
University of Crete
Department of Computer Science

Outlier Detection over Data Streams using
Statistical Modeling and Density

Neighborhoods

MSc Thesis

Dimitrios Velegrakis

Heraklion

January 2009

Abstract

In the last few years, Outlier detection has become an important problem in many

industrial and financial applications. Outliers are usually caused by system faults, a sudden

or an unexpected change in the existing behavior and human errors. This problem is further

complicated by the fact that in many cases, outliers have to be detected from data streams

that arrive at an enormous pace. Despite the enormous amount of data being collected in

many scientific and commercial applications, particular events of interests are still quite

rare. These rare events, very often called outliers or anomalies, are defined as events

that occur very infrequently. Detection of outliers has recently gained a lot of attention

in many domains, ranging from video surveillance and intrusion detection to fraudulent

transactions, web usage logs and direct marketing. Data mining techniques developed for

this problem are based on both supervised and unsupervised learning.

We propose a novel unsupervised, non-parametric and incremental algorithm. This

novel algorithm uses the sliding window model, combines two unsupervised techniques,

namely, statistical modeling and nearest neighbor searching, achieve high precision and

recall and is efficient both in time execution and memory consumption.

In this thesis, we propose a SNNOS(Statistical Nearest Neighbor Outlier Stream)

algorithm which uses the sliding-window model and which takes the advantages of each

technique, aiming to get results with high accuracy, efficient time execution and low mem-

ory consumption. To this direction, we propose a novel framework which is separated

into two stages,the statistical and the density stage. In the statistical stage, our aim is

to estimate approximately the distribution of data. We use kernel density functions to

estimate the probability densities for data points. Then, we employ ten continuous dis-

tributions functions and compute the probability density for data points of each function

using the technique of Maximum-Likelihood Estimation. We ?nd the distribution which

has a probability density very close to the probability density of kernel density function.

In the density stage, we propose a scoring function which is based to nearest neighbor

algorithm and is called DNO (Density Neighborhood Outlierness).

Acknowledgements

First of all I would like to thank my Professor Dimitrio Plexousaki, my supervisor, for

his continuous guidance and encouragement during this work.

I sincerely thank my friends from the Information Systems Laboratory at the Insti-

tute of Computer Science (ICS) of the Foundation for Research and Technology Hellas

(FO.R.T.H.) for their friendship and the pleasant moments we spent. Moreover, I want

to thank my friends Christo, Giorgo and Milto from Network System Laboratory for their

important and useful advice during my work.

I am sincerely indebted to my parents Giorgo and Maria and my brother Yannis for

all the encouragement they have given to me. Their constant support and encouragement

have really brought me here.

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Thesis outline . 3

2 Data Streams 5

2.1 Data Stream Model . 5

2.2 Time Windows . 6

2.2.1 Sliding Windows . 6

2.2.2 Landmark Windows . 7

2.2.3 Tilted Windows . 7

2.3 Comparison of windows . 8

3 Outlier Detection 11

3.1 Characteristics of Outliers . 11

3.2 Characteristics of Outlier Detection Approaches 12

3.3 Taxonomy of Outlier Detection Methods 14

3.3.1 Classification-based Method . 14

3.3.2 Nearest Neighbor-based Method . 19

3.3.3 Cluster-based Method . 24

3.3.4 Statistical-based Method . 28

3.3.5 Information Theory-based Outlier Method 35

3.3.6 Spectral-based Method . 36

3.4 Summary . 38

iii

4 Outlier Detection over Data Streams 40

4.1 Incremental Local Outlier Detection over Data Streams 41

4.1.1 Introduction . 41

4.1.2 Methodology . 42

4.2 Frequent Pattern Based Outlier Detection over Data Streams 47

4.2.1 Introduction . 47

4.2.2 Methodology . 49

4.3 Online Cluster Based Outlier Detection over Data Streams 50

4.3.1 Introduction . 50

4.3.2 Methodology . 50

5 Statistical Nearest Neighbor Outlier Stream Algorithm 54

5.1 Problem definition and Basic formulation 54

5.2 Statistical modeling . 55

5.2.1 Kernel Density Estimation . 55

5.2.2 Maximum Likelihood Estimation 56

5.2.3 Our proposed method for combining the KDE and MLE 59

5.3 Nearest Neighbor . 60

5.3.1 Density-Based Outlierness . 60

5.3.2 Incremental Strategy . 61

5.4 Statistical Nearest Neighbor Outlier Stream Algorithm 62

6 Performance Evaluation and Experimental Results 65

6.1 Description of Datasets . 65

6.2 ROC curves . 66

6.3 Precision and Recall . 67

6.4 Precision, Recall and Execution Time for SNNOS 68

6.4.1 Comparison of SNNOS for various window sizes for sliding window

model . 69

6.4.2 Incremental vs Non-Incremental Implementation 69

6.4.3 Statistical vs Nearest Neighbor approach 71

iv

6.5 Real Datasets . 72

6.5.1 Meteorological Dataset . 74

6.5.2 Shuttle Dataset . 75

6.5.3 Letter Dataset . 75

6.6 Synthetic Dataset . 77

6.7 Comparing SNNOS with ILOF . 77

6.8 Memory Consumption . 83

7 Conclusion and Future work 84

v

List of Tables

6.1 Confusion matrix defines four possible scenarios when classifying class C . 67

6.2 Comparison of time execution for the four datasets and for five different

sizes of windows, 100, 200, 300, 400 and 500 69

6.3 Comparison of precision for the four datasets and for five different sizes of

windows, 100, 200, 300, 400 and 500 . 70

6.4 Comparison of recall for the four datasets and for five different sizes of

windows, 100, 200, 300, 400 and 500 . 70

6.5 Nearest Neighbor part average time execution of SNNOS and for window

sizes 100 and 200 . 72

6.6 Statistical part time execution of SNNOS and for window sizes 100 and 200 72

6.7 Precision and Recall of SNNOS for window size 200 using only Statistical

Part . 73

6.8 Precision and Recall of SNNOS for window size 200 using only Nearest

Neighbor Part . 73

6.9 Relative Decrement in performance of SNNOS for window size 200 . . . 73

6.10 Comparison of time execution for SNNOS and ILOF 79

6.11 Comparison of time execution for SNNOS and Hybrid − ILOF with in-

cremental step for SNNOS equal to 50 and incremental step for Hybrid−
ILOF equal to 1 . 79

6.12 Comparison of time execution for SNNOS and ILOF with the same incre-

mental step for SNNOS, ILOF and Hybrid− ILOF equal to 1 79

6.13 Comparison of Precision for SNNOS, ILOF and Hybrid− ILOF . . . 79

6.14 Comparison of Recall for SNNOS and ILOF and Hybrid− ILOF . . . 80

vi

6.15 Comparison of AUC values for SNNOS and ILOF and Hybrid− ILOF . 80

vii

List of Figures

2.1 Sliding window . 7

2.2 Landmark window . 8

2.3 Natural Tilted window . 8

2.4 Logarithmic Tilted window . 9

2.5 Landmark Window Model . 10

2.6 Sliding Window Model . 10

3.1 Multi-class Anomaly Detection . 15

3.2 One-class Anomaly Detection . 16

3.3 Local density based techniques over Global density based techniques. . . . 22

4.1 The general framework for insertion of data record and computing its LOF

value in incremental LOF algorithm. 44

4.2 Update of k-nearest neighbor distance upon insertion of a new record . . . 44

4.3 The framework for deletion of data record in incremental LOF method. . . 46

4.4 Update of k-nearest neighbor distance upon deletion of record pc 46

4.5 The DSFindFPOF algorithm . 49

4.6 The CBOD algorithm . 53

6.1 The ROC curves for different detection algorithms 68

6.2 Time execution of the incremental and non-incremental implementation,

using 1000 data points and windows of sizes 100 and 200. 71

6.3 Outlier Validation for the Meteorological Dataset for the time period [1, 100] 74

6.4 ROC Curve for DNO for the Meteorological Dataset 75

viii

6.5 ROC Curve for DNO for the Shuttle Dataset 76

6.6 ROC Curve for DNO for the Letter Dataset 76

6.7 ROC Curve for DNO for the Synthetic Dataset 77

6.8 Comparison of ROC Curves for ILOF and DNO for Letter Dataset 80

6.9 Comparison of ROC Curves for ILOF and DNO for Letter dataset with

different sizes of windows for DNO . 81

6.10 Comparison of SNNOS and ILOF on how the value of AUC is related to the

speedup of execution time . 81

6.11 Comparison of SNNOS and ILOF on how the value of precision is related

to the speedup of execution time . 82

6.12 Comparison of SNNOS and ILOF on how the value of recall is related to

the speedup of execution time . 82

ix

Chapter 1

Introduction

1.1 Motivation

In recent years, we have witnessed the widely recognized phenomenon of high speed data

streams. A data stream is a massive real-time continuous sequence of data elements. The

typical applications include sensor network, stock tickers, network traffic measurement,

click streams and telecommunication call records. The main challenge of these applications

is that the data element arrives continuously and the volume of the data is so large that

they can hardly be stored in the main memory (even on the local disk) for online processing,

and sometimes the system has to drop some data elements due to the high arriving speed.

The data in the traditional database applications are organized on the hard disk by the

Database Management System(DBMS) so the queries from the users can be answered

by scanning the indices or the whole data set. Considering of the characteristics of the

stream applications, it is not feasible to simply load the arriving data elements onto the

DBMS and operate on them because the traditional DBMS are not designed for rapid and

continuous loading of individual data element and they do not directly support continuous

queries that are typical of data stream applications.

Data mining, as a powerful knowledge discovery tool, aims at modeling relationships

and discovering hidden patterns in large databases. Among four typical data mining tasks,

outlier detection is the closest to the initial motivation behind data mining than predictive

modeling, cluster analysis and association analysis. Outlier detection has been a widely

Chapter 1. Introduction 2

researched problem in several knowledge disciplines, including statistics, data mining and

machine learning. It is also known as anomaly detection [2][21][64] and novelty detection

[18][48] in some literature. Being called differently, all these definitions aim at identifying

instances of unusual behavior when compared to the majority of observations. Coming

across various definitions of an outlier, it seems that no universally accepted definition

exists.Two classical definitions of an outlier include Hawkins[29] and Barnett and Lewis[9].

According to the former, ”an outlier is an observation, which deviates so much from other

observations as to arouse suspicions that it was generated by a different mechanism”, where

as the latter defines ”an outlier is an observation (or subset of observations) which appears

to be inconsistent with the remainder of that set of data”. The term ”outlier” can generally

be defined as an observation that is significantly different from the other values in a data

set.

Although, data mining is a well-established field in itself, direct application of mining

algorithms to data streams is often unsuitable due to the fact that it is impossible to

maintain all the stream elements in memory. Moreover, as new data arrives online, the

mining algorithms must adapt to the changing trends. Hence, approximation and adap-

tivity are the key ingredients of any data stream mining algorithm. Data stream mining

has received more of the researchers attention in the past few years. Some of the most

common stream-mining tasks include:

• Multi-dimensional on-line analysis.

• Mining spatial and temporal correlations in streaming data trends.

• Mining novelty, outliers and anomalous behavior.

• On-line adaptive clustering and classification.

• Frequent pattern matching.

Based on real-life applications, it can clearly be seen that outlier detection is a quite

critical part of any data analysis. In the detection of outliers, there is a universally accepted

assumption that the number of anomalous data is considerably smaller than normal data

in a data set. Thus, a straightforward approach to identify outliers is to construct a profile

Chapter 1. Introduction 3

of the normal behaviors of the data and then use certain measure methods to calculate

the degree to which data deviate from the profile in a data set. Those instances that

significantly deviate from the profile are declared as outliers. However, existing methods

using pre-labeled data to build a normal model in a training phase before detecting outliers

are very challenging since not all possible normal behaviors have been encompassed within

the normal model.

1.2 Objectives

In this thesis, we present our research on outlier detection methods, which target on sliding-

window data streams. We propose an efficient, novel, nonparametric and unsupervised

outlier detection algorithm that require no prior knowledge of data. Our algorithm is called

SNNOS (Statistical Nearest Neighbor Outlier Stream) and consists of three phases. In

the first phase we store temporarily the data which arrives in a cache memory manager.

In the second phase, we use a novel and efficient strategy which combines two methods

of statistical learning, the Kernel Density Estimation(KDE)method and the Maximum

Likelihood Estimation(MLE) method. The KDE method uses kernel density functions to

estimate probability densities for each data point in the window. In the MLE method, we

use ten continuous distributions and for each of them we estimate the probability density for

each data point in the window using Maximum Likelihood Estimation. Then, we estimate

approximately the distribution of data by comparing the probability densities. Finally,

we compute two quantiles:lower-quantile with parameter 0.05 and the upper-quantile with

parameter 0.95, which will be used as thresholds for finding outliers. The third phase,

uses nearest-neighbor search algorithm to compute a density scoring function. The density

scoring function is called DNO (Density Neighborhood Outlierness). The intuition behind

the DNO is that we want to suggest an alternative and efficient density scoring function

for the computation of neighborhood’s density.

1.3 Thesis outline

The thesis is structured as follows:

Chapter 1. Introduction 4

• Chapter 2 presents the main concepts of data streams.

• Chapter 3 describes outliers and presents a taxonomy of the most known approaches

for outlier detection.

• Chapter 4 discusses the related work to the specific domain of outlier detection over

data streams.

• Chapter 5 describes the novel algorithm SNNOS (Statistcal Nearest Neighbor Outlier

Stream) which consists of two parts the statistical and the nearest neighbor. Also,

we explain the intuition behind the use of each part.

• Chapter 6 presents a set of experiments that we performed in order to evaluate the

basic characteristics of our algorithm. We also discuss the results and arrive to impor-

tant conclusions regarding the performance of the algorithm and their extensibility.

• Chapter 7 summarizes our work and its contributions and presents some extensibility

suggestions for our algorithm.

Chapter 2

Data Streams

2.1 Data Stream Model

In the data stream model, some or all of the input data that are to be operated on are

not available for random access from disk or memory, but rather arrive as one or more

continuous data streams. Data streams differ from the conventional stored relation model

in several ways [25]:

• The data elements in the stream arrive online.

• The system has no control over the order in which data elements arrive to be pro-

cessed, either within a data stream or across data streams.

• Data streams are usually unbounded in size.

• Once an element from a data stream has been processed it is discarded or archived

and it cannot be retrieved easily unless it is explicitly stored in memory, which

typically is small relative to the size of the data streams.

Chapter 2. Data Streams 6

In the standard stream model, the input elements a1, a2, ..., aj, ... arrive sequentially,

item by item and describe an underlying function A. Stream models differ on how ai

describes A [25]. We can distinguish between:

• Insert Only Model: once an element ai is seen, it cannot be changed.

• Insert-Delete Model: elements ai can be deleted or updated.

• Accumulative Model: each ai is an increment to A[j] = A[j − 1] + ai .

2.2 Time Windows

Time windows are a commonly used approach to answer queries in open-ended data

streams. Instead of computing an answer over the whole data stream, the query (or oper-

ator) is computed, eventually several times, over a finite subset of tuples. In this model,

a time stamp is associated with each tuple. The time stamp defines when a specific tuple

is valid (e.g. inside the window) or not. Queries are evaluated over the tuples inside the

window. However, in the case of joining multiple streams the semantics of time stamps is

much less clear e.g. the time stamp of an output tuple. Several window models have been

used in the literature. The following are the most relevant [25].

2.2.1 Sliding Windows

Usually data streams are of unbounded length, and in many applications old data elements

are less important compared with new elements. For instance, in the traffic monitoring

system the administrator might be more interested in the patterns discovered among the

recent stream data.Most of the time, we are not interested in computing statistics over all

the past but only in the recent past. The simplest approach are sliding windows of fixed

size. This type of windows is similar to first in, first out data structures. Whenever an

element j is observed and inserted in the window, another element j - w, where w represents

the window size, is forgotten [25]. An example of sliding window is shown in Figure 2.1.

The sliding window is a commonly used model to address this issue. There are two kinds

of sliding window models:

Chapter 2. Data Streams 7

Figure 2.1: Sliding window

• Count-based model: only the most recent N elements are kept in the window, where

N is the window size

• Time-based model: only keep elements arrived within a fixed time period.

2.2.2 Landmark Windows

Landmark windows [26] identify relevant points (the landmarks) in the data stream and

the aggregate operator uses all records seen so far after the landmark. Successive windows

share some initial points and are of growing size. In some applications, the landmarks have

a natural semantic. For example, in daily basis aggregates the beginning of the day is a

landmark. An example of landmark window is shown in Figure 2.2.

2.2.3 Tilted Windows

In tilted windows, the time scale is compressed. The most recent data are stored inside

the window at the finest detail (granularity). Oldest information is stored at a coarser

detail, in an aggregated way. The level of granularity depends on the application. This

window model is designated a tilted time window. Tilted time windows can be designed

in several ways. Han and Kamber [36] presented two possible variants: natural tilted time

windows, and logarithm tilted windows. Illustrative examples are presented in Figure 2.3

and Figure 2.4. In the first case, data are stored with granularity according to a natural

Chapter 2. Data Streams 8

Figure 2.2: Landmark window

Figure 2.3: Natural Tilted window

time taxonomy: last hour at a granularity of 15 minutes (4 points), last day in hours

(24 points), last month in days (32 points) and last year in months (12 points). In the

case of logarithmic tilted windows, given a maximum granularity with periods of t , the

granularity decreases logarithmically as data are older. As time goes by, the window stores

the last time period t , the one before that, and consecutive aggregates of less granularity

(two periods, four periods, eight periods etc.).

2.3 Comparison of windows

In the landmark and sliding windows any past observation either is in the window or it

is not inside the window will be forgotten in the next step. In tilted windows the data

Chapter 2. Data Streams 9

Figure 2.4: Logarithmic Tilted window

asymmetrically distributed into multiple time slots such that the recent time period is

assigned more time slots than the past. The tilted window is suitable for people to mine the

recent data at a fine granularity while mining the long-term data at a coarse granularity.

Moreover, the landmark window is not aware of time and therefore cannot distinguish

between new data and old ones. To overcome this difficulty, the sliding window, a variation

of the landmark model, has been proposed. It assigns different weights to transactions

such that new ones have higher weights than old ones. These three approaches provide

approximate answers for long-term data and adjust their storage requirement based on

the available space. Furthermore, the three window models namely, sliding, landmark and

tilted satisfy two important requirements: approximation and adjustability. However, in

certain applications, users could only be interested in the data recently arriving within a

fixed time period. Obviously, the tilted and landmark windows models are unable to satisfy

this need. In contrast, the sliding-window model achieves this goal. Given a window size

W , only the latest W transactions are utilized for mining. As a transaction arrives, the

oldest transaction in the sliding window is expired. Furthermore, compared with the

tilted and landmark windows models considering only the insertion of transactions, the

sliding-window model further considers the deletion of transactions. Therefore, if a method

succeeds in the sliding-window model, it can be easily applied to the tilted and landmark

windows models. Moreover, tilted and landmark windows models consider a fixed number

of transactions as the basic unit for mining, which is not easy for people to specify. By

Chapter 2. Data Streams 10

Figure 2.5: Landmark Window Model

Figure 2.6: Sliding Window Model

contrast, it is natural for people to specify a time period as the basic unit. Therefore,

in this paper, we use the time-sensitive sliding-window model, which regards a fixed time

period as the basic unit for mining.

Definition: Time-sensitive Sliding-window (TS)

Given a time point t and a time period p, the set of all the transactions arriving in [t−p+1, t]

will form a basic block. A data stream is decomposed into a sequence of basic blocks, which

are assigned with serial numbers starting at 1. Given a window with length |W |, we slide

it over this sequence to see a set of overlapping sequences, where each sequence is called

the time-sensitive sliding-window.

Chapter 3

Outlier Detection

Outlier detection refers to the problem of finding patterns in data that do not conform

to expected behavior. These non-conforming patterns are often referred to as anoma-

lies, outliers, discordant observations, exceptions, aberrations, surprises, peculiarities or

contaminants in different application domains. Of these, anomalies and outliers are two

terms used most commonly in the context of anomaly detection; sometimes interchange-

ably. Anomaly detection finds extensive use in a wide variety of applications such as fraud

detection for credit cards, localization and tracking, environmental monitoring, insurance

or health care, intrusion detection, fault detection in safety critical systems, and military

surveillance for enemy activities [14],[87].

3.1 Characteristics of Outliers

• Type of Detected Outliers

Outliers can be identified as either global or local outliers. A global outlier is an

anomalous data point with respect to all other points in the whole data set, but

possibly not with respect to points in its local neighborhood. A local outlier is

a data point that is significantly different with respect to other points in its local

neighborhood, but may not be an outlier in a global view of the data set [87].

• Degree of Being an Outlier

A data point can be considered as an outlier in two manners, scalar (binary) or

Chapter 3. Outlier Detection 12

outlierness. The scalar fashion is that the point is either an outlier or not. On

the other hand, the outlierness fashion provides the degree of which the point is an

outlier when compared to other points in a data set. This outlierness is also known

as anomaly score or outlier score, which usually can be calculated by using specific

measurement methods [71].

• Dimension of Detected Outliers

Whether a data point is an outlier or not is determined by the values of its attributes.

A univariate datum that has a single attribute can be detected as an outlier only

based on the fact that a single attribute is anomalous with respect to that of other

data. On the other hand, a multivariate datum that has multiple attributes may be

identified as an outlier since some of its attributes together have anomalous values,

even if none of its attributes individually has an anomalous value. Thus, for detecting

multivariate outliers is a more complicated process.

• Number of Detected Outliers at Once

Outlier detection techniques can be designed to identify different number of outliers

at a time. In some techniques, one outlier is identified and removed at a time, then

the procedure will be repeated until no outliers are detected. These techniques may

be subject to the problem of missing some real outliers during the iteration. On the

other hand, for other techniques, they can identify a collection of outliers at once.

However, these techniques may cause some normal data to be declared as outliers

during iteration.

3.2 Characteristics of Outlier Detection Approaches

Use of Pre-labeled Data

Outlier detection approaches can generally be classified into three basic categories, i.e.,

supervised, unsupervised and semi-supervised learning approaches. This categorization is

based on the degree of using pre-defined labels to classify normal or abnormal data [71].

• Supervised learning

Chapter 3. Outlier Detection 13

These approaches initially require the learning of a normality and an abnormality

models by using pre-labeled data, and then classify a new data point as normal

or abnormal depending on which model the data points fits into [39] [76]. These

supervised learning approaches usually are applied for many fraud detection and

intrusion detection applications. However, they have two major drawbacks, i.e., pre-

labeled data is not easy to obtain in many real-life applications, and also new types

of rare events may not be included in pre-labeled data.

• Unsupervised learning

These approaches can identify outliers without the need of pre-labeled data. For

example, distributed methods identify outliers based on a standard statistical dis-

tribution model [81] [68]. Similarly, distance- based methods identify outliers based

on the measure of full dimensional distance between a point and its nearest neigh-

bors [51] [10] [12]. Compared to supervised learning approaches, these unsupervised

learning approaches are more general because they do not need pre-labeled data that

are not available in many practical applications.

Use of Parameters of Data Distribution

Unsupervised learning approaches can be further grouped into three categories, i.e., para-

metric, non-parametric and semi-parametric methods, on the basis of the degree of using

the parameters of the underlying data distribution.

• Parametric methods

These methods assume that the whole dataset can be modeled to one standard

statistical distribution (e.g., the normal distribution), and then directly calculate

the estimated parameters of this distribution based on means and covariance of the

original data. A point that deviates significantly from the data model is declared as

an outlier. These methods are suitable for situations in which the data distribution

model is a priori known and parameter settings have been previously determined.

However, in many practical situations, a priori knowledge of the underlying data

distribution is not always available and also it may not be a simple task to compute

the parameters of the data distribution.

Chapter 3. Outlier Detection 14

• Non-parametric methods

These methods make no assumption on the statistical properties of data and instead

identify outliers based either on the full dimensional distance measure between points

for nearest neighbor approaches or on the probability density for kernel density ap-

proaches. In nearest-neighbor approaches outliers are considered as those points that

are distant from their own neighbors in the data set. These methods also use some

user-defined parameters ranging from the size of local neighborhood to the threshold

of distance measure. In kernel density approaches a kernel density function is used

for estimating the probability density function of a data point. Compared to para-

metric methods, these non-parametric methods are more flexible and autonomous

due to the fact that they require no data distribution knowledge. However, they may

have expensive time complexity, especially for high dimensional data sets. Also, the

choice of appropriate values for user-defined parameters is not easy.

3.3 Taxonomy of Outlier Detection Methods

3.3.1 Classification-based Method

Classification [71] is used to learn a model (classifier) from a set of labeled data instances

(training) and then, classify a test instance into one of the classes using the learnt model

(testing). Classification based anomaly detection techniques operate in a similar two-phase

fashion. The training phase learns a classifier using the available labeled training data.

Classification based anomaly detection techniques operate under the following general as-

sumption:

A classifier that can distinguish between normal and anomalous classes can be learnt in the

given feature space.

Based on the labels available for training phase, classification based anomaly detection

techniques can be grouped into two broad categories: multi-class and one-class anomaly

detection techniques. Multi-class classification based anomaly detection techniques assume

that the training data contain labeled instances belonging to multiple normal classes [8].

Such anomaly detection techniques learn a classifier to distinguish between each normal

Chapter 3. Outlier Detection 15

Figure 3.1: Multi-class Anomaly Detection

class against the rest of the classes.

See figure 3.1 for illustration. A test instance is considered anomalous if its not

classified as normal by any of the classifiers. Some techniques in this sub-category associate

a confidence score with the prediction made by the classifier. If none of the classifiers

are confident in classifying the test instance as normal, the instance is declared to be

anomalous.

One-class classification based anomaly detection techniques assume that all training in-

stances have only one class label. Such techniques learn a discriminative boundary around

the normal instances using a one-class classification algorithm, e.g., one-class SVMs[60],

one-class Kernel Fisher Discriminants [58], as shown in figure 3.2. Any test instance that

does not fall within the learnt boundary is declared as anomalous.

Neural Networks-based Method

Neural networks have been applied to anomaly detection in multi-class as well as one-class

setting. A basic multi-class anomaly detection technique using neural networks operates

in two steps. First, a neural network is trained on the normal training data to learn the

different normal classes. Second, each test instance is provided as an input to the neural

network. If the network accepts the test input, it is normal and if the network rejects a

Chapter 3. Outlier Detection 16

Figure 3.2: One-class Anomaly Detection

test input, it is an anomaly [67]. Replicator Neural Networks have been used for one-class

anomaly detection[78]. A multi-layer feed forward neural network is constructed that has

the same number of input and output neurons (corresponding to the features in the data).

The training involves compressing data into three hidden layers. The testing phase involves

reconstructing each data instance xi using the learnt network to obtain the reconstructed

output oi . The reconstruction error δi for the test instance xi is then computed as:

δi =
1

n

n∑
j=1

(xij − oij)
2 (3.1)

where n is the number of features over which the data is defined. The reconstruction

error δi is directly used as an anomaly score for the test instance.

Bayesian Networks-based Method

Bayesian networks has been used for anomaly detection in the multi-class setting. A

basic technique for a univariate categorical data set using a Bayesian network estimates

the posterior probability of observing a class label (from a set of normal class labels and

the anomaly class label), given a test data instance. The class label with the largest

Chapter 3. Outlier Detection 17

posterior is chosen as the predicted class for the given test instance. The likelihood of

observing the test instance given a class, and the prior on the class probabilities, are

estimated from the training data set. The zero probabilities, especially for the anomaly

class, are smoothed using Laplace Smoothing. The basic technique can be generalized to

multivariate categorical data set by aggregating the per-attribute posterior probabilities

for each test instance and using the aggregated value to assign a class label to the test

instance. Several variants of the basic technique has been proposed for network intrusion

detection [8][62][13], for novelty detection in video surveillance [18], for anomaly detection

in text data [6], and for disease outbreak detection [79]. The basic technique described

above assumes independence between the different attributes. Several variations of the

basic technique have been proposed that capture the conditional dependencies between

the different attributes using more complex Bayesian networks [17].

Support Vector Machines-based Method

Support Vector Machines (SVMs) have been applied to anomaly detection in the one-

class setting. Such techniques use one class learning techniques for SVM [56] and learn

a region that contains the training data instances (a boundary). Kernels, such as radial

basis function (RBF) kernel, can be used to learn complex regions. For each test instance,

the basic technique determines if the test instance falls within the learnt region. If a

test instance falls within the learnt region, it is declared as normal, else it is declared as

anomalous. Variants of the basic technique have been proposed for anomaly detection in

audio signal data, novelty detection in power generation plants and system call intrusion

detection [44]. The basic technique also been extended to detect anomalies in temporal

sequences [46]. A variant of the basic technique finds the smallest hyper-sphere in the

kernel space, which contains all training instances, and then determines which side of that

hyper-sphere does a test instance lie. If a test instance lies outside the hyper-sphere, it is

declared to be anomalous. Another approach is to use Robust Support Vector Machines

(RSVM) [34] [66] which are robust to the presence of anomalies in the training data . Also,

RSVM have been applied to system call intrusion detection.

Chapter 3. Outlier Detection 18

Rule-based Method

Rule based anomaly detection techniques learn rules that capture the normal behavior of

a system. A test instance that is not covered by any such rule is considered as an anomaly.

Rule based techniques have been applied in multi-class as well as one-class setting. A

basic multi-class rule based technique consists of two steps. First step is to learn rules

from the training data using a rule learning algorithm, such as RIPPER, Decision Trees,

etc. Each rule has an associated confidence value which is proportional to ratio between

the number of training instances correctly classified by the rule and the total number of

training instances covered by the rule. Second step is to find, for each test instance, the

rule that best captures the test instance. The inverse of the confidence associated with

the best rule is the anomaly score of the test instance. Several minor variants of the basic

rule based technique have been proposed [59]. Association rule mining has been used for

one-class anomaly detection by generating rules from the data in an unsupervised fashion.

Association rules are generated from a categorical data set. To ensure that the rules corre-

spond to strong patterns, a support threshold is used to prune out rules with low support.

Association rule mining based techniques have been used for network intrusion detection

[72] [8], system call intrusion detection, credit card fraud detection and fraud detection in

spacecraft house keeping data . Frequent itemsets are generated in the intermediate step

of association rule mining algorithms. In [85] the authors propose an anomaly detection

algorithm for categorical data sets in which the anomaly score of a test instance is equal

to the number of frequent itemsets it occurs in.

Computational Complexity

The computational complexity of classification based techniques depends on the classifi-

cation algorithm being used. Generally, training decision trees tends to be faster while

techniques that involve quadratic optimization, such as SVMs, are more expensive. The

testing phase of classification techniques is usually very fast since the testing phase uses a

learnt model for classification.

Advantages and Disadvantages of Classification Based Techniques

The advantages of classification based techniques are as follows: (1) Classification based

techniques, especially the multi-class techniques, can make use of powerful algorithms that

Chapter 3. Outlier Detection 19

can distinguish between instances belonging to different classes. (2) The testing phase of

classification based techniques is fast since each test instance needs to be compared against

the pre-computed model.

The disadvantages of classification based techniques are as follows: (1) Multi-class classi-

fication based techniques rely on availability of accurate labels for various normal classes,

which is often not possible. (2) Classification based techniques assign a label to each

test instance, which can also become a disadvantage when a meaningful anomaly score is

desired for the test instances. Some classification techniques that obtain a probabilistic

prediction score from the output of a classifier, can be used to address this issue.

3.3.2 Nearest Neighbor-based Method

The concept of nearest neighbor analysis has been used in several anomaly detection tech-

niques. Such techniques are based on the following key assumption:

Normal data instances occur in dense neighborhoods, while anomalies occur far from their

closest neighbors.

Nearest neighbor based anomaly detection techniques require a distance or similarity mea-

sure defined between two data instances. Distance (or similarity) between two data in-

stances can be computed in different ways. For continuous attributes, Euclidean distance

is a popular choice but other measures can be used [71]. For categorical attributes, sim-

ple matching coefficient is often used but more complex distance measures can be used

[28]. For multivariate data instances, distance or similarity is usually computed for each

attribute and then combined. Most of the techniques that will be discussed in this section,

as well as the clustering based techniques section 3.3.3 do not require the distance mea-

sure to be strictly metric. The measures are typically required to be positive-definite and

symmetric, but they are not required to satisfy the triangle inequality. Nearest neighbor

based anomaly detection techniques can be broadly grouped into two categories:

• Techniques that use the distance of a data instance to its kth nearest neighbor as

the anomaly score.

• Techniques that compute the relative density of each data instance to compute its

Chapter 3. Outlier Detection 20

anomaly score.

Distance to k Nearest Neighbor

A basic nearest neighbor anomaly detection technique is based on the following definition:

The anomaly score of a data instance is defined as its distance to its kth nearest neighbor

in a given data set.

Usually, a threshold is applied on the anomaly score to determine if a test instance is

anomalous or not. [86] compute the anomaly score of a data instance as the sum of its

distances from its k nearest neighbors. A different way to compute the anomaly score of a

data instance is to count the number of nearest neighbors that are not more than d distance

apart from the given data instance [41]. This method can also be viewed as estimating the

global density for each data instance since it involves counting the number of neighbors in a

hyper-sphere of radius d. While most techniques discussed in this category so far have been

proposed to handle continuous attributes, several variants have been proposed to handle

other data types. A hyper-graph based technique is proposed by [77] called HOT where the

authors model the categorical values using a hyper-graph, and measure distance between

two data instances by analyzing the connectivity of the graph. A distance measure for data

containing a mix of categorical and continuous attributes has been proposed for anomaly

detection [49]. The authors define links between two instances by adding distance for

categorical and continuous attributes separately. For categorical attributes, the number of

attributes for which the two instances have same values defines the distance between them.

For continuous attributes, a covariance matrix is maintained to capture the dependencies

between the continuous values. Several variants of the basic technique have been proposed

to improve the efficiency. Some techniques prune the search space by either ignoring

instances that cannot be anomalous or by focussing on instances that are most likely to be

anomalous. [10] show that for a sufficiently randomized data, a simple pruning step could

result in the average complexity of the nearest neighbor search to be nearly linear. After

calculating the nearest neighbors for a data in- stance, the algorithm sets the anomaly

threshold for any data instance to the score of the weakest anomaly found so far. Using

this pruning procedure, the technique discards instances that are close, and hence not

Chapter 3. Outlier Detection 21

interesting. [55] propose a partition based technique, which first clusters the instances and

computes lower and upper bounds on distance of a instance from its kth nearest neighbor

for instances in each partition. This information is then used to identify the partitions that

cannot possibly contain the top k anomalies; such partitions are pruned. Anomalies are

then computed from the remaining instances (belonging to unpruned partitions) in a final

phase. Similar cluster based pruning has been proposed by [27] [74]. [80] use sampling

to improve the efficiency of the nearest neighbor based technique. The authors compute

the nearest neighbor of every instance within a smaller sample from the data set. Thus

the complexity of the proposed technique is reduced to O(MN) where M is the sample

size chosen. To prune the search space for nearest neighbors, several techniques partition

the attribute space into a hyper-grid consisting of hypercubes of fixed sizes. The intuition

behind such techniques is that if a hypercube contains many instances, such instances are

likely to be normal. Moreover, if for a given instance, the hypercube that contains the

instance and its adjoining hypercubes contain very few instances, the given instance is

likely to be anomalous.

Relative Density Nearest Neighbor

Density based anomaly detection techniques estimate the density of the neighbor- hood of

each data instance. An instance that lies in a neighborhood with low density is declared to

be anomalous while an instance that lies in a dense neighborhood is declared to be normal.

For a given data instance, the distance to its kth nearest neighbor is equivalent to the radius

of a hyper-sphere, centered at the given data instance, which contains k other instances.

Thus the distance to the kth nearest neighbor for a given data instance can be viewed

as an estimate of the inverse of the density of the instance in the data set and the basic

nearest neighbor based technique described in the previous subsection can be considered

as a density based anomaly detection technique. Density based techniques perform poorly

if the data has regions of varying densities. For example, consider a two-dimensional data

set shown in figure 3.3. Due to the low density of the cluster C1 it is apparent that for

every instance q inside the cluster C1, the distance between the instance q and its nearest

neighbor is greater than the distance between the instance p2 and the nearest neighbor

Chapter 3. Outlier Detection 22

Figure 3.3: Local density based techniques over Global density based techniques.

from the cluster C2, and the instance p2 will not be considered as anomaly. Hence, the basic

technique will fail to distinguish between p2 and instances in C1. However, the instance

p1 may be detected. To handle the issue of varying densities in the data set, a set of

techniques have been proposed to compute density of instances relative to the density of

their neighbors. [12] assign an anomaly score to a given data instance, known as Local

Outlier Factor (LOF). For any given data instance, the LOF score is equal to ratio of

average local density of the k nearest neighbors of the instance and the local density of

the data instance itself. To find the local density for a data instance, the authors first find

the radius of the smallest hyper-sphere centered at the data instance, that contains its k

nearest neighbors. The local density is then computed by dividing k by the volume of this

hyper-sphere. For a normal instance lying in a dense region, its local density will be similar

to that of its neighbors, while for an anomalous instance, its local density will be lower

than that of its nearest neighbors. Hence the anomalous instance will get a higher LOF

score. In the example shown in figure 3.3, LOF will be able to capture both anomalies (p1

and p2) due to the fact that it considers the density around the data instances. Several

researchers have proposed variants of LOF technique. Some of these variants estimate the

local density of an instance in a different way. Some variants have adapted the original

technique to more complex data types. Since the original LOF technique is O(N2) (N is

the data size), several techniques have been proposed that improve the efficiency of LOF.

[73] discuss a variation of the LOF, which they call Connectivity-based Outlier Factor

Chapter 3. Outlier Detection 23

(COF). The difference between LOF and COF is the manner in which the k neighborhood

for an instance is computed. In COF, the neighborhood for an instance is computed in

an incremental mode. To start, the closest instance to the given instance is added to

the neighborhood set. The next instance added to the neighborhood set is such that its

distance to the existing neighborhood set is minimum among all remaining data instances.

The distance between an instance and a set of instances is defined as the minimum distance

between the given instance and any instance belonging to the given set. The neighborhood

is grown in this manner until it reaches size k. Once the neighborhood is computed, the

anomaly score (COF) is computed in the same manner as LOF. [51] propose a measure

called Multi-granularity Deviation Factor (MDEF) which is a variation of LOF. MDEF

for a given data instance is equal to the standard deviation of the local densities of the

nearest neighbors of the given data instance (including the data instance itself). The

inverse of the standard deviation is the anomaly score for the data instance. The anomaly

detection technique presented in the paper is called LOCI. Several variants of LOF have

been proposed to handle different data types. [83] use a similarity measure instead of

distance to handle categorical attributes. [54]extend LOF to work in an incremental fashion

to detect anomalies in video sensor data. Some variants of the LOF technique have been

proposed to improve its efficiency. [38] propose a variant, in which only the top n anomalies

are found instead of finding LOF score for every data instance. The technique includes

finding micro-clusters in the data and then finding upper and lower bound on LOF for

each of the micro-clusters.

Computational Complexity

A drawback of the basic nearest neighbor based technique and the LOF technique, is the

O(N2) complexity required. Since these techniques involve finding nearest neighbors for

each instance efficient data structures such as k-d trees and R-trees can be used. But such

techniques do not scale well as the number of attributes increases. Several techniques have

directly optimized the anomaly detection technique under the assumption that only top

few anomalies are interesting. If an anomaly score is required for every test instance, such

techniques are not applicable. Techniques that partition the attribute space into a hyper-

grid, are linear in data size but are exponential in the number of attributes, and hence

Chapter 3. Outlier Detection 24

are not well suited for large number of attributes. Sampling techniques try to address the

O(N2) complexity issue by determining the nearest neighbors within a small sample of the

data set. But sampling might result in incorrect anomaly scores if the size of the sample

is very small.

Advantages and Disadvantages of Nearest Neighbor Based Techniques

The advantages of nearest neighbor based techniques are as follows: (1) A key advantage

of nearest neighbor based techniques is that they are unsupervised in nature and do not

make any assumptions regarding the generative distribution for the data. Instead, they

are purely data driven. (3) Adapting nearest neighbor based techniques to a different data

type is straight- forward, and primarily requires defining an appropriate distance measure

for the given data.

The disadvantages of nearest neighbor based techniques are as follows: (1) For unsupervised

techniques, if the data has normal instances that do not have enough close neighbors or

if the data has anomalies that have enough close neighbors, the technique fails to label

them correctly, resulting in missed anomalies. (2) The computational complexity of the

testing phase is also a significant challenge since it involves computing the distance of each

test instance with all instances belonging to either the test data itself, or to the training

data, to compute the nearest neighbors. (3) Performance of a nearest neighbor based

technique greatly relies on a distance measure, defined between a pair of data instances,

that can effectively distinguish between normal and anomalous instances. Defining distance

measures between instances can be challenging when the data is complex, e.g. graphs,

sequences, etc.

3.3.3 Cluster-based Method

Clustering [71] is used to group similar data instances into clusters and is primarily an

unsupervised technique. Even though clustering and anomaly detection appear to be fun-

damentally different from each other, several clustering based anomaly detection techniques

have been developed. Clustering based anomaly detection techniques can be grouped into

three categories. First category of clustering based techniques rely on the following as-

sumption:

Chapter 3. Outlier Detection 25

Normal data instances belong to a cluster in the data, while anomalies either do not belong

to any cluster.

Techniques based on the above assumption apply a known clustering based algorithm to the

data set and declare any data instance that does not belong to any cluster as anomalous.

Several clustering algorithms that do not force every data instance to belong to a cluster,

such as DBSCAN [23] , ROCK [28], and SNN clustering [19] can be used. The FindOut

algorithm [82] is an extension of the WaveCluster algorithm [63] in which the detected

clusters are removed from the data and the residual instances are declared as anomalies.

A disadvantage of such techniques is that they are not optimized to find anomalies, since

the main aim of the underlying clustering algorithm is to find clusters. Second category of

clustering based techniques rely on the following assumption:

Normal data instances lie close to their closest cluster centroid, while anomalies are far

away from their closest cluster centroid.

Techniques based on the above assumption consist of two steps. In the first step, the data

is clustered using a clustering algorithm. In the second step, for each data instance, its dis-

tance to its closest cluster centroid is calculated as its anomaly score. A number of anomaly

detection techniques that follow this two step approach have been proposed using different

clustering algorithms. Smith et al. [2002] studied Self-Organizing Maps (SOM), K-means

Clustering, and Expectation Maximization (EM) to cluster training data and then use

the clusters to classify test data. In particular, SOM [42] has been widely used to detect

anomalies in a semi-supervised mode in several applications such as intrusion detection,

fault detection, and fraud detection.[7] propose a technique is robust to anomalies in the

training data. The authors first separate normal instances from anomalies in the training

data, using frequent item-set mining, and then use the clustering based technique to detect

anomalies. Techniques based on the second assumption can also operate in semi-supervised

mode, in which the training data is clustered and instances belonging to the test data are

compared against the clusters to obtain an anomaly score for the test data instance. If

the training data has instances belonging to multiple classes, semi-supervised clustering

can be applied to improve the clusters.[30] incorporate the knowledge of labels to improve

on their unsupervised clustering based anomaly detection technique[32] by calculating a

Chapter 3. Outlier Detection 26

measure called semantic anomaly factor which is high if the class label of an object in a

cluster is different from the majority of the class labels in that cluster. Note that if the

anomalies in the data form clusters by themselves, the above discussed techniques will not

be able to detect such anomalies. To address this issue a third category of clustering based

techniques have been proposed that rely on the following assumption:

Normal data instances belong to large and dense clusters, while anomalies either belong to

small or sparse clusters.

Techniques based on the above assumption declare instances belonging to clusters whose

size and/or density is below a threshold as anomalous. Several variations of the third

category of techniques have been proposed [50] [20] [32]. The technique proposed by [32],

called FindCBLOF, assigns an anomaly score known as Cluster-Based Local Outlier Fac-

tor (CBLOF) for each data instance. The CBLOF score captures the size of the cluster

to which the data instance belongs, as well as the distance of the data instance to its

cluster centroid. Several clustering based techniques have been proposed to improve the

efficiency of the existing techniques discussed above. Fixed width clustering is a linear

time (O(Nd)) approximation algorithm used by various anomaly detection techniques [32]

[20]. An instance is assigned to a cluster whose center is within a pre-specified distance

to the given instance. If no such cluster exists then a new cluster with the instance as the

center is created. Then they determine which clusters are anomalies based on their density

and distance from other clusters. The width can either be a user-specified parameter [20]

or can be derived from the data. [15] propose an anomaly detection technique using k− d

trees which provide a partitioning of the data in linear time. They apply their technique

to detect anomalies in astronomical data sets where computational efficiency is an im-

portant requirement. Another technique which addresses this issue is proposed by [69].

The authors propose an indexing technique called CD-trees to efficiently partition data

into clusters. The data instances which belong to sparse clusters are declared as anoma-

lies. Several clustering based techniques require distance computation between a pair of

instances. Thus, in that respect, they are similar to nearest neighbor based techniques.

The choice of the distance measure is critical to the performance of the technique; hence

the discussion in the previous section regarding the distance measures hold for clustering

Chapter 3. Outlier Detection 27

based techniques also. The key difference between the two techniques, however, is that

clustering based techniques evaluate each instance with respect to the cluster it belongs

to, while nearest neighbor based techniques analyze each instance with respect to its local

neighborhood.

Computational Complexity

The computational complexity of training a clustering based anomaly detection technique

depends on the clustering algorithm used to generate clusters from the data. Thus such

techniques can have quadratic complexity if the clustering technique requires computation

of pairwise distances for all data instances, or linear when using heuristic based techniques

such as k-means or approximate clustering techniques [20]. The test phase of clustering

based techniques is fast, since it involves comparing a test instance with a small number

of clusters.

Advantages and Disadvantages of Clustering Based Techniques

The advantages of clustering based techniques are as follows: (1) Clustering based tech-

niques can operate in an unsupervised mode. (2) Such techniques can often be adapted

to other complex data types by simply plugging in a clustering algorithm that can handle

the particular data type. (3) The testing phase for clustering based techniques is fast since

the number of clusters against which every test instance needs to be compared is a small

constant.

The disadvantages of clustering based techniques are as follows: (1) Performance of clus-

tering based techniques is highly dependent on the effectiveness of clustering algorithm in

capturing the cluster structure of normal instances. (2) Many techniques detect anomalies

as a by-product of clustering, and hence are not optimized for anomaly detection. (3)

Several clustering algorithms force every instance to be assigned to some cluster. This

might result in anomalies getting assigned to a large cluster, thereby being considered

as normal instances by techniques that operate under the assumption that anomalies do

not belong to any cluster. (4) Several clustering based techniques are effective only when

the anomalies do not form significant clusters among themselves. (5) The computational

complexity for clustering the data is often a bottleneck, especially if O(N2d) clustering

Chapter 3. Outlier Detection 28

algorithms are used.

3.3.4 Statistical-based Method

The underlying principle of any statistical anomaly detection technique is:

An anomaly is an observation which is suspected of being partially or wholly irrelevant

because it is not generated by the stochastic model assumed.

Statistical anomaly detection techniques are based on the following key assumption:

Normal data instances occur in high probability regions of a stochastic model, while anoma-

lies occur in the low probability regions of the stochastic model.

Statistical techniques fit a statistical model (usually for normal behavior) to the given data

and then apply a statistical inference test to determine if an unseen instance belongs to this

model or not. Instances that have a low probability to be generated from the learnt model,

based on the applied test statistic, are declared as anomalies. Both parametric as well as

non-parametric techniques have been applied to fit a statistical model. While parametric

techniques assume the knowledge of underlying distribution and estimate the parameters

from the given data [21] non-parametric techniques do not generally assume knowledge of

underlying distribution [48]. In the next two subsection we will discuss parametric and

non-parametric anomaly detection techniques.

Parametric Techniques

As mentioned before, parametric techniques assume that the normal data is generated

by a parametric distribution with parameters Θ and probability density function f(x, Θ),

where x is an observation. The anomaly score of a test instance (or observation) x is the

inverse of the probability density function f(x, Θ). The parameters Θ are estimated from

the given data.

Alternatively, a statistical hypothesis test (also referred to as discordancy test in sta-

tistical outlier detection literature [9] maybe used. The null hypothesis (H0) for such tests

is that the data instance x has been generated using the estimated distribution (with pa-

rameters Θ). If the statistical test rejects H0, x is declared to be anomaly. A statistical

hypothesis test is associated with a test statistic, which can be used to obtain a proba-

Chapter 3. Outlier Detection 29

bilistic anomaly score for the data instance x. Based on the type of distribution assumed,

parametric techniques can be further categorized as follows:

Gaussian Model

Such techniques assume that the data is generated from a Gaussian distribution. The

parameters are estimated using Maximum Likelihood Estimates (MLE). The distance of a

data instance to the estimated mean is the anomaly score for that instance. A threshold

is applied to the anomaly scores to determine the anomalies. Different techniques in this

category calculate the distance to the mean and the threshold in different ways. A simple

outlier detection technique, often used in process quality control domain, is to declare all

data instances that are more than 3σ distance away from the distribution mean µ, where σ

is the standard deviation for the distribution. The µ ± σregion contains 99.7% of the data

instances. More sophisticated statistical tests have also been used to detect anomalies,

as discussed in [9]. The box plot rule is the simplest statistical technique that has been

applied to detect univariate and multivariate anomalies. A box-plot graphically depicts

the data using summary attributes such as smallest non-anomaly observation (min), lower

quartile (Q1), median, upper quartile (Q3), and largest non-anomaly observation (max).

The quantity Q3−Q1 is called the Inter Quartile Range (IQR). The box plots also indicates

the limits beyond which any observation will be treated as an anomaly. A data instance

that lies more than 1.5 ∗ IQR lower than Q1 or 1.5 ∗ IQR higher than Q3 is declared

as an anomaly. The region between Q1 − 1.5IQR and Q3 + 1.5IQR contains 99.3% of

observations, and hence the choice of 1.5IQR boundary makes the box plot rule equivalent

to the 3σ technique for Gaussian data. Grubb’s test (also known as the maximum normed

residual test) is used to detect anomalies in a univariate data set under the assumption

that the data is generated by a Gaussian distribution. For each test instance x, its z score

is computed as follows:

z =
|x− x̄|

s
(3.2)

where x̄ and s are the mean and standard deviation of the data sample, respectively.

Chapter 3. Outlier Detection 30

A test instance is declared to be anomalous if:

z >
N − 1√

N

√√√√ t2α/(2N),N−2

N − 2 + t2α/(2N),N−2

(3.3)

where N is the data size and tα/(2N),N−2 is a threshold used to declare an instance to

be anomalous or normal. A variant of the Grubb’s test for multivariate data was proposed

by [37], which uses the Mahalanobis distance of a test instance x to the sample mean x̄,

to reduce multivariate observations to univariate scalars.

y2 = (x− x̄)′ S−1 (x− x̄) (3.4)

where S is the sample covariance matrix. The univariate Grubb’s test is applied to y

to determine if the instance x is anomalous or not. Several other variants of Grubb’s test

have been proposed to handle multivariate data sets graph structured data and Online

Analytical Processing (OLAP) data cubes[4] . The student’s t-test has also been applied

for anomaly detection in to detect damages in structural beams. A normal sample, N1 is

compared with a test sample, N2 using the t-test. If the test shows significant difference

between them, it signifies the presence of an anomaly in N2. [81] use a χ2 statistic to

determine anomalies in operating system call data. The training phase assumes that

the normal data has a multivariate normal distribution. The value of the χ2 statistic is

determined as:

χ2 =
n∑

i=1

(Xi − Ei)
2

Ei

(3.5)

where Xi is the observed value of the ith variable, Ei is the expected value of the ith

variable (obtained from the training data) and n is the number of variables. A large value

of X2 denotes that the observed sample contains anomalies.

Regression Model The basic regression model based anomaly detection technique

Chapter 3. Outlier Detection 31

consists of two steps. In the first step, a regression model is fitted on the data. In the

second step, for each test instance, the residual for the test instance is used to determine

the anomaly score. The residual is the part of the instance which is not explained by

the regression model. The magnitude of the residual can be used as the anomaly score

for the test instance, though statistical tests have been proposed to determine anomalies

with certain confidence [75]. Presence of anomalies in the training data can influence the

regression parameters and hence the regression model might not produce accurate results.

A popular technique to handle such anomalies while fitting regression models is called

robust regression (estimation of regression parameters while accommodating anomalies).

Robust regression techniques not only hide the anomalies, but can also detect the anoma-

lies, because the anomalies tend to have larger residuals from the robust fit. A variant that

detect anomalies in multivariate time-series data generated by an Autoregressive Moving

Average (ARMA) model, was proposed by [24]. In this technique the authors transform

the multivariate time-series to univariate time-series by linearly combining the compo-

nents of the multivariate time-series. The interesting linear combinations (projections in

1-d space) are obtained using a projection pursuit technique that maximizes the Kurtosis

coefficient (a measure for the degree of peakedness/flatness in the variable distribution) of

the time-series data. The anomaly detection in each projection is done by using univariate

test statistics.

Mixture of Parametric Distributions Such techniques use a mixture of parametric

statistical distributions to model the data. Techniques in this category can be grouped into

two sub-categories. The first sub-category of techniques model the normal instances and

anomalies as separate parametric distributions, while the second sub-category of techniques

model only the normal instances as a mixture of parametric distributions. For the first sub-

category of techniques, the testing phase involves determining which distribution normal or

anomalous the test instance belongs to. A test instance is tested using the Grubb’s test on

both distributions, and accordingly labeled as normal or anomalous. Similar techniques

have been proposed in[21] and [3]. [21] use Expectation Maximization (EM) algorithm

to develop a mixture of models for the two classes, assuming that each data point is an

anomaly with apriori probability λ, and normal with apriori probability 1− λ. Thus, if D

Chapter 3. Outlier Detection 32

represents the actual probability distribution of the entire data, and M and A represent

the distributions of the normal and anomalous data respectively, then

D = λA− (1− λ)M (3.6)

M is learnt using any distribution estimation technique, while A is assumed to be

uniform. Initially all points are considered to be in M. The anomaly score is assigned

to a point based on how much the distributions change if that point is removed from M

and added to A. The second sub-category of techniques model the normal instances as a

mixture of parametric distributions. A test instance which does not belong to any of the

learnt models is declared to be anomaly. Gaussian mixture models have been mostly used

for such techniques [2], and have been used to detect strains in airframe data, to detect

anomalies in mammographic image analysis and for network intrusion detection.

Non-Parametric

The anomaly detection techniques in this category use non-parametric statistical models,

such that the model structure is not defined a priori, but is instead determined from

given data. Such techniques typically make fewer assumptions regarding the data, such as

smoothness of density, when compared to parametric techniques.

Histogram The simplest non-parametric statistical technique is to use histograms to

maintain a profile of the normal data. Such techniques are also referred to as frequency

based or counting based. Histogram based techniques are particularly popular in intrusion

detection community and fraud detection, since the behavior of the data is governed by

certain profiles (user or software or system) that can be efficiently captured using the his-

togram model[21][22]. A basic histogram based anomaly detection technique for univariate

data consists of two steps. The first step involves building a histogram based on the dif-

ferent values taken by that feature in the training data. In the second step, the technique

checks if a test instance falls in any one of the bins of the histogram. If it does, the test

instance is normal, otherwise it is anomalous. A variant of the basic histogram based tech-

nique is to assign an anomaly score to each test instance based on the height (frequency)

Chapter 3. Outlier Detection 33

of the bin in which it falls. The size of the bin used when building the histogram is key

for anomaly detection. If the bins are small, many normal test instances will fall in empty

or rare bins, resulting in a high false alarm rate. If the bins are large, many anomalous

test instances will fall in frequent bins, resulting in a high false negative rate. Thus a key

challenge for histogram based techniques is to determine an optimal size of the bins to

construct the histogram which maintains low false alarm rate and low false negative rate.

Histogram based techniques require normal data to build the histograms. For multivariate

data, a basic technique is to construct attribute-wise histograms. During testing, for each

test instance, the anomaly score for each attribute value of the test instance is calculated

as the height of the bin that contains the at- tribute value. The per-attribute anomaly

scores are aggregated to obtain an overall anomaly score for the test instance. The basic

histogram based technique for multivariate data has been applied to system call intrusion

detection, network intrusion detection, fraud detection, damage detection in structures,

detecting web-based attacks and anomalous topic detection in text data. The SRI Inter-

national’s real-time Network Intrusion Detection System (NIDES) [53] has a sub-system

that maintains long-term statistical profiles to capture the normal behavior of a computer

system. The authors propose a Q statistic to compare a long-term profile with a short

term profile (observation). The statistic is used to determine another measure called S

statistic which reflects the extent to which the behavior in a particular feature is anomaly

with respect to the historical profile. The feature-wise S statistics are combined to get a

single value called IS statistic which determines if a test instance is anomalous or not.

Kernel Function A non-parametric technique for probability density estimation is

parzen windows estimation . This involves using kernel functions to approximate the

actual density. Anomaly detection techniques based on kernel functions are similar to

parametric methods described earlier. The only difference is the density estimation tech-

nique used. To detect anomalies which uses kernel functions, the probability distribution

function (pdf) for the normal instances have to be estimated. A new instance which lies

in the low probability area of this pdf is declared to be anomalous.

Computational Complexity

The computational complexity of statistical anomaly detection techniques depends on the

Chapter 3. Outlier Detection 34

nature of statistical model that is required to be fitted on the data. Fitting single paramet-

ric distributions from the exponential family, e.g., Gaussian, Poisson, Multinomial, etc., is

typically linear in data size as well as number of attributes. Fitting complex distributions

(such as mixture models, Hidden Markov Models(HMM) , etc.) using iterative estimation

techniques such as Expectation Maximization (EM), are also typically linear per iteration,

though they might be slow in converging depending on the problem and/or convergence

criterion. Kernel based techniques can potentially have quadratic time complexity in terms

of the data size.

Advantages and Disadvantages of Statistical Techniques

The advantages of statistical techniques are: (1) If the assumptions regarding the under-

lying data distribution hold true, statistical techniques provide a statistically justifiable

solution for anomaly detection. (2) The anomaly score provided by a statistical technique

is associated with a confidence interval, which can be used as additional information while

making a decision regarding any test instance. (3) If the distribution estimation step is

robust to anomalies in data, statistical techniques can operate in a unsupervised setting

without any need for labeled training data.

The disadvantages of statistical techniques are: (1) The key disadvantage of statistical

techniques is that they rely on the assumption that the data is generated from a particular

distribution. This assumption often does not hold true, especially for high dimensional real

data sets. (2) Even when the statistical assumption can be reasonably justified, there are

several hypothesis test statistics that can be applied to detect anomalies; choosing the best

statistic is often not a straightforward task. In particular, constructing hypothesis tests for

complex distributions that are required to fit high dimensional data sets is nontrivial. (3)

Histogram based techniques are relatively simple to implement, but a key shortcoming of

such techniques for multivariate data is that they are not able to capture the interactions

between different attributes. An anomaly might have attribute values that are individually

very frequent, but their combination is very rare, but an attribute-wise histogram based

technique would not be able to detect such anomalies.

Chapter 3. Outlier Detection 35

3.3.5 Information Theory-based Outlier Method

Information theoretic techniques analyze the information content of a data set using dif-

ferent information theoretic measures such as Kolomogorov Complexity, entropy, relative

entropy, etc. Such techniques are based on the following key assumption:

Anomalies in data induce irregularities in the information content of the data set.

Let C(D) denote the complexity of a given data set, D. A basic information theoretic tech-

nique can be described as follows. Given a data set D, find the minimal subset of instances,

I, such that C(D) − C(D − I) is maximum. All instances in the subset thus obtained,

are deemed as anomalous. The problem addressed by this basic technique is to find a

pareto-optimal solution, which does not have a single optima, since there are two different

objectives that need to be optimized. In the above described technique, the complexity of

a data set (C) can be measured in different ways. Kolomogorov complexity [Li and Vitanyi

1993] has been used by several techniques Keogh et al. 2004]. Arning et al. [1996] use the

size of the regular expression to measure the Kolomogorov Complexity of data (represented

as a string) for anomaly detection. [40] use the size of the compressed data file (using any

standard compression algorithm), as a measure of the data set’s Kolomogorov Complexity.

Other information theoretic measures such as entropy, relative uncertainty, etc., have also

been used to measure the complexity of a categorical data set [31]. The basic technique

described above, involves dual optimization to minimize the subset size while maximizing

the reduction in the complexity of the data set. Thus an exhaustive approach in which

every possible subset of the data set is considered would run in exponential time. Several

techniques have been proposed that perform approximate search for the most anomalous

subset. [31] [33] use an approximate algorithm called Local Search Algorithm (LSA) to

approximately determine such a subset in a linear fashion, using entropy as the complex-

ity measure. Information theoretic techniques have also been used in data sets in which

data instances are naturally ordered, e.g., sequential data, spatial data. In such cases, the

data is broken into substructures (segments for sequences, subgraphs for graphs, etc.), and

the anomaly detection technique finds the substructure, I, such that C(D) − C(D − I)

is maximum. This technique has been applied to sequences, graph data and spatial data.

A key challenge of such techniques is to find the optimal size of the substructure which

Chapter 3. Outlier Detection 36

would result in detecting anomalies.

Computational Complexity

As mentioned earlier, the basic information theoretic anomaly detection technique has ex-

ponential time complexity, though approximate techniques have been pro- posed that have

linear time complexity.

Advantages and Disadvantages of Information Theoretic Techniques

The advantages of information theoretic techniques are as follows: (1) They can operate

in an unsupervised setting. (2) They do not make any assumptions about the underlying

statistical distribution for the data.

The disadvantages of information theoretic techniques are as follows: (1) The performance

of such techniques is highly dependent on the choice of the information theoretic measure.

Often, such measures can detect the presence of anomalies only when there are significantly

large number of anomalies present in the data. (2) Information theoretic techniques ap-

plied to sequences and spatial data sets rely on the size of the substructure, which is often

nontrivial to obtain. (3) It is difficult to associate an anomaly score with a test instance

using an information theoretic technique.

3.3.6 Spectral-based Method

Spectral techniques try to find an approximation of the data using a combination of at-

tributes that capture the bulk of variability in the data. Such techniques are based on the

following key assumption: Assumption: Data can be embedded into a lower dimensional

subspace in which normal instances and anomalies appear significantly different. Thus the

general approach adopted by spectral anomaly detection techniques is to determine such

subspaces (embeddings, projections, etc.) in which the anomalous instances can be easily

identified [5]. Such techniques can work in an unsupervised as well as semi-supervised

setting. Several techniques use Principal Component Analysis (PCA) for projecting data

into a lower dimensional space. One such technique [52] analyzes the projection of each

data instance along the principal components with low variance. A normal instance that

satisfies the correlation structure of the data will have a low value for such projections

while an anomalous instances that deviates from the correlation structure will have a large

Chapter 3. Outlier Detection 37

value. [35] propose a spectral technique to detect anomalies in a time series of graphs.

Each graph is represented as an adjacency matrix for a given time. At every time in-

stance, the principle component of the matrix is chosen as the activity vector for the given

graph. The time-series of the activity vectors is considered as a matrix and the principal

left singular vector is obtained to capture the normal dependencies over time in the data.

For a new (test) graph, then angle between its activity vector and the principal left sin-

gular vector obtained from the previous graphs is computed and used to determine the

anomaly score of the test graph. In a similar approach, [70] propose an anomaly detection

technique on a sequence of graphs by performing Compact Matrix Decomposition (CMD)

on the adjacency matrix for each graph and thus obtaining an approximation of the origi-

nal matrix. For each graph in the sequence, the authors perform CMD and compute the

approximation error between the original adjacency matrix and the approximate matrix.

The authors construct a time series of the approximation errors and detect anomalies in

the time series of errors; the graph corresponding to anomalous approximation error is

declared to be anomalous. [64] present an anomaly detection technique where the authors

perform robust PCA to estimate the principal components from the covariance matrix of

the normal training data. The testing phase involves comparing each point with the com-

ponents and assigning an anomaly score based on the point’s distance from the principal

components. Thus if the projection of x on the principal components are y1, y2, ..., yp and

the corresponding eigenvalues are λ1, λ2, ..., λp

q∑
i=1

y2
i

λi

=
y2

1

λ1

+
y2

2

λ2

+ . . . +
y2

q

λq

, q ≤ p (3.7)

has a chi-square distribution. Using this result, the authors propose that, for a given

significance level , observation x is an anomaly if

q∑
i=1

y2
i

λi

> χ2
q(α) (3.8)

It can be shown that the quantity calculated in Equation 3.7 is equal to the Maha-

Chapter 3. Outlier Detection 38

lanobis distance of the instance x from the sample mean (See Equation 3.4) when q = p.

Thus the robust PCA based technique is same as a statistical technique discussed in Sec-

tion in a smaller subspace. The robust PCA based technique has been applied to the

network intrusion detection domain and for detecting anomalies in space craft components

[43]. Computational Complexity Standard PCA based techniques are typically linear in

data size but often quadratic in the number of dimensions. Non linear techniques can

improve the time complexity to be linear in the number of dimensions but polynomial in

the number of principal components. Techniques that perform SVD on the data typically

quadratic in data size.

Advantages and Disadvantages of Spectral Techniques

The advantages of spectral anomaly detection techniques are as follows: (1) Spectral tech-

niques automatically perform dimensionality reduction and hence are suitable for handling

high dimensional data sets. Moreover, they can also be used as a pre-processing step fol-

lowed by application of any existing anomaly detection technique in the transformed space.

(2) Spectral techniques can be used in an unsupervised setting.

The disadvantages of spectral anomaly detection techniques are as follows: (1) Spectral

techniques are useful only if the normal and anomalous instances are separable in the

lower dimensional embedding of the data. (2) Spectral techniques typically have high

computational complexity.

3.4 Summary

As we describe all the above techniques has advantages and disadvantages. An ideal algo-

rithm will be this which will keep advantages and eliminate disadvantages. The algorithms

from the same domain is difficult to put across this goal. Therefore, there is a thought

of permuting techniques from different domains in order to keep the advantages of each

approach and sweep away its disadvantages. We select to combine the statistical area with

nearest neighbor area. Our decision is based on the following strategy. Firstly, we separate

data in sliding windows and for each attribute we estimate approximately the distribution

of data in the window. Moreover, we compute the bandwidth of kernel density estimation

Chapter 3. Outlier Detection 39

for each window. For the nearest neighbor approach, we aim to eliminate the problems such

as when normal instances do not have enough close neighbors or anomalies have enough

close neighbors by computing a density scoring function for those data points which lies

in the low probability area of the estimating distribution’s pdf. These data points are

computed in the statistical part. To conclude, we apply an incremental strategy on the

computation of density scoring function by way of decreasing the execution time of the

nearest neighbor approach.

Chapter 4

Outlier Detection over Data Streams

In recent years, data in many rare events applications (e.g. stock market, network traffic

monitoring, video surveillance, web usage logs) arrives continuously at an enormous pace

thus posing a significant challenge to analyze it. In such cases, it is important to make

decisions quickly and accurately. If there is a sudden or unexpected change in the existing

behavior, it is essential to detect this change as soon as possible. Assume, for example,

there is a computer in the local area network that uses only limited number of services

(e.g., Web traffic, telnet, ftp) through corresponding ports. All these services correspond

to certain types of behavior in network traffic data. If the computer suddenly starts to

utilize a new service (e.g., sash), this will certainly look like a new type of behavior in

network traffic data. Hence, it will be desirable to detect such behavior as soon as it

appears especially since it may very often correspond to illegal or intrusive events. Even in

the case when this specific change in behavior is not necessary intrusive or suspicious, it is

very important for a security analyst to understand the network traffic and to update the

notion of the normal behavior.Automated identification of suspicious behavior and objects

based on information extracted from video streams is currently an active research area.

Other potential applications include traffic control and surveillance of commercial and

residential buildings. These tasks are characterized by the need for real-time processing

and by dynamic, non-stationary and often noisy environment. Hence, there is necessity

for incremental outlier detection that can adapt to novel behavior and provide timely

identification of unusual events.

Chapter 4. Outlier Detection over Data Streams 41

4.1 Incremental Local Outlier Detection over Data

Streams

4.1.1 Introduction

In this study [54], they propose an incremental outlier detection algorithm based on com-

puting the densities of local neighborhoods. The main idea of the LOF algorithm [12] is to

assign to each data record a degree of being outlier. This degree is called the local outlier

factor (LOF) of a data record. Data points with high LOF have local densities smaller

than their neighborhood and typically represent stronger outliers, unlike data points be-

longing to uniform clusters that usually tend to have lower LOF values. The algorithm for

computing the LOF for all data records has the following steps:

1. For each data record q compute k distance(q) as the distance to the kth nearest

neighbor of q

2. Compute reachability distance for each data record q with respect to data record p

as follows:

reachdistk(q, p) = max(d(q, p), k distance(p)) (4.1)

where d(q, p) is Euclidean distance from q to p.

3. Compute local reachability density (lrd) of data record q as the inverse of the average

reachability distance based on the k nearest neighbors of the data record q (In the

original LOF publication [12], parameter k was named MinPts).

lrd(q) =
1∑

p∈ kNN(q)

reachdistk(q, p)/k
(4.2)

4. Compute LOF of data record q as the ratio of average local reachability density of

qs k nearest neighbors and local reachability density of the data record q.

Chapter 4. Outlier Detection over Data Streams 42

LOF (q) =

1

k

∑

p∈ kNN(q)

lrd(p)

lrd(q)
(4.3)

The main advantages of LOF approach over other outlier detection techniques include:

• It detects outliers with respect to density of their neighboring data records; not to

the global model.

• It is able to detect outliers regardless the data distribution of normal behavior, since

it does not make any assumptions about the distributions of data records.

In order to fully justify the need for incremental outlier detection techniques, it is im-

portant to understand that applying standard LOF outlier detection algorithms to data

streams would be extremely computationally inefficient and very often may lead to incor-

rect results.

4.1.2 Methodology

Their proposed incremental LOF algorithm is designed to provably provide the same

prediction performance (detection rate and false alarm rate) as the standard LOF. It

is achieved by consistently maintaining for all existing points in the database the same

LOF values as the standard LOF algorithm. Their proposed incremental LOF algorithm

has time complexity O(NlogN) thus clearly outperforming the standard LOF approach

which has O(N2logN). After all N data records are inserted into the data set, the final

result of the incremental LOF algorithm on N data points is independent of the order of

insertion. To design an incremental LOF algorithm, they have been motivated by two

goals. Firstly, the result of the incremental algorithm must be equivalent to the result of

the standard algorithm every time t a new point is inserted into a data set. Second, asymp-

totic time complexity of incremental LOF algorithm has to be comparable to the standard

LOF algorithm. In order to have feasible incremental algorithm, it is essential that, at any

time moment t, insertion/deletion of the data record results in limited number of updates

of algorithm parameters. Specifically, the number of updates per each insertion/deletion

must not be dependent on the current number of records in the dataset; otherwise, the

Chapter 4. Outlier Detection over Data Streams 43

performance of the incremental LOF algorithm would be Ω(N2) where N is the final size of

the dataset. The proposed incremental LOF algorithm computes LOF value for each data

record inserted into the data set and instantly determines whether inserted data record is

outlier. In addition, LOF values for existing data records are updated if needed.

Insertion of Data Points

In the insertion part, the algorithm performs two steps:

• Insertion of new record, when it computes reach-dist, lrd and LOF values of a new

point

• Maintenance, when it updates k distances, reach-dist, lrd and LOF values for affected

existing points.

Therefore, let illustrate these steps through the example of inserting a new data point n

into a data set. Insertion of the point n may decrease the k distance of certain neighboring

points, and it can happen only to those points that have the new point n in their k-

neighborhood. Hence, we need to determine all such affected points.

According to 4.1, when k distance(p) changes for a point p, reach-dist(q,p) will be

affected only for points q that are in k-neighborhood of the point p. According to 4.2, lrd

value of a point q is affected if: a) the k-neighborhood of the point q changes or b) reach-

dist from point q to one of its k-neighbors changes. The 2-neighborhood of a point will

change only if the new point n becomes one of its 2-neighbors. Hence, we need to update

lrd on all points to which the point n is now one of their 2-neighbors and on all points q

where reach-dist(q,p) is updated and p is among 2-nearest neighbors of q . According to

4.3, LOF values of an existing point q should be updated if lrd(q) is updated or lrd(p) of

one of its 2-neighbors p changes.

The general framework for the incremental LOF method is shown in 4.1. As in the

standard LOF algorithm [12], we define kth nearest neighbor of a record p as a record q from

the dataset S such that for at least k records o′ ∈ S\p it holds that d(p, o′) ≤ d(p, q), and for

at most k-1 records o′ ∈ S \ p holds that d(p, o′) ≤ d(p, q), where d(p,q) denotes Euclidean

distance between data records p and q. We refer d(p,q) as k distance(p). k nearest

Chapter 4. Outlier Detection over Data Streams 44

Figure 4.1: The general framework for insertion of data record and computing its LOF
value in incremental LOF algorithm.

Figure 4.2: Update of k-nearest neighbor distance upon insertion of a new record

Chapter 4. Outlier Detection over Data Streams 45

neighbors (referred to as kNN(p)) include all points r ∈ S \ p such that d(p, r) ≤ d(p, q).

We also define k reverse nearest neighbors of p (referred to as kRNN (p)) as all points q

for which p is among their k nearest neighbors. For a given data record p, kNN(p) and

kRNN(p) can be respectively retrieved by executing nearest-neighbor and reverse nearest

neighbor queries on a dataset S.

The insertion of point pc affects the k distance at points pj that have point pc in their

k-nearest neighborhood. New k distances of the affected points pj are updated as follows:

kdistance(new)(pj) =





d(pj, pc), pc is the kth nearest neighbor of pj

(k − 1)distance(old)(pj), otherwise

(4.4)

Deletion of Data Points

In data stream applications it is sometimes necessary to delete certain data records. Very

often, not only a single data record is deleted from the data set, but the entire data block

that may correspond to particular outdated behavior. Similarly like in an insertion, upon

deleting the block of data records Sdelete, there is a need to update parameters of the

incremental LOF algorithm. The general framework for deleting the block of data records

Sdelete from the dataset S is given in 4.3. The deletion of each record pc ∈ Sdelete from

dataset S influences the kdistances of its kRNN. k-neighborhood increases for each data

record pj that is in reverse k-nearest neighborhood of pc. For such records, k distance(pj)

becomes equal to the distance from pj to its new kth nearest neighbor. The reachability

distances from p′js (k-1) nearest neighborspi to pj need to be updated.

Observe that the reachability distance from the kth neighbor of pj to record pj is already

equal to their Euclidean distance d(pi, pj) and does not need to be updated 4.3. Analog

to insertion, lrd value needs to be updated for all points pj where k distance is updated.

In addition, lrd value needs to be updated for points pi such that pi is in kNN of pj and

pj is in kNN of pi. Finally, LOF value is updated for all points pm on which lrd value is

updated as well as on their kRNN.

Chapter 4. Outlier Detection over Data Streams 46

Figure 4.3: The framework for deletion of data record in incremental LOF method.

Figure 4.4: Update of k-nearest neighbor distance upon deletion of record pc

Chapter 4. Outlier Detection over Data Streams 47

4.2 Frequent Pattern Based Outlier Detection over

Data Streams

4.2.1 Introduction

Let I = {i1, i2, ..., im} be a set of m literals called items. Let the database D = {t1, t2, ..., tn}
be a set of n transactions each consisting of a set of items from I. An itemset X is a non-

empty subset of I. The length of itemset X is the number of items contained in X, and X

is called a k-itemset if its length is k. A transaction t ∈ D is said to contain an itemset X

if X ⊆ t. The support of an itemset X is the percentage of transactions in D containing

X:

support(X) = ‖{t ∈ D | x ⊆ t}‖ / ‖{t ∈ D}‖ (4.5)

The problem of finding all frequent itemsets in D is then defined as follows. Given

user defined threshold for the permissible minimal support, find all itemsets with support

greater or equal to minisupport. Frequent itemsets are also called frequent patterns. From

the viewpoint of knowledge discovery, frequent patterns reflect the ”common patterns”

that apply to many objects, or to large percentage of objects, in the dataset. In contrast,

outlier detection focuses on a very small percentage of data objects.

• FPOF-Frequent Pattern Outlier Factor

Let the database D = {t1, t2, ..., tn} be a set of n transactions with items I. Given

threshold minisupport, the set of all frequent patterns is donated as: FPS (D, min-

isupport). For each transaction t, the Frequent Pattern Outlier Factor of t is defined

as:

FPOF (t) =

∑
X

support(X)

‖FPS(D, minisupport)‖ , where X ⊆ t and X ∈ FPS(D, minisupport)

(4.6)

The interpretation of 4.6 is: If a data object contains more frequent patterns, its

FPOF value will be larger, which indicates that it is unlikely to be an outlier. In

Chapter 4. Outlier Detection over Data Streams 48

contrast, objects with smaller FPOF values will have greater outlyingnesses. In

addition, the FPOF value is between 0 and 1.

• For each transaction t, the itemset X is said to be contradict to t if X 6⊂ t. The

contradict-ness of X to t is defined as:

Contradictness(X, t) = (‖X‖ − ‖t ∩X‖) ∗ support(X) (4.7)

In their approach [84], the frequent pattern outlier factor given in 4.6 is used as the

basic measure for identifying outliers. To describe the reasons why identified outliers

are abnormal, the itemsets those are not contained in the transaction (it is said that

the itemset is contradict to the transaction) are good candidates. The consideration

behind 4.7 is as follows. First, the greater the support of the itemset X, the greater

the value of contradict-ness of X to t since larger support value of X suggests a more

strong deviation. Second, longer itemsets will give a better description than that of

shorter ones. With 4.7, it is possible to identify the contribution of each itemset

to the outlyingness of specified transaction. However, it is not feasible to list all

the contradict itemset, and it will be preferable to present only the top k contradict

frequent pattern to the end user.

• TKCFP-Top K Contradict Frequent Pattern

The meanings of D, I, minisupport and FPS (D, minisupport) are the same as

given above. For each transaction t, the itemset X is said to be a top k contradict

frequent pattern if there exist no more than (k-1) itemsets whose contradictness is

higher than that of X, where X ∈ FPS(D, minisupport). Their task is to mine top-n

outliers with regard to the value of frequent pattern outlier factor. For each identified

outlier, its top k contradict frequent patterns will also be discovered for the purpose

of description.

Chapter 4. Outlier Detection over Data Streams 49

Figure 4.5: The DSFindFPOF algorithm

4.2.2 Methodology

The key aspect for detecting FP-Outliers is to get the frequent item-sets. However, existing

methods for frequent pattern mining require multiple passes over the datasets, which is

not allowed in the data stream model. Thus, instead of finding the exact frequent patterns

with multiple passes, we get the estimated frequent patterns by exploring approximation

counts technique over data streams developed by Manku and Motwani [47]. The algorithm

in [84] DSFindFPOF for detecting outliers from data stream is listed in 4.5. For each

transaction in the stream, the value of FPOF is computed (Step 2-4). Then, updating the

top-n FP-outliers with their corresponding top-k contradict frequent patterns (Step 5-8).

Chapter 4. Outlier Detection over Data Streams 50

4.3 Online Cluster Based Outlier Detection over Data

Streams

4.3.1 Introduction

Given a data space in multiple dimensions A1, A2, ..., Am with domains D1, D2, ..., Dm

respectively, let the data stream D be a sequence of data objects, where each data object

t ∈ D1 × ... ×Dm. Their task is to online detect if a new coming data is an outlier. The

basic idea in their approach is as follows. Firstly, it performs an online clustering over

the data stream and then sort the clusters based on the outlier degree that measure how

outlying a cluster is. They propose that ”the smaller a cluster is, the more outlying it is

”. For each new coming data, if it lies in the top-k outlying clusters, it is regarded as an

outlier. The clustering algorithm can be chosen freely as long as it can satisfy the following

requirements:

• Appropriate for stream environment

• Provide online statistic summary of each cluster

• Produce good clustering results e.g. not ignore small clusters

4.3.2 Methodology

In their approach [16], a grid-based clustering algorithm is used. To find clusters of similar

data objects over a data stream, the distribution statistics of data objects in the data space

of a data stream are carefully maintained. By keeping only the distribution statistics of

data elements in a pre-partitioned grid-cell, the clusters of a data stream can be effectively

found without maintaining the individual data elements physically. The maintaining of

the statistics is very efficient and easy, but the partitions cannot be dynamically changed.

Whenever a new data stream arrives, it lies in a cell according to the values of its features.

Then a cluster is formally defined as following:

Definition 1: Each non-empty cell is defined as a cluster

The advantage of defining each non-empty cell as a cluster is that it does not lose any

Chapter 4. Outlier Detection over Data Streams 51

small or sparse clusters. Most clustering algorithms concentrate on providing meaningful

clustering results and often ignore small clusters. However, in the problem of outlier

detection, the small clusters have more value than large ones, since most outliers lie in

these small clusters. Thus to save memory, a group of adjacent large data clusters can be

merged into one big cluster. For each cluster, they maintain a statistic summary S, which

is defined as follows:

Definition 2: The statistic summary S of a cluster is defined as a tuple < R, n, M >

• R is the set of cell rectangles included in this cluster

• n is the support of this cluster

• M is the set of means in all dimensions for the data objects in this cluster

When a new data stream arrives, it either needs to be absorbed by an existing cluster or

needs to be put in a new cluster if it lies in an empty cell. The statistic summary S of the

cluster is updated. Thus at any moment, a set of clusters can be constructed. With this

grid-based clustering algorithm, they can easily find and merge the adjacent dense clusters

by simply searching its neighbor cells in each dimension. However, the vector-based clus-

tering algorithms must calculate pair-wise distance between clusters and find the closest

clusters to merge. The distance computation is expensive and may result in errors. Thus

the grid-based clustering algorithm provides more accurate online summarization.But as

the dimension increase, the number of cells increases dramatically and the number of clus-

ter may also increase. Moreover, they propose a new cluster-based definition for outliers

and a novel measure for outlier degree.

Definition 3:The data objects which do not lie in large clusters are outliers

Definition 4: Let C = {C1, C2, ..., Ch} is the set of clusters in the ordering of | C1 |≥|
C2 |≥ ... ≥| Ch |. Given two pre-specified parameters α and β, they find the minimal d as

the boundary such that it can first satisfy condition 1 and then also satisfy condition 2.

Condition 1: | C1 | + | C2 | +...+ | Cd |≥ α | D |
Condition 2: (|C1|+|C2|+...+|Cd|)/d

(|Cd+1|+|Cd+2|+...+|Ch|)/(h−d)
≥ β

Chapter 4. Outlier Detection over Data Streams 52

Then the set of large Data Cluster(DC) = {C1, C2, ..., Cd} and the set of small Outlier

Cluster(OC) = {Cd+1, ..., Ch}.Therefore, all the data objects in OC are outliers. The above

definition consifers two heuristics:

• Outliers are just a small number of data objects and most data objects are not

outliers

• The average size of clusters in DC should also be much bigger than that of clusters

in OC.

To describe an outlier cluster, someone must have an outlier degree to measure how

outlying it is from normal data clusters. Moreover, some outlier clusters in OC may be

very close to big data clusters and only contain normal data objects. If all the data objects

in OC are regarded as outliers, those normal data objects will be incorrectly labeled as

outliers. To avoid this, they predict those data objects in the top-k outlier cluster as

outliers. Therefore, there is need for an outlier degree.

Definition 5: For any two clusters Ci and Cj, the distance(Ci, Cj) is defined as:

distance(Ci, Cj) = min{distance(rs, rt)} (4.8)

where rs is a cell in Ci and rt is a cell in Cj

Definition 6: Based on the above definitions, for each cluster Ci ∈ OC, the Outlier

Degree(OD) of Ci is defined as following:

OD(Ci) =
min{distance(Ci Cj)}

‖Ci‖ , where Cj ∈ DC (4.9)

From the above definition, the smaller a cluster is, the more outlying it is and the

further a cluster is from the closest larger cluster, the more outlying it is.

Since their approach is cluster-based online outlier detection , their algorithm is named

as CBOD. The idea of CBOD is to immediately identify an outlier in the real-time by

online building summaries of grid-based clusters and check if it is in the top-k outlier

clusters. The challenge is how to control the memory consumption, and what should be

done if the memory is full. Because, the data stream is infinite, there may be so many

Chapter 4. Outlier Detection over Data Streams 53

Figure 4.6: The CBOD algorithm

clusters that data structure for clusters’ summary will eventually overload the memory.

When memory is full, they follow two strategies.

• Firstly, they merge adjacent data clusters into one big data cluster. Since the task

is to identify outliers that usually lie in outlier clusters, merging adjacent dense data

clusters will not affect the detecting accuracy.

• Secondly, either they prune all the outlier clusters in OC or write them to hard disk

for users’ offline analysis in the future.

The figure 4.6 describes the details of the CBOD algorithm. The total runtime of

CBOD is O(n), where n is the number of clusters and equals to the number of data objects

in the worst case.

Chapter 5

Statistical Nearest Neighbor Outlier

Stream Algorithm

5.1 Problem definition and Basic formulation

Given a data space in m dimensions A1, A2, ..., Am with supports D1, D2, ..., Dm respec-

tively, let the data stream D be a sequence of data points, where each data point t ∈
D1× ...×Dm. Our aim is to present a general framework for online outlier detection over

data streams which contain numerical values. The basic component of this framework is an

incremental, unsupervised and nonparametric algorithm, which detects online if there are

data points in the current sliding window that must be treated as outliers. The basic idea

in our approach is as follows. Firstly, we perform an online sampling over the data stream

in the current sliding window in order to estimate the parameters of each distribution by

using the method of Maximum Likelihood Estimation. Then, we compute probability den-

sity function of data points in the current window. Moreover, we compute the probability

density function of data points in the current window by using Kernel Density Estimation.

We compare the probability density functions of two methods(MLE and KDE) for three

data points in the current window and the distribution whose probability density function

is more close with the value of pdf from KDE is chosen as the distribution of data. Finally,

we compute the lower-quantile and upper-quantile of the estimated distribution. Secondly,

we propose two scoring functions which are based on the nearest neighbor algorithm. For

Chapter 5. Statistical Nearest Neighbor Outlier Stream Algorithm 55

the first scoring function, we use the distances between the nearest neighbors for each data

point and for the second we compute the densities of neighborhoods for each data point.

Finally, a data point whose values exceed the thresholds of quantiles and its value from the

scoring functions are far away from one for density scoring function , will be considered as

an outlier.

5.2 Statistical modeling

5.2.1 Kernel Density Estimation

Kernel density estimation is a non parametric method to reveal the unknown density

of a distribution by selecting a suitable density estimator[65]. Theoretically, the kernel

density function f̃h(x) is guaranteed to converge to the real density f(x) for an arbitrary

distribution. More formally, assume that we have a data set D, containing n points whose

values are X1, X2, ..., Xn. We can approximate the underlying density f(x) using the

following kernel function (The kernel functionK(x), is a function of random variable X.

The kernel width h, determines the smoothing level of kernel function):

f̃h(x) =
1

nh

n∑
i=1

K
(x−Xi

h

)
, x, Xi ∈ R ,

∫

x∈R
K(x)dx = 1 (5.1)

Commonly used kernel functions are the Epanechnikov, Gaussian and Quartic kernel.

Since the Gaussian kernel is unbounded, it stiffens the cost of computing the integral. So,

we choose as default kernel the Epanechnikov kernel which is a square function, easily

integrated and bounded, which is given by :

K
(x−Xi

h

)
=





3
4
· 1

h

(
1−

(
x−Xi

h

)2
)

,
∣∣∣x−Xi

h

∣∣∣ < 1

0, otherwise

(5.2)

The kernel density estimation indicates that the kernel width significantly affects the

shape of a kernel function. A widely used rule for approximating the kernel width is the

Scotts rule [61] given by Eq.(5.3). However, these strategies depend on the complete

Chapter 5. Statistical Nearest Neighbor Outlier Stream Algorithm 56

sample, which is impracticable in a data stream scenario. To overcome this problem, we

adopt an approximate solution, by considering only the data in the sliding window. The

number of sliding window (N) is larger, the approximate kernel width h̃ is closer to h. σ

is the standard deviation of the whole data stream and σ̃ is the sample standard deviation

of sliding window.

h ≈ 2.345σn−1.5 ≈ h̃ , 2.345σ̃(N)−1.5 (5.3)

In our implementation, we have implemented four kernel density functions namely the

Epanechnikov, Gaussian, Triangle, Quartic. The default function is the Epanechinkov

kernel function which we use mostly in our experiments.

5.2.2 Maximum Likelihood Estimation

One approach to the problem of distribution parameter estimation is to use the samples

to estimate the unknown probabilities and probability densities, and to use the resulting

estimates as if they were the true values. In typical supervised pattern classification prob-

lems, the estimation of the prior probabilities presents no serious difficulties[57]. However,

estimation of the class-conditional densities is another matter. The number of available

samples always seems too small, and serious problems arise when the dimensionality of the

feature vector x is large. If we know the number of parameters in advance and our general

knowledge about the problem permits us to parameterize the conditional densities, then

the severity of these problems can be reduced significantly. Suppose, for example, that

we can reasonably assume that p(x|ωi) is a normal density with mean µi and covariance

matrix Σi, although we do not know the exact values of these quantities. This knowledge

simplifies the problem from one of estimating an unknown function p(x|ωi) to one of es-

timating the parameters µi and Σi. Maximum likelihood and several other methods view

the parameters as quantities whose values are fixed but unknown. The best estimate of

their value is defined to be the one that maximizes the probability of obtaining the samples

actually observed. Maximum likelihood estimation methods have a number of attractive

attributes. First, they almost always have good convergence properties as the number of

training samples increases. Further, maximum likelihood estimation often can be simpler

Chapter 5. Statistical Nearest Neighbor Outlier Stream Algorithm 57

than alternate methods such as Bayesian learning.

Suppose that we separate a collection of samples according to a set of classes, so that

we have c sets, D1, ..., Dc, with the samples in Dj drawn independently and identically

according to the probability law p(x|ωj). We say such samples are i.i.d. - independent

identically distributed random variables. We assume that p(x|ωj) has a known parametric

form, and is therefore determined uniquely by the value of a parameter vector θj. For

example, we might have p(x|ωj) ∼ N(µj, Σj), where θj consists of the components of µj

and Σj. To show the dependence of p(x|ωj) on θj explicitly, we write p(x|ωj) as p(x|ωj, θj).

Our problem is to use the information provided by the training samples to obtain good

estimates for the unknown parameter vectors θ1, ..., θc associated with each class. To

simplify the treatment of this problem, we assume that samples in Di give no information

about θj if i 6= j — that is, we assume that the parameters for the different classes

are functionally independent. This permits us to work with each class separately, and

simplify our notation by deleting indications of class distinctions. With this assumption

we have c separate problems of the following form: Use a set D of training samples drawn

independently from the probability density p(x, θ) to estimate the unknown parameter

vector θ. Suppose that D contains n samples, x1, ..., xn. Then, since the samples were

drawn independently, we have

p(D|θ) =
n∏

k=1

p(xk|θ) (5.4)

p(D|θ) is called the likelihood of θ with respect to the set of samples. The maximum

likelihood estimate of θ is, by definition, the value θ̂ that maximizes p(D|θ). Intuitively,

this estimate corresponds to the value of θ that in some sense best agrees with or supports

the actually observed training samples. For analytical purposes, it is usually easier to work

with the logarithm of the likelihood than with the likelihood itself. Since the logarithm

is monotonically increasing, the θ̂ that maximizes the log-likelihood also maximizes the

likelihood. If p(D|θ) is a well behaved, differentiable function of θ, θ̂ can be found by the

standard methods of differential calculus. If the number of parameters to be set is p, then

Chapter 5. Statistical Nearest Neighbor Outlier Stream Algorithm 58

we let θ denote the p-component vector θ = (θ1,θp)
T , and ∇θ be the gradient operator

∇θ =




∂
∂θ1

...

∂
∂θp


 (5.5)

We define l(θ) as the log-likelihood function

l(θ) ≡ ln p(D|θ) (5.6)

We can then write our solution formally as the argument that maximizes the log-likelihood,

i.e.,

θ̂ = arg max
θ

l(θ) (5.7)

where the dependence on the data set D is implicit. Thus we have from Eq.(5.4)

l(θ) =
n∑

k=1

ln p(xk|θ) (5.8)

and

∇θl =
n∑

k=1

∇θ ln p(xk|θ) (5.9)

Thus, a set of necessary conditions for the maximum likelihood estimate for θ can be

obtained from the set of p equations

∇θl = 0 (5.10)

A solution θ̂ to Eq.(5.10) could represent a true global maximum, a local maximum

or minimum, or (rarely) an inflection point of l(θ). One must be careful, too, to check if

the extremum occurs at a boundary of the parameter space, which might not be apparent

from the solution to Eq.(5.10). If all solutions are found, we are guaranteed that one

represents the true maximum, though we might have to check each solution individually

(or calculate second derivatives) to identify which is the global optimum. Of course, we

must notice that θ̂ is an estimate; it is only in the limit of an infinitely large number of

Chapter 5. Statistical Nearest Neighbor Outlier Stream Algorithm 59

training points that we can expect that our estimate will be equal to the true value of the

generating function.

5.2.3 Our proposed method for combining the KDE and MLE

In our algorithm, we employ ten commonly used continuous distribution functions in order

to compare the probability density of each of them with the probability density of the

kernel density estimation method. The intuition behind the proposed method is:

The distribution function whose probability density is closer to the probability density of

the kernel density estimation will be considered as the approximated distribution

Because of the fact that a strategy which will make a comparison for each data point in

the sliding window in order to find approximately the distribution will be consuming, we

decided to compare only the probability densities of three data points which placed at the

beginning , middle and end of data stream in the window. The ten distributions which

we use to our system are the following: ChiSquare, Exponential, ExtremeValue, Gamma,

Logistic, LogNormal, Normal(Gaussian), Pareto, Power, Weibull . In our implementa-

tion, for the computation of the probability density and quantiles for each distribution, we

make use of a Java library which is called SSJ and especially the package prodist of this

library. SSJ [45] is a Java library for stochastic simulation, developed in the Département

d’Informatique et de Recherche Opérationnelle (DIRO), at the Université de Montréal.

It provides facilities for generating uniform and nonuniform random variants, computing

different measures related to probability distributions, performing goodness-of-fit tests, ap-

plying quasi- Monte Carlo methods, collecting statistics (elementary), and programming

discrete-event simulations with both events and processes. Additional Java packages are

also developed on top of SSJ for simulation applications in finance, call centers manage-

ment, communication networks, etc. The package of (SSJ) probdist contains a set of Java

classes providing methods to compute mass, density, distribution, complementary distri-

bution, and inverse distribution functions for many continuous probability distributions,

as well as estimating the parameters of these distributions.

Chapter 5. Statistical Nearest Neighbor Outlier Stream Algorithm 60

5.3 Nearest Neighbor

The outlierness of an object typically appears to be more outstanding with respect to its

local neighborhood. In view of this, recent work on outlier detection has been focused on

finding local outliers, which are essentially objects that have significantly lower density

than their local neighborhood [12]. As an objective measure, the degree of outlierness

of an object p is defined to be the ratio of its density over the average density of its

neighboring objects. To quantify the p’s neighboring objects, users must specify a value

k, and the neighboring objects are defined as the objects which are not further from p

than p’s kth nearest objects. The existing outlierness measures are not easily applicable

to a complex situation in which the dataset contains multiple neighborhoods with very

different densities. The reason for the above problem lies in the inaccurate estimation for

the density of an object’s neighborhood.

5.3.1 Density-Based Outlierness

The major drawback of LOF algorithm [12] lies in computing reachability distances de-

fined as reachdistk(q, o) = max {kdistance(o), distance(q, o))}. Computing reachability

distance of q involves computing distances of all data points within q′s neighborhood, and

each compared with the k-distance of that neighborhood which is very expensive when

MinPts is large. Secondly, LOF has to be computed for every object before the few out-

liers are detected. This is not desirable since outliers constitute only a small fraction of

the entire dataset.

Density Neighborhood Outlierness (DNO)

In our work, we propose a novel and efficient density scoring function which is based on

the idea of LOF. This density scoring function aims to decrease the computation time for

outliers and has approximately the same accuracy with the LOF algorithm. The density

function we consider for the neighborhood of a data point q is defined as the inverse of the

average distances between the data point q and its nearest neighbors

Chapter 5. Statistical Nearest Neighbor Outlier Stream Algorithm 61

DensityNeighborhood(q) =
1

1
|NNk(q)|

∑

i∈NNk(q)

d(q, NNk(i))
(5.11)

The distance in the Eq.(5.11) d(q, NNk(i) is the Euclidean distance between the data

point q and each data point from its neighborhood. The DensityNeighborhood(q) mea-

sures the concentration of data points around a data point q. The data points with low

densities have high potential of being outliers and vise versa.

To detect the outlier we assign an outlying scoring function DNO (Density Neighbor-

hood Outlierness) for each data point. The DNO for a each data point q in the window

is given by the following formula.

DNO(q) =
∑

p∈NNk(q)

DensityNeighborhood(p)

DensityNeighborhood(q)
(5.12)

In DNO, the numerator represents the local density of the neighborhood of the data

points p which belong in the neighborhood of q, while the denominator represents the

local density of the neighborhood of the data point q which was computed by Eq.(5.11)

in the sliding window. A low local DNO indicates that the neighborhood around a data

point is crowded and hence a lower potential of being an outlier whereas a high local DNO

indicates a not crowded neighborhood and hence a lower outlying potential.

5.3.2 Incremental Strategy

The intuition behind our incremental strategy is to identify the change of behavior of

our data points and reduce the computation time. By this, we mean that only the data

points for which their neighborhood changes by moving from one window to the next

sliding window. To design our incremental SNNOS algorithm, we have been motivated

by two aims. Firstly, the result of our incremental algorithm must be approximately

equivalent to the result of ILOF every time new data points are inserted into the sliding

window. Second, the time complexity of the incremental approach has to be comparable

to ILOF . In order to have a feasible incremental algorithm, it is essential that, at any

time instant, insertion/deletion of the data points results in a limited number of updates

Chapter 5. Statistical Nearest Neighbor Outlier Stream Algorithm 62

of the algorithm parameters. Specifically, the number of updates per insertion/deletion

must not be dependent on the current number of data points in the window; otherwise,

the performance of the incremental approach would be Ω(N2) where N is the size of the

window. The incremental strategy is separated into two parts, namely, the insertion part

and the deletion part. In the next subsections, we perform the analysis of incremental

update when data points either inserted into or removed from the sliding window.

Update on Insertion of new data points

In the insertion part, the algorithm proceeds in two steps:

• Insertion of new data points x, when it computes DNO(x)

• Maintenance, when it updates DNO(x) for affected existing points.

Insertion of new data points may either increase or decrease the DensityNeighborhood(x)

of a data point x, and it can happen only to those points that have one or more new points

in their neighborhood. Hence, we need to detect all such affected points and update their

scoring function DNO(x).

Update on Deletion of new data points

In the deletion part, the algorithm performs only one step:

• Maintenance, when it updates DNO(x) for affected existing points.

Deletion of data points from the current sliding window may either increase or decrease

the DensityNeighborhood(x) of a data point x, and it can happen only to those points

that have one or more points to be removed from their neighborhood. Hence, we need to

detect all such affected points and update their scoring function DNO(x).

5.4 Statistical Nearest Neighbor Outlier Stream Al-

gorithm

In this section we present the overall framework of our proposed method. The inputs of our

algorithm are the Data Stream DS,the number of neighbors k and a user-defined threshold

Chapter 5. Statistical Nearest Neighbor Outlier Stream Algorithm 63

value for the scoring function denthr.

Complexity analysis of the SNNOS Algorithm

The complexity of our algorithm SNNOS is computed as following: Let denote N the

number of data points in the sliding window and d the dimension for each data point.

Moreover, let denote K the number of sliding windows used for processing data. The Sta-

tistical modeling part requires O(K ·N ·d) operations. The Nearest Neighbor part requires

O(K ·N · logN) operations, from which O(logN) are required for the computation of near-

est neighbors.The computation of nearest neighbors requires O(logN) operations because

we use an efficient nearest neighbor search algorithm with R*trees [11] as index. For the

implementation of R*trees and the nearest neighbor search algorithm we use source code

from the implementation of ELKI [1]. The insertions and deletions using as index R*trees

require O(logN) operations for the incremental update. In details, let TNN , Tins and Tdel

correspond to time needed for the nearest neighbor searching, insertion and deletion of

a data point into/from the sliding window, including index updating. Due to the fact

that we use an efficient indexing structure(R*trees) for inserting/deleting the data point

the time complexities are as follows: TNN = Tins = Tdel = O(logN). Consequently, the

time complexity of nearest neighbor part of our algorithm (SNNOS) is logarithmic in the

current size N of the time-sliding window. The overall time complexity of the second part

after all updates to the sliding window of size N are applied is O(K ·NlogN). Therefore,

the overall complexity of our algorithm is O(K ·N(d + logN)).

Chapter 5. Statistical Nearest Neighbor Outlier Stream Algorithm 64

Algorithm 1: Statistical Nearest Neighbor Outlier Stream (SNNOS)
input : DS Data Stream , k nearest neighbors, denthr threshold for

density scoring function
output: A list with Outlier Data Points

foreach (dp (data point) ∈ DS) do
First Part: Statistical Modelling

foreach (dimension i of dp) do
estimate pdfkde(dp)(probability density function) using Kernel Density
Estimation ;
foreach (knowndistribution) do

estimate pdfmle(dp)(probability density function) using Maximum
Likelihood Estimation ;
estimate the distribution for which its pdfmle(dp) is closer to
pdfkde(dp) ;
estimate quantile(0.95) an upper-threshold for the estimated
distribution ;
estimate quantile(0.05) a lower-threshold for the estimated
distribution ;
if (dp(i) is either greater than the upper-threshold or less than the
lower-threshold) then

store this dp as a candidate outlier in CandidateOutlierList ;
end

end

end

Second Part: Nearest Neighbor Scoring Function

if (dp is an existing point in the current sliding window) then
if (at least a data point is either inserted into its Neighborhood or
deleted from its Neighborhood) then

update DNOk(dp) ;
end

end
if (dp is a new point in the current sliding window) then

compute DSNOk(dp);
end
if (dp ∈ CandidateOutlierList) AND (DNOdp ≥ denthr) then

store dp in the OutlierList ;
end

end

Chapter 6

Performance Evaluation and

Experimental Results

In this section we present and discuss our results from applying our method to both

synthetic and real datasets. We also evaluate the performance of our algorithm SNNOS

and discuss actual performance measurements. The following experiments were conducted

on an Pentium Intel Core 2 Duo 2.0 GHz with 2048 MB main memory running Windows

Vista. All algorithms were implemented in Java and executed on Eclipse Project , while

our experiments were conducted using the MATLAB environment. Moreover, we want to

thank Natasa Reljin because she provide us the source code of ILOF .

6.1 Description of Datasets

In the following, we describe in detail the datasets which were employed in our experimental

evaluation.

• Meteorological Dataset

This is a real dataset which contains 60000 data points with 4 attributes , namely

the air temperature, the rainfall, the humidity and the atmospheric pressure.

• Shuttle Dataset

The Shuttle dataset contains 10 attributes all of which are numerical. The last

column is the class, which is coded as follows :(1)Rad Flow (2)Fpv Close (3)Fpv

Chapter 6. Performance Evaluation and Experimental Results 66

Open (4)High (5)Bypass (6)Bpv Close (7)Bpv Open. Approximately 80% of the

data belongs to class 1.

• Letter Dataset

This is a real dataset which contains letter recognition data. The number of instances

is 20000, while the number of attributes is 16. The attributes , all of which take

integer values, are the following: horizontal position of box, vertical position of box,

width of box, height of box, total number of pixels, mean x of on pixels in box, mean

y of on pixels in box, mean x variance, mean y variance, mean xy correlation, mean

of x× x× y, mean of x× y × y, mean edge count left to right, correlation of x-edge

with y, mean edge count bottom to top and correlation of y-edge with x.

• Synthetic Dataset

The Synthetic dataset contains 10 attributes all of which are numerical. The number

of instances is equal to 1000. We create synthetic data using multivariate normal

distributions. The covariance matrices need to be symmetric and positive definite,

which is ensured by constructing them to be diagonally dominant, with positive

diagonal elements only. The off-diagonal entries of the covariance matrix, generated

as a random number in the range [−1, 1] with a distribution following ±y, y = x2

where x is a uniformly random deviate in [0, 1] and the sign of y is determined

randomly. The diagonal entries of the covariance matrix, generated as the sum of all

off-diagonal entries plus a random number in the range 0.2
√

D with a distribution

following ±y, y = x2 , where x is a uniformly random deviate in [0, 1] he sign of y is

determined randomly, and D is the dimensionality of the dataset.

6.2 ROC curves

Outlier detection algorithms are typically evaluated using the true detection rate, the false

detection rate, and the ROC curves. In order to define these metrics, let us look at a

confusion matrix, shown in Table 6.1. In the outlier detection problem, assuming class

C as the outlier or the rare class of interest, and NC as a normal (majority) class, there

are four possible outcomes when detecting outliers (class C)-namely true positives (TP),

Chapter 6. Performance Evaluation and Experimental Results 67

Predicted Outliers Class C Predicted Normal Class NC
Actual Outliers - Class C True Positives (TP) False Negatives (FN)
Actual Normal - Class NC False Positives (FP) True Negatives (TN)

Table 6.1: Confusion matrix defines four possible scenarios when classifying class C

false negatives (FN), false positives (FP) and true negatives (TN). From Table 6.1 , true

detection rate and false detection rate may be defined as follows:

DetectionRate =
TP

TP + FN
(6.1)

FalseAlarmRate =
FP

FP + TN
(6.2)

Detection rate gives information about the relative number of correctly identified out-

liers, while the false alarm rate reports the number of normal data misclassified as outliers

(class NC). The ROC curve represents the trade-off between the detection rate and the

false alarm rate and is typically shown on a two− dimensional(2D) (Figure 6.1), where

false alarm rate is plotted on x-axis, and detection rate is plotted on y-axis. The ideal ROC

curve has 0% false alarm rate, while having 100% detection rate (Figure 6.1). However,

the ideal ROC curve is hardly achieved in practice. The ROC curve can be plotted by

estimating the detection rate for different false alarm rates (Figure 6.1). The quality of

a specific outlier detection algorithm can be measured by computing the area under the

curve (AUC) defined as the surface area under its ROC curve. The AUC for the ideal

ROC curve is equal to 1, while AUCs of less than perfect outlier detection algorithms are

less than 1. In Figure 6.1, the shaded area corresponds to the AUC for the lowest ROC

curve.

6.3 Precision and Recall

In a statistical classification task, the Precision for a class is the number of true positives

(i.e. the number of items correctly labeled as belonging to the class) divided by the total

number of elements labeled as belonging to the class (i.e. the sum of true positives and

Chapter 6. Performance Evaluation and Experimental Results 68

Figure 6.1: The ROC curves for different detection algorithms

false positives, which are items incorrectly labeled as belonging to the class). The Recall

in this context is defined as the number of true positives divided by the total number of

elements that actually belong to the class (i.e. the sum of true positives and false negatives,

which are items which were not labeled as belonging to that class but should have been).

The formulas for both precision and recall are as follows.

Precision =
TP

TP + FP
(6.3)

Recall =
TP

TP + FN
(6.4)

6.4 Precision, Recall and Execution Time for SNNOS

In this section, we present the total execution time of our algorithm for the four datasets

and for a number equal to 1000 data points which is big enough in order to take repre-

sentable results . In addition, we compare our algorithm in various window sizes for both

Chapter 6. Performance Evaluation and Experimental Results 69

100 200 300 400 500
Meteorological
Dataset

2 sec 4 sec 7.1 sec 13.1 sec 19.2 sec

Shuttle
Dataset

4 sec 8 sec 15 sec 27.6 sec 39.2 sec

Letter
Dataset

6 sec 10 sec 24.1 sec 36 sec 44.8 sec

Synthetic
Dataset

3.8 sec 8.1 sec 14.4 sec 27.4 sec 38.9 sec

Table 6.2: Comparison of time execution for the four datasets and for five different sizes
of windows, 100, 200, 300, 400 and 500

accuracy and execution time. Moreover, we show how our incremental algorithm outper-

forms a non-incremental algorithm for different sizes of sliding windows and we show how

each part(Statistical and Nearest Neighbor) affects both execution time and accuracy of

our algorithm.

6.4.1 Comparison of SNNOS for various window sizes for sliding

window model

We compare the performance of our algorithm SNNOS for different sizes of sliding window

model. We choose to compare five different sizes of sliding window, 100, 200, 300, 400 and

500 with the same incremental step, equal to 50 . The results of our experiments for time

execution, precision and recall are presented in the following tables, Table 6.2, Table 6.3

and Table 6.4. From the results, it is obvious that the windows with size equal to 200 and

300 is very good choices for running the algorithm because this size succeeds high accuracy

and is efficient in time execution. When the window size is 100 the algorithm is very fast

but we the level of accuracy is lower. Moreover, for sizes of windows larger than 200 the

accuracy is the same but the overhead in time execution is big enough to prevent us from

select these sizes for running our algorithm.

6.4.2 Incremental vs Non-Incremental Implementation

We present the execution time of our algorithm for two different sizes of sliding windows

and for each strategy, namely, the non-incremental and the incremental . We expect the

Chapter 6. Performance Evaluation and Experimental Results 70

100 200 300 400 500
Meteorological
Dataset

1.0 1.0 1.0 1.0 1.0

Shuttle
Dataset

1.0 1.0 1.0 1.0 1.0

Letter
Dataset

0.8 0.9 0.9 0.9 1.0

Synthetic
Dataset

1.0 1.0 1.0 1.0 1.0

Table 6.3: Comparison of precision for the four datasets and for five different sizes of
windows, 100, 200, 300, 400 and 500

100 200 300 400 500
Meteorological
Dataset

1.0 1.0 1.0 1.0 1.0

Shuttle
Dataset

1.0 1.0 1.0 1.0 1.0

Letter
Dataset

0.8 0.9 0.9 0.9 1.0

Synthetic
Dataset

1.0 1.0 1.0 1.0 1.0

Table 6.4: Comparison of recall for the four datasets and for five different sizes of windows,
100, 200, 300, 400 and 500

Chapter 6. Performance Evaluation and Experimental Results 71

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

Dimensions

T
im

e
E

x
e
c
u
ti

o
n
(s

e
c
)

Incremental − window size = 200
Non − Incremental − window size = 100
Incremental − window size = 100
Non − Incremental − window size = 200

Figure 6.2: Time execution of the incremental and non-incremental implementation, using
1000 data points and windows of sizes 100 and 200.

results shown in Figure 6.2 because with the incremental approach we do not compute

the k-nearest neighbor for each data point as we explain in Section 5.3.2, but we update

the scores for these data points for which there are changes(insertions or deletions) in their

neighborhood. Figure 6.2 shows the differences between the non-incremental and the

incremental implementation in time execution.

6.4.3 Statistical vs Nearest Neighbor approach

An interesting experiment is to examine how each part of our algorithm SNNOS(Statistical

and Nearest Neighbor) affects both execution time and accuracy of our algorithm. We

manage to keep the execution time for nearest neighbor searching in low levels because

we compute the k-nearest neighbors for each data point on one scan over the data stream

and also we use R*tree indexing for searching which is an efficient way of indexing for

nearest neighbor searching. Table 6.5 shows the average time execution for the nearest

neighbor part and for window sizes equal to 100 and 200. Table 6.6 shows the average time

execution for the statistical part and for window sizes equal to 100 and 200. Moreover,

we notice that the total execution time is dominated by the Statistical part. Tables 6.7

and 6.7 show how each part of our algorithm SNNOS (Statistical and Nearest Neighbor)

affects the accuracy. From the results, it is obvious that a high value of the accuracy of

Chapter 6. Performance Evaluation and Experimental Results 72

Window Size 100 Window Size 200
Meteorological Dataset 0.018± 0.002 sec 0.06± 0.02 sec
Shuttle Dataset 0.037± 0.002 sec 0.14± 0.02 sec
Letter Dataset 0.044± 0.002 sec 0.18± 0.02 sec
Synthetic Dataset 0.035± 0.002 sec 0.13± 0.02 sec

Table 6.5: Nearest Neighbor part average time execution of SNNOS and for window sizes
100 and 200

Window Size 100 Window Size 200
Meteorological Dataset 0.1± 0.1 sec 0.3± 0.1 sec
Shuttle Dataset 0.3± 0.1 sec 0.7± 0.1 sec
Letter Dataset 0.5± 0.1 sec 0.9± 0.1 sec
Synthetic Dataset 0.29± 0.1 sec 0.68± 0.1 sec

Table 6.6: Statistical part time execution of SNNOS and for window sizes 100 and 200

the algorithm is primarily due to the Nearest Neighbor part. In addition, we can see that

when the Nearest Neighbor part is not used the decreasing performance is more prominent

than when the Statistical part is not employed. For example, if we consider as Atotal the

precision/recall of our algorithm when both parts are used, as As the precision/recall when

only statistical part is used, and Ann the precision/recall when only nearest neighbor part

is used, we can compute the relative decrement of performance as follows.

RelativeDecrement =
Atotal − As

Atotal

(6.5)

RelativeDecrement =
Atotal − Ann

Atotal

(6.6)

Table 6.9 shows the relative decrement of the performance of our algorithm SNNOS

either only the statistical part is used or only the nearest neighbor part is used.

6.5 Real Datasets

For our experiments we use 1000 data points and the window sizes for each time-sliding

window is equal to 100 and 200 data points, which are representative numbers for the

quality of our experiments. Moreover, for the nearest neighbor part of our algorithm

Chapter 6. Performance Evaluation and Experimental Results 73

Precision Recall
Meteorological
Dataset

0.62 0.62

Shuttle Dataset 0.6 0.6
Letter Dataset 0.6 0.6
Synthetic
Dataset

0.63 0.63

Table 6.7: Precision and Recall of SNNOS for window size 200 using only Statistical Part

Precision Recall
Meteorological
Dataset

0.87 0.87

Shuttle Dataset 0.8 0.8
Letter Dataset 0.8 0.8
Synthetic
Dataset

0.81 0.81

Table 6.8: Precision and Recall of SNNOS for window size 200 using only Nearest Neigh-
bor Part

Using Statistical Using Nearest
Neighbor

Meteorological
Dataset

0.38 0.13

Shuttle Dataset 0.4 0.2
Letter Dataset 0.33 0.11
Synthetic
Dataset

0.37 0.19

Table 6.9: Relative Decrement in performance of SNNOS for window size 200

Chapter 6. Performance Evaluation and Experimental Results 74

0 10 20 30 40 50 60 70 80 90 100
980

990

1000

1010

1020

time
A

ir
 P

re
ss

u
re

Meteorological Dataset

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

time

T
e
m

p
e
ra

tu
re

0 10 20 30 40 50 60 70 80 90 100
0

50

100

time

H
u
m

id
ity

Figure 6.3: Outlier Validation for the Meteorological Dataset for the time period [1, 100]

we consider the size of the neighborhood to be equal to k = 5. For the validation of

our results we combine the plots of data points and the results from the state-of-the-art

algorithm LOF . In addition, we plot ROC curves and compute the AUC in order to show

how correctly our scoring function DNO detected outliers. In the following sections, we

present our results for the datasets.

6.5.1 Meteorological Dataset

The Meteorological Dataset as described above is a real dataset. In the following figure we

plot data for one window and the data points which have a circle on them are the outlier

data points we take as results from our algorithm. We can see, from Figure 6.3 we are

able to to validate our results and consequently to estimate the true detection rate and

false alarm rate. The value of AUC in Figure 6.4 is equal to 1 (100%).

Chapter 6. Performance Evaluation and Experimental Results 75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
e
t
e
t
io

n
R

a
t
e

DNO
line of no−discrimination

Figure 6.4: ROC Curve for DNO for the Meteorological Dataset

6.5.2 Shuttle Dataset

As we explain, we use the plots of data points to estimate the real outliers. In the Shuttle

dataset, we compute the ROC curve for the DNO scoring function and estimate the AUC

getting a value greater than 0.9. The value of AUC in the Figure 6.5 is 1 (100%) which

means that our scoring function has an excellent percentage of discrimination.

6.5.3 Letter Dataset

The selection of Letter dataset has two goals. Firstly, we want a dataset with many at-

tributes(number of attributes to be greater than ten) and secondly we want to evaluate

our algorithm with a dense dataset. The accuracy of many algorithms, especially algo-

rithms which use nearest neighbor searching, decreases if someone evaluates them with

dense datasets. This happens because in dense datasets it is very difficult to discriminate

the neighborhoods for data points and there are many overlapping areas. Therefore,the

accuracy of scoring functions which are based on nearest neighborhoods is decreased. So,

the goal for this dataset is to get a value for the AUC greater than 0.9. The value of AUC

in Figure 6.6 is 0.987 , so the detection rate for DNO in this dense dataset is 98.7%.

Chapter 6. Performance Evaluation and Experimental Results 76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
e
t
e
c
t
io

n
R

a
t
e

DNO
line of no−discrimination

Figure 6.5: ROC Curve for DNO for the Shuttle Dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
e
t
e
c
t
io

n
R

a
t
e

DNO
line of no−discimination

Figure 6.6: ROC Curve for DNO for the Letter Dataset

Chapter 6. Performance Evaluation and Experimental Results 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
e

te
ct

io
n

 R
a

te

DNO
line of no−discrimination

Figure 6.7: ROC Curve for DNO for the Synthetic Dataset

6.6 Synthetic Dataset

This synthetic dataset creates 4 normal clusters and we add outliers in the dataset in

specific timestamps. In the Synthetic dataset, we compute the ROC curve for the DNO

scoring function and estimate the AUC getting a value greater than 0.9. The value of

AUC in the Figure 6.5 is 1 (100%) which means that our scoring function has an excellent

percentage of discrimination.

6.7 Comparing SNNOS with ILOF

In this section, we compare the performance of our algorithm SNNOS with the perfor-

mance of ILOF , see Section 4.1. We consider that the ILOF algorithm can find all the

outliers in the dataset.

Our algorithm SNNOS outperforms ILOF in time execution and actually we manage to

decrease the time execution approximately 62% when the window size is equal to 200 and

118% when the window size is equal to 100.

Table 6.10 shows the execution times of SNNOS(window size 100 and 200) and ILOF .

The fact that our algorithm is faster is something that we expected because we use as

the incremental step to our sliding window 50 data points , while the ILOF algorithm

updates incrementally only by one point and must compute reachability distances for each

Chapter 6. Performance Evaluation and Experimental Results 78

data point. Another reason is the fact that ILOF not only does it compute the k-nearest

neighbors but also it computes the k-reverse nearest neighbors.

Also, we modify the ILOF algorithm to use a time-sliding window model in order to make

computations over the data. Let denote Hybrid-ILOF the modified ILOF with the time-

sliding window. Table 6.11 shows the execution times of SNNOS(window size 100 and

200), ILOF and Hybrid − ILOF . Table 6.15 shows the AUC values for our algorithm

SNNOS for window sizes 100 and 200 and ILOF for the three datasets. As we can see

in Table 6.15 our algorithm has the same AUC value with ILOF except for the Letter

dataset. This is due to the fact that Letter dataset is very dense dataset and there are

many overlapping neighborhoods. Moreover, the SNNOS algorithm’s AUC value is lower

when the sliding window size is 100 because when the window size is small it is more

difficult for the scoring function to discriminate the outliers from normal data points. In

addition, in Figures 6.8 and 6.9, we can see the comparison between the SNNOS and

ILOF with respect to the discrimination level they succeed in the three datasets. Fur-

thermore, we compute the precision and recall of each algorithm. To compute precision

and recall we have to determine how many outliers identified using ILOF are correctly

identified by SNNOS. In particular, we were interested in the number of Top − 10 data

points determined as outliers. Tables 6.13 and 6.14, show the precision and recall of our

algorithm for window sizes 100 and 200 and ILOF for the three datasets. A good algo-

rithm must balance both precision and recall, therefore high values for both precision and

recall is favored. The results show that our method for the Meteorological, Shuttle and

Synthetic dataset has the same precision and recall. In the Letter dataset the precision

and recall of our algorithm is very close to those of ILOF . The difference in the Letter

dataset is due to the fact that the Letter dataset is very dense and there are many over-

lapping neighborhoods for each data point. Moreover, we compare our algorithm SNNOS

with ILOF on how the value of AUC, precision and recall is related to the speedup of the

execution time. This comparison is illustrated in the Figure 6.10, Figure 6.11 and Figure

6.12. We achieve to speedup the execution time 62% when the size of sliding window is

equal to 200 and 118% when the the size of sliding window is equal to 100.

Chapter 6. Performance Evaluation and Experimental Results 79

SNNOS(size
100)

SNNOS(size
200)

ILOF

Meteorological
Dataset

2 sec 4 sec 247 sec

Shuttle Dataset 4 sec 8 sec 503 sec
Letter Dataset 6 sec 10 sec 628 sec
Synthetic
Dataset

3.8 sec 8.1 sec 510 sec

Table 6.10: Comparison of time execution for SNNOS and ILOF

SNNOS(size
100)

SNNOS(size
200)

Hybrid− ILOF

Meteorological
Dataset

2 sec 4 sec 213 sec

Shuttle Dataset 4 sec 8 sec 487 sec
Letter Dataset 6 sec 10 sec 601 sec
Synthetic
Dataset

3.8 sec 8.1 sec 495 sec

Table 6.11: Comparison of time execution for SNNOS and Hybrid − ILOF with incre-
mental step for SNNOS equal to 50 and incremental step for Hybrid − ILOF equal to
1

SNNOS(size
100)

SNNOS(size
200)

Hybrid− ILOF

Meteorological
Dataset

5 sec 11 sec 213 sec

Shuttle Dataset 10 sec 18 sec 487 sec
Letter Dataset 13 sec 19 sec 601 sec
Synthetic
Dataset

11 sec 17 sec 495 sec

Table 6.12: Comparison of time execution for SNNOS and ILOF with the same incre-
mental step for SNNOS, ILOF and Hybrid− ILOF equal to 1

SNNOS(size
100)

SNNOS(size
200)

ILOF Hybrid− ILOF

Meteorological
Dataset

1.0 1.0 1.0 1.0

Shuttle Dataset 1.0 1.0 1.0 1.0
Letter Dataset 0.80 0.90 1.0 1.0
Synthetic
Dataset

1.0 1.0 1.0 1.0

Table 6.13: Comparison of Precision for SNNOS, ILOF and Hybrid− ILOF

Chapter 6. Performance Evaluation and Experimental Results 80

SNNOS(size
100)

SNNOS(size
200)

ILOF Hybrid− ILOF

Meteorological
Dataset

1.0 1.0 1.0 1.0

Shuttle Dataset 1.0 1.0 1.0 1.0
Letter Dataset 0.8 0.9 1.0 1.0
Synthetic
Dataset

1.0 1.0 1.0 1.0

Table 6.14: Comparison of Recall for SNNOS and ILOF and Hybrid− ILOF

SNNOS(size
100)

SNNOS(size
200)

ILOF Hybrid− ILOF

Meteorological
Dataset

1.0 1.0 1.0 1.0

Shuttle Dataset 1.0 1.0 1.0 1.0
Letter Dataset 0.902 0.987 1.0 1.0
Synthetic
Dataset

1.0 1.0 1.0 1.0

Table 6.15: Comparison of AUC values for SNNOS and ILOF and Hybrid− ILOF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
e
t
e
c
t
io

n
R

a
t
e

ILOF
SNNOS
line of no−discrimination

Figure 6.8: Comparison of ROC Curves for ILOF and DNO for Letter Dataset

Chapter 6. Performance Evaluation and Experimental Results 81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
e
t
e
c
t
io

n
R

a
t
e

ILOF
SNNOS window = 200
SNNOS window = 100
line of no−discrimination

Figure 6.9: Comparison of ROC Curves for ILOF and DNO for Letter dataset with different
sizes of windows for DNO

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Speedup

A
U

C

ILOF
SNNOS window size 100
SNNOS window size 200

Figure 6.10: Comparison of SNNOS and ILOF on how the value of AUC is related to the
speedup of execution time

Chapter 6. Performance Evaluation and Experimental Results 82

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Speedup

P
re

ci
si

o
n

ILOF
SNNOS window size = 100
SNNOS window size = 200

Figure 6.11: Comparison of SNNOS and ILOF on how the value of precision is related to
the speedup of execution time

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Speedup

R
e
ca

ll

ILOF
SNNOS window size = 100
SNNOS window size = 200

Figure 6.12: Comparison of SNNOS and ILOF on how the value of recall is related to the
speedup of execution time

Chapter 6. Performance Evaluation and Experimental Results 83

6.8 Memory Consumption

In order to verify the efficiency of our algorithm, we measure the amount of memory re-

quired by the algorithm. There are two groups of components of our algorithm that affect

the memory consumption: The first group is the sample maintenance in a sliding window

and the distribution estimation. For the sample maintenance, we use a treemap while for

the distribution estimation we keep additionally in memory a hasmap with the density es-

timations using the kernel density estimation method and maximum likelihood estimation.

For the second group, similarly as for the first group, we use the treemap for sample main-

tenance in a window, constructing the R*tree index for efficient nearest neighbor searching

and we employ a list in which we store the outlier data points. Consequently, the memory

consumption of our algorithm is low. This is due to our strategy to use a cache manager

where we keep the incoming data streams. Then we retrieve the data which belong to a

specific sliding window. The ILOF algorithm keeps all the data points in main memory

and when a new data point inserted into the database incrementally updates the LOF

values for all data points. This strategy has high memory consumption and when the

dataset is very large could be inefficient. Our approach to keep only the data points in

the current sliding window in main memory and the other in a cache manager is efficient.

Therefore, SNNOS outperforms ILOF in memory consumption.

Chapter 7

Conclusion and Future work

In the present work, we described an algorithm for detecting outliers in data streams. The

proposed algorithm is non-parametric, unsupervised and requires no prior knowledge of

data.

The proposed algorithm(SNNOS) is divided into the statistical and the nearest neigh-

bor stage. The statistical part consists of two methods for statistical learning, namely,

the Kernel Density Estimation (KDE) method and the Maximum Likelihood Estima-

tion(MLE) method. The KDE method uses kernel density functions to estimate prob-

ability densities for each data point in the window. The MLE method, is carried out

by employing ten continuous distributions for each one of them we estimate the proba-

bility density for each data point in the window using Maximum Likelihood Estimation.

The nearest neighbor part consists of a density scoring function DNO(density-based). In

Chapter 6, we presented the experimental results using the proposed algorithm, and we

compared its performance with the performance of a state-of-the-art algorithms, namely,

the ILOF . The ROC curves for the three different datasets along with the computation of

precision and recall shows that the proposed SNNOS algorithm is very efficient. More-

over, the execution time with the proposed incremental strategy decreases and outperforms

the time of ILOF .

As a future research direction, one could improve the system in order to process high

dimensional datasets, where new methods for estimating data densities are worth consider-

ing. Such methods could be based on algorithms which perform dimensionality reduction

Chapter 7. Conclusion and Future work 85

by selecting similar attributes and group the several attributes. Moreover, a modification

of the DNO scoring function is necessary to succeed better accuracy percentage in very

dense datasets. Finally, it would be very interesting to use our algorithm and examine its

performance in a real-time data stream mining system.

Bibliography

[1] Elke Achtert, Hans-Peter Kriegel, and Arthur Zimek. Elki: A software system for eval-
uation of subspace clustering algorithms. In Bertram Ludscher and Nikos Mamoulis,
editors, SSDBM, volume 5069 of Lecture Notes in Computer Science, pages 580–585.
Springer, 2008.

[2] Deepak Agarwal. Detecting anomalies in cross-classified streams: a bayesian approach.
Knowl. Inf. Syst., 11(1):29–44, 2006.

[3] C. Aggarwal and S. Yu. An effective and efficient algorithm for high-dimensional
outlier detection. The VLDB Journal, 14(2):211–221, 2005.

[4] Charu C. Aggarwal and Philip S. Yu. Outlier detection with uncertain data. In SDM,
pages 483–493. SIAM, 2008.

[5] Amrudin Agovic and Arindam Banerjee. Anomaly detection in transportation corri-
dors using manifold embedding abstract, 2007.

[6] L. Douglas Baker, Thomas Hofmann, Andrew K. Mccallum, and Yiming Yang. A
hierarchical probabilistic model for novelty detection in text, 1999.

[7] Daniel Barbar, Yi Li, Jia-Ling Lin, Sushil Jajodia, and Julia Couto. Bootstrapping a
data mining intrusion detection system. In SAC, pages 421–425. ACM, 2003.

[8] Daniel Barbará, Ningning Wu, and Sushil Jajodia. Detecting novel network intrusions
using bayes estimators. In Proceedings of the First SIAM Conference on Data Mining,
April 2001.

[9] V. Barnett and T. Lewis. Outliers in statistical data. International Journal of Fore-
casting, 12(1):175–176, March 1996.

[10] Stephen D. Bay and Mark Schwabacher. Mining distance-based outliers in near linear
time with randomization and a simple pruning rule. pages 29–38, New York, NY,
USA, 2003. ACM.

[11] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
r*-tree: an efficient and robust access method for points and rectangles. SIGMOD
Rec., 19(2):322–331, 1990.

[12] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof:
Identifying density-based local outliers. pages 93–104, 2000.

[13] Re Bronstein, Joydip Das, Marsha Duro, Rich Friedrich, Gary Kleyner, Martin
Mueller, Sharad Singhal, Ira Cohen, G. Kleyner, M. Mueller, S. Singhal, and I. Cohen.
Self-aware services: Using bayesian networks for detecting anomalies in internet-based
services. In Northwestern University and Stanford University. Gary (Igor, pages 623–
638. Publishing, 2001.

BIBLIOGRAPHY 87

[14] Varun Ch, Arindam Banerjee, Vipin Kumar, and Varun Chandola. Outlier detection:
A survey, 2007.

[15] Amitabh Chaudhary, Alexander S. Szalay, and Andrew W. Moore. Very fast outlier
detection in large multidimensional data sets. In DMKD, 2002.

[16] Hongyin Cui. Online outlier detection over data streams. Master’s thesis, 2005.

[17] Kaustav Das and Jeff Schneider. Detecting anomalous records in categorical datasets.
In KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 220–229, New York, NY, USA, 2007.
ACM.

[18] Christopher P. Diehl and John B. Hampshire Ii. Real-time object classification and
novelty detection for collaborative video surveillance. In In Proceedings of the Inter-
national Joint Conference on Neural Networks, pages 2620–2625, 2002.

[19] Levent Ertoz, Michael Steinbach, and Vipin Kumar. Finding topics in collections of
documents: A shared nearest neighbor approach. In Workshop on Text Mining, held
in conjunction with the First SIAM International Conference on Data Mining (SDM
2001). Society for Industrial and Applied Mathematics, 2003.

[20] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework
for unsupervised anomaly detection: Detecting intrusions in unlabeled data. Kluwer,
2002.

[21] Eleazar Eskin. Anomaly detection over noisy data using learned probability distribu-
tions. pages 255–262. Morgan Kaufmann, 2000.

[22] Eleazar Eskin, Wenke Lee, and Salvatore J. Stolfo. Modeling system calls for intru-
sion detection with dynamic window sizes. In In Proceedings of DARPA Information
Survivabilty Conference and Exposition II (DISCEX, 2001.

[23] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proc. of
2nd International Conference on Knowledge Discovery and Data Mining (KDD-96),
pages 226–231, 1996.

[24] Pedro Galeano, Daniel Pea, and Ruey S. Tsay. Outlier detection in multivariate time
series via projection pursuit. Statistics and Econometrics Working Papers ws044211,
September 2004.

[25] J. Gama and M. Gaber (Eds). Learning from Data Streams. Springer, 2007.

[26] Johannes Gehrke, Flip Korn, and Divesh Srivastava. On computing correlated aggre-
gates over continual data streams. In SIGMOD ’01: Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, pages 13–24, New York,
NY, USA, 2001. ACM.

[27] Amol Ghoting, Srinivasan Parthasarathy, and Matthew Eric Otey. Fast mining of
distance-based outliers in high-dimensional datasets. Data Min. Knowl. Discov.,
16(3):349–364, 2008.

[28] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust clustering algo-
rithm for categorical attributes. Inf. Syst., 25(5):345–366, 2000.

[29] D.M. Hawkins. Identification of outliers. Chapman and Hall, Reading, London, 1980.

[30] Zengyou He, Shengchun Deng, and Xiaofei Xu. Outlier detection integrating semantic
knowledge. In Xiaofeng Meng, Jianwen Su, and Yujun Wang, editors, WAIM, volume
2419 of Lecture Notes in Computer Science, pages 126–131. Springer, 2002.

BIBLIOGRAPHY 88

[31] Zengyou He, Shengchun Deng, Xiaofei Xu, and Joshua Zhexue Huang. A fast greedy
algorithm for outlier mining. pages 567–576, 2006.

[32] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local out-
liers. Pattern Recognition Letters, 24(9-10):1641–1650, 2003.

[33] Zengyou He, Xiaofei Xu, and Shengchun Deng. An optimization model for outlier
detection in categorical data, 2005.

[34] Wenjie Hu, Yihua Liao, and V. Rao Vemuri. Robust anomaly detection using sup-
port vector machines. In In Proceedings of the International Conference on Machine
Learning. Morgan Kaufmann Publishers Inc, 2002.

[35] Tsuyoshi IDÉ and Hisashi KASHIMA. Eigenspace-based anomaly detection in com-
puter systems. In KDD ’04: Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 440–449, New York, NY,
USA, 2004. ACM.

[36] M. Kamber J. Han. Data Mining: Concepts and Techniques. Morgan Kaufmann,
2006.

[37] M. Juhola J. Laurikkala and E. Kentala. Informal identification of outliers in medical
data. In In Fifth International Workshop on Intelligent Data Analysis in Medicine
and Pharmacology., pages 20–24, 2000.

[38] Wen Jin, Anthony K. H. Tung, and Jiawei Han. Mining top-n local outliers in large
databases. In KDD ’01: Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 293–298, New York, NY,
USA, 2001. ACM.

[39] Mahesh V. Joshi, Ramesh C. Agarwal, and Vipin Kumar. Predicting rare classes: can
boosting make any weak learner strong? In KDD ’02: Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
297–306, New York, NY, USA, 2002. ACM.

[40] Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana. Towards
parameter-free data mining. In KDD ’04: Proceedings of the tenth ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 206–215, New
York, NY, USA, 2004. ACM.

[41] Edwin M. Knorr, Raymond T. Ng, and Vladimir Tucakov. Distance-based outliers:
algorithms and applications. The VLDB Journal, 8(3-4):237–253, 2000.

[42] Teuvo Kohonen. Self-organizing maps. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1997.

[43] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using traffic
feature distributions. SIGCOMM Comput. Commun. Rev., 35(4):217–228, 2005.

[44] Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Aysel Ozgur, and Jaideep Sri-
vastava. A comparative study of anomaly detection schemes in network intrusion
detection. In Proceedings of the Third SIAM International Conference on Data Min-
ing, 2003.

[45] Pierre L’Ecuyer and Eric Buist. Simulation in java with ssj. In WSC ’05: Proceed-
ings of the 37th conference on Winter simulation, pages 611–620. Winter Simulation
Conference, 2005.

[46] Junshui Ma and Simon Perkins. Online novelty detection on temporal sequences.
In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 613–618, New York, NY, USA, 2003.
ACM.

BIBLIOGRAPHY 89

[47] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over
data streams. In VLDB ’02: Proceedings of the 28th international conference on Very
Large Data Bases, pages 346–357. VLDB Endowment, 2002.

[48] Markos Markou and Sameer Singh. Novelty detection: A review - part 1: Statistical
approaches. Signal Processing, 83:2003, 2003.

[49] Matthew Eric Otey, Amol Ghoting, and Srinivasan Parthasarathy. Fast distributed
outlier detection in mixed-attribute data sets. Data Min. Knowl. Discov., 12(2-3):203–
228, 2006.

[50] Matthew Eric Otey, Srinivasan Parthasarathy, Amol Ghoting, G. Li, Sundeep Nar-
ravula, and Dhabaleswar K. Panda. Towards nic-based intrusion detection. In Lise
Getoor, Ted E. Senator, Pedro Domingos, and Christos Faloutsos, editors, KDD, pages
723–728. ACM, 2003.

[51] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B. Gibbons, and Christos Faloutsos.
Loci: Fast outlier detection using the local correlation integral. pages 315–, 2003.

[52] Lucas Parra, Gustavo Deco, and Stefan Miesbach. Statistical independence and nov-
elty detection with information preserving nonlinear maps. Neural Comput., 8(2):260–
269, 1996.

[53] Peter G. Neumann Phillip A. Porras. Emerald: Event monitoring enabling responses
to anomalous live disturbances. Technical report, SRI International, Menlo Park, CA
94025.

[54] Dragoljub Pokrajac, Aleksandar Lazarevic, and Longin Jan Latecki. Incremental local
outlier detection for data streams. pages 504–515, 2007.

[55] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for
mining outliers from large data sets. pages 427–438, 2000.

[56] Gunnar Rätsch, Sebastian Mika, Bernhard Schökopf, and Klaus-Robert Müller. Con-
structing boosting algorithms from svms: an application to one-class classification,
2002.

[57] David G. Stork Richard O. Duda, Peter E. Hart. Pattern Classification. Wiley-
Interscience, 2nd Edition, 2000.

[58] Volker Roth. Kernel fisher discriminants for outlier detection. Neural Computing,
18(4):942–960, 2006.

[59] Stan Salvador and Philip Chan. Learning states and rules for detecting anomalies in
time series. Applied Intelligence, 23(3):241–255, 2005.

[60] Bernhard Schlkopf, John C. Platt, John C. Shawe-Taylor, Alex J. Smola, and
Robert C. Williamson. Estimating the support of a high-dimensional distribution.
Neural Computation, 13(7):1443–1471, 2001.

[61] David W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualiza-
tion. Wiley-Interscience, September 1992.

[62] Abdallah Abbey Sebyala, Temitope Olukemi, and Dr. Lionel Sacks. Active platform
security through intrusion detection using naive bayesian network for anomaly detec-
tion. In In London Communications Symposium, 2002.

[63] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang. Wavecluster:
A multi-resolution clustering approach for very large spatial databases. In Ashish
Gupta, Oded Shmueli, and Jennifer Widom, editors, VLDB, pages 428–439. Morgan
Kaufmann, 1998.

BIBLIOGRAPHY 90

[64] Meiling Shyu, Shuching Chen, Kanoksri Sarinnapakorn, and Liwu Chang. A novel
anomaly detection scheme based on principal component classifier. In In IEEE Foun-
dations and New Directions of Data Mining Workshop, in conjunction with ICDM03,
pages 172–179, 2003.

[65] B. W. Silverman. Density estimation: for statistics and data analysis. London, 1986.

[66] Xiuyao Song, Mingxi Wu, and Christopher Jermaine. Conditional anomaly detection.
IEEE Trans. on Knowl. and Data Eng., 19(5):631–645, 2007. Fellow-Sanjay Ranka.

[67] Claudio De Stefano, Carlo Sansone, and Mario Vento. To reject or not to reject: that
is the question-an answer in case of neural classifiers. IEEE Transactions on Systems,
Man, and Cybernetics, Part C, 30(1):84–94, 2000.

[68] Sharmila Subramaniam, Themis Palpanas, Dimitris Papadopoulos, Vana Kalogeraki,
and Dimitrios Gunopulos. Online outlier detection in sensor data using non-parametric
models. pages 187–198, 2006.

[69] Huanliang Sun, Yubin Bao, Faxin Zhao, Ge Yu, and Daling Wang. Cd-trees: An
efficient index structure for outlier detection. In WAIM, pages 600–609, 2004.

[70] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. Less is more: Sparse
graph mining with compact matrix decomposition. Stat. Anal. Data Min., 1(1):6–22,
2008.

[71] Pang-Ning Tan. Introduction to Data Mining. ADDISON WESLEY PUBLICA-
TIONS, June 2006.

[72] Gaurav Tandon and Philip K. Chan. Weighting versus pruning in rule validation for
detecting network and host anomalies. In KDD ’07: Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
697–706, New York, NY, USA, 2007. ACM.

[73] Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David Wai-Lok Cheung. Enhancing
effectiveness of outlier detections for low density patterns. In PAKDD ’02: Proceedings
of the 6th Pacific-Asia Conference on Advances in Knowledge Discovery and Data
Mining, pages 535–548, London, UK, 2002. Springer-Verlag.

[74] Yufei Tao, Xiaokui Xiao, and Shuigeng Zhou. Mining distance-based outliers from
large databases in any metric space. pages 394–403, New York, NY, USA, 2006.
ACM.

[75] P H S Torr and D W Murray. Outlier detection and motion segmentation. pages
432–443, 1993.

[76] Ricardo Vilalta and Sheng Ma. Predicting rare events in temporal domains. In
ICDM ’02: Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM’02), page 474, Washington, DC, USA, 2002. IEEE Computer Society.

[77] Li Wei, Weining Qian, Aoying Zhou, Wen Jin, and Jeffrey Xu Yu. Hot: Hypergraph-
based outlier test for categorical data. In PAKDD, pages 399–410, 2003.

[78] Graham Williams, Rohan Baxter, Hongxing He, Simon Hawkins, and Lifang Gu.
comparative study of rnn for outlier detection in data mining. In in ICDM, page 709,
2002.

[79] Weng Keen Wong, Andrew Moore, Gregory Cooper, and Michael Wagner. Bayesian
network anomaly pattern detection for disease outbreaks. In Proceedings of the 20th
International Conference on Machine Learning (ICML-2003), 2003.

BIBLIOGRAPHY 91

[80] Mingxi Wu and Christopher Jermaine. Outlier detection by sampling with accuracy
guarantees. In KDD ’06: Proceedings of the 12th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 767–772, New York, NY, USA,
2006. ACM.

[81] Nong Ye and Qiang Chen. An anomaly detection technique based on a chi-square
statistic for detecting intrusions into information systems. quality and reliability en-
gineering. International, 17:105–112, 2001.

[82] Dantong Yu, Gholamhosein Sheikholeslami, and Aidong Zhang. Findout: Finding
outliers in very large datasets. Knowl. Inf. Syst., 4(4):387–412, 2002.

[83] Jeffrey Xu Yu, Weining Qian, Hongjun Lu, and Aoying Zhou. Finding centric local
outliers in categorical/numerical spaces. Knowl. Inf. Syst., 9(3):309–338, 2006.

[84] Xiaofei Xu Zengyou HE and Shengchun Deng. Outlier detection over data streams.
In International Conference for Young Computer Scientists (ICYCS03), 2003.

[85] Zhexue Huang Joshua Deng Shengchun Zengyou he, Xiaofei xu. A frequent pattern
discovery method for outlier detection, 2004.

[86] Ji Zhang and Hai Wang. Detecting outlying subspaces for high-dimensional data: the
new task, algorithms, and performance. Knowl. Inf. Syst., 10(3):333–355, 2006.

[87] Y. Zhang, N. Meratnia, and P. J. M. Havinga. A taxonomy framework for unsu-
pervised outlier detection techniques for multi-type data sets. Technical Report TR-
CTIT-07-79, Enschede, November 2007.

