the protagonist’s abilities.

However, suspension of disbelief in games is not a passive or automatic
process. It requires active participation and engagement from the players, who
have to balance their attention between the game rules and the game fiction [40].
Moreover, suspension of disbelief in games is not a binary or stable state. It can
vary depending on the player’s preferences, expectations, and mood, as well as on
the game’s design, genre, and mode. Suspension of disbelief can also be
challenged or broken by various factors, such as bugs, glitches or inconsistencies

[8].

Chapter 2: Introduction

2.1.4 Believability of Non-Player Characters

For the continuation of this thesis, “believable” non-player characters (NPCs)
are those system agents that behave in ways that are consistent, realistic, and
respond with expected ways to the player’s actions or the game’s events [1]. NPCs
that do not follow this narrative immersion, as termed by Adams [41] can break the
player’'s immersion and suspension of disbelief by creating a sense of disconnect
between the game world and the player's expectations. For example, if an NPC
repeats the same dialogue over and over, ignores the player’s presence or
questions, or reacts inappropriately to the game’s situations, such as being calm
during a crisis or hostile during a peaceful encounter, the player may feel that the
NPC is not a living being, but a scripted object. This can reduce the player’s
emotional involvement and identification with the game’s story and characters, as
well as undermine the game’s credibility and coherence. Realistic NPCs can also
maintain narrative coherence by supporting the game’s theme, genre, and mode.
For example, realistic NPCs can follow the conventions and expectations of the
game’s genre, such as being heroic in an action-adventure game or being
mysterious in a horror game. Believable NPCs can also match the tone and mood
of the game’s mode, such as being humorous in a casual game or being serious in
a simulation game. Furthermore, such NPCs can also disrupt narrative coherence
in a positive way by introducing conflict, tension, or surprise in the game story. For
example, realistic NPCs can betray, deceive, or challenge the player, creating a
sense of drama and intrigue.

2.2 Related Work

2.2 Related Work

After establishing the background theory, we shift our focus to existing works
that align with the objectives of Autonomia. We examine research efforts and
projects that share either the overarching aim or specific goals similar to those
pursued by Autonomia. This comparative analysis helps position Autonomia within
the broader context of the field, highlighting its unique contributions and areas of
innovation.

2.2.1 Behaviour Models

In the field of artificial intelligence and computer science, understanding and
modeling human or agent behaviour is a pivotal aspect of designing intelligent
systems. This section delves into the realm of behaviour models, which serve as
fundamental ground for orchestrating the actions and decision-making processes of
agents, whether they are autonomous robots, video game characters, or other Al-
driven entities. By examining a range of behavioural modeling techniques, including
Finite State Machines (FSM), Fuzzy Finite State Machines (FUFSMs), behaviour
Trees, Stanford Research Institute Problem Solver (STRIPS), Goal-Oriented Action
Planning (GOAP) and Hierarchical Task Networks (HTN), we explore the rich
landscape of methods that enable machines to exhibit complex behaviours, adapt
to changing environments, and interact effectively with the world around them.
Through this exploration, we gain valuable insights into the underlying theories and
practical applications of these models, which are essential for the development of
intelligent and responsive Al systems.

2.2.1.1 Finite State Machine

FSM (Finite-State Machines) is a technique used to generate decisions for
agents within games or simulations [42]. This method employs a state-centric
approach, aiming to simplify the process of creating agent behaviours based on
states and transitions. Rooted in the theory of computation, FSMs are designed to
cater to the demands of low-level and reactive behaviours, such as movement,
animation, or combat.

FSMs consist of a set of states and transitions between them, where each state
represents a distinct behaviour or action, and each transition is triggered by a
condition or event. FSMs are easy to implement and understand, but they can also
become complex and unwieldy when the number of states and transitions grows.

The history and development of FSMs can be traced back to the early days of
computer science and game development. FSMs are based on the concept of

Chapter 2: Introduction

automata, which are abstract machines that can recognize patterns or perform
computations. Automata theory was developed by mathematicians and logicians
such as Alan Turing, Alonzo Church, and John von Neumann in the 1930s and
1940s [43]. Automata theory provided the foundation for the fields of computation,
programming languages, and artificial intelligence.

FSMs were first applied to games in the 1950s and 1960s, when computer
games were still in their infancy. One of the earliest examples of FSMs in games
was Nimrod[44], a machine that played the game of Nim against human opponents.
Nimrod used an FSM with four states to determine its moves based on the number
of remaining pieces. Another early example of FSMs in games was Spacewar! [45],
one of the first video games ever created. Spacewar! used an FSM with three
states to control the behaviour of the enemy spaceship.

FSMs became more popular and widespread in games in the 1970s and 1980s,
when arcade games and home consoles emerged. Many classic arcade games
used FSMs to create simple but engaging behaviours for their characters and
enemies.

FSMs continued to be used in games in the 1990s and 2000s, when games
became more complex and realistic. Many genres of games used FSMs to create
diverse and dynamic behaviours for their agents, such as shooters, strategy,
simulation, or role-playing games. For example, Half-Life [46] used an FSM with six
states (idle, alert, combat, scripted, dead, and prone) for each enemy soldier.

FSMs have some notable strengths, such as providing agents with robustness
and versatility in decision making. They allow agents to select different actions
based on the context at hand. FSMs are also among the cheapest behaviour
models in terms of computational resources allocation, and they are simple to
design and implement. However, FSMs have some limitations as well. The main
drawback is their limited expressiveness and difficulty in modeling complex game
scenarios. In such cases, a system would have too many states and transitions,
which would make the FSM hard to read and configure [46].

2.2.1.2 FuSM

FuSM (Fuzzy State Machines) [42] is a technique used to generate decisions
for agents within games or simulations. This method employs a fuzzy logic
approach, aiming to handle the uncertainty and ambiguity in the game environment.
Instead of having binary transitions between states, FuSMs have fuzzy transitions
that are weighted by a degree of membership, which represents how much a state
is active or applicable at a given moment. FUuSMs can produce more smooth and
natural behaviours than FSMs, as they allow for blending and mixing of multiple
states. FuSMs are often used for high-level or strategic behaviours, such as
decision making, planning, or learning.

2.2 Related Work

However, external factors can lead to utility fluctuations or unexpected changes,
resulting in outcomes that are hard to anticipate. Debugging and testing can also
pose challenges, as agent behaviour can be influenced by numerous variables and
conditions, while utility scores can be difficult to visualize and comprehend. The
applications and extensions of FuSMs are wide-ranging, with many games and
simulations integrating or adapting the technique for their agents. Notable examples
include The Sims, Clone Combat 2, SW.A.T. 2 [47] and many more.

2.2.1.3 Utility Al

Utility Al [48], or Ultility-based Atrtificial Intelligence, emerges as a technique
employed to facilitate decision-making for agents within gaming and simulations.
This method revolves around optimizing agent action selection based on their
inherent benefits. Rooted in the concept of utility from the economic and psychology
sciences, UtilityAl is designed to cater to the demands of real-time and dynamic
environments, using numerical values, formulas, and scores to quantify the relative
utility of potential actions, streamlining the decision-making process. Within this
framework, a decision system identifies the action with the highest utility or employs
probabilistic methods based on utility scores for action selection.

UtilityAl rests on the premise that agents act rationally to maximize their utility —
a measure of their preference or valuation of outcomes or states. Utility's definition
is contextual, with factors such as health, hunger, happiness, safety, or wealth
influencing its formulation. Mathematical functions or curves capture the changes in
utility concerning various inputs or variables. These functions represent proportional
relationships (linear), diminishing returns (exponential), increasing returns
(logarithmic), threshold (sigmoidal), or custom-made complexities. By embracing
these functions, Utility Al captures agents' nuanced preferences and behaviours,
adding depth to their decision-making process.

UtilityAl boasts strengths in providing agents with robust and flexible decision-
making capabilities. It simplifies code maintenance and enhances believability, as
agents showcase a wider array of actions that are also transparent as of why they
occur, making them easy to debug. However, utility-based Al requires careful
handcrafted values for it's actions and a large amount of developing will be
allocated to testing and configuring. Kevin Dil et al. who have served as experts in
the field of computer science have provided with design patterns and ways to
configure a utility-based Al [48].

2.2.1.4 Behaviour Trees

Behaviour trees (BTs) are a powerful and popular technique for creating game
Al [49], as they allow for complex and dynamic behaviours to be composed of
simple and modular tasks. Behaviour trees are also easy to design, test, and

10

Chapter 2: Introduction

debug, as they provide a clear and intuitive graphical representation of the Al’s
decision-making process. A behaviour tree is a directed tree that consists of three
base types of nodes: root, control flow, or execution. The root node is the starting
point of the tree, and it has only one child node. The control flow nodes are the
inner nodes of the tree, and they determine how the tree is traversed. The
execution nodes are the leaf nodes of the tree, and they perform the actual actions
or conditions that control the Al entity.

The control flow nodes are then commonly classified into four types: sequence,
selector, parallel, or decorator. A sequence node runs each of its child nodes in
order until one fails, or all succeed. A selector node runs each of its child nodes in
order until one succeeds, or all fail. A parallel node runs all of its child nodes
simultaneously until a certain condition is met. A decorator node modifies the
behaviour or outcome of its single child node.

The execution nodes can be further classified into two types: action or condition.
An action node performs a specific task or behaviour, such as moving, attacking, or
speaking. A condition node checks a certain state or variable, such as health,
distance, or visibility.

The behaviour tree is executed by traversing from the root node to the active
node every frame, following the logic of the control flow nodes and the status of the
execution nodes. The status of a node can be one of three values: running,
success, or failure. A running status means that the node is still performing its task
or checking its condition. A success status means that the node has completed its
task or satisfied its condition. A failure status means that the node has failed to
complete its task or satisfy its condition.

Behaviour Trees are a well-defined structure that can provide readable,
performant, and self-contained behaviours. Such behaviours can also include
control flow logic and be easy to debug. Unfortunately, behaviour trees start to fail
when the behaviour begins to scale, becoming unreadable when they have many
nodes and branches. Furthermore, BTs are tightly coupled with their specific agent
or system, making them difficult to reuse. Finally, they are not great either when
dealing with dynamic environments since they have limited to no capabilities of
adapting and dynamically changing their structure.

The applications and extensions of behaviour trees are wide-ranging, with many
games and simulations integrating or adapting the technique for their agents.
Notable examples include “Halo” [50], a sci-fi shooter featuring enemies with
realistic and adaptive behaviours based on utility functions and curves. “DEFCON”
is another commercial game that found success basing its implementation on
behaviour trees [49]. In this game, a cold-war scenario is simulated where the
player assumes the role of an army general hidden in a bunker, in hold of heavy
weaponry and attempts to destroy the enemy is psychological warfare.

11

2.2 Related Work

2.2.1.5 STRIPS

The “Stanford Research Institute Problem Solver” or STRIPS [51], [52], was
initially an automated planner but was later known as a formal language for
describing planning tasks, which consists of an initial and goal condition formed by
conjunctions of propositional atoms and a set of actions made up by a precondition,
add and delete lists. STRIPS planning is one of the most studied problems in
artificial intelligence, and it has many applications in games, simulations, robotics,
and other domains.

The complexity of STRIPS planning was first analyzed by Bylander et al. [51],
who showed that the problem is PSPACE-complete in general, and NP-complete
for some restricted classes. Bylander also identified some tractable subclasses of
STRIPS planning, such as those with bounded plan length, bounded number of
actions, or acyclic causal graphs.

One of the most successful approaches to finding plans for STRIPS tasks is to
use search algorithms that explore the space of possible states or actions. There
are two main types of search: forward search and backward search. Forward
search starts from the initial state and applies actions until a goal state is reached,
while backward search starts from the goal condition and regresses over actions to
produce sub goals until a subgoal satisfied by the initial state is obtained. Forward
search is also called progression, while backward search is called regression.
Kautz and Selman [53] proposed one of the first forward search algorithms for
STRIPS planning, called SATPLAN, which encodes the planning problem as a SAT
formula and uses a SAT solver to find a satisfying assignment that corresponds to a
plan. SATPLAN was later improved by Kautz et al.,, who introduced several
techniques to reduce the size and complexity of the SAT encoding, such as action
ordering constraints, mutex constraints, and relevance analysis. On the other hand,
Bonet and Geffner [54] proposed one of the first backward search algorithms for
STRIPS planning, called HSPr, which uses heuristic functions to guide the search
and select the best actions to regress over. HSPr was later extended by Bonet et
al., who introduced several techniques to improve the quality and efficiency of the
heuristic functions, such as relaxed plans, additive heuristics, and landmarks.

Another way to approach STRIPS planning is to extend or modify the language
to capture more expressive or realistic features of planning tasks. For example,
Fikes and Nilsson [55] introduced conditional effects, which allow actions to have
different effects depending on some conditions.

2.2.1.6 GOAP

GOAP (Goal-Oriented Action Planning) is a technique used to generate plans
for agents within games or simulations. This method employs a goal-centric
approach, aiming to streamline the process of generating agent behaviours based

12

Chapter 2: Introduction

on objectives. Rooted in the STRIPS formalism, GOAP is designed to cater to the
demands of real-time and dynamic environments, adapting the STRIPS concept for
more practical use.

Jeff Orkin's contributions mark a significant milestone in the history and
development of GOAP. Orkin introduced GOAP [56] while working on the game
F.E.A.R. at Monolith Productions. He was inspired by the STRIPS planning system
[52], which was developed in the 1970s as a general problem solver for automated
planning. Orkin adapted STRIPS for real-time control of autonomous character
behaviour in games, by using a simplified representation of the world state, a
heuristic search algorithm to find the optimal plan, and a flexible action execution
system that can handle dynamic changes in the environment. Orkin also added
some features, such as action weighting, interruptibility, relevance pruning, plan
monitoring, and plan blending, to make GOAP more efficient and user-friendly.

The advantages and disadvantages of GOAP are closely tied to its design
choices and trade-offs. Notable strengths of GOAP include its ability to provide
agents with flexibility and adaptability in behaviour, granting them the capacity to
select different plans based on the context and goals at hand. This approach also
reduces code complexity and maintenance efforts, as each action is encapsulated
and independent, allowing for easy addition or removal of actions. Moreover, this
modular structure increases code modularity and reusability, enabling actions to be
shared among various agents or goals, while new agents or goals can be formed by
combining existing actions. This, in turn, contributes to elevating the realism and
believability of agents, as they can exhibit a wider range of actions, intelligent
responses, and adapt to changes in their environment or state.

However, GOAP also presents certain limitations. One such drawback is the
requirement for a higher level of design effort and domain knowledge. Each action
necessitates well-defined preconditions and effects, while every goal needs a
clearly defined criterion for satisfaction. This demands a deep understanding of the
game mechanics and context. Additionally, GOAP can be prone to inefficiency and
unpredictability. The process of finding a plan can involve navigating a large search
space, coupled with a complex heuristic function. External factors can lead to plan
failures or unexpected changes, resulting in outcomes that are hard to anticipate.
Debugging and testing can also pose challenges, as agent behaviour can be
influenced by numerous variables and conditions, while plans can be intricate to
visualize and comprehend.

The applications and extensions of GOAP are wide-ranging, with many games
and simulations integrating or adapting the technique for their agents. Notable
examples include "F.E.A.R," a first-person shooter featuring enemies with
coordinated attacks and dynamic behaviours, “Transformers: War for Cybertron”
[57], [58] a third-person shooter were the player fights in a war of robots ,
“Assassin’s Creed Odyssey” [59] a large scale open-world game with hundreds of

13

2.2 Related Work

autonomous NPCs living their dalily life.

GOAP stands as a robust planning technique, rooted in a goal-oriented
perspective that generates plans for agents in dynamic, interactive environments.
Despite its successes, challenges remain in this domain, such as optimizing plans,
managing uncertainty, integrating planning with learning or reasoning, and
developing user-friendly tools for plan creation and editing.

2.2.1.7 HTN

HTN (Hierarchical Task Network) planning [60] is a technique used to generate
plans for agents based on hierarchical decomposition of tasks. This method
employs a task-centric approach, aiming to exploit the structure and knowledge of
the domain to guide the planning process. Rooted in the Al programming
languages, HTN planning is designed to handle complex and expressive planning
problems that go beyond the capabilities of STRIPS-like planners. HTN operators
are similar to STRIPS actions but can have complex preconditions and effects.
Methods are rules that define how to decompose abstract tasks into subtasks,
which can be either primitive or compound. A solution to an HTN problem is then a
sequence of operators that can be derived from the initial task network by applying
methods recursively.

As for the previous techniques, the advantages and disadvantages of HTN
planning are closely tied to its design choices and trade-offs. Notable strengths of
HTN planning include its ability to provide agents with domain-specific and
customized plans, leveraging the expert knowledge encoded in the methods. This
approach also increases efficiency and scalability, as the search space is reduced
by focusing on relevant tasks and operators. Moreover, this modular structure
enhances modularity and reusability, enabling methods and operators to be shared
among various domains or problems, while new domains or problems can be
formed by adding or modifying methods or operators. This, in turn, contributes to
elevating the expressiveness and flexibility of HTN planning, as it can handle
complex goals, temporal constraints, preferences, uncertainty, and other features
that are challenging for classical planners.

HTN planning also presents certain limitations. One such drawback is the
difficulty of acquiring and maintaining domain knowledge [61]. Each method
requires well-defined preconditions and subtasks, while each operator needs clearly
specified preconditions and effects. This demands a high level of expertise and
domain analysis. Additionally, traditional HTN planning assumes a fully predictable
path, which may not hold in real-world scenarios. This can lead to plans that are not
robust or flexible enough [62].

SHOP2 is an extension of HTN, an acronym for Simple Hierarchical Ordered
Planner 2, which is an automated planning system that can generate plans for

14

Chapter 2: Introduction

various domains and problems [63]. SHOP2 is an extension of the original SHOP
planner, which was developed by the University of Maryland [64]. SHOP2 uses a
domain-independent planning algorithm that can handle hierarchical task networks
(HTNSs), conditional effects, axioms, and durative actions and supports temporal
and metric domain planning. Lastly SHOP2 has been used for various applications,
such as web service composition [60], information gathering and practical planning
such as evacuation scenarios [65].

2.2.2 Machine Learning in Game Al

Machine learning (ML) falls under the umbrella of artificial intelligence and
revolves around the use of algorithms and statistical models to enable machines to
act without explicit programming. It allows non-player characters (NPCs) to learn
from data, experiences, or rewards, allowing them to enhance their performance
over time.

Machine learning techniques garnered significant recognition with landmark
achievements such as AlphaGo, DeepMind's Al, defeating the world champion in
Go, an intricate game demanding profound intuition. This breakthrough illustrated
the immense potential of machine learning in tackling complex challenges [66].

Another remarkable instance of machine learning's capabilities pushed to the
extreme can be seen in the "Dota 2" team developed by OpenAl [67]. This Al
system achieved the unprecedented feat of defeating world champions in an e-
sport game. Notably, the system underwent rigorous training, processing
approximately two million frames every two seconds over a training period spanning
ten months. These monumental successes highlight the remarkable power of
machine learning in mastering and excelling in tasks that demand high-level
strategic thinking and decision-making.

Kunanusont et al. [68] have proposed a General Video Game Atrtificial
Intelligence (GVG-AI) framework based on deep learning, to allow systems to play
games learned through screen-captured video.

Joon Sung Park et al. [69] in their recent work, surprised the research
community by making a video game simulation of 25 instances of ChatGPT, each
role-playing as its own person, all living in the same community. Those ChatGPT
personas, could even self-reflect and showed in general great social interactions.

2.2.3 Social NPCs Model

Social NPCs are non-player characters that can interact with the player and
other NPCs in a game world, using social cues, emotions, relationships, and goals.
Social NPCs can enhance the immersion, realism, and narrative of a game, as well
as provide more opportunities for gameplay and exploration. Several approaches

15

2.2 Related Work

have been proposed to model social NPCs in games, using different techniques
and frameworks.

2.2.3.1 Comme il-Faut (CiF)

One of the most influential works in this domain is Comme il-Faut (CiF) [70], a
social agent architecture that represents rich social interactions between agents
that include emotions, social and relationship contexts, and longer term mood. CiF
was applied to the inaugural game “The Prom”, which is an interactive narrative
experience centered around a clique of high school students, mainly from the
counter-culture scene, as they navigate the final week leading up to their prom
night. In this game, players assume the role of guiding these characters in making
social choices. They must decide from a range of options, such as flirting, sharing
interests, or cracking jokes at someone's expense, based on the characters' current
thoughts and feelings. These interactions unfold as detailed dialogues between the
characters. The game utilizes CiF's algorithms to generate social action lists for
each character, taking into account their unique personalities, existing relationships,
and past social experiences.

CiF-CK is a social agent architecture developed by Guimaraes et al. [71] and is
based on CiF. This work elevated CiF and created a mod for the successful game
title “The Elder Scrolls V: Skyrim” to apply and evaluate their architecture, having
the player himself interacting with those social agents through Skyrim’s first-person
perspective gameplay.

2.2.3.2 FAtiMA Modular

The FAtIMA modular [72] is an agent model architecture that encapsulates the
minimum set of functionalities, considered by the authors, to build emotional
agents. Their approach allows them to quickly and easily build various social agent
models in order to compare them and evaluate them. Seven vyears later,
Mascarenhas et al. [73] assembled a collection of diverse open-source tools
specifically tailored for emotional agents, each possessing a degree of decision-
making capacity. These tools also feature an integrated dialogue system closely
aligned with the common industry technique of dialogue trees. To showcase the
practicality of their work, they undertook various use case scenarios.

For instance, "Space Modules Inc" serves as an illustrative example. In this
game, players take on the role of customer service representatives on behalf of a
spaceship part manufacturer. Each customer in this virtual world exhibits a distinct
emotional profile, demanding the player to employ unique social strategies or
tactics in handling each situation effectively.

Another intriguing project they embarked upon is "Police Interrogation" a virtual

16

Chapter 2: Introduction

reality game where players assume the role of a police officer. Their objective is to
extract as much information as possible from subjects without letting the situation
spiral out of control. These practical applications of emotional agents and dialogue
systems underscore the versatility and real-world relevance of their open-source
tools.

2.2.4 World State Representation

In his work [74], Jeff Orkins highlights the importance of a symbolic
representation of the world state based on two observations; a) today’s
expectations of game Al are beyond a simple finite state machine, and b) planning
algorithms like GOAP are computationally expensive if left unchecked. Various
optimizations need to take place, and it is mandatory for the algorithm to be able to
connect goals and behaviours through their preconditions and effects. In addition,
he speaks of context (or procedural) preconditions and effects, which represent a
piece of code that will run upon the execution of logic, and that it is mostly used for
pruning the search tree.

There is also a plethora of works that highlight the importance of modeling a
game’s world state in a semantic way. Kessing et al. [75] iterates over the key
benefits of having a semantic world and they build a tool named Entika to facilitate
the deployment of such mechanisms in a game. Afonso’s and Prada’s work [76]
was also inspiring for this work as they provide a model of agents that can relate
having as a basis a dominant psychological theory regarding personal agency, the
Theory of Mind [77], [78].

2.3 Progress beyond the state of the art

This section discusses the progress beyond the state of the art of the work
presented in this thesis. The Autonomia Framework introduces novel concepts and
approaches that break new ground and surpass the current state of the art in
several key aspects.

1. A World State that replicates a Theory of Mind: The world state in
Autonomia is modeled as a Memory class which is purely based upon the
Theory of Mind and knowledge graphs. This allows the system to have
recursive representations of various micro-world states, depicting the
personal perspectives each NPC has for the world and the people around it.
This architectural decision allows Autonomia’s world state to have a multi-
ordered [79] theory of mind representation.

2. Behaviours and goals reside in Memory: Everything an NPC knows in

17

2.2 Related Work

Autonomia is extracted either by its Memory or Perception module. This
allows the execution and evaluation of behaviours and goals to be made in
a realistic manner with knowledge accessible only from their own, unique
theory of mind. In addition, behaviours and goals themselves are part of this
world state representation, they are modeled and used in a way that allows
them to be treated as first class citizens of the Memory class and in this
way, they can be communicated, forgotten or even discovered. Lastly, other
behaviour models can be encapsulated in Autonomia’s behaviours to enrich
them with the first-class citizen attribute.

3. Planning through expressive and procedural preconditions and
effects: In Autonomia, plans are devised using a Goal-Oriented Action
Planning (GOAP) algorithm. What sets this approach apart is the use of
Expressions for both behaviour and goal preconditions and effects. This
elevates the algorithm by infusing it with procedural expressivity while still
supporting state matching. In addition, the Unity implementation of
Autonomia simplifies the process with: a) a simple design pattern for the
creation of user expressions, and b) a graph node editor for authoring
Expression graphs.

4. Intended Use Optimization for GOAP: This thesis introduces a new
optimization for GOAP-based algorithms that enables better control over the
formulation of plans and improves performance by narrowing the dynamic
search space of behaviours.

5. Common ground for Research: The problem of NPC believability is a
multifaceted problem spanning from visual fidelity to behavioural and
emotional authenticity. The Autonomia Framework, as an open-source and
extensible project, offers a collaborative platform for researchers to
contribute their expertise. The ultimate goal is to collectively work towards
crafting realistic NPCs, making it a valuable and unifying endeavor for
research in the field.

18

Chapter 3: Framework Architecture

Chapter 3
3 Framework Architecture

Game development is renowned as one of the most demanding fields in
software engineering. It continually presents new challenges and higher
expectations. To keep pace with this evolving landscape, the game development
industry recognizes the paramount importance of having the right tools for the job.
This thesis places its primary emphasis on the Autonomia Framework as a tool
designed to aid fellow developers. The framework serves as a foundational
structure that can be extended, allowing developers to concentrate on specific tasks
and problems that suit their expertise. For instance, a future implementation of the
system could include emotional Al libraries running in parallel with ML trained
animation systems, whilst having graphical tools for game designers to freely
express their creativity. It's crucial to note that the framework, as presented here, is
not intended as a final nor a complete solution. Instead, it is an invitation to the
research community and developers to explore, build upon, and refine this
framework further.

3.1 Overview

In this chapter, we delve into the architectural decisions that form Autonomia,
presenting the specific definitions and classes that are heavily used in the core of
our framework. We will explore essential components that underpin Autonomia's
functionality, providing a comprehensive understanding of its inner workings. These
fundamental components include:

e World Representation Based on the Theory of Mind: We explain how
Autonomia utilizes the Theory of Mind to construct a rich world
representation that facilitates NPCs' understanding of their environment and
interactions.

e Module System: This section elaborates on how our modular system
enriches the nodes of the knowledge graph within the framework,
empowering them with extended functionality and flexibility. We present in
this section the core modules of Autonomia.

e Expression, Behaviour and Goal (EBG) System: Definitions for the

interconnected systems of expression, behaviour and goals and how they
synergize to drive and plan NPC actions, reactions and plans.

19

3.2 Methodology

Together, these components form the foundation of Autonomia, enabling the
creation of intelligent NPCs. As we delve into the specifics, readers will gain
insights into how Autonomia leverages these elements to enhance the authenticity
and complexity of NPC interactions in the context of video games. Yet, the core of
the framework is not enough to run on its own, since it only provides the basic motif
and tries to enforce specific patterns. It is up to the developers to implement and
extend the framework based on their own development needs.

3.2 Methodology

The development and design of the Autonomia Framework followed a
structured methodology that combined a detailed literature review, iterative
prototyping, and a strong commitment to ambitious research. The approach taken
in this project differed from conventional game development, which tends to
prioritize safety and predictability due to industry demands. Research, on the other
hand, allows for greater creativity and exploration of unconventional ideas, even if
they carry a risk of failure. As illustrated in the following subsections, the
methodology used in creating the Autonomia Framework involves literature review
and theoretical foundation as well as iterative prototyping and development.

3.2.1 Literature Review and Theoretical Foundation

The initial phase of the framework's development commenced with an extensive
literature review, which spanned a wide range of sources. These sources included
academic papers, books, online documentation, and industry standards. The
primary objective of this review was to acquire a comprehensive understanding of
existing game Al frameworks, Al theories, and software engineering best practices.

Building upon this knowledge, the theoretical foundation for the Autonomia
Framework was laid. This involved synthesizing relevant Al concepts, such as the
Theory of Mind, major behavior models, and programming design patterns that
facilitate code scalability. These theoretical insights served as the basis for making
architectural decisions and establishing core design principles for the framework.

3.2.2 lterative Prototyping and Development

The development of Autonomia followed an iterative and agile approach. This
methodical process commenced with a significant amount of time dedicated to
designing the overarching concept. The primary focus during this phase was on
bridging the gaps within existing methodologies and techniques, as well as

20

Chapter 3: Framework Architecture

identifying innovative ways to enhance NPC believability.

Following the initial design phase, multiple prototype versions of the framework
were created, each building upon the insights gained from the previous iteration.
These prototypes served as experimental platforms for exploring different
architectural structures, algorithms, and features. Feedback collected from
prototype testing played a pivotal role in refining the final architectural design.

Throughout the development process, a strong emphasis was placed on
adhering to software engineering best practices. This included the implementation
of version control, issue tracking, and coding standards.

3.3 Theory of Mind & World Representation

3.3.1 Theory of Mind

Theory of Mind [77], [78] is a term used in phycology to describe the ability of
one’s self to understand the mental state of others. Its definition extends to being
able to define and determine different emotional states, feelings, desires, beliefs or
even thoughts of others. A person using his Theory of Mind (ToM) should be able to
extend, predict and explain the behaviour of others. For example, if person A,
notices person B crying, person A could explore his current model of the world, his
theory of mind, in order to understand why person B is having this reaction. Using
common knowledge, person A can assume that person B is for some reason sad.
Then by delving deeper and extending his ToM through perception, person A might
narrow down the reasons person B is crying and is sad, or maybe realize those
tears are tears of joy.

Our theory of mind allows us to interact with other social beings in meaningful
ways; to empathize, communicate and even understand different perspectives and
interpretations of events. Each one’s theory of mind is gradually developed from
infancy. Babies begin paying attention to facial expressions, voice alterations and
gestures. From there, people begin realizing their own emotions, realize that other
people have other beliefs and perspectives and sooner or later develop more
complex skills such as sarcasm, humor or even deception. It is important to
highlight, that even thought to some degree all people are able to construct their
own theory of mind, and each one can vary based on the person, situation and
culture. Also, it is not a unique skill to humans. Some animals, such as apes,
dolphins, elephants, dogs, and crows, have shown evidence of having some form
and capability of theory of mind.

21

3.3 Theory of Mind & World Representation

3.3.2 World State in Video Games

The world state is a term that refers to the current condition and status of the
game world and its elements, such as the environment, the characters, the objects,
the events and others. The world state can change dynamically based on the
actions and choices of the player and other agents, as well as random or even
scripted events. The model of our world state will define the strengths and
weaknesses of our engine. For example, in a role-playing game, the world state
might include the level, health, inventory, and reputation of the player character, as
well as the quests they have completed or failed, the allies and enemies they have
made, and the locations they have visited or unlocked. The world state might also
include the weather, time of day, seasons, political situation, and cultural events
and rules of the game world. These factors can influence how the player interacts
with the game world and how the game world reacts to the player.

3.3.3 Autonomia World State

The Theory of Mind (ToM) is a multifaceted concept comprising various
interconnected mechanisms that collectively enable us to comprehend, experience,
and respond to the world around us. It is only rational for ToM to serve as the
foundation for Autonomia. In our attempt to address this issue, we directed our
attention to developing a world state representation capable of mirroring the nature
of ToM. After researching the literature, brainstorming sessions, and testing, we
arrived at the conclusion that a knowledge graph structure would best align with our
objectives. Although relatively uncommon in game development, the adoption of
knowledge graphs represents an emerging trend that offers significant potential
advantages.

A knowledge graph is a structure for representing information in the form of a
network of nodes and edges. Nodes represent entities or concepts, while edges are
the relations among them and each of those may contain labels or properties of any
type. A knowledge graph inherently has the ability to capture semantic meaning and
context of information, thereby enabling reasoning and inference based on the data
it contains. Furthermore, this approach opens the door to future possibilities,
including natural language interactions within the game world, such as querying,
narrating, or even engaging in conversations. Additionally, it facilitates the
integration of external data and knowledge sources into the game world, enriching
the realism, diversity, and relevance of game content with minimal effort. However,
it's important to acknowledge that these benefits do introduce increased complexity
and challenges, particularly concerning real-time performance optimization in the
game environment.

22

Chapter 3: Framework Architecture

House

live at

Gardner’s Family

member of

John
Anna

father of

sister of

Marisa

Figure 1: Example of a knowledge graph

Of course, each node has the potential to represent any concept in the game
world. To attach meaning and functionality, we allow each node to have modules.
By attaching modules to a node we can classify it into different conceptual
categories. For example, a node with a Perception, Memory and Needs module can
represent a simple NPC. We elaborate regarding modules in the next section.

3.4 Module System

Since Autonomia is a framework designed to be extended for any need and
platform, it was crucial to implement a modular system that will efficiently decouple
different functionalities. Modules have a node owner to whom they provide their
features. With a specialized function that will be discussed later, there may also
exist various copies of a module for different layers of memory.

In addition, Modules may implement methods derived from the base Module
class to fulfill their functionality or even serve as plain data containers. They also
have the option to serialize or deserialize their data to be persistent throughout
sessions. In the following subsections we describe the main Modules used in the
core version of Autonomia.

3.4.1 Active Events Module

During the early stages of Autonomia's development, we recognized the

23

3.4 Module System

necessity of implementing an event system. In our context, an event signifies any
observable action, such as eating, walking, or conversing, and is defined by an
actor, a type, and a subject. Another way to view events is as temporary relations
actively being caused by some action. For example, the action of drinking water is a
relational fact as much as an action, but it is due to last for a brief moment.

In order to represent a currently running event in the world, we created a Module
named ActiveEvents. Any component in the framework that will begin an effect has
the responsibility to access the ActiveEvents module, add the newly created event
and remove it to signal the event's conclusion. So, the ActiveEvents module is our
way of exposing actions to our perception system which will be discussed later.

3.4.2 Event Interpreter Module

In addition, we dictate that events are nothing more than plain data. On their own
they do not carry any meaning. Thus, we created another Module named
Eventinterpreter. This module assumes a crucial role within Autonomia, as it
focuses on updating an NPC's Memory, specifically its relational memory. By
isolating the responsibility for updating relational memory, we enable the system to
potentially generate context-aware assumptions and interpretations of events. For
instance, consider a scenario where two individuals engage in a physical fight; this
event can be interpreted in multiple ways. It could signify hatred between them, or it
might be a friendly sparring match. Alternatively, one individual could be a law
enforcement officer apprehending the other for reasons known or unknown to the
virtual agent. This approach reinforces our assertion that events, by themselves,
lack inherent meaning.

So, each Eventinterpreter may have multiple interpretations for the same type of
event, but each can be characterized by a “matching score”. The interpretation with
the highest score gets to alter the memory of an NPC when the need arises.

Lastly, we have facilitated the ability for interpretations to be transferred from
NPC to another NPC. This addition allows us to have a newborn child agent that
cannot make sense of the world, but as it grows older it begins to understand, be
taught, and eventually teach others the ability to interpret.

24

Chapter 3: Framework Architecture

._'

Event
stores event updates relations

ActiveEvents = perceived = '— L—— Eventinterpreter

V.

matches Event to
interpretation

Eventinterpretation

Figure 2: ActiveEvents, Perception and Eventinterpreter

3.4.3 Perception Module

We have chosen to model Autonomia's perception system after the principles of
human perception. This system comprises three key layers as shown in Figure 3.
Detectors being implementation-specific; assume the responsibility of identifying
and storing current Events or Nodes within their designated stimuli. At any given
point in time, the Perception module can access all available stimuli, enabling it to
retrieve related information. By combining various sensory modalities, including
visual, auditory, and potentially supernatural senses, we can enable our agents to
respond dynamically to their environment.

25

3.4 Module System

Perception :
Perception
Layer
Stimulus :
Visual Stimulus Auditory Stimulus Any Stimulus
Layer eeoo
Detector))
Visual Detector Auditory Detector Any Detector
Layer

Figure 3: Perception system structure of Autonomia

The Perception module holds a pivotal role within the Autonomia system, as it is
responsible for actively searching for detected events and subsequently forwarding
them to the Eventinterpreter module. Furthermore, the perception operates on a
publish-subscribe (pub/sub) basis, enabling other modules to request specific event
notifications from the perception system.

It is crucial to emphasize that, at this point, the perception system serves as the
sole conduit of communication between an NPC’s memory and the external world.
This design decision allows us to introduce a filtering mechanism within the
perception system, referred to as what we term a "memory-local node". That
means, that every module subscribing to an event through perception, will always
receive nodes in their “memorized version”. For instance, in a scenario where Node
A visually perceives Node B, Node A's knowledge about Node B should be
restricted to what it already possesses in its memory. Node A should not gain
access to information about any hidden objects behind Node B's back unless it has
prior knowledge of this fact or chooses to interpret and assume such knowledge.
This represents a fundamental concept within Autonomia's framework, as every
other module providing functionality to an NPC is strictly constrained by the NPC's
existing knowledge base through the Perception module. Implementation details
regarding Perception can be found in section 4.2.6.

3.4.4 Memory Module and the Theory of Mind

The Memory module is composed of two distinct types of data structures:

26

Chapter 3: Framework Architecture

e Relations: This structure takes the form of a knowledge graph, representing
all the relational knowledge of the nodes of the world,

e FEvent Index: This structure is used as an efficient way for swiftly retrieving
stored events.

In our implementation, we have utilized interfaces to allow for custom
implementations of both graph structures and event indices. Additionally, we have
introduced a class named MemoryQuery. This class serves as a library of method
calls designed to streamline the traversal and manipulation of these structures. For
instance, we have implemented functions such as "get neighbors," "get relation by
type," and even support for breadth-first searches to facilitate graph traversal.
Lastly, MemoryQuery supports a simple type of non-nested string queries.

Relations [Eventindex]

House

live at

Attack Event

Gardner’s Family

member of Grab Event

h
Anna John

father of Prompt Event

sister of Marisa

Figure 4: Memory Module representation structurally

An essential design principle characterizing the Memory module revolves around
the concept of exclusively returning the "memory-local node" at any given point in
time. This design choice plays a pivotal role when coupled with the perception
system, as it enables agents to exhibit realistic behaviour based uniquely on their
knowledge of the world.

27

3.4 Module System

To illustrate this principle, consider three nodes within our scenario: Node A and
Node B, both residing in the same house, and Node C, representing a food
resource in the fridge. If Node B were to wake up early and consume Node C, it is
logical that Node A remains unaware of this occurrence. Reasonably, the expected
behaviour for Node A would have him waking up, planning to remember where
Node C is, proceeding to its location, only to realize that it is no longer present. This
mechanism ensures that Node A's actions align with its knowledge, promoting
realistic and immersive agent behaviour within the system.

The most important contribution of this module is yet to be explained, but in its
current state it has already singlehandedly achieved, as defined, a multilayered
Theory of Mind. The key takeaway is that nodes are defined with their modules
included. A Node in the relational part of a Memory module can contain a Memory
module which as well can contain other Memory modules of other NPCs and so on.
This leads to a scenario in which Node A contains a version of Node B's knowledge
as he perceives it, and vice versa, which in itself creates a never-ending recursive
loop of “if he knows-they know he knows” etc. This is further illustrated in Figure 5.
To solve the infinite recursion problem, we assign nodes with a simDepth
(simulation or simulacrum) variable and define a maxSimDepth in our system. The
larger the maxSimDepth the more accurate theory of mind we can achieve, but we
are also bound to use more resources and greatly increase complexity.

i Node A i Node B
[J [J
ﬁ Node B i Node A
o o
Node A Node B

Figure 5: lllustration showcasing the infinite recursion

28

Chapter 3: Framework Architecture

3.4.5 Behaviour Controller Module

Behaviours have not been defined yet at this point yet, but for simplicity’s sake let
us assume behaviours as simple actions, for instance walking, running, eating,
sitting etc. Various modules which can also be completely agnostic to each other,
may want at some point, to initiate some behaviour. But, it is easy for behaviours to
contradict with each other, for example a person cannot walk while sitting. Thus, we
created the BehaviourController module which is tasked with deciding which
behaviour should run at which point.

This problem required a lot of careful thinking and planning. Some ideas we
experimented with were CPU scheduling algorithms like round-robin but they do not
necessarily make sense in our human behavioural context. Also, we brainstormed
ideas of separate body limb declarations for each behaviour. For example, we may
be walking down the street going to work, which is a behaviour that mostly occupies
our legs. This does not stop us from greeting someone, a behaviour which would
require the head and hand, but this thought process substantially increases
complexity. In the end, we decided that simple is better and our solution to the
problem follows next.

The BehaviourController allows competitors to have a ticket granted to them, and
each ticket is paired with an importance value which starts at zero. Then, each
competitor may “try” their ticket with an importance value. If the importance they
declared is higher than the running ticket's importance, the behaviour controller
allows them to “switch” the current behaviour to what they dictate. This of course
comes with credibility issues. A competitor may declare the highest possible value
simply to take control, but this is fine. In a game scenario the programmer wants
this control to enforce story elements to take place.

To explain our algorithm’s logic, first we need to understand that it is common
and reasonable for many mechanisms in the conscious mind to want something
done. ltis truly simple; in the end, we will do the things that we care about the most.
So, the brain’s ability to value goals is what drives us to behave in any specific way.
For instance, let us imagine Node A is at bar and that node is talking to his love
interest. He may notice his friends are also at the bar but continues talking to his
interest. At some point Node A may also feel the need to use the bathroom and we
have multiple conflicting behaviours that want control of Node A’s actions. The part
of his brain that wants to appeal to his love interest wants to continue talking but the
need to use the bathroom will gradually increase. It is only natural that when the
importance of that need becomes greater that it will take control. To extend this
example further, let us imagine that while our subjects are talking a robbery may
take place in the bar and both NPCs would ideally turn to their survival instincts.

29

3.5 Expressions, Behaviours and Goals

3.4.6 Intended Uses Module

This is a module intended purely for optimizing the A* algorithm in our GOAP
search and giving game designers more control. More details can be found in
section 4.2.14.2, yet this serves as a great example of the versatility and flexibility
of modules.

3.5 Expressions, Behaviours and Goals

It has been exhaustively discussed in the literature and is reasonable to agree
that a realistic and believable NPC has agency. There should be purpose behind
his actions and he should have dreams and goals he strives to achieve. Every
action should be supported by a reason and this concept has given rise to most
successful behavioural models that were discussed in their respective related work
chapter (2.2.1), and the games that adopted them have proved their worth.

None can doubt the complexity of the problem at hand and it is a challenge that
should not be looked down upon. It was clear that every decision in the framework’s
architecture should be made to complement this exact aspect.

In this section, we discuss our Expression-Behaviour-Goal (EBG) model. The
purpose of this model is to allow easy authoring of behaviours and goals and
allowing the system to match them through their declared expressions. Each
concept will be broken down individually, and we talk about their synergy as a
completed model in section 3.5.5. Not by any means does our model try to replace
traditional or custom behavioural models. Instead, we view it as a way to
encompass what already exists and further complement it by using our model,
which allows everything to be treated as knowledge that can be passed along
between agents.

3.5.1 Expressions

In most STRIPS-based planning algorithms like GOAP and HTNs, actions or
behaviours must declare preconditions and effects. This declaration enables the
algorithm to determine which actions can be executed under specific conditions.
For instance, an agent cannot execute an "Attack with Sword" action if he is not
already in hold of a sword. To address this, a hypothetical action like "Grab Sword"
would establish the precondition for "Attack with Sword," potentially setting a
variable like "isHoldingSword" to true. Then, the preconditions for "Attack with
Sword" would evaluate to true and the agent could execute that action.

While methods like shared blackboards are commonly employed for
precondition-effect algorithms due to their speed and efficiency, they have

30

Chapter 3: Framework Architecture

limitations in capturing all relative information or knowledge needed for agents to
plan and act effectively. This limitation compromises the expressiveness and
realism of the system [74].

Our solutions to this problem are Expressions. Drawing inspiration from Abstract
Syntax Trees (AST) [80] in compiler design, we define expressions as abstract
nodes within a simplified syntax tree, allowing users to create custom expressions
that can carry and process information in a structured manner. Ultimately, the root
of the expression tree can be evaluated, triggering a cascading evaluation
throughout the tree. If the tree successfully evaluates, the final value can be
retrieved from the expression. Detailed technical information regarding expression
methods is discussed in section 4.2.12.

We have defined two primary derived classes for expressions that automate the
matching and evaluation logic for user-defined classes:

1. Producer Expression: These expressions serve as the leaves of the tree
and can generate a value, such as StringExpression or NumberExpression.

2. Processor Expression: Expressions as such can have children whose
values they utilize to produce a new value. For instance, a MathExpression
would require two children evaluating to numbers, and another child
representing an arithmetical operation like addition or subtraction.

3.5.2 Behaviours

In our system, behaviours are an abstraction to commonly referred actions, “the
process of doing something”. Autonomia’s behaviours can refer to nonphysical
actions as well, for example thinking or planning your next action. Each behaviour
consists of two sets of expressions: preconditions, which determine the conditions
that must be met for the behaviour to execute, and effects, which specify the
desired outcomes upon the behaviour's completion.

We define the "actor" as the node executing the behaviour, and the "owner" as
the node exposing or providing the behaviour, akin to an affordance. To illustrate
this concept further, consider a "Sit Chair" behaviour. In this case, the person
intending to sit in the chair serves as the actor, while the chair itself is the owner.

Moreover, each behaviour includes methods that describe its cost or
effectiveness and an estimate of the required time based on the current actor's
knowledge. These attributes, namely the cost and required time of a behaviour,
wield considerable influence over the planner's decision-making process when
selecting behaviours as part of a plan. We will elaborate into the impact of these
factors on goal planning in the upcoming sections.

It is also important to mention, that nodes do not have any direct reference to

31

3.5 Expressions, Behaviours and Goals

their behaviours. The framework has an injection mechanism, that allows new
nodes to be created in its runtime, called BehaviourNodes. Those nodes are then
connected to their related nodes in the graph and become in a sense accessible
through them. By having Behaviour Nodes be related to nodes that expose them,
we allow them to be treated as a piece of knowledge. Node A is now able to teach
Node B the existence of a behaviour contained in BehaviourNode C, he was
previously unaware of. This is a novel addition to our system, in effect turning
behaviours as first-class citizens of the framework.

Last but not least, Autonomia’s behaviours are not created to replace previous
techniques. The purpose of the behaviour system is to allow discovery and planning
in a way that is always based on the knowledge of the actor. A behaviour could be
a Behaviour Tree [49] and then seamlessly switch to a Utility Al [48] implementation
whilst completely decoupling them.

3.5.2.1 Complex Behaviour

To facilitate more advanced actions, we introduce a specialized class known as
Complex Behaviour within our framework. Complex Behaviours are designed to
streamline the execution of abstract or high-level behaviours. For instance, consider
the "Tavern Waiter" behaviour, which is inherently intricate. It involves multiple
steps, distinct phases, and requires dynamic planning. Complex Behaviours offer
several advantages, including:

e Behaviour Queues: They enable the creation of behaviour queues, allowing
for the sequential execution of multiple behaviours. This is particularly useful
for orchestrating complex sequences of actions.

e Automated Planning/Replanning: Complex Behaviours incorporate the
ability to automatically replan in response to a behaviour not meeting its
preconditions. This ensures adaptability in the face of unexpected obstacles
or changes in the environment.

e Nested Complexity: Complex Behaviours can contain other Complex
Behaviours, fostering a hierarchical structure. In the case of "Tavern
Waiter," it may encompass behaviours like "Take Order," "Serve Order," and
"Take Bill," each of which can in turn, contain their own recursive
behaviours.

This hierarchical approach to behaviour design empowers our framework to
handle intricate, multi-step tasks efficiently and flexibly.

32

Chapter 3: Framework Architecture

3.5.3 Goals

In crafting a believable agent, the presence of goals that steer its actions is
imperative. The agent should possess an awareness of these goals and the
capability to formulate plans to achieve them. While existing literature provides
extensive insights, on the modeling of goals, in the core version of Autonomia, we
have opted for a simplified representation to accommodate future extensions. Our
model of goals comprises three key components: a) name, b) a set of expressions
that signify when the goal is satisfied, and c) a method that returns their current
value or importance. This metric assists the agent in prioritizing and selecting goals
for planning and execution.

Exactly like BehaviourNodes, we allow the existence of GoalNodes, enabling
them the same benefits discussed previously. Mainly, allowing goals to be treated
as knowledge that can be passed along. This streamlined approach to modeling
goals in Autonomia lays the foundation for the inclusion of more sophisticated goal-
related functionalities in future iterations.

3.5.4 Abstract Nodes and Wildcard values

In the early stages of Autonomia's development, it became evident that there was
a necessity for defining a node type that abstracts the specific requirements we
seek. For instance, a user might wish to declare a goal like "Sit Goal," but this goal
could be satisfied by any chair or even any object allowing a person to sit. To
address this need, we introduced the concept of Abstract Nodes.

Abstract Nodes serve as specialized nodes designed to establish a superset of
other nodes by leveraging the native labels derived from the knowledge graph
structure. Essentially, they allow for a higher level of abstraction, enabling users to
define goals and conditions in a more generalized manner, while retaining the
flexibility to encompass a wide range of specific instances. Now, when creating a
"Sit Goal," the process involves crafting an event expression of type "sit," utilizing
an abstract node labeled as "Chair" as the subject. It is important to note that this
approach necessitates that all chair nodes in the system be consistently labeled
with the "Chair" label.

For more intricate goals that involve multiple criteria or conditions, a thoughtful
design process is required in advance. This process ensures that the labeling and
abstraction of nodes align with the specific goals and objectives defined within the
system, allowing for the effective representation of complex behaviours and
objectives.

Another tool that was required to be created was the wildcard values. These
wildcards serve as placeholders that can be matched to any data type, effectively

33

3.6 Goal Planning

indicating that a value can take on any form. For instance, in the context of a "Walk
behaviour," one of its effects could be an event of the type "move" with a subject
designated as a wildcard node. This signals to the planner algorithm that the
wildcard node can represent any other node in the system.

Wildcard values enhance the flexibility and adaptability of our framework,
allowing it to accommodate a wide range of potential scenarios and conditions
where the exact identity of a subject or value may vary.

3.5.5 EBG Model

Combining expressions, behaviours, and goals, we have a completely expressive
behaviour model paired with meaning that is also easily extendable by other
programmers. The EBG model is a way of encapsulating any form of Al whilst
giving it the ability to be treated as a piece of knowledge within the game world,
essentially making behaviours and goals first-class citizens in the entirety of the
framework. NPCs can potentially discover, teach and compare behaviours residing
within the world and seamlessly be able to use them for their plans and goals.

Expressions serve as a flexible bridge between behaviours and goals. Since
expressions are based upon abstract syntax trees [80], an extended
implementation of this system could be considered its own micro-programming
language that is also easy to extend with a few lines of code. At the same time, due
to their strict syntax they can allow state matching for the GOAP [57] algorithm
making them a powerful and versatile tool.

3.6 Goal Planning

Planning is an essential aspect of our daily lives, whether carried out consciously
or unconsciously. For any intelligent life form, the ability to plan, replan in response
to obstacles and prioritize tasks based on current objectives is fundamental. Within
Autonomia, our agents are equipped with two primary planning algorithms, and the
framework allows for the incorporation of additional algorithms in future iterations.
First, we have a Goal-Oriented Action Planning (GOAP) algorithm, to enable
complex behaviour chains to be formed. In addition, Autonomia introduces a
scheduling algorithm that allows NPCs to plan their entire day proactively. This
algorithm utilizes the agent's prior knowledge of the world and projects the expected
state for each moment in time. This proactive approach enables agents to make
informed decisions and efficiently allocate their time and resources to accomplish
their tasks and priorities.

34

Chapter 3: Framework Architecture

3.6.1 Autonomia’s GOAP A* Search

Our applied algorithm combines two core techniques: A* search and Goal-
Oriented Action Planning (GOAP) but alters them just enough to fit the broader
context and dynamic world of Autonomia. Here's an overview of how our
implementation of algorithm operates:

e Behaviour Set: The agent queries all potential behaviours from his
memory, each characterized by preconditions, effects, and associated
costs. For example, in our agent’s memory there may exist a kitchen with a
plethora of tools. All of the exposed behaviours are added to the behaviour
set.

e Agent's Goal: The agent also has a defined goal, representing a desired
state or expressions it aims to satisfy. For instance, a goal might be to "Eat
Food" which is satisfied when the agent succeeds on eating a food
resource.

e A Search*: The agent employs the A* search algorithm to identify the
optimal sequence of behaviours leading to the goal. In our context, the
nodes within the search state represent states of the world as sets of
expressions, while the edges represent the most recent behaviour that
brought that state. More information can be found in section 4.2.14.2. The
A* algorithm can be optimized by using a heuristic function that enables us
to prioritize the exploration more promising routes. In our example, to satisfy
the “Eat Food” goal, an agent could calculate the following plan:
“WalkBehaviour” to get to the fridge, “OpenDoorFridgeBehaviour” exposed
by the fridge to open the door, “RetreiveFridgeltemBehaviour” to get the
apple from the fridge.

The A* GOAP algorithm empowers agents to intelligently plan their actions,
adapting to environmental changes to achieve their goals. However, as
discussed in the related work section, GOAP can be computationally expensive,
especially when applied to a large number of NPCs simultaneously calculating
plans in real-time. Contrasting conventional implementations of GOAP, instead of
using a dictionary of string keys and boolean values, we have a completely
freeform and dynamic world representation through expressions.

In Autonomia, we've implemented several strategies to ensure the efficiency of
this algorithm. We use the C# Task library to run the GOAP algorithm as an
asynchronous task, allowing concurrent execution and avoiding the blocking of the
main thread for more costly calculations. Our integration of cancellation tokens
gives us the ability to stop planning tasks at will, providing control over the planning
process. We've included a configurable maximum number of steps for each
instance of the GOAP algorithm to prevent excessive resource consumption. Lastly,

35

3.6 Goal Planning

we minimize the search space and improve the heuristic function of the A* search
by using an optimization we term “GOAP with Intended Uses”, for more information
read section 4.2.14.2

In a specific iteration of Autonomia, we used an NPC's intelligence score to
dynamically adjust the number of steps allocated to the A* GOAP algorithm. This
added practical intelligence to NPCs, allowing them to allocate computational steps
based on their perceived intelligence level.

These strategies collectively enhance the efficiency and adaptability of the A*
GOAP algorithm within Autonomia, making it suitable for managing a dozen of
NPCs in dynamic game environments.

3.6.2 Schedule

In our daily lives, we often follow a routine, with a predefined idea of how our day
will unfold. This routine typically involves waking up, tending to morning rituals,
commuting to work, putting in a nine-to-five shift, returning home, and perhaps
enjoying some leisure activities before bedtime. However, there are days when our
schedules vary, influenced by work commitments, health appointments, or
unexpected emergencies. We possess the ability to manage our daily schedules
and have knowledge of our plans.

Recognizing the significance of this aspect in shaping the believability of NPCs,
we drew inspiration from the highly successful game title Red Dead Redemption 2
(RDR2) [81]. In RDR2, NPCs lead detailed lives, adhering to daily routines while
also accommodating dynamic changes that can disrupt their schedules. To mirror
this level of realism and adaptability, we introduce a class of goals known as
"ScheduledGoals."

ScheduledGoals enable Autonomia's NPCs to incorporate schedule-based
objectives into their behaviour, besides general purpose goals. This addition not
only enhances the authenticity of the NPCs' actions but also allows for flexible
adjustments in response to changing circumstances, contributing to a more
immersive and dynamic game world.

Furthermore, the implementation of a pre-planned schedule for our agents serves
as an effective strategy to reduce the need for real-time planning, resulting in
significant performance savings. Essentially, this schedule acts as a form of "baked"
plans, predefining the agents' activities and behaviours during their daily routines in
a meaningful way. Using ScheduledGoals, NPCs can make social appointments,
work at consistent hours, etc. This proactive approach not only enhances
computational efficiency but also contributes to the seamless and immersive
execution of agent behaviours within the game world.

36

Chapter 3: Framework Architecture

3.6.3 The PlanBehaviour

In a realistic game world, it's reasonable to anticipate the frequent need for
planning. Players and agents within the game often face context-specific options
and decisions that require careful consideration. To facilitate this, we've introduced
a behaviour called PlanBehaviour into our framework.

The PlanBehaviour takes a goal as its parameter and utilizes the default planner,
which in our case is the GOAP algorithm and initiates the planning process within
behaviour instance. Once the algorithm completes its calculations, the behaviour
attempts to execute the generated plan. For example, consider a waiter who needs
to find a clean plate to serve customers. In a dynamic game scenario, this task may
require planning because clean plates may not always be readily available and
might need cleaning first. This feature enables users of the framework to easily
incorporate sub-behaviours based on specific goals within their own custom
behaviours, allowing for more intricate, readable, and context-sensitive agent
behaviours.

3.7 Compatibility with other Al models

In the ever-evolving landscape of Al and game development, the compatibility of
Al frameworks with existing models holds immense significance. Autonomia,
boasting a versatile architecture and a comprehensive array of features, is
purposefully designed to seamlessly interface with other Al models while enabling
them to be treated as a piece of knowledge within the game world. This
compatibility empowers game developers to harness a blend of Al techniques,
leading to the creation of more immersive and intricate gaming experiences.

Autonomia's commitment to openness and extensibility, we envision a future
where collaboration within the game Al research community flourishes.
Researchers and developers can build upon or even change for the better the
Autonomia framework, specializing in their respective areas of Al expertise, and
contribute to its open-source development. This collaborative approach fosters a
vibrant ecosystem where each individual can make their unique contributions,
ultimately benefiting the broader community of game developers and Al
enthusiasts.

3.8 Scalability and Performance

The scalability and performance of a game's Al system are inherently tied to the
algorithms in use and the complexity of the game world. Autonomia acknowledges
this relationship and offers a versatile framework that adapts to the specific

37

3.9 The Autonomy Paradox

demands of each game. We can theorize of ways to make the system’s most
demanding mechanisms scalable by using cloud computing to separate each agent
instance in different machines but Autonomia is far from that in its current
implementation, so we will not elaborate more on that specific topic.

In the end, Autonomia is but a tool. It is designed as an open-ended framework,
providing developers with a high degree of customizability to tailor it to their specific
needs. In essence, Autonomia's flexibility and adaptability makes it a valuable tool
for game development teams, allowing them to search for their desired balance
between Al sophistication and performance optimization, ultimately delivering a
compelling gaming experience.

3.9 The Autonomy Paradox

To deliver an immersive gaming experience, it's imperative to have non-player
characters (NPCs) that exhibit realism, dynamic worlds that evolve based on unique
gameplay, and a narrative that unfolds through scripted NPC actions. However, this
presents a challenging paradox in video game development, which we named the
"Autonomy Paradox."

The Autonomy Paradox encapsulates the dilemma faced by game developers:
on one hand, they strive for NPCs to behave realistically and autonomously,
responding to the player's actions and creating dynamic game worlds. On the other
hand, there's a need for NPCs to adhere to scripted behaviours and specific
narratives, limiting their "free-will' to ensure the progression and narrative of the
game's storyline.

This paradox is at the heart of the framework's title, Autonomia (“Aurovouia” in
Greek). It symbolizes the delicate balance that Autonomia seeks to achieve by
providing developers with the tools to create NPCs that can exhibit autonomy when
required, yet also allow predetermined narratives and behaviours when essential for
the game's storyline.

38

Chapter 4: Framework Implementation

Chapter 4
4 Framework Implementation

The implementation of Autonomia commenced in November of 2022, and has
evolved into two primary components to date. The two main parts are: a) the
Autonomia.Core library, and b) the Unity Integration.

Chapter 3 explained the theoretical point of view of the system’s architecture,
where Chapter 4 aims to provide insights on its inner workings and technical
details. Then we follow with Chapter 5, which explains the Unity Integration of
Autonomia, which serves as: a) a use case for the framework’s integration, and b)
another starting point for fellow researchers to join our work. To ensure future
collaboration and understanding, we've adhered to suitable design patterns in the
codebase, promoting maintainability and readability.

Autonomia is openly available as an open-source project on GitLab [82], [83],
fostering transparency and community engagement. We welcome and value
constructive criticism and feedback from the research and development community.

4.1 Third-Party Tools

411 C#

The choice of programming language plays a pivotal role in the development of
any software framework, and Autonomia is no exception. In selecting C# [84] as the
foundational language for Autonomia.Core, we considered several key factors that
align with our goals and objectives.

4.1.1.1 Seamless Unity Integration

C# is the primary programming language used within the Unity game
development platform. Given our aspiration to seamlessly integrate Autonomia with
Unity, adopting C# as the core language was a natural choice. This alignment
enables Autonomia to operate harmoniously within Unity, simplifying the
implementation process for game developers.

4.1.1.2 Versatility of C#

One of the foremost reasons for considering C# as a programming language for
a new framework is its versatility. C# is a statically-typed, object-oriented language

39

4.1 Third-Party Tools

that can be employed in a variety of application domains. Whether the framework is
intended for web development, desktop applications, mobile apps, and of course
game development, C# can seamlessly adapt to meet these diverse requirements.
With the advent of .NET Core, C# has transcended its Windows-centric roots and
become a cross-platform language. Developers can build applications and
frameworks that run on Windows, macOS, and Linux, making it an ideal choice for
ensuring broad compatibility and reaching a wider audience. Also, C# boasts a
robust standard library, the .NET Framework (or .NET Core/.NET 5+), which offers
a comprehensive set of APIs for various tasks such as file 1/0, networking, and data
manipulation. This extensive library support accelerates framework development by
reducing the need to reinvent the wheel, saving time and effort.

4.1.1.3 Strong Developer Community

Another compelling reason to choose C# for a new framework is the vibrant and
engaged developer community that surrounds it. No one can doubt that C#
developers benefit from a wealth of learning resources, including official Microsoft
documentation, online courses, tutorials, and active forums. This wealth of
knowledge facilitates the onboarding of new developers to the framework and aids
in solving complex challenges. To further extend this point, the C# ecosystem is
teeming with third-party libraries and tools that extend its capabilities. These
resources can be leveraged to enhance the functionality of the framework and
expedite development.

4.1.1.4 Strong Language Features

C# offers several language features that can greatly benefit framework
development. C# enforces strong type checking and supports modern programming
paradigms like object-oriented and functional programming. This leads to code that
is more reliable, maintainable, and less error-prone—a crucial factor for framework
longevity. Furthermore, C# features a sophisticated asynchronous programming
model that simplifies concurrent operations, a key requirement for high-
performance frameworks handling multiple tasks concurrently. To extend our point
further, C# has evolved over the years with the introduction of features like pattern
matching, local functions, and expression-bodied members. These additions make
code more concise and expressive, enhancing developer productivity.

4.1.2 Neod;

In our attempts to populate our world with information while developing and
testing, we used Neo4j desktop [85] [86]. Neo4d is a popular and powerful graph
database management system. It's designed to store, manage, and query data in
the form of a graph, which is a data structure consisting of nodes and relationships

40

Chapter 4: Framework Implementation

which carry labels and properties. Since Autonomia is designed to work with graph
databases, Neo4j saves us the trouble of implementing the entire system ourselves.
For better performance, Autonomia does have its own internal graph database
system but the disk storage for persistence happens through Neo4J.

In addition, Neo4j Desktop comes with powerful tools to help you create and
examine your data. Following, we outline the tools included with Neo4d that we
consider important for Autonomia.

4.1.2.1 Cypher Querying Language

Cypher is a powerful and expressive query language specifically designed for
working with graph databases, with Neo4j being one of its primary implementations.
It provides a way to interact with graph data by specifying patterns and operations
on nodes and relationships within the graph. Cypher's syntax and semantics are
tailored to the unique structure of graph data, making it efficient and intuitive for
querying and manipulating graph databases. In Cypher, the most dominant feature
at the core of its functionality is pattern matching. Patterns are defined using an
expressive, readable syntax, representing nodes, relationships, and their
associated properties. For example, a pattern like:

(user:User) — [: FRIENDS WITH] — (friend: User)

would match a user node connected to another user node through a
"FRIENDS_WITH" relationship. Nodes and relationships are the fundamental
building blocks in Cypher. Nodes are enclosed in parentheses, and relationships
are enclosed in square brackets. These nodes and relationships can have labels to
categorize them and properties to store key-value data.

Cypher queries allow you to specify conditions for matching patterns and filtering
results. You can use WHERE clauses to filter nodes or relationships based on their
properties and employ various predicates such as "=" or "CONTAINS" to compare
values. Queries in Cypher return data in a tabular format, making it easy to work
with the results. You can specify which parts of the matched patterns you want to
retrieve using the RETURN clause, enabling you to extract specific information from
the graph.

One of Cypher's strengths is its ability to find paths in the graph, representing
sequences of nodes and relationships that match certain criteria. This is particularly
useful for traversing and analyzing complex graph structures.

4.1.2.2 Neo4j Bloom

Neo4j Bloom is an intuitive and visually driven data exploration and visualization
tool designed to work seamlessly with Neo4j graph databases. It empowers users

41

4.2 Autonomia.Core

to interact with and gain insights from complex graph data without needing to write
complex queries or code. With Neod4j Bloom, you can create interactive
visualizations of your graph, explore relationships, and discover patterns in a user-
friendly and intuitive manner. It's a valuable asset for both technical and non-
technical users who want to harness the power of graph databases for data
analysis and decision-making. In Autonomia, we value this tool as an inspector and
canvas for the World State. A game designer can easily enrich the world of the
game simply by using this tool, creating nodes, relationships and set handcrafted
goals to the agents of the implementation.

4.1.2.3 Neo4j Driver for C#

For our C# - Neo4j communication, we used the Neo4j.Driver package.
Neo4j.Driver for C# is a dedicated driver that enables C# developers to connect
their applications with Neo4j databases seamlessly. It serves as a bridge between
C# code and the Neo4j database server, allowing developers to perform various
operations, such as querying the database, creating, or updating nodes and
relationships, and retrieving results. It manages the database connection, enables
Cypher Queries through C# with parameterization and all the above can be
executed asynchronously using C#’s Tasks library.

4.2 Autonomia.Core

The Autonomia Framework has been developed under the Autonomia.Core
namespace. By using namespaces, we aim to ensure flexibility for potential future
implementations, offering improved clarity and versioning control. For instance,
should an extension centered around emotional Al emerge, it could be neatly
encapsulated within a hypothetical Autonomia. EmotionalAl namespace is
maintaining a structured and organized codebase.

Moreover, the project is made available in two distinct formats: a) a library project
containing the entire source code, and b) a prebuilt .DLL file (Dynamic Link Library).
The latter plays a pivotal role in promoting decoupling of code, fostering modularity,
and enhancing the overall efficiency of the Autonomia framework. The provision of
dual-format availability empowers developers with the freedom to select the option
that aligns best with their preferences and project requirements. Given that
Autonomia is an ongoing project, it welcomes active participation and customization
from the developer community.

Anyone is encouraged to modify the source code as needed to tailor it to their
specific needs. Furthermore, should a developer create valuable enhancements or
extensions to the framework, there is an open invitation to request integration into
the public Autonomia repository. Contributions that bring substantial value to the
Autonomia ecosystem are welcomed and can be considered for inclusion,

42

Chapter 4: Framework Implementation

promoting collaborative development, and fostering a robust framework for
intelligent and autonomous systems.

In the following sections, we analyze and elaborate on technical details regarding
multiple components that form Autonomia.

4.2.1 Graph

In the development of Autonomia, we employed an external graph database to
store our data. However, during runtime, we recognized the importance of having a
local graph database implementation for faster read/write operations. To ensure
seamless compatibility, the Graph class has been designed to implement the
IDatabaseClient interface and incorporates two dictionaries (or HashMaps) for
nodes and edges, respectively. You can find the class diagrams for Graph, Node,
and Edge in Figure 6.

It's worth noting that each element within the graph possesses a unique string
value serving as its identifier, referred to as an "id". This unique id enables us to
enhance the graph's performance by utilizing dictionaries not only for the graph
itself but also for the nodes and memory queries. This optimization is especially
beneficial, as graph databases may entail a multitude of edges for each node.

43

4.2 Autonomia.Core

>

[Node

>

| Graph A) | Edge
| Cass | Class ‘ Class
4 Properties 4 Fields 4 Properties
& edgeMap ‘ @ inorderModules | # a
A& nodeMap @ modules £ b
| 4 Methods | 4 Properties K id
[Clons | & edges X properties
T EdgeAdd & edgesByType 1 K type
§) EdgeCreate £ id | 4 Methods
7 EdgeDelete A isDeleted | © ~Edge
D EdgeGet & labels @ Clone
? EdgeUpdate £ properties 7 Edge (+ 2 overloads)
@y GenerateHashKey £ simDepth
@ Graph M
$ NodeAdd
@ NodeCreate<T>
@ NodeDelete
@ NodeGet<T>
@ NodeGetAll
? NodeUpdate<T>
T TimeDisplaceModules

‘ NPC

» |

>

(GoalNode

(BehaviourNode
Abstract Class | Class | Class
i - Node | Node | Node
4 Methods | 4 Properties 4 Properties
@ NPC (+ 1 overl... | & behaviour A& goal
D Update | » Methods | » Methods

Figure 6: Graph, Node and Edge class diagrams.

Furthermore, it's noteworthy that we have integrated modules within the Node
class, creating a tight coupling between them. This coupling enables us to include
modules when cloning nodes, and it's essential to emphasize that the cloning of
classes will be a common practice throughout Autonomia. Given our approach of
treating each piece of knowledge as unique, cloning is a typical operation to
preserve knowledge at the stage it was acquired. This will become increasingly
evident as we proceed with our exploration of Autonomia's functionality.

For the cloning implementation, we predominantly utilized a variation of the
prototype pattern that is designed to be compatible with inheritance. To elaborate,
the process involves implementing a copy constructor for each subclass and
overriding the Clone method to return a new instance of the subclass, passing as a
parameter the current instance into its own copy constructor. This approach
ensures that inheritance is seamlessly maintained while enabling the effective
cloning of objects within Autonomia.

44

Chapter 4: Framework Implementation

4.2.2 Injector and Injectables

To simplify the assignment of specific elements, we created an Injection
mechanism. To achieve this, we created an Injector class who uses C#’s reflection
mechanism, to find class types that contain custom Injectable attributes. Then, we
use that injectable to find nodes which the overridden method “ShouldInject” returns
true. Lastly, for those nodes we call the overridden “Inject” method.

{ Injectable A
¢ Abstract Class
i =P Attribute

. 4 Methods
: T Inject

) Shouldinject

A
(BehaviourlnjectOnlabels A (GoallnjectOnlabels A
| Class | Class
- Injectable | P Injectable
| 4 Fields | 4 Fields
, @ labels E @ labels
| » Methods | » Methods
\ \

Figure 7: Injectable attribute class diagram

In Autonomia, we employ two primary Injectable attributes: a)
BehaviourinjectOnLabels, and b) GoallnjectOnLabels. Both attributes accept string
values as parameters and compare them with the labels associated with each
node. When there is a match, these attributes inject themselves into the respective
node.

In our implementation, we utilize behaviours as affordances, meaning that
behaviours should be associated with nodes that provide them. For instance, an
'EatFoodBehaviour' should be injected into every node containing the 'Food' label.
Thanks to our injection system, achieving this is straightforward and efficient,
requiring only a single line of code, as illustrated in Figure 8.

45

4.2 Autonomia.Core

[BehaviourInjectOnLabels("Food")]

Hpubli Llass EatFoodBehaviour : Behaviour

Figure 8: Specific behaviour being injected using node labels

The implementation and extension of Injectable attributes are notably
straightforward. For instance, we can create a special behaviour that should be
exclusive to a particular NPC by defining a new injectable and using the node's ID
or name as parameters.

Furthermore, this extensibility can be taken a step further by incorporating
randomness into injectables, allowing us to introduce an element of uniqueness to
our virtual world. Consider a scenario where a game designer wishes to distribute a
specific piece of knowledge to a random subset of NPCs. This objective can be
effortlessly accomplished using our injection mechanism. Importantly, this approach
maintains a high level of decoupling, ensuring that it remains independent of, for
example, the behaviour or goal class.

4.2.3 Node Factory

The Node Factory is an important singleton class in our framework. Although
the entire functionality of our nodes are dictated by their labels, properties and
modules, we still deemed it important to allow users of the framework to create
classes that will handle initialization for each of their conceptual node types. This is
important to consider when we consider modules that may have complex
dependencies with each other. Furthermore, by having strictly defined types for our
Nodes we can more easily classify them and group their behaviours. For instance,
in Autonomia we use a common NPC Manager singleton to handle NPC updates.
For this, we have the NPC class deriving from the Node class and implement in its
initialization a) registering to the NPC manager and b) declaring the proper order of
initialization for each module. Its clas