

UNIVERSITY OF CRETE

SCHOOL OF SCIENCES AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

Autonomia: A knowledge-based framework for

realistic agent behaviours in dynamic video

game environments

Zacharias Pervolarakis

Thesis submitted in partial fulfillment of the requirements for1 the

Masters’ of Science degree in Computer Science and Engineering

Thesis Advisor: Constantine Stephanidis

1This work has been performed at the University of Crete, School of Sciences and Engineering, Computer Science

Department.

The work has been supported by the Foundation for Research and Technology Institute of Computer Science

(ICS).

ii

iii

UNIVERSITY OF CRETE

SCHOOL OF SCIENCES AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

Autonomia: A knowledge-based framework for realistic
agent behaviours in dynamic video game

environments

by Zacharias Pervolarakis

In partial fulfillment of the requirements for the
Master of Science degree in Computer Science

APPROVED BY:

Author: Zacharias Pervolarakis, University of Crete

Thesis Supervisor: Constantine Stephanidis, Professor, University of Crete

Committee Member: Kostas Magoutis, Associate Professor, University of Crete

Committee Member: Xenophon Zabulis, Research Director, FORTH

Director of Graduate Studies: Polyvios Pratikakis, Professor, University of Crete

iv

v

This thesis is dedicated to my family

to my father Lefteris who taught me practicality and wisdom,

my mother Katerina who taught me how to love and dream,

and my brother Manos who taught me how to understand and learn.

vi

vii

Abstract

Video games are a popular form of entertainment that offer interactive and

immersive experiences to the players. A key element of these experiences is the

presence of non-player characters (NPCs), which are autonomous agents that

populate the game world and interact with the player and the environment. NPCs

can enhance the realism and diversity of the game scenarios by exhibiting human-

like behaviours that are consistent, adaptive and believable. However, creating

such behaviours is a complex and challenging task that requires a combination of

artificial intelligence (AI) techniques and game design principles. Current methods

and frameworks for NPC decision-making often rely on predefined scripts or rules

that limit the NPC’s capability to adapt to dynamic situations. Moreover, NPCs

usually lack autonomy, as they are unable to pursue their own goals, as well as to

interact with other NPCs or the player. Therefore, there is a need for novel

approaches that can improve the credibility and adaptability of NPC behaviours in

video games.

This work introduces Autonomia, an innovative knowledge-based framework for

realistic agent behaviours in dynamic video game environments. Autonomia is

deeply rooted in the Theory of Mind (ToM), leveraging a knowledge graph to depict

the world's state, with each NPC possessing a replica of this world state in its

“memory”. This “memory” is designed to support higher orders of ToM while

constantly evolving as the NPC perceives the world around it and interprets events.

Autonomia uses a modular system to define the functionality and behaviour of

different types of nodes in the graph, such as physical objects, animals or people.

The framework as structured, allows NPCs to dynamically react to changes in the

environment purely based on its ability to perceive and hold memory. In this

context, Autonomia introduces a new way to model behaviours and goals, enabling

them to be treated as knowledge that can be communed, discovered or even

forgotten just like any other part of the NPC's “memory”. Basing everything on their

acquired knowledge, NPCs utilize a Goal-Oriented Action Planning (GOAP)

algorithm to come up with plans in any dynamic environment.

Lastly, an implementation of Autonomia is provided for the Unity game engine,

including the “Prometheus Tavern” case study, on which a two-part expert-based

evaluation was conducted. The first part confirmed that the provided features and

the architecture of the Autonomia framework deliver solutions that can improve the

credibility of NPC behaviours, whereas the second showed that the agents of the

system have the capability to adapt to their environment and behaviour in a realistic

manner.

Keywords: Game AI, Autonomous Agents, NPC, NPC Behaviours

viii

ix

Περίληψη

Τα βιντεοπαιχνίδια είναι μια δημοφιλής μορφή ψυχαγωγίας και μπορούν

να προσφέρουν διαδραστικές και καθηλωτικές εμπειρίες στους παίκτες.

Βασικό στοιχείο αυτών των εμπειριών είναι η παρουσία χαρακτήρων τύπου

Non-Playing Character (NPC) δηλαδή πρακτόρων που δεν ελέγχονται από τον

παίκτη ή τους παίκτες του παιχνιδιού. Οι πράκτορες NPC είναι αυτόνομοι

χαρακτήρες που κατοικούν στον κόσμο του παιχνιδιού και αλληλεπιδρούν με

τον παίκτη και το περιβάλλον. Οι πράκτορες αυτοί μπορούν να ενισχύσουν

τον ρεαλισμό και την ποικιλομορφία των σεναρίων του παιχνιδιού,

παρουσιάζοντας συμπεριφορές που θυμίζουν ανθρώπινες, είναι συνεπείς,

αληθοφανείς και προσαρμόζονται ανάλογα με το δυναμικό τους περιβάλλον.

Ωστόσο, η δημιουργία τέτοιων συμπεριφορών είναι ένα πολύπλοκο και

δύσκολο έργο που απαιτεί μεθοδολογία, καλό σχεδιασμό και συνδυασμό

πολλαπλών τεχνικών τεχνητής νοημοσύνης (AI). Οι τρέχουσες μέθοδοι και

προγραμματιστικά πλαίσια για την υλοποίηση της ικανότητας των πρακτόρων

NPC να παίρνουν αποφάσεις, συχνά βασίζονται σε προκαθορισμένα σενάρια

ή κανόνες που περιορίζουν την προσαρμοστικότητα τους σε δυναμικά

μεταβαλλόμενες καταστάσεις. Επιπλέον, συχνά οι πράκτορες NPC

χαρακτηρίζονται από έλλειψη αυτονομίας, καθώς δεν έχουν την ικανότητα

να επιδιώξουν τους δικούς τους στόχους ή ακόμα και να αλληλεπιδράσουν

με άλλους πράκτορες NPC ή με τον ίδιο τον παίκτη. Ως εκ τούτου, υπάρχει

ανάγκη για καινοτόμες λύσεις που να μπορούν να βελτιώσουν την αξιοπιστία

και την ικανότητα των συμπεριφορών των πρακτόρων NPC στα

βιντεοπαιχίδια.

Η παρούσα μεταπτυχιακή εργασία εισάγει το σύστημα Autonomia, ένα

καινοτόμο προγραμματιστικό πλαίσιο βασισμένο στην γνώση, σχεδιασμένο

να προσδίδει ρεαλιστικές συμπεριφορές πρακτόρων NPC σε δυναμικά

περιβάλλοντα βιντεοπαιχνιδιων. Το σύστημα Autonomia θεμελιώνεται στη

Θεωρία του Νου (ΘτΝ) και χρησιμοποιεί γραφήματα γνώσης (knowledge

graphs) για την απεικόνιση της κατάστασης του κόσμου. Ο κάθε πράκτορας

NPC διαθέτει ένα αντίγραφο αυτής της κατάστασης στη “μνήμη” του.

Συγκεκριμένα, η σχεδίαση της “μνήμης” επιτρέπει τόσο την συνεχή εξέλιξη

της, όσο και την υποστήριξη υψηλότερων επιπέδων ΘτΝ καθώς ο πράκτορας

αντιλαμβάνεται το περιβάλλον και σχηματίζει προσωπική εικόνα για τον

κόσμο. Ένα σύστημα δομοστοιχείων (modular system) χρησιμοποιείται για να

ορίζεται η λειτουργικότητα και η συμπεριφορά διαφορετικών τύπων κόμβων

του γράφου, όπως αντικείμενα, ζώα ή άνθρωποι. Η σχεδίαση του συστήματος

Autonomia επιτρέπει στους πράκτορες NPC να αντιδρούν δυναμικά στις

αλλαγές του περιβάλλοντος με βάση την ικανότητά τους να αντιλαμβάνονται

και να ερμηνεύουν γεγονότα στη “μνήμη” τους. Επίσης, εισάγουμε έναν νέο

x

τρόπο μοντελοποίησης των συμπεριφορών και των στόχων, ο οποίος

επιτρέπει την χρήση τους ως γνώση η οποία μπορεί να μεταφερθεί μέσω

διαλόγου, να ανακαλυφθεί ή ακόμα και να ξεχαστεί όπως κάθε άλλο κομμάτι

“μνήμης” του πράκτορα NPC. Βασίζοντας τα πάντα στην επίκτητη γνώση του,

ο πράκτορας NPC χρησιμοποιεί έναν Goal-Oriented Action Planning (GOAP)

αλγόριθμο για να μπορεί να “σκαρφιστεί” αλυσίδες συμπεριφορών σε κάθε

δυναμικό περιβάλλον.

Τέλος, παρέχεται μια υλοποίηση του συστήματος Autonomia στην μηχανή

παιχνιδιών Unity η οποία περιέχει την μελέτη περίπτωσης “Ταβέρνα του

Προμηθέα“ με την οποία πραγματοποιήθηκε μια αξιολόγηση με

εμπειρογνώμονες την οποία χωρίζουμε σε δύο μέρη. Τα αποτελέσματα του

πρώτου μέρους επιβεβαίωσαν ότι η προσφερόμενη λειτουργικότητα και η

αρχιτεκτονική του προγραμματιστικού πλαισίου Autonomia προσφέρουν

λύσεις για την βελτίωση της αξιοπιστίας και της ικανότητας των

συμπεριφορών των πρακτόρων, ενώ τα αποτελέσματα του δεύτερου έδειξαν

ότι οι πράκτορες του συστήματος έχουν την ικανότητα να προσαρμόζονται

στο περιβάλλον τους και να συμπεριφέρονται με ρεαλιστικό τρόπο.

Keywords: Game AI, Autonomous Agents, NPC, NPC Behaviours

xi

	

Contents

1 Introduction ... 1

1.1 Motivation ... 1

1.2 Thesis Structure .. 3

2 Background Theory and Related Work .. 4

2.1 Background Theory .. 4

 The importance of Video Games .. 4

 Artificial Intelligence in Video Games ... 5

 Suspension of Disbelief... 6

 Believability of Non-Player Characters ... 7

2.2 Related Work .. 8

 Behaviour Models ... 8

 Machine Learning in Game AI .. 15

 Social NPCs Model ... 15

 World State Representation .. 17

2.3 Progress beyond the state of the art .. 17

3 Framework Architecture .. 19

3.1 Overview ... 19

3.2 Methodology .. 20

 Literature Review and Theoretical Foundation 20

 Iterative Prototyping and Development .. 20

3.3 Theory of Mind & World Representation .. 21

 Theory of Mind .. 21

 World State in Video Games... 22

 Autonomia World State ... 22

3.4 Module System .. 23

 Active Events Module .. 23

 Event Interpreter Module .. 24

 Perception Module .. 25

 Memory Module and the Theory of Mind .. 26

 Behaviour Controller Module .. 29

 Intended Uses Module .. 30

3.5 Expressions, Behaviours and Goals .. 30

 Expressions ... 30

xii

 Behaviours .. 31

 Goals ... 33

 Abstract Nodes and Wildcard values .. 33

 EBG Model .. 34

3.6 Goal Planning .. 34

 Autonomia’s GOAP A* Search.. 35

 Schedule.. 36

 The PlanBehaviour .. 37

3.7 Compatibility with other AI models ... 37

3.8 Scalability and Performance .. 37

3.9 The Autonomy Paradox .. 38

4 Framework Implementation ... 39

4.1 Third-Party Tools ... 39

 C# .. 39

 Neo4j ... 40

4.2 Autonomia.Core .. 42

 Graph ... 43

 Injector and Injectables ... 45

 Node Factory ... 46

 Modules ... 47

 Memory Module... 49

 Perception Module .. 50

 Other Modules ... 52

 Events, Abstractions and Wildcards ... 52

 AutonomyDB ... 55

 Engine ... 56

 System Clock .. 57

 Expressions ... 57

 Behaviours .. 60

 Goals and Planning Algorithms .. 64

5 Unity Integration.. 69

5.1 Overview ... 69

5.2 Autonomia’s Designer Tools ... 70

 NodeRef Script .. 70

 DesignerValue ... 72

 Intended Uses Drawer .. 72

 Node Debugger ... 72

xiii

 Expression Graph Editor ... 73

 Expression Library .. 74

5.3 Use Case: Prometheus Tavern .. 80

 Prometheus Tavern Scene ... 81

 NPC Goals .. 82

 Prometheus Tavern Challenges ... 84

 Happy Surprises during Development .. 85

6 Expert-Based Evaluation ... 87

6.1 Evaluation Part I .. 87

 The Process .. 87

 Results ... 88

6.2 Evaluation Part II ... 89

 The Process .. 89

 Results ... 89

7 Conclusions and Future Work... 93

7.1 Conclusions ... 93

7.2 Future Work ... 93

 Documentation and Examples .. 94

 Standardized Protocols and Design Principles 94

 Refactored User Interface ... 94

 Advanced Debugging Tools .. 95

 Player, Dialogues and Emotion .. 95

 More Case Studies and User Cases .. 95

 	

xiv

 	

xv

List	of	Figures	
Figure 1: Example of a knowledge graph ... 23

Figure 2: ActiveEvents, Perception and EventInterpreter ... 25

Figure 3: Perception system structure of Autonomia .. 26

Figure 4: Memory Module representation structurally .. 27

Figure 5: Illustration showcasing the infinite recursion ... 28

Figure 6: Graph, Node and Edge class diagrams. .. 44

Figure 7: Injectable attribute class diagram .. 45

Figure 8: Specific behaviour being injected using node labels 46

Figure 9: Node Factory class diagram .. 47

Figure 10: Example of adding custom dispatch methods to the Node Factory 47

Figure 11: Class diagram of the Module class and derived classes 48

Figure 12: Class diagram of Memory .. 50

Figure 13: Class diagram of the Perception and stimulus modules 51

Figure 14: Class diagram for Event, Abstractions and Wildcard 54

Figure 15: IDatabaseClient interface diagram with our Neo4JClient........................ 55

Figure 16: Engine class diagram ... 56

Figure 17: Class diagram of Expression ... 58

Figure 18: Class diagrams of behaviour’s metadata .. 61

Figure 19: Side-by-side comparison of recursive listener events versus using

asynchronous programming. ... 62

Figure 20: Class diagram of Behaviour ... 64

Figure 21: Class diagram of Goal and Plan. ... 65

Figure 22: Class diagrams of Schedule, ScheduledSlot, and ScheduledGoal 67

Figure 23: NodeRef drawer example .. 71

Figure 24: Expression Graph of DrinkTemporaryOwnedDrink goal 74

Figure 25: Primitive expressions ... 75

Figure 26: Logic and Math expression examples ... 76

Figure 27: Node expressions .. 77

Figure 28: A grab event created through the expression graph 78

Figure 29: Commonly used utility expressions ... 79

Figure 30: MatchNodePropertiesExpression and IfExpression example 80

Figure 31: Prometheus Tavern case study scene .. 81

xvi

xvii

List	of	Tables	
Table 1: Expression base class methods.. 59

Table 2: Behaviour base class core methods ... 62

Table 3: Main exposed behaviours in the Prometheus Tavern 81

Table 4: Waiter goals table .. 83

Table 5: Customer goals table .. 84

Table 6: Extracted results from the expert-based evaluation. 90

xviii

Chapter 1: Introduction

1

Chapter 1

1 Introduction
In this chapter, we delve into the motivation and background behind the

development of the Autonomia Framework. We explore the challenges associated

with creating believable [1]–[3] and intelligent non-player characters (NPCs) in the

context of video games and interactive simulations. Additionally, we provide an

overview of the objectives and structure of this thesis, setting the stage for a

comprehensive examination of Autonomia's architecture, implementation, and

contributions to the field of artificial intelligence in gaming.

1.1 Motivation
Video games, as a widely enjoyed form of entertainment and art, have the

potential to deliver captivating experiences [4], [5]. A central part within these

games is the interaction with non-player characters (NPCs)—computer-controlled

entities that assume roles of allies, adversaries, or neutrals [2] and NPCs hold the

ability to craft those immersive and lifelike scenarios by simulating emotions,

personalities, motivations, and social dynamics akin to human beings. Yet, crafting

truly convincing NPCs remains a formidable challenge, necessitating a blend of

technical skills, artistic ingenuity, and psychological understanding. Unfortunately,

the current state of most NPCs falls short of authenticity, often adhering to scripted,

predictable, or inconsistent behaviours that shatter the illusion of reality and reduce

or even diminish players' enjoyment [6]–[8]. The lack of NPCs' believability often

becomes evident when they encounter intricate situations that haven't been

anticipated by the designer or programmer. For the most part, NPCs depend on

rigid, pre-defined rules or scripts dictating their responses to specific in-game

situations. Unfortunately, these rules often lack flexibility, sophistication, and fail to

capture the dynamic nature of the game world and player actions. Furthermore,

most NPCs lack a unified model encompassing their perceptions, memories, goals,

and plans. This absence impedes their capacity to reason over actions, predict

outcomes, or collaborate effectively with other NPCs and players. Consequently,

NPCs often manifest as superficial, artificial entities, lacking the depth of human-like

intelligence or agency [9].

To illustrate this problem further, we can examine some examples of games that

have attempted to create believable NPCs, and discuss their strengths and

limitations. For instance, The Sims [10] is a popular life simulation game that allows

1.1 Motivation

2

players to create and control virtual people with various personality traits. The game

uses a complex system of needs, motives, skills, and relationships to determine the

behaviour and emotions of the NPCs. However, some critics [11], [12] have argued

that the NPCs in The Sims are still too simplistic and deterministic, lacking the

ability to form meaningful bonds or exhibit moral agency. Similarly, Mass Effect [13]

is a sci-fi role-playing game that features a rich cast of NPC companions with

distinct backgrounds, personalities, and moral alignments. The game allows players

to interact with these NPCs through dialogue choices and influence their loyalty and

romance. However, some reviewers [14], [15] have noted that the NPCs in Mass

Effect are still constrained by predefined scripts and branching paths, limiting their

autonomy and responsiveness to player actions. Another example is Detroit:

Become Human [16], a narrative-driven game that explores the themes of artificial

intelligence and androids. The game features multiple playable characters that can

make choices and face moral dilemmas that affect the story’s outcome. The game

also uses advanced facial animation and voice acting to convey the emotions and

expressions of the NPCs. However, again some critics [17], [18] have pointed out

that the NPCs in Detroit: Become Human [16] are still influenced by clichés and

stereotypes, lacking the subtlety and complexity of human psychology.

These examples underscore the intricate nature of crafting convincing NPCs in

the realm of game development, revealing persistent challenges and unmet

aspirations. It's worth noting that these examples originate from the game

development industry, where talented programmers have long pursued the elusive

goal of achieving lifelike game AI. Yet, even with their dedicated efforts, the industry

has not fully realized this ambition.

In this thesis, we aim to contribute to this field by proposing a novel approach

for creating believable NPCs based on a realistic NPC memory representation

grounded in acquired knowledge, an extendable modular architecture, a novel way

of defining behaviours and lastly, encapsulate everything in an open-source

framework which could serve as common ground for game AI research.

Chapter 1: Introduction

3

1.2 Thesis Structure
The remainder of this master's thesis is divided into seven chapters, as

indicated in the table of contents. Below, a summary of each chapter is provided:

 Chapter 2: This chapter provides a comprehensive literature review of

previous works that have greatly contributed to the field of game AI. It traces

the evolution of AI techniques, from early finite state machines to

contemporary state-of-the-art behavior modeling methods.

 Chapter 3: The third chapter delves into the theoretical foundations of

Autonomia, explaining the architectural decisions that underpin this thesis'

work.

 Chapter 4: In this section, the implementation of the theoretical framework

outlined in Chapter 3 is described. It covers the essential components and

design patterns employed in Autonomia.

 Chapter 5: This chapter focuses on the integration of Autonomia into the Unity

game engine. It also elucidates the various designer tools developed in this

thesis and presents the Prometheus Tavern case study, offering insights into

its exploration.

 Chapter 6: The sixth chapter details the heuristic evaluation, including its

methodology and its findings.

 Chapter 7: This final chapter provides a summary of the work undertaken in

this thesis and offers a discussion of potential future directions and

aspirations for Autonomia.

2.1 Background Theory

4

Chapter 2

2 Background Theory and Related

Work
In this chapter, we explored the existing body of research and development in

the fields of game AI, human-computer interaction (HCI), and computer science.

We conducted a comprehensive review of relevant literature to inform the design

and development of Autonomia. This exploration of related work was a vital process

in shaping the framework's features and capabilities. Our related work process

involved a systematic approach to gathering and synthesizing information from

various sources. We employed a combination of academic journals, conference

papers, books, and online resources to ensure a comprehensive review of the

subject matter.

First, we delve into the foundational concepts of our research field, which form

the basis of our Background Theory. Subsequently, we examine existing works that

align with or partially address our objectives concerning Autonomia. This structured

approach offers readers a coherent journey, starting with the essential theoretical

framework and culminating in a comprehensive understanding of Autonomia's

relevance in the broader research context.

2.1 Background Theory
In this section, we delve into the foundational principles and theories that

underpin the field of research relevant to Autonomia. We explore the core concepts

and pillars that form the basis of intelligent NPC behaviour and game AI. This

provides readers with a solid understanding of the theoretical framework upon

which Autonomia is built.

 The importance of Video Games

In the early 2000s, there was a prevailing belief that video games had a

detrimental impact on the mental health of young people. The media often launched

verbal attacks on gaming culture, though rarely with concrete evidence. While some

earlier studies did suggest potential negative effects of arising from gaming, this

has created a somewhat unjust stigma around video games. Even today,

accusations of video games being a harmful habit persist.

However, it's important to note that more recent research has uncovered a

Chapter 2: Introduction

5

multitude of benefits associated with gaming. These studies have shed light on both

the positive aspects of gaming and the valuable insights we can gain regarding the

learning process through video games and interactive experiences. This evolving

body of research challenges the notion that gaming is inherently harmful and

highlights the potential for constructive and educational outcomes from video game

engagement.

Isabela et al. [19] conducted an overview of the benefits of video gaming. They

summarize that games can improve the cognitive, motivational, emotional and

social skills of a person. More specifically, cognitive improvements were researched

on various aspects; from better spatial cognition [20] to better attention allocation

control [21]. Among other benefits for motivation, Isabela et al. consider games to

be “an ideal training ground” for acquiring an incremental theory of intelligence [22].

Games can also make people feel in the “zone” [23], increase their overall

happiness and relaxation and even provoke a sense of “intense pride” [24]. In their

work, they also highlight that contrary to stereotypes, the average gamer is not

socially awkward, nor does he enjoy being locked up in his room alone [teens and

something]. Most gamers prefer to play games with friends, either cooperatively or

competitively. Cooperative games usually reward effective cooperative and

supportive actions, promoting prosocial behaviours to the players [19].

Moreover, games possess an inherent ability to sustain user engagement, as

evidenced by research [25], [26]. Serious gaming is a field of research that tries to

capitalize from this engaging quality of games by trying to adapt non-game

contexts, such as education and training, into gaming experiences. The aim is to

engage the player in such a way that they unwittingly acquire knowledge and

comprehension in areas they might not typically have the patience to learn about.

 Artificial Intelligence in Video Games

Artificial intelligence (AI) represents a field within computer science dedicated to

the creation of machines and systems capable of executing tasks that typically

demand human intelligence. These tasks encompass activities like reasoning,

learning, planning, decision making, perception, and natural language processing.

AI finds application across diverse domains, addressing challenges in areas such

as robotics, medicine, education, finance, and entertainment [27]–[35].

Within the broader scope of AI, “Game AI” stands as a distinct subfield [36]. It

concentrates on the development of intelligent agents and systems capable of

interacting with or simulating games. Games, defined as formal systems with rules,

goals, challenges, and feedback mechanisms, also function as environments to

assess the skills of both human and artificial agents [37], [38]. Game AI serves

various purposes, primarily enhancing the gameplay experience of the human

2.2 Related Work

6

player but it can also contribute to content generation, game design testing and

balancing mechanics, as well as serve as a research platform for other AI

techniques [36].

One of the most formidable challenges encountered in game AI is performance

optimization. To create games that feel realistic and immersive, multiple systems

must operate in tandem, all within the constraints of an extremely tight timeframe.

Game development typically allocates approximately 16.67 milliseconds per frame

to achieve the requisite 60 frames per second (FPS) performance, which is

considered the common acceptable standard [39]. Within this limited timeframe, a

game must handle tasks ranging from rendering graphics and animations to

managing NPC AI and numerous other functions.

To achieve such performance, many functions in a game become

approximations trying to oppose an optical illusion to the player as of to what is real.

As technology continues to advance, games become increasingly impressive,

raising player expectations with each release. The player's willingness to suspend

disbelief becomes harder to satisfy, emphasizing the importance for the game

development community to continually push boundaries and explore new

techniques to deliver captivating and cutting-edge gaming experiences.

 Suspension of Disbelief

Suspension of disbelief is a term coined by Samuel Taylor Coleridge to describe

the willingness of a reader or a viewer to accept the fictional premises of a story,

even if they are implausible or contradictory to reality [40]. It is a crucial concept for

understanding the immersive and emotional effects of narrative media, such as

literature, film, and games.

In the context of games, suspension of disbelief can be seen as a skill that

players use to construct narrative coherence from the often dissonant elements of

gameplay and story [8]. For example, players may ignore the unrealistic aspects of

game mechanics, such as health bars, inventory systems, or save points, and focus

on the narrative aspects, such as characters, dialogue, or plot. Alternatively, players

may integrate the game mechanics into their interpretation of the story, such as by

rationalizing them as part of the game world or the protagonist’s abilities.

However, suspension of disbelief in games is not a passive or automatic

process. It requires active participation and engagement from the players, who

have to balance their attention between the game rules and the game fiction [40].

Moreover, suspension of disbelief in games is not a binary or stable state. It can

vary depending on the player’s preferences, expectations, and mood, as well as on

the game’s design, genre, and mode. Suspension of disbelief can also be

challenged or broken by various factors, such as bugs, glitches or inconsistencies

[8].

Chapter 2: Introduction

7

 Believability of Non-Player Characters

For the continuation of this thesis, “believable” non-player characters (NPCs)

are those system agents that behave in ways that are consistent, realistic, and

respond with expected ways to the player’s actions or the game’s events [1]. NPCs

that do not follow this narrative immersion, as termed by Adams [41] can break the

player’s immersion and suspension of disbelief by creating a sense of disconnect

between the game world and the player’s expectations. For example, if an NPC

repeats the same dialogue over and over, ignores the player’s presence or

questions, or reacts inappropriately to the game’s situations, such as being calm

during a crisis or hostile during a peaceful encounter, the player may feel that the

NPC is not a living being, but a scripted object. This can reduce the player’s

emotional involvement and identification with the game’s story and characters, as

well as undermine the game’s credibility and coherence. Realistic NPCs can also

maintain narrative coherence by supporting the game’s theme, genre, and mode.

For example, realistic NPCs can follow the conventions and expectations of the

game’s genre, such as being heroic in an action-adventure game or being

mysterious in a horror game. Believable NPCs can also match the tone and mood

of the game’s mode, such as being humorous in a casual game or being serious in

a simulation game. Furthermore, such NPCs can also disrupt narrative coherence

in a positive way by introducing conflict, tension, or surprise in the game story. For

example, realistic NPCs can betray, deceive, or challenge the player, creating a

sense of drama and intrigue.

2.2 Related Work

8

2.2 Related Work
After establishing the background theory, we shift our focus to existing works

that align with the objectives of Autonomia. We examine research efforts and

projects that share either the overarching aim or specific goals similar to those

pursued by Autonomia. This comparative analysis helps position Autonomia within

the broader context of the field, highlighting its unique contributions and areas of

innovation.

 Behaviour Models

In the field of artificial intelligence and computer science, understanding and

modeling human or agent behaviour is a pivotal aspect of designing intelligent

systems. This section delves into the realm of behaviour models, which serve as

fundamental ground for orchestrating the actions and decision-making processes of

agents, whether they are autonomous robots, video game characters, or other AI-

driven entities. By examining a range of behavioural modeling techniques, including

Finite State Machines (FSM), Fuzzy Finite State Machines (FUFSMs), behaviour

Trees, Stanford Research Institute Problem Solver (STRIPS), Goal-Oriented Action

Planning (GOAP) and Hierarchical Task Networks (HTN), we explore the rich

landscape of methods that enable machines to exhibit complex behaviours, adapt

to changing environments, and interact effectively with the world around them.

Through this exploration, we gain valuable insights into the underlying theories and

practical applications of these models, which are essential for the development of

intelligent and responsive AI systems.

2.2.1.1 Finite State Machine

FSM (Finite-State Machines) is a technique used to generate decisions for

agents within games or simulations [42]. This method employs a state-centric

approach, aiming to simplify the process of creating agent behaviours based on

states and transitions. Rooted in the theory of computation, FSMs are designed to

cater to the demands of low-level and reactive behaviours, such as movement,

animation, or combat.

FSMs consist of a set of states and transitions between them, where each state

represents a distinct behaviour or action, and each transition is triggered by a

condition or event. FSMs are easy to implement and understand, but they can also

become complex and unwieldy when the number of states and transitions grows.

The history and development of FSMs can be traced back to the early days of

computer science and game development. FSMs are based on the concept of

Chapter 2: Introduction

9

automata, which are abstract machines that can recognize patterns or perform

computations. Automata theory was developed by mathematicians and logicians

such as Alan Turing, Alonzo Church, and John von Neumann in the 1930s and

1940s [43]. Automata theory provided the foundation for the fields of computation,

programming languages, and artificial intelligence.

FSMs were first applied to games in the 1950s and 1960s, when computer

games were still in their infancy. One of the earliest examples of FSMs in games

was Nimrod[44], a machine that played the game of Nim against human opponents.

Nimrod used an FSM with four states to determine its moves based on the number

of remaining pieces. Another early example of FSMs in games was Spacewar! [45],

one of the first video games ever created. Spacewar! used an FSM with three

states to control the behaviour of the enemy spaceship.

FSMs became more popular and widespread in games in the 1970s and 1980s,

when arcade games and home consoles emerged. Many classic arcade games

used FSMs to create simple but engaging behaviours for their characters and

enemies.

FSMs continued to be used in games in the 1990s and 2000s, when games

became more complex and realistic. Many genres of games used FSMs to create

diverse and dynamic behaviours for their agents, such as shooters, strategy,

simulation, or role-playing games. For example, Half-Life [46] used an FSM with six

states (idle, alert, combat, scripted, dead, and prone) for each enemy soldier.

FSMs have some notable strengths, such as providing agents with robustness

and versatility in decision making. They allow agents to select different actions

based on the context at hand. FSMs are also among the cheapest behaviour

models in terms of computational resources allocation, and they are simple to

design and implement. However, FSMs have some limitations as well. The main

drawback is their limited expressiveness and difficulty in modeling complex game

scenarios. In such cases, a system would have too many states and transitions,

which would make the FSM hard to read and configure [46].

2.2.1.2 FuSM

FuSM (Fuzzy State Machines) [42] is a technique used to generate decisions

for agents within games or simulations. This method employs a fuzzy logic

approach, aiming to handle the uncertainty and ambiguity in the game environment.

Instead of having binary transitions between states, FuSMs have fuzzy transitions

that are weighted by a degree of membership, which represents how much a state

is active or applicable at a given moment. FuSMs can produce more smooth and

natural behaviours than FSMs, as they allow for blending and mixing of multiple

states. FuSMs are often used for high-level or strategic behaviours, such as

decision making, planning, or learning.

2.2 Related Work

10

However, external factors can lead to utility fluctuations or unexpected changes,

resulting in outcomes that are hard to anticipate. Debugging and testing can also

pose challenges, as agent behaviour can be influenced by numerous variables and

conditions, while utility scores can be difficult to visualize and comprehend. The

applications and extensions of FuSMs are wide-ranging, with many games and

simulations integrating or adapting the technique for their agents. Notable examples

include The Sims, Clone Combat 2, S.W.A.T. 2 [47] and many more.

2.2.1.3 Utility AI

Utility AI [48], or Utility-based Artificial Intelligence, emerges as a technique

employed to facilitate decision-making for agents within gaming and simulations.

This method revolves around optimizing agent action selection based on their

inherent benefits. Rooted in the concept of utility from the economic and psychology

sciences, UtilityAI is designed to cater to the demands of real-time and dynamic

environments, using numerical values, formulas, and scores to quantify the relative

utility of potential actions, streamlining the decision-making process. Within this

framework, a decision system identifies the action with the highest utility or employs

probabilistic methods based on utility scores for action selection.

UtilityAI rests on the premise that agents act rationally to maximize their utility—

a measure of their preference or valuation of outcomes or states. Utility's definition

is contextual, with factors such as health, hunger, happiness, safety, or wealth

influencing its formulation. Mathematical functions or curves capture the changes in

utility concerning various inputs or variables. These functions represent proportional

relationships (linear), diminishing returns (exponential), increasing returns

(logarithmic), threshold (sigmoidal), or custom-made complexities. By embracing

these functions, Utility AI captures agents' nuanced preferences and behaviours,

adding depth to their decision-making process.

UtilityAI boasts strengths in providing agents with robust and flexible decision-

making capabilities. It simplifies code maintenance and enhances believability, as

agents showcase a wider array of actions that are also transparent as of why they

occur, making them easy to debug. However, utility-based AI requires careful

handcrafted values for it’s actions and a large amount of developing will be

allocated to testing and configuring. Kevin Dil et al. who have served as experts in

the field of computer science have provided with design patterns and ways to

configure a utility-based AI [48].

2.2.1.4 Behaviour Trees

Behaviour trees (BTs) are a powerful and popular technique for creating game

AI [49], as they allow for complex and dynamic behaviours to be composed of

simple and modular tasks. Behaviour trees are also easy to design, test, and

Chapter 2: Introduction

11

debug, as they provide a clear and intuitive graphical representation of the AI’s

decision-making process. A behaviour tree is a directed tree that consists of three

base types of nodes: root, control flow, or execution. The root node is the starting

point of the tree, and it has only one child node. The control flow nodes are the

inner nodes of the tree, and they determine how the tree is traversed. The

execution nodes are the leaf nodes of the tree, and they perform the actual actions

or conditions that control the AI entity.

The control flow nodes are then commonly classified into four types: sequence,

selector, parallel, or decorator. A sequence node runs each of its child nodes in

order until one fails, or all succeed. A selector node runs each of its child nodes in

order until one succeeds, or all fail. A parallel node runs all of its child nodes

simultaneously until a certain condition is met. A decorator node modifies the

behaviour or outcome of its single child node.

The execution nodes can be further classified into two types: action or condition.

An action node performs a specific task or behaviour, such as moving, attacking, or

speaking. A condition node checks a certain state or variable, such as health,

distance, or visibility.

The behaviour tree is executed by traversing from the root node to the active

node every frame, following the logic of the control flow nodes and the status of the

execution nodes. The status of a node can be one of three values: running,

success, or failure. A running status means that the node is still performing its task

or checking its condition. A success status means that the node has completed its

task or satisfied its condition. A failure status means that the node has failed to

complete its task or satisfy its condition.

Behaviour Trees are a well-defined structure that can provide readable,

performant, and self-contained behaviours. Such behaviours can also include

control flow logic and be easy to debug. Unfortunately, behaviour trees start to fail

when the behaviour begins to scale, becoming unreadable when they have many

nodes and branches. Furthermore, BTs are tightly coupled with their specific agent

or system, making them difficult to reuse. Finally, they are not great either when

dealing with dynamic environments since they have limited to no capabilities of

adapting and dynamically changing their structure.

The applications and extensions of behaviour trees are wide-ranging, with many

games and simulations integrating or adapting the technique for their agents.

Notable examples include “Halo” [50], a sci-fi shooter featuring enemies with

realistic and adaptive behaviours based on utility functions and curves. “DEFCON”

is another commercial game that found success basing its implementation on

behaviour trees [49]. In this game, a cold-war scenario is simulated where the

player assumes the role of an army general hidden in a bunker, in hold of heavy

weaponry and attempts to destroy the enemy is psychological warfare.

2.2 Related Work

12

2.2.1.5 STRIPS

The “Stanford Research Institute Problem Solver” or STRIPS [51], [52], was

initially an automated planner but was later known as a formal language for

describing planning tasks, which consists of an initial and goal condition formed by

conjunctions of propositional atoms and a set of actions made up by a precondition,

add and delete lists. STRIPS planning is one of the most studied problems in

artificial intelligence, and it has many applications in games, simulations, robotics,

and other domains.

The complexity of STRIPS planning was first analyzed by Bylander et al. [51],

who showed that the problem is PSPACE-complete in general, and NP-complete

for some restricted classes. Bylander also identified some tractable subclasses of

STRIPS planning, such as those with bounded plan length, bounded number of

actions, or acyclic causal graphs.

One of the most successful approaches to finding plans for STRIPS tasks is to

use search algorithms that explore the space of possible states or actions. There

are two main types of search: forward search and backward search. Forward

search starts from the initial state and applies actions until a goal state is reached,

while backward search starts from the goal condition and regresses over actions to

produce sub goals until a subgoal satisfied by the initial state is obtained. Forward

search is also called progression, while backward search is called regression.

Kautz and Selman [53] proposed one of the first forward search algorithms for

STRIPS planning, called SATPLAN, which encodes the planning problem as a SAT

formula and uses a SAT solver to find a satisfying assignment that corresponds to a

plan. SATPLAN was later improved by Kautz et al., who introduced several

techniques to reduce the size and complexity of the SAT encoding, such as action

ordering constraints, mutex constraints, and relevance analysis. On the other hand,

Bonet and Geffner [54] proposed one of the first backward search algorithms for

STRIPS planning, called HSPr, which uses heuristic functions to guide the search

and select the best actions to regress over. HSPr was later extended by Bonet et

al., who introduced several techniques to improve the quality and efficiency of the

heuristic functions, such as relaxed plans, additive heuristics, and landmarks.

Another way to approach STRIPS planning is to extend or modify the language

to capture more expressive or realistic features of planning tasks. For example,

Fikes and Nilsson [55] introduced conditional effects, which allow actions to have

different effects depending on some conditions.

2.2.1.6 GOAP

GOAP (Goal-Oriented Action Planning) is a technique used to generate plans

for agents within games or simulations. This method employs a goal-centric

approach, aiming to streamline the process of generating agent behaviours based

Chapter 2: Introduction

13

on objectives. Rooted in the STRIPS formalism, GOAP is designed to cater to the

demands of real-time and dynamic environments, adapting the STRIPS concept for

more practical use.

Jeff Orkin's contributions mark a significant milestone in the history and

development of GOAP. Orkin introduced GOAP [56] while working on the game

F.E.A.R. at Monolith Productions. He was inspired by the STRIPS planning system

[52], which was developed in the 1970s as a general problem solver for automated

planning. Orkin adapted STRIPS for real-time control of autonomous character

behaviour in games, by using a simplified representation of the world state, a

heuristic search algorithm to find the optimal plan, and a flexible action execution

system that can handle dynamic changes in the environment. Orkin also added

some features, such as action weighting, interruptibility, relevance pruning, plan

monitoring, and plan blending, to make GOAP more efficient and user-friendly.

The advantages and disadvantages of GOAP are closely tied to its design

choices and trade-offs. Notable strengths of GOAP include its ability to provide

agents with flexibility and adaptability in behaviour, granting them the capacity to

select different plans based on the context and goals at hand. This approach also

reduces code complexity and maintenance efforts, as each action is encapsulated

and independent, allowing for easy addition or removal of actions. Moreover, this

modular structure increases code modularity and reusability, enabling actions to be

shared among various agents or goals, while new agents or goals can be formed by

combining existing actions. This, in turn, contributes to elevating the realism and

believability of agents, as they can exhibit a wider range of actions, intelligent

responses, and adapt to changes in their environment or state.

However, GOAP also presents certain limitations. One such drawback is the

requirement for a higher level of design effort and domain knowledge. Each action

necessitates well-defined preconditions and effects, while every goal needs a

clearly defined criterion for satisfaction. This demands a deep understanding of the

game mechanics and context. Additionally, GOAP can be prone to inefficiency and

unpredictability. The process of finding a plan can involve navigating a large search

space, coupled with a complex heuristic function. External factors can lead to plan

failures or unexpected changes, resulting in outcomes that are hard to anticipate.

Debugging and testing can also pose challenges, as agent behaviour can be

influenced by numerous variables and conditions, while plans can be intricate to

visualize and comprehend.

The applications and extensions of GOAP are wide-ranging, with many games

and simulations integrating or adapting the technique for their agents. Notable

examples include "F.E.A.R," a first-person shooter featuring enemies with

coordinated attacks and dynamic behaviours, “Transformers: War for Cybertron”

[57], [58] a third-person shooter were the player fights in a war of robots ,

“Assassin’s Creed Odyssey” [59] a large scale open-world game with hundreds of

2.2 Related Work

14

autonomous NPCs living their daily life.

GOAP stands as a robust planning technique, rooted in a goal-oriented

perspective that generates plans for agents in dynamic, interactive environments.

Despite its successes, challenges remain in this domain, such as optimizing plans,

managing uncertainty, integrating planning with learning or reasoning, and

developing user-friendly tools for plan creation and editing.

2.2.1.7 HTN

HTN (Hierarchical Task Network) planning [60] is a technique used to generate

plans for agents based on hierarchical decomposition of tasks. This method

employs a task-centric approach, aiming to exploit the structure and knowledge of

the domain to guide the planning process. Rooted in the AI programming

languages, HTN planning is designed to handle complex and expressive planning

problems that go beyond the capabilities of STRIPS-like planners. HTN operators

are similar to STRIPS actions but can have complex preconditions and effects.

Methods are rules that define how to decompose abstract tasks into subtasks,

which can be either primitive or compound. A solution to an HTN problem is then a

sequence of operators that can be derived from the initial task network by applying

methods recursively.

As for the previous techniques, the advantages and disadvantages of HTN

planning are closely tied to its design choices and trade-offs. Notable strengths of

HTN planning include its ability to provide agents with domain-specific and

customized plans, leveraging the expert knowledge encoded in the methods. This

approach also increases efficiency and scalability, as the search space is reduced

by focusing on relevant tasks and operators. Moreover, this modular structure

enhances modularity and reusability, enabling methods and operators to be shared

among various domains or problems, while new domains or problems can be

formed by adding or modifying methods or operators. This, in turn, contributes to

elevating the expressiveness and flexibility of HTN planning, as it can handle

complex goals, temporal constraints, preferences, uncertainty, and other features

that are challenging for classical planners.

HTN planning also presents certain limitations. One such drawback is the

difficulty of acquiring and maintaining domain knowledge [61]. Each method

requires well-defined preconditions and subtasks, while each operator needs clearly

specified preconditions and effects. This demands a high level of expertise and

domain analysis. Additionally, traditional HTN planning assumes a fully predictable

path, which may not hold in real-world scenarios. This can lead to plans that are not

robust or flexible enough [62].

SHOP2 is an extension of HTN, an acronym for Simple Hierarchical Ordered

Planner 2, which is an automated planning system that can generate plans for

Chapter 2: Introduction

15

various domains and problems [63]. SHOP2 is an extension of the original SHOP

planner, which was developed by the University of Maryland [64]. SHOP2 uses a

domain-independent planning algorithm that can handle hierarchical task networks

(HTNs), conditional effects, axioms, and durative actions and supports temporal

and metric domain planning. Lastly SHOP2 has been used for various applications,

such as web service composition [60], information gathering and practical planning

such as evacuation scenarios [65].

 Machine Learning in Game AI

Machine learning (ML) falls under the umbrella of artificial intelligence and

revolves around the use of algorithms and statistical models to enable machines to

act without explicit programming. It allows non-player characters (NPCs) to learn

from data, experiences, or rewards, allowing them to enhance their performance

over time.

Machine learning techniques garnered significant recognition with landmark

achievements such as AlphaGo, DeepMind's AI, defeating the world champion in

Go, an intricate game demanding profound intuition. This breakthrough illustrated

the immense potential of machine learning in tackling complex challenges [66].

Another remarkable instance of machine learning's capabilities pushed to the

extreme can be seen in the "Dota 2" team developed by OpenAI [67]. This AI

system achieved the unprecedented feat of defeating world champions in an e-

sport game. Notably, the system underwent rigorous training, processing

approximately two million frames every two seconds over a training period spanning

ten months. These monumental successes highlight the remarkable power of

machine learning in mastering and excelling in tasks that demand high-level

strategic thinking and decision-making.

Kunanusont et al. [68] have proposed a General Video Game Artificial

Intelligence (GVG-AI) framework based on deep learning, to allow systems to play

games learned through screen-captured video.

Joon Sung Park et al. [69] in their recent work, surprised the research

community by making a video game simulation of 25 instances of ChatGPT, each

role-playing as its own person, all living in the same community. Those ChatGPT

personas, could even self-reflect and showed in general great social interactions.

 Social NPCs Model

Social NPCs are non-player characters that can interact with the player and

other NPCs in a game world, using social cues, emotions, relationships, and goals.

Social NPCs can enhance the immersion, realism, and narrative of a game, as well

as provide more opportunities for gameplay and exploration. Several approaches

2.2 Related Work

16

have been proposed to model social NPCs in games, using different techniques

and frameworks.

2.2.3.1 Comme il-Faut (CiF)

One of the most influential works in this domain is Comme il-Faut (CiF) [70], a

social agent architecture that represents rich social interactions between agents

that include emotions, social and relationship contexts, and longer term mood. CiF

was applied to the inaugural game “The Prom”, which is an interactive narrative

experience centered around a clique of high school students, mainly from the

counter-culture scene, as they navigate the final week leading up to their prom

night. In this game, players assume the role of guiding these characters in making

social choices. They must decide from a range of options, such as flirting, sharing

interests, or cracking jokes at someone's expense, based on the characters' current

thoughts and feelings. These interactions unfold as detailed dialogues between the

characters. The game utilizes CiF's algorithms to generate social action lists for

each character, taking into account their unique personalities, existing relationships,

and past social experiences.

CiF-CK is a social agent architecture developed by Guimaraes et al. [71] and is

based on CiF. This work elevated CiF and created a mod for the successful game

title “The Elder Scrolls V: Skyrim” to apply and evaluate their architecture, having

the player himself interacting with those social agents through Skyrim’s first-person

perspective gameplay.

2.2.3.2 FAtiMA Modular

The FAtiMA modular [72] is an agent model architecture that encapsulates the

minimum set of functionalities, considered by the authors, to build emotional

agents. Their approach allows them to quickly and easily build various social agent

models in order to compare them and evaluate them. Seven years later,

Mascarenhas et al. [73] assembled a collection of diverse open-source tools

specifically tailored for emotional agents, each possessing a degree of decision-

making capacity. These tools also feature an integrated dialogue system closely

aligned with the common industry technique of dialogue trees. To showcase the

practicality of their work, they undertook various use case scenarios.

For instance, "Space Modules Inc" serves as an illustrative example. In this

game, players take on the role of customer service representatives on behalf of a

spaceship part manufacturer. Each customer in this virtual world exhibits a distinct

emotional profile, demanding the player to employ unique social strategies or

tactics in handling each situation effectively.

Another intriguing project they embarked upon is "Police Interrogation" a virtual

Chapter 2: Introduction

17

reality game where players assume the role of a police officer. Their objective is to

extract as much information as possible from subjects without letting the situation

spiral out of control. These practical applications of emotional agents and dialogue

systems underscore the versatility and real-world relevance of their open-source

tools.

 World State Representation

 In his work [74], Jeff Orkins highlights the importance of a symbolic

representation of the world state based on two observations; a) today’s

expectations of game AI are beyond a simple finite state machine, and b) planning

algorithms like GOAP are computationally expensive if left unchecked. Various

optimizations need to take place, and it is mandatory for the algorithm to be able to

connect goals and behaviours through their preconditions and effects. In addition,

he speaks of context (or procedural) preconditions and effects, which represent a

piece of code that will run upon the execution of logic, and that it is mostly used for

pruning the search tree.

 There is also a plethora of works that highlight the importance of modeling a

game’s world state in a semantic way. Kessing et al. [75] iterates over the key

benefits of having a semantic world and they build a tool named Entika to facilitate

the deployment of such mechanisms in a game. Afonso’s and Prada’s work [76]

was also inspiring for this work as they provide a model of agents that can relate

having as a basis a dominant psychological theory regarding personal agency, the

Theory of Mind [77], [78].

2.3 Progress beyond the state of the art
This section discusses the progress beyond the state of the art of the work

presented in this thesis. The Autonomia Framework introduces novel concepts and

approaches that break new ground and surpass the current state of the art in

several key aspects.

1. A World State that replicates a Theory of Mind: The world state in

Autonomia is modeled as a Memory class which is purely based upon the

Theory of Mind and knowledge graphs. This allows the system to have

recursive representations of various micro-world states, depicting the

personal perspectives each NPC has for the world and the people around it.

This architectural decision allows Autonomia’s world state to have a multi-

ordered [79] theory of mind representation.

2. Behaviours and goals reside in Memory: Everything an NPC knows in

2.2 Related Work

18

Autonomia is extracted either by its Memory or Perception module. This

allows the execution and evaluation of behaviours and goals to be made in

a realistic manner with knowledge accessible only from their own, unique

theory of mind. In addition, behaviours and goals themselves are part of this

world state representation, they are modeled and used in a way that allows

them to be treated as first class citizens of the Memory class and in this

way, they can be communicated, forgotten or even discovered. Lastly, other

behaviour models can be encapsulated in Autonomia’s behaviours to enrich

them with the first-class citizen attribute.

3. Planning through expressive and procedural preconditions and

effects: In Autonomia, plans are devised using a Goal-Oriented Action

Planning (GOAP) algorithm. What sets this approach apart is the use of

Expressions for both behaviour and goal preconditions and effects. This

elevates the algorithm by infusing it with procedural expressivity while still

supporting state matching. In addition, the Unity implementation of

Autonomia simplifies the process with: a) a simple design pattern for the

creation of user expressions, and b) a graph node editor for authoring

Expression graphs.

4. Intended Use Optimization for GOAP: This thesis introduces a new

optimization for GOAP-based algorithms that enables better control over the

formulation of plans and improves performance by narrowing the dynamic

search space of behaviours.

5. Common ground for Research: The problem of NPC believability is a

multifaceted problem spanning from visual fidelity to behavioural and

emotional authenticity. The Autonomia Framework, as an open-source and

extensible project, offers a collaborative platform for researchers to

contribute their expertise. The ultimate goal is to collectively work towards

crafting realistic NPCs, making it a valuable and unifying endeavor for

research in the field.

Chapter 3: Framework Architecture

19

Chapter 3

3 Framework Architecture
Game development is renowned as one of the most demanding fields in

software engineering. It continually presents new challenges and higher

expectations. To keep pace with this evolving landscape, the game development

industry recognizes the paramount importance of having the right tools for the job.

This thesis places its primary emphasis on the Autonomia Framework as a tool

designed to aid fellow developers. The framework serves as a foundational

structure that can be extended, allowing developers to concentrate on specific tasks

and problems that suit their expertise. For instance, a future implementation of the

system could include emotional AI libraries running in parallel with ML trained

animation systems, whilst having graphical tools for game designers to freely

express their creativity. It's crucial to note that the framework, as presented here, is

not intended as a final nor a complete solution. Instead, it is an invitation to the

research community and developers to explore, build upon, and refine this

framework further.

3.1 Overview
In this chapter, we delve into the architectural decisions that form Autonomia,

presenting the specific definitions and classes that are heavily used in the core of

our framework. We will explore essential components that underpin Autonomia's

functionality, providing a comprehensive understanding of its inner workings. These

fundamental components include:

● World Representation Based on the Theory of Mind: We explain how

Autonomia utilizes the Theory of Mind to construct a rich world

representation that facilitates NPCs' understanding of their environment and

interactions.

● Module System: This section elaborates on how our modular system

enriches the nodes of the knowledge graph within the framework,

empowering them with extended functionality and flexibility. We present in

this section the core modules of Autonomia.

● Expression, Behaviour and Goal (EBG) System: Definitions for the

interconnected systems of expression, behaviour and goals and how they

synergize to drive and plan NPC actions, reactions and plans.

3.2 Methodology

20

Together, these components form the foundation of Autonomia, enabling the

creation of intelligent NPCs. As we delve into the specifics, readers will gain

insights into how Autonomia leverages these elements to enhance the authenticity

and complexity of NPC interactions in the context of video games. Yet, the core of

the framework is not enough to run on its own, since it only provides the basic motif

and tries to enforce specific patterns. It is up to the developers to implement and

extend the framework based on their own development needs.

3.2 Methodology
The development and design of the Autonomia Framework followed a

structured methodology that combined a detailed literature review, iterative

prototyping, and a strong commitment to ambitious research. The approach taken

in this project differed from conventional game development, which tends to

prioritize safety and predictability due to industry demands. Research, on the other

hand, allows for greater creativity and exploration of unconventional ideas, even if

they carry a risk of failure. As illustrated in the following subsections, the

methodology used in creating the Autonomia Framework involves literature review

and theoretical foundation as well as iterative prototyping and development.

 Literature Review and Theoretical Foundation

The initial phase of the framework's development commenced with an extensive

literature review, which spanned a wide range of sources. These sources included

academic papers, books, online documentation, and industry standards. The

primary objective of this review was to acquire a comprehensive understanding of

existing game AI frameworks, AI theories, and software engineering best practices.

Building upon this knowledge, the theoretical foundation for the Autonomia

Framework was laid. This involved synthesizing relevant AI concepts, such as the

Theory of Mind, major behavior models, and programming design patterns that

facilitate code scalability. These theoretical insights served as the basis for making

architectural decisions and establishing core design principles for the framework.

 Iterative Prototyping and Development

The development of Autonomia followed an iterative and agile approach. This

methodical process commenced with a significant amount of time dedicated to

designing the overarching concept. The primary focus during this phase was on

bridging the gaps within existing methodologies and techniques, as well as

Chapter 3: Framework Architecture

21

identifying innovative ways to enhance NPC believability.

Following the initial design phase, multiple prototype versions of the framework

were created, each building upon the insights gained from the previous iteration.

These prototypes served as experimental platforms for exploring different

architectural structures, algorithms, and features. Feedback collected from

prototype testing played a pivotal role in refining the final architectural design.

Throughout the development process, a strong emphasis was placed on

adhering to software engineering best practices. This included the implementation

of version control, issue tracking, and coding standards.

3.3 Theory of Mind & World Representation

 Theory of Mind

 Theory of Mind [77], [78] is a term used in phycology to describe the ability of

one’s self to understand the mental state of others. Its definition extends to being

able to define and determine different emotional states, feelings, desires, beliefs or

even thoughts of others. A person using his Theory of Mind (ToM) should be able to

extend, predict and explain the behaviour of others. For example, if person A,

notices person B crying, person A could explore his current model of the world, his

theory of mind, in order to understand why person B is having this reaction. Using

common knowledge, person A can assume that person B is for some reason sad.

Then by delving deeper and extending his ToM through perception, person A might

narrow down the reasons person B is crying and is sad, or maybe realize those

tears are tears of joy.

 Our theory of mind allows us to interact with other social beings in meaningful

ways; to empathize, communicate and even understand different perspectives and

interpretations of events. Each one’s theory of mind is gradually developed from

infancy. Babies begin paying attention to facial expressions, voice alterations and

gestures. From there, people begin realizing their own emotions, realize that other

people have other beliefs and perspectives and sooner or later develop more

complex skills such as sarcasm, humor or even deception. It is important to

highlight, that even thought to some degree all people are able to construct their

own theory of mind, and each one can vary based on the person, situation and

culture. Also, it is not a unique skill to humans. Some animals, such as apes,

dolphins, elephants, dogs, and crows, have shown evidence of having some form

and capability of theory of mind.

3.3 Theory of Mind & World Representation

22

 World State in Video Games

 The world state is a term that refers to the current condition and status of the

game world and its elements, such as the environment, the characters, the objects,

the events and others. The world state can change dynamically based on the

actions and choices of the player and other agents, as well as random or even

scripted events. The model of our world state will define the strengths and

weaknesses of our engine. For example, in a role-playing game, the world state

might include the level, health, inventory, and reputation of the player character, as

well as the quests they have completed or failed, the allies and enemies they have

made, and the locations they have visited or unlocked. The world state might also

include the weather, time of day, seasons, political situation, and cultural events

and rules of the game world. These factors can influence how the player interacts

with the game world and how the game world reacts to the player.

 Autonomia World State

 The Theory of Mind (ToM) is a multifaceted concept comprising various

interconnected mechanisms that collectively enable us to comprehend, experience,

and respond to the world around us. It is only rational for ToM to serve as the

foundation for Autonomia. In our attempt to address this issue, we directed our

attention to developing a world state representation capable of mirroring the nature

of ToM. After researching the literature, brainstorming sessions, and testing, we

arrived at the conclusion that a knowledge graph structure would best align with our

objectives. Although relatively uncommon in game development, the adoption of

knowledge graphs represents an emerging trend that offers significant potential

advantages.

 A knowledge graph is a structure for representing information in the form of a

network of nodes and edges. Nodes represent entities or concepts, while edges are

the relations among them and each of those may contain labels or properties of any

type. A knowledge graph inherently has the ability to capture semantic meaning and

context of information, thereby enabling reasoning and inference based on the data

it contains. Furthermore, this approach opens the door to future possibilities,

including natural language interactions within the game world, such as querying,

narrating, or even engaging in conversations. Additionally, it facilitates the

integration of external data and knowledge sources into the game world, enriching

the realism, diversity, and relevance of game content with minimal effort. However,

it's important to acknowledge that these benefits do introduce increased complexity

and challenges, particularly concerning real-time performance optimization in the

game environment.

Chapter 3: Framework Architecture

23

Figure 1: Example of a knowledge graph

 Of course, each node has the potential to represent any concept in the game

world. To attach meaning and functionality, we allow each node to have modules.

By attaching modules to a node we can classify it into different conceptual

categories. For example, a node with a Perception, Memory and Needs module can

represent a simple NPC. We elaborate regarding modules in the next section.

3.4 Module System
 Since Autonomia is a framework designed to be extended for any need and

platform, it was crucial to implement a modular system that will efficiently decouple

different functionalities. Modules have a node owner to whom they provide their

features. With a specialized function that will be discussed later, there may also

exist various copies of a module for different layers of memory.

 In addition, Modules may implement methods derived from the base Module

class to fulfill their functionality or even serve as plain data containers. They also

have the option to serialize or deserialize their data to be persistent throughout

sessions. In the following subsections we describe the main Modules used in the

core version of Autonomia.

 Active Events Module

 During the early stages of Autonomia's development, we recognized the

3.4 Module System

24

necessity of implementing an event system. In our context, an event signifies any

observable action, such as eating, walking, or conversing, and is defined by an

actor, a type, and a subject. Another way to view events is as temporary relations

actively being caused by some action. For example, the action of drinking water is a

relational fact as much as an action, but it is due to last for a brief moment.

 In order to represent a currently running event in the world, we created a Module

named ActiveEvents. Any component in the framework that will begin an effect has

the responsibility to access the ActiveEvents module, add the newly created event

and remove it to signal the event's conclusion. So, the ActiveEvents module is our

way of exposing actions to our perception system which will be discussed later.

 Event Interpreter Module

 In addition, we dictate that events are nothing more than plain data. On their own

they do not carry any meaning. Thus, we created another Module named

EventInterpreter. This module assumes a crucial role within Autonomia, as it

focuses on updating an NPC's Memory, specifically its relational memory. By

isolating the responsibility for updating relational memory, we enable the system to

potentially generate context-aware assumptions and interpretations of events. For

instance, consider a scenario where two individuals engage in a physical fight; this

event can be interpreted in multiple ways. It could signify hatred between them, or it

might be a friendly sparring match. Alternatively, one individual could be a law

enforcement officer apprehending the other for reasons known or unknown to the

virtual agent. This approach reinforces our assertion that events, by themselves,

lack inherent meaning.

 So, each EventInterpreter may have multiple interpretations for the same type of

event, but each can be characterized by a “matching score”. The interpretation with

the highest score gets to alter the memory of an NPC when the need arises.

 Lastly, we have facilitated the ability for interpretations to be transferred from

NPC to another NPC. This addition allows us to have a newborn child agent that

cannot make sense of the world, but as it grows older it begins to understand, be

taught, and eventually teach others the ability to interpret.

Chapter 3: Framework Architecture

25

Figure 2: ActiveEvents, Perception and EventInterpreter

 Perception Module

 We have chosen to model Autonomia's perception system after the principles of

human perception. This system comprises three key layers as shown in Figure 3.

Detectors being implementation-specific; assume the responsibility of identifying

and storing current Events or Nodes within their designated stimuli. At any given

point in time, the Perception module can access all available stimuli, enabling it to

retrieve related information. By combining various sensory modalities, including

visual, auditory, and potentially supernatural senses, we can enable our agents to

respond dynamically to their environment.

3.4 Module System

26

Figure 3: Perception system structure of Autonomia

 The Perception module holds a pivotal role within the Autonomia system, as it is

responsible for actively searching for detected events and subsequently forwarding

them to the EventInterpreter module. Furthermore, the perception operates on a

publish-subscribe (pub/sub) basis, enabling other modules to request specific event

notifications from the perception system.

 It is crucial to emphasize that, at this point, the perception system serves as the

sole conduit of communication between an NPC’s memory and the external world.

This design decision allows us to introduce a filtering mechanism within the

perception system, referred to as what we term a "memory-local node". That

means, that every module subscribing to an event through perception, will always

receive nodes in their “memorized version”. For instance, in a scenario where Node

A visually perceives Node B, Node A's knowledge about Node B should be

restricted to what it already possesses in its memory. Node A should not gain

access to information about any hidden objects behind Node B's back unless it has

prior knowledge of this fact or chooses to interpret and assume such knowledge.

This represents a fundamental concept within Autonomia's framework, as every

other module providing functionality to an NPC is strictly constrained by the NPC's

existing knowledge base through the Perception module. Implementation details

regarding Perception can be found in section 4.2.6.

 Memory Module and the Theory of Mind

The Memory module is composed of two distinct types of data structures:

Chapter 3: Framework Architecture

27

● Relations: This structure takes the form of a knowledge graph, representing

all the relational knowledge of the nodes of the world,

● Event Index: This structure is used as an efficient way for swiftly retrieving

stored events.

In our implementation, we have utilized interfaces to allow for custom

implementations of both graph structures and event indices. Additionally, we have

introduced a class named MemoryQuery. This class serves as a library of method

calls designed to streamline the traversal and manipulation of these structures. For

instance, we have implemented functions such as "get neighbors," "get relation by

type," and even support for breadth-first searches to facilitate graph traversal.

Lastly, MemoryQuery supports a simple type of non-nested string queries.

Figure 4: Memory Module representation structurally

An essential design principle characterizing the Memory module revolves around

the concept of exclusively returning the "memory-local node" at any given point in

time. This design choice plays a pivotal role when coupled with the perception

system, as it enables agents to exhibit realistic behaviour based uniquely on their

knowledge of the world.

3.4 Module System

28

 To illustrate this principle, consider three nodes within our scenario: Node A and

Node B, both residing in the same house, and Node C, representing a food

resource in the fridge. If Node B were to wake up early and consume Node C, it is

logical that Node A remains unaware of this occurrence. Reasonably, the expected

behaviour for Node A would have him waking up, planning to remember where

Node C is, proceeding to its location, only to realize that it is no longer present. This

mechanism ensures that Node A's actions align with its knowledge, promoting

realistic and immersive agent behaviour within the system.

 The most important contribution of this module is yet to be explained, but in its

current state it has already singlehandedly achieved, as defined, a multilayered

Theory of Mind. The key takeaway is that nodes are defined with their modules

included. A Node in the relational part of a Memory module can contain a Memory

module which as well can contain other Memory modules of other NPCs and so on.

This leads to a scenario in which Node A contains a version of Node B's knowledge

as he perceives it, and vice versa, which in itself creates a never-ending recursive

loop of “if he knows-they know he knows” etc. This is further illustrated in Figure 5.

To solve the infinite recursion problem, we assign nodes with a simDepth

(simulation or simulacrum) variable and define a maxSimDepth in our system. The

larger the maxSimDepth the more accurate theory of mind we can achieve, but we

are also bound to use more resources and greatly increase complexity.

Figure 5: Illustration showcasing the infinite recursion

Chapter 3: Framework Architecture

29

 Behaviour Controller Module

 Behaviours have not been defined yet at this point yet, but for simplicity’s sake let

us assume behaviours as simple actions, for instance walking, running, eating,

sitting etc. Various modules which can also be completely agnostic to each other,

may want at some point, to initiate some behaviour. But, it is easy for behaviours to

contradict with each other, for example a person cannot walk while sitting. Thus, we

created the BehaviourController module which is tasked with deciding which

behaviour should run at which point.

 This problem required a lot of careful thinking and planning. Some ideas we

experimented with were CPU scheduling algorithms like round-robin but they do not

necessarily make sense in our human behavioural context. Also, we brainstormed

ideas of separate body limb declarations for each behaviour. For example, we may

be walking down the street going to work, which is a behaviour that mostly occupies

our legs. This does not stop us from greeting someone, a behaviour which would

require the head and hand, but this thought process substantially increases

complexity. In the end, we decided that simple is better and our solution to the

problem follows next.

 The BehaviourController allows competitors to have a ticket granted to them, and

each ticket is paired with an importance value which starts at zero. Then, each

competitor may “try” their ticket with an importance value. If the importance they

declared is higher than the running ticket’s importance, the behaviour controller

allows them to “switch” the current behaviour to what they dictate. This of course

comes with credibility issues. A competitor may declare the highest possible value

simply to take control, but this is fine. In a game scenario the programmer wants

this control to enforce story elements to take place.

 To explain our algorithm’s logic, first we need to understand that it is common

and reasonable for many mechanisms in the conscious mind to want something

done. It is truly simple; in the end, we will do the things that we care about the most.

So, the brain’s ability to value goals is what drives us to behave in any specific way.

For instance, let us imagine Node A is at bar and that node is talking to his love

interest. He may notice his friends are also at the bar but continues talking to his

interest. At some point Node A may also feel the need to use the bathroom and we

have multiple conflicting behaviours that want control of Node A’s actions. The part

of his brain that wants to appeal to his love interest wants to continue talking but the

need to use the bathroom will gradually increase. It is only natural that when the

importance of that need becomes greater that it will take control. To extend this

example further, let us imagine that while our subjects are talking a robbery may

take place in the bar and both NPCs would ideally turn to their survival instincts.

3.5 Expressions, Behaviours and Goals

30

 Intended Uses Module

 This is a module intended purely for optimizing the A* algorithm in our GOAP

search and giving game designers more control. More details can be found in

section 4.2.14.2, yet this serves as a great example of the versatility and flexibility

of modules.

3.5 Expressions, Behaviours and Goals
 It has been exhaustively discussed in the literature and is reasonable to agree

that a realistic and believable NPC has agency. There should be purpose behind

his actions and he should have dreams and goals he strives to achieve. Every

action should be supported by a reason and this concept has given rise to most

successful behavioural models that were discussed in their respective related work

chapter (2.2.1), and the games that adopted them have proved their worth.

 None can doubt the complexity of the problem at hand and it is a challenge that

should not be looked down upon. It was clear that every decision in the framework’s

architecture should be made to complement this exact aspect.

 In this section, we discuss our Expression-Behaviour-Goal (EBG) model. The

purpose of this model is to allow easy authoring of behaviours and goals and

allowing the system to match them through their declared expressions. Each

concept will be broken down individually, and we talk about their synergy as a

completed model in section 3.5.5. Not by any means does our model try to replace

traditional or custom behavioural models. Instead, we view it as a way to

encompass what already exists and further complement it by using our model,

which allows everything to be treated as knowledge that can be passed along

between agents.

 Expressions

 In most STRIPS-based planning algorithms like GOAP and HTNs, actions or

behaviours must declare preconditions and effects. This declaration enables the

algorithm to determine which actions can be executed under specific conditions.

For instance, an agent cannot execute an "Attack with Sword" action if he is not

already in hold of a sword. To address this, a hypothetical action like "Grab Sword"

would establish the precondition for "Attack with Sword," potentially setting a

variable like "isHoldingSword" to true. Then, the preconditions for "Attack with

Sword" would evaluate to true and the agent could execute that action.

 While methods like shared blackboards are commonly employed for

precondition-effect algorithms due to their speed and efficiency, they have

Chapter 3: Framework Architecture

31

limitations in capturing all relative information or knowledge needed for agents to

plan and act effectively. This limitation compromises the expressiveness and

realism of the system [74].

 Our solutions to this problem are Expressions. Drawing inspiration from Abstract

Syntax Trees (AST) [80] in compiler design, we define expressions as abstract

nodes within a simplified syntax tree, allowing users to create custom expressions

that can carry and process information in a structured manner. Ultimately, the root

of the expression tree can be evaluated, triggering a cascading evaluation

throughout the tree. If the tree successfully evaluates, the final value can be

retrieved from the expression. Detailed technical information regarding expression

methods is discussed in section 4.2.12.

 We have defined two primary derived classes for expressions that automate the

matching and evaluation logic for user-defined classes:

1. Producer Expression: These expressions serve as the leaves of the tree

and can generate a value, such as StringExpression or NumberExpression.

2. Processor Expression: Expressions as such can have children whose

values they utilize to produce a new value. For instance, a MathExpression

would require two children evaluating to numbers, and another child

representing an arithmetical operation like addition or subtraction.

 Behaviours

 In our system, behaviours are an abstraction to commonly referred actions, “the

process of doing something”. Autonomia’s behaviours can refer to nonphysical

actions as well, for example thinking or planning your next action. Each behaviour

consists of two sets of expressions: preconditions, which determine the conditions

that must be met for the behaviour to execute, and effects, which specify the

desired outcomes upon the behaviour's completion.

 We define the "actor" as the node executing the behaviour, and the "owner" as

the node exposing or providing the behaviour, akin to an affordance. To illustrate

this concept further, consider a "Sit Chair" behaviour. In this case, the person

intending to sit in the chair serves as the actor, while the chair itself is the owner.

 Moreover, each behaviour includes methods that describe its cost or

effectiveness and an estimate of the required time based on the current actor's

knowledge. These attributes, namely the cost and required time of a behaviour,

wield considerable influence over the planner's decision-making process when

selecting behaviours as part of a plan. We will elaborate into the impact of these

factors on goal planning in the upcoming sections.

 It is also important to mention, that nodes do not have any direct reference to

3.5 Expressions, Behaviours and Goals

32

their behaviours. The framework has an injection mechanism, that allows new

nodes to be created in its runtime, called BehaviourNodes. Those nodes are then

connected to their related nodes in the graph and become in a sense accessible

through them. By having Behaviour Nodes be related to nodes that expose them,

we allow them to be treated as a piece of knowledge. Node A is now able to teach

Node B the existence of a behaviour contained in BehaviourNode C, he was

previously unaware of. This is a novel addition to our system, in effect turning

behaviours as first-class citizens of the framework.

 Last but not least, Autonomia’s behaviours are not created to replace previous

techniques. The purpose of the behaviour system is to allow discovery and planning

in a way that is always based on the knowledge of the actor. A behaviour could be

a Behaviour Tree [49] and then seamlessly switch to a Utility AI [48] implementation

whilst completely decoupling them.

3.5.2.1 Complex Behaviour

 To facilitate more advanced actions, we introduce a specialized class known as

Complex Behaviour within our framework. Complex Behaviours are designed to

streamline the execution of abstract or high-level behaviours. For instance, consider

the "Tavern Waiter" behaviour, which is inherently intricate. It involves multiple

steps, distinct phases, and requires dynamic planning. Complex Behaviours offer

several advantages, including:

● Behaviour Queues: They enable the creation of behaviour queues, allowing

for the sequential execution of multiple behaviours. This is particularly useful

for orchestrating complex sequences of actions.

● Automated Planning/Replanning: Complex Behaviours incorporate the

ability to automatically replan in response to a behaviour not meeting its

preconditions. This ensures adaptability in the face of unexpected obstacles

or changes in the environment.

● Nested Complexity: Complex Behaviours can contain other Complex

Behaviours, fostering a hierarchical structure. In the case of "Tavern

Waiter," it may encompass behaviours like "Take Order," "Serve Order," and

"Take Bill," each of which can in turn, contain their own recursive

behaviours.

 This hierarchical approach to behaviour design empowers our framework to

handle intricate, multi-step tasks efficiently and flexibly.

Chapter 3: Framework Architecture

33

 Goals

 In crafting a believable agent, the presence of goals that steer its actions is

imperative. The agent should possess an awareness of these goals and the

capability to formulate plans to achieve them. While existing literature provides

extensive insights, on the modeling of goals, in the core version of Autonomia, we

have opted for a simplified representation to accommodate future extensions. Our

model of goals comprises three key components: a) name, b) a set of expressions

that signify when the goal is satisfied, and c) a method that returns their current

value or importance. This metric assists the agent in prioritizing and selecting goals

for planning and execution.

 Exactly like BehaviourNodes, we allow the existence of GoalNodes, enabling

them the same benefits discussed previously. Mainly, allowing goals to be treated

as knowledge that can be passed along. This streamlined approach to modeling

goals in Autonomia lays the foundation for the inclusion of more sophisticated goal-

related functionalities in future iterations.

 Abstract Nodes and Wildcard values

 In the early stages of Autonomia's development, it became evident that there was

a necessity for defining a node type that abstracts the specific requirements we

seek. For instance, a user might wish to declare a goal like "Sit Goal," but this goal

could be satisfied by any chair or even any object allowing a person to sit. To

address this need, we introduced the concept of Abstract Nodes.

 Abstract Nodes serve as specialized nodes designed to establish a superset of

other nodes by leveraging the native labels derived from the knowledge graph

structure. Essentially, they allow for a higher level of abstraction, enabling users to

define goals and conditions in a more generalized manner, while retaining the

flexibility to encompass a wide range of specific instances. Now, when creating a

"Sit Goal," the process involves crafting an event expression of type "sit," utilizing

an abstract node labeled as "Chair" as the subject. It is important to note that this

approach necessitates that all chair nodes in the system be consistently labeled

with the "Chair" label.

 For more intricate goals that involve multiple criteria or conditions, a thoughtful

design process is required in advance. This process ensures that the labeling and

abstraction of nodes align with the specific goals and objectives defined within the

system, allowing for the effective representation of complex behaviours and

objectives.

 Another tool that was required to be created was the wildcard values. These

wildcards serve as placeholders that can be matched to any data type, effectively

3.6 Goal Planning

34

indicating that a value can take on any form. For instance, in the context of a "Walk

behaviour," one of its effects could be an event of the type "move" with a subject

designated as a wildcard node. This signals to the planner algorithm that the

wildcard node can represent any other node in the system.

 Wildcard values enhance the flexibility and adaptability of our framework,

allowing it to accommodate a wide range of potential scenarios and conditions

where the exact identity of a subject or value may vary.

 EBG Model

 Combining expressions, behaviours, and goals, we have a completely expressive

behaviour model paired with meaning that is also easily extendable by other

programmers. The EBG model is a way of encapsulating any form of AI whilst

giving it the ability to be treated as a piece of knowledge within the game world,

essentially making behaviours and goals first-class citizens in the entirety of the

framework. NPCs can potentially discover, teach and compare behaviours residing

within the world and seamlessly be able to use them for their plans and goals.

 Expressions serve as a flexible bridge between behaviours and goals. Since

expressions are based upon abstract syntax trees [80], an extended

implementation of this system could be considered its own micro-programming

language that is also easy to extend with a few lines of code. At the same time, due

to their strict syntax they can allow state matching for the GOAP [57] algorithm

making them a powerful and versatile tool.

3.6 Goal Planning
 Planning is an essential aspect of our daily lives, whether carried out consciously

or unconsciously. For any intelligent life form, the ability to plan, replan in response

to obstacles and prioritize tasks based on current objectives is fundamental. Within

Autonomia, our agents are equipped with two primary planning algorithms, and the

framework allows for the incorporation of additional algorithms in future iterations.

First, we have a Goal-Oriented Action Planning (GOAP) algorithm, to enable

complex behaviour chains to be formed. In addition, Autonomia introduces a

scheduling algorithm that allows NPCs to plan their entire day proactively. This

algorithm utilizes the agent's prior knowledge of the world and projects the expected

state for each moment in time. This proactive approach enables agents to make

informed decisions and efficiently allocate their time and resources to accomplish

their tasks and priorities.

Chapter 3: Framework Architecture

35

 Autonomia’s GOAP A* Search

 Our applied algorithm combines two core techniques: A* search and Goal-

Oriented Action Planning (GOAP) but alters them just enough to fit the broader

context and dynamic world of Autonomia. Here's an overview of how our

implementation of algorithm operates:

● Behaviour Set: The agent queries all potential behaviours from his

memory, each characterized by preconditions, effects, and associated

costs. For example, in our agent’s memory there may exist a kitchen with a

plethora of tools. All of the exposed behaviours are added to the behaviour

set.

● Agent's Goal: The agent also has a defined goal, representing a desired

state or expressions it aims to satisfy. For instance, a goal might be to "Eat

Food" which is satisfied when the agent succeeds on eating a food

resource.

● A Search*: The agent employs the A* search algorithm to identify the

optimal sequence of behaviours leading to the goal. In our context, the

nodes within the search state represent states of the world as sets of

expressions, while the edges represent the most recent behaviour that

brought that state. More information can be found in section 4.2.14.2. The

A* algorithm can be optimized by using a heuristic function that enables us

to prioritize the exploration more promising routes. In our example, to satisfy

the “Eat Food” goal, an agent could calculate the following plan:

“WalkBehaviour” to get to the fridge, “OpenDoorFridgeBehaviour” exposed

by the fridge to open the door, “RetreiveFridgeItemBehaviour” to get the

apple from the fridge.

 The A* GOAP algorithm empowers agents to intelligently plan their actions,

adapting to environmental changes to achieve their goals. However, as

discussed in the related work section, GOAP can be computationally expensive,

especially when applied to a large number of NPCs simultaneously calculating

plans in real-time. Contrasting conventional implementations of GOAP, instead of

using a dictionary of string keys and boolean values, we have a completely

freeform and dynamic world representation through expressions.

 In Autonomia, we've implemented several strategies to ensure the efficiency of

this algorithm. We use the C# Task library to run the GOAP algorithm as an

asynchronous task, allowing concurrent execution and avoiding the blocking of the

main thread for more costly calculations. Our integration of cancellation tokens

gives us the ability to stop planning tasks at will, providing control over the planning

process. We've included a configurable maximum number of steps for each

instance of the GOAP algorithm to prevent excessive resource consumption. Lastly,

3.6 Goal Planning

36

we minimize the search space and improve the heuristic function of the A* search

by using an optimization we term “GOAP with Intended Uses”, for more information

read section 4.2.14.2

 In a specific iteration of Autonomia, we used an NPC's intelligence score to

dynamically adjust the number of steps allocated to the A* GOAP algorithm. This

added practical intelligence to NPCs, allowing them to allocate computational steps

based on their perceived intelligence level.

 These strategies collectively enhance the efficiency and adaptability of the A*

GOAP algorithm within Autonomia, making it suitable for managing a dozen of

NPCs in dynamic game environments.

 Schedule

 In our daily lives, we often follow a routine, with a predefined idea of how our day

will unfold. This routine typically involves waking up, tending to morning rituals,

commuting to work, putting in a nine-to-five shift, returning home, and perhaps

enjoying some leisure activities before bedtime. However, there are days when our

schedules vary, influenced by work commitments, health appointments, or

unexpected emergencies. We possess the ability to manage our daily schedules

and have knowledge of our plans.

 Recognizing the significance of this aspect in shaping the believability of NPCs,

we drew inspiration from the highly successful game title Red Dead Redemption 2

(RDR2) [81]. In RDR2, NPCs lead detailed lives, adhering to daily routines while

also accommodating dynamic changes that can disrupt their schedules. To mirror

this level of realism and adaptability, we introduce a class of goals known as

"ScheduledGoals."

 ScheduledGoals enable Autonomia's NPCs to incorporate schedule-based

objectives into their behaviour, besides general purpose goals. This addition not

only enhances the authenticity of the NPCs' actions but also allows for flexible

adjustments in response to changing circumstances, contributing to a more

immersive and dynamic game world.

 Furthermore, the implementation of a pre-planned schedule for our agents serves

as an effective strategy to reduce the need for real-time planning, resulting in

significant performance savings. Essentially, this schedule acts as a form of "baked"

plans, predefining the agents' activities and behaviours during their daily routines in

a meaningful way. Using ScheduledGoals, NPCs can make social appointments,

work at consistent hours, etc. This proactive approach not only enhances

computational efficiency but also contributes to the seamless and immersive

execution of agent behaviours within the game world.

Chapter 3: Framework Architecture

37

 The PlanBehaviour

 In a realistic game world, it's reasonable to anticipate the frequent need for

planning. Players and agents within the game often face context-specific options

and decisions that require careful consideration. To facilitate this, we've introduced

a behaviour called PlanBehaviour into our framework.

 The PlanBehaviour takes a goal as its parameter and utilizes the default planner,

which in our case is the GOAP algorithm and initiates the planning process within

behaviour instance. Once the algorithm completes its calculations, the behaviour

attempts to execute the generated plan. For example, consider a waiter who needs

to find a clean plate to serve customers. In a dynamic game scenario, this task may

require planning because clean plates may not always be readily available and

might need cleaning first. This feature enables users of the framework to easily

incorporate sub-behaviours based on specific goals within their own custom

behaviours, allowing for more intricate, readable, and context-sensitive agent

behaviours.

3.7 Compatibility with other AI models
 In the ever-evolving landscape of AI and game development, the compatibility of

AI frameworks with existing models holds immense significance. Autonomia,

boasting a versatile architecture and a comprehensive array of features, is

purposefully designed to seamlessly interface with other AI models while enabling

them to be treated as a piece of knowledge within the game world. This

compatibility empowers game developers to harness a blend of AI techniques,

leading to the creation of more immersive and intricate gaming experiences.

 Autonomia's commitment to openness and extensibility, we envision a future

where collaboration within the game AI research community flourishes.

Researchers and developers can build upon or even change for the better the

Autonomia framework, specializing in their respective areas of AI expertise, and

contribute to its open-source development. This collaborative approach fosters a

vibrant ecosystem where each individual can make their unique contributions,

ultimately benefiting the broader community of game developers and AI

enthusiasts.

3.8 Scalability and Performance
 The scalability and performance of a game's AI system are inherently tied to the

algorithms in use and the complexity of the game world. Autonomia acknowledges

this relationship and offers a versatile framework that adapts to the specific

3.9 The Autonomy Paradox

38

demands of each game. We can theorize of ways to make the system’s most

demanding mechanisms scalable by using cloud computing to separate each agent

instance in different machines but Autonomia is far from that in its current

implementation, so we will not elaborate more on that specific topic.

 In the end, Autonomia is but a tool. It is designed as an open-ended framework,

providing developers with a high degree of customizability to tailor it to their specific

needs. In essence, Autonomia's flexibility and adaptability makes it a valuable tool

for game development teams, allowing them to search for their desired balance

between AI sophistication and performance optimization, ultimately delivering a

compelling gaming experience.

3.9 The Autonomy Paradox
 To deliver an immersive gaming experience, it's imperative to have non-player

characters (NPCs) that exhibit realism, dynamic worlds that evolve based on unique

gameplay, and a narrative that unfolds through scripted NPC actions. However, this

presents a challenging paradox in video game development, which we named the

"Autonomy Paradox."

 The Autonomy Paradox encapsulates the dilemma faced by game developers:

on one hand, they strive for NPCs to behave realistically and autonomously,

responding to the player's actions and creating dynamic game worlds. On the other

hand, there's a need for NPCs to adhere to scripted behaviours and specific

narratives, limiting their "free-will" to ensure the progression and narrative of the

game's storyline.

 This paradox is at the heart of the framework's title, Autonomia (“Αυτονομία” in

Greek). It symbolizes the delicate balance that Autonomia seeks to achieve by

providing developers with the tools to create NPCs that can exhibit autonomy when

required, yet also allow predetermined narratives and behaviours when essential for

the game's storyline.

Chapter 4: Framework Implementation

39

Chapter 4

4 Framework Implementation
The implementation of Autonomia commenced in November of 2022, and has

evolved into two primary components to date. The two main parts are: a) the

Autonomia.Core library, and b) the Unity Integration.

Chapter 3 explained the theoretical point of view of the system’s architecture,

where Chapter 4 aims to provide insights on its inner workings and technical

details. Then we follow with Chapter 5, which explains the Unity Integration of

Autonomia, which serves as: a) a use case for the framework’s integration, and b)

another starting point for fellow researchers to join our work. To ensure future

collaboration and understanding, we've adhered to suitable design patterns in the

codebase, promoting maintainability and readability.

Autonomia is openly available as an open-source project on GitLab [82], [83],

fostering transparency and community engagement. We welcome and value

constructive criticism and feedback from the research and development community.

4.1 Third-Party Tools

 C#

 The choice of programming language plays a pivotal role in the development of

any software framework, and Autonomia is no exception. In selecting C# [84] as the

foundational language for Autonomia.Core, we considered several key factors that

align with our goals and objectives.

4.1.1.1 Seamless Unity Integration

 C# is the primary programming language used within the Unity game

development platform. Given our aspiration to seamlessly integrate Autonomia with

Unity, adopting C# as the core language was a natural choice. This alignment

enables Autonomia to operate harmoniously within Unity, simplifying the

implementation process for game developers.

4.1.1.2 Versatility of C#

 One of the foremost reasons for considering C# as a programming language for

a new framework is its versatility. C# is a statically-typed, object-oriented language

4.1 Third-Party Tools

40

that can be employed in a variety of application domains. Whether the framework is

intended for web development, desktop applications, mobile apps, and of course

game development, C# can seamlessly adapt to meet these diverse requirements.

With the advent of .NET Core, C# has transcended its Windows-centric roots and

become a cross-platform language. Developers can build applications and

frameworks that run on Windows, macOS, and Linux, making it an ideal choice for

ensuring broad compatibility and reaching a wider audience. Also, C# boasts a

robust standard library, the .NET Framework (or .NET Core/.NET 5+), which offers

a comprehensive set of APIs for various tasks such as file I/O, networking, and data

manipulation. This extensive library support accelerates framework development by

reducing the need to reinvent the wheel, saving time and effort.

4.1.1.3 Strong Developer Community

 Another compelling reason to choose C# for a new framework is the vibrant and

engaged developer community that surrounds it. No one can doubt that C#

developers benefit from a wealth of learning resources, including official Microsoft

documentation, online courses, tutorials, and active forums. This wealth of

knowledge facilitates the onboarding of new developers to the framework and aids

in solving complex challenges. To further extend this point, the C# ecosystem is

teeming with third-party libraries and tools that extend its capabilities. These

resources can be leveraged to enhance the functionality of the framework and

expedite development.

4.1.1.4 Strong Language Features

 C# offers several language features that can greatly benefit framework

development. C# enforces strong type checking and supports modern programming

paradigms like object-oriented and functional programming. This leads to code that

is more reliable, maintainable, and less error-prone—a crucial factor for framework

longevity. Furthermore, C# features a sophisticated asynchronous programming

model that simplifies concurrent operations, a key requirement for high-

performance frameworks handling multiple tasks concurrently. To extend our point

further, C# has evolved over the years with the introduction of features like pattern

matching, local functions, and expression-bodied members. These additions make

code more concise and expressive, enhancing developer productivity.

 Neo4j

 In our attempts to populate our world with information while developing and

testing, we used Neo4j desktop [85] [86]. Neo4J is a popular and powerful graph

database management system. It's designed to store, manage, and query data in

the form of a graph, which is a data structure consisting of nodes and relationships

Chapter 4: Framework Implementation

41

which carry labels and properties. Since Autonomia is designed to work with graph

databases, Neo4j saves us the trouble of implementing the entire system ourselves.

For better performance, Autonomia does have its own internal graph database

system but the disk storage for persistence happens through Neo4J.

 In addition, Neo4j Desktop comes with powerful tools to help you create and

examine your data. Following, we outline the tools included with Neo4J that we

consider important for Autonomia.

4.1.2.1 Cypher Querying Language

 Cypher is a powerful and expressive query language specifically designed for

working with graph databases, with Neo4j being one of its primary implementations.

It provides a way to interact with graph data by specifying patterns and operations

on nodes and relationships within the graph. Cypher's syntax and semantics are

tailored to the unique structure of graph data, making it efficient and intuitive for

querying and manipulating graph databases. In Cypher, the most dominant feature

at the core of its functionality is pattern matching. Patterns are defined using an

expressive, readable syntax, representing nodes, relationships, and their

associated properties. For example, a pattern like:

㩀㨾㨰㨽Ό㨦㨾㨰㨽 ␡Ό 㨗㨣㨚㨖㨟㨕㨤؉㨨㨚㨥㨙␡ 㨱㨽㨴㨰㨹㨯Ό㨦㨾㨰㨽

would match a user node connected to another user node through a

"FRIENDS_WITH" relationship. Nodes and relationships are the fundamental

building blocks in Cypher. Nodes are enclosed in parentheses, and relationships

are enclosed in square brackets. These nodes and relationships can have labels to

categorize them and properties to store key-value data.

 Cypher queries allow you to specify conditions for matching patterns and filtering

results. You can use WHERE clauses to filter nodes or relationships based on their

properties and employ various predicates such as "=" or "CONTAINS" to compare

values. Queries in Cypher return data in a tabular format, making it easy to work

with the results. You can specify which parts of the matched patterns you want to

retrieve using the RETURN clause, enabling you to extract specific information from

the graph.

 One of Cypher's strengths is its ability to find paths in the graph, representing

sequences of nodes and relationships that match certain criteria. This is particularly

useful for traversing and analyzing complex graph structures.

4.1.2.2 Neo4j Bloom

 Neo4j Bloom is an intuitive and visually driven data exploration and visualization

tool designed to work seamlessly with Neo4j graph databases. It empowers users

4.2 Autonomia.Core

42

to interact with and gain insights from complex graph data without needing to write

complex queries or code. With Neo4j Bloom, you can create interactive

visualizations of your graph, explore relationships, and discover patterns in a user-

friendly and intuitive manner. It's a valuable asset for both technical and non-

technical users who want to harness the power of graph databases for data

analysis and decision-making. In Autonomia, we value this tool as an inspector and

canvas for the World State. A game designer can easily enrich the world of the

game simply by using this tool, creating nodes, relationships and set handcrafted

goals to the agents of the implementation.

4.1.2.3 Neo4j Driver for C#

For our C# - Neo4j communication, we used the Neo4j.Driver package.

Neo4j.Driver for C# is a dedicated driver that enables C# developers to connect

their applications with Neo4j databases seamlessly. It serves as a bridge between

C# code and the Neo4j database server, allowing developers to perform various

operations, such as querying the database, creating, or updating nodes and

relationships, and retrieving results. It manages the database connection, enables

Cypher Queries through C# with parameterization and all the above can be

executed asynchronously using C#’s Tasks library.

4.2 Autonomia.Core
 The Autonomia Framework has been developed under the Autonomia.Core

namespace. By using namespaces, we aim to ensure flexibility for potential future

implementations, offering improved clarity and versioning control. For instance,

should an extension centered around emotional AI emerge, it could be neatly

encapsulated within a hypothetical Autonomia. EmotionalAI namespace is

maintaining a structured and organized codebase.

 Moreover, the project is made available in two distinct formats: a) a library project

containing the entire source code, and b) a prebuilt .DLL file (Dynamic Link Library).

The latter plays a pivotal role in promoting decoupling of code, fostering modularity,

and enhancing the overall efficiency of the Autonomia framework. The provision of

dual-format availability empowers developers with the freedom to select the option

that aligns best with their preferences and project requirements. Given that

Autonomia is an ongoing project, it welcomes active participation and customization

from the developer community.

 Anyone is encouraged to modify the source code as needed to tailor it to their

specific needs. Furthermore, should a developer create valuable enhancements or

extensions to the framework, there is an open invitation to request integration into

the public Autonomia repository. Contributions that bring substantial value to the

Autonomia ecosystem are welcomed and can be considered for inclusion,

Chapter 4: Framework Implementation

43

promoting collaborative development, and fostering a robust framework for

intelligent and autonomous systems.

 In the following sections, we analyze and elaborate on technical details regarding

multiple components that form Autonomia.

 Graph

 In the development of Autonomia, we employed an external graph database to

store our data. However, during runtime, we recognized the importance of having a

local graph database implementation for faster read/write operations. To ensure

seamless compatibility, the Graph class has been designed to implement the

IDatabaseClient interface and incorporates two dictionaries (or HashMaps) for

nodes and edges, respectively. You can find the class diagrams for Graph, Node,

and Edge in Figure 6.

 It's worth noting that each element within the graph possesses a unique string

value serving as its identifier, referred to as an "id". This unique id enables us to

enhance the graph's performance by utilizing dictionaries not only for the graph

itself but also for the nodes and memory queries. This optimization is especially

beneficial, as graph databases may entail a multitude of edges for each node.

4.2 Autonomia.Core

44

Figure 6: Graph, Node and Edge class diagrams.

 Furthermore, it's noteworthy that we have integrated modules within the Node

class, creating a tight coupling between them. This coupling enables us to include

modules when cloning nodes, and it's essential to emphasize that the cloning of

classes will be a common practice throughout Autonomia. Given our approach of

treating each piece of knowledge as unique, cloning is a typical operation to

preserve knowledge at the stage it was acquired. This will become increasingly

evident as we proceed with our exploration of Autonomia's functionality.

 For the cloning implementation, we predominantly utilized a variation of the

prototype pattern that is designed to be compatible with inheritance. To elaborate,

the process involves implementing a copy constructor for each subclass and

overriding the Clone method to return a new instance of the subclass, passing as a

parameter the current instance into its own copy constructor. This approach

ensures that inheritance is seamlessly maintained while enabling the effective

cloning of objects within Autonomia.

Chapter 4: Framework Implementation

45

 Injector and Injectables

To simplify the assignment of specific elements, we created an Injection

mechanism. To achieve this, we created an Injector class who uses C#’s reflection

mechanism, to find class types that contain custom Injectable attributes. Then, we

use that injectable to find nodes which the overridden method “ShouldInject” returns

true. Lastly, for those nodes we call the overridden “Inject” method.

Figure 7: Injectable attribute class diagram

 In Autonomia, we employ two primary Injectable attributes: a)

BehaviourInjectOnLabels, and b) GoalInjectOnLabels. Both attributes accept string

values as parameters and compare them with the labels associated with each

node. When there is a match, these attributes inject themselves into the respective

node.

 In our implementation, we utilize behaviours as affordances, meaning that

behaviours should be associated with nodes that provide them. For instance, an

'EatFoodBehaviour' should be injected into every node containing the 'Food' label.

Thanks to our injection system, achieving this is straightforward and efficient,

requiring only a single line of code, as illustrated in Figure 8.

4.2 Autonomia.Core

46

Figure 8: Specific behaviour being injected using node labels

 The implementation and extension of Injectable attributes are notably

straightforward. For instance, we can create a special behaviour that should be

exclusive to a particular NPC by defining a new injectable and using the node's ID

or name as parameters.

 Furthermore, this extensibility can be taken a step further by incorporating

randomness into injectables, allowing us to introduce an element of uniqueness to

our virtual world. Consider a scenario where a game designer wishes to distribute a

specific piece of knowledge to a random subset of NPCs. This objective can be

effortlessly accomplished using our injection mechanism. Importantly, this approach

maintains a high level of decoupling, ensuring that it remains independent of, for

example, the behaviour or goal class.

 Node Factory

The Node Factory is an important singleton class in our framework. Although

the entire functionality of our nodes are dictated by their labels, properties and

modules, we still deemed it important to allow users of the framework to create

classes that will handle initialization for each of their conceptual node types. This is

important to consider when we consider modules that may have complex

dependencies with each other. Furthermore, by having strictly defined types for our

Nodes we can more easily classify them and group their behaviours. For instance,

in Autonomia we use a common NPC Manager singleton to handle NPC updates.

For this, we have the NPC class deriving from the Node class and implement in its

initialization a) registering to the NPC manager and b) declaring the proper order of

initialization for each module. Its class diagram is visible in Figure 9.

Chapter 4: Framework Implementation

47

Figure 9: Node Factory class diagram

 Node Factory is allowed to receive upon initialization, dispatch methods, namely

callbacks, with label descriptors to enable users to imbue the factory with their own

custom node types. An example of this can be seen Figure 10.

Figure 10: Example of adding custom dispatch methods to the Node Factory

 Modules

Modules are components that are attached to nodes and are used as data

containers or offer additional functionality. First, we explain the base Module class

and then move on to the implementation of some core modules. The Module class

diagram and its derived classes belonging to the current version of Core are shown

in Figure 11.

4.2 Autonomia.Core

48

Figure 11: Class diagram of the Module class and derived classes

Each module within Autonomia follows a standardized structure, containing

three key functions: OnStart, OnUpdate, and OnDestroy. These methods are called

by the ModuleManager when appropriate. To enhance performance, it's possible to

assign a specific delay value measured in milliseconds, thus preventing redundant

per-frame calls of the Update function. Additionally, several other methods are

important to the functionality of modules, and we explain each in the following

subsections.

4.2.4.1 Serialize/Deserialize From Owner

 Modules may need to serialize and deserialize their data for persistence, within

the node’s properties. For example, the Memory can serialize itself as in a JSON

format, and upon saving the game, it would write this JSON string value as a

property with a unique key, for instance “$$memory-module”. Then, upon loading

the game again, the memory module would try to deserialize from the node’s

Chapter 4: Framework Implementation

49

properties to restore it’s previous state.

4.2.4.2 OnStimulusUpdate

 The OnStimulusUpdate function may seem unconventional at first glance, so let's

explore its intricacies. It's essential to grasp the concept that within a node's

memory, there exists a simulated approximation of the world state, with other nodes

and their respective modules.

 To further illustrate this, consider a Transformations module containing the

position and rotation of a Node in 3D space. Let's also introduce Node A, Node B,

and Node B', where Node B' represents a simulated version of Node B within Node

A's Memory module. Now, suppose Node B is in motion within 3D space. Its own

Transformations module is configured to override the OnUpdate function to

continuously update its transformations. However, if Node B happens to be out of

sight from Node A, the Transformations module of Node B' should not undergo

updates. This is precisely where OnStimulusUpdate comes into play.

 For modules whose owner possesses a simDepth greater than zero, their update

function is invoked solely when their corresponding stimulus calls for it.

Furthermore, we can handle various subcases based on stimulus type. For

instance, an Auditory stimulus might update Node B's position within Node B' with

less precision, whereas a Visual stimulus would accurately reflect the update.

Alternatively, if Node A is deaf, the Visual stimulus is disregarded entirely. This

nuanced approach ensures that module updates are aligned with the prevailing

stimulus conditions, enabling precise and context-aware processing.

4.2.4.3 TimeDisplace

The TimeDisplace function serves a critical purpose by enabling a module to

advance its state based on a designated time variable. To illustrate, let's consider

the Needs module, which is discussed in the Unity Integration. This module

influences how an NPC plans and schedules its day. When planning what activities

to pursue after work, the NPC's level of fatigue and energy, reflected in the Energy

value, can impact the priority of goals, such as the Sleep Goal.

It's important to provide modules with the capability to shift their temporal state,

particularly in scenarios where we are affecting only a clone of the node or module.

This temporal displacement is essential for accurately simulating a variety of

situations and their associated impacts on node behaviour.

 Memory Module

The memory module is a simple, yet pivotal in Autonomia. It contains a relations

variable of type IGraph for semantic data, and an IEventIndex for occurrences of

4.2 Autonomia.Core

50

Events that were perceived by the NPC.

Figure 12: Class diagram of Memory

The main takeaway here is the FindLocal method. It is meant for other module

to use it, in order to get references to the memory-local instance of a node. For

example, let’s assume an EatFood behaviour running with Node A as an actor, and

Node B of type Food as its owner. In the authoring process of the behaviour, we

would like to make Node A move to Node B’s memory-local instance, since this

represents the world in Node A’s Theory of Mind. If Node B has been moved from

its previous location, Node A should not be aware of it.

 Perception Module

In the theoretical section dedicated to perception, we elaborate on why we

deem this component to be of utmost importance, serving as a crucial link between

an agent's memory and the external world. The quality and realism of our

perception implementation directly impact the overall believability and effectiveness

of our system. This module, is tightly coupled with Stimulus as it serves as an

intermediate holder for sensed nodes and events. It is noteworthy, that the

framework does not exclude any stimulus types from being implemented. The

perception system would work seamlessly even with imaginary “six sense” stimulus.

The main functionality is described as follows. During each update cycle, the

perception module scans its sensed nodes and events from its stimuli. It follows a

structured sequence of operations to ensure accurate and up-to-date information

processing. To elaborate, for each stimulus the following process takes place.

Chapter 4: Framework Implementation

51

Firstly, there is the need to update the modules of the owner within its own

memory. This reflects the difference between the way we actually appear and the

way we self-reflect, which is something also stored in our theory of mind. So, the

OnStimulusUpdate method is invoked for every module of the owner’s memory-

local copy.

Following this, for every sensed node, the perception module locates the

memory-local replica of the node and invokes its OnStimulusUpdate methods. This

ensures that any perception-based information or modules associated with the

sensed nodes are promptly updated.

Lastly, the perception module processes each sensed event. Again, it

transforms the event into a memory-local event, interprets it using the

EventInterpreter module, and attempts to match it with any subscribed event. In the

occurrence of a successful match, the subscribed callback function is invoked with

the memory-local event as its parameter. This mechanism enables the

dissemination of relevant information to subscribed modules or components and

ensuring the memory-local copy is always used to ensure consistency and

believability for an agent’s actions.

Figure 13: Class diagram of the Perception and stimulus modules

This subscription mechanism allows interested parties to receive notifications

whenever a particular event occurs. To illustrate this functionality, consider a

4.2 Autonomia.Core

52

scenario involving a TavernWaiter behaviour.

In this scenario, the TavernWaiter behaviour has the actual waiter (an NPC) as

its actor, and the tavern as its owner. The behaviour subscribes to a perception

event with the description "<<Abstraction of Person>> <<enters>> <<owner>>." In

simpler terms, this event signifies "If someone enters the tavern." By subscribing to

this event, the behaviour can respond appropriately whenever a person enters the

tavern, demonstrating the framework's flexibility in handling dynamic in-game

scenarios.

 Other Modules

In this section, we will provide brief insights into several modules within

Autonomia that primarily serve as data containers or are in the process of being

implemented and refined. These modules, while important, may not require in-depth

technical discussion in this context, as their primary function is to store data or are

subject to ongoing development and improvement.

● GoalPlans: This module is designed to store calculated plans and associate

them with their respective goals, essentially serving as a method for

"baking" behaviours. It can potentially exclude previously failed plans to

prevent the agent from repeating them in the future, either due to

experience or caution.

● ActiveEvents: The ActiveEvents module contains the list of all events

currently affecting its owner. This allows the module to expose these events

to other nodes' perception systems.

● IntendedUse: This module serves as an optimization mechanism for the A*

search algorithm, contributing to enhanced search efficiency. Its role and

significance are further discussed in the A* Search Algorithm section and

the Unity Integration, including its extension in the designer tools.

● EventInterpreter: Currently, this module's implementation is relatively

simple, primarily focused on type matching to interpret events. However, in

the future, it will be refactored to use a hierarchical model for event

matching and interpretation. Additionally, it will address the challenge of

reinterpreting events as the agent learns more about them, offering

intriguing possibilities for future implementations.

 Events, Abstractions and Wildcards

4.2.8.1 Event

As discussed on Chapter 3, events are used to represent “something that

Chapter 4: Framework Implementation

53

happens”. We model an event as having a string type and two nodes; an actor and

a subject. Furthermore, each event can carry any additional value using its

“parameters”; this variable is a custom DynamicParameters class which can be

seen as a dictionary of string keys and object values, but with extra logic for

comparisons. Lastly, each event has a list of strings named “sensedFrom”. This

represents the stimuli types this event can be - as the name suggests - sensed

from.

One crucial aspect of the Event class is its capacity to use abstractions and

wildcards for event matching. This feature enables the framework to establish

relationships between events that share common patterns. To showcase the

usefulness of this feature, which will also be used later on with expressions, we give

the following examples:

● E1: John (actor), grab (type), abstraction of Item (subject)

● E2: John (actor), grab (type), abstraction of Sword (subject)

● E3: John (actor), grab (type), Moonlight Sword (subject)

● E4: John (actor), grab (type), Turtle Shield (subject)

In the above examples, E1 can be matched with E3 and E4, because both the

sword and the shield are items, but E2 can be matched only to E3, since it reduces

the abstraction to only swords.

4.2 Autonomia.Core

54

Figure 14: Class diagram for Event, Abstractions and Wildcard

4.2.8.2 Abstractions

The Abstractions static class has three main methods:

● Abstract: which receives an array of labels as parameters and returns a

new node containing those labels. Abstract nodes have their own unique,

randomly assigned id and carry the extra “Abstract” label.

● IsAbstract: Returns true if the given node is abstract.

● IsAbstractOf: Receives two parameters, Node A and Node B. It returns

true if Node A is an abstraction of Node B, which in effect means if Node A’s

labels are an inclusive subset of Node B’s labels.

4.2.8.3 Wildcard

Wildcard is another static class which contains definitions for unlike values of

Chapter 4: Framework Implementation

55

specific types to be represented that this value can be anything. For example, a

Wildcard.Int returns the minimum possible value an integer can have.

 AutonomyDB

Within our framework, we introduce the AutonomyDB singleton class, a

fundamental component responsible for the storage and retrieval of our world state

from a persistent graph database. The AutonomyDB leverages the IDatabaseClient

interface, providing the flexibility for users to employ custom databases of their

choice, should an alternative be preferred.

In our specific implementation, we have utilized the IDatabaseClient interface

with the Neo4jClient, enabling seamless communication with our Neo4J database.

A visual representation of the interface's class diagram can be found in Figure 15,

thoughtfully organized to encompass fundamental database operations.

Figure 15: IDatabaseClient interface diagram with our Neo4JClient.

When AutonomyDB is asked to undertake the task of loading data from the

database, it executes several critical operations. Initially, it parses the query

response and populates the world state using the NodeFactory to produce nodes. It

is noteworthy that the world is represented as a literal Memory module (refer to

Section 3.2.3). Next, AutonomyDB leverages the Injector class (4.2.2) to inject each

injectable item to its corresponding target. Upon the conclusion of this step, each

Node has been assigned its injectable modules, behaviours, and defined goals.

 It's important to note that, at this point, every node type possesses the option to

4.2 Autonomia.Core

56

override an Initialize method, allowing for specialized initialization procedures. At

this moment, we can also begin initializing custom NPC memory. In our testing

scenarios, we have employed a cloning strategy by replicating the world state and

assigning a clone to the memory of each NPC. It's worth mentioning that we have

the capability to implement recursive Memories, enabling a more comprehensive

Theory of Mind. If desired, the described process can be repeated for each layer of

Memory modules.

 Furthermore, various filtering mechanisms can be applied to simulate more

realistic scenarios. For example, instead of creating a perfect clone of the world

state, we can introduce an elimination step for 'unrelated' nodes or even incorporate

randomization of metadata within the Memory of each agent, adding an element of

variability to their cognitive processes.

 Engine

 To simplify future implementations with Autonomia, we have introduced an

Engine class that serves as the central driver for all framework functionalities.

Figure 16 provides an overview of the primary functions it offers.

Figure 16: Engine class diagram

Chapter 4: Framework Implementation

57

One of the key functions is the MainLoopIteration, acting as the heartbeat of

Autonomia, regulating its processes. It's important to note that while the Engine

class is optional for utilizing Autonomia's capabilities, we have designed it to

facilitate the learning and adoption of the system, offering a more accessible entry

point for developers.

 System Clock

 The SystemClock class is a fundamental component of the Autonomia

framework, responsible for managing time-related operations. It serves as a

centralized timekeeping mechanism for coordinating actions and behaviours of

autonomous agents within the framework's simulated environment. This class

measures time in milliseconds using a value of type long. This would mean, we

could have a maximum of around 1011 days or 273.790.926 years in a 64bit system.

 An advantage of using milliseconds as a time unit in our framework is the fact

that integrations of it can implement any custom time system they prefer, simply by

creating a casting mechanism between SystemClock and their time system. This

can be seen in our Unity Integration, where the time system inherits a 24 hour per

day, 365 days per year counter.

 Expressions

The Expression class as of today has been formed through many iterations

while implementing its respective designer tools through the Unity Integration. The

finalized class diagram is shown in Figure 17.

4.2 Autonomia.Core

58

Figure 17: Class diagram of Expression

 Expressions within the Autonomia framework serve as crucial tools for building

and managing complex chains of logic and evaluations. These expressions are

primarily used as preconditions and effects for behaviours and goals, providing a

versatile mechanism for specifying agent actions and conditions. Each expression

needs to implement a set of methods to ensure its proper functionality:

Chapter 4: Framework Implementation

59

Table 1: Expression base class methods

Method

Description

CanEvaluate Determines if the expression is syntactically ready for
evaluation

Evaluate Computes the value of the expression and caches it for
future reference

EvaluateRelativeTo Similar to Evaluate but performs computations relative to an
observer

CanMatch Checks if the expression can match a given parameter
expression

Match Matches the current expression to a parameter expression,
assuming compatibility

IsSatisfied Determines if the expression is currently in effect

IsSatisfiedRelativeTo Similar to IsSatisfied but considers an observer

 The framework provides a uniform GetValue method that invokes Evaluate and

returns the cached value if applicable. Directly accessing the cached value is

possible but recommended only if Evaluate was called within the same scope.

 A full set of implemented expressions are given on the Unity Integration chapter,

serving as a practical guide to showcase how these expressions can be effectively

utilized within the Unity game engine, allowing developers to harness their power to

design complex and dynamic NPC interactions and behaviours. On top of that, on

the Unity Integration we implemented a node-graph tool for creating expression

graphs.

 It is worth noting that using C#'s hashsets is a common practice for storing

expressions rather than lists in our framework. Hashsets provide faster operations

at the cost of increased storage requirements. However, to ensure compatibility

with our matching mechanism, two specific requirements must be met: a) a custom

4.2 Autonomia.Core

60

ExpressionComparer, b) the GetHashCode method must be overridden to return a

hash code based on the evaluated type. This is a logical step as we will be

performing matching operations on expressions of different classes that share the

same evaluated type. This will be shown in chapter 5.

 Behaviours

The way behaviours are used in the system has been discussed in Chapter 3.

In this chapter we will elaborate on the implementation of behaviours that allow

them to be easily authorable and how we recommend them to be structured.

4.2.13.1 Behaviour States and Events

Behaviours contain two simple enum classes which are essential to their

functionality. First, we have the behaviour’s states which can represent if a

behaviour is currently running, is paused, stopped or if it is in a persistent state. The

persistent state is a special case for behaviours marked with the ability to be

persistent. When those events mark their completion, they do not stop running, but

as the name suggests, persist while other potential behaviours follow.

Next, we have five possible events a behaviour can signal. Either when a

behaviour starts, updates, stops, completes, or fails two things will occur: a) an

notify function will invoke subscribed callback methods of the specific event,

essentially working as listeners, and b) a TaskCompletionSource value dedicated to

that event will have its result set.

Chapter 4: Framework Implementation

61

Figure 18: Class diagrams of behaviour’s metadata

In the context of asynchronous programming in C#, a TaskCompletionSource is

a valuable mechanism. It represents a task that can be manually completed,

typically when you have asynchronous operations that aren't directly represented by

a Task. This way, we allow a more readable form of interactions between

behaviours. In Figure 19, you can see a side-by-side comparison of the two

methods using as an example a FarmWorkBehaviour, where the objective is to

plant, water and then harvest your crops, assuming each task is its own behaviour.

In our experience, we found the asynchronous programming method to be

significantly more readable when writing more complicated behaviours since the

AddListener technique will tend to create a nested chaos of callbacks.

4.2 Autonomia.Core

62

Figure 19: Side-by-side comparison of recursive listener events versus using

asynchronous programming.

4.2.13.2 Behaviour Authoring

 Behaviour has a plethora of methods that can be overridden to alter and control

their functionality. We name five essential methods of overriding:

Table 2: Behaviour base class core methods

Method

Description

OnInitialize This method is called when the behaviour is injected to a
BehaviourNode and is assigned its owner. It can be used to
cache values for later use and is as it name suggests, used
for initialization purposes.

OnStart Computes the value of the expression and caches it for
future reference

OnAction This method is called right when the behaviour is asked to
begin its functionality. At this point, we assert that the actor
of the behaviour has been assigned.

OnStop

This is the ticking mechanism of a behaviour. For each
behaviour, action is called every “data.delay” milliseconds.

Chapter 4: Framework Implementation

63

Shorter delays are meant for more interactive, real-time
behaviours like fighting and combat, where we can use
larger delays for more passive behaviours like thinking,
sleeping or eating. The delay can also be used to simulate
reflexes of an agent. Possibly some future integrations could
allow more dexterous agents to use shorter delays and be
dominant in a fight thanks to that.

OnGetCost This method is called when the behaviour is asked to stop.
In our previous GrabBehaviour example, we use the OnStop
method to release the respective item from the agent’s
grasp

OnGetTime When overriding this method, a behaviour can return its
representative value, meaning how effective this behaviour
is for the agent at the current moment. For example, an
EatFoodBehaviour would return a higher value if the agent
is currently hungry

OnSetActor This method should try and return a time estimate, the
behaviour will take. For example, a TavernWaiter behaviour
could return a time estimate of eight hours (converted in
milliseconds), to allow the schedule module to plan an
agent’s day

OnSetOwner These optional overrides allow custom user code to run
when the assignment of an actor or an owner occurs. For
example, we can override the OnSetActor method, to iterate
and replace the previous actor for every expression in
preconditions and effects with the current actor

4.2 Autonomia.Core

64

Figure 20: Class diagram of Behaviour

 Goals and Planning Algorithms

4.2.14.1 Goals and Plans

The implementation of goals as mentioned in Chapter 3 is straightforward and

simple. Its class diagram is shown in Figure 21. It also proved helpful to create a

Plan class which can encompass a sequence of behaviours in the context of a

specific goal, as the name suggests. The Plan class also enables us to define the

value of a plan, being a combination of the goal’s value and the sum of the

behaviour’s values.

This is conceptually reasonable, and programmers can find their own balance

between the importance of valuable behaviours and goal. For instance, let us

assume the goal of “Climb Mountain” and a plan that can satisfy that goal. It may

not be effective to walk to the top of a mountain because it is either dangerous, or

far away, but the final value is analogous to how important it is for the agent to

Chapter 4: Framework Implementation

65

climb the mountain and see the view. This is further expanded by getting the time

cost of a plan, enabling us to plan accordingly.

Figure 21: Class diagram of Goal and Plan.

4.2.14.2 A* Search and the IntendedUses optimization

In the context of Goal-Oriented Action Planning (GOAP), A* search is an

essential algorithm for finding the most optimal sequence of actions to achieve a

specific goal. A* search begins with an initial state representing the current state of

the world, including information about objects, conditions, and resources. It

explores the space of possible actions by applying each action to the current state,

generating a new state as a result. A* uses a heuristic function (typically denoted as

"h") to estimate the cost from the current state to the goal state. This cost evaluation

is often denoted as "g." The algorithm combines "h" and "g" to calculate an "F"

value for each state, where F = g + h.

States are organized in a priority queue based on their F values. A* selects the

state with the lowest F value for expansion. It checks at each step whether the

current state satisfies the goal conditions. If so, the search terminates, and the

sequence of actions leading to this state is the optimal solution. A* continues

expanding and backtracking through states, generating new states by applying

4.2 Autonomia.Core

66

actions until either the goal state is reached, or the queue is exhausted.

A* guarantees optimality when it has a consistent heuristic (h) and no infinite

costs are present. It is also considered complete, meaning it finds a solution if one

exists within a finite state space. In the context of Autonomia, A* search helps

identify the most efficient sequence of behaviours to achieve a specific goal by

considering both the values of behaviours and the goal effects.

 A* is known for its exhaustive nature, and there exist numerous optimization

strategies to enhance its performance. One fundamental optimization involves

shifting the search approach from progression to regression. Instead of starting

from the initial point, the algorithm commences from the goal point and backtracks.

This modification significantly improves performance; however, it may lead to plans

that feel mechanical and lack creative elements. Moreover, the time and space

complexity of A* are directly tied to the size of the search space. As the number of

available behaviours increases, the algorithm's execution becomes exponentially

slower and demands more computational resources.

 To further optimize the algorithm, we propose a novel strategy we termed "GOAP

with Intended Uses" within our framework. In our context, behaviours are linked to

nodes, and nodes can conceptually represent a wide range of entities or concepts.

Our optimization capitalizes on the observation that most things have an intended

range of uses. For instance, a fork is primarily designed for eating, rather than for

aggressive purposes, although it could theoretically be used in such a way. To

implement this approach, we introduce the "IntendedUse" module, which attributes

intentions coupled with values to nodes. Subsequently, each behaviour associated

with a node inherits these intentions.

 Now, when we initialize our A* search, each agent searches its memory to

identify behaviours that align with the intention of the goal, significantly reducing the

available search space for the algorithm. Additionally, we employ the matching

intention value as our heuristic value, streamlining the search process and further

optimizing the efficiency of the A* algorithm within our context. Additionally, now

game designers have control over behaviours that can be prioritized over others. If

a game designer wants to attribute a higher value to cooking, rather than eating a

fruit, he can tweak the intention values to allow the cooking behaviour to overpower

the rest, but still have other behaviours available to fallback, if the cooking

behaviour for any reason cannot occur.

 Lastly, we deem noteworthy to highlight some key elements of Autonomia’s A*

GOAP. In this implementation A* nodes represent sets of expressions. This means

that both our precondition and effects fall into the procedural side of GOAP. This

contradicts common approaches which use string-boolean or string-object pairs,

known as blackboards. Expressions can take any form; it would even be possible

for an expression to query the Memory module for more information during the

search, compromising our algorithm’s performance. This is always configurable,

Chapter 4: Framework Implementation

67

and each developer can use the system for their own needs. We just want to

highlight the freeform power of expressions.

 By integrating the planning methodology described above with our dynamically

evolving environments, we believe that our agents can exhibit a remarkable degree

of autonomy and controlled unpredictability, enriching the overall user experience in

a positive manner.

4.2.14.3 The ScheduleDay algorithm

The schedule module utilizes the GOAP algorithm to schedule the day of an

NPC, based on its understanding of the world and expected state of things at given

times. To achieve this, the schedule can be thought of as a calendar. It implements

a SortedDictionary of long type keys representing days within the calendar and lists

of ScheduledSlot as values.

Figure 22: Class diagrams of Schedule, ScheduledSlot, and ScheduledGoal

4.2.14.4 Scheduled Behaviours vs. Other Behaviours

First, let us assume we have our daily scheduled and contained in scheduled

slots within our calendar. How do we begin the execution of those behaviours and

how do we solve conflicts with other demanded behaviours? As discussed in the

BehaviourController module section, every module attempting to take control needs

to compete with others, measuring out their importance values. So, when the

schedule module detects that the NPC should execute a planned behaviour, it tries

its personal ticket through the behaviour controller module to assert control.

4.2 Autonomia.Core

68

4.2.14.5 ScheduleDay Algorithm

With what we have already established, scheduling an agent’s day is not such a

complicated task. We can simplify the algorithm into three main steps: a) formulate

plans, b) add ScheduledGoal plans to calendar, and c) try to add other plans on

calendar respecting what has already been planned.

 In the first step, we use our GOAP planner to formulate plans for all our goals.

Depending on that stage our game is, we can even replan older instances to make

sure they are still consistent and reasonable. Then, we iterate through our plans

and keep a reference to all plans referring to a ScheduledGoal. Then we create a

ScheduledSlot for this plan based on the estimated time the Plan returns from its

behaviours.

 Finally, we may have other goals that do not need to be met at a specific time

slot, but it would be appropriate to try to schedule them on our agent’s day. For

example, in the evening our agent may expect that he will be hungry, so he may

have already planned to grab lunch by then. This is the most sophisticated part of

the ScheduleDay algorithm, so let us provide simplified pseudo code for its

algorithm.

Chapter 5: Unity Integration

69

Chapter 5

5 Unity Integration
The decision to embed Autonomia within a game engine was not taken lightly

but was, in fact, a strategic choice that has proven to be pivotal. It has allowed us to

uncover subtle intricacies and requirements that only real-world scenarios can

reveal. Through this practical approach, Autonomia has evolved into a framework

that not only meets but tries to anticipate the demands of modern software

development.

5.1 Overview
Unity is a game engine that allows developers to create interactive and

immersive games for various platforms and devices. Unity is widely used by both

indie and AAA game studios, and some of the popular games made with Unity [87]

include Among Us [88], Fall Guys [89], Hearthstone [90], Ori and the Blind Forest

[91], and more. In this section we explain why we have chosen Unity and why we

believe it to be a powerful, versatile, and user-friendly game engine that offers

many advantages for framework implementation.

For starters, Unity is a game engine that supports high-quality graphics,

physics, audio, and animation for creating realistic and engaging games. Unity

enables developers to achieve impressive performance and optimization across

platforms, as it uses a low-level rendering API called Scriptable Render Pipeline

(SRP) that allows developers to customize the rendering process according to their

needs. Unity also offers a variety of features and tools that enhance the game

development process, such as scripting, asset management, debugging, testing,

etc. In addition, Unity provides an integrated marketplace that enables access to

thousands of ready-made assets, such as models, textures, sounds, scripts, etc.

that can be used for free or purchased.

Another advantage of using Unity is that it is a versatile game engine that

supports cross-platform development and deployment, allowing developers to

create games that can run on various devices and platforms, such as PC, mobile,

console, web, AR, VR, etc. Unity also offers a range of features and tools that

facilitate the integration of various technologies and services, such as cloud,

analytics, monetization, multiplayer, etc.

Last but not least, Unity is a user-friendly game engine that is easy to learn and

use for both beginners and experts. Unity has an intuitive and customizable

interface that allows developers to work efficiently and comfortably. Unity also has a

5.1 Overview

70

rich documentation and tutorial system that provides comprehensive and clear

guidance on how to use the engine and its features. Also important for us was the

fact that Unity has the capabilities to freely extend and program its Editor, allowing

developers to extend the functionality of the engine by creating custom tools or

plugins. This plays a pivotal role in the following sections.

5.2 Autonomia’s Designer Tools
During the design process of Autonomia, a clear distinction was made between

two primary working stack layers: the designer layer and the developer layer.

Designers play a crucial role in envisioning and crafting the desired AI behaviours,

while programmers are tasked with the responsibility of translating these envisioned

behaviours into functional implementations.

Designers require the ability to swiftly construct and modify game environments

and establish the connections between various behaviours and goals. The main

tool at their disposal in this endeavor is the expression component of the EBG

model.

 NodeRef Script

 In Unity's game scene, every element needs to inherit from the MonoBehaviour

class. This requirement sets the foundation for integrating game objects seamlessly

into Unity's framework and its main game thread. To bridge the gap between Unity's

game objects and our graph database nodes, we introduced a NodeRef class. Early

in the development process, it became evident that designers required control over

the world-state, as well as the ability to expand it within Unity. Without the proper

tools, every mundane item in a level would have to be manually created in the

respective graph database and be associated with a node's ID, a cumbersome and

unnecessary task.

 To address this issue, we utilized Unity’s editor capabilities. By implementing a

custom inspector for the NodeRef class, we enable a wide range of functionalities.

These include the creation of nodes, loading from existing IDs, and the ability to

modify labels, properties, and even custom module properties. As illustrated in

Figure 23, this includes features such as 'intended uses'.

Chapter 5: Unity Integration

71

Figure 23: NodeRef drawer example

 The addition of this feature significantly streamlines the level design process. In

our recommended pipeline, we've converted a library of assets into unity prefabs,

each of which contains a NodeRef script with a) unsigned ID, b) predetermined

labels, and c) properties that describe this object class. For instance, in our case

study all tables contain the labels “Item”, “Table”, “DropArea”. After placing all the

objects as per the environment design, with a single button click we can create and

commit all the nodes in the database. Then, each NodeRef can be further

customized to include additional labels, properties, or different intended use values.

5.2 Autonomia’s Designer Tools

72

 DesignerValue

In the Unity integration of Autonomia, it is often required to assign key-value

pairs directly within the Unity editor, a feature not readily available out of the box.

To address this, we introduced the "DesignerValue" class, which allows the

assignment of common data types such as int, long, float, and string to designated

keys. Additionally, it includes an "IsWildcard" checkbox that, when activated,

assigns a predefined Wildcard value of the respective data type upon initialization.

This approach simplifies the configuration of properties and settings, seamlessly

integrating with Unity's editor and providing an efficient means for developers and

designers to customize values without manual code adjustments.

 Intended Uses Drawer

During the development of our use case, we discovered that the "Intended

Uses" property played a pivotal role in achieving flexibility and automation. Rather

than hardcoding specific variations of behaviours, we leveraged this property to

enable automatic planning based on "Intended Uses" values. To facilitate its easy

customization through the Unity editor, a custom property drawer was created,

streamlining the process of fine-tuning agent behaviours and enhancing the

adaptability of our system.

As an example, consider the "Drink" and "Pour" behaviours, both of which are

injected to LiquidContainer labeled nodes. Now, envision the following hypothetical

scenario: "Person A wishes to fill Cup B with water. In close proximity to Person A

are two LiquidContainers, one being another Cup C and the other a Pitcher D." In

this scenario, our system should intelligently guide Person A to use the Pitcher to fill

Cup B, rather than Cup C, aligning with the intended use. Furthermore, Person A

should also be directed to drink water from Cup A and not from the Pitcher. By

manipulating the intended use values of “Drink” and “Pour” for each Node, the

above situation is easily realized. Furthermore, in a scenario where Person A is in

great need of drinking water, and only the Pitcher D is available, it will use it

because it still exposes the behaviour of Drink.

 Node Debugger

Understanding the internal state of NPCs is pivotal for any implementation. To

tackle this challenge, the Node Debugger was introduced, a simple tool that can be

extended to provide insights into any node's "brain" at any given moment.

Throughout the implementation of the use case, two modules were of great

importance while debugging; the ActiveEvents associated with a node and the real-

time status of complex behaviour queues. These were critical pieces of information

Chapter 5: Unity Integration

73

when tracking and comprehending an NPC's decision-making processes, allowing

for a more thorough and effective implementation.

 Expression Graph Editor

The Expression Graph Editor offers a user-friendly graphical interface that

simplifies the creation of complex expression graphs. Within this editor, each node

corresponds to an expression, and the connections between nodes symbolize the

flow of information. Attempting to define intricate expression graphs solely through

code would prove exceedingly challenging, unreadable and in general a bad

practice. Fortunately, Unity provides the flexibility to extend its built-in node graph

system with custom functionality. Consequently, a straightforward methodology was

devised for authoring expressions, further enhancing the efficiency of expression

design within Autonomia.

This streamlined pipeline mandates that expressions "declare" their evaluation

type and children during script creation. For instance, consider a MathExpression

node, which functions as a processor expression and evaluates to a float value. It

expects three specific children: an arithmetic operation (addition, subtraction, etc.)

at index 0 and two floats at indices 1 and 2. This structure is exemplified in Figure

24 below.

Additionally, we have implemented an inspector for each node to facilitate the

modification of multiple properties by designers. For instance, expressions also hold

string values representing intentions for optimizing Goal-Oriented Action Planning

(GOAP). With our system, these intentions can be easily altered without the need

for recompilation or prior knowledge of the underlying codebase.

5.2 Autonomia’s Designer Tools

74

Figure 24: Expression Graph of DrinkTemporaryOwnedDrink goal

By integrating this methodology and the associated features into our Expression

Graph Editor, we have significantly enhanced the accessibility and adaptability of

our expression system. Designers and developers can now intuitively create and

fine-tune complex agent behaviours without the constraints of coding intricacies.

 Expression Library

 A library of expressions has been created for the purposes of implementing the

case study scenario, while also serving as a pre-made, tested and usable package

for future uses of the Unity integration. All the expressions were created having in

mind their reusability and use even out of the context of the Prometheus Tavern

case study. Below are listed the most common categories of nodes and their

common use in the caste study. It is also noteworthy, that most of the source code

for the expression nodes is not coupled to Unity. It can be reused for other engines

and platforms, although this will come at the loss of the expression graph editor

tool.

Chapter 5: Unity Integration

75

5.2.6.1 Primitive Expressions

The primitive category of expressions includes objects such as strings, numbers

and boolean values and their wildcard representations. All of those expression

nodes are producers, meaning they are used as leaves within the expression tree.

The use of such values is mandatory and common through every implementation.

Figure 25: Primitive expressions

5.2.6.2 Logic and Math Expressions

Another important tool in the base-set of the expression library are math and

logic nodes, offering an unlimited number of conditionality to be applied. We have

implemented the general arithmetic MathExpression and CompareExpression, as

well as boolean algebra expressions such as AndExpression and OrExpression. In

addition, expressions can also expose any C# functionality. In this example with

have also wrapped the C# “Equals” method in a custom ObjectEqualsExpression.

This enables us to compare nodes, events and more.

5.2 Autonomia’s Designer Tools

76

Figure 26: Logic and Math expression examples

5.2.6.3 Node Expressions

Autonomia Node-related expressions played a central role in crafting the

majority of expression graphs, necessitating the creation of numerous such

expressions. Among these, the most frequently used were the wildcard and

abstract nodes, each returning their respective node types. Additionally, a custom

expression, known as BehaviorNodeExpression, was introduced. This expression

serves the purpose of injecting the corresponding owner or actor into each behavior

through the visitor pattern, a pattern thoughtfully implemented for all expressions.

Chapter 5: Unity Integration

77

Figure 27: Node expressions

5.2.6.4 Event Expressions

The greater the number of advanced expressions at our disposal, the higher the

level of complexity we can achieve in our expressive capabilities. In this section, we

introduce the Event expression, which is coupled with DictionaryExpression,

DynamicValueExpression, and StimulusTypesListExpression, enabling the creation

of a wide range of events through the graph. In Figure 28, an illustrative example of

such an event is presented. To elaborate further, the following expressions can be

interpreted as follows:

“The expression evaluates to true, when the following event is active; the actor

of the behaviour grabs an abstraction of a sword item, with any of his two

hands, and the event can be sensed through visual means.”

5.2 Autonomia’s Designer Tools

78

Figure 28: A grab event created through the expression graph editor

5.2.6.5 Utility Expressions

Utility expressions represent a general category that will be more properly

categorized in the future. The expression graph is “strongly typed”, meaning you

cannot assign the output of some expression to the input of another if their declared

types do not match. For that reason, there exists an expression node called

ObjectCastExpression which supports type casting for all primitive C# types. When

the need for a user specific cast arises, the developer can simply script a new

expression node as shown in Figure 29 with the NodeCastExpression, which casts

its child to be Node type.

Furthermore, we introduce another crucial part of the unity integration, the

InjectedObjectExpression which can be accessed through code by the developer to

manually inject a specific value prior to the evaluation of the expression graph.

Chapter 5: Unity Integration

79

Figure 29: Commonly used utility expressions

5.2.6.6 Honorable Mentions

With the expression system an infinite number of user created nodes can exist.

Out of the most unexpected node combinations we came upon while creating our

case study, was the general category of SuperExpressions, specifically the

MatchNodePropertiesExpression. This expression node will upon evaluation try to

expand itself, based on its Node children to create new expressions, that dictate

that all their properties should match.

Another surprising expression was the IfExpression node. In our

implementation, this expression node can control the direction of its base functions

based on the evaluated value of the condition. This provides great flexibility to

generalize and reuse a plethora of expression graphs.

Lastly, we created some expression nodes for memory queries. For instance,

the HasEdgeExpression which uses the Memory module of the given node to

validate if this node has the knowledge of the given edge to be true.

The previous expression nodes are shown in the following figure. The former

can be read as

“The root expression evaluates to true, when there exists any node that all its

properties can match with the first node”, whereas the latter can be read as “If the

actor node has knowledge of an edge of type ‘owns’ between him and the owner of

the behaviour, the root node will evaluate to true or false otherwise”.

5.2 Autonomia’s Designer Tools

80

Figure 30: MatchNodePropertiesExpression and IfExpression example

5.3 Use Case: Prometheus Tavern
To evaluate the Autonomia Framework, it’s Unity integration and to offer an

open-source foundational scene, this thesis introduces the "Prometheus Tavern"

case study. This scenario serves as a comprehensive test bed for the majority of

Autonomia's features, by simulating multiple agents concurrently engaging in real-

time behaviour and planning. Notably, the "Prometheus Tavern" is not a traditional

game scene, as it lacks a player character, but it can be extended in the future to

support one. It is better described as a simulation environment. In the case study

exist two types of NPCs: a) a waiter tasked with serving customers and keeping the

tavern organized, and b) customers who enter the tavern, order drinks, drink them

and leave when satisfied.

In this case study, we mainly rely on real-time planning for behaviors instead of

using simplified behavior models, which might have made the system faster. This

approach helps us evaluate how well Autonomia's agents can adapt and potentially

appear realistic. It's worth noting that this study is limited based on our own

knowledge, skills, and time constraints. Unlike typical games, we're not prioritizing

lifelike graphics or animations; our focus is primarily on the behaviors and memory

functions themselves.

In the following sections we describe how the game scene was structured, how

the goals and behaviours were modeled and lastly our experience on using

Chapter 5: Unity Integration

81

Autonomia Framework for the first time.

Figure 31: Prometheus Tavern case study scene

 Prometheus Tavern Scene

In the Prometheus Tavern scene exist various objects common to a mediaeval

tavern. Among those some are wooden barrels with different drinks, tables, chairs,

mugs, pitchers. Below, we list the main behaviours injected to items based on their

corresponding labels.

Table 3: Main exposed behaviours in the Prometheus Tavern

Behaviour Name Node Labels Preconditions Effects

GrabItem

Grabable1H

- Actor is close to owner
- Actor is not grabbing
anything
- Owner is not grabbed by
someone else.

- Actor grabs owner

DropItem

Grabable1H

- Actor is grabbing owner
- Actor is close to drop

- Actor drops owner.

5.3 Use Case: Prometheus Tavern

82

position

DropItemOnArea

DropArea

- Actor is close to owner
- Actor is grabbing

- Actor drops item on
drop area

CleanItem

Cleaner

- Actor is grabbing item
- Actor is close to owner

- Actor cleans item

LiquidContainerDrink

LiquidContainer

- Actor is grabbing a liquid
container item
- Liquid Container Item’s
current litres are greater
than zero

- Actor drinks item

LiquidContainerPour

LiquidContainer

- Actor is grabbing a liquid
container item
- Actor is close to owner
- Owner’s current litres are
greater than zero

- Actor pours liquid
from owner liquid
container to an item
liquid container

Sit

Sittable

- Actor is near owner
- No-one else is sitting on
owner
- Actor is not sitting
anywhere else

- Actor sits on owner

 NPC Goals

 A common approach on designing game scenes that will use the GOAP

algorithm, involves establishing specific goals and subsequently designing the

environment to facilitate the achievement of these goals through one or more viable

ways. Each goal is further explained in the following table. These goals do not

necessarily represent how a waiter should act in a real-life scenario. They have

been designed around testing the NPC’s ability to adapt to their changing

environment and conditions.

Chapter 5: Unity Integration

83

Table 4: Waiter goals table

Waiter

Goal Name Effects Value

Organize and
Clean Mug

- Actor cleans an abstraction of a mug
- That mug must be dirty
- That mug must not be used
- Actor drops that mug on any drop
area

Number of mugs that fall
into this category
multiplied by 15

Take Order

- Actor engages in dialogue with
customer

Number of pending
customers calling
multiplied by 85

Prepare
Order

- Actor “considers” 2 an item that
matches an injected item.

Number of pending orders
to be created multiplied by
80

Serve Order

- Actor serves order to customer

Number of readied orders
to be served multiplied by
75

Store Order

- Actor drops a readied order on any
drop area

Number of pending orders
to be created multiplied by
90

Rest

- Actor sits

Analogous to the Energy
Need

2 “Consider” is non-physical behaviour that is exposed by every item. It allows the

planner the consider item nodes even when their behaviours do not directly expose effects
that match the current’s step preconditions

5.3 Use Case: Prometheus Tavern

84

Table 5: Customer goals table

Customer

Goal Name Effects Value

Find Sit

- Actor sits
- Actor should not be sitting already

Static value of 90

Order

- Actor calls any waiter node

Static value of 50

Drink

- Actor drinks a liquid container
- That liquid container must be
temporarily owned by him

Static value of 80

Leave

- Actor sits

Static value of 100

 Prometheus Tavern Challenges

To evaluate the agents' capacity to adapt to a dynamic environment, we

designed a set of challenges that artificially modified the scene and its

characteristics. These challenges were intended to make it more demanding for

NPCs to accomplish their goals while simultaneously validating their perception and

memory capabilities. In the subsequent sections, we outline the challenges that the

NPCs encountered and describe how they successfully addressed these changing

conditions.

5.3.3.1 Moving Items Around in Runtime

When NPCs attempted to reach an object, they would dynamically track the

item if it moved within their field of vision. However, as expected, if the item left their

field of vision, they would halt and reassess their plans and goals, marking the item

as missing until it was noticed again. For instance, if a waiter had planned to sit in a

specific chair, and that chair suddenly vanished, he would pause, reevaluate, and, if

suitable, select another chair to sit in.

It's important to note that NPCs would remain unaware of an item changing

position until they either observed the item in its new location or reached the spot

where they believed the item should be, only to discover it was missing. For

instance, if a waiter started outside of the tavern, planned to sit in his chair, and the

chair vanished before he entered the tavern, he would continue walking toward the

chair since he hadn't yet realized that the chair was no longer there.

Chapter 5: Unity Integration

85

5.3.3.2 Different Perception Sensors

In our case study, each NPC was equipped with two types of stimuli: one for

sight and one for sound. The sight sensor took the form of a cone-shaped mesh

that extended from their eyes, while the sound sensor was represented as a

spherical shape surrounding the agent.

The behavior of an agent was influenced by these sensors. For instance, an

agent would not plan to clean a dirty mug if they hadn't visually perceived it yet.

However, they would respond to a customer's call, even if they were not currently

looking in that direction at that particular moment.

5.3.3.3 Item Preferences using IntendedUses

NPCs consistently exhibit a sense of preference in their decision-making. For

example, a waiter would avoid sitting in a chair on the "customer side" of the tavern

unless there were no other options. Similarly, customers would typically choose a

seat that: a) is not the waiter's chair, or b) in most cases, the seat that looks the

most appealing.

Moreover, the waiter has a predefined spot for placing clean mugs, but in cases

where that area is unavailable or obstructed, he would reevaluate his plan and

select the next best available option for placement.

5.3.3.4 Depleted Barrel

When preparing an order, the waiter would usually pour rum from the barrel

item which contains rum. In this challenge, the barrel would be emptied in runtime

while the actor would be taking an order and the agent should plan accordingly,

using another liquid container containing rum to fill up the order’s mug. And when

the barrel would be artificially filled again, if the NPC noticed, he would go back to

using the barrel again.

5.3.3.5 Dynamic Goal Values

The behavior of the waiter NPC is dynamic and influenced by his knowledge.

For instance, if there were numerous dirty mugs to attend to, he would prioritize

cleaning most of them, giving the appearance of being busy with that task before

moving on to other activities, such as taking new orders. Additionally, when faced

with multiple orders to prepare, he efficiently readies both orders before serving

them, rather than dealing with them individually, which optimizes his workflow.

 Happy Surprises during Development

Throughout the development and testing process, there were instances where

the NPCs pleasantly surprised the developers. For instance, sometimes the waiter

5.3 Use Case: Prometheus Tavern

86

would place an order out of the customer's reach. Instead of requiring manual

programming to handle this situation, the customer autonomously stood up, fetched

the drink, and returned to their seat, all executed by the system without explicit

instructions. Furthermore, if the customer's seat was moved farther from the table,

when they finished their drink, the system automatically planned for them to stand

up, place the empty mug on the table, and then return to their seat.

Chapter 6: Expert-Based Evaluation

87

Chapter 6

6 Expert-Based Evaluation
In this chapter the evaluation process of the Autonomia Framework will be

presented and discussed. A system’s evaluation can take multiple forms and it is

crucial to repeat this step multiple times throughout the design and development

process.

As far as this thesis is concerned, Autonomia is a newborn system, and the

current version is but a prototype. Even by the time of writing this thesis, it is an

undeniable fact that there exist a plethora of problems and limitations that need to

be stated and classified. This is a normal phenomenon in the field of R&D and

should be wholeheartedly accepted and acknowledged.

Bellow, we iterate on Autonomia’s self-reported, interview-based [92] and

expert-based heuristic evaluation [54], [93] taken place by the time of writing this

thesis, whose questions can be found in Appendix A and B. We conceptually

consider two parts in the evaluation; part one aiming to measure the behaviour

realism of Autonomia’s agents and part two aiming to judge the features and

architectural decisions of the framework. Both were executed on the Prometheus

Tavern case study.

6.1 Evaluation Part I

 The Process

The evaluation experiment can be divided into four different phases: a) the

game scene preparation, b) the introduction narrative, c) the execution of the

scenarios with the user, d) user-filled questionnaire, and e) an ending discussion.

To streamline the evaluation of different challenges affecting the NPCs, the

game scene was duplicated into multiple instances, with each instance having a

slightly different setup to test a different challenge.

Upon arriving, users were individually informed about the system's experimental

stage and were explicitly asked to assess the realism of the NPC’s behaviours from

a logical standpoint rather than an aesthetic one.

The scenarios showcased in this evaluation, are effectively the same challenges

from section 5.3.3, in the context of the Prometheus Tavern. While the experiments

were running, the evaluator would at sometimes narrate parts of the scenarios due

to certain aspects not being fully implemented. For instance, visual cues for a “dirty”

mug were not present, so relevant information had to be provided via Unity’s

inspector. Furthermore, the evaluator would be open to suggestions from the user,

6.1 Heuristic Evaluation

88

to further challenge the NPCs to adapt. Of course, only suggestions that would be

applicable were considered.

In the evaluation process followed a user-filled questionnaire containing seven

questions that could be rated on a scale from 1 to 5, where 1 signified "Strongly

Disagree" and 5 signified "Strongly Agree". Six out of seven questions were

focused on the realism of the behaviours of the NPCs, were the last one focused on

the reactions’ speeds of the agents. Lastly, an open discussion session was

conducted to collect the user's feedback and insights on the agents' behaviours,

perception, and responsiveness.

 Results

The evaluation results revealed several positive aspects of Autonomia's agent

behavior adaptation in dynamic environments. The users generally agreed that

Autonomia's agents were capable of adapting to changes made during runtime.

Specifically:

 Users almost unanimously agreed that the agents adapted well to their

changing environment, even when modifications were introduced during

gameplay.

 Users strongly agreed that NPCs adjusted their behavior based on the

specific objects and their available preferences within the tavern.

 Users noticed that NPCs changed their goal prioritization depending on

dynamic scene conditions. For example, they would prioritize cleaning

dirty mugs when many were present before taking new orders.

However, there were also some dissenting opinions:

 Some users disagreed that the agents had different reactions to various

stimuli. It was mentioned that the lack of animations and in-game sound

might have contributed to this opinion.

 Users generally disagreed when asked whether the agents responded

and planned quickly. This outcome was expected due to the nature of

the scene, which required agents to make real-time plans for almost

every action. The scene had a total of 40 nodes, each exposing 2-4

behaviours and the average NPC plan had a length of 5.

The results indicated that Autonomia's agents demonstrated adaptability to

changing environments, but there were areas where further improvement and user

feedback could be beneficial.

Chapter 6: Expert-Based Evaluation

89

6.2 Evaluation Part II
The second part of the evaluation involved the professional expertise of four

Unity developers, with three of them having experience specifically in game

development and R&D gamification. These individuals were considered ideal

candidates for the framework's intended user group, given their expertise and

background in the field.

 The Process

In this evaluation, the users were explained the system in its entirety, delving

into a technical analysis and demonstration of the available features and

architectural decisions of Autonomia. Each section of the system was accompanied

by examples from the existing codebase. In cases where users displayed a

heightened interest, the evaluator even extended the codebase with new examples

based on the user's suggestions, fostering an interactive and engaging process.

The primary areas of focus during this technical demonstration included: a) the

Memory, Perception and EventInterpreter modules, which constitute the theory of

mind approach of Autonomia, b) the module and injection mechanisms, c) the EBG

system, and lastly d) the editor tools, focusing mostly on the Expression Graph

Editor. In many points of the demonstration the user was encouraged to ask

questions regarding the system and why each decision was taken.

At the conclusion of the technical demonstration, an open-ended interview was

conducted with users, consisting of a total of 18 questions that spanned

functionality, features, system usability, performance, scalability, customization,

extendibility potential, and future improvements.

 Results

The second part of the expert-based evaluation identified several issues,

including some inherent to Autonomia and others that are relatively easier to

address. However, it also emphasized the significant strengths of the system, which

serve to mitigate the identified weaknesses. Table 6 summarizes the collective

findings for each category of questions.

6.2 Expert-Based Evaluation

90

Table 6: Extracted results from the expert-based evaluation.

Question Categories Heuristic

Overall Impressions

All experts highlighted that the system is exceptionally
complex and vast. For the system to actually be
applied, it would need careful planning and good
practices.

Upon initial inspection, it would be impossible to use by
someone inexperienced, but with comprehensive
documentation and enough time to familiarize oneself,
it would be as manageable as any other system
learned over time.

All experts agreed that the Autonomia Framework has
the potential to significantly enhance AI agent
behaviours. Implementing Autonomia in a future game
would introduce a fresh and innovative approach,
breathing more life into NPC agents compared to
contemporary industry games.

Functionality and
Features

Many experts identified the treatment of knowledge as
their favorite feature within Autonomia. They
appreciated how the system allows for generalized,
substantial communication of knowledge. The way
Memory interacted with Perception and Interpretations
was particularly commended and considered one of the
system's greatest and unique strengths. Additionally,
some experts viewed the system's freeform extensibility
as a valuable feature.

Regarding missing functionalities or features, all
experts underscored the significance of comprehensive
documentation and paradigms that would facilitate the
onboarding of new users to Autonomia. One expert
also mentioned the absence of emotional aspects in the
current agents as an area for potential improvement.

Usability

In response to more specific questions about usability,
most experts agreed that individuals with prior
experience using similar tools would have an easier
time comprehending the system. However, new users
would likely encounter challenges, especially when
dealing with specific abstract concepts.

Chapter 6: Expert-Based Evaluation

91

Among the three experts with experience in game
development, they found the terminology in the system
to be well-defined and structured. However, the latter
expert did identify some instances where terms were
used inappropriately.

All experts unanimously described the learning curve of
the system as exponential initially but becoming linear
or logarithmic as users gained more hands-on
experience.

Performance

Experts expressed that the NPCs in Prometheus
Tavern exhibited slow performance. However, after
gaining a technical understanding of the system's inner
workings, they recognized the reasons behind this
performance issue and suggested that performance
should be a more carefully considered aspect in future
games, even if it meant compromising the planning
capacity of NPCs.

There were no crashes during the evaluation. However,
some unexpected behaviors were observed. For
example, an NPC might serve a dirty mug to a
customer. Such occurrences were attributed to
implementation issues rather than problems with the
framework itself.

Integration and
Compatibility

All experts strongly agreed that the system is highly
capable of accommodating other subsystems,
emphasizing the framework's generalized and modular
nature.

Scalability

The general consensus regarding the scalability of the
system was that it heavily depends on the specific
implementation. Autonomia is a versatile tool that can
support a wide range of unique and complex functions.
However, without careful planning and the use of
specialized algorithms, it will most likely not scale well.

Experts could not pinpoint a core mechanism within
Autonomia that would inherently limit the scalability of
subsequent systems.

6.2 Expert-Based Evaluation

92

Customization and
Extensibility

All experts provided positive responses in this specific
category. As previously mentioned in other areas, they
believe the system is highly customizable and
extendable, whether through generalized expressions
or the module system.

Future Improvements

Among the most common responses were suggestions
for creating a manual complete with examples,
paradigms, and even video tutorials to facilitate user
understanding.

Additionally, experts recommended the development of
more visual tools for various other functionalities of the
system, such as visual programming of behaviours.

Comparison with
existing techniques

When compared to other techniques, experts noted that
the framework, despite its high complexity, provides
users with a well-structured pipeline to model and
integrate various AI techniques. It offers both the
theoretical and practical foundation for future
implementations to accomplish tasks that would have
been more challenging or resource-intensive without it.

Additionally, some experts pointed out that the value of
using Autonomia depends on the specific project at
hand. For simple, one-dimensional projects, using this
system may not be worthwhile due to its steep learning
curve and the presence of various subsystems, which
could be cumbersome. However, for those aiming to
create an open-ended, sandbox-style world with
dynamic agents, Autonomia would be a valuable
addition to the team's toolkit.

Chapter 7: Conclusions and Future Work

93

Chapter 7

7 Conclusions and Future Work

7.1 Conclusions
Over the past decade, a significant volume of research has been dedicated to

AI agents, with each endeavor addressing specific challenges related to enhancing

the believability of such agents. Despite successful advancements in various

aspects of this issue, the underlying problem remains unresolved. This is primarily

due to the multifaceted and highly complex nature of the challenge, necessitating a

unified approach that combines a diverse range of artificial intelligence techniques

and solutions. However, no previous work has provided a tool capable of fulfilling

this role.

This thesis has introduced Autonomia, an extendable and customizable

framework designed to enhance the believability of Non-Player Characters (NPCs).

Autonomia's approach centers on the modeling of a memory system that can

realistically evolve through an NPC's perception and understanding of the world,

leveraging the Theory of Mind as a foundational concept. From an engineering

standpoint, Autonomia's open-source nature aims to provide a shared foundation

for future research and development, with its modular architecture enabling different

teams of developers and researchers to contribute their unique expertise while

sharing their work for everyone to capitalize from, in an accessible manner.

Autonomia does not position itself as a complete and ready-made solution for all

problems, as this approach would not align with its open-source philosophy. Its aim

is to serve as an initial seed, a starting point for potential future advancements in

research to create more sophisticated systems. This thesis represents the first step

toward building a complex framework, with the hope that it may one day grow into a

thriving ecosystem of innovation and progress.

7.2 Future Work
Autonomia's future is filled with unlimited potential and possibilities. The

framework has demonstrated its promise through its modular nature, but, like any

other innovative system, it will benefit from the establishment of common standards

and protocols to guide its development and ensure coherence. This is a pivotal step

towards fulfilling the potential of Autonomia and creating an ecosystem of research

and innovation.

7.2 Future Work

94

 Documentation and Examples

As of this point, the expert-based evaluation showed the system to be extremely

complex and hard to use for someone unfamiliar with its already large codebase.

The immediate next step would be to document all the components contained in the

Autonomia.Core namespace as well as provide complete and comprehensive

examples of creating Modules, Behaviours, and Goals, Expressions,

Interpretations, and new Injection attributes. In addition, extra documentation

should be provided for the Unity Integration as it extends Autonomia.Core in various

ways, for example creating new expression nodes for the expression graph editor.

 Standardized Protocols and Design Principles

In the future development of Autonomia, there is a need to establish a

framework for evaluating protocols and interfaces for various aspects of agent

believability. For example, defining the characteristics of an emotionally driven AI

could lead to the creation of a generalized, community-accepted abstract module.

This abstract module can serve as an interface within Autonomia, allowing for the

integration of different implementations of emotional AI. Such an approach enables

seamless comparison and swapping of implementations in the same execution

environment, fostering a powerful comparison tool.

Additionally, the framework should include a comprehensive expression model

for common behaviors exposed by most nodes. For instance, behaviors like "grab"

or "walk" should have standardized preconditions and effects, providing a baseline

for modeling more complex behaviors in future iterations of Autonomia. This

approach ensures that the framework can accommodate a wide range of use cases

and encourages the development of a consistent and adaptable system.

 Refactored User Interface

The existing user interface, as integrated within Unity, was primarily designed

for functionality testing and served as a prototype. In future developments, there is

a need to create a more user-friendly and intuitive interface that goes beyond the

limitations of Unity Integration. This improved interface should be designed without

focusing on Unity, with the intention of being user-centric and accommodate

working with different engines or systems. Maintaining consistency and coherency

in the interface design will be crucial for ensuring a seamless user experience

across various environments and platforms.

UIs mentioned in this section include the Expression Graph Editor, the NodeRef

Chapter 7: Conclusions and Future Work

95

script, a more sophisticated debugger and more.

 Advanced Debugging Tools

In the context of this thesis, a basic node debugger was implemented. However,

for Autonomia to align with its modular and extensible goals, a more sophisticated

debugging system is required. Each module should incorporate support for custom

debugging information, extending beyond plain text. For example, the current

system lacks the capability to visually inspect an NPC's memory. An even more

valuable feature would be the ability for framework users to make real-time changes

to the system during application execution, facilitating faster testing iterations and

debugging.

 Player, Dialogues and Emotion

The way Autonomia currently is, it would be simple addition to extend it with a

dialogue system that utilizes the NPC’s memory to allow them to freely converse.

Already, simply queries in a cypher-like syntax can be executed. It would not be far

stretched to allow potential players to converse with the NPCs through machine

learning assisted prompts. It would be a spectacle to observe emotional agents

freely conversing, behaving, and planning their goals while exchanging information

regarding their experiences and daily lives.

 More Case Studies

To prove Autonomia’s efficiency as a tool, more cases studies need to be

performed. This would allow for a better understanding of the tool itself, and even

birth more design principles and guidelines for future generations.

96

Bibliography
[1] H. Warpefelt, M. Johansson, and H. Verhagen, Analyzing the believability of

game character behavior using the Game Agent Matrix. 2013.
[2] H. Warpefelt and H. Verhagen, “A model of non-player character believability,”

J. Gaming Virtual Worlds, vol. 9, pp. 39–53, Mar. 2017, doi:
10.1386/jgvw.9.1.39_1.

[3] H. Warpefelt, “The Non-Player Character : Exploring the believability of NPC
presentation and behavior,” 2016, Accessed: Oct. 09, 2023. [Online].
Available: https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-128079

[4] R. Rogers, J. Woolley, B. Sherrick, N. D. Bowman, and M. B. Oliver, “Fun
Versus Meaningful Video Game Experiences: A Qualitative Analysis of User
Responses,” Comput. Games J., vol. 6, no. 1, pp. 63–79, Jun. 2017, doi:
10.1007/s40869-016-0029-9.

[5] C. A. Oswald, C. Prorock, and S. M. Murphy, “The perceived meaning of the
video game experience: An exploratory study,” Psychol. Pop. Media Cult., vol.
3, no. 2, pp. 110–126, 2014, doi: 10.1037/a0033828.

[6] M. S. Lee and C. Heeter, “Cognitive Intervention and Reconciliation - NPC
Believability in Single-Player RPGs,” Int. J. Role-Play., no. 5, Art. no. 5, Jan.
2015, doi: 10.33063/ijrp.vi5.236.

[7] F. D. Schönbrodt and J. B. Asendorpf, “The Challenge of Constructing
Psychologically Believable Agents,” J. Media Psychol., vol. 23, no. 2, pp. 100–
107, Jan. 2011, doi: 10.1027/1864-1105/a000040.

[8] D. Brown, The suspension of Disbelief in Videogames. 2016. doi:
10.13140/RG.2.1.3175.8968.

[9] M. S. Lee and C. Heeter, “What do you mean by believable characters?: The
effect of character rating and hostility on the perception of character
believability,” J. Gaming Virtual Worlds, vol. 4, no. 1, pp. 81–97, Mar. 2012,
doi: 10.1386/jgvw.4.1.81_1.

[10] E. Arts, “The Sims Video Games - Official EA Site,” Electronic Arts Inc.
Accessed: Sep. 18, 2023. [Online]. Available: https://www.ea.com/games/the-
sims

[11] “Sims AI (Autonomy) Issues :: The SimsTM 4 General Discussions.” Accessed:
Oct. 28, 2023. [Online]. Available:
https://steamcommunity.com/app/1222670/discussions/0/3172198151262339
776/

[12] Professional-Ad-7032, “Sim AI is a piece of shit,” r/Sims4. Accessed: Oct. 28,
2023. [Online]. Available:
www.reddit.com/r/Sims4/comments/qrpf88/sim_ai_is_a_piece_of_shit/

[13] “Mass EffectTM Legendary Edition - EA Official Site.” Accessed: Sep. 18, 2023.
[Online]. Available: https://www.ea.com/games/mass-effect/mass-effect-
legendary-edition

[14] M. Goldberg, “The Mass Effect 3 Ending Wasn’t the Game’s Biggest Problem,”
Collider. Accessed: Oct. 28, 2023. [Online]. Available:
https://collider.com/mass-effect-3-ending-problems/

[15] “Mass Effect: Andromeda Review,” Giant Bomb. Accessed: Oct. 28, 2023.
[Online]. Available: https://www.giantbomb.com/reviews/mass-effect-

97

andromeda-review/1900-762/
[16] “Detroit: Become Human | Official Site | Quantic Dream.” Accessed: Sep. 18,

2023. [Online]. Available: https://www.quanticdream.com/en/detroit-become-
human

[17] K. Orland, “Detroit: Become Human review: Robotic in all of the wrong ways,”
Ars Technica. Accessed: Oct. 28, 2023. [Online]. Available:
https://arstechnica.com/gaming/2018/05/detroit-become-human-review-a-lack-
of-humanity/

[18] M. H. published, “Detroit: Become Human review,” pcgamer. Accessed: Oct.
28, 2023. [Online]. Available: https://www.pcgamer.com/detroit-become-
human-review/

[19] I. Granic, A. Lobel, and R. C. M. E. Engels, “The benefits of playing video
games,” Am. Psychol., vol. 69, no. 1, pp. 66–78, 2014, doi:
10.1037/a0034857.

[20] I. Spence and J. Feng, “Video Games and Spatial Cognition,” Rev. Gen.
Psychol., vol. 14, no. 2, pp. 92–104, Jun. 2010, doi: 10.1037/a0019491.

[21] D. Bavelier, R. L. Achtman, M. Mani, and J. Föcker, “Neural bases of selective
attention in action video game players,” Vision Res., vol. 61, pp. 132–143, May
2012, doi: 10.1016/j.visres.2011.08.007.

[22] C. Dweck and D. Molden, “Self Theories: Their Impact on Competence
Motivation and Acquisition,” 2005, pp. 122–140.

[23] J. L. Sherry, “Flow and Media Enjoyment,” Commun. Theory, vol. 14, no. 4,
pp. 328–347, Nov. 2004, doi: 10.1111/j.1468-2885.2004.tb00318.x.

[24] J. McGonigal, Reality Is Broken: Why Games Make Us Better and How They

Can Change the World. Penguin, 2011.
[25] A. Suh, C. Wagner, and L. Liu, “The Effects of Game Dynamics on User

Engagement in Gamified Systems,” in 2015 48th Hawaii International

Conference on System Sciences, HI, USA: IEEE, Jan. 2015, pp. 672–681. doi:
10.1109/HICSS.2015.87.

[26] “Enhancing User Engagement through Gamification.” Accessed: Oct. 10,
2023. [Online]. Available:
https://www.tandfonline.com/doi/epdf/10.1080/08874417.2016.1229143?need
Access=true

[27] X. Li, A. Sigov, L. Ratkin, L. A. Ivanov, and L. Li, “Artificial intelligence
applications in finance: a survey,” J. Manag. Anal., vol. 0, no. 0, pp. 1–17,
2023, doi: 10.1080/23270012.2023.2244503.

[28] “Artificial Intelligence in Education: A Review | IEEE Journals & Magazine |
IEEE Xplore.” Accessed: Oct. 14, 2023. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9069875

[29] P. Maes, “Artificial life meets entertainment: lifelike autonomous agents,”
Commun. ACM, vol. 38, no. 11, pp. 108–114, Nov. 1995, doi:
10.1145/219717.219808.

[30] M. Choudhury, S. Prabhu, A. K. Sabri, and H. A. Marhoon, “Impact of artificial
intelligence (AI) in the media and entertainment industry,” AIP Conf. Proc., vol.
2736, no. 1, p. 060012, Sep. 2023, doi: 10.1063/5.0171147.

[31] Y. Mintz and R. Brodie, “Introduction to artificial intelligence in medicine,”
Minim. Invasive Ther. Allied Technol., vol. 28, no. 2, pp. 73–81, Mar. 2019,

98

doi: 10.1080/13645706.2019.1575882.
[32] M. Raj and R. Seamans, “Primer on artificial intelligence and robotics,” J.

Organ. Des., vol. 8, no. 1, p. 11, May 2019, doi: 10.1186/s41469-019-0050-0.
[33] O. Zawacki-Richter, V. I. Marín, M. Bond, and F. Gouverneur, “Systematic

review of research on artificial intelligence applications in higher education –
where are the educators?,” Int. J. Educ. Technol. High. Educ., vol. 16, no. 1, p.
39, Oct. 2019, doi: 10.1186/s41239-019-0171-0.

[34] K. Shaukat Dar et al., “The Impact of Artificial intelligence and Robotics on the
Future Employment Opportunities,” Trends Comput. Sci. Inf. Technol., Sep.
2020, doi: 10.17352/tcsit.000022.

[35] R. Bogue, “The role of robots in entertainment,” Ind. Robot Int. J. Robot. Res.

Appl., vol. 49, no. 4, pp. 667–671, Jan. 2022, doi: 10.1108/IR-02-2022-0054.
[36] G. N. Yannakakis, “Game AI revisited,” in Proceedings of the 9th conference

on Computing Frontiers, in CF ’12. New York, NY, USA: Association for
Computing Machinery, May 2012, pp. 285–292. doi:
10.1145/2212908.2212954.

[37] B. Suits, “What is a Game?,” Philos. Sci., vol. 34, no. 2, pp. 148–156, Jun.
1967, doi: 10.1086/288138.

[38] J. Stenros, “The Game Definition Game: A Review,” Games Cult., vol. 12, no.
6, pp. 499–520, Sep. 2017, doi: 10.1177/1555412016655679.

[39] K. Claypool and M. Claypool, “On frame rate and player performance in first
person shooter games,” Multimed. Syst, vol. 13, pp. 3–17, Jul. 2007, doi:
10.1007/s00530-007-0081-1.

[40] V.-M. Karhulahti, “Suspending Virtual Disbelief: A Perspective on Narrative
Coherence,” Nov. 2012, doi: 10.1007/978-3-642-34851-8_1.

[41] E. Adams, Fundamentals of Game Design. New Riders, 2013.
[42] “Current AI in games. A Review.” Accessed: Oct. 09, 2023. [Online]. Available:

https://eprints.qut.edu.au/45741/1/AJIIPS_paper.pdf
[43] M. Fernández, “Automata and Turing Machines,” in Models of Computation:

An Introduction to Computability Theory, M. Fernández, Ed., in Undergraduate
Topics in Computer Science. , London: Springer, 2009, pp. 11–32. doi:
10.1007/978-1-84882-434-8_2.

[44] “Nimrod (computer),” Wikipedia. Sep. 02, 2023. Accessed: Oct. 09, 2023.
[Online]. Available:
https://en.wikipedia.org/w/index.php?title=Nimrod_(computer)&oldid=1173418
001

[45] “Spacewar!,” Wikipedia. Aug. 24, 2023. Accessed: Oct. 09, 2023. [Online].
Available:
https://en.wikipedia.org/w/index.php?title=Spacewar!&oldid=1171970547

[46] D. Jagdale, “Finite State Machine in Game Development,” pp. 384–390, Oct.
2021, doi: 10.48175/IJARSCT-2062.

[47] M. Pirovano, “The use of Fuzzy Logic for Artificial Intelligence in Games”.
[48] K. Dill, E. R. Pursel, P. Garrity, and G. Fragomeni, “Design Patterns for the

Configuration of Utility-Based AI,” 2012.
[49] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving Behaviour Trees for the

Commercial Game DEFCON,” Apr. 2010, pp. 100–110. doi: 10.1007/978-3-
642-12239-2_11.

99

[50] D. I. B. March 11 and 2005, “GDC 2005 Proceeding: Handling Complexity in
the Halo 2 AI,” Game Developer. Accessed: Oct. 09, 2023. [Online]. Available:
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-
handling-complexity-in-the-i-halo-2-i-ai

[51] T. Bylander, “The computational complexity of propositional STRIPS
planning,” Artif. Intell., vol. 69, no. 1, pp. 165–204, Sep. 1994, doi:
10.1016/0004-3702(94)90081-7.

[52] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the application of
theorem proving to problem solving,” Artif. Intell., vol. 2, no. 3, pp. 189–208,
Dec. 1971, doi: 10.1016/0004-3702(71)90010-5.

[53] H. Kautz, B. Selman, and J. Hoffmann, “SatPlan: Planning as Satisfiability”.
[54] B. Bonet and H. Geffner, “Planning as Heuristic Search: New Results,” in

Recent Advances in AI Planning, S. Biundo and M. Fox, Eds., in Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2000, pp. 360–372.
doi: 10.1007/10720246_28.

[55] “STRIPS, a retrospective.” Accessed: Oct. 09, 2023. [Online]. Available:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=076ae14bfc
68acdbaf2ab24913e152d49540e988

[56] J. Orkin, “Three States and a Plan: The A.I. of F.E.A.R.,” 2006.
[57] “Goal-Oriented Action Planning (GOAP).” Accessed: Oct. 10, 2023. [Online].

Available: https://alumni.media.mit.edu/~jorkin/goap.html
[58] “Transformers: War for Cybertron,” Wikipedia. Jul. 11, 2023. Accessed: Oct.

10, 2023. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Transformers:_War_for_Cybertron&
oldid=1164766388

[59] “AI Action Planning on Assassin’s Creed Odyssey and Immortals Fenyx
Rising.” Accessed: Oct. 09, 2023. [Online]. Available:
https://www.gdcvault.com/play/1027004/AI-Action-Planning-on-Assassin

[60] I. Georgievski and M. Aiello, “HTN planning: Overview, comparison, and
beyond,” Artif. Intell., vol. 222, pp. 124–156, May 2015, doi:
10.1016/j.artint.2015.02.002.

[61] K. Erol, J. Hendler, and D. Nau, “Complexity Results for HTN Planning,” Ann.
Math. Artif. Intell., vol. 18, Apr. 2003, doi: 10.1007/BF02136175.

[62] P. Zhao, “Probabilistic contingent planning based on HTN for high-quality
plans.” arXiv, Sep. 28, 2023. doi: 10.48550/arXiv.2308.06922.

[63] D. S. Nau et al., “SHOP2: An HTN Planning System,” J. Artif. Intell. Res., vol.
20, pp. 379–404, Dec. 2003, doi: 10.1613/jair.1141.

[64] D. Nau, Y. Cao, A. Lotem, and Hž. Mu, “SHOP: Simple Hierarchical Ordered
Planner”.

[65] D. Nau et al., “Applications of SHOP and SHOP2,” IEEE Intell. Syst., vol. 20,
no. 2, pp. 34–41, Mar. 2005, doi: 10.1109/MIS.2005.20.

[66] G. Skinner and T. Walmsley, “Artificial Intelligence and Deep Learning in
Video Games A Brief Review,” in 2019 IEEE 4th International Conference on
Computer and Communication Systems (ICCCS), Feb. 2019, pp. 404–408.
doi: 10.1109/CCOMS.2019.8821783.

[67] OpenAI et al., “Dota 2 with Large Scale Deep Reinforcement Learning.” arXiv,
Dec. 13, 2019. doi: 10.48550/arXiv.1912.06680.

100

[68] K. Kunanusont, S. M. Lucas, and D. Pérez-Liébana, “General Video Game AI:
Learning from screen capture,” in 2017 IEEE Congress on Evolutionary

Computation (CEC), Jun. 2017, pp. 2078–2085. doi:
10.1109/CEC.2017.7969556.

[69] J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein,
“Generative Agents: Interactive Simulacra of Human Behavior.” arXiv, Aug. 05,
2023. doi: 10.48550/arXiv.2304.03442.

[70] J. McCoy, M. Treanor, B. Samuel, B. Tearse, M. Mateas, and N. Wardrip-
Fruin, “Authoring Game-based Interactive Narrative using Social Games and
Comme il Faut”.

[71] M. Guimaraes, P. Santos, and A. Jhala, “CiF-CK: An architecture for social
NPCS in commercial games,” in 2017 IEEE Conference on Computational
Intelligence and Games (CIG), Aug. 2017, pp. 126–133. doi:
10.1109/CIG.2017.8080425.

[72] J. Dias, S. Mascarenhas, and A. Paiva, “FAtiMA Modular: Towards an Agent
Architecture with a Generic Appraisal Framework,” in Emotion Modeling:

Towards Pragmatic Computational Models of Affective Processes, T. Bosse,
J. Broekens, J. Dias, and J. van der Zwaan, Eds., in Lecture Notes in
Computer Science. , Cham: Springer International Publishing, 2014, pp. 44–
56. doi: 10.1007/978-3-319-12973-0_3.

[73] S. Mascarenhas, M. Guimarães, P. A. Santos, J. Dias, R. Prada, and A. Paiva,
“FAtiMA Toolkit -- Toward an effective and accessible tool for the development
of intelligent virtual agents and social robots.” arXiv, Mar. 04, 2021. Accessed:
Sep. 14, 2023. [Online]. Available: http://arxiv.org/abs/2103.03020

[74] J. Orkin, “Symbolic Representation of Game World State: Toward Real-Time
Planning in Games”.

[75] J. Kessing, T. Tutenel, and R. Bidarra, Designing Semantic Game Worlds.
2012. doi: 10.1145/2538528.2538530.

[76] N. Afonso and R. Prada, “Agents That Relate: Improving the Social
Believability of Non-Player Characters in Role-Playing Games,” in
Entertainment Computing - ICEC 2008, S. M. Stevens and S. J. Saldamarco,
Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2009, pp. 34–45. doi: 10.1007/978-3-540-89222-9_5.

[77] A. M. Leslie, O. Friedman, and T. P. German, “Core mechanisms in ‘theory of
mind,’” Trends Cogn. Sci., vol. 8, no. 12, pp. 528–533, Dec. 2004, doi:
10.1016/j.tics.2004.10.001.

[78] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Qin,
“An Integrated Theory of the Mind.,” Psychol. Rev., vol. 111, no. 4, pp. 1036–
1060, 2004, doi: 10.1037/0033-295X.111.4.1036.

[79] H. de Weerd, R. Verbrugge, and B. Verheij, “How much does it help to know
what she knows you know? An agent-based simulation study,” Artif. Intell., vol.
199–200, pp. 67–92, Jun. 2013, doi: 10.1016/j.artint.2013.05.004.

[80] R. Lämmel, “Foundations of Tree- and Graph-Based Abstract Syntax,” in
Software Languages: Syntax, Semantics, and Metaprogramming, R. Lämmel,
Ed., Cham: Springer International Publishing, 2018, pp. 87–108. doi:
10.1007/978-3-319-90800-7_3.

[81] Rockstar Games, “Red Dead Redemption 2.”

101

[82] “Projects · GitLab,” GitLab. Accessed: Oct. 28, 2023. [Online]. Available:
https://gitlab.com/

[83] “Zacharias Pervolarakis / Autonomia Framework · GitLab,” GitLab. Accessed:
Oct. 28, 2023. [Online]. Available: https://gitlab.com/zackper/Autonomia-
Framework

[84] BillWagner, “C# docs - get started, tutorials, reference.” Accessed: Oct. 28,
2023. [Online]. Available: https://learn.microsoft.com/en-us/dotnet/csharp/

[85] “Neo4j Desktop.” Accessed: Sep. 16, 2023. [Online]. Available:
https://neo4j.com/download/

[86] “Neo4j Graph Database & Analytics – The Leader in Graph Databases,”
Graph Database & Analytics. Accessed: Sep. 16, 2023. [Online]. Available:
https://neo4j.com/

[87] “Unity Real-Time Development Platform | 3D, 2D, VR & AR Engine,” Unity.
Accessed: Sep. 16, 2023. [Online]. Available: https://unity.com

[88] “Among Us - Εφαρμογές στο Google Play.” Accessed: Oct. 27, 2023.
[Online]. Available:
https://play.google.com/store/apps/details?id=com.innersloth.spacemafia&hl=e
l

[89] “Play Fall Guys and stumble towards greatness!” Accessed: Oct. 27, 2023.
[Online]. Available: https://www.fallguys.com/en-US/

[90] “Hearthstone.” Accessed: Oct. 27, 2023. [Online]. Available:
https://hearthstone.blizzard.com/en-us

[91] “Blind Forest - Ori.” Accessed: Oct. 27, 2023. [Online]. Available:
https://www.orithegame.com/blind-forest/

[92] “Using psychophysiological techniques to measure user experience with
entertainment technologies.” Accessed: Oct. 28, 2023. [Online]. Available:
https://www.tandfonline.com/doi/epdf/10.1080/01449290500331156?needAcc
ess=true

[93] A. Karoulis, S. Demetriadis, and A. Pombortsis, “Comparison of expert-based
and empirical evaluation methodologies in the case of a CBL environment: the
‘Orestis’ experience,” Comput. Educ., vol. 47, no. 2, pp. 172–185, Sep. 2006,
doi: 10.1016/j.compedu.2004.09.002.

102

Appendix A
Expert-Based Evaluation Part I Questionnaire

1. The agents were capable of adapting to moving objects in the scene.

2. NPCs responded in the same way either for audio or visual cues.

3. The NPCs would alter their behaviour based on the objects of the

environment.

4. The NPCs were unable to adapt to the changes in the environment while the

game was running.

5. The NPCs seemed to behave based on their preferences.

6. The NPCs would not alter their behaviours based on priorities or goals.

7. I would say the agents responded quickly.

Questions were rated from 1 to 5, where 1 represents “Strongly Disagree” where 5

means “Strongly Agree”.

103

Appendix B
Expert-Based Evaluation Part II Questionnaire

Overall Impressions

1. What are your initial impressions of the programming framework?
2. On a scale of 1 to 10, how would you rate the framework's overall usability.
3. Does Autonomia have the potential to enhance adaptability and believability

of AI agents?

Functionality and Features

1. Which specific features or functionalities did you find most valuable or
innovative?

2. Were there any missing features or functionalities that you expected to be
present?

3. Can you describe any difficulties or challenges you encountered while using
specific features?

Usability

1. Were you able to easily understand and navigate through the framework's
user interface?

2. Did you encounter any confusing terminology?
3. How would you rate the learning curve for someone new to the framework?

Performance

1. How did the framework perform in terms of speed and responsiveness for
your specific use cases?

2. Did you encounter any crashes or unexpected behavior?

Integration and Compatibility

1. Would you believe it would be possible to integrate other system’s within
Autonomia?

Scalability
1. Based on your personal experience, do you believe the system would be

scalable?

Customization and Extensibility

1. Do you believe you would be able to customize or extend the framework to
meet your specific needs?

2. Did you encounter any limitations when trying to modify or extend the
framework's functionality?

104

Future Improvements
1. What improvements or additional features would you like to see in future

versions of the framework?

Comparison

1. What unique advantages or disadvantages do you see in this framework?

Recommendation

1. Would you recommend this framework to your colleagues or peers in the
industry? Why or why not?

