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Tracking Mechanisms and the Effect of User Consent

on the Web

Abstract

During the past few years, mostly as a result of legislation such as the GDPR
and the CCPA, websites have started presenting users with consent banners. These
banners are web forms where users can state their preference regarding data pro-
cessing purposes and declare which cookies they would like to accept. Although
requesting consent before storing any identifiable information is a good start to-
wards respecting the user privacy, previous research has shown that websites do
not always respect user choices. Furthermore, considering not only the ever de-
creasing reliance of trackers on cookies, but also the actions browser vendors take
by blocking or restricting third-party cookies, we anticipate a world where state-
less tracking emerges, either because trackers or websites do not use cookies, or
because users simply refuse to accept any.

In this thesis, we explore whether websites use more persistent and sophisti-
cated forms of tracking in order to track users who explicitly denied consent. Such
forms of tracking include first-party ID leaking, third-party ID synchronization
and browser fingerprinting. Using a novel web crawler, we examined the consent
banners of over 27,000 websites and our results suggest that websites do use such
modern forms of tracking even before users had the opportunity to register their
consent choice. To add insult to injury, when users choose to raise their voice,
deny consent and reject all cookies, user tracking only intensifies. We measured
that aggressive tracking takes place before users had the opportunity to make a
selection in the consent banner, with more than 75% of tracking activities hap-
pening when users chose to deny consent. Consequently, we conclude that user
choices play very little role with respect to sophisticated tracking mechanisms.





Μηχανισμοί Ιχνηλάτησης και η Επίδραση της
Συναίνεσης του Χρήστη στο Διαδίκτυο

Περίληψη

Τα τελευταία χρόνια, κυρίως λόγω νομοθεσίας όπως είναι το GDPR και το CCPA,
οι ιστοσελίδες έχουν ξεκινήσει να παρουσιάζουν παράθυρα συναίνεσης στους χρήστες.
Αυτά τα παράθυρα είναι διαδικτυακές φόρμες στις οποίες οι χρήστες μπορούν να δη-
λώσουν τις προτιμήσεις τους σχετικά με την επεξεργασία των δεδομένων τους αλλά
και ποια cookies επιθυμούν να αποδεχτούν. Παρόλο που το να ζητάνε συναίνεση προ-
τού αποθηκεύσουν οποιαδήποτε αναγνωρίσιμη πληροφορία είναι μια καλή αρχή για τον
σεβασμό της ιδιωτικότητας των χρηστών, προηγούμενη έρευνα έχει δείξει ότι οι ιστο-
σελίδες δεν σέβονται πάντα τις επιλογές των χρηστών τους. Επιπλέον, λαμβάνοντας
υπόψη όχι μόνο την φθίνουσα εξάρτηση των ιχνηλατών (trackers) στα cookies, αλλά
και τις ενέργειες των προμηθευτών προγραμμάτων περιήγησης για την παρεμπόδιση
cookies τρίτων, προβλέπουμε έναν κόσμο όπου θα κυριαρχήσει η ιχνηλάτηση χωρίς
μνήμη, είτε επειδή οι ιχνηλάτες ή οι ιστοσελίδες δεν χρησιμοποιούν cookies, είτε απλά
επειδή οι χρήστες αρνούνται να τα αποδεχτούν.
Σε αυτή την εργασία, εξερευνούμε εάν οι ιστοσελίδες χρησιμοποιούν πιο επίμονες

και προχωρημένες μορφές ιχνηλάτησης με σκοπό να ανιχνεύουν χρήστες οι οποίοι αρ-
νούνται ρητά συναίνεση. Τέτοιες μορφές ιχνηλάτησης συμπεριλαμβάνουν first-party
ID leaking, third-party ID synchronization και browser fingerprinting. Χρησιμο-
ποιώντας έναν καινοτόμο crawler διαδικτύου, εξετάσαμε τις φόρμες συναίνεσης περισ-
σότερων από 27,000 ιστοσελίδων και τα αποτελέσματα μας δείχνουν ότι οι ιστοσελίδες
όντως χρησιμοποιούν τέτοιες μοντέρνες μορφές ιχνηλάτησης πριν ακόμα οι χρήστες
έχουν την ευκαιρία να καταγράψουν την επιλογή τους. Ακόμη χειρότερα, όταν οι
χρήστες επιλέγουν να υψώσουν τη φωνή τους, να αρνηθούν συναίνεση και να απορ-
ρίψουν όλα τα cookies, ο εντοπισμός εντείνεται. Μετρήσαμε την επιθετική ιχνηλάτηση
να λαμβάνει χωρά προτού οι χρήστες έχουν την ευκαιρία να πάρουν μια απόφαση στις
φόρμες συναίνεσης με περισσότερο από 75% των ενεργειών ιχνηλάτησης να γίνονται
όταν οι χρήστες επιλέγουν να αρνηθούν συναίνεση. Ως αποτέλεσμα, καταλήγουμε ότι
οι επιλογές των χρηστών παίζουν πολύ μικρό ρόλο όσον αφορά τους προχωρημένους
μηχανισμούς ιχνηλάτησης.
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Chapter 1

Introduction

Over the past few years, an increasing concern to protect user privacy has been
observed, with the protection of data of users across the world being the main focus.
Specifically in Europe, this is evident in the General Data Protection Regulation
(GDPR) which was adopted on April 2016 and came into force on May 2018.
This regulation focused on citizens of the European Union trying to enable them
to have better control of their personal data. However, it is important to notice
that the GDPR has a global effect since it affects all websites that process data of
European citizens, even if these websites are based outside the European Union.
The main difference of this regulation compared to previous legislation is that it
includes significant fines for companies which collect user data without the user’s
consent or some other legal basis.

As a result, several companies, and their associated websites, have started
asking their visitors for their consent, before collecting and processing their data.
Beyond that, some websites have even taken extreme measures like blocking users
and refusing services to visitors from the European countries [68, 28]. A careful
reader of the GDPR, can surmise that the regulation is not about cookies alone,
but instead about proper handling of any type of personal data. Any information
that might be linked to an identifiable individual is considered personal data. This
definition covers not only online identifiers (e.g., device’s MAC address, IP address,
or an advertising user identifier stored in a cookie), but also less specific features
like the combination of browser characteristics.

Websites usually collect consent through the use of consent banners, which ask
users for their preference regarding data processing and may also provide some
options. Indeed, users may be given the choice to accept all cookies, to accept
only some, or even to reject them all. The choice is entirely up to the user, and
the correct implementation of this choice is the responsibility of the website. Due
to the technical and legal complexity of this task, during the last few years, we
have witnessed the advent of Consent Management Providers, third-party services
which are tasked with providing users with the appropriate options regarding data
processing, and then, properly collecting and storing their consent.

1



2 CHAPTER 1. INTRODUCTION

Although this sounds completely legal and fully straightforward, deviations
and discrepancies between what the users select and what is in fact registered in
the website have been reported in literature [27, 18, 67, 45, 75]. For example, users
may provide a negative response (i.e., reject all cookies), but cookie banners may
register a positive one (i.e., accept all cookies), or the cookie banners may register
a positive response even before the users has had the opportunity to provide any
choice [45]. Additionally, websites have the legal right to declare some cookies as
absolutely necessary for their operation (e.g., for the page to be delivered) or due
to legitimate interest (e.g., to improve the product or the provided service). Such
cookies can not be rejected by the users, thus, users often do not really have the
option to reject all cookies.

In this thesis, we explore a slightly different question:

If a user does not provide consent, or chooses to reject all cookies, do
websites use other forms of tracking to track this user? If so, what are
these forms of tracking, and what is the extent of this tracking?

In the Web ecosystem, cookies are often used to store identifying information
for a given user. Indeed, the digital advertising industry depends on personaliza-
tion and targeted ads. Previous work has focused on cookies and compliance of
cookie processing with the GDPR and similar legislation (e.g., [67, 13]). However,
recent policies and regulations from browser vendors and government bodies try
to control the exposure of this identifying information to third-parties [11]. In
fact, almost all modern browser vendors have taken action to impede the use of
third-party cookies [78, 72, 7]. These policies restrain the ad and tracking industry
that relies on re-identifying a user for long periods to serve more targeted ads.

Considering the (i) ever less reliance of third-party trackers on non-permanent,
erasable state-like cookies [37], (ii) recent advances of browser vendors against
third-party cookies [10, 77] and (iii) the introduction of new technologies in the
advertising ecosystem [16], it is apparent that the need for identifying how web-
sites treat user consent in case of stateless (i.e., cookie-less) tracking is more than
timely and urgent. We address this need and try to fill this exact gap in our un-
derstanding, by being the first to investigate what is the GDPR compliance across
the Web in the case where websites and trackers do not use cookies, or users do
not accept cookies.

Sadly, our results suggest that even when users deny consent, websites do use
other forms of tracking to track users, and process their personal data, in violation
of legislation, such as the GDPR. Such forms of tracking include first-party ID
leaking, third-party ID synchronization and browser fingerprinting. One might
think that the synchronization or leak of identifiers is a form of tracking using
cookies, however, that is not entirely true. Although ID synchronization might
use values stored in cookies, passing such values around is done in an unorthodox
manner completely different from the way cookies are used. Particularly, first-
party ID leaking and third-party ID synchronization are used to pass an identifier
as an “argument” in network traffic towards a party different from the one that
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assigned it in the first place. In fact, according to past studies [58, 59, 24], Web
entities may share the identifiers they have assigned to users and help third-parties
re-identify users or even create universal IDs.

On the other hand, browser fingerprinting [20, 1] uses elaborate techniques to
uniquely identify users through characteristics of their devices. This technique
focuses on characteristics which can be easily found and are readily accessible by a
website. Such characteristics may include screen resolution, rendering attributes,
browser fonts, installed plugins, etc. [17, 46, 51, 57]. Combining several of these
characteristics can lead to signatures that uniquely identify users.

Although these cases of user identification are considered “personal data pro-
cessing” according to GDPR and ePrivacy [9] regulations, and must be visible to
users, they often do not appear in request forms of consent managers deployed
by modern websites. In this study, we highlight the lack of transparency and the
disparity regarding user consent and the sophisticated tracking mechanisms that
websites deploy.

1.1 Contributions

In this thesis, we make the following main contributions:

1. We propose a novel and fully automated method for detecting browser fin-
gerprinting in websites by utilizing the Chromium Profiler.

2. We perform a large-scale analysis by crawling close to one million websites
and record how they track users using sophisticated tracking mechanisms,
such as first-party ID leaking, third-party ID synchronization and browser
fingerprinting, as a function of user choices in consent banners.

3. We find that (1) Websites embedded with ID synchronizing third-parties
force browsers to engage in several ID synchronizations even before users
had a chance to accept or deny consent; (2) More than 75% of leaks happen
despite the fact that users have chosen to reject all cookies; (3) Less popular
websites are more likely to disregard users’ consent choices and engage in
first-party ID leaking and third-party ID synchronization; (4) Browsers leak
more information when users choose to reject all cookies than when they
choose to take no action at all; (5) Our analysis of tracking per country code
reveals significant discrepancies across EU countries.

4. We make our crawling and analysis tool publicly available [56] to support
further research on this topic.

5. Our methodology can be transformed into an auditing tool for regulators,
stakeholders and privacy-policy makers, for verifying compliance with GDPR
and users’ privacy rights.
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1.2 Outline

The rest of this thesis is organized as follows. First, we describe some basic back-
ground knowledge concerning advanced and sophisticated tracking mechanisms,
as well as, the legislation related to our study. We then present the design of
the system we developed to study these tracking mechanisms based on the user’s
consent action along with the algorithms we used to detect consent violations.
Then, we perform an offline analysis on the behavior of websites and the consent
given by the user. We study the interaction with third-party trackers, the extent
of browser fingerprinting and identifier leakage, as well as, the entities which are
involved in first-party ID leaking and third-party ID synchronization, followed by
a study of how the popularity and the hosting country of websites affect its behav-
ior with regards to tracking mechanisms. Next, we present some extreme cases of
ineffective consent. We conclude with providing previous related work, as well as,
a discussion on the findings of this thesis.



Chapter 2

Background

In this chapter, we present some technical background related to tracking in the
advertising ecosystem, as well as, a short overview of relevant legislation.

2.1 Cookies

Cookies are a simple mechanism that allows for stateful browsing over the stateless
HTTP(S) protocol. Cookies are defined by a name, a value, an expiration date,
as well as the domain they are associated with. Using cookies, servers and web
applications can instruct browsers to store data in the client side. Whenever
a request is issued towards a domain, the browser will automatically attach all
cookies related to this domain.

Historically, cookies have been used to keep track of user sessions, store user
information, such as preferences, and to facilitate complex web applications. How-
ever, over the years, cookies have been used to track users and their behavior
across the web. Often, unique identifiers are assigned to the visitor and stored in
cookies in order for first-parties to re-identify users across visits and third-parties
to track users across multiple websites. Consequently, various Web entities are
able to build profiles based on the users’ browsing behavior and learn about their
online activity. These profiles can be later centralized in Data Management Plat-
forms [19], sold by data brokers [3], or used by advertisers to bid in ad auctions [55]
or for ad-retargeting [35] and cross-device tracking [70].

2.2 ID Sharing

As mentioned in Chapter 2.1, whenever users visit websites, various parties assign
identifiers in order to be able to re-identify users across multiple visits or multiple
websites. However, since cookies might contain sensitive information, they can only
be sent to the domain that set them or any parent domain. In order for the Web
entities (e.g., publishers, analytics, data brokers, advertisers) to be able to track
users efficiently and consolidate user profiles, they need to link (i.e., synchronize)

5
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disable JavaScript, or resort to external browser extensions. These extensions usu-
ally add random noise to some built-in functions, making the fingerprint different
each time a website attempts to (re)identify a user [40, 50]. In addition to this,
modern browser vendors employ new techniques to protect their users from be-
ing tracked. Safari provides simplified system information to scripts [30], Firefox
provides the Enhanced Tracking Protection option which block fingerprinters [49]
and Brave randomizes “fingerprintable” values in order to confuse fingerprinting
scripts [6].

Figure 2.2 demonstrates the process of canvas fingerprinting as part of the
browser fingerprinting mechanism. Assume (i) a website that contains the finger-
printing code and (ii) a browser instance that can execute JavaScript code. As a
first step, the fingerprinting script creates a canvas element using the built-in in-
terface provided by almost all modern browsers. Next, the script renders some 2D
graphics and text on the canvas. Usually, the text that is drawn is a “pangram”,
an alphanumeric value that contains all the letters of the English alphabet in order
to increase the number of entropy bits. Different font sizes and font families result
in a slightly different text that can affect the final fingerprint. As a next step,
the fingerprinting script extracts the content of the canvas and inspects its pixel
values (step 3). This is achieved using the native method toDataURL(), provided
by the canvas object, that returns the Base64 encoding of the content rendered
inside the canvas. Based on various factors, including the fonts which are installed
on the user’s machine, the version of OpenGL and the browser’s rendering engine,
this string can be sufficiently different per browser instance.

Then, the script combines this canvas fingerprint with other information, which
can be used as an additional source of entropy (step 4). This information includes,
among others, the host operating system and timezone, its screen resolution, in-
stalled plugins, preferred language set in the browser and number of logical pro-
cessors available on the host. Additionally, using more sophisticated algorithms,
the script can also extract information using the browser’s audio context [64], We-
bRTC support [25], or even the Battery API [53]. The output of the combination
algorithm is a long alphanumeric value that almost uniquely identifies the specific
browser instance (step 5). Finally, this value is hashed, to produce a fingerprint
for this specific browser instance (step 6) and is usually sent across the network,
or even stored as a cookie. Popular fingerprinting libraries claim that they can
achieve a fingerprinting accuracy of over 99% in modern browsers [33].

2.4 Legislation and Consent

The General Data Protection Regulation (GDPR) [62] is an initiative by the Eu-
ropean Union that specifies the circumstances under which personal data may be
processed. Coming into force on 25 May 2018, its goal was to establish and extend
the rights that individuals have on their personal data. Even though the GDPR
is an EU legislation, its impact is global since it applies even to entities, located
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Figure 2.3: Example of a consent banner where users can state their preference
regarding the processing of their personal data. Users can also choose to get a
detailed view of the third-parties, which collect data or with which data is shared.

outside the EU, that process personal information of EU residents. Failing to com-
ply to the regulation results in large fines of up to 20 million Euros or 4% of a
company’s annual global turnover (whichever is the largest).

Personal data is defined in the GDPR as any information related to an iden-
tifiable natural person. Additionally, the GDPR does not differentiate between
first-party and third-party identification and it also concerns pseudonymous data
that can be attributed to a specific person. Article 6, contains six specific legal
bases for the lawful processing of personal data. According to that, Web entities
can establish this legal basis by obtaining the user’s consent to the processing of
personal data for one or more specific purposes. Moreover, articles 4 and 7 de-
fine that a valid consent is freely given, specific, informed, unambiguous, readable,
accessible and revocable.

The ePrivacy Directive (2002/58/EC) [61] is an EU directive that requires
consent before data is stored in user devices. An exemption is set, nonetheless,
for cases that storing information is “strictly necessary” to perform the offered
service. However, before the GDPR, this directive was usually implemented by
simply displaying a message about the use of cookies, without providing an option
to the user.

Similar to the GDPR, the California Consumer Privacy Act (CCPA) [44] gives
consumers more control over their personal information by granting them the right
to know about the personal information a business collects. The CCPA came into
effect on January 2020 in the United States of America and explicitly states that
a notice list the categories of personal information that the business collects and
that this notice must be provided at or before the point at which the business
collects the information. Additionally, users have the right to opt-out of the sale
of their personal information and to request that their personal data is deleted.
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2.5 Consent Management Platforms

When privacy regulations came into effect around the world, both publishers (i.e.,
first-parties) and advertisers or trackers (i.e., third-parties) were forced to properly
collect and communicate user consent before processing user data. This process re-
quired technical knowledge in order to implement the correct systems that comply
with the respective privacy law that applies to the respective user. To that extent,
the Interactive Advertising Bureau Europe (IAB) published the Transparency and
Consent Framework (TCF) [23] in order to help web entities comply with legisla-
tion. In this document, Consent Management Platforms (CMPs) were introduced.
CMPs are third-party services that provide the needed functionality to publishers
and are responsible for collecting and storing the user’s consent. Usually, this is
performed by providing the appropriate user-interface and corresponding function-
ality of consent banners, i.e., web forms where users can state their preferences
regarding data processing. Figure 2.3 illustrates an example of a consent banner.
Additionally, CMPs are responsible for implementing the necessary functionality
and mechanisms in order for third-parties to be able to learn this consent. All
CMPs that are compliant with the framework are registered in a public list [22].



Chapter 3

Methodology

In this chapter, we present the methodology we followed in order to crawl websites
and collect data. Then, we describe the dataset we formed and the techniques and
algorithms we followed to detect the tracking mechanisms described in Chapters 2.2
and 2.3.

3.1 Crawling Methodology

To investigate the effect of the different options a user is provided with while
visiting websites with a consent form, we leverage the Consent-O-matic tool [26].
Consent-O-Matic is a state-of-the-art browser extension, which is able to automat-
ically detect and handle consent banners of popular CMPs. Particularly, whenever
the extension detects a Consent Management Platform (CMP), it logs the respec-
tive information (e.g., vendor, encoding, IDs) and automatically interacts with the
consent banner. Additionally, the extension can be configured to either accept or
reject the different categories of data processing purposes.

In addition to this, we develop a Web crawler, based on the Puppeteer frame-
work [34], that instruments instances of the Chromium browser. By utilizing the
Consent-O-Matic extension, the browser can automatically perform one of the
following three actions when a consent form is detected:

1. Accept All: grant consent for all data processing purposes to all third-
parties residing in the visited website.

2. Reject All: deny consent for all data processing purposes to all third-
parties residing in the visited website.

3. No Action: avoid interacting with the form in any way.

By using our instrumented browser, we crawl with clean state the landing
page of the top 850,000 most popular websites of the Tranco list [63]. This list
aggregates the ranks from the lists provided by Alexa, Umbrella, and Majestic

11
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Table 3.1: Summary of our crawled dataset.

Description Volume % of total

Initial set of websites 850,000
Websites that errored 219,098 25.78%
Websites that were filtered out 2,689 0.32%
Total websites correctly parsed 628,213 73.90%
Websites with a CMP 27,953 3.29%
Websites with a CMP and no error
in all three consent actions 27,180 3.20%

Low detection rates are attributed to the fact that the Consent-O-Matic exten-
sion is only able to detect popular consent banners following a specific standard.
Designing a detection tool with better accuracy is a very challenging task due to
the heterogeneity of the various existing consent management libraries and custom
solutions adopted by websites. This problem, though interesting, is considered as
out of scope for this work and is left for future research. However, we performed
manual inspection of websites and verified that the Consent-O-Matic extension
was able to properly handle the appropriate banners. Specifically, we found that
for popular Consent Management Platforms, such as quantcast and cookieLab, the
extension was able to properly handle 100% of the evaluated websites.

Moreover, crawls failed at 25.78% of the initial set of websites due to timeouts
or site inaccessibility (i.e., site did not serve EU-based users). Additionally, we
filtered out websites that explicitly defined in their robots.txt file that they do
not allow crawling, as well as, some popular pornographic websites due to internal
organization policies. Table 3.1 summarizes the collected dataset.

3.3 Detecting ID Sharing

We perform an offline analysis on the collected data to detect ID sharing opera-
tions. Specifically, we examine all application-level network traffic and search for
requests that contain values that uniquely identify users. Specifically, for HTTP(S)
GET requests, we inspect the URL of the requests and examine their path and
parameters. For HTTP POST requests, we inspect the data stored in the request
body. We report a case of ID synchronization only if an identifier is delivered to a
domain different than the one that assigned it to the user originally. This analysis
is performed for both first-party and third-party identifiers and in a per-website
basis.

Based on empirical analysis and as described in Chapter 2.1, the majority of
identifiers are stored in cookies. Thus, we parse the value of each stored cookie
and look for strings that can be used as unique identifiers. If this value is a
text string representing a JSON object, we get only the values stored in the key-
value pairs of the object. We purposely ignore the keys found in key-value pairs
since these keys rely on the API defined by the website, and do not contain any
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Figure 3.2: Example of a first-party identifier being leaked to a third-party. A
user ID assigned by trivago.co.id is being shared with Google.

useful information that can uniquely identify users. Treating these keys as possible
identifiers would result in multiple false positives, considering that the keys would
frequently appear in the parameters of GET requests. Additionally, if the object
contains inner JSON objects, we recursively obtain all values in all nested levels. In
addition, we see cookie values combining (with a delimiter) identifiers along with
non-identifying info (e.g., timestamp, locale, etc.). Such an example is the cookie
foo={userID};15693242;en-US that stores a user ID along with other information.
We find such values appearing in less than 1% of the detected cookies, with only
0.6% of such identifiers being synced with third-parties, and therefore, choose to
exclude combining values from our analysis.

To reduce false positives, we deliberately filter out values that include consent
information (e.g., values of the keys euconsent, eupubconsent, cmpconsent and
cmpiab). As described in [45], such values can be used to share a user’s consent

across different CMPs or third-parties present on the page. Furthermore, we filter
out frequent values that are considered common and cannot be used as identifiers.
Specifically, we exclude strings that represent dates, timestamps, regions, locale,
as well as, strings that end with a common file extension (e.g., jpg) and strings
that are URLs (e.g., start with www. or http://). We also exclude strings that
have a length of 5 or less characters as they do not carry enough information to
uniquely identify a user.

Finally, we filter out cookies with values which are prevalent keywords and are
not used as identifiers. To construct a list of such keywords, we use a simplified
puppeteer-based crawler to visit over 2.5K websites. Websites were selected ran-
domly from the Tranco list presented in Chapter 3.1. When the crawler visits a
website, it waits for a short period of time for transactions to take place and then
stores both first-party and third-party cookies. We manually inspect the values
of the collected cookies and identify over 80 keywords that are frequently found
in cookies but cannot be used for user identification. As an illustration, this list
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includes keywords such as “homepage”, “undefined”, “desktop”, “not set” and
“active”, among others.

The last step in our analysis is to detect the possible identifiers in network
traffic. For each string of the previous step, we examine all HTTP(S) requests
targeting domains different than the one that set the cookie, and seek for an exact
string match. Finding such a match would indicate that an identifier has been de-
livered to a different party, thus leaking the identity of the user. We search for these
possible identifiers in (i) URL parameters and fragment, (ii) the body of requests
and (iii) the referrer header. We tokenize the URL parameters using both default
(i.e., &) and custom (i.e., ;) delimiters. Finally, these components are decoded to
expose values, which would be hidden due to URL encoding. For example, a cookie
value e65:4c5#d5+5b&23asd can be used as a user identifier, but sent through an
HTTP GET request, it would be encoded as e65%3A4c5%23d5%2B5b%2623asd and,
therefore, impossible to detect.

3.4 Detecting Browser Fingerprinting

As described in [48] and illustrated in Figure 2.2, browser fingerprinting tech-
niques, such as canvas fingerprinting, can be performed using various native meth-
ods provided by the browser’s run-time environment. For example, in the case
of canvas fingerprinting, these methods are related to the HTML5 canvas element
and provide the necessary functionality to draw on the canvas or collect the rep-
resentation of the drawn image (e.g., fillText). Past work [1, 65, 20, 42] has
focused on monitoring these native methods along with their returned values in
order to detect browser fingerprinting. By observing the sequence of function calls
along with the arguments given to these functions, one can have indications of
browser fingerprinting. Additionally, searching for common arguments found in
popular fingerprinting libraries can help increase the level of certainty. We argue
that this method produces multiple false positives, since websites which use the
native methods or HTML elements, like the canvas element, legitimately, might be
marked as fingerprinting websites. Indeed, in [65] the authors explain that manual
revision of results was required in order to exclude false positives.

To mitigate this, we propose a novel approach which focuses on a higher level
of abstraction and does not examine the browser’s built-in (i.e., native) methods.
Specifically, to detect browser fingerprinting, we perform JavaScript code profiling
and search for specific function calls that indicate the presence of a fingerprinting
library. This way, we successfully disregard websites that use native methods
legitimately (e.g., the canvas element for web graphics). Our method reduces the
number of true positives, but ensures that the results are trustworthy. Moreover,
this method can be utilized by a fully-automated crawler, without the need of any
manual intervention.

In particular, we analyse the open-source version of one of the most widely-
used fingerprinting JavaScript libraries: FingerprintJS [32]. We extract the full
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Figure 3.3: Snippet of the popular fingerprinting library, FingerprintJS.

list of declared functions used during the process of browser fingerprinting. We
then focus on functions that consist of multiple operations and require a signifi-
cant number of execution cycles. This ensures that they will always be sampled
by the profiler. Moreover, we ignore functions that have common names (e.g., map
or isIE) and functions that can be utilized by general purpose code to perform
actions not necessarily related to fingerprinting (e.g., getRegularPlugins). As a
result, we conclude that the execution of the functions getCanvasFp, getWebglFp,
Fingerprint2 and Fingerprint2.get signify browser fingerprinting. These func-
tions indicate clear intent to fingerprint the user’s browser and uniquely identify
them.

Next, to fully automate the detection of browser fingerprinting, we modify our
puppeteer-based crawler to start with the built-in profiler tool of the Chromium
browser, enabled. This is achieved using Puppeteer’s ability to create a session for
the Chrome DevTools protocol [5]. Additionally, we set the sampling interval of
the profiler to 500 µs, which results to 2K samples per second. The output of the
Chromium profiler is a list of profile nodes. Each node contains information about
samples, in addition to a unique ID and a call frame. Using this call frame, we
extract the function name along with the URL of the JavaScript code that contains,
and executes, the specific function. This enables us to search for fingerprinting
functions, as well as identify the exact script that performs browser fingerprinting.
Finally, the algorithm described in Chapter 3.3 and the browser fingerprinting
detection methodology are publicly available in the released repository [56].



Chapter 4

Analysis of Consent

In this section, we present our measurements and analyze the behavior of websites
across three types of visits: when consent is (i) rejected (Reject All), (ii) granted
(Accept All), and (iii) not responded to (No Action). We study how websites
change their user tracking behavior depending on the consent provided (or not)
via the number of third parties they integrate with, as well as, (Chapter 4.1), first-
party ID leaking (Chapter 4.2), third-party ID synchronization (Chapter 4.3) and
browser fingerprinting (Chapter 4.4) performed. We also study how other factors
such as a website’s popularity (Chapter 4.5) and the hosting country (Chapter 4.6)
may affect the intensity of the website’s tracking behavior.

4.1 Consent and Third-Parties

Fist, we study how websites change their user tracking behavior depending on the
consent action that the user performed. To that extent, we measure the number
of unique third-parties interacting with the first-party through application-level
network traffic. In Figure 4.1, we plot the distribution (min, 25th percentile,
median, 75th percentile, max) for the three different consent actions. We observe
that in the No Action and in the Accept All case, there are 16 and 19 third-
parties interacting with the median website, respectively. Surprisingly, we observe
that in the Reject All case, there are more (i.e., 17) third-parties running in the
median website than when the user performs no action at all and that it may reach
up to 29 distinct third-parties for the 75th percentile. This suggests that simply
interacting with the consent manager has an impact on the number of third-parties
in the visited website.

To verify our hypothesis, we perform two sided non-parametric Kolmogorov
Smirnov tests, which compare the underlying distributions of two samples by quan-
tifying the distance between their empirical distribution functions. We find that
the KS statistic value is D(noaction,rejectall)=0.038, D(rejectall,acceptall)=0.061 and
D(acceptall,noaction)=0.097 for the three pairs of consent actions. In all comparisons,
the p-value was less than 10−10 indicating that the three distributions are indeed

17
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Figure 4.1: Number of third-parties running on the website during the three dif-
ferent types of visits (i.e., different consent actions). Surprisingly, for the median
website, in the Reject All case there were more (i.e., 17) third-parties running
than in the No Action case (i.e., 16).

statistically different. This verifies that the behavior of websites changes based
on the consent action and that there are more third-parties interacting with the
median website when consent was denied than when the user did not interact with
the consent banner at all.

Additionally, we measure the most popular trackers that websites interact with.
We classify domains as trackers based on the Tracker Protection Lists [31] provided
by Disconnect, a popular technology company that focuses on transparency and
control over personal information on the Web. Surprisingly, we find that 1,548,
1,562 and 1,718 websites interact with trackers in the No Action, Reject All and
Accept All cases, respectively. As expected, more websites interact with trackers
when they have received valid consent from the user. This behavior is expected
and inline with the regulations. Surprisingly, there are slightly more websites that
issue requests towards third-party trackers when the user denied consent than
when the user did not perform any action at all. This finding, not only highlights
that simply interacting with a consent manager in a website increases the number
of third-parties that will interact with the website, but also that some additional
tracking services will be involved in this tracking process.

4.2 Sharing User IDs with Third-Parties

In our next experiment, we set out to explore the cases where a first-party identifier
(e.g., cookie, device ID [51]), previously set by the visited website, is being leaked
to various third-parties. Therefore, we measure how many first-party ID leaking
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Table 4.1: Number of websites detected (i) leaking their first-party user identifiers
and (ii) having third-parties that perform synchronizations of user IDs.

Consent Websites engaging in Websites with third-party

Action first-party ID leaking ID synchronization

No Action 14,238 (52.38%) 6,533 (24.03%)
Reject All 15,334 (56.41%) 7,123 (26.20%)
Accept All 17,764 (65.35%) 8,048 (29.61%)

operations are being performed in a website as a function of the three aforemen-
tioned user choices. Table 4.1 summarizes our findings. One would expect that no
such operations take place before the user makes a choice (i.e., No Action case),
as well as when the users denied consent (i.e., Reject All). However, among the
websites that present their users with a consent banner, we found over 14,000 of
them performing first-party ID leaking even before their users had the opportu-
nity to register their preferences (No Action case). To our surprise, when users
Reject All cookies, the first-party ID leaking only gets worse, with more than
56% of websites engaging in it.
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Figure 4.2: Average number of unique third-parties learning a user identifier. A
user’s browser leaks first-party identifiers to 2.14 third-parties, on average, even
before the user accepted or rejected consent.

Next, we explore the extent of these leaks. Therefore, we study these websites
that perform first-party ID leaking in at least one of the three visits and report the
average number of third-parties learning a user identifier. Figure 4.2 illustrates our
findings. Specifically, we find that, on average, when a user visits these websites
there are 2.14 third-parties that learn a user identifier even before the user has the
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Table 4.2: Top 5 third-parties that learn the highest number of first-party identi-
fiers per consent action in our dataset. For each party we compute the percentage
of leaked first-party identifiers that they learn.

# No Action Reject All Accept All

1. facebook.com facebook.com facebook.com
18.87% 18.29% 19.48%

2. google-analytics.com google-analytics.com google-analytics.com
18.85% 17.28% 15.99%

3. bing.com bing.com bing.com
9.64% 8.84% 10.27%

4. hubspot.com doubleclick.net doubleclick.net
6.66% 6.60% 6.82%

5. doubleclick.net hubspot.com hubspot.com
4.68% 5.86% 5.99%

opportunity to make a decision. To make matters worse, if the user chooses to deny
consent and reject all cookies, first-party identifiers may be leaked to even more
third parties (on average 2.49). We observe that the difference in third-parties that
learn a first-party identifier in the Reject All case and in the Accept All case
is rather small. Precisely, in the average website, choosing to Accept All cookies
leaks first-party identifiers to 3.04 distinct third-parties while choosing to deny
consent (i.e., Reject All) leaks identifiers to 2.49 third-parties. This difference
is hardly significant with only 25% less third-parties, suggesting that more than
75% of the third-parties that will learn a first-party identifier, do so without the
user’s consent.

Finally, in Table 4.2, we show the top 5 third-parties in our dataset that learn
the most first-party identifiers across all websites for each of the three consent op-
tions. For this experiment, we perform our analysis by extracting the base domain
(i.e., eTLD + 1) of each third-party learning an identifier. As expected, we find
that these parties are popular Web trackers, thus supporting our finding of sophis-
ticated tracking taking place even when the user denies consent. Facebook with
its social plugin, Google with its analytics tracker and ad-exchange (Doubleclick)
modules, and Microsoft (Bing) occupy the top positions in all three consent op-
tions. Interestingly, we find that Facebook learns approximately 19% of the leaked
identifiers regardless of the consent action. In addition to this, we find all of these
third-parties in Disconnect’s Tracker Protection Lists [31].

Before proceeding with more experiments and results, let us take a step back
and reflect on “what is the point of the consent provided by the end users?”. It
is true that all studied websites asked the user’s consent and even offered some
choices. Thus, from a GDPR-compliance point of view, these websites asked for
the user’s consent in an attempt to establish a legal basis. However, before the
user had any opportunity to respond and provide their preference, these websites
started leaking identifiers. To make matters worse, if the user chooses to reject all
data processing purposes than to take no action at all, the first-party ID leaking
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Table 4.3: Top 5 third-parties with highest number of third-party synchronizations
per consent action in our dataset.

# No Action Reject All Accept All

1. doubleclick.net doubleclick.net doubleclick.net
21.15% 21.47% 20.22%

2. everesttech.net everesttech.net everesttech.net
13.21% 12.10% 10.89%

3. scorecardresearch.com facebook.com facebook.com
10.59% 9.95% 9.61%

4. facebook.com scorecardresearch.com ad.gt
10.15% 9.61% 9.54%

5. taboola.com google-analytics.com taboola.com
9.68% 8.30% 8.49%

only intensifies. In fact, more than 75% of first-party identifier leaks happen
despite the fact that users have chosen to deny consent. Clearly, these aggressive
first-party ID leaking operations are not compatible with what users expect when
they are asked to give their consent.

4.3 Third-party ID synchronization

As described in Chapter 2.2, apart from sharing the first-party identifiers they
assign to the visiting users, websites may also host third-parties which synchronize
the different user IDs they use for the same users. As shown in Table 4.1, from
the websites that present their users with a consent banner, we found over 6,500
websites of them hosting third-parties that conduct synchronization of identifiers
before users had the opportunity to register their choices (No Action case). If
users prefer to deny consent, then even more websites ( 26%) engage in third-party
ID synchronization. Although consistent with the finding of the previous section
(i.e., first-party ID leaking), this fact highlights and supports our finding that
websites employ sophisticated forms of tracking totally disregarding user consent
preferences.

To quantify the extent of this phenomenon as a function of the three consent
actions, we measure the average number of unique third-parties learning a user
identifier assigned by a different third-party. When the user takes No Action, the
browser engages in 3.51 synchronizations, on average. This means that when the
user is asked for GDPR compliance, and before even responding, their browser
already leaked at least one identifier assigned by a third-party to more than three
other third-parties. To make matters worse, if the user responds negatively and
chooses to Reject All cookies, their cookies may get synced with even more
third-parties (3.91 on average). Finally, the third-party synchronization operations
increase rapidly to 4.86 in the Accept All case.
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Similar to Chapter 4.2, we present in table 4.3 the top 5 third-parties conduct-
ing the highest number of synchronizations across websites, for each of the consent
options. Again, we find that popular tracking domains are most likely to engage in
third-party ID synchronization. Google’s ad-exchange platform doubleclick.net

and Adobe’s tracker everesttech.net are the top two third-parties in all three
consent actions. Next, we group third-parties based on the company that oper-
ates them according to information found in the Tracker Protection Lists [31]. We
find that in all three consent options, Google learns over 40% of the synchronized
third-party identifiers. Consequently, Google is the dominant player in the cookie
synchronization ecosystem participating in almost half of the synchronization op-
erations. By performing aggressive and sophisticated tracking, Google is able to
track users across numerous websites and build a very accurate profile of users on
the Web.

In total, we find that websites with embedded third-parties that synchronize
the identifiers they have assigned to the same user, force browsers to engage in
3.51 synchronizations, on average, even before the users had any chance to accept
or reject consent. This way, these third-parties can later target specific groups of
users [2], sell their data [12], or use these data in ad-auctions [60, 54]. We argue
that this type of leakage is worse than first-party ID leaking, since (i) it is not
in the immediate control of the websites themselves and (ii) via this mechanism,
third-parties that are not present on the website can be alerted of a user’s presence
and online behavior.

4.4 Browser Fingerprinting

In our next experiment, we set out to explore whether websites track users differ-
ently using browser fingerprinting, given the different user responses to the consent
banners. By following the detection methodology described in Chapter 3.4, we de-
tect websites performing browser fingerprinting across the different types of visit.
Table 4.4 presents our findings and, as we can see, the action of the user has
no significant impact on the websites’ fingerprinting operations. Specifically, 279
websites perform browser fingerprinting even before the user had the opportunity
to respond to the consent request. Even worse, if the user selects to Reject All

cookies, even more websites (285) engage in browser fingerprinting. This number
is increased to 330 when the user chooses to Accept All cookies.

It is interesting that the difference between the Reject All and Accept All

cases is only 15% . Moreover, we see 73.5% of the fingerprinting websites perform
browser fingerprinting no matter what the user consent action is. This implies that
for websites that track users using browser fingerprinting, user choice makes very
little to no difference. This is evident in the fact that only 2% of these websites
wait for user’s action before starting their fingerprinting operation.

Furthermore, we find that only 13.9% of these websites comply with legislation
and perform browser fingerprinting only when the user gives consent. On the
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Table 4.4: Websites performing browser fingerprinting.

Description Volume % of total

No Action 279 1.03%
Reject All 285 1.05%
Accept All 330 1.21%
In at least one consent action 336 1.24%

In all 3 cases 247 73.5%
Only in Accept All case 47 13.9%
Only in Reject All case 3 0.9%
Wait for action 7 2%

other hand, we find 3 websites that perform browser fingerprinting only if the user
denies consent and reject all data processing purposes. It is apparent that these
websites are using browser fingerprinting as a fallback mechanism in the case that
they are not allowed to set a cookie on the user side. However, it it is important
to notice that based on Article 4/Recital 30 [15] and explained in Chapter 2.4,
GDPR regards the process of any user identifying information and is not limited
to cookies. Consequently, these websites violate the legislation that applies to
citizens of the European Union. Altogether, we find that even though websites
ask users for consent, they do not take the response into account when performing
browser fingerprinting.

4.5 Does website popularity matter?

In our next experiment, we explore whether a website’s popularity impacts how the
website handles the user’s choices. For this reason, we cluster websites into buckets
based on their popularity according to the Tranco list. The first bucket contains
the 50K most popular websites in the Tranco list, the next bucket contains the next
50K (i.e., ranked 50K-100K), etc. In this experiment, we study 17,900 websites
that performed first-party ID leaking in any of the three visits. In Figure 4.3, we
show the extent of first-party ID leaking for the different buckets for the three
cases we study: No Action (blue bar), Reject All (red bar), and Accept All

(green bar). For illustration purposes, we plot only the first ten buckets. We see
that as the popularity of the website decreases (right part of the plot), all bars
tend to decrease, implying that the magnitude of tracking through first-party ID
leaking decreases as well.

To verify this hypothesis, we normalize the values so that the Accept All case
corresponds to the maximum tracking intensity (i.e., 100%). Figure 4.4 illustrates
our findings. In this case, we observe that for the No Action (i.e., blue bars) and
Reject All (i.e., red bars) cases, there is a slightly increasing trend to the right.
That is, less popular websites tend to be slightly more aggressive in disregarding
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Figure 4.3: Mean number of third-parties involved in first-party ID leaking per
website rank.

 0

 20

 40

 60

 80

 100

[0, 50K)

[50K, 100K)

[100K, 150K)

[150K, 200K)

[200K, 250K)

[250K, 300K)

[300K, 350K)

[350K, 400K)

[400K, 450K)

[450K, 500K)

%

No Action Reject All Accept All

Figure 4.4: Unique third-parties in ID leaking per website rank (normalized).
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Figure 4.5: Unique third-parties in ID leaking per website rank (linear regression).
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Figure 4.6: Unique third-
parties involved in ID syn-
chronization per website
rank.
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Figure 4.7: Unique third-
parties involved in ID syn-
chronization per website
rank (normalized).
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Figure 4.8: Unique third-
parties involved in ID syn-
chronization per website
rank (linear regression).

Figure 4.9: third-party ID synchronization as a function of the website’s popularity.
(a) Average number of unique third-parties involved in synchronizations per rank
range of the website. (b) This figure plots the same information as Fig. 4.6, with
the exception that all Accept All values are normalized to 100%. (c) In this figure
exception that Reject All and No Action points have been fitted with a straight
line. The line suggests an increasing trend implying that less popular sites are
more aggressive at disregarding user choices.

user choices. For example, the 50K most popular websites do 67% of their first-
party ID leaking before the user makes any choice, while for less popular websites
in the range [400K, 450K), this tracking behavior increases to 76%. In Figure 4.5,
we highlight this clear trend by showing an interpolation of the results. This
figure plots the same information as Fig. 4.4, with the exception that Reject All

and No Action points have been fitted with a straight line. The line suggests an
increasing trend implying less popular sites are more aggressive at disregarding
user choices. In both consent actions (No Action and Reject All), we observe a
positive slope. The coefficient of determination is R2=0.42 and R2=0.04 for the
two actions respectively.

Similarly, we perform the same experiment for 8,301 websites that were involved
in third-party ID synchronization operations for any of the three consent options.
In Figures 4.9, we see the same trend across the popularity buckets of websites
hosting synchronizing third-parties. Therefore, we conclude that even though more
popular websites perform more aggressive tracking and leak more identifiers, it
is evident that less popular websites tend to be more aggressive at disregarding
users’ consent choices and engage in both first-party ID leaking and third-party
ID synchronization.
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4.6 Does the hosting country matter?

Next, we study how the websites hosted in different countries treat user consent.
As a result, we study the country code top-level domain (ccTLD) of each website
we visited. We present the results for first-party ID leaking in Figure 4.10. For this
experiment, we focus on websites that perform first-party ID leaking in at least one
of the three consent actions. Additionally, we ignore ccTLDs with a small number
of websites, since the small populations will not result in statistically significant
results. As an illustration, there are only 9 websites from Luxemburg (i.e., .lu
ccTLD) that perform first-party ID leaking in any of the three visits. On the
contrary, we find over 440 German websites (i.e., .de ccTLD) leaking first-party
identifiers in our dataset.

We observe that Europe-based websites are more likely to respect the choices of
the users and not track them aggressively. For example, we discover that websites
from France (fr), Denmark (dk), the Netherlands (nl), Austria (at) and Germany
(de) leak first-party identifiers to less third-parties than websites with non Europe-
based ccTLDs like Canada (ca) and Australia (au).
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Figure 4.10: Number of unique third-parties learning a first-party identifier as a
function of the top-level domain per country code.

In Figure 4.11, we normalize the results based on the Accept All case. This
enables to compare websites and ccTLDs with different levels of leaks to third-
parties. Websites in the right part of the figure have similar tracking behavior
when it comes to first-party ID leaking in the three consent options. This indicates
that these websites tend to disrespect user choices. For example, the difference
between Reject All and Accept All in websites from Australia (au) and Canada
(ca) seems to be negligible. As a result, the choice that the user makes when
interacting with consent banners in such websites makes little to no difference.
Surprisingly, we see that the ccTLD of .eu is on the right side of the figure. This
strongly suggests that there is an increased number of websites with this specific
ccTLD which are not yet fully compliant with GDPR.

On the other end of the spectrum, websites on the left part of the figure seem
to respect user choices more. For example, the difference between Reject All and
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Figure 4.11: Normalized number of unique third-parties learning a first-party iden-
tifier. This figure plots the same information as Figure 4.10, with the difference
that the max value (Accept All) is normalized to 100%. This enables us to com-
pare websites that have different magnitudes of leakage.
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Figure 4.12: Normalized number of unique third-parties engaged in third-party ID
synchronization.

Accept All for French websites (i.e., .fr ccTLD) is close to 50% and between No

Action and Accept All is more than 70%. This is a clear indication that such
websites take the user’s preference regarding data processing into consideration
and display extensively different behavior based on the user’s choice in the consent
banner. Thus, although not perfect, user choices for the websites on the left part
of the figure have a meaningful effect, in contrast to websites on the right part.

We find similar results for third-party ID synchronization and report our find-
ings in Figure 4.12. In this experiment, we focus only on websites that perform
third-party ID synchronization in any visit. Again, we see that European web-
sites hosted in countries like Denmark (dk), France (fr), the Netherlands (nl) and
Austria (at) tend to perform less third-party ID synchronizations when there is
no explicit consent given by the user (i.e., No Action and Reject All cases). On
the other hand, we find that for websites with non Europe-based ccTLDs like uk,
ca and br, user choice has a much smaller impact. Surprisingly, we see that two
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European ccTLDs (cz for Czech Republic and be for Belgium) are on the right
part of the figure, indicating that they do not respect user choices as much as other
European websites. To make matters worse, websites with these ccTLDs perform
more synchronizations when users deny giving consent. One possible explanation
is that these websites use third-party ID synchronization as a fallback tracking
mechanism when the user denies consent, as described for browser fingerprinting
in Chapter 4.4. Additionally, specific behaviors of multiple websites in one coun-
try can be attributed to the implementation and practices of popular advertising
networks and tracking services in these countries.

Finally, we investigate the top-level domains of fingerprinting websites. We
examine the 336 websites that perform browser fingerprinting in any of the three
consent actions. We discover that 79% of these websites use country-independent
top-level domains with the great majority (72%) of them using the .com TLD. The
second most popular top-level domain we discovered was .net. Regarding countries
and ccTLDs, we find that Germany is the country with the most fingerprinting
websites (4%).

Altogether, we believe that our analysis of tracking mechanisms per country
code reveals significant discrepancies across the European Union. These results
highlight the lack of effort from specific local governments or agencies regarding
the digital privacy rights of their citizens. Additionally, our analysis emphasizes
that there is a long way to go before GDPR is actually enforced, especially in a
global scale. Particularly, GDPR was adopted in 2016 and came into force in 2018.
Even though website administrators and publishers had enough time to prepare
before it came into effect and even more time to comply with the regulation after
it was implemented, we find that there are still numerous websites that do not
respect user consent.



Chapter 5

Ineffective Consent: Edge cases

To further understand the Web ecosystem, as well as the tracking behavior dis-
played by websites, we selectively present some extreme cases of ineffective consent,
meaning that websites do not take the user’s consent into account and engage in
aggressive tracking. Before reporting the following edge cases, we re-crawled these
websites and manually evaluated the results in order to verify our findings.

In our dataset, we observe 73 websites that interact with over 100 unique
third-parties each, in at least one of the three types of visit. One such example
with extreme behavior is laprovence.com. When a user visits the website and
grants consent for all data processing purposes (i.e., Accept All), the website
interacts with 159 different third-parties and performs synchronization for multiple
identifiers with 59 of these parties. We observed the values of 37 unique third-
party cookies being leaked to third-parties different from the cookie’s owner. In
the Reject All case, the website interacts with 80 third-parties, and performs
synchronization for at least one identifier with 16 of them. Interestingly, when
the user lands on the website with a clean session and performs No Action, but
simply waits for a big period of time, the website interacts with 97 third-parties
and performs synchronization with 29 of them. This is clear indication that there
is indeed a total disregard of user consent observed, even in popular websites.

Regarding first-party ID leaking, we find that multiple websites store a cookie
labeled as “necessary”, but then proceed to leak its value to various third-parties.
For example, harryanddavid.com leaks the values of 28 different first-party cook-
ies in the Reject All and No Action cases. We investigate the exact cookies
being leaked and verify that they are indeed identifiers assigned to the user with
names such as user id and sessionID. Furthermore, diariodepontevedra.es and
asivaespana.com, in the Reject All and Accept All cases, respectively, perform
ID leaking with 38 different third-parties for more than one identifier.

In addition to this, camer.be interacts with 91 unique third-parties in the No

Action case, 94 in the Accept All case, and surprisingly with 131 in the Reject

All case. For the Reject All case, this website is also involved in a major third-
party ID synchronization operation. At the time of crawling, the website interacted
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with the third-party taboola.com, a popular advertising company, which stored
a cookie with name t gid and value 884d05cc-335c-4226-ab94-7ab6114fef6a-

tuct65bfbc8. This value, which follows the UUID format [43] and can uniquely
identify users and devices, was sent to 20 other third-parties. One very interesting
finding is that this cookie is stored only when the user declines consent (i.e., Reject
All case). Additionally, taboola.com is reported as one of the top third-parties
involved in third-party ID synchronization in Table 4.3.

Similarly, cnnturk.com is also involved in a major third-party ID synchro-
nization operation. Specifically, when the user lands on the website with clean
state, a third-party called lijit.com stores the cookie ljtrtb 42. The value
of this cookie is then sent to 21 other third-parties. Interestingly, this behav-
ior is observed only after the user has interacted with the consent form (i.e.,
Reject All and Accept All cases). One example value of this cookie that we ob-
served during the Accept All case is c98d9202-8774-4e11-8c90-99d9cb879930-
tuct65c0de5, which can be used to uniquely identify a user. Note that lijit.com
is an ad-serving domain, which can be found in multiple blacklists for tracking
domains.

Finally, glamour.com leaks a unique identifier which is set as the value of a first-
party cookie. Specifically, when a user lands on the website, a cookie called CN xid

is stored, with one example value being 73a4ff1f-ff45-4943-bdaa-73658b00bd42.
Then, this value is sent to exactly 21 unique third-parties. The third-parties
that receive the value of the cookie are exactly the same for all 3 types of vis-
its. An interesting finding is that the third-parties that receive this value are
not only domains known for advertising and analytics (e.g., Google Analytics and
Doubleclick), but also legitimate and mainstream content-serving websites like
vogue.com and wired.com.



Chapter 6

Related Work

The recent increased interest of regulators and governments around the privacy
rights of Internet users did not result only in legislation like the General Data
Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA),
but also in an important body of research. Tracking mechanisms such as HTTP
cookies [39, 8, 21] and browser fingerprinting [17, 48, 41, 76] have been the prime
focus of academic work for a long period of time. With the advent of privacy
laws, academic work focused on how identifiable information stored in cookies is
maintained and does not examine the compliance of deployed stateless tracking
(e.g., browser fingerprinting).

In [27], the authors investigated the legal compliance of purposes for 20K col-
lected third-party cookies. Their findings show that purposes declared in cookie
policies do not comply with the purpose specification principle in 95% of cases.
In [13], the authors collected cookies from the Alexa Top 100K websites and com-
pared their cookie behavior from different vantage points, to investigate whether
there are differences in cookie setting when accessing Internet services from differ-
ent jurisdictions. Additionally, they studied whether cookie setting behavior has
changed over time by comparing today’s results with a dataset from 2016.

In [14], the authors studied popular websites of all member states of the Eu-
ropean Union and investigated changes in the privacy policy presented to users
before and after the GDPR came into effect. Their finding was that the GDPR
brought a shift on the Web with websites becoming more transparent but there is
still a lot of work to be done for users to be able to properly deny consent. Hils
et al. performed a longitudinal analysis in [29] in order to study the rise of Con-
sent Management Providers. They found that privacy laws have urged websites
to adopt the services provided by CMPs, and that CMPs are becoming extremely
popular with a vast growth, especially in popular websites.

In [67], the authors performed an evaluation of the tracking activities performed
in 2K high-traffic websites, hosted both inside and outside the EU. Specifically,
they evaluated the information presented to users and the actual tracking imple-
mented through cookies. Their results show that the GDPR has impacted website
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behavior in a truly global way. US-based websites behave similarly to EU-based
ones, while third-party opt-out services reduce the amount of tracking, even for
websites which do not put any effort in respecting the GDPR. On the other hand,
they show that cookies can identify users when visiting more than 90% of the web-
sites they crawled, and they encountered a large number of websites that present
deceiving information, making it it very difficult, if at all possible, for users to
avoid being tracked. Similar to this work, in [18], the authors crawled 1.5K EU,
US, and Canadian websites from 18 countries and analyzed the cookie notices they
encountered. Using a series of regression models, they found that a website’s Top
Level Domain explains a substantial portion of the variance in cookie notice met-
rics, but the users vantage point does not, which means that websites follow one
set of privacy rules for all their users.

In [47], the author performed an analysis of the privacy notices presented in
different platforms, specifically personal computer browsers, mobile browsers and
mobile applications. Using a privacy-oriented browser for personal computers and
a privacy monitoring app for mobiles, they detected tracking activities in the
landing page of the 150 most popular EU websites. Similar to our results, their
finding was that tracking activities take place before the user has the change
to interact with the banner. Moreover, they found that the number of tracking
activities is similar in personal computers and mobile devices. In [74] authors
studied the impact of the legislation on cookie syncing between third-parties. They
show that the general structure of how the entities are arranged is not affected by
the GDPR, but the new regulation has a statistically significant impact on the
number of connections that shrunk by 40% in the GDPR era.

In an effort closest to ours, Matte et al. analyzed the GDPR and ePrivacy
Directive across 23K European websites to identify legal violations in implemen-
tations of cookie banners based on the storage of consent [45]. That is, they (i)
capture the user’s choice (consent or not), (ii) measure whether the websites regis-
ter the same response as the user’s choice, (iii) measure whether websites register
any response before the users click their preference. They found that 141 websites
register positive consent even if the user has not made their choice; 236 websites
nudge the users towards accepting consent by pre-selecting options; and 27 web-
sites store a positive consent even if the user has explicitly opted out. Performing
extensive tests on 560 websites, they found at least one violation in 54% of them.
Although our work and [45] share similar goals, they clearly have significant differ-
ences. First, although [45] focuses on cookies as the main tracking mechanism, in
this work, we focus on post-cookie tracking mechanisms including browser finger-
printing, first-party ID leaking and third-party ID synchronization. In this aspect,
we explore whether sites use such tracking mechanisms to bypass any consent the
user has provided for cookies. Second, [45] focuses on whether the Consent Man-
agement Platforms registers the same response as the user’s input. We follow a
different methodology and measure not the response registered, but the actual
tracking mechanisms that are activated when the users access a website.

Finally, there has been a lot of work that focuses on the design of consent



33

banners. In [75], authors studied the common properties of the graphical user
interface of consent notices and conducted three experiments with more than 80K
unique users on a German website, to investigate the influence of notice position,
type of choice, and content framing on consent. Their results show that (i) users
are more likely to interact with a notice shown in the lower left part of the screen,
(ii) users are willing to accept tracking compared to mechanisms that require
them to allow cookie use for each category or company individually, (iii) the wide-
spread practice of nudging has a large effect on the choices users make. Similarly,
Nouwens et al. studied in [52] the effect that the design of consent banners has
on the final choice that users make regarding data processing purposes. Their
analysis was performed on the top 10K most popular websites in the UK and
they found that only 11.8% of the evaluated websites satisfy the requirements set
by legislation. In [69], the authors focus on popular news outlets and manually
analyzed 300 consent banners. They detected that there are still dark patterns,
such as interface interference and forced action, that attempt to deceive users.
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Chapter 7

Discussion

7.1 GDPR compliance

One question that comes to mind is whether the websites discussed in Chapter 4
are in violation of the GDPR and the ePrivacy Directive. Obviously, one cannot
make such an general statement for all the websites studied in this thesis. Such
violations should be studied on a case-by-case basis. Even further, each website is
different, and may have a legal basis to collect user data that goes beyond the user
consent. What we identify in this paper is a disparity between (i) what the users
perceive about the collection of their data, and (ii) what some websites implement
with respect to data processing. Indeed, by being shown a consent banner, users
perceive that they are being asked to give their permission to the website to collect
and process their data. Even further, when they are given several choices, users
feel that they are empowered to give a fine-grain permission, which will obviously
be taken into account.

Unfortunately, this perception of the users is completely different from what
various websites implement. In this thesis, we discovered that several websites
collect (and share with third-parties) information about their users, even before
the users had the opportunity to register their preference. Even worse, when users
stated that they would like to reject all cookies, collection of their data intensified.
Indeed, each website is ultimately responsible for the consent asked from their
visitor. However, it is not obvious if the legal responsibility is shifted to the
Consent Management Platform (CMP). Nonetheless, and considering our results,
it is hard to believe that all these publishers do not respect the users’ consent
choices without intention (e.g., due to software bug, bad developer practices or
wrong integration with their CMP).

Interestingly, existing literature, websites and blog-posts around the GDPR
and changes it brought on the Internet and user tracking [71], focus solely on how
identifiable information stored in cookies is maintained. However, as highlighted
here, the GDPR is not only about cookies. Instead, we aim to increase user aware-
ness regarding the GDPR (non)compliance of deployed stateless (i.e., cookie-less)
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tracking, and influence a change in language used in consent request statements
to be GDPR-compliant and reflect closely what the websites do in reality, in com-
parison to what is explained to the user.

Furthermore, our analysis of tracking per country code reveals significant dis-
crepancies across EU (or not) countries. These results highlight the lack of effort
from specific local governments regarding the digital privacy rights of their citizens.
Our results can motivate them to take action and increase the GDPR enforcement
in order to make websites hosted in their countries aligned with the rest of EU
countries, with respect to the GDPR compliance.

7.2 Outbound Information

Although user tracking without user consent is generally undesirable, in this paper,
we studied some sophisticated approaches to user tracking (such as first-party ID
leaking and third-party ID synchronization) which involved not only data collec-
tion, but also data sharing with third-parties. Indeed, both approaches, provide to
third-parties identifiers associated with the current user. In this way, third-parties
will be able to know that this user has visited the specific website (even if they are
not embedded in that website). To make matters worse, this happens even before
the user has given any permission for data collection on the cookie consent banner.
To put it simply: the website has already informed third-parties that this user has
just visited, while the user still makes up their mind whether to give consent for
data collection or not. Thus, the user is asked for consent to something that has
already happened and it will keep on happening even if the user denies consent.

7.3 Edge Cases

Someone could argue that the edge-cases studied in this thesis are momentary,
and cannot be held against websites as proof of non-GDPR compliance. In fact,
according to [73], the third-parties in a website might change across different visits.
However, even though we acknowledge the dynamicity of websites, we made a
best effort to provide results that were repeatable across multiple crawls. In fact,
changes in third-parties embedded in a website could change their intensity of
tracking. We anticipate such changes are transient and infrequent in websites, and
that high intensity of tracking is repeatable.

7.4 Methodology

The methodology we presented in this paper can be transformed into an auditing
tool for regulators, stakeholders and privacy-policy makers, for verifying compli-
ance with the GDPR, CCPA, ePrivacy Directive, and users’ privacy rights. Our
approach links together the (i) requested user consent with (ii) actions taken by the
website based on the particular consent given. Apart from these entities, browser
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vendors have already shown interest in blocking bad policies on websites [10, 77, 36]
and our methodology can help towards exactly these goals. Specifically, by fol-
lowing our methodology, browser vendors can detect at run-time stateless device
fingerprinting attempts and compare these actions with the given user consent.

7.5 Limitations

We made considerable effort to develop a browser fingerprinting detection method-
ology which can be deployed as a fully automated component and without the need
of any manual intervention. Nevertheless, we understand and acknowledge that
this approach will miss any scripts which have been minified or obfuscated, since
in their nature, these processes change the declared function names. Finally, our
methodology is able to yield more accurate and credible results in the expense
of the number of true positives. Since the scripts detected by our methodology
have dire changes in the results and findings of this thesis, we make this sacrifice
willingly for greater confidence in our findings.

A careful reader might find the consent banner detection rate very low. Indeed,
for European users, it seems that every visited website contains such a banner. Our
methodology depends on the Consent-O-Matic browser extension, which has been
built to only detect consent banners of popular Consent Management Providers.
Consequently, our analysis excludes custom banners deployed by a vast number of
websites. Additionally, the reproducibility of our work depends on the development
of this extension. As websites, legislation and technologies evolve, so do the consent
banners of CMPs. If the extension does not follow up with the changes, it won’t
be able to detect and properly handle consent banners.

Finally, we acknowledge the fact that our methodology is limited only to the
landing page of the evaluated websites. Prior work has proven that crawling web-
sites more deeply can have a drastic increase (about 36%) in the number of used
cookies [73] and that prior studies had used suboptimal crawling methods [4] since
they did not examine internal pages of visited websites. We understand that while
crawling the internal pages of websites, even more advanced tracking mechanisms
might be observed. Nonetheless, we refrain from doing so and visit each website
as less as possible in order to ensure that we do not affect its performance or of-
fered service. We further discuss ethical aspects regarding our crawling process in
Chapter 9.
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Chapter 8

Conclusion

Over the past couple of years, an increasing number of websites have started
to present users with consent banners, i.e., pop-up frames that ask for the user’s
permission to process personal data and store cookies in the browser. Such banners
provide a variety of choices including (i) accept all, (ii) reject all, and (iii) accept
some cookies. In this paper, we study whether the websites that employ such
consent banners, actually track their users using “non cookie” approaches including
first-party ID leaking, third-party ID synchronization and browser fingerprinting.
Our results indicate that, indeed, websites that contain such banners, aggressively
track their users even without their consent.

In our experiments, we found over 15,00 websites that track their users using
first-party ID leaking. Even further, this tracking happened despite the fact that
users of these websites had rejected all cookies and denied consent in the banner.
In fact, most of these websites had started the first-party ID leaking tracking even
before the users had any opportunity to interact with the consent form and register
their choice.

Therefore, we highlight a significant gap between what users expect to hap-
pen when they see a consent banner in a website, and what several websites do
as a result of the user’s choices. We feel that research like this helps increase
transparency on the Web and expose websites which do not correspond to users’
expectations and do not comply with legislation.

Future work could focus on even harder questions such as: How should third-
parties connect into CMP prompts? Is it intentional that some third-parties only
take action on “reject all” option? If yes, why? Are some CMPs better than others
with respect to GDPR compliance? Are all these privacy violations the website’s,
the CMP’s, or the third-party’s fault?
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Chapter 9

Ethical Considerations

The execution of this work has followed the principles and guidelines of how to
perform ethical information research and the use of shared measurement data [38,
66]. In particular, this study paid attention to the following dimensions.

We keep our crawling to a minimum to ensure that we do not slow down or
deteriorate the performance of any web service in any way. Therefore, we crawl
only the landing page of each website and visit it only the minimum required
times. Additionally, we do not visit websites that state they do not allow bots
and crawlers in their robots.txt files. We do not interact with any component in
the visited website, and only passively observe network traffic. In addition to this,
our crawler has been implemented to wait for both the website to fully load and
an extra period of time before visiting another website. Consequently, we emulate
the behavior of a normal user that stumbled upon a website. Therefore, we make
concerted effort not to perform any type of DoS attack to the visited website.

In accordance to the GDPR and ePrivacy regulations, we did not engage in
collection of data from real users. Also, we do not share with any other entity any
data collected by our crawler. Moreover, we ensure that the privacy of publishers
and website owners is not invaded. To that extent, we do not collect any of their
information (e.g., email addresses) and only discuss names of websites and not the
legal entities that control them or their administrators, as we did in Chapter 5.
Last but not least, we intentionally do not make our dataset public, to ensure that
there is no infringement of copyrighted material.
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