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Abstract 
 

Video games are a popular form of entertainment that offer interactive and 

immersive experiences to the players. A key element of these experiences is the 

presence of non-player characters (NPCs), which are autonomous agents that 

populate the game world and interact with the player and the environment. NPCs 

can enhance the realism and diversity of the game scenarios by exhibiting human-

like behaviours that are consistent, adaptive and believable. However, creating 

such behaviours is a complex and challenging task that requires a combination of 

artificial intelligence (AI) techniques and game design principles. Current methods 

and frameworks for NPC decision-making often rely on predefined scripts or rules 

that limit the NPC’s capability to adapt to dynamic situations. Moreover, NPCs 

usually lack autonomy, as they are unable to pursue their own goals, as well as to 

interact with other NPCs or the player. Therefore, there is a need for novel 

approaches that can improve the credibility and adaptability of NPC behaviours in 

video games.  

This work introduces Autonomia, an innovative knowledge-based framework for 

realistic agent behaviours in dynamic video game environments. Autonomia is 

deeply rooted in the Theory of Mind (ToM), leveraging a knowledge graph to depict 

the world's state, with each NPC possessing a replica of this world state in its 

“memory”. This “memory” is designed to support higher orders of ToM while 

constantly evolving as the NPC perceives the world around it and interprets events. 

Autonomia uses a modular system to define the functionality and behaviour of 

different types of nodes in the graph, such as physical objects, animals or people. 

The framework as structured, allows NPCs to dynamically react to changes in the 

environment purely based on its ability to perceive and hold memory. In this 

context, Autonomia introduces a new way to model behaviours and goals, enabling 

them to be treated as knowledge that can be communed, discovered or even 

forgotten just like any other part of the NPC's “memory”. Basing everything on their 

acquired knowledge, NPCs utilize a Goal-Oriented Action Planning (GOAP) 

algorithm to come up with plans in any dynamic environment.   

Lastly, an implementation of Autonomia is provided for the Unity game engine, 

including the “Prometheus Tavern” case study, on which a two-part expert-based 

evaluation was conducted. The first part confirmed that the provided features and 

the architecture of the Autonomia framework deliver solutions that can improve the 

credibility of NPC behaviours, whereas the second showed that the agents of the 

system have the capability to adapt to their environment and behaviour in a realistic 

manner. 
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Περίληψη 

Τα βιντεοπαιχνίδια είναι μια δημοφιλής μορφή ψυχαγωγίας και μπορούν 

να προσφέρουν διαδραστικές και καθηλωτικές εμπειρίες στους παίκτες. 

Βασικό στοιχείο αυτών των εμπειριών είναι η παρουσία χαρακτήρων τύπου 

Non-Playing Character (NPC) δηλαδή πρακτόρων που δεν ελέγχονται από τον 

παίκτη ή τους παίκτες του παιχνιδιού. Οι πράκτορες NPC είναι αυτόνομοι 

χαρακτήρες που κατοικούν στον κόσμο του παιχνιδιού και αλληλεπιδρούν με 

τον παίκτη και το περιβάλλον. Οι πράκτορες αυτοί μπορούν να ενισχύσουν 

τον ρεαλισμό και την ποικιλομορφία των σεναρίων του παιχνιδιού, 

παρουσιάζοντας συμπεριφορές που θυμίζουν ανθρώπινες, είναι συνεπείς, 

αληθοφανείς και προσαρμόζονται ανάλογα με το δυναμικό τους περιβάλλον. 

Ωστόσο, η δημιουργία τέτοιων συμπεριφορών είναι ένα πολύπλοκο και 

δύσκολο έργο που απαιτεί μεθοδολογία, καλό σχεδιασμό και συνδυασμό 

πολλαπλών τεχνικών τεχνητής νοημοσύνης (AI). Οι τρέχουσες μέθοδοι και 

προγραμματιστικά πλαίσια για την υλοποίηση της ικανότητας των πρακτόρων 

NPC να παίρνουν αποφάσεις, συχνά βασίζονται σε προκαθορισμένα σενάρια 

ή κανόνες που περιορίζουν την προσαρμοστικότητα τους σε δυναμικά 

μεταβαλλόμενες καταστάσεις. Επιπλέον, συχνά οι πράκτορες NPC 

χαρακτηρίζονται από έλλειψη αυτονομίας, καθώς δεν έχουν την ικανότητα 

να επιδιώξουν τους δικούς τους στόχους ή ακόμα και να αλληλεπιδράσουν 

με άλλους πράκτορες NPC ή με τον ίδιο τον παίκτη. Ως εκ τούτου, υπάρχει 

ανάγκη για καινοτόμες λύσεις που να μπορούν να βελτιώσουν την αξιοπιστία 

και την ικανότητα των συμπεριφορών των πρακτόρων NPC στα 

βιντεοπαιχίδια. 

Η παρούσα μεταπτυχιακή εργασία εισάγει το σύστημα Autonomia, ένα 

καινοτόμο προγραμματιστικό πλαίσιο βασισμένο στην γνώση, σχεδιασμένο 

να προσδίδει ρεαλιστικές συμπεριφορές πρακτόρων NPC σε δυναμικά 

περιβάλλοντα βιντεοπαιχνιδιων. Το σύστημα Autonomia θεμελιώνεται στη 

Θεωρία του Νου (ΘτΝ) και χρησιμοποιεί γραφήματα γνώσης (knowledge 

graphs) για την απεικόνιση της κατάστασης του κόσμου. Ο κάθε πράκτορας 

NPC διαθέτει ένα αντίγραφο αυτής της κατάστασης στη “μνήμη” του. 

Συγκεκριμένα, η σχεδίαση της “μνήμης” επιτρέπει τόσο την συνεχή εξέλιξη 

της, όσο και την υποστήριξη υψηλότερων επιπέδων ΘτΝ καθώς ο πράκτορας 

αντιλαμβάνεται το περιβάλλον και σχηματίζει προσωπική εικόνα για τον 

κόσμο. Ένα σύστημα δομοστοιχείων (modular system) χρησιμοποιείται για να 

ορίζεται η λειτουργικότητα και η συμπεριφορά διαφορετικών τύπων κόμβων 

του γράφου, όπως αντικείμενα, ζώα ή άνθρωποι. Η σχεδίαση του συστήματος 

Autonomia επιτρέπει στους πράκτορες NPC να αντιδρούν δυναμικά στις 

αλλαγές του περιβάλλοντος με βάση την ικανότητά τους να αντιλαμβάνονται 

και να ερμηνεύουν γεγονότα στη “μνήμη” τους. Επίσης, εισάγουμε έναν νέο 
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τρόπο μοντελοποίησης των συμπεριφορών και των στόχων, ο οποίος 

επιτρέπει την χρήση τους ως γνώση η οποία μπορεί να μεταφερθεί μέσω 

διαλόγου, να ανακαλυφθεί ή ακόμα και να ξεχαστεί όπως κάθε άλλο κομμάτι 

“μνήμης” του πράκτορα NPC. Βασίζοντας τα πάντα στην επίκτητη γνώση του, 

ο πράκτορας NPC χρησιμοποιεί έναν Goal-Oriented Action Planning (GOAP) 

αλγόριθμο για να μπορεί να “σκαρφιστεί” αλυσίδες συμπεριφορών σε κάθε 

δυναμικό περιβάλλον.  

Τέλος, παρέχεται μια υλοποίηση του συστήματος Autonomia στην μηχανή 

παιχνιδιών Unity η οποία περιέχει την μελέτη περίπτωσης “Ταβέρνα του 

Προμηθέα“ με την οποία πραγματοποιήθηκε μια αξιολόγηση με 

εμπειρογνώμονες την οποία χωρίζουμε σε δύο μέρη. Τα αποτελέσματα του 

πρώτου μέρους επιβεβαίωσαν ότι η προσφερόμενη λειτουργικότητα και η 

αρχιτεκτονική του προγραμματιστικού πλαισίου Autonomia προσφέρουν 

λύσεις για την βελτίωση της αξιοπιστίας και της ικανότητας των 

συμπεριφορών των πρακτόρων, ενώ τα αποτελέσματα του δεύτερου έδειξαν 

ότι οι πράκτορες του συστήματος έχουν την ικανότητα να προσαρμόζονται 

στο περιβάλλον τους και να συμπεριφέρονται με ρεαλιστικό τρόπο. 

 

Keywords: Game AI, Autonomous Agents, NPC, NPC Behaviours 
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Chapter 1

1 Introduction 
In this chapter, we delve into the motivation and background behind the 

development of the Autonomia Framework. We explore the challenges associated 

with creating believable [1]–[3] and intelligent non-player characters (NPCs) in the 

context of video games and interactive simulations. Additionally, we provide an 

overview of the objectives and structure of this thesis, setting the stage for a 

comprehensive examination of Autonomia's architecture, implementation, and 

contributions to the field of artificial intelligence in gaming. 

 

1.1 Motivation 
Video games, as a widely enjoyed form of entertainment and art, have the 

potential to deliver captivating experiences [4], [5]. A central part within these 

games is the interaction with non-player characters (NPCs)—computer-controlled 

entities that assume roles of allies, adversaries, or neutrals [2] and NPCs hold the 

ability to craft those immersive and lifelike scenarios by simulating emotions, 

personalities, motivations, and social dynamics akin to human beings. Yet, crafting 

truly convincing NPCs remains a formidable challenge, necessitating a blend of 

technical skills, artistic ingenuity, and psychological understanding. Unfortunately, 

the current state of most NPCs falls short of authenticity, often adhering to scripted, 

predictable, or inconsistent behaviours that shatter the illusion of reality and reduce 

or even diminish players' enjoyment [6]–[8]. The lack of NPCs' believability often 

becomes evident when they encounter intricate situations that haven't been 

anticipated by the designer or programmer. For the most part, NPCs depend on 

rigid, pre-defined rules or scripts dictating their responses to specific in-game 

situations. Unfortunately, these rules often lack flexibility, sophistication, and fail to 

capture the dynamic nature of the game world and player actions. Furthermore, 

most NPCs lack a unified model encompassing their perceptions, memories, goals, 

and plans. This absence impedes their capacity to reason over actions, predict 

outcomes, or collaborate effectively with other NPCs and players. Consequently, 

NPCs often manifest as superficial, artificial entities, lacking the depth of human-like 

intelligence or agency [9]. 

To illustrate this problem further, we can examine some examples of games that 

have attempted to create believable NPCs, and discuss their strengths and 

limitations. For instance, The Sims [10] is a popular life simulation game that allows 
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players to create and control virtual people with various personality traits. The game 

uses a complex system of needs, motives, skills, and relationships to determine the 

behaviour and emotions of the NPCs. However, some critics [11], [12] have argued 

that the NPCs in The Sims are still too simplistic and deterministic, lacking the 

ability to form meaningful bonds or exhibit moral agency. Similarly, Mass Effect [13] 

is a sci-fi role-playing game that features a rich cast of NPC companions with 

distinct backgrounds, personalities, and moral alignments. The game allows players 

to interact with these NPCs through dialogue choices and influence their loyalty and 

romance. However, some reviewers [14], [15] have noted that the NPCs in Mass 

Effect are still constrained by predefined scripts and branching paths, limiting their 

autonomy and responsiveness to player actions. Another example is Detroit: 

Become Human [16], a narrative-driven game that explores the themes of artificial 

intelligence and androids. The game features multiple playable characters that can 

make choices and face moral dilemmas that affect the story’s outcome. The game 

also uses advanced facial animation and voice acting to convey the emotions and 

expressions of the NPCs. However, again some critics [17], [18] have pointed out 

that the NPCs in Detroit: Become Human [16] are still influenced by clichés and 

stereotypes, lacking the subtlety and complexity of human psychology. 

These examples underscore the intricate nature of crafting convincing NPCs in 

the realm of game development, revealing persistent challenges and unmet 

aspirations. It's worth noting that these examples originate from the game 

development industry, where talented programmers have long pursued the elusive 

goal of achieving lifelike game AI. Yet, even with their dedicated efforts, the industry 

has not fully realized this ambition. 

In this thesis, we aim to contribute to this field by proposing a novel approach 

for creating believable NPCs based on a realistic NPC memory representation 

grounded in acquired knowledge, an extendable modular architecture, a novel way 

of defining behaviours and lastly, encapsulate everything in an open-source 

framework which could serve as common ground for game AI research. 
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1.2 Thesis Structure 
The remainder of this master's thesis is divided into seven chapters, as 

indicated in the table of contents. Below, a summary of each chapter is provided: 

 Chapter 2: This chapter provides a comprehensive literature review of 

previous works that have greatly contributed to the field of game AI. It traces 

the evolution of AI techniques, from early finite state machines to 

contemporary state-of-the-art behavior modeling methods. 

 

 Chapter 3: The third chapter delves into the theoretical foundations of 

Autonomia, explaining the architectural decisions that underpin this thesis' 

work. 

 

 Chapter 4: In this section, the implementation of the theoretical framework 

outlined in Chapter 3 is described. It covers the essential components and 

design patterns employed in Autonomia. 

 

 Chapter 5: This chapter focuses on the integration of Autonomia into the Unity 

game engine. It also elucidates the various designer tools developed in this 

thesis and presents the Prometheus Tavern case study, offering insights into 

its exploration. 

 

 Chapter 6: The sixth chapter details the heuristic evaluation, including its 

methodology and its findings. 

 

 Chapter 7: This final chapter provides a summary of the work undertaken in 

this thesis and offers a discussion of potential future directions and 

aspirations for Autonomia. 
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Chapter 2

2 Background Theory and Related 

Work 
In this chapter, we explored the existing body of research and development in 

the fields of game AI, human-computer interaction (HCI), and computer science. 

We conducted a comprehensive review of relevant literature to inform the design 

and development of Autonomia. This exploration of related work was a vital process 

in shaping the framework's features and capabilities. Our related work process 

involved a systematic approach to gathering and synthesizing information from 

various sources. We employed a combination of academic journals, conference 

papers, books, and online resources to ensure a comprehensive review of the 

subject matter. 

First, we delve into the foundational concepts of our research field, which form 

the basis of our Background Theory. Subsequently, we examine existing works that 

align with or partially address our objectives concerning Autonomia. This structured 

approach offers readers a coherent journey, starting with the essential theoretical 

framework and culminating in a comprehensive understanding of Autonomia's 

relevance in the broader research context. 

2.1 Background Theory 
In this section, we delve into the foundational principles and theories that 

underpin the field of research relevant to Autonomia. We explore the core concepts 

and pillars that form the basis of intelligent NPC behaviour and game AI. This 

provides readers with a solid understanding of the theoretical framework upon 

which Autonomia is built. 

 The importance of Video Games 

In the early 2000s, there was a prevailing belief that video games had a 

detrimental impact on the mental health of young people. The media often launched 

verbal attacks on gaming culture, though rarely with concrete evidence. While some 

earlier studies did suggest potential negative effects of arising from gaming, this 

has created a somewhat unjust stigma around video games. Even today, 

accusations of video games being a harmful habit persist. 

However, it's important to note that more recent research has uncovered a 
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multitude of benefits associated with gaming. These studies have shed light on both 

the positive aspects of gaming and the valuable insights we can gain regarding the 

learning process through video games and interactive experiences. This evolving 

body of research challenges the notion that gaming is inherently harmful and 

highlights the potential for constructive and educational outcomes from video game 

engagement. 

Isabela et al. [19] conducted an overview of the benefits of video gaming. They 

summarize that games can improve the cognitive, motivational, emotional and 

social skills of a person. More specifically, cognitive improvements were researched 

on various aspects; from better spatial cognition [20] to better attention allocation 

control [21]. Among other benefits for motivation, Isabela et al. consider games to 

be “an ideal training ground” for acquiring an incremental theory of intelligence [22]. 

Games can also make people feel in the “zone” [23], increase their overall 

happiness and relaxation and even provoke a sense of “intense pride” [24]. In their 

work, they also highlight that contrary to stereotypes, the average gamer is not 

socially awkward, nor does he enjoy being locked up in his room alone [teens and 

something]. Most gamers prefer to play games with friends, either cooperatively or 

competitively. Cooperative games usually reward effective cooperative and 

supportive actions, promoting prosocial behaviours to the players [19]. 

Moreover, games possess an inherent ability to sustain user engagement, as 

evidenced by research [25], [26]. Serious gaming is a field of research that tries to 

capitalize from this engaging quality of games by trying to adapt non-game 

contexts, such as education and training, into gaming experiences. The aim is to 

engage the player in such a way that they unwittingly acquire knowledge and 

comprehension in areas they might not typically have the patience to learn about.

 

 Artificial Intelligence in Video Games 

Artificial intelligence (AI) represents a field within computer science dedicated to 

the creation of machines and systems capable of executing tasks that typically 

demand human intelligence. These tasks encompass activities like reasoning, 

learning, planning, decision making, perception, and natural language processing. 

AI finds application across diverse domains, addressing challenges in areas such 

as robotics, medicine, education, finance, and entertainment [27]–[35]. 

Within the broader scope of AI, “Game AI” stands as a distinct subfield [36]. It 

concentrates on the development of intelligent agents and systems capable of 

interacting with or simulating games. Games, defined as formal systems with rules, 

goals, challenges, and feedback mechanisms, also function as environments to 

assess the skills of both human and artificial agents [37], [38]. Game AI serves 

various purposes, primarily enhancing the gameplay experience of the human 
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player but it can also contribute to content generation, game design testing and 

balancing mechanics, as well as serve as a research platform for other AI 

techniques [36]. 

One of the most formidable challenges encountered in game AI is performance 

optimization. To create games that feel realistic and immersive, multiple systems 

must operate in tandem, all within the constraints of an extremely tight timeframe. 

Game development typically allocates approximately 16.67 milliseconds per frame 

to achieve the requisite 60 frames per second (FPS) performance, which is 

considered the common acceptable standard [39]. Within this limited timeframe, a 

game must handle tasks ranging from rendering graphics and animations to 

managing NPC AI and numerous other functions. 

To achieve such performance, many functions in a game become 

approximations trying to oppose an optical illusion to the player as of to what is real. 

As technology continues to advance, games become increasingly impressive, 

raising player expectations with each release. The player's willingness to suspend 

disbelief becomes harder to satisfy, emphasizing the importance for the game 

development community to continually push boundaries and explore new 

techniques to deliver captivating and cutting-edge gaming experiences. 

 Suspension of Disbelief 

Suspension of disbelief is a term coined by Samuel Taylor Coleridge to describe 

the willingness of a reader or a viewer to accept the fictional premises of a story, 

even if they are implausible or contradictory to reality [40]. It is a crucial concept for 

understanding the immersive and emotional effects of narrative media, such as 

literature, film, and games. 

In the context of games, suspension of disbelief can be seen as a skill that 

players use to construct narrative coherence from the often dissonant elements of 

gameplay and story [8]. For example, players may ignore the unrealistic aspects of 

game mechanics, such as health bars, inventory systems, or save points, and focus 

on the narrative aspects, such as characters, dialogue, or plot. Alternatively, players 

may integrate the game mechanics into their interpretation of the story, such as by 

rationalizing them as part of the game world or the protagonist’s abilities. 

However, suspension of disbelief in games is not a passive or automatic 

process. It requires active participation and engagement from the players, who 

have to balance their attention between the game rules and the game fiction [40]. 

Moreover, suspension of disbelief in games is not a binary or stable state. It can 

vary depending on the player’s preferences, expectations, and mood, as well as on 

the game’s design, genre, and mode. Suspension of disbelief can also be 

challenged or broken by various factors, such as bugs, glitches or inconsistencies 

[8]. 
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 Believability of Non-Player Characters 

For the continuation of this thesis, “believable” non-player characters (NPCs) 

are those system agents that behave in ways that are consistent, realistic, and 

respond with expected ways to the player’s actions or the game’s events [1]. NPCs 

that do not follow this narrative immersion, as termed by Adams [41] can break the 

player’s immersion and suspension of disbelief by creating a sense of disconnect 

between the game world and the player’s expectations. For example, if an NPC 

repeats the same dialogue over and over, ignores the player’s presence or 

questions, or reacts inappropriately to the game’s situations, such as being calm 

during a crisis or hostile during a peaceful encounter, the player may feel that the 

NPC is not a living being, but a scripted object. This can reduce the player’s 

emotional involvement and identification with the game’s story and characters, as 

well as undermine the game’s credibility and coherence. Realistic NPCs can also 

maintain narrative coherence by supporting the game’s theme, genre, and mode. 

For example, realistic NPCs can follow the conventions and expectations of the 

game’s genre, such as being heroic in an action-adventure game or being 

mysterious in a horror game. Believable NPCs can also match the tone and mood 

of the game’s mode, such as being humorous in a casual game or being serious in 

a simulation game. Furthermore, such NPCs can also disrupt narrative coherence 

in a positive way by introducing conflict, tension, or surprise in the game story. For 

example, realistic NPCs can betray, deceive, or challenge the player, creating a 

sense of drama and intrigue. 
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2.2 Related Work 
After establishing the background theory, we shift our focus to existing works 

that align with the objectives of Autonomia. We examine research efforts and 

projects that share either the overarching aim or specific goals similar to those 

pursued by Autonomia. This comparative analysis helps position Autonomia within 

the broader context of the field, highlighting its unique contributions and areas of 

innovation. 

 Behaviour Models 

In the field of artificial intelligence and computer science, understanding and 

modeling human or agent behaviour is a pivotal aspect of designing intelligent 

systems. This section delves into the realm of behaviour models, which serve as 

fundamental ground for orchestrating the actions and decision-making processes of 

agents, whether they are autonomous robots, video game characters, or other AI-

driven entities. By examining a range of behavioural modeling techniques, including 

Finite State Machines (FSM), Fuzzy Finite State Machines (FUFSMs), behaviour 

Trees, Stanford Research Institute Problem Solver (STRIPS), Goal-Oriented Action 

Planning (GOAP) and Hierarchical Task Networks (HTN), we explore the rich 

landscape of methods that enable machines to exhibit complex behaviours, adapt 

to changing environments, and interact effectively with the world around them. 

Through this exploration, we gain valuable insights into the underlying theories and 

practical applications of these models, which are essential for the development of 

intelligent and responsive AI systems. 

2.2.1.1 Finite State Machine 

FSM (Finite-State Machines) is a technique used to generate decisions for 

agents within games or simulations [42]. This method employs a state-centric 

approach, aiming to simplify the process of creating agent behaviours based on 

states and transitions. Rooted in the theory of computation, FSMs are designed to 

cater to the demands of low-level and reactive behaviours, such as movement, 

animation, or combat. 

FSMs consist of a set of states and transitions between them, where each state 

represents a distinct behaviour or action, and each transition is triggered by a 

condition or event. FSMs are easy to implement and understand, but they can also 

become complex and unwieldy when the number of states and transitions grows. 

The history and development of FSMs can be traced back to the early days of 

computer science and game development. FSMs are based on the concept of 
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automata, which are abstract machines that can recognize patterns or perform 

computations. Automata theory was developed by mathematicians and logicians 

such as Alan Turing, Alonzo Church, and John von Neumann in the 1930s and 

1940s [43]. Automata theory provided the foundation for the fields of computation, 

programming languages, and artificial intelligence. 

FSMs were first applied to games in the 1950s and 1960s, when computer 

games were still in their infancy. One of the earliest examples of FSMs in games 

was Nimrod[44], a machine that played the game of Nim against human opponents. 

Nimrod used an FSM with four states to determine its moves based on the number 

of remaining pieces. Another early example of FSMs in games was Spacewar! [45], 

one of the first video games ever created. Spacewar! used an FSM with three 

states to control the behaviour of the enemy spaceship. 

FSMs became more popular and widespread in games in the 1970s and 1980s, 

when arcade games and home consoles emerged. Many classic arcade games 

used FSMs to create simple but engaging behaviours for their characters and 

enemies.  

FSMs continued to be used in games in the 1990s and 2000s, when games 

became more complex and realistic. Many genres of games used FSMs to create 

diverse and dynamic behaviours for their agents, such as shooters, strategy, 

simulation, or role-playing games. For example, Half-Life [46] used an FSM with six 

states (idle, alert, combat, scripted, dead, and prone) for each enemy soldier. 

FSMs have some notable strengths, such as providing agents with robustness 

and versatility in decision making. They allow agents to select different actions 

based on the context at hand. FSMs are also among the cheapest behaviour 

models in terms of computational resources allocation, and they are simple to 

design and implement. However, FSMs have some limitations as well. The main 

drawback is their limited expressiveness and difficulty in modeling complex game 

scenarios. In such cases, a system would have too many states and transitions, 

which would make the FSM hard to read and configure [46].  

 

2.2.1.2 FuSM 

FuSM (Fuzzy State Machines) [42] is a technique used to generate decisions 

for agents within games or simulations. This method employs a fuzzy logic 

approach, aiming to handle the uncertainty and ambiguity in the game environment. 

Instead of having binary transitions between states, FuSMs have fuzzy transitions 

that are weighted by a degree of membership, which represents how much a state 

is active or applicable at a given moment. FuSMs can produce more smooth and 

natural behaviours than FSMs, as they allow for blending and mixing of multiple 

states. FuSMs are often used for high-level or strategic behaviours, such as 

decision making, planning, or learning. 
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However, external factors can lead to utility fluctuations or unexpected changes, 

resulting in outcomes that are hard to anticipate. Debugging and testing can also 

pose challenges, as agent behaviour can be influenced by numerous variables and 

conditions, while utility scores can be difficult to visualize and comprehend. The 

applications and extensions of FuSMs are wide-ranging, with many games and 

simulations integrating or adapting the technique for their agents. Notable examples 

include The Sims, Clone Combat 2, S.W.A.T. 2 [47] and many more.  

2.2.1.3 Utility AI 

Utility AI [48], or Utility-based Artificial Intelligence, emerges as a technique 

employed to facilitate decision-making for agents within gaming and simulations. 

This method revolves around optimizing agent action selection based on their 

inherent benefits. Rooted in the concept of utility from the economic and psychology 

sciences, UtilityAI is designed to cater to the demands of real-time and dynamic 

environments, using numerical values, formulas, and scores to quantify the relative 

utility of potential actions, streamlining the decision-making process. Within this 

framework, a decision system identifies the action with the highest utility or employs 

probabilistic methods based on utility scores for action selection. 

UtilityAI rests on the premise that agents act rationally to maximize their utility—

a measure of their preference or valuation of outcomes or states. Utility's definition 

is contextual, with factors such as health, hunger, happiness, safety, or wealth 

influencing its formulation. Mathematical functions or curves capture the changes in 

utility concerning various inputs or variables. These functions represent proportional 

relationships (linear), diminishing returns (exponential), increasing returns 

(logarithmic), threshold (sigmoidal), or custom-made complexities. By embracing 

these functions, Utility AI captures agents' nuanced preferences and behaviours, 

adding depth to their decision-making process. 

UtilityAI boasts strengths in providing agents with robust and flexible decision-

making capabilities. It simplifies code maintenance and enhances believability, as 

agents showcase a wider array of actions that are also transparent as of why they 

occur, making them easy to debug. However, utility-based AI requires careful 

handcrafted values for it’s actions and a large amount of developing will be 

allocated to testing and configuring. Kevin Dil et al. who have served as experts in 

the field of computer science have provided with design patterns and ways to 

configure a utility-based AI [48]. 

 

2.2.1.4 Behaviour Trees 

Behaviour trees (BTs) are a powerful and popular technique for creating game 

AI [49], as they allow for complex and dynamic behaviours to be composed of 

simple and modular tasks. Behaviour trees are also easy to design, test, and 
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debug, as they provide a clear and intuitive graphical representation of the AI’s 

decision-making process. A behaviour tree is a directed tree that consists of three 

base types of nodes: root, control flow, or execution. The root node is the starting 

point of the tree, and it has only one child node. The control flow nodes are the 

inner nodes of the tree, and they determine how the tree is traversed. The 

execution nodes are the leaf nodes of the tree, and they perform the actual actions 

or conditions that control the AI entity. 

The control flow nodes are then commonly classified into four types: sequence, 

selector, parallel, or decorator. A sequence node runs each of its child nodes in 

order until one fails, or all succeed. A selector node runs each of its child nodes in 

order until one succeeds, or all fail. A parallel node runs all of its child nodes 

simultaneously until a certain condition is met. A decorator node modifies the 

behaviour or outcome of its single child node. 

The execution nodes can be further classified into two types: action or condition. 

An action node performs a specific task or behaviour, such as moving, attacking, or 

speaking. A condition node checks a certain state or variable, such as health, 

distance, or visibility. 

The behaviour tree is executed by traversing from the root node to the active 

node every frame, following the logic of the control flow nodes and the status of the 

execution nodes. The status of a node can be one of three values: running, 

success, or failure. A running status means that the node is still performing its task 

or checking its condition. A success status means that the node has completed its 

task or satisfied its condition. A failure status means that the node has failed to 

complete its task or satisfy its condition. 

Behaviour Trees are a well-defined structure that can provide readable, 

performant, and self-contained behaviours. Such behaviours can also include 

control flow logic and be easy to debug. Unfortunately, behaviour trees start to fail 

when the behaviour begins to scale, becoming unreadable when they have many 

nodes and branches. Furthermore, BTs are tightly coupled with their specific agent 

or system, making them difficult to reuse. Finally, they are not great either when 

dealing with dynamic environments since they have limited to no capabilities of 

adapting and dynamically changing their structure. 

The applications and extensions of behaviour trees are wide-ranging, with many 

games and simulations integrating or adapting the technique for their agents. 

Notable examples include “Halo” [50], a sci-fi shooter featuring enemies with 

realistic and adaptive behaviours based on utility functions and curves. “DEFCON” 

is another commercial game that found success basing its implementation on 

behaviour trees [49]. In this game, a cold-war scenario is simulated where the 

player assumes the role of an army general hidden in a bunker, in hold of heavy 

weaponry and attempts to destroy the enemy is psychological warfare. 
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2.2.1.5 STRIPS 

The “Stanford Research Institute Problem Solver” or STRIPS [51], [52], was 

initially an automated planner but was later known as a formal language for 

describing planning tasks, which consists of an initial and goal condition formed by 

conjunctions of propositional atoms and a set of actions made up by a precondition, 

add and delete lists. STRIPS planning is one of the most studied problems in 

artificial intelligence, and it has many applications in games, simulations, robotics, 

and other domains.  

The complexity of STRIPS planning was first analyzed by Bylander et al. [51], 

who showed that the problem is PSPACE-complete in general, and NP-complete 

for some restricted classes. Bylander also identified some tractable subclasses of 

STRIPS planning, such as those with bounded plan length, bounded number of 

actions, or acyclic causal graphs. 

One of the most successful approaches to finding plans for STRIPS tasks is to 

use search algorithms that explore the space of possible states or actions. There 

are two main types of search: forward search and backward search. Forward 

search starts from the initial state and applies actions until a goal state is reached, 

while backward search starts from the goal condition and regresses over actions to 

produce sub goals until a subgoal satisfied by the initial state is obtained. Forward 

search is also called progression, while backward search is called regression. 

Kautz and Selman [53] proposed one of the first forward search algorithms for 

STRIPS planning, called SATPLAN, which encodes the planning problem as a SAT 

formula and uses a SAT solver to find a satisfying assignment that corresponds to a 

plan. SATPLAN was later improved by Kautz et al., who introduced several 

techniques to reduce the size and complexity of the SAT encoding, such as action 

ordering constraints, mutex constraints, and relevance analysis. On the other hand, 

Bonet and Geffner [54] proposed one of the first backward search algorithms for 

STRIPS planning, called HSPr, which uses heuristic functions to guide the search 

and select the best actions to regress over. HSPr was later extended by Bonet et 

al., who introduced several techniques to improve the quality and efficiency of the 

heuristic functions, such as relaxed plans, additive heuristics, and landmarks. 

Another way to approach STRIPS planning is to extend or modify the language 

to capture more expressive or realistic features of planning tasks. For example, 

Fikes and Nilsson [55] introduced conditional effects, which allow actions to have 

different effects depending on some conditions. 

2.2.1.6 GOAP 

GOAP (Goal-Oriented Action Planning) is a technique used to generate plans 

for agents within games or simulations. This method employs a goal-centric 

approach, aiming to streamline the process of generating agent behaviours based 
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on objectives. Rooted in the STRIPS formalism, GOAP is designed to cater to the 

demands of real-time and dynamic environments, adapting the STRIPS concept for 

more practical use. 

Jeff Orkin's contributions mark a significant milestone in the history and 

development of GOAP. Orkin introduced GOAP [56] while working on the game 

F.E.A.R. at Monolith Productions. He was inspired by the STRIPS planning system 

[52], which was developed in the 1970s as a general problem solver for automated 

planning. Orkin adapted STRIPS for real-time control of autonomous character 

behaviour in games, by using a simplified representation of the world state, a 

heuristic search algorithm to find the optimal plan, and a flexible action execution 

system that can handle dynamic changes in the environment. Orkin also added 

some features, such as action weighting, interruptibility, relevance pruning, plan 

monitoring, and plan blending, to make GOAP more efficient and user-friendly. 

The advantages and disadvantages of GOAP are closely tied to its design 

choices and trade-offs. Notable strengths of GOAP include its ability to provide 

agents with flexibility and adaptability in behaviour, granting them the capacity to 

select different plans based on the context and goals at hand. This approach also 

reduces code complexity and maintenance efforts, as each action is encapsulated 

and independent, allowing for easy addition or removal of actions. Moreover, this 

modular structure increases code modularity and reusability, enabling actions to be 

shared among various agents or goals, while new agents or goals can be formed by 

combining existing actions. This, in turn, contributes to elevating the realism and 

believability of agents, as they can exhibit a wider range of actions, intelligent 

responses, and adapt to changes in their environment or state. 

However, GOAP also presents certain limitations. One such drawback is the 

requirement for a higher level of design effort and domain knowledge. Each action 

necessitates well-defined preconditions and effects, while every goal needs a 

clearly defined criterion for satisfaction. This demands a deep understanding of the 

game mechanics and context. Additionally, GOAP can be prone to inefficiency and 

unpredictability. The process of finding a plan can involve navigating a large search 

space, coupled with a complex heuristic function. External factors can lead to plan 

failures or unexpected changes, resulting in outcomes that are hard to anticipate. 

Debugging and testing can also pose challenges, as agent behaviour can be 

influenced by numerous variables and conditions, while plans can be intricate to 

visualize and comprehend. 

The applications and extensions of GOAP are wide-ranging, with many games 

and simulations integrating or adapting the technique for their agents. Notable 

examples include "F.E.A.R," a first-person shooter featuring enemies with 

coordinated attacks and dynamic behaviours, “Transformers: War for Cybertron” 

[57], [58] a third-person shooter were the player fights in a war of robots , 

“Assassin’s Creed Odyssey” [59] a large scale open-world game with hundreds of 
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autonomous NPCs living their daily life. 

GOAP stands as a robust planning technique, rooted in a goal-oriented 

perspective that generates plans for agents in dynamic, interactive environments. 

Despite its successes, challenges remain in this domain, such as optimizing plans, 

managing uncertainty, integrating planning with learning or reasoning, and 

developing user-friendly tools for plan creation and editing. 

 

2.2.1.7 HTN 

HTN (Hierarchical Task Network) planning [60] is a technique used to generate 

plans for agents based on hierarchical decomposition of tasks. This method 

employs a task-centric approach, aiming to exploit the structure and knowledge of 

the domain to guide the planning process. Rooted in the AI programming 

languages, HTN planning is designed to handle complex and expressive planning 

problems that go beyond the capabilities of STRIPS-like planners. HTN operators 

are similar to STRIPS actions but can have complex preconditions and effects. 

Methods are rules that define how to decompose abstract tasks into subtasks, 

which can be either primitive or compound. A solution to an HTN problem is then a 

sequence of operators that can be derived from the initial task network by applying 

methods recursively. 

As for the previous techniques, the advantages and disadvantages of HTN 

planning are closely tied to its design choices and trade-offs. Notable strengths of 

HTN planning include its ability to provide agents with domain-specific and 

customized plans, leveraging the expert knowledge encoded in the methods. This 

approach also increases efficiency and scalability, as the search space is reduced 

by focusing on relevant tasks and operators. Moreover, this modular structure 

enhances modularity and reusability, enabling methods and operators to be shared 

among various domains or problems, while new domains or problems can be 

formed by adding or modifying methods or operators. This, in turn, contributes to 

elevating the expressiveness and flexibility of HTN planning, as it can handle 

complex goals, temporal constraints, preferences, uncertainty, and other features 

that are challenging for classical planners. 

HTN planning also presents certain limitations. One such drawback is the 

difficulty of acquiring and maintaining domain knowledge [61]. Each method 

requires well-defined preconditions and subtasks, while each operator needs clearly 

specified preconditions and effects. This demands a high level of expertise and 

domain analysis. Additionally, traditional HTN planning assumes a fully predictable 

path, which may not hold in real-world scenarios. This can lead to plans that are not 

robust or flexible enough [62].  

SHOP2 is an extension of HTN, an acronym for Simple Hierarchical Ordered 

Planner 2, which is an automated planning system that can generate plans for 
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various domains and problems [63]. SHOP2 is an extension of the original SHOP 

planner, which was developed by the University of Maryland [64]. SHOP2 uses a 

domain-independent planning algorithm that can handle hierarchical task networks 

(HTNs), conditional effects, axioms, and durative actions and supports temporal 

and metric domain planning. Lastly SHOP2 has been used for various applications, 

such as web service composition [60], information gathering and practical planning 

such as evacuation scenarios [65]. 

  Machine Learning in Game AI 

Machine learning (ML) falls under the umbrella of artificial intelligence and 

revolves around the use of algorithms and statistical models to enable machines to 

act without explicit programming. It allows non-player characters (NPCs) to learn 

from data, experiences, or rewards, allowing them to enhance their performance 

over time.  

Machine learning techniques garnered significant recognition with landmark 

achievements such as AlphaGo, DeepMind's AI, defeating the world champion in 

Go, an intricate game demanding profound intuition. This breakthrough illustrated 

the immense potential of machine learning in tackling complex challenges [66].  

Another remarkable instance of machine learning's capabilities pushed to the 

extreme can be seen in the "Dota 2" team developed by OpenAI [67]. This AI 

system achieved the unprecedented feat of defeating world champions in an e-

sport game. Notably, the system underwent rigorous training, processing 

approximately two million frames every two seconds over a training period spanning 

ten months. These monumental successes highlight the remarkable power of 

machine learning in mastering and excelling in tasks that demand high-level 

strategic thinking and decision-making. 

Kunanusont et al. [68] have proposed a General Video Game Artificial 

Intelligence  (GVG-AI) framework based on deep learning, to allow systems to play 

games learned through screen-captured video. 

Joon Sung Park et al. [69] in their recent work, surprised the research 

community by making a video game simulation of 25 instances of ChatGPT, each 

role-playing as its own person, all living in the same community. Those ChatGPT 

personas, could even self-reflect and showed in general great social interactions. 

 Social NPCs Model 

Social NPCs are non-player characters that can interact with the player and 

other NPCs in a game world, using social cues, emotions, relationships, and goals. 

Social NPCs can enhance the immersion, realism, and narrative of a game, as well 

as provide more opportunities for gameplay and exploration. Several approaches 
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have been proposed to model social NPCs in games, using different techniques 

and frameworks. 

 

2.2.3.1 Comme il-Faut (CiF) 

One of the most influential works in this domain is Comme il-Faut (CiF) [70], a 

social agent architecture that represents rich social interactions between agents 

that include emotions, social and relationship contexts, and longer term mood. CiF 

was applied to the inaugural game “The Prom”, which is an interactive narrative 

experience centered around a clique of high school students, mainly from the 

counter-culture scene, as they navigate the final week leading up to their prom 

night. In this game, players assume the role of guiding these characters in making 

social choices. They must decide from a range of options, such as flirting, sharing 

interests, or cracking jokes at someone's expense, based on the characters' current 

thoughts and feelings. These interactions unfold as detailed dialogues between the 

characters. The game utilizes CiF's algorithms to generate social action lists for 

each character, taking into account their unique personalities, existing relationships, 

and past social experiences.  

CiF-CK is a social agent architecture developed by Guimaraes et al. [71] and is 

based on CiF. This work elevated CiF and created a mod for the successful game 

title “The Elder Scrolls V: Skyrim” to apply and evaluate their architecture, having 

the player himself interacting with those social agents through Skyrim’s first-person 

perspective gameplay.  

 

2.2.3.2 FAtiMA Modular 

The FAtiMA modular [72] is an agent model architecture that encapsulates the 

minimum set of functionalities, considered by the authors, to build emotional 

agents. Their approach allows them to quickly and easily build various social agent 

models in order to compare them and evaluate them. Seven years later, 

Mascarenhas et al. [73] assembled a collection of diverse open-source tools 

specifically tailored for emotional agents, each possessing a degree of decision-

making capacity. These tools also feature an integrated dialogue system closely 

aligned with the common industry technique of dialogue trees. To showcase the 

practicality of their work, they undertook various use case scenarios. 

For instance, "Space Modules Inc" serves as an illustrative example. In this 

game, players take on the role of customer service representatives on behalf of a 

spaceship part manufacturer. Each customer in this virtual world exhibits a distinct 

emotional profile, demanding the player to employ unique social strategies or 

tactics in handling each situation effectively. 

Another intriguing project they embarked upon is "Police Interrogation" a virtual 
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reality game where players assume the role of a police officer. Their objective is to 

extract as much information as possible from subjects without letting the situation 

spiral out of control. These practical applications of emotional agents and dialogue 

systems underscore the versatility and real-world relevance of their open-source 

tools. 

 World State Representation 

 In his work [74], Jeff Orkins highlights the importance of a symbolic 

representation of the world state based on two observations; a) today’s 

expectations of game AI are beyond a simple finite state machine, and b) planning 

algorithms like GOAP are computationally expensive if left unchecked. Various 

optimizations need to take place, and it is mandatory for the algorithm to be able to 

connect goals and behaviours through their preconditions and effects. In addition, 

he speaks of context (or procedural) preconditions and effects, which represent a 

piece of code that will run upon the execution of logic, and that it is mostly used for 

pruning the search tree.  

 There is also a plethora of works that highlight the importance of modeling a 

game’s world state in a semantic way. Kessing et al. [75] iterates over the key 

benefits of having a semantic world and they build a tool named Entika to facilitate 

the deployment of such mechanisms in a game. Afonso’s and Prada’s work [76] 

was also inspiring for this work as they provide a model of agents that can relate 

having as a basis a dominant psychological theory regarding personal agency, the 

Theory of Mind [77], [78].  

2.3 Progress beyond the state of the art 
This section discusses the progress beyond the state of the art of the work 

presented in this thesis. The Autonomia Framework introduces novel concepts and 

approaches that break new ground and surpass the current state of the art in 

several key aspects. 

 

1. A World State that replicates a Theory of Mind: The world state in 

Autonomia is modeled as a Memory class which is purely based upon the 

Theory of Mind and knowledge graphs. This allows the system to have 

recursive representations of various micro-world states, depicting the 

personal perspectives each NPC has for the world and the people around it. 

This architectural decision allows Autonomia’s world state to have a multi-

ordered [79] theory of mind representation. 

2. Behaviours and goals reside in Memory: Everything an NPC knows in 
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Autonomia is extracted either by its Memory or Perception module. This 

allows the execution and evaluation of behaviours and goals to be made in 

a realistic manner with knowledge accessible only from their own, unique 

theory of mind. In addition, behaviours and goals themselves are part of this 

world state representation, they are modeled and used in a way that allows 

them to be treated as first class citizens of the Memory class and in this 

way, they can be communicated, forgotten or even discovered. Lastly, other 

behaviour models can be encapsulated in Autonomia’s behaviours to enrich 

them with the first-class citizen attribute. 

3. Planning through expressive and procedural preconditions and 

effects: In Autonomia, plans are devised using a Goal-Oriented Action 

Planning (GOAP) algorithm. What sets this approach apart is the use of 

Expressions for both behaviour and goal preconditions and effects. This 

elevates the algorithm by infusing it with procedural expressivity while still 

supporting state matching. In addition, the Unity implementation of 

Autonomia simplifies the process with: a) a simple design pattern for the 

creation of user expressions, and b) a graph node editor for authoring 

Expression graphs. 

4. Intended Use Optimization for GOAP: This thesis introduces a new 

optimization for GOAP-based algorithms that enables better control over the 

formulation of plans and improves performance by narrowing the dynamic 

search space of behaviours. 

5. Common ground for Research: The problem of NPC believability is a 

multifaceted problem spanning from visual fidelity to behavioural and 

emotional authenticity. The Autonomia Framework, as an open-source and 

extensible project, offers a collaborative platform for researchers to 

contribute their expertise. The ultimate goal is to collectively work towards 

crafting realistic NPCs, making it a valuable and unifying endeavor for 

research in the field. 
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Chapter 3 

3 Framework Architecture 
Game development is renowned as one of the most demanding fields in 

software engineering. It continually presents new challenges and higher 

expectations. To keep pace with this evolving landscape, the game development 

industry recognizes the paramount importance of having the right tools for the job. 

This thesis places its primary emphasis on the Autonomia Framework as a tool 

designed to aid fellow developers. The framework serves as a foundational 

structure that can be extended, allowing developers to concentrate on specific tasks 

and problems that suit their expertise. For instance, a future implementation of the 

system could include emotional AI libraries running in parallel with ML trained 

animation systems, whilst having graphical tools for game designers to freely 

express their creativity. It's crucial to note that the framework, as presented here, is 

not intended as a final nor a complete solution. Instead, it is an invitation to the 

research community and developers to explore, build upon, and refine this 

framework further. 

3.1 Overview 
In this chapter, we delve into the architectural decisions that form Autonomia, 

presenting the specific definitions and classes that are heavily used in the core of 

our framework. We will explore essential components that underpin Autonomia's 

functionality, providing a comprehensive understanding of its inner workings. These 

fundamental components include: 

 

● World Representation Based on the Theory of Mind: We explain how 

Autonomia utilizes the Theory of Mind to construct a rich world 

representation that facilitates NPCs' understanding of their environment and 

interactions. 

 

● Module System: This section elaborates on how our modular system 

enriches the nodes of the knowledge graph within the framework, 

empowering them with extended functionality and flexibility. We present in 

this section the core modules of Autonomia. 

 

● Expression, Behaviour and Goal (EBG) System: Definitions for the 

interconnected systems of expression, behaviour and goals and how they 

synergize to drive and plan NPC actions, reactions and plans. 
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Together, these components form the foundation of Autonomia, enabling the 

creation of intelligent NPCs. As we delve into the specifics, readers will gain 

insights into how Autonomia leverages these elements to enhance the authenticity 

and complexity of NPC interactions in the context of video games. Yet, the core of 

the framework is not enough to run on its own, since it only provides the basic motif 

and tries to enforce specific patterns. It is up to the developers to implement and 

extend the framework based on their own development needs. 

 

3.2 Methodology 
The development and design of the Autonomia Framework followed a 

structured methodology that combined a detailed literature review, iterative 

prototyping, and a strong commitment to ambitious research. The approach taken 

in this project differed from conventional game development, which tends to 

prioritize safety and predictability due to industry demands. Research, on the other 

hand, allows for greater creativity and exploration of unconventional ideas, even if 

they carry a risk of failure. As illustrated in the following subsections, the 

methodology used in creating the Autonomia Framework involves literature review 

and theoretical foundation as well as iterative prototyping and development. 

 Literature Review and Theoretical Foundation 

The initial phase of the framework's development commenced with an extensive 

literature review, which spanned a wide range of sources. These sources included 

academic papers, books, online documentation, and industry standards. The 

primary objective of this review was to acquire a comprehensive understanding of 

existing game AI frameworks, AI theories, and software engineering best practices. 

Building upon this knowledge, the theoretical foundation for the Autonomia 

Framework was laid. This involved synthesizing relevant AI concepts, such as the 

Theory of Mind, major behavior models, and programming design patterns that 

facilitate code scalability. These theoretical insights served as the basis for making 

architectural decisions and establishing core design principles for the framework. 

 Iterative Prototyping and Development 

The development of Autonomia followed an iterative and agile approach. This 

methodical process commenced with a significant amount of time dedicated to 

designing the overarching concept. The primary focus during this phase was on 

bridging the gaps within existing methodologies and techniques, as well as 
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identifying innovative ways to enhance NPC believability. 

Following the initial design phase, multiple prototype versions of the framework 

were created, each building upon the insights gained from the previous iteration. 

These prototypes served as experimental platforms for exploring different 

architectural structures, algorithms, and features. Feedback collected from 

prototype testing played a pivotal role in refining the final architectural design. 

Throughout the development process, a strong emphasis was placed on 

adhering to software engineering best practices. This included the implementation 

of version control, issue tracking, and coding standards. 

3.3 Theory of Mind & World Representation 

 Theory of Mind 

 Theory of Mind [77], [78] is a term used in phycology to describe the ability of 

one’s self to understand the mental state of others. Its definition extends to being 

able to define and determine different emotional states, feelings, desires, beliefs or 

even thoughts of others. A person using his Theory of Mind (ToM) should be able to 

extend, predict and explain the behaviour of others. For example, if person A, 

notices person B crying, person A could explore his current model of the world, his 

theory of mind, in order to understand why person B is having this reaction. Using 

common knowledge, person A can assume that person B is for some reason sad. 

Then by delving deeper and extending his ToM through perception, person A might 

narrow down the reasons person B is crying and is sad, or maybe realize those 

tears are tears of joy.  

 Our theory of mind allows us to interact with other social beings in meaningful 

ways; to empathize, communicate and even understand different perspectives and 

interpretations of events. Each one’s theory of mind is gradually developed from 

infancy. Babies begin paying attention to facial expressions, voice alterations and 

gestures. From there, people begin realizing their own emotions, realize that other 

people have other beliefs and perspectives and sooner or later develop more 

complex skills such as sarcasm, humor or even deception. It is important to 

highlight, that even thought to some degree all people are able to construct their 

own theory of mind, and each one can vary based on the person, situation and 

culture. Also, it is not a unique skill to humans. Some animals, such as apes, 

dolphins, elephants, dogs, and crows, have shown evidence of having some form 

and capability of theory of mind. 
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 World State in Video Games 

 The world state is a term that refers to the current condition and status of the 

game world and its elements, such as the environment, the characters, the objects, 

the events and others. The world state can change dynamically based on the 

actions and choices of the player and other agents, as well as random or even 

scripted events. The model of our world state will define the strengths and 

weaknesses of our engine. For example, in a role-playing game, the world state 

might include the level, health, inventory, and reputation of the player character, as 

well as the quests they have completed or failed, the allies and enemies they have 

made, and the locations they have visited or unlocked. The world state might also 

include the weather, time of day, seasons, political situation, and cultural events 

and rules of the game world. These factors can influence how the player interacts 

with the game world and how the game world reacts to the player. 

 Autonomia World State 

 The Theory of Mind (ToM) is a multifaceted concept comprising various 

interconnected mechanisms that collectively enable us to comprehend, experience, 

and respond to the world around us. It is only rational for ToM to serve as the 

foundation for Autonomia. In our attempt to address this issue, we directed our 

attention to developing a world state representation capable of mirroring the nature 

of ToM. After researching the literature, brainstorming sessions, and testing, we 

arrived at the conclusion that a knowledge graph structure would best align with our 

objectives. Although relatively uncommon in game development, the adoption of 

knowledge graphs represents an emerging trend that offers significant potential 

advantages. 

 A knowledge graph is a structure for representing information in the form of a 

network of nodes and edges. Nodes represent entities or concepts, while edges are 

the relations among them and each of those may contain labels or properties of any 

type. A knowledge graph inherently has the ability to capture semantic meaning and 

context of information, thereby enabling reasoning and inference based on the data 

it contains. Furthermore, this approach opens the door to future possibilities, 

including natural language interactions within the game world, such as querying, 

narrating, or even engaging in conversations. Additionally, it facilitates the 

integration of external data and knowledge sources into the game world, enriching 

the realism, diversity, and relevance of game content with minimal effort. However, 

it's important to acknowledge that these benefits do introduce increased complexity 

and challenges, particularly concerning real-time performance optimization in the 

game environment.  
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Figure 1: Example of a knowledge graph 

 Of course, each node has the potential to represent any concept in the game 

world. To attach meaning and functionality, we allow each node to have modules. 

By attaching modules to a node we can classify it into different conceptual 

categories. For example, a node with a Perception, Memory and Needs module can 

represent a simple NPC. We elaborate regarding modules in the next section. 

3.4 Module System 
 Since Autonomia is a framework designed to be extended for any need and 

platform, it was crucial to implement a modular system that will efficiently decouple 

different functionalities. Modules have a node owner to whom they provide their 

features. With a specialized function that will be discussed later, there may also 

exist various copies of a module for different layers of memory. 

 In addition, Modules may implement methods derived from the base Module 

class to fulfill their functionality or even serve as plain data containers. They also 

have the option to serialize or deserialize their data to be persistent throughout 

sessions. In the following subsections we describe the main Modules used in the 

core version of Autonomia. 

 Active Events Module 

 During the early stages of Autonomia's development, we recognized the 
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necessity of implementing an event system. In our context, an event signifies any 

observable action, such as eating, walking, or conversing, and is defined by an 

actor, a type, and a subject. Another way to view events is as temporary relations 

actively being caused by some action. For example, the action of drinking water is a 

relational fact as much as an action, but it is due to last for a brief moment.  

 In order to represent a currently running event in the world, we created a Module 

named ActiveEvents. Any component in the framework that will begin an effect has 

the responsibility to access the ActiveEvents module, add the newly created event 

and remove it to signal the event's conclusion. So, the ActiveEvents module is our 

way of exposing actions to our perception system which will be discussed later.  

 Event Interpreter Module 

 In addition, we dictate that events are nothing more than plain data. On their own 

they do not carry any meaning. Thus, we created another Module named 

EventInterpreter. This module assumes a crucial role within Autonomia, as it 

focuses on updating an NPC's Memory, specifically its relational memory. By 

isolating the responsibility for updating relational memory, we enable the system to 

potentially generate context-aware assumptions and interpretations of events. For 

instance, consider a scenario where two individuals engage in a physical fight; this 

event can be interpreted in multiple ways. It could signify hatred between them, or it 

might be a friendly sparring match. Alternatively, one individual could be a law 

enforcement officer apprehending the other for reasons known or unknown to the 

virtual agent. This approach reinforces our assertion that events, by themselves, 

lack inherent meaning. 

 So, each EventInterpreter may have multiple interpretations for the same type of 

event, but each can be characterized by a “matching score”. The interpretation with 

the highest score gets to alter the memory of an NPC when the need arises. 

 Lastly, we have facilitated the ability for interpretations to be transferred from 

NPC to another NPC. This addition allows us to have a newborn child agent that 

cannot make sense of the world, but as it grows older it begins to understand, be 

taught, and eventually teach others the ability to interpret. 
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Figure 2: ActiveEvents, Perception and EventInterpreter 

 Perception Module 

 We have chosen to model Autonomia's perception system after the principles of 

human perception. This system comprises three key layers as shown in Figure 3. 

Detectors being implementation-specific; assume the responsibility of identifying 

and storing current Events or Nodes within their designated stimuli. At any given 

point in time, the Perception module can access all available stimuli, enabling it to 

retrieve related information. By combining various sensory modalities, including 

visual, auditory, and potentially supernatural senses, we can enable our agents to 

respond dynamically to their environment. 
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Figure 3: Perception system structure of Autonomia 

 The Perception module holds a pivotal role within the Autonomia system, as it is 

responsible for actively searching for detected events and subsequently forwarding 

them to the EventInterpreter module. Furthermore, the perception operates on a 

publish-subscribe (pub/sub) basis, enabling other modules to request specific event 

notifications from the perception system. 

 It is crucial to emphasize that, at this point, the perception system serves as the 

sole conduit of communication between an NPC’s memory and the external world. 

This design decision allows us to introduce a filtering mechanism within the 

perception system, referred to as what we term a "memory-local node". That 

means, that every module subscribing to an event through perception, will always 

receive nodes in their “memorized version”. For instance, in a scenario where Node 

A visually perceives Node B, Node A's knowledge about Node B should be 

restricted to what it already possesses in its memory. Node A should not gain 

access to information about any hidden objects behind Node B's back unless it has 

prior knowledge of this fact or chooses to interpret and assume such knowledge. 

This represents a fundamental concept within Autonomia's framework, as every 

other module providing functionality to an NPC is strictly constrained by the NPC's 

existing knowledge base through the Perception module. Implementation details 

regarding Perception can be found in section 4.2.6. 

 Memory Module and the Theory of Mind 

The Memory module is composed of two distinct types of data structures: 
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● Relations: This structure takes the form of a knowledge graph, representing 

all the relational knowledge of the nodes of the world, 

● Event Index: This structure is used as an efficient way for swiftly retrieving 

stored events. 

In our implementation, we have utilized interfaces to allow for custom 

implementations of both graph structures and event indices. Additionally, we have 

introduced a class named MemoryQuery. This class serves as a library of method 

calls designed to streamline the traversal and manipulation of these structures. For 

instance, we have implemented functions such as "get neighbors," "get relation by 

type," and even support for breadth-first searches to facilitate graph traversal. 

Lastly, MemoryQuery supports a simple type of non-nested string queries. 

 

Figure 4: Memory Module representation structurally 

  

An essential design principle characterizing the Memory module revolves around 

the concept of exclusively returning the "memory-local node" at any given point in 

time. This design choice plays a pivotal role when coupled with the perception 

system, as it enables agents to exhibit realistic behaviour based uniquely on their 

knowledge of the world.  
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 To illustrate this principle, consider three nodes within our scenario: Node A and 

Node B, both residing in the same house, and Node C, representing a food 

resource in the fridge. If Node B were to wake up early and consume Node C, it is 

logical that Node A remains unaware of this occurrence. Reasonably, the expected 

behaviour for Node A would have him waking up, planning to remember where 

Node C is, proceeding to its location, only to realize that it is no longer present. This 

mechanism ensures that Node A's actions align with its knowledge, promoting 

realistic and immersive agent behaviour within the system. 

 The most important contribution of this module is yet to be explained, but in its 

current state it has already singlehandedly achieved, as defined, a multilayered 

Theory of Mind. The key takeaway is that nodes are defined with their modules 

included. A Node in the relational part of a Memory module can contain a Memory 

module which as well can contain other Memory modules of other NPCs and so on. 

This leads to a scenario in which Node A contains a version of Node B's knowledge 

as he perceives it, and vice versa, which in itself creates a never-ending recursive 

loop of “if he knows-they know he knows” etc. This is further illustrated in Figure 5. 

To solve the infinite recursion problem, we assign nodes with a simDepth 

(simulation or simulacrum) variable and define a maxSimDepth in our system. The 

larger the maxSimDepth the more accurate theory of mind we can achieve, but we 

are also bound to use more resources and greatly increase complexity. 

 

Figure 5: Illustration showcasing the infinite recursion 
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 Behaviour Controller Module 

 Behaviours have not been defined yet at this point yet, but for simplicity’s sake let 

us assume behaviours as simple actions, for instance walking, running, eating, 

sitting etc. Various modules which can also be completely agnostic to each other, 

may want at some point, to initiate some behaviour. But, it is easy for behaviours to 

contradict with each other, for example a person cannot walk while sitting. Thus, we 

created the BehaviourController module which is tasked with deciding which 

behaviour should run at which point. 

 This problem required a lot of careful thinking and planning. Some ideas we 

experimented with were CPU scheduling algorithms like round-robin but they do not 

necessarily make sense in our human behavioural context. Also, we brainstormed 

ideas of separate body limb declarations for each behaviour. For example, we may 

be walking down the street going to work, which is a behaviour that mostly occupies 

our legs. This does not stop us from greeting someone, a behaviour which would 

require the head and hand, but this thought process substantially increases 

complexity. In the end, we decided that simple is better and our solution to the 

problem follows next. 

  The BehaviourController allows competitors to have a ticket granted to them, and 

each ticket is paired with an importance value which starts at zero. Then, each 

competitor may “try” their ticket with an importance value. If the importance they 

declared is higher than the running ticket’s importance, the behaviour controller 

allows them to “switch” the current behaviour to what they dictate. This of course 

comes with credibility issues. A competitor may declare the highest possible value 

simply to take control, but this is fine. In a game scenario the programmer wants 

this control to enforce story elements to take place. 

 To explain our algorithm’s logic, first we need to understand that it is common 

and reasonable for many mechanisms in the conscious mind to want something 

done. It is truly simple; in the end, we will do the things that we care about the most. 

So, the brain’s ability to value goals is what drives us to behave in any specific way. 

For instance, let us imagine Node A is at bar and that node is talking to his love 

interest. He may notice his friends are also at the bar but continues talking to his 

interest. At some point Node A may also feel the need to use the bathroom and we 

have multiple conflicting behaviours that want control of Node A’s actions. The part 

of his brain that wants to appeal to his love interest wants to continue talking but the 

need to use the bathroom will gradually increase. It is only natural that when the 

importance of that need becomes greater that it will take control. To extend this 

example further, let us imagine that while our subjects are talking a robbery may 

take place in the bar and both NPCs would ideally turn to their survival instincts. 
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 Intended Uses Module 

 This is a module intended purely for optimizing the A* algorithm in our GOAP 

search and giving game designers more control. More details can be found in 

section 4.2.14.2, yet this serves as a great example of the versatility and flexibility 

of modules. 

 

3.5 Expressions, Behaviours and Goals 
 It has been exhaustively discussed in the literature and is reasonable to agree 

that a realistic and believable NPC has agency. There should be purpose behind 

his actions and he should have dreams and goals he strives to achieve. Every 

action should be supported by a reason and this concept has given rise to most 

successful behavioural models that were discussed in their respective related work 

chapter (2.2.1), and the games that adopted them have proved their worth.  

 None can doubt the complexity of the problem at hand and it is a challenge that 

should not be looked down upon. It was clear that every decision in the framework’s 

architecture should be made to complement this exact aspect.  

 In this section, we discuss our Expression-Behaviour-Goal (EBG) model. The 

purpose of this model is to allow easy authoring of behaviours and goals and 

allowing the system to match them through their declared expressions. Each 

concept will be broken down individually, and we talk about their synergy as a 

completed model in section 3.5.5. Not by any means does our model try to replace 

traditional or custom behavioural models. Instead, we view it as a way to 

encompass what already exists and further complement it by using our model, 

which allows everything to be treated as knowledge that can be passed along 

between agents. 

 Expressions 

 In most STRIPS-based planning algorithms like GOAP and HTNs, actions or 

behaviours must declare preconditions and effects. This declaration enables the 

algorithm to determine which actions can be executed under specific conditions. 

For instance, an agent cannot execute an "Attack with Sword" action if he is not 

already in hold of a sword. To address this, a hypothetical action like "Grab Sword" 

would establish the precondition for "Attack with Sword," potentially setting a 

variable like "isHoldingSword" to true. Then, the preconditions for "Attack with 

Sword" would evaluate to true and the agent could execute that action. 

 While methods like shared blackboards are commonly employed for 

precondition-effect algorithms due to their speed and efficiency, they have 
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limitations in capturing all relative information or knowledge needed for agents to 

plan and act effectively. This limitation compromises the expressiveness and 

realism of the system [74]. 

 Our solutions to this problem are Expressions. Drawing inspiration from Abstract 

Syntax Trees (AST) [80] in compiler design, we define expressions as abstract 

nodes within a simplified syntax tree, allowing users to create custom expressions 

that can carry and process information in a structured manner. Ultimately, the root 

of the expression tree can be evaluated, triggering a cascading evaluation 

throughout the tree. If the tree successfully evaluates, the final value can be 

retrieved from the expression. Detailed technical information regarding expression 

methods is discussed in section 4.2.12. 

 We have defined two primary derived classes for expressions that automate the 

matching and evaluation logic for user-defined classes: 

1. Producer Expression: These expressions serve as the leaves of the tree 

and can generate a value, such as StringExpression or NumberExpression. 

2. Processor Expression: Expressions as such can have children whose 

values they utilize to produce a new value. For instance, a MathExpression 

would require two children evaluating to numbers, and another child 

representing an arithmetical operation like addition or subtraction. 

 Behaviours 

 In our system, behaviours are an abstraction to commonly referred actions, “the 

process of doing something”. Autonomia’s behaviours can refer to nonphysical 

actions as well, for example thinking or planning your next action. Each behaviour 

consists of two sets of expressions: preconditions, which determine the conditions 

that must be met for the behaviour to execute, and effects, which specify the 

desired outcomes upon the behaviour's completion.  

 We define the "actor" as the node executing the behaviour, and the "owner" as 

the node exposing or providing the behaviour, akin to an affordance. To illustrate 

this concept further, consider a "Sit Chair" behaviour. In this case, the person 

intending to sit in the chair serves as the actor, while the chair itself is the owner.  

 Moreover, each behaviour includes methods that describe its cost or 

effectiveness and an estimate of the required time based on the current actor's 

knowledge. These attributes, namely the cost and required time of a behaviour, 

wield considerable influence over the planner's decision-making process when 

selecting behaviours as part of a plan. We will elaborate into the impact of these 

factors on goal planning in the upcoming sections. 

 It is also important to mention, that nodes do not have any direct reference to 
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their behaviours. The framework has an injection mechanism, that allows new 

nodes to be created in its runtime, called BehaviourNodes. Those nodes are then 

connected to their related nodes in the graph and become in a sense accessible 

through them. By having Behaviour Nodes be related to nodes that expose them, 

we allow them to be treated as a piece of knowledge. Node A is now able to teach 

Node B the existence of a behaviour contained in BehaviourNode C, he was 

previously unaware of. This is a novel addition to our system, in effect turning 

behaviours as first-class citizens of the framework. 

 Last but not least, Autonomia’s behaviours are not created to replace previous 

techniques. The purpose of the behaviour system is to allow discovery and planning 

in a way that is always based on the knowledge of the actor. A behaviour could be 

a Behaviour Tree [49] and then seamlessly switch to a Utility AI [48] implementation 

whilst completely decoupling them. 

3.5.2.1 Complex Behaviour 

 To facilitate more advanced actions, we introduce a specialized class known as 

Complex Behaviour within our framework. Complex Behaviours are designed to 

streamline the execution of abstract or high-level behaviours. For instance, consider 

the "Tavern Waiter" behaviour, which is inherently intricate. It involves multiple 

steps, distinct phases, and requires dynamic planning. Complex Behaviours offer 

several advantages, including: 

 

● Behaviour Queues: They enable the creation of behaviour queues, allowing 

for the sequential execution of multiple behaviours. This is particularly useful 

for orchestrating complex sequences of actions. 

 

● Automated Planning/Replanning: Complex Behaviours incorporate the 

ability to automatically replan in response to a behaviour not meeting its 

preconditions. This ensures adaptability in the face of unexpected obstacles 

or changes in the environment. 

 

● Nested Complexity: Complex Behaviours can contain other Complex 

Behaviours, fostering a hierarchical structure. In the case of "Tavern 

Waiter," it may encompass behaviours like "Take Order," "Serve Order," and 

"Take Bill," each of which can in turn, contain their own recursive 

behaviours. 

 

 This hierarchical approach to behaviour design empowers our framework to 

handle intricate, multi-step tasks efficiently and flexibly. 
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 Goals 

 In crafting a believable agent, the presence of goals that steer its actions is 

imperative. The agent should possess an awareness of these goals and the 

capability to formulate plans to achieve them. While existing literature provides 

extensive insights, on the modeling of goals, in the core version of Autonomia, we 

have opted for a simplified representation to accommodate future extensions. Our 

model of goals comprises three key components: a) name, b) a set of expressions 

that signify when the goal is satisfied, and c) a method that returns their current 

value or importance. This metric assists the agent in prioritizing and selecting goals 

for planning and execution. 

 Exactly like BehaviourNodes, we allow the existence of GoalNodes, enabling 

them the same benefits discussed previously. Mainly, allowing goals to be treated 

as knowledge that can be passed along. This streamlined approach to modeling 

goals in Autonomia lays the foundation for the inclusion of more sophisticated goal-

related functionalities in future iterations. 

 

 Abstract Nodes and Wildcard values 

 In the early stages of Autonomia's development, it became evident that there was 

a necessity for defining a node type that abstracts the specific requirements we 

seek. For instance, a user might wish to declare a goal like "Sit Goal," but this goal 

could be satisfied by any chair or even any object allowing a person to sit. To 

address this need, we introduced the concept of Abstract Nodes. 

 Abstract Nodes serve as specialized nodes designed to establish a superset of 

other nodes by leveraging the native labels derived from the knowledge graph 

structure. Essentially, they allow for a higher level of abstraction, enabling users to 

define goals and conditions in a more generalized manner, while retaining the 

flexibility to encompass a wide range of specific instances. Now, when creating a 

"Sit Goal," the process involves crafting an event expression of type "sit," utilizing 

an abstract node labeled as "Chair" as the subject. It is important to note that this 

approach necessitates that all chair nodes in the system be consistently labeled 

with the "Chair" label.  

 For more intricate goals that involve multiple criteria or conditions, a thoughtful 

design process is required in advance. This process ensures that the labeling and 

abstraction of nodes align with the specific goals and objectives defined within the 

system, allowing for the effective representation of complex behaviours and 

objectives. 

 Another tool that was required to be created was the wildcard values. These 

wildcards serve as placeholders that can be matched to any data type, effectively 
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indicating that a value can take on any form. For instance, in the context of a "Walk 

behaviour," one of its effects could be an event of the type "move" with a subject 

designated as a wildcard node. This signals to the planner algorithm that the 

wildcard node can represent any other node in the system. 

 Wildcard values enhance the flexibility and adaptability of our framework, 

allowing it to accommodate a wide range of potential scenarios and conditions 

where the exact identity of a subject or value may vary. 

 EBG Model 

 Combining expressions, behaviours, and goals, we have a completely expressive 

behaviour model paired with meaning that is also easily extendable by other 

programmers. The EBG model is a way of encapsulating any form of AI whilst 

giving it the ability to be treated as a piece of knowledge within the game world, 

essentially making behaviours and goals first-class citizens in the entirety of the 

framework. NPCs can potentially discover, teach and compare behaviours residing 

within the world and seamlessly be able to use them for their plans and goals. 

 Expressions serve as a flexible bridge between behaviours and goals. Since 

expressions are based upon abstract syntax trees [80], an extended 

implementation of this system could be considered its own micro-programming 

language that is also easy to extend with a few lines of code. At the same time, due 

to their strict syntax they can allow state matching for the GOAP [57] algorithm 

making them a powerful and versatile tool. 

 

3.6 Goal Planning 
 Planning is an essential aspect of our daily lives, whether carried out consciously 

or unconsciously. For any intelligent life form, the ability to plan, replan in response 

to obstacles and prioritize tasks based on current objectives is fundamental. Within 

Autonomia, our agents are equipped with two primary planning algorithms, and the 

framework allows for the incorporation of additional algorithms in future iterations. 

First, we have a Goal-Oriented Action Planning (GOAP) algorithm, to enable 

complex behaviour chains to be formed. In addition, Autonomia introduces a 

scheduling algorithm that allows NPCs to plan their entire day proactively. This 

algorithm utilizes the agent's prior knowledge of the world and projects the expected 

state for each moment in time. This proactive approach enables agents to make 

informed decisions and efficiently allocate their time and resources to accomplish 

their tasks and priorities. 
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 Autonomia’s GOAP A* Search 

 Our applied algorithm combines two core techniques: A* search and Goal-

Oriented Action Planning (GOAP) but alters them just enough to fit the broader 

context and dynamic world of Autonomia. Here's an overview of how our 

implementation of algorithm operates: 

● Behaviour Set: The agent queries all potential behaviours from his 

memory, each characterized by preconditions, effects, and associated 

costs. For example, in our agent’s memory there may exist a kitchen with a 

plethora of tools. All of the exposed behaviours are added to the behaviour 

set. 

● Agent's Goal: The agent also has a defined goal, representing a desired 

state or expressions it aims to satisfy. For instance, a goal might be to "Eat 

Food" which is satisfied when the agent succeeds on eating a food 

resource. 

● A Search*: The agent employs the A* search algorithm to identify the 

optimal sequence of behaviours leading to the goal. In our context, the 

nodes within the search state represent states of the world as sets of 

expressions, while the edges represent the most recent behaviour that 

brought that state. More information can be found in section 4.2.14.2. The 

A* algorithm can be optimized by using a heuristic function that enables us 

to prioritize the exploration more promising routes. In our example, to satisfy 

the “Eat Food” goal, an agent could calculate the following plan: 

“WalkBehaviour” to get to the fridge, “OpenDoorFridgeBehaviour” exposed 

by the fridge to open the door, “RetreiveFridgeItemBehaviour” to get the 

apple from the fridge.  

 The A* GOAP algorithm empowers agents to intelligently plan their actions, 

adapting to environmental changes to achieve their goals. However, as 

discussed in the related work section, GOAP can be computationally expensive, 

especially when applied to a large number of NPCs simultaneously calculating 

plans in real-time. Contrasting conventional implementations of GOAP, instead of 

using a dictionary of string keys and boolean values, we have a completely 

freeform and dynamic world representation through expressions.  

 In Autonomia, we've implemented several strategies to ensure the efficiency of 

this algorithm. We use the C# Task library to run the GOAP algorithm as an 

asynchronous task, allowing concurrent execution and avoiding the blocking of the 

main thread for more costly calculations. Our integration of cancellation tokens 

gives us the ability to stop planning tasks at will, providing control over the planning 

process. We've included a configurable maximum number of steps for each 

instance of the GOAP algorithm to prevent excessive resource consumption. Lastly, 
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we minimize the search space and improve the heuristic function of the A* search 

by using an optimization we term “GOAP with Intended Uses”, for more information 

read section 4.2.14.2 

 In a specific iteration of Autonomia, we used an NPC's intelligence score to 

dynamically adjust the number of steps allocated to the A* GOAP algorithm. This 

added practical intelligence to NPCs, allowing them to allocate computational steps 

based on their perceived intelligence level. 

 These strategies collectively enhance the efficiency and adaptability of the A* 

GOAP algorithm within Autonomia, making it suitable for managing a dozen of 

NPCs in dynamic game environments. 

 

 Schedule 

 In our daily lives, we often follow a routine, with a predefined idea of how our day 

will unfold. This routine typically involves waking up, tending to morning rituals, 

commuting to work, putting in a nine-to-five shift, returning home, and perhaps 

enjoying some leisure activities before bedtime. However, there are days when our 

schedules vary, influenced by work commitments, health appointments, or 

unexpected emergencies. We possess the ability to manage our daily schedules 

and have knowledge of our plans. 

 Recognizing the significance of this aspect in shaping the believability of NPCs, 

we drew inspiration from the highly successful game title Red Dead Redemption 2 

(RDR2) [81]. In RDR2, NPCs lead detailed lives, adhering to daily routines while 

also accommodating dynamic changes that can disrupt their schedules. To mirror 

this level of realism and adaptability, we introduce a class of goals known as 

"ScheduledGoals."  

 ScheduledGoals enable Autonomia's NPCs to incorporate schedule-based 

objectives into their behaviour, besides general purpose goals. This addition not 

only enhances the authenticity of the NPCs' actions but also allows for flexible 

adjustments in response to changing circumstances, contributing to a more 

immersive and dynamic game world.  

 Furthermore, the implementation of a pre-planned schedule for our agents serves 

as an effective strategy to reduce the need for real-time planning, resulting in 

significant performance savings. Essentially, this schedule acts as a form of "baked" 

plans, predefining the agents' activities and behaviours during their daily routines in 

a meaningful way. Using ScheduledGoals, NPCs can make social appointments, 

work at consistent hours, etc. This proactive approach not only enhances 

computational efficiency but also contributes to the seamless and immersive 

execution of agent behaviours within the game world. 
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 The PlanBehaviour 

 In a realistic game world, it's reasonable to anticipate the frequent need for 

planning. Players and agents within the game often face context-specific options 

and decisions that require careful consideration. To facilitate this, we've introduced 

a behaviour called PlanBehaviour into our framework. 

 The PlanBehaviour takes a goal as its parameter and utilizes the default planner, 

which in our case is the GOAP algorithm and initiates the planning process within 

behaviour instance. Once the algorithm completes its calculations, the behaviour 

attempts to execute the generated plan. For example, consider a waiter who needs 

to find a clean plate to serve customers. In a dynamic game scenario, this task may 

require planning because clean plates may not always be readily available and 

might need cleaning first. This feature enables users of the framework to easily 

incorporate sub-behaviours based on specific goals within their own custom 

behaviours, allowing for more intricate, readable, and context-sensitive agent 

behaviours. 

3.7 Compatibility with other AI models 
 In the ever-evolving landscape of AI and game development, the compatibility of 

AI frameworks with existing models holds immense significance. Autonomia, 

boasting a versatile architecture and a comprehensive array of features, is 

purposefully designed to seamlessly interface with other AI models while enabling 

them to be treated as a piece of knowledge within the game world. This 

compatibility empowers game developers to harness a blend of AI techniques, 

leading to the creation of more immersive and intricate gaming experiences. 

 Autonomia's commitment to openness and extensibility, we envision a future 

where collaboration within the game AI research community flourishes. 

Researchers and developers can build upon or even change for the better the 

Autonomia framework, specializing in their respective areas of AI expertise, and 

contribute to its open-source development. This collaborative approach fosters a 

vibrant ecosystem where each individual can make their unique contributions, 

ultimately benefiting the broader community of game developers and AI 

enthusiasts.

 

3.8 Scalability and Performance 
 The scalability and performance of a game's AI system are inherently tied to the 

algorithms in use and the complexity of the game world. Autonomia acknowledges 

this relationship and offers a versatile framework that adapts to the specific 
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demands of each game. We can theorize of ways to make the system’s most 

demanding mechanisms scalable by using cloud computing to separate each agent 

instance in different machines but Autonomia is far from that in its current 

implementation, so we will not elaborate more on that specific topic. 

 In the end, Autonomia is but a tool. It is designed as an open-ended framework, 

providing developers with a high degree of customizability to tailor it to their specific 

needs. In essence, Autonomia's flexibility and adaptability makes it a valuable tool 

for game development teams, allowing them to search for their desired balance 

between AI sophistication and performance optimization, ultimately delivering a 

compelling gaming experience. 

3.9 The Autonomy Paradox 
 To deliver an immersive gaming experience, it's imperative to have non-player 

characters (NPCs) that exhibit realism, dynamic worlds that evolve based on unique 

gameplay, and a narrative that unfolds through scripted NPC actions. However, this 

presents a challenging paradox in video game development, which we named the 

"Autonomy Paradox."  

 The Autonomy Paradox encapsulates the dilemma faced by game developers: 

on one hand, they strive for NPCs to behave realistically and autonomously, 

responding to the player's actions and creating dynamic game worlds. On the other 

hand, there's a need for NPCs to adhere to scripted behaviours and specific 

narratives, limiting their "free-will" to ensure the progression and narrative of the 

game's storyline. 

 This paradox is at the heart of the framework's title, Autonomia (“Αυτονομία” in 

Greek). It symbolizes the delicate balance that Autonomia seeks to achieve by 

providing developers with the tools to create NPCs that can exhibit autonomy when 

required, yet also allow predetermined narratives and behaviours when essential for 

the game's storyline. 
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Chapter 4

4 Framework Implementation 
The implementation of Autonomia commenced in November of 2022, and has 

evolved into two primary components to date. The two main parts are: a) the 

Autonomia.Core library, and b) the Unity Integration.  

Chapter 3 explained the theoretical point of view of the system’s architecture, 

where Chapter 4 aims to provide insights on its inner workings and technical 

details. Then we follow with Chapter 5, which explains the Unity Integration of 

Autonomia, which serves as: a) a use case for the framework’s integration, and b) 

another starting point for fellow researchers to join our work. To ensure future 

collaboration and understanding, we've adhered to suitable design patterns in the 

codebase, promoting maintainability and readability.  

Autonomia is openly available as an open-source project on GitLab [82], [83], 

fostering transparency and community engagement. We welcome and value 

constructive criticism and feedback from the research and development community. 

 

4.1 Third-Party Tools 

 C# 

 The choice of programming language plays a pivotal role in the development of 

any software framework, and Autonomia is no exception. In selecting C# [84] as the 

foundational language for Autonomia.Core, we considered several key factors that 

align with our goals and objectives. 

4.1.1.1 Seamless Unity Integration 

 C# is the primary programming language used within the Unity game 

development platform. Given our aspiration to seamlessly integrate Autonomia with 

Unity, adopting C# as the core language was a natural choice. This alignment 

enables Autonomia to operate harmoniously within Unity, simplifying the 

implementation process for game developers. 

4.1.1.2 Versatility of C# 

 One of the foremost reasons for considering C# as a programming language for 

a new framework is its versatility. C# is a statically-typed, object-oriented language 
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that can be employed in a variety of application domains. Whether the framework is 

intended for web development, desktop applications, mobile apps, and of course 

game development, C# can seamlessly adapt to meet these diverse requirements. 

With the advent of .NET Core, C# has transcended its Windows-centric roots and 

become a cross-platform language. Developers can build applications and 

frameworks that run on Windows, macOS, and Linux, making it an ideal choice for 

ensuring broad compatibility and reaching a wider audience. Also, C# boasts a 

robust standard library, the .NET Framework (or .NET Core/.NET 5+), which offers 

a comprehensive set of APIs for various tasks such as file I/O, networking, and data 

manipulation. This extensive library support accelerates framework development by 

reducing the need to reinvent the wheel, saving time and effort. 

4.1.1.3 Strong Developer Community 

 Another compelling reason to choose C# for a new framework is the vibrant and 

engaged developer community that surrounds it. No one can doubt that C# 

developers benefit from a wealth of learning resources, including official Microsoft 

documentation, online courses, tutorials, and active forums. This wealth of 

knowledge facilitates the onboarding of new developers to the framework and aids 

in solving complex challenges. To further extend this point, the C# ecosystem is 

teeming with third-party libraries and tools that extend its capabilities. These 

resources can be leveraged to enhance the functionality of the framework and 

expedite development. 

4.1.1.4 Strong Language Features 

 C# offers several language features that can greatly benefit framework 

development. C# enforces strong type checking and supports modern programming 

paradigms like object-oriented and functional programming. This leads to code that 

is more reliable, maintainable, and less error-prone—a crucial factor for framework 

longevity. Furthermore, C# features a sophisticated asynchronous programming 

model that simplifies concurrent operations, a key requirement for high-

performance frameworks handling multiple tasks concurrently. To extend our point 

further, C# has evolved over the years with the introduction of features like pattern 

matching, local functions, and expression-bodied members. These additions make 

code more concise and expressive, enhancing developer productivity. 

 Neo4j 

 In our attempts to populate our world with information while developing and 

testing, we used Neo4j desktop [85] [86]. Neo4J is a popular and powerful graph 

database management system. It's designed to store, manage, and query data in 

the form of a graph, which is a data structure consisting of nodes and relationships 
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which carry labels and properties. Since Autonomia is designed to work with graph 

databases, Neo4j saves us the trouble of implementing the entire system ourselves. 

For better performance, Autonomia does have its own internal graph database 

system but the disk storage for persistence happens through Neo4J. 

 In addition, Neo4j Desktop comes with powerful tools to help you create and 

examine your data. Following, we outline the tools included with Neo4J that we 

consider important for Autonomia. 

4.1.2.1 Cypher Querying Language 

 Cypher is a powerful and expressive query language specifically designed for 

working with graph databases, with Neo4j being one of its primary implementations. 

It provides a way to interact with graph data by specifying patterns and operations 

on nodes and relationships within the graph. Cypher's syntax and semantics are 

tailored to the unique structure of graph data, making it efficient and intuitive for 

querying and manipulating graph databases. In Cypher, the most dominant feature 

at the core of its functionality is pattern matching. Patterns are defined using an 

expressive, readable syntax, representing nodes, relationships, and their 

associated properties. For example, a pattern like: 

 

㩀㨾㨰㨽Ό㨦㨾㨰㨽  ␡Ό 㨗㨣㨚㨖㨟㨕㨤؉㨨㨚㨥㨙␡  㨱㨽㨴㨰㨹㨯Ό㨦㨾㨰㨽 

 
would match a user node connected to another user node through a 

"FRIENDS_WITH" relationship. Nodes and relationships are the fundamental 

building blocks in Cypher. Nodes are enclosed in parentheses, and relationships 

are enclosed in square brackets. These nodes and relationships can have labels to 

categorize them and properties to store key-value data. 

 Cypher queries allow you to specify conditions for matching patterns and filtering 

results. You can use WHERE clauses to filter nodes or relationships based on their 

properties and employ various predicates such as "=" or "CONTAINS" to compare 

values. Queries in Cypher return data in a tabular format, making it easy to work 

with the results. You can specify which parts of the matched patterns you want to 

retrieve using the RETURN clause, enabling you to extract specific information from 

the graph. 

 One of Cypher's strengths is its ability to find paths in the graph, representing 

sequences of nodes and relationships that match certain criteria. This is particularly 

useful for traversing and analyzing complex graph structures. 

 

4.1.2.2 Neo4j Bloom 

 Neo4j Bloom is an intuitive and visually driven data exploration and visualization 

tool designed to work seamlessly with Neo4j graph databases. It empowers users 
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to interact with and gain insights from complex graph data without needing to write 

complex queries or code. With Neo4j Bloom, you can create interactive 

visualizations of your graph, explore relationships, and discover patterns in a user-

friendly and intuitive manner. It's a valuable asset for both technical and non-

technical users who want to harness the power of graph databases for data 

analysis and decision-making. In Autonomia, we value this tool as an inspector and 

canvas for the World State. A game designer can easily enrich the world of the 

game simply by using this tool, creating nodes, relationships and set handcrafted 

goals to the agents of the implementation. 

4.1.2.3 Neo4j Driver for C# 

For our C# - Neo4j communication, we used the Neo4j.Driver package. 

Neo4j.Driver for C# is a dedicated driver that enables C# developers to connect 

their applications with Neo4j databases seamlessly. It serves as a bridge between 

C# code and the Neo4j database server, allowing developers to perform various 

operations, such as querying the database, creating, or updating nodes and 

relationships, and retrieving results. It manages the database connection, enables 

Cypher Queries through C# with parameterization and all the above can be 

executed asynchronously using C#’s Tasks library. 

4.2 Autonomia.Core 
 The Autonomia Framework has been developed under the Autonomia.Core 

namespace. By using namespaces, we aim to ensure flexibility for potential future 

implementations, offering improved clarity and versioning control. For instance, 

should an extension centered around emotional AI emerge, it could be neatly 

encapsulated within a hypothetical Autonomia. EmotionalAI namespace is 

maintaining a structured and organized codebase. 

 Moreover, the project is made available in two distinct formats: a) a library project 

containing the entire source code, and b) a prebuilt .DLL file (Dynamic Link Library). 

The latter plays a pivotal role in promoting decoupling of code, fostering modularity, 

and enhancing the overall efficiency of the Autonomia framework. The provision of 

dual-format availability empowers developers with the freedom to select the option 

that aligns best with their preferences and project requirements. Given that 

Autonomia is an ongoing project, it welcomes active participation and customization 

from the developer community.  

 Anyone is encouraged to modify the source code as needed to tailor it to their 

specific needs. Furthermore, should a developer create valuable enhancements or 

extensions to the framework, there is an open invitation to request integration into 

the public Autonomia repository. Contributions that bring substantial value to the 

Autonomia ecosystem are welcomed and can be considered for inclusion, 
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promoting collaborative development, and fostering a robust framework for 

intelligent and autonomous systems. 

 In the following sections, we analyze and elaborate on technical details regarding 

multiple components that form Autonomia. 

 Graph 

 In the development of Autonomia, we employed an external graph database to 

store our data. However, during runtime, we recognized the importance of having a 

local graph database implementation for faster read/write operations. To ensure 

seamless compatibility, the Graph class has been designed to implement the 

IDatabaseClient interface and incorporates two dictionaries (or HashMaps) for 

nodes and edges, respectively. You can find the class diagrams for Graph, Node, 

and Edge in Figure 6.  

 It's worth noting that each element within the graph possesses a unique string 

value serving as its identifier, referred to as an "id". This unique id enables us to 

enhance the graph's performance by utilizing dictionaries not only for the graph 

itself but also for the nodes and memory queries. This optimization is especially 

beneficial, as graph databases may entail a multitude of edges for each node. 
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Figure 6: Graph, Node and Edge class diagrams. 

 Furthermore, it's noteworthy that we have integrated modules within the Node 

class, creating a tight coupling between them. This coupling enables us to include 

modules when cloning nodes, and it's essential to emphasize that the cloning of 

classes will be a common practice throughout Autonomia. Given our approach of 

treating each piece of knowledge as unique, cloning is a typical operation to 

preserve knowledge at the stage it was acquired. This will become increasingly 

evident as we proceed with our exploration of Autonomia's functionality.  

 For the cloning implementation, we predominantly utilized a variation of the 

prototype pattern that is designed to be compatible with inheritance. To elaborate, 

the process involves implementing a copy constructor for each subclass and 

overriding the Clone method to return a new instance of the subclass, passing as a 

parameter the current instance into its own copy constructor. This approach 

ensures that inheritance is seamlessly maintained while enabling the effective 

cloning of objects within Autonomia.  
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 Injector and Injectables 

To simplify the assignment of specific elements, we created an Injection 

mechanism. To achieve this, we created an Injector class who uses C#’s reflection 

mechanism, to find class types that contain custom Injectable attributes. Then, we 

use that injectable to find nodes which the overridden method “ShouldInject” returns 

true. Lastly, for those nodes we call the overridden “Inject” method. 

 

Figure 7: Injectable attribute class diagram 

 

 In Autonomia, we employ two primary Injectable attributes: a) 

BehaviourInjectOnLabels, and b) GoalInjectOnLabels. Both attributes accept string 

values as parameters and compare them with the labels associated with each 

node. When there is a match, these attributes inject themselves into the respective 

node. 

 In our implementation, we utilize behaviours as affordances, meaning that 

behaviours should be associated with nodes that provide them. For instance, an 

'EatFoodBehaviour' should be injected into every node containing the 'Food' label. 

Thanks to our injection system, achieving this is straightforward and efficient, 

requiring only a single line of code, as illustrated in Figure 8.  
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Figure 8: Specific behaviour being injected using node labels 

 

 The implementation and extension of Injectable attributes are notably 

straightforward. For instance, we can create a special behaviour that should be 

exclusive to a particular NPC by defining a new injectable and using the node's ID 

or name as parameters. 

 Furthermore, this extensibility can be taken a step further by incorporating 

randomness into injectables, allowing us to introduce an element of uniqueness to 

our virtual world. Consider a scenario where a game designer wishes to distribute a 

specific piece of knowledge to a random subset of NPCs. This objective can be 

effortlessly accomplished using our injection mechanism. Importantly, this approach 

maintains a high level of decoupling, ensuring that it remains independent of, for 

example, the behaviour or goal class. 

 Node Factory 

The Node Factory is an important singleton class in our framework. Although 

the entire functionality of our nodes are dictated by their labels, properties and 

modules, we still deemed it important to allow users of the framework to create 

classes that will handle initialization for each of their conceptual node types. This is 

important to consider when we consider modules that may have complex 

dependencies with each other. Furthermore, by having strictly defined types for our 

Nodes we can more easily classify them and group their behaviours. For instance, 

in Autonomia we use a common NPC Manager singleton to handle NPC updates. 

For this, we have the NPC class deriving from the Node class and implement in its 

initialization a) registering to the NPC manager and b) declaring the proper order of 

initialization for each module. Its class diagram is visible in Figure 9. 
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Figure 9: Node Factory class diagram  

 

 Node Factory is allowed to receive upon initialization, dispatch methods, namely 

callbacks, with label descriptors to enable users to imbue the factory with their own 

custom node types.  An example of this can be seen Figure 10. 

 

Figure 10: Example of adding custom dispatch methods to the Node Factory 

 Modules 

Modules are components that are attached to nodes and are used as data 

containers or offer additional functionality. First, we explain the base Module class 

and then move on to the implementation of some core modules. The Module class 

diagram and its derived classes belonging to the current version of Core are shown 

in Figure 11. 



4.2 Autonomia.Core 

 

 

48 
 

 

Figure 11: Class diagram of the Module class and derived classes 

Each module within Autonomia follows a standardized structure, containing 

three key functions: OnStart, OnUpdate, and OnDestroy. These methods are called 

by the ModuleManager when appropriate. To enhance performance, it's possible to 

assign a specific delay value measured in milliseconds, thus preventing redundant 

per-frame calls of the Update function. Additionally, several other methods are 

important to the functionality of modules, and we explain each in the following 

subsections. 

4.2.4.1 Serialize/Deserialize From Owner 

 Modules may need to serialize and deserialize their data for persistence, within 

the node’s properties. For example, the Memory can serialize itself as in a JSON 

format, and upon saving the game, it would write this JSON string value as a 

property with a unique key, for instance “$$memory-module”. Then, upon loading 

the game again, the memory module would try to deserialize from the node’s 
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properties to restore it’s previous state. 

4.2.4.2 OnStimulusUpdate 

 The OnStimulusUpdate function may seem unconventional at first glance, so let's 

explore its intricacies. It's essential to grasp the concept that within a node's 

memory, there exists a simulated approximation of the world state, with other nodes 

and their respective modules.  

 To further illustrate this, consider a Transformations module containing the 

position and rotation of a Node in 3D space. Let's also introduce Node A, Node B, 

and Node B', where Node B' represents a simulated version of Node B within Node 

A's Memory module. Now, suppose Node B is in motion within 3D space. Its own 

Transformations module is configured to override the OnUpdate function to 

continuously update its transformations. However, if Node B happens to be out of 

sight from Node A, the Transformations module of Node B' should not undergo 

updates. This is precisely where OnStimulusUpdate comes into play. 

 For modules whose owner possesses a simDepth greater than zero, their update 

function is invoked solely when their corresponding stimulus calls for it. 

Furthermore, we can handle various subcases based on stimulus type. For 

instance, an Auditory stimulus might update Node B's position within Node B' with 

less precision, whereas a Visual stimulus would accurately reflect the update. 

Alternatively, if Node A is deaf, the Visual stimulus is disregarded entirely. This 

nuanced approach ensures that module updates are aligned with the prevailing 

stimulus conditions, enabling precise and context-aware processing. 

4.2.4.3 TimeDisplace 

The TimeDisplace function serves a critical purpose by enabling a module to 

advance its state based on a designated time variable. To illustrate, let's consider 

the Needs module, which is discussed in the Unity Integration. This module 

influences how an NPC plans and schedules its day. When planning what activities 

to pursue after work, the NPC's level of fatigue and energy, reflected in the Energy 

value, can impact the priority of goals, such as the Sleep Goal.  

It's important to provide modules with the capability to shift their temporal state, 

particularly in scenarios where we are affecting only a clone of the node or module. 

This temporal displacement is essential for accurately simulating a variety of 

situations and their associated impacts on node behaviour. 

 

 Memory Module 

The memory module is a simple, yet pivotal in Autonomia. It contains a relations 

variable of type IGraph for semantic data, and an IEventIndex for occurrences of 
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Events that were perceived by the NPC. 

 

Figure 12: Class diagram of Memory  

The main takeaway here is the FindLocal method. It is meant for other module 

to use it, in order to get references to the memory-local instance of a node. For 

example, let’s assume an EatFood behaviour running with Node A as an actor, and 

Node B of type Food as its owner. In the authoring process of the behaviour, we 

would like to make Node A move to Node B’s memory-local instance, since this 

represents the world in Node A’s Theory of Mind. If Node B has been moved from 

its previous location, Node A should not be aware of it. 

 Perception Module  

In the theoretical section dedicated to perception, we elaborate on why we 

deem this component to be of utmost importance, serving as a crucial link between 

an agent's memory and the external world. The quality and realism of our 

perception implementation directly impact the overall believability and effectiveness 

of our system. This module, is tightly coupled with Stimulus as it serves as an 

intermediate holder for sensed nodes and events. It is noteworthy, that the 

framework does not exclude any stimulus types from being implemented. The 

perception system would work seamlessly even with imaginary “six sense” stimulus. 

The main functionality is described as follows. During each update cycle, the 

perception module scans its sensed nodes and events from its stimuli. It follows a 

structured sequence of operations to ensure accurate and up-to-date information 

processing. To elaborate, for each stimulus the following process takes place. 
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Firstly, there is the need to update the modules of the owner within its own 

memory. This reflects the difference between the way we actually appear and the 

way we self-reflect, which is something also stored in our theory of mind. So, the 

OnStimulusUpdate method is invoked for every module of the owner’s memory-

local copy. 

Following this, for every sensed node, the perception module locates the 

memory-local replica of the node and invokes its OnStimulusUpdate methods. This 

ensures that any perception-based information or modules associated with the 

sensed nodes are promptly updated. 

Lastly, the perception module processes each sensed event. Again, it 

transforms the event into a memory-local event, interprets it using the 

EventInterpreter module, and attempts to match it with any subscribed event. In the 

occurrence of a successful match, the subscribed callback function is invoked with 

the memory-local event as its parameter. This mechanism enables the 

dissemination of relevant information to subscribed modules or components and 

ensuring the memory-local copy is always used to ensure consistency and 

believability for an agent’s actions. 

 

Figure 13: Class diagram of the Perception and stimulus modules 

This subscription mechanism allows interested parties to receive notifications 

whenever a particular event occurs. To illustrate this functionality, consider a 
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scenario involving a TavernWaiter behaviour. 

In this scenario, the TavernWaiter behaviour has the actual waiter (an NPC) as 

its actor, and the tavern as its owner. The behaviour subscribes to a perception 

event with the description "<<Abstraction of Person>> <<enters>> <<owner>>." In 

simpler terms, this event signifies "If someone enters the tavern." By subscribing to 

this event, the behaviour can respond appropriately whenever a person enters the 

tavern, demonstrating the framework's flexibility in handling dynamic in-game 

scenarios. 

 Other Modules 

In this section, we will provide brief insights into several modules within 

Autonomia that primarily serve as data containers or are in the process of being 

implemented and refined. These modules, while important, may not require in-depth 

technical discussion in this context, as their primary function is to store data or are 

subject to ongoing development and improvement. 

 

● GoalPlans: This module is designed to store calculated plans and associate 

them with their respective goals, essentially serving as a method for 

"baking" behaviours. It can potentially exclude previously failed plans to 

prevent the agent from repeating them in the future, either due to 

experience or caution. 

● ActiveEvents: The ActiveEvents module contains the list of all events 

currently affecting its owner. This allows the module to expose these events 

to other nodes' perception systems. 

● IntendedUse: This module serves as an optimization mechanism for the A* 

search algorithm, contributing to enhanced search efficiency. Its role and 

significance are further discussed in the A* Search Algorithm section and 

the Unity Integration, including its extension in the designer tools. 

● EventInterpreter: Currently, this module's implementation is relatively 

simple, primarily focused on type matching to interpret events. However, in 

the future, it will be refactored to use a hierarchical model for event 

matching and interpretation. Additionally, it will address the challenge of 

reinterpreting events as the agent learns more about them, offering 

intriguing possibilities for future implementations. 

 Events, Abstractions and Wildcards 

4.2.8.1 Event 

As discussed on Chapter 3, events are used to represent “something that 
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happens”. We model an event as having a string type and two nodes; an actor and 

a subject. Furthermore, each event can carry any additional value using its 

“parameters”; this variable is a custom DynamicParameters class which can be 

seen as a dictionary of string keys and object values, but with extra logic for 

comparisons. Lastly, each event has a list of strings named “sensedFrom”. This 

represents the stimuli types this event can be - as the name suggests - sensed 

from. 

One crucial aspect of the Event class is its capacity to use abstractions and 

wildcards for event matching. This feature enables the framework to establish 

relationships between events that share common patterns. To showcase the 

usefulness of this feature, which will also be used later on with expressions, we give 

the following examples: 

● E1: John (actor), grab (type), abstraction of Item (subject) 

● E2: John (actor), grab (type), abstraction of Sword (subject) 

● E3: John (actor), grab (type), Moonlight Sword (subject) 

● E4: John (actor), grab (type), Turtle Shield (subject) 

In the above examples, E1 can be matched with E3 and E4, because both the 

sword and the shield are items, but E2 can be matched only to E3, since it reduces 

the abstraction to only swords.  
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Figure 14: Class diagram for Event, Abstractions and Wildcard  

4.2.8.2 Abstractions 

The Abstractions static class has three main methods: 

● Abstract: which receives an array of labels as parameters and returns a 

new node containing those labels. Abstract nodes have their own unique, 

randomly assigned id and carry the extra “Abstract” label. 

● IsAbstract: Returns true if the given node is abstract. 

● IsAbstractOf: Receives two parameters, Node A and Node B. It returns 

true if Node A is an abstraction of Node B, which in effect means if Node A’s 

labels are an inclusive subset of Node B’s labels. 

4.2.8.3 Wildcard 

Wildcard is another static class which contains definitions for unlike values of 
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specific types to be represented that this value can be anything. For example, a 

Wildcard.Int returns the minimum possible value an integer can have. 

 AutonomyDB 

Within our framework, we introduce the AutonomyDB singleton class, a 

fundamental component responsible for the storage and retrieval of our world state 

from a persistent graph database. The AutonomyDB leverages the IDatabaseClient 

interface, providing the flexibility for users to employ custom databases of their 

choice, should an alternative be preferred. 

In our specific implementation, we have utilized the IDatabaseClient interface 

with the Neo4jClient, enabling seamless communication with our Neo4J database. 

A visual representation of the interface's class diagram can be found in Figure 15, 

thoughtfully organized to encompass fundamental database operations. 

 

Figure 15: IDatabaseClient interface diagram with our Neo4JClient. 

When AutonomyDB is asked to undertake the task of loading data from the 

database, it executes several critical operations. Initially, it parses the query 

response and populates the world state using the NodeFactory to produce nodes. It 

is noteworthy that the world is represented as a literal Memory module (refer to 

Section 3.2.3). Next, AutonomyDB leverages the Injector class (4.2.2) to inject each 

injectable item to its corresponding target. Upon the conclusion of this step, each 

Node has been assigned its injectable modules, behaviours, and defined goals. 

 It's important to note that, at this point, every node type possesses the option to 
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override an Initialize method, allowing for specialized initialization procedures. At 

this moment, we can also begin initializing custom NPC memory. In our testing 

scenarios, we have employed a cloning strategy by replicating the world state and 

assigning a clone to the memory of each NPC. It's worth mentioning that we have 

the capability to implement recursive Memories, enabling a more comprehensive 

Theory of Mind. If desired, the described process can be repeated for each layer of 

Memory modules. 

 Furthermore, various filtering mechanisms can be applied to simulate more 

realistic scenarios. For example, instead of creating a perfect clone of the world 

state, we can introduce an elimination step for 'unrelated' nodes or even incorporate 

randomization of metadata within the Memory of each agent, adding an element of 

variability to their cognitive processes. 

 Engine 

 To simplify future implementations with Autonomia, we have introduced an 

Engine class that serves as the central driver for all framework functionalities. 

Figure 16 provides an overview of the primary functions it offers. 

 

Figure 16: Engine class diagram 
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One of the key functions is the MainLoopIteration, acting as the heartbeat of 

Autonomia, regulating its processes. It's important to note that while the Engine 

class is optional for utilizing Autonomia's capabilities, we have designed it to 

facilitate the learning and adoption of the system, offering a more accessible entry 

point for developers. 

 System Clock 

 The SystemClock class is a fundamental component of the Autonomia 

framework, responsible for managing time-related operations. It serves as a 

centralized timekeeping mechanism for coordinating actions and behaviours of 

autonomous agents within the framework's simulated environment. This class 

measures time in milliseconds using a value of type long. This would mean, we 

could have a maximum of around 1011 days or 273.790.926 years in a 64bit system.  

 An advantage of using milliseconds as a time unit in our framework is the fact 

that integrations of it can implement any custom time system they prefer, simply by 

creating a casting mechanism between SystemClock and their time system. This 

can be seen in our Unity Integration, where the time system inherits a 24 hour per 

day, 365 days per year counter. 

 Expressions 

The Expression class as of today has been formed through many iterations 

while implementing its respective designer tools through the Unity Integration. The 

finalized class diagram is shown in Figure 17. 
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Figure 17: Class diagram of Expression 

 Expressions within the Autonomia framework serve as crucial tools for building 

and managing complex chains of logic and evaluations. These expressions are 

primarily used as preconditions and effects for behaviours and goals, providing a 

versatile mechanism for specifying agent actions and conditions. Each expression 

needs to implement a set of methods to ensure its proper functionality: 
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Table 1: Expression base class methods 

 
Method 
 

 
Description 

CanEvaluate Determines if the expression is syntactically ready for 
evaluation 

Evaluate Computes the value of the expression and caches it for 
future reference 

EvaluateRelativeTo Similar to Evaluate but performs computations relative to an 
observer 

CanMatch  Checks if the expression can match a given parameter 
expression 

Match Matches the current expression to a parameter expression, 
assuming compatibility 

IsSatisfied Determines if the expression is currently in effect 

IsSatisfiedRelativeTo  Similar to IsSatisfied but considers an observer 

 

 

 The framework provides a uniform GetValue method that invokes Evaluate and 

returns the cached value if applicable. Directly accessing the cached value is 

possible but recommended only if Evaluate was called within the same scope. 

 A full set of implemented expressions are given on the Unity Integration chapter, 

serving as a practical guide to showcase how these expressions can be effectively 

utilized within the Unity game engine, allowing developers to harness their power to 

design complex and dynamic NPC interactions and behaviours. On top of that, on 

the Unity Integration we implemented a node-graph tool for creating expression 

graphs.  

 It is worth noting that using C#'s hashsets is a common practice for storing 

expressions rather than lists in our framework. Hashsets provide faster operations 

at the cost of increased storage requirements. However, to ensure compatibility 

with our matching mechanism, two specific requirements must be met: a) a custom 
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ExpressionComparer, b) the GetHashCode method must be overridden to return a 

hash code based on the evaluated type. This is a logical step as we will be 

performing matching operations on expressions of different classes that share the 

same evaluated type. This will be shown in chapter 5. 

 Behaviours 

The way behaviours are used in the system has been discussed in Chapter 3. 

In this chapter we will elaborate on the implementation of behaviours that allow 

them to be easily authorable and how we recommend them to be structured. 

4.2.13.1 Behaviour States and Events 

Behaviours contain two simple enum classes which are essential to their 

functionality. First, we have the behaviour’s states which can represent if a 

behaviour is currently running, is paused, stopped or if it is in a persistent state. The 

persistent state is a special case for behaviours marked with the ability to be 

persistent. When those events mark their completion, they do not stop running, but 

as the name suggests, persist while other potential behaviours follow. 

Next, we have five possible events a behaviour can signal. Either when a 

behaviour starts, updates, stops, completes, or fails two things will occur: a) an 

notify function will invoke subscribed callback methods of the specific event, 

essentially working as listeners, and b) a TaskCompletionSource value dedicated to 

that event will have its result set. 
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Figure 18: Class diagrams of behaviour’s metadata 

In the context of asynchronous programming in C#, a TaskCompletionSource is 

a valuable mechanism. It represents a task that can be manually completed, 

typically when you have asynchronous operations that aren't directly represented by 

a Task. This way, we allow a more readable form of interactions between 

behaviours. In Figure 19, you can see a side-by-side comparison of the two 

methods using as an example a FarmWorkBehaviour, where the objective is to 

plant, water and then harvest your crops, assuming each task is its own behaviour. 

In our experience, we found the asynchronous programming method to be 

significantly more readable when writing more complicated behaviours since the 

AddListener technique will tend to create a nested chaos of callbacks. 
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Figure 19: Side-by-side comparison of recursive listener events versus using 

asynchronous programming.  

4.2.13.2 Behaviour Authoring 

 Behaviour has a plethora of methods that can be overridden to alter and control 

their functionality. We name five essential methods of overriding: 

 

Table 2: Behaviour base class core methods 

 
Method 
 

 
Description 

OnInitialize This method is called when the behaviour is injected to a 
BehaviourNode and is assigned its owner. It can be used to 
cache values for later use and is as it name suggests, used 
for initialization purposes. 

OnStart Computes the value of the expression and caches it for 
future reference 

OnAction This method is called right when the behaviour is asked to 
begin its functionality. At this point, we assert that the actor 
of the behaviour has been assigned. 

OnStop 
 
This is the ticking mechanism of a behaviour. For each 
behaviour, action is called every “data.delay” milliseconds. 
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Shorter delays are meant for more interactive, real-time 
behaviours like fighting and combat, where we can use 
larger delays for more passive behaviours like thinking, 
sleeping or eating. The delay can also be used to simulate 
reflexes of an agent. Possibly some future integrations could 
allow more dexterous agents to use shorter delays and be 
dominant in a fight thanks to that. 
 

OnGetCost This method is called when the behaviour is asked to stop. 
In our previous GrabBehaviour example, we use the OnStop 
method to release the respective item from the agent’s 
grasp 

OnGetTime When overriding this method, a behaviour can return its 
representative value, meaning how effective this behaviour 
is for the agent at the current moment. For example, an 
EatFoodBehaviour would return a higher value if the agent 
is currently hungry 

OnSetActor This method should try and return a time estimate, the 
behaviour will take. For example, a TavernWaiter behaviour 
could return a time estimate of eight hours (converted in 
milliseconds), to allow the schedule module to plan an 
agent’s day 

OnSetOwner These optional overrides allow custom user code to run 
when the assignment of an actor or an owner occurs. For 
example, we can override the OnSetActor method, to iterate 
and replace the previous actor for every expression in 
preconditions and effects with the current actor 
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Figure 20: Class diagram of Behaviour 

 Goals and Planning Algorithms 

4.2.14.1 Goals and Plans 

The implementation of goals as mentioned in Chapter 3 is straightforward and 

simple. Its class diagram is shown in Figure 21. It also proved helpful to create a 

Plan class which can encompass a sequence of behaviours in the context of a 

specific goal, as the name suggests. The Plan class also enables us to define the 

value of a plan, being a combination of the goal’s value and the sum of the 

behaviour’s values.  

This is conceptually reasonable, and programmers can find their own balance 

between the importance of valuable behaviours and goal. For instance, let us 

assume the goal of “Climb Mountain” and a plan that can satisfy that goal. It may 

not be effective to walk to the top of a mountain because it is either dangerous, or 

far away, but the final value is analogous to how important it is for the agent to 
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climb the mountain and see the view. This is further expanded by getting the time 

cost of a plan, enabling us to plan accordingly. 

 

 

Figure 21: Class diagram of Goal and Plan. 

4.2.14.2 A* Search and the IntendedUses optimization 

In the context of Goal-Oriented Action Planning (GOAP), A* search is an 

essential algorithm for finding the most optimal sequence of actions to achieve a 

specific goal. A* search begins with an initial state representing the current state of 

the world, including information about objects, conditions, and resources. It 

explores the space of possible actions by applying each action to the current state, 

generating a new state as a result. A* uses a heuristic function (typically denoted as 

"h") to estimate the cost from the current state to the goal state. This cost evaluation 

is often denoted as "g." The algorithm combines "h" and "g" to calculate an "F" 

value for each state, where F = g + h. 

States are organized in a priority queue based on their F values. A* selects the 

state with the lowest F value for expansion. It checks at each step whether the 

current state satisfies the goal conditions. If so, the search terminates, and the 

sequence of actions leading to this state is the optimal solution. A* continues 

expanding and backtracking through states, generating new states by applying 
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actions until either the goal state is reached, or the queue is exhausted. 

A* guarantees optimality when it has a consistent heuristic (h) and no infinite 

costs are present. It is also considered complete, meaning it finds a solution if one 

exists within a finite state space. In the context of Autonomia, A* search helps 

identify the most efficient sequence of behaviours to achieve a specific goal by 

considering both the values of behaviours and the goal effects. 

 A* is known for its exhaustive nature, and there exist numerous optimization 

strategies to enhance its performance. One fundamental optimization involves 

shifting the search approach from progression to regression. Instead of starting 

from the initial point, the algorithm commences from the goal point and backtracks. 

This modification significantly improves performance; however, it may lead to plans 

that feel mechanical and lack creative elements. Moreover, the time and space 

complexity of A* are directly tied to the size of the search space. As the number of 

available behaviours increases, the algorithm's execution becomes exponentially 

slower and demands more computational resources. 

 To further optimize the algorithm, we propose a novel strategy we termed "GOAP 

with Intended Uses" within our framework. In our context, behaviours are linked to 

nodes, and nodes can conceptually represent a wide range of entities or concepts. 

Our optimization capitalizes on the observation that most things have an intended 

range of uses. For instance, a fork is primarily designed for eating, rather than for 

aggressive purposes, although it could theoretically be used in such a way. To 

implement this approach, we introduce the "IntendedUse" module, which attributes 

intentions coupled with values to nodes. Subsequently, each behaviour associated 

with a node inherits these intentions. 

 Now, when we initialize our A* search, each agent searches its memory to 

identify behaviours that align with the intention of the goal, significantly reducing the 

available search space for the algorithm. Additionally, we employ the matching 

intention value as our heuristic value, streamlining the search process and further 

optimizing the efficiency of the A* algorithm within our context. Additionally, now 

game designers have control over behaviours that can be prioritized over others. If 

a game designer wants to attribute a higher value to cooking, rather than eating a 

fruit, he can tweak the intention values to allow the cooking behaviour to overpower 

the rest, but still have other behaviours available to fallback, if the cooking 

behaviour for any reason cannot occur.  

 Lastly, we deem noteworthy to highlight some key elements of Autonomia’s A* 

GOAP. In this implementation A* nodes represent sets of expressions. This means 

that both our precondition and effects fall into the procedural side of GOAP. This 

contradicts common approaches which use string-boolean or string-object pairs, 

known as blackboards. Expressions can take any form; it would even be possible 

for an expression to query the Memory module for more information during the 

search, compromising our algorithm’s performance. This is always configurable, 
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and each developer can use the system for their own needs. We just want to 

highlight the freeform power of expressions. 

 By integrating the planning methodology described above with our dynamically 

evolving environments, we believe that our agents can exhibit a remarkable degree 

of autonomy and controlled unpredictability, enriching the overall user experience in 

a positive manner. 

4.2.14.3 The ScheduleDay algorithm 

The schedule module utilizes the GOAP algorithm to schedule the day of an 

NPC, based on its understanding of the world and expected state of things at given 

times. To achieve this, the schedule can be thought of as a calendar. It implements 

a SortedDictionary of long type keys representing days within the calendar and lists 

of ScheduledSlot as values.  

 

Figure 22: Class diagrams of Schedule, ScheduledSlot, and ScheduledGoal 

4.2.14.4 Scheduled Behaviours vs. Other Behaviours 

First, let us assume we have our daily scheduled and contained in scheduled 

slots within our calendar. How do we begin the execution of those behaviours and 

how do we solve conflicts with other demanded behaviours? As discussed in the 

BehaviourController module section, every module attempting to take control needs 

to compete with others, measuring out their importance values. So, when the 

schedule module detects that the NPC should execute a planned behaviour, it tries 

its personal ticket through the behaviour controller module to assert control. 
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4.2.14.5 ScheduleDay Algorithm 

With what we have already established, scheduling an agent’s day is not such a 

complicated task. We can simplify the algorithm into three main steps: a) formulate 

plans, b) add ScheduledGoal plans to calendar, and c) try to add other plans on 

calendar respecting what has already been planned. 

 In the first step, we use our GOAP planner to formulate plans for all our goals. 

Depending on that stage our game is, we can even replan older instances to make 

sure they are still consistent and reasonable. Then, we iterate through our plans 

and keep a reference to all plans referring to a ScheduledGoal. Then we create a 

ScheduledSlot for this plan based on the estimated time the Plan returns from its 

behaviours.  

 Finally, we may have other goals that do not need to be met at a specific time 

slot, but it would be appropriate to try to schedule them on our agent’s day. For 

example, in the evening our agent may expect that he will be hungry, so he may 

have already planned to grab lunch by then. This is the most sophisticated part of 

the ScheduleDay algorithm, so let us provide simplified pseudo code for its 

algorithm. 
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Chapter 5

5 Unity Integration 
The decision to embed Autonomia within a game engine was not taken lightly 

but was, in fact, a strategic choice that has proven to be pivotal. It has allowed us to 

uncover subtle intricacies and requirements that only real-world scenarios can 

reveal. Through this practical approach, Autonomia has evolved into a framework 

that not only meets but tries to anticipate the demands of modern software 

development. 

5.1 Overview 
Unity is a game engine that allows developers to create interactive and 

immersive games for various platforms and devices. Unity is widely used by both 

indie and AAA game studios, and some of the popular games made with Unity [87] 

include Among Us [88], Fall Guys [89], Hearthstone [90], Ori and the Blind Forest 

[91], and more. In this section we explain why we have chosen Unity and why we 

believe it to be a powerful, versatile, and user-friendly game engine that offers 

many advantages for framework implementation. 

For starters, Unity is a game engine that supports high-quality graphics, 

physics, audio, and animation for creating realistic and engaging games. Unity 

enables developers to achieve impressive performance and optimization across 

platforms, as it uses a low-level rendering API called Scriptable Render Pipeline 

(SRP) that allows developers to customize the rendering process according to their 

needs. Unity also offers a variety of features and tools that enhance the game 

development process, such as scripting, asset management, debugging, testing, 

etc. In addition, Unity provides an integrated marketplace that enables access to 

thousands of ready-made assets, such as models, textures, sounds, scripts, etc. 

that can be used for free or purchased. 

Another advantage of using Unity is that it is a versatile game engine that 

supports cross-platform development and deployment, allowing developers to 

create games that can run on various devices and platforms, such as PC, mobile, 

console, web, AR, VR, etc. Unity also offers a range of features and tools that 

facilitate the integration of various technologies and services, such as cloud, 

analytics, monetization, multiplayer, etc. 

Last but not least, Unity is a user-friendly game engine that is easy to learn and 

use for both beginners and experts. Unity has an intuitive and customizable 

interface that allows developers to work efficiently and comfortably. Unity also has a 
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rich documentation and tutorial system that provides comprehensive and clear 

guidance on how to use the engine and its features. Also important for us was the 

fact that Unity has the capabilities to freely extend and program its Editor, allowing 

developers to extend the functionality of the engine by creating custom tools or 

plugins. This plays a pivotal role in the following sections. 

 

5.2 Autonomia’s Designer Tools 
During the design process of Autonomia, a clear distinction was made between 

two primary working stack layers: the designer layer and the developer layer. 

Designers play a crucial role in envisioning and crafting the desired AI behaviours, 

while programmers are tasked with the responsibility of translating these envisioned 

behaviours into functional implementations. 

Designers require the ability to swiftly construct and modify game environments 

and establish the connections between various behaviours and goals. The main 

tool at their disposal in this endeavor is the expression component of the EBG 

model. 

 NodeRef Script 

 In Unity's game scene, every element needs to inherit from the MonoBehaviour 

class. This requirement sets the foundation for integrating game objects seamlessly 

into Unity's framework and its main game thread. To bridge the gap between Unity's 

game objects and our graph database nodes, we introduced a NodeRef class. Early 

in the development process, it became evident that designers required control over 

the world-state, as well as the ability to expand it within Unity. Without the proper 

tools, every mundane item in a level would have to be manually created in the 

respective graph database and be associated with a node's ID, a cumbersome and 

unnecessary task. 

 To address this issue, we utilized Unity’s editor capabilities. By implementing a 

custom inspector for the NodeRef class, we enable a wide range of functionalities. 

These include the creation of nodes, loading from existing IDs, and the ability to 

modify labels, properties, and even custom module properties. As illustrated in 

Figure 23, this includes features such as 'intended uses'. 
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Figure 23: NodeRef drawer example 

 The addition of this feature significantly streamlines the level design process. In 

our recommended pipeline, we've converted a library of assets into unity prefabs, 

each of which contains a NodeRef script with a) unsigned ID, b) predetermined 

labels, and c) properties that describe this object class. For instance, in our case 

study all tables contain the labels “Item”, “Table”, “DropArea”.  After placing all the 

objects as per the environment design, with a single button click we can create and 

commit all the nodes in the database. Then, each NodeRef can be further 

customized to include additional labels, properties, or different intended use values.
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 DesignerValue 

In the Unity integration of Autonomia, it is often required to assign key-value 

pairs directly within the Unity editor, a feature not readily available out of the box. 

To address this, we introduced the "DesignerValue" class, which allows the 

assignment of common data types such as int, long, float, and string to designated 

keys. Additionally, it includes an "IsWildcard" checkbox that, when activated, 

assigns a predefined Wildcard value of the respective data type upon initialization. 

This approach simplifies the configuration of properties and settings, seamlessly 

integrating with Unity's editor and providing an efficient means for developers and 

designers to customize values without manual code adjustments. 

 Intended Uses Drawer 

During the development of our use case, we discovered that the "Intended 

Uses" property played a pivotal role in achieving flexibility and automation. Rather 

than hardcoding specific variations of behaviours, we leveraged this property to 

enable automatic planning based on "Intended Uses" values. To facilitate its easy 

customization through the Unity editor, a custom property drawer was created, 

streamlining the process of fine-tuning agent behaviours and enhancing the 

adaptability of our system.  

As an example, consider the "Drink" and "Pour" behaviours, both of which are 

injected to LiquidContainer labeled nodes. Now, envision the following hypothetical 

scenario: "Person A wishes to fill Cup B with water. In close proximity to Person A 

are two LiquidContainers, one being another Cup C and the other a Pitcher D." In 

this scenario, our system should intelligently guide Person A to use the Pitcher to fill 

Cup B, rather than Cup C, aligning with the intended use. Furthermore, Person A 

should also be directed to drink water from Cup A and not from the Pitcher. By 

manipulating the intended use values of “Drink” and “Pour” for each Node, the 

above situation is easily realized. Furthermore, in a scenario where Person A is in 

great need of drinking water, and only the Pitcher D is available, it will use it 

because it still exposes the behaviour of Drink. 

 Node Debugger 

Understanding the internal state of NPCs is pivotal for any implementation. To 

tackle this challenge, the Node Debugger was introduced, a simple tool that can be 

extended to provide insights into any node's "brain" at any given moment. 

Throughout the implementation of the use case, two modules were of great 

importance while debugging; the ActiveEvents associated with a node and the real-

time status of complex behaviour queues. These were critical pieces of information 
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when tracking and comprehending an NPC's decision-making processes, allowing 

for a more thorough and effective implementation. 

 Expression Graph Editor 

The Expression Graph Editor offers a user-friendly graphical interface that 

simplifies the creation of complex expression graphs. Within this editor, each node 

corresponds to an expression, and the connections between nodes symbolize the 

flow of information. Attempting to define intricate expression graphs solely through 

code would prove exceedingly challenging, unreadable and in general a bad 

practice. Fortunately, Unity provides the flexibility to extend its built-in node graph 

system with custom functionality. Consequently, a straightforward methodology was 

devised for authoring expressions, further enhancing the efficiency of expression 

design within Autonomia. 

This streamlined pipeline mandates that expressions "declare" their evaluation 

type and children during script creation. For instance, consider a MathExpression 

node, which functions as a processor expression and evaluates to a float value. It 

expects three specific children: an arithmetic operation (addition, subtraction, etc.) 

at index 0 and two floats at indices 1 and 2. This structure is exemplified in Figure 

24 below. 

Additionally, we have implemented an inspector for each node to facilitate the 

modification of multiple properties by designers. For instance, expressions also hold 

string values representing intentions for optimizing Goal-Oriented Action Planning 

(GOAP). With our system, these intentions can be easily altered without the need 

for recompilation or prior knowledge of the underlying codebase. 
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Figure 24: Expression Graph of DrinkTemporaryOwnedDrink goal 

By integrating this methodology and the associated features into our Expression 

Graph Editor, we have significantly enhanced the accessibility and adaptability of 

our expression system. Designers and developers can now intuitively create and 

fine-tune complex agent behaviours without the constraints of coding intricacies. 

 Expression Library 

 A library of expressions has been created for the purposes of implementing the 

case study scenario, while also serving as a pre-made, tested and usable package 

for future uses of the Unity integration. All the expressions were created having in 

mind their reusability and use even out of the context of the Prometheus Tavern 

case study. Below are listed the most common categories of nodes and their 

common use in the caste study. It is also noteworthy, that most of the source code 

for the expression nodes is not coupled to Unity. It can be reused for other engines 

and platforms, although this will come at the loss of the expression graph editor 

tool. 
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5.2.6.1 Primitive Expressions 

The primitive category of expressions includes objects such as strings, numbers 

and boolean values and their wildcard representations. All of those expression 

nodes are producers, meaning they are used as leaves within the expression tree. 

The use of such values is mandatory and common through every implementation. 

 

Figure 25: Primitive expressions 

5.2.6.2 Logic and Math Expressions 

Another important tool in the base-set of the expression library are math and 

logic nodes, offering an unlimited number of conditionality to be applied. We have 

implemented the general arithmetic MathExpression and CompareExpression, as 

well as boolean algebra expressions such as AndExpression and OrExpression. In 

addition, expressions can also expose any C# functionality. In this example with 

have also wrapped the C# “Equals” method in a custom ObjectEqualsExpression. 

This enables us to compare nodes, events and more. 
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Figure 26: Logic and Math expression examples 

5.2.6.3 Node Expressions 

Autonomia Node-related expressions played a central role in crafting the 

majority of expression graphs, necessitating the creation of numerous such 

expressions. Among these, the most frequently used were the wildcard and 

abstract nodes, each returning their respective node types. Additionally, a custom 

expression, known as BehaviorNodeExpression, was introduced. This expression 

serves the purpose of injecting the corresponding owner or actor into each behavior 

through the visitor pattern, a pattern thoughtfully implemented for all expressions. 
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Figure 27: Node expressions 

5.2.6.4 Event Expressions 

The greater the number of advanced expressions at our disposal, the higher the 

level of complexity we can achieve in our expressive capabilities. In this section, we 

introduce the Event expression, which is coupled with DictionaryExpression, 

DynamicValueExpression, and StimulusTypesListExpression, enabling the creation 

of a wide range of events through the graph. In Figure 28, an illustrative example of 

such an event is presented. To elaborate further, the following expressions can be 

interpreted as follows:  

 

“The expression evaluates to true, when the following event is active; the actor 

of the behaviour grabs an abstraction of a sword item, with any of his two 

hands, and the event can be sensed through visual means.” 
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Figure 28: A grab event created through the expression graph editor 

5.2.6.5 Utility Expressions 

Utility expressions represent a general category that will be more properly 

categorized in the future. The expression graph is “strongly typed”, meaning you 

cannot assign the output of some expression to the input of another if their declared 

types do not match. For that reason, there exists an expression node called 

ObjectCastExpression which supports type casting for all primitive C# types. When 

the need for a user specific cast arises, the developer can simply script a new 

expression node as shown in Figure 29 with the NodeCastExpression, which casts 

its child to be Node type.  

Furthermore, we introduce another crucial part of the unity integration, the 

InjectedObjectExpression which can be accessed through code by the developer to 

manually inject a specific value prior to the evaluation of the expression graph.  
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Figure 29: Commonly used utility expressions 

5.2.6.6 Honorable Mentions 

With the expression system an infinite number of user created nodes can exist. 

Out of the most unexpected node combinations we came upon while creating our 

case study, was the general category of SuperExpressions, specifically the 

MatchNodePropertiesExpression. This expression node will upon evaluation try to 

expand itself, based on its Node children to create new expressions, that dictate 

that all their properties should match. 

Another surprising expression was the IfExpression node. In our 

implementation, this expression node can control the direction of its base functions 

based on the evaluated value of the condition. This provides great flexibility to 

generalize and reuse a plethora of expression graphs. 

Lastly, we created some expression nodes for memory queries. For instance, 

the HasEdgeExpression which uses the Memory module of the given node to 

validate if this node has the knowledge of the given edge to be true.  

The previous expression nodes are shown in the following figure. The former 

can be read as  

 

“The root expression evaluates to true, when there exists any node that all its 

properties can match with the first node”, whereas the latter can be read as “If the 

actor node has knowledge of an edge of type ‘owns’ between him and the owner of 

the behaviour, the root node will evaluate to true or false otherwise”. 
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Figure 30: MatchNodePropertiesExpression and IfExpression example 

5.3 Use Case: Prometheus Tavern 
To evaluate the Autonomia Framework, it’s Unity integration and to offer an 

open-source foundational scene, this thesis introduces the "Prometheus Tavern" 

case study. This scenario serves as a comprehensive test bed for the majority of 

Autonomia's features, by simulating multiple agents concurrently engaging in real-

time behaviour and planning. Notably, the "Prometheus Tavern" is not a traditional 

game scene, as it lacks a player character, but it can be extended in the future to 

support one. It is better described as a simulation environment. In the case study 

exist two types of NPCs: a) a waiter tasked with serving customers and keeping the 

tavern organized, and b) customers who enter the tavern, order drinks, drink them 

and leave when satisfied. 

In this case study, we mainly rely on real-time planning for behaviors instead of 

using simplified behavior models, which might have made the system faster. This 

approach helps us evaluate how well Autonomia's agents can adapt and potentially 

appear realistic. It's worth noting that this study is limited based on our own 

knowledge, skills, and time constraints. Unlike typical games, we're not prioritizing 

lifelike graphics or animations; our focus is primarily on the behaviors and memory 

functions themselves. 

In the following sections we describe how the game scene was structured, how 

the goals and behaviours were modeled and lastly our experience on using 
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Autonomia Framework for the first time. 

 

Figure 31: Prometheus Tavern case study scene 

 Prometheus Tavern Scene 

In the Prometheus Tavern scene exist various objects common to a mediaeval 

tavern. Among those some are wooden barrels with different drinks, tables, chairs, 

mugs, pitchers. Below, we list the main behaviours injected to items based on their 

corresponding labels.  

Table 3: Main exposed behaviours in the Prometheus Tavern 

Behaviour Name Node Labels Preconditions Effects 

 
GrabItem 

 
Grabable1H 

 
- Actor is close to owner 
- Actor is not grabbing 
anything 
- Owner is not grabbed by 
someone else. 
 

 
- Actor grabs owner 

 
DropItem 

 
Grabable1H 

 
- Actor is grabbing owner 
- Actor is close to drop 

 
- Actor drops owner. 



5.3 Use Case: Prometheus Tavern 

 

82 
 

position 
 

 
DropItemOnArea 

 
DropArea 

 
- Actor is close to owner 
- Actor is grabbing  
 

 
- Actor drops item on 
drop area 

 
CleanItem 

 
Cleaner 

 
- Actor is grabbing item 
- Actor is close to owner 
 

 
- Actor cleans item 

 
LiquidContainerDrink 

 
LiquidContainer 

 
- Actor is grabbing a liquid 
container item 
- Liquid Container Item’s 
current litres are greater 
than zero 
 

 
- Actor drinks item 

 
LiquidContainerPour 

 
LiquidContainer 

 
- Actor is grabbing a liquid 
container item 
- Actor is close to owner 
- Owner’s current litres are 
greater than zero 
 

 
- Actor pours liquid 
from owner liquid 
container to an item 
liquid container 

 
Sit 

 
Sittable 

 
- Actor is near owner 
- No-one else is sitting on 
owner 
- Actor is not sitting 
anywhere else 
 

 
- Actor sits on owner 

 

 NPC Goals 

 A common approach on designing game scenes that will use the GOAP 

algorithm, involves establishing specific goals and subsequently designing the 

environment to facilitate the achievement of these goals through one or more viable 

ways.  Each goal is further explained in the following table. These goals do not 

necessarily represent how a waiter should act in a real-life scenario. They have 

been designed around testing the NPC’s ability to adapt to their changing 

environment and conditions. 
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Table 4: Waiter goals table 

Waiter 

Goal Name Effects Value 
 
Organize and 
Clean Mug 

 
- Actor cleans an abstraction of a mug 
- That mug must be dirty 
- That mug must not be used 
- Actor drops that mug on any drop 
area 
 

 
Number of mugs that fall 
into this category 
multiplied by 15 

 
Take Order 

 
- Actor engages in dialogue with 
customer 
 

 
Number of pending 
customers calling 
multiplied by 85 
 

 
Prepare 
Order 

 
- Actor “considers” 2 an item that 
matches an injected item. 
 

 
Number of pending orders 
to be created multiplied by 
80 
 

 
Serve Order 

 
- Actor serves order to customer 

 
Number of readied orders 
to be served multiplied by 
75 
 

 
Store Order 

 
- Actor drops a readied order on any 
drop area 
 

 
Number of pending orders 
to be created multiplied by 
90 
 

 
Rest 

 
- Actor sits 
 

 
Analogous to the Energy 
Need 
 

 

  

 
2 “Consider” is non-physical behaviour that is exposed by every item. It allows the 

planner the consider item nodes even when their behaviours do not directly expose effects 
that match the current’s step preconditions 
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Table 5: Customer goals table 

Customer 

Goal Name Effects Value 
 
Find Sit 

 
- Actor sits 
- Actor should not be sitting already 
 

 
Static value of 90 

 
Order 

 
- Actor calls any waiter node 
 

 
Static value of 50 

 
Drink 

 
- Actor drinks a liquid container 
- That liquid container must be 
temporarily owned by him 
 

 
Static value of 80 

 
Leave 

 
- Actor sits 
 

 
Static value of 100 

 Prometheus Tavern Challenges 

To evaluate the agents' capacity to adapt to a dynamic environment, we 

designed a set of challenges that artificially modified the scene and its 

characteristics. These challenges were intended to make it more demanding for 

NPCs to accomplish their goals while simultaneously validating their perception and 

memory capabilities. In the subsequent sections, we outline the challenges that the 

NPCs encountered and describe how they successfully addressed these changing 

conditions. 

5.3.3.1 Moving Items Around in Runtime 

When NPCs attempted to reach an object, they would dynamically track the 

item if it moved within their field of vision. However, as expected, if the item left their 

field of vision, they would halt and reassess their plans and goals, marking the item 

as missing until it was noticed again. For instance, if a waiter had planned to sit in a 

specific chair, and that chair suddenly vanished, he would pause, reevaluate, and, if 

suitable, select another chair to sit in. 

It's important to note that NPCs would remain unaware of an item changing 

position until they either observed the item in its new location or reached the spot 

where they believed the item should be, only to discover it was missing. For 

instance, if a waiter started outside of the tavern, planned to sit in his chair, and the 

chair vanished before he entered the tavern, he would continue walking toward the 

chair since he hadn't yet realized that the chair was no longer there. 
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5.3.3.2 Different Perception Sensors 

In our case study, each NPC was equipped with two types of stimuli: one for 

sight and one for sound. The sight sensor took the form of a cone-shaped mesh 

that extended from their eyes, while the sound sensor was represented as a 

spherical shape surrounding the agent. 

The behavior of an agent was influenced by these sensors. For instance, an 

agent would not plan to clean a dirty mug if they hadn't visually perceived it yet. 

However, they would respond to a customer's call, even if they were not currently 

looking in that direction at that particular moment. 

5.3.3.3 Item Preferences using IntendedUses 

NPCs consistently exhibit a sense of preference in their decision-making. For 

example, a waiter would avoid sitting in a chair on the "customer side" of the tavern 

unless there were no other options. Similarly, customers would typically choose a 

seat that: a) is not the waiter's chair, or b) in most cases, the seat that looks the 

most appealing. 

Moreover, the waiter has a predefined spot for placing clean mugs, but in cases 

where that area is unavailable or obstructed, he would reevaluate his plan and 

select the next best available option for placement. 

5.3.3.4 Depleted Barrel 

When preparing an order, the waiter would usually pour rum from the barrel 

item which contains rum. In this challenge, the barrel would be emptied in runtime 

while the actor would be taking an order and the agent should plan accordingly, 

using another liquid container containing rum to fill up the order’s mug. And when 

the barrel would be artificially filled again, if the NPC noticed, he would go back to 

using the barrel again. 

5.3.3.5 Dynamic Goal Values 

The behavior of the waiter NPC is dynamic and influenced by his knowledge. 

For instance, if there were numerous dirty mugs to attend to, he would prioritize 

cleaning most of them, giving the appearance of being busy with that task before 

moving on to other activities, such as taking new orders. Additionally, when faced 

with multiple orders to prepare, he efficiently readies both orders before serving 

them, rather than dealing with them individually, which optimizes his workflow. 

 Happy Surprises during Development 

Throughout the development and testing process, there were instances where 

the NPCs pleasantly surprised the developers. For instance, sometimes the waiter 
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would place an order out of the customer's reach. Instead of requiring manual 

programming to handle this situation, the customer autonomously stood up, fetched 

the drink, and returned to their seat, all executed by the system without explicit 

instructions. Furthermore, if the customer's seat was moved farther from the table, 

when they finished their drink, the system automatically planned for them to stand 

up, place the empty mug on the table, and then return to their seat. 
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Chapter 6 

6 Expert-Based Evaluation 
In this chapter the evaluation process of the Autonomia Framework will be 

presented and discussed. A system’s evaluation can take multiple forms and it is 

crucial to repeat this step multiple times throughout the design and development 

process. 

As far as this thesis is concerned, Autonomia is a newborn system, and the 

current version is but a prototype. Even by the time of writing this thesis, it is an 

undeniable fact that there exist a plethora of problems and limitations that need to 

be stated and classified. This is a normal phenomenon in the field of R&D and 

should be wholeheartedly accepted and acknowledged. 

Bellow, we iterate on Autonomia’s self-reported, interview-based [92] and 

expert-based heuristic evaluation [54], [93] taken place by the time of writing this 

thesis, whose questions can be found in Appendix A and B. We conceptually 

consider two parts in the evaluation; part one aiming to measure the behaviour 

realism of Autonomia’s agents and part two aiming to judge the features and 

architectural decisions of the framework. Both were executed on the Prometheus 

Tavern case study. 

6.1 Evaluation Part I 

 The Process 

The evaluation experiment can be divided into four different phases: a) the 

game scene preparation, b) the introduction narrative, c) the execution of the 

scenarios with the user, d) user-filled questionnaire, and e) an ending discussion. 

To streamline the evaluation of different challenges affecting the NPCs, the 

game scene was duplicated into multiple instances, with each instance having a 

slightly different setup to test a different challenge. 

Upon arriving, users were individually informed about the system's experimental 

stage and were explicitly asked to assess the realism of the NPC’s behaviours from 

a logical standpoint rather than an aesthetic one.  

The scenarios showcased in this evaluation, are effectively the same challenges 

from section 5.3.3, in the context of the Prometheus Tavern. While the experiments 

were running, the evaluator would at sometimes narrate parts of the scenarios due 

to certain aspects not being fully implemented. For instance, visual cues for a “dirty” 

mug were not present, so relevant information had to be provided via Unity’s 

inspector. Furthermore, the evaluator would be open to suggestions from the user, 
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to further challenge the NPCs to adapt. Of course, only suggestions that would be 

applicable were considered. 

In the evaluation process followed a user-filled questionnaire containing seven 

questions that could be rated on a scale from 1 to 5, where 1 signified "Strongly 

Disagree" and 5 signified "Strongly Agree". Six out of seven questions were 

focused on the realism of the behaviours of the NPCs, were the last one focused on 

the reactions’ speeds of the agents. Lastly, an open discussion session was 

conducted to collect the user's feedback and insights on the agents' behaviours, 

perception, and responsiveness. 

 Results 

The evaluation results revealed several positive aspects of Autonomia's agent 

behavior adaptation in dynamic environments. The users generally agreed that 

Autonomia's agents were capable of adapting to changes made during runtime. 

Specifically: 

 Users almost unanimously agreed that the agents adapted well to their 

changing environment, even when modifications were introduced during 

gameplay. 

 Users strongly agreed that NPCs adjusted their behavior based on the 

specific objects and their available preferences within the tavern. 

 Users noticed that NPCs changed their goal prioritization depending on 

dynamic scene conditions. For example, they would prioritize cleaning 

dirty mugs when many were present before taking new orders. 

 

However, there were also some dissenting opinions: 

 Some users disagreed that the agents had different reactions to various 

stimuli. It was mentioned that the lack of animations and in-game sound 

might have contributed to this opinion. 

 Users generally disagreed when asked whether the agents responded 

and planned quickly. This outcome was expected due to the nature of 

the scene, which required agents to make real-time plans for almost 

every action. The scene had a total of 40 nodes, each exposing 2-4 

behaviours and the average NPC plan had a length of 5. 

 

The results indicated that Autonomia's agents demonstrated adaptability to 

changing environments, but there were areas where further improvement and user 

feedback could be beneficial. 
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6.2 Evaluation Part II 
The second part of the evaluation involved the professional expertise of four 

Unity developers, with three of them having experience specifically in game 

development and R&D gamification. These individuals were considered ideal 

candidates for the framework's intended user group, given their expertise and 

background in the field. 

 The Process 

In this evaluation, the users were explained the system in its entirety, delving 

into a technical analysis and demonstration of the available features and 

architectural decisions of Autonomia. Each section of the system was accompanied 

by examples from the existing codebase. In cases where users displayed a 

heightened interest, the evaluator even extended the codebase with new examples 

based on the user's suggestions, fostering an interactive and engaging process.  

The primary areas of focus during this technical demonstration included: a) the 

Memory, Perception and EventInterpreter modules, which constitute the theory of 

mind approach of Autonomia, b) the module and injection mechanisms, c) the EBG 

system, and lastly d) the editor tools, focusing mostly on the Expression Graph 

Editor. In many points of the demonstration the user was encouraged to ask 

questions regarding the system and why each decision was taken.  

At the conclusion of the technical demonstration, an open-ended interview was 

conducted with users, consisting of a total of 18 questions that spanned 

functionality, features, system usability, performance, scalability, customization, 

extendibility potential, and future improvements. 

 Results 

The second part of the expert-based evaluation identified several issues, 

including some inherent to Autonomia and others that are relatively easier to 

address. However, it also emphasized the significant strengths of the system, which 

serve to mitigate the identified weaknesses. Table 6 summarizes the collective 

findings for each category of questions. 
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Table 6: Extracted results from the expert-based evaluation. 

Question Categories Heuristic 

 
Overall Impressions 

 
All experts highlighted that the system is exceptionally 
complex and vast. For the system to actually be 
applied, it would need careful planning and good 
practices.  
 
Upon initial inspection, it would be impossible to use by 
someone inexperienced, but with comprehensive 
documentation and enough time to familiarize oneself, 
it would be as manageable as any other system 
learned over time. 
 
All experts agreed that the Autonomia Framework has 
the potential to significantly enhance AI agent 
behaviours. Implementing Autonomia in a future game 
would introduce a fresh and innovative approach, 
breathing more life into NPC agents compared to 
contemporary industry games. 
  

 
Functionality and 
Features 

 
Many experts identified the treatment of knowledge as 
their favorite feature within Autonomia. They 
appreciated how the system allows for generalized, 
substantial communication of knowledge. The way 
Memory interacted with Perception and Interpretations 
was particularly commended and considered one of the 
system's greatest and unique strengths. Additionally, 
some experts viewed the system's freeform extensibility 
as a valuable feature. 
 
Regarding missing functionalities or features, all 
experts underscored the significance of comprehensive 
documentation and paradigms that would facilitate the 
onboarding of new users to Autonomia. One expert 
also mentioned the absence of emotional aspects in the 
current agents as an area for potential improvement. 
 

 
Usability 

 
In response to more specific questions about usability, 
most experts agreed that individuals with prior 
experience using similar tools would have an easier 
time comprehending the system. However, new users 
would likely encounter challenges, especially when 
dealing with specific abstract concepts. 
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Among the three experts with experience in game 
development, they found the terminology in the system 
to be well-defined and structured. However, the latter 
expert did identify some instances where terms were 
used inappropriately. 
 
All experts unanimously described the learning curve of 
the system as exponential initially but becoming linear 
or logarithmic as users gained more hands-on 
experience. 
 

 
Performance 

 
Experts expressed that the NPCs in Prometheus 
Tavern exhibited slow performance. However, after 
gaining a technical understanding of the system's inner 
workings, they recognized the reasons behind this 
performance issue and suggested that performance 
should be a more carefully considered aspect in future 
games, even if it meant compromising the planning 
capacity of NPCs. 
 
There were no crashes during the evaluation. However, 
some unexpected behaviors were observed. For 
example, an NPC might serve a dirty mug to a 
customer. Such occurrences were attributed to 
implementation issues rather than problems with the 
framework itself. 
 

 
Integration and 
Compatibility 

 
All experts strongly agreed that the system is highly 
capable of accommodating other subsystems, 
emphasizing the framework's generalized and modular 
nature. 
 

 
Scalability 

 
The general consensus regarding the scalability of the 
system was that it heavily depends on the specific 
implementation. Autonomia is a versatile tool that can 
support a wide range of unique and complex functions. 
However, without careful planning and the use of 
specialized algorithms, it will most likely not scale well. 
 
Experts could not pinpoint a core mechanism within 
Autonomia that would inherently limit the scalability of 
subsequent systems. 
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Customization and 
Extensibility 
 

 
All experts provided positive responses in this specific 
category. As previously mentioned in other areas, they 
believe the system is highly customizable and 
extendable, whether through generalized expressions 
or the module system. 
 

 
Future Improvements 

 
Among the most common responses were suggestions 
for creating a manual complete with examples, 
paradigms, and even video tutorials to facilitate user 
understanding. 
 
Additionally, experts recommended the development of 
more visual tools for various other functionalities of the 
system, such as visual programming of behaviours. 
 

 
Comparison with 
existing techniques 
 

 
When compared to other techniques, experts noted that 
the framework, despite its high complexity, provides 
users with a well-structured pipeline to model and 
integrate various AI techniques. It offers both the 
theoretical and practical foundation for future 
implementations to accomplish tasks that would have 
been more challenging or resource-intensive without it. 
 
Additionally, some experts pointed out that the value of 
using Autonomia depends on the specific project at 
hand. For simple, one-dimensional projects, using this 
system may not be worthwhile due to its steep learning 
curve and the presence of various subsystems, which 
could be cumbersome. However, for those aiming to 
create an open-ended, sandbox-style world with 
dynamic agents, Autonomia would be a valuable 
addition to the team's toolkit. 
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Chapter 7

7 Conclusions and Future Work 

7.1 Conclusions 
Over the past decade, a significant volume of research has been dedicated to 

AI agents, with each endeavor addressing specific challenges related to enhancing 

the believability of such agents. Despite successful advancements in various 

aspects of this issue, the underlying problem remains unresolved. This is primarily 

due to the multifaceted and highly complex nature of the challenge, necessitating a 

unified approach that combines a diverse range of artificial intelligence techniques 

and solutions. However, no previous work has provided a tool capable of fulfilling 

this role. 

This thesis has introduced Autonomia, an extendable and customizable 

framework designed to enhance the believability of Non-Player Characters (NPCs). 

Autonomia's approach centers on the modeling of a memory system that can 

realistically evolve through an NPC's perception and understanding of the world, 

leveraging the Theory of Mind as a foundational concept. From an engineering 

standpoint, Autonomia's open-source nature aims to provide a shared foundation 

for future research and development, with its modular architecture enabling different 

teams of developers and researchers to contribute their unique expertise while 

sharing their work for everyone to capitalize from, in an accessible manner. 

Autonomia does not position itself as a complete and ready-made solution for all 

problems, as this approach would not align with its open-source philosophy. Its aim 

is to serve as an initial seed, a starting point for potential future advancements in 

research to create more sophisticated systems. This thesis represents the first step 

toward building a complex framework, with the hope that it may one day grow into a 

thriving ecosystem of innovation and progress. 

 

7.2 Future Work 
Autonomia's future is filled with unlimited potential and possibilities. The 

framework has demonstrated its promise through its modular nature, but, like any 

other innovative system, it will benefit from the establishment of common standards 

and protocols to guide its development and ensure coherence. This is a pivotal step 

towards fulfilling the potential of Autonomia and creating an ecosystem of research 

and innovation. 
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 Documentation and Examples 

As of this point, the expert-based evaluation showed the system to be extremely 

complex and hard to use for someone unfamiliar with its already large codebase. 

The immediate next step would be to document all the components contained in the 

Autonomia.Core namespace as well as provide complete and comprehensive 

examples of creating Modules, Behaviours, and Goals, Expressions, 

Interpretations, and new Injection attributes. In addition, extra documentation 

should be provided for the Unity Integration as it extends Autonomia.Core in various 

ways, for example creating new expression nodes for the expression graph editor. 

 Standardized Protocols and Design Principles 

In the future development of Autonomia, there is a need to establish a 

framework for evaluating protocols and interfaces for various aspects of agent 

believability. For example, defining the characteristics of an emotionally driven AI 

could lead to the creation of a generalized, community-accepted abstract module. 

This abstract module can serve as an interface within Autonomia, allowing for the 

integration of different implementations of emotional AI. Such an approach enables 

seamless comparison and swapping of implementations in the same execution 

environment, fostering a powerful comparison tool. 

Additionally, the framework should include a comprehensive expression model 

for common behaviors exposed by most nodes. For instance, behaviors like "grab" 

or "walk" should have standardized preconditions and effects, providing a baseline 

for modeling more complex behaviors in future iterations of Autonomia. This 

approach ensures that the framework can accommodate a wide range of use cases 

and encourages the development of a consistent and adaptable system. 

 Refactored User Interface 

The existing user interface, as integrated within Unity, was primarily designed 

for functionality testing and served as a prototype. In future developments, there is 

a need to create a more user-friendly and intuitive interface that goes beyond the 

limitations of Unity Integration. This improved interface should be designed without 

focusing on Unity, with the intention of being user-centric and accommodate 

working with different engines or systems. Maintaining consistency and coherency 

in the interface design will be crucial for ensuring a seamless user experience 

across various environments and platforms. 

UIs mentioned in this section include the Expression Graph Editor, the NodeRef 
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script, a more sophisticated debugger and more.  

 Advanced Debugging Tools 

In the context of this thesis, a basic node debugger was implemented. However, 

for Autonomia to align with its modular and extensible goals, a more sophisticated 

debugging system is required. Each module should incorporate support for custom 

debugging information, extending beyond plain text. For example, the current 

system lacks the capability to visually inspect an NPC's memory. An even more 

valuable feature would be the ability for framework users to make real-time changes 

to the system during application execution, facilitating faster testing iterations and 

debugging. 

 Player, Dialogues and Emotion 

The way Autonomia currently is, it would be simple addition to extend it with a 

dialogue system that utilizes the NPC’s memory to allow them to freely converse. 

Already, simply queries in a cypher-like syntax can be executed. It would not be far 

stretched to allow potential players to converse with the NPCs through machine 

learning assisted prompts. It would be a spectacle to observe emotional agents 

freely conversing, behaving, and planning their goals while exchanging information 

regarding their experiences and daily lives.  

 More Case Studies 

To prove Autonomia’s efficiency as a tool, more cases studies need to be 

performed. This would allow for a better understanding of the tool itself, and even 

birth more design principles and guidelines for future generations. 
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Appendix A 
Expert-Based Evaluation Part I Questionnaire 

1. The agents were capable of adapting to moving objects in the scene. 

2. NPCs responded in the same way either for audio or visual cues. 

3. The NPCs would alter their behaviour based on the objects of the 

environment. 

4. The NPCs were unable to adapt to the changes in the environment while the 

game was running. 

5. The NPCs seemed to behave based on their preferences. 

6. The NPCs would not alter their behaviours based on priorities or goals. 

7. I would say the agents responded quickly. 

 

Questions were rated from 1 to 5, where 1 represents “Strongly Disagree” where 5 

means “Strongly Agree”. 
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Appendix B 
Expert-Based Evaluation Part II Questionnaire 

 
Overall Impressions 

1. What are your initial impressions of the programming framework?  
2. On a scale of 1 to 10, how would you rate the framework's overall usability. 
3. Does Autonomia have the potential to enhance adaptability and believability 

of AI agents? 

 
Functionality and Features 

1. Which specific features or functionalities did you find most valuable or 
innovative? 

2. Were there any missing features or functionalities that you expected to be 
present? 

3. Can you describe any difficulties or challenges you encountered while using 
specific features? 

 
Usability 

1. Were you able to easily understand and navigate through the framework's 
user interface? 

2. Did you encounter any confusing terminology? 
3. How would you rate the learning curve for someone new to the framework? 

 
Performance 

1. How did the framework perform in terms of speed and responsiveness for 
your specific use cases? 

2. Did you encounter any crashes or unexpected behavior? 
 
Integration and Compatibility 

1. Would you believe it would be possible to integrate other system’s within 
Autonomia? 

 

Scalability 
1. Based on your personal experience, do you believe the system would be 

scalable? 
 
Customization and Extensibility 

1. Do you believe you would be able to customize or extend the framework to 
meet your specific needs? 

2. Did you encounter any limitations when trying to modify or extend the 
framework's functionality? 
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Future Improvements 
1. What improvements or additional features would you like to see in future 

versions of the framework? 
 
Comparison 

1. What unique advantages or disadvantages do you see in this framework? 
 
Recommendation 

1. Would you recommend this framework to your colleagues or peers in the 
industry? Why or why not? 


