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ABSTRACT

The Hippocampus plays a key role in numerous brain processes such as
episodic memory formation and recall, and spatial navigation. Multiple
streams of previously unrelated information converge to the hippocampal
circuits where important mnemonic functions such as pattern separation
and pattern completion take place. Some of the primary hippocampal
areas include the DG, CA3, and CA1, which comprise the so-called
trisynaptic pathway, a closed processing loop with bidirectional
connections with higher cortical areas. Computational modeling has
been extensively utilized to understand how hippocampal network
dynamics are linked to behavior since such studies often require
experiments that are restricted by technical limitations. However, most
currently available Hippocampus models are often overly simplistic,
ignoring key neuronal and network properties. Importantly, they overlook
the implications of active dendritic mechanisms to network-level
functions. For this reason, we developed a simplified yet biologically
plausible network model of the trisynaptic pathway, which was
extensively validated against experimental data. Our network model
accurately reproduces many essential cellular and network functions,
along with their contribution to pattern separation and pattern
completion. To our knowledge, this is the first hippocampal model of the
complete trisynaptic pathway that also incorporates active dendritic
properties and highly sophisticated connectivity. Hence, our model offers
a flexible experimentation platform for exploring how single-cell
properties, such as dendritic computations and plasticity, or neuronal
network properties like inhibition and network connectivity affect
hippocampal dynamics and well-known memory processes.

Keywords: Computational Modeling; CA1; CA3; Dendrites; Dendritic

spikes; Dentate Gyrus; Hippocampus; Interneurons; Pattern

Completion; Pattern Separation; Principal cells
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ΠΕΡΙΛΗΨΗ

Ο ιππόκαμπος διαδραματίζει βασικό ρόλο σε πολλές εγκεφαλικές
διεργασίες, όπως ο σχηματισμός και η ανάκληση της επεισοδιακής
μνήμης και η χωρική πλοήγηση. Πολλαπλές ροές προηγουμένως
ασύνδετων πληροφοριών συγκλίνουν στα κυκλώματα του ιππόκαμπου,
όπου λαμβάνουν χώρα σημαντικές μνημονικές λειτουργίες όπως ο
διαχωρισμός και η ολοκλήρωση μοτίβων. Ορισμένες από τις
πρωταρχικές περιοχές του ιππόκαμπου περιλαμβάνουν την DG, την
CA3 και την CA1, οι οποίες αποτελούν τη λεγόμενη τρισυναπτική οδό,
έναν κλειστό βρόχο επεξεργασίας με αμφίδρομες συνδέσεις με ανώτερες
περιοχές του φλοιού. Η υπολογιστική μοντελοποίηση έχει
χρησιμοποιηθεί εκτενώς για την κατανόηση του τρόπου με τον οποίο η
δυναμική του δικτύου του ιππόκαμπου συνδέεται με τη συμπεριφορά,
δεδομένου ότι τέτοιες μελέτες απαιτούν συχνά πειράματα που
περιορίζονται από τεχνικούς περιορισμούς. Ωστόσο, τα περισσότερα
διαθέσιμα σημερινά μοντέλα ιππόκαμπου είναι συνήθως υπερβολικά
απλουστευτικά, αγνοώντας βασικές νευρωνικές και δικτυακές ιδιότητες.
Είναι σημαντικό ότι παραβλέπουν τις επιπτώσεις των ενεργών
δενδριτικών μηχανισμών στις λειτουργίες σε επίπεδο δικτύου. Για το
λόγο αυτό, αναπτύξαμε ένα απλουστευμένο αλλά βιολογικά σχετικό
μοντέλο της τρισυναπτικής οδού, το οποίο επικυρώθηκε εκτενώς με
πειραματικά δεδομένα. Το μοντέλο μας αναπαράγει με ακρίβεια πολλές
βασικές κυτταρικές και σε επίπεδο δικτύου λειτουργίες, μαζί με τη
συμβολή τους στον διαχωρισμό και την ολοκλήρωση των μοτίβων. Εξ
όσων γνωρίζουμε, αυτό είναι το πρώτο μοντέλο ιππόκαμπου της
πλήρους τρισυναπτικής οδού, που ενσωματώνει επίσης ενεργές
δενδριτικές ιδιότητες και ιδιαίτερα εξελιγμένη συνδεσιμότητα. Ως εκ
τούτου, το μοντέλο μας προσφέρει μια ευέλικτη πλατφόρμα
πειραματισμού για τη διερεύνηση του τρόπου με τον οποίο οι ιδιότητες
μεμονωμένων κυττάρων, όπως οι δενδριτικοί υπολογισμοί και η
πλαστικότητα, ή οι ιδιότητες νευρωνικών δικτύων, όπως η αναστολή και
η συνδεσιμότητα του δικτύου, επηρεάζουν τη δυναμική του ιππόκαμπου
και τις γνωστές διαδικασίες μνήμης.
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1. Introduction

1.1 Hippocampus
Historically, the intriguing case of patient H.M. and his anterograde amnesia after his

bilateral temporal lobe resection (Scoville & Milner, 1957), the discovery of neurons

encoding spatial position, the place cells (O’Keefe & Dostrovsky, 1971), and the

activity-dependent long-term potentiation (LTP) of synapses (Bliss & Lomo, 1973) in

the hippocampus have drawn the focus of many researchers. All these, along with its

many functions, e.g., memory storage and recall, the presence of special features,

such as adult neurogenesis, and its involvement in many diseases, like Alzheimer’s,

made the hippocampus “a neural Rosetta Stone” as Andersen et al. (2007) stated. It

encodes knowledge of things, people, events, places, both spatial and non-spatial

forms of explicit or declarative memory and time during episodic events (Basu &

Siegelbaum, 2015). As for the memories, the hippocampus stores them

independently of each other, applies old memories into new contexts, and retrieves

them from a few cues (Yassa & Stark, 2011). These functions can be achieved

through some computations such as pattern separation or pattern completion

(Kowalski et al., 2016). All this attention from the scientific community has driven the

enrichment of its anatomical, physiological, and functional data, allowing the

modeling of this structure (Cutsuridis et al., 2010).

All mammals have a hippocampus, which is part of the hippocampal formation along

with the entorhinal cortex (EC), subiculum, presubiculum, parasubiculum, and

dentate gyrus (DG). It consists of two hippocampi, one in each hemisphere, it is

located in the allocortex and is part of the limbic system (fig. 1). The hippocampi can

be broken down into three sub-regions, cornu-ammonis 1 (CA1), CA2, and CA3.

According to Lorente de Nó, it is supposed to be a fourth one, CA4 or hilus, but

many consider it part of the DG (Andersen et al., 2007). As the information flows

from DG to CA3 to CA1, scientists refer to the hippocampus as the trisynaptic circuit.
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Figure 1. Three-dimensional representations of the mouse and human hippocampus

showing the relative locations of the DG/CA3 (yellow), CA1 (red), and SUB (green). The

longitudinal hippocampal axis (red in axes chart) in mice is oriented dorsoventrally, whereas

the human longitudinal axis is rotated into the anterior-posterior axis. In addition, the

anterior/posterior (septo-temporal; blue color) axis in mice is oriented in the superior-inferior

direction in humans. (Adapted from Bienkowski et al., 2021)

The classical trisynaptic circuit consists of three consecutive projections, the

projection from EC to DG via the Perforant Path (PP), the projection from DG to CA3

via the Mossy Fibres (MF), and the projection from CA3 to CA1 via the Schaffer

Collaterals (SC) (fig. 2) (Andersen et al., 2007). Nowadays, the trisynaptic circuit is

considered outdated and it has been updated with noncanonical connections, such

as CA3 backprojection to DG, EC direct projection to CA1, and the interplay of

Subiculum with the CA1 and EC (fig. 3) (Xu et al., 2016). The main aim of this

research is to simulate the trisynaptic circuit using dendrites, and their active

mechanisms, to get a grasp of their role on hippocampal processes. Another goal is

to enrich it with up-to-date (noncanonical) connections, i.e., CA3-to-DG

backprojection and direct EC-to-CA1 inputs.
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Figure 2. The Trisynaptic loop.
(Figure from https://thebrain.mcgill.ca/flash/a/a_07/a_07_cl/a_07_cl_tra/a_07_cl_tra.html)

Figure 3. Canonical hippocampal circuitry and the noncanonical subicular-CA1 pathway.

The diagram depicts the noncanonical and canonical circuitry of the hippocampal formation.

Evidence herein describes noncanonical backprojections from the subiculum to CA1 (red
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line). Feedforward and unidirectional canonical projections are depicted as black lines with

large directional arrows. The trisynaptic circuit connections are made up of layer II (LII) EC

projections to the DG via the PP, projections of the dentate GCs to area CA3 pyramidal

neurons via mossy fibers, and CA3 projections to area CA1 pyramidal neurons via SC. CA1

transfers excitatory information out of the hippocampus proper via direct projections to deep

layers (layers V and VI, LV/VI) of the EC or the subiculum. CA2 is described in the text but is

not depicted in this diagram. Additional excitatory projections within the hippocampal

formation include layer III (LIII) entorhinal neurons projections to CA1 and the subiculum (the

temporoammonic pathway), and local recurrent collaterals of CA3 pyramidal cells onto other

CA3 pyramidal cells. Also, the backprojection of CA3 pyramidal neurons to the DG has been

described. (Figure from Xu et al., 2016)

1.2 Dentate gyrus
The DG includes two major types of neurons, the principal or glutamatergic neurons,
and the interneurons. The principal neurons are the granule cells (GCs) and the
mossy cells (MCs), whereas some of the best-studied interneurons are the basket
cells (BCs) and the hilar-perforant-path-associated (HIPP) cells. The DG is divided
into three layers, 1) the molecular layer (ml), 2) the granule cell layer (gcl), and 3) the
polymorphic cell layer (pcl) or hilus. These layers contain, respectively, 1) the GC’s
dendrites and the fibers of the EC, 2) the bodies of the GCs and some interneurons,
and 3) different types of neurons, like the MCs or the HIPP cells (Amaral et al.,
2007). Furthermore, the ml is divided into three sub-layers, the outer molecular layer
(oml), the middle molecular layer (mml), and the inner molecular layer (iml) (fig. 4)
(Scharfman, 2016).
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Figure 4. The layers of the DG are shown. The sources of major afferent inputs are shown
on the right (red box indicates the GABAergic input and grey boxes indicate inputs from
other neurotransmitters). GABAergic interneurons innervate all layers. The lateral entorhinal
cortex (LEC) and the medial entorhinal cortex (MEC) innervate the outer oml and the middle
mml, respectively. Supramammillary (Mamm), cholinergic, mossy cell and ventral CA3
(vCA3) pyramidal cell axons innervate the iml. The oml and mml also receive inputs from the
brainstem (including noradrenergic and 5-hydroxytryptamine (5-HT; also known as serotonin)
inputs) and from basal forebrain cholinergic neurons. The HIL receives diverse inputs,
including the axons of GCs, DG GABAergic neurons, MCs, CA3 pyramidal cells,
neuromodulatory inputs from the brainstem (such as noradrenaline (NA), 5-HT, and
dopamine (DA)) and basal forebrain cholinergic neurons. The efferents from the DG to other
areas arise mainly from GCs that project to the HIL and CA3. The granule cell axon, called a
mossy fibre, is complex. It makes giant boutons that innervate thorny excrescences of MCs
and pyramidal cells and small boutons that arise from hilar collaterals and filamentous
extensions from the giant boutons, The small boutons primarily contact interneurons but also
form contacts on distal dendrites of MCs. ACh, acetylcholine; F, fissure; SGZ, subgranular
zone. (Adapted from Scharfman, 2016)

The DG is well known for its role in pattern separation and its adult neurogenesis
ability. Due to its vast amount of GCs, it outnumbers the afferent populations, i.e.,
almost a ratio of 5 to 1 in comparison with the input neurons of the EC. Along with
the low activity of the GCs, ~2 - 5 % of the total population, these findings suggest
the sparse encoding and the orthogonalization of the information leading to pattern
separation of closely related information (Christian et al., 2020; Mao et al., 2017).
Adult neurogenesis has been observed in the olfactory bulb and the DG. In the DG,
adult neurogenesis has been shown to help pattern separation by inhibiting the
mature GCs and therefore improving the sparse encoding (Drew et al., 2016)

1.3 Cornu Ammonis 3 (CA3)
The CA3 region is located between the DG and the CA2/CA1 region. This region
consists of two groups of cells, like the DG, the principal cells, and the inhibitory
cells. This region is divided into four layers, with each layer having its unique
properties. Firstly, the reference layer will be the pyramidal cell layer (pcl), and as the
name indicates, it contains the somata of the principal cells, the pyramidal cells.
Deeper exists the stratum oriens (so), a layer containing the basal dendrites of the
pyramidal cells, efferents from the other pyramidal cells, and the bodies of many
interneurons. Just above the pcl is a thin layer that contains the MF, the stratum
lucidum (sl). The most superficial layer is the stratum lacunosum-moleculare (sl-m),
which contains afferents from other regions, like the EC, the distal dendrites of the
pyramidal cells, and the somata of some interneurons. Between the sl-m and the sl
is the stratum radiatum (sr), which contains the oblique dendrites of the pyramidal
cells and efferents from the other pyramidal cells (fig. 5) (Andersen et al., 2007).
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Figure 5. Camera lucida drawing of a CA3 pyramidal neuron located in the midportion of the
field. As this neuron lies outside the zone of the infrapyramidal mossy fiber bundle, most of
the thorny excrescences are located on the proximal apical dendrites. The axon of this
neuron is indicated by an arrowhead. Bar 100 m. (Adapted from Ishizuka et al., 1995.)

There are electrophysiological data that prove the occurrence of pattern separation
and pattern completion in CA3 (Rebola et al., 2017). Some theoretical models
support the idea that the CA3 region exhibits the ability to perform pattern separation
with the main explanation of the strong inputs from the DG, that already perform
pattern separation. This idea, combined with the existence of the backprojections
from the CA3 to the DG, could help explain episodic learning, but empirical data are
needed to support this (Kassab & Alexandre, 2018). Lee et al. (2015) suggested a
gradient along the proximal-distal axis from pattern separation in proximal CA3 to
pattern completion in distal CA3, supporting the idea that CA3 is not a homogenous
network with consistent properties.

One of the best-studied functions of the CA3 area is its involvement in memory
storage through pattern completion. Pattern completion is the ability to recall a
memory by observing only a part of the information that was present during the
learning phase. The high number of recurrent synapses of the CA3 pyramidals
provides a good template for the storage and retrieval of associative memories. A
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schematic representation of the CA3 region’s afferents and efferents, and their role,
is shown in Figure 6.

Figure 6. CA3 circuits and their proposed role in memory shows the different elements of
CA3 circuits and their hypothesized involvement in memory encoding and recall. The
extensive excitatory interconnections between CA3 pyramidal cells (PCs) — known as the
associative/commissural (A/C) loop — are proposed to work as an attractor network, in
which associative memories are stored and recalled through pattern completion. MF
originating from the DG provide sparse and powerful excitatory connections (known as
‘detonator’ synapses) to CA3 PCs; these connections are proposed to assist in the encoding
of new patterns of activity (representing new memories) in CA3 through pattern separation.
The direct connections from the ECx to CA3 are thought to provide the cues for retrieval
(recall) of information from CA3, especially when incomplete information is provided.
Feedforward inhibition via CA3 interneurons (INs) strongly controls information transfer
between DG and CA3 depending on the pattern of presynaptic activity and may be involved
in the precision of memory. Inhibitory loops in CA3 control the generation of oscillatory
activities and are amenable to substantial structural plasticity upon learning. Within the
hippocampus, the main outputs from the CA3 region (illustrated by the red schematic trace)
are the axons of CA3 PCs, which make contact with CA1 PCs and CA1 INs. (Figure from
Rebola et al., 2017)

1.4 Cornu Ammonis 1 (CA1)
CA1 is the border of the hippocampus adjacent to the subiculum. This region has a
similar cytoarchitecture to the CA3, but some neuron groups have different
electrophysiological properties and morphology, e.g., the pyramidal cells (fig. 7). It
consists of 1) the pcl, which contains the somata of the pyramidal cells, 2) the so,
which contains the basal dendrites of the pyramidals, and the SC afferents, 3) the sr,
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which contains the oblique dendrites of the pyramidals and SC afferents, and lastly
4) the sl-m, which contains the distal dendrites of the pyramidals and EC afferents
(Andersen et al., 2007).

Figure 7. Camera lucida tracings (x 1250) of a representative CA1 pyramidal cell (A), CA3
pyramidal cell (B), and DG granule cell (C). (Adapted from Gould et al., 1990)

Sending excitatory and inhibitory projections to neighborhood structures, CA1 is the
main output of the hippocampus. One of these receptive regions is the layer V of the
EC, which sends projections into the EC layers II/III, completing this way the loop
EC-hippocampus-EC. it has been proposed that the parallel inputs to CA1 from the
trisynaptic circuit and the direct EC pathway act as a comparison mechanism of the
stored information with direct spatial and nonspatial sensory information from the
EC, leading to discrimination of new contexts (Basu & Siegelbaum, 2015). In
general, CA1 is engaged in cognitive tasks such as spatial processing, learning, and
memory (Bezaire et al., 2016).

1.5 Dendrites
Dendrites are thin neuronal protrusions that receive the vast majority of synaptic
inputs and propagate them towards the soma. Early studies portrayed dendrites
simply as passive propagators of synaptic currents. However, recent studies suggest
that dendrites can operate semi-independently from the soma, greatly increasing the
computational capacity of neurons (Bassett et al., 2020; Johnston et al., 1996). Their
passive cable properties and the presence of dendritic voltage-gated ion channels
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can greatly impact how synaptic information is translated into neuronal output
(Spruston & Häusser, 2016). Moreover, dendrites allow multiple input integration
sites with unique properties (depending on local morphological features and ion
channel content ) to coexist within a single neuron. Dendrites, depending on their
morphology, their ratios of ion channels, and their ability to produce dendritic spikes,
i.e., sodium, calcium, or NMDA spikes (fig. 8), can alter the linear summation of the
synaptic inputs to supra-linear or sub-linear summation, and induce LTP (Papoutsi,
Kastellakis, et al., 2014).

Dendritic mechanisms may last from just a few milliseconds to hundreds of
milliseconds, leading to complex computations such as input
amplification/segregation, coincidence detection, and parallel nonlinear processing
(Poirazi & Papoutsi, 2020). Furthermore, the positioning of synapses across
dendrites plays an important role. Functionally related synapses usually form
anatomical clusters, promoting computational efficiency and memory storage
capacity by increasing the probability of dendritic spike initiation (Kastellakis et al.,
2015).

Computational and experimental studies suggest that dendritic properties can greatly
influence several mnemonic functions across different brain areas For example,
dendrites affect pattern separation by modulating their excitability through ion
channels (Oulé et al., 2021) and by increasing the sparsity of the EC inputs in
different segments, which leads to a lower probability of temporal coincidence that is
needed to activate the GCs (Chavlis et al., 2017). Moreover, it has been shown that
decreasing AMPAR stability, the main glutamatergic receptor on dendrites, in the
GCs affects pattern separation and pattern completion (Robert et al., 2020).
Non-linear dendrites in an abstract hippocampal model improved memory storage
and recall capacity (Kaifosh & Losonczy, 2016). Another computational study
showed that NMDARs increase persistent activity in the prefrontal cortex (pfc),
improving short-term memory (Papoutsi, Sidiropoulou, et al., 2014).
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Figure 8. Location dependence of dendritic spike generation. Examples are shown of
dendritic sodium (blue), calcium (red), and NMDA (green) spikes evoked by synaptic
stimulation during simultaneous recordings from the soma (black), apical (blue, red), and
basal (green) dendrites of a layer 5 pyramidal neuron. Dotted lines indicate the effect of
blocking NMDA receptors. Colored boxes and circles superimposed onto the morphology of
a cortical layer 5 pyramidal neuron indicate the dendritic regions in which these different
spikes are usually generated. (Adapted from Stuart & Spruston, 2015)

1.6 Computational models
Neuroscience can be studied from different angles, either experimentally, by
measuring various aspects of the brain, or theoretically, by constructing models that
mimic the brain. Computational models provide a theoretical framework in which
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experimental findings can be collected and integrated to infer the critical features of
neuronal behavior at various levels. Models have the advantage to allow the fast,
systematic, exhaustive, and reversible manipulation of properties that may not be
subject to direct manipulation on living tissues. In particular, models in which
features, properties, or morphologic characteristics of a neuron are changed can
provide mechanistic explanations for experimental observations by identifying the
key determinants of a specific phenomenon. Hypothesis-driven models, by the
integration of existing data, can lead to unexpected predictions that can be
subsequently validated by targeted experiments (Poirazi & Papoutsi, 2020).

One of the first neuronal models, which dates back to 1952, is the Hodgkin-Huxley
model. Based on the description of the electrical properties of the cellular membrane,
it models the emergence of action potentials in the squid giant axon, representing
the problem as an equivalent circuit diagram (Hodgkin & Huxley, 1952). In 1957, Rall
extended that model to include the cable theory, which laid the foundation for models
of neurons having a three-dimensional description of the cell (Rall, 1957). However,
many other models can vary depending on the computational complexity and
biological realism (fig. 9).

For example, one of the most used models is the so-called Integrate-and-Fire model,
introduced by Lapicque in 1907. Thanks to its simplicity, it allows modeling big
networks with relatively low computational effort. Therefore, the choice of the model
to use strictly depends on the question that needs to be addressed. Various publicly
available databases and simulators provide the necessary tools for modeling
phenomena at the desired level of analysis (Poirazi & Papoutsi, 2020, Table 1).

For this thesis, we decided to use a simplified, biologically relevant, scaled-down
model of the DG, CA3, and CA1, consisting of four different cells (GCs, BCs, MCs,
and HIPP cells) for the DG, and five different cells (Pyramidal cells, BCs, Bistratified
cell (BiC), Vasoactive intestinal peptide/calretinin-expressing type 3
interneuron-specific cell (VIP), oriens lacunosum moleculare cell (OLM)) for the
CA1/CA3 regions. Among these, only principal neurons are provided with several
compartments to simulate dendrites, while others are described as point neurons.
Dendrites and their active mechanisms are of utmost importance for neuronal
network behaviors since they affect neuron activity. Therefore, we could explore the
role of dendrites in the network level of the hippocampus while sustaining
computational efficiency. We used the Conductance Adaptive Exponential (CAdEx)
integrate-and-fire model as a sufficient description of neuronal activity (Górski et al.,
2021), calibrating all parameters according to experimental data. The advantage of
using such a simplified approach is that, with a small number of parameters, we
could significantly reduce the computational effort and increase the network's size.
This last aspect is fundamental to the study of a population coding effect, such as
pattern separation and pattern completion. We first calibrated the passive and active
properties of all neurons, then we validated the connectivity of each sub-network,
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and finally, we merged them into the trisynaptic circuit, which replicated pattern
completion and pattern separation.

Figure 9. Levels of description in single-cell and circuit models with dendrites. a | Detailed
multicompartmental models describe the morphology and biophysical properties of neurons
by connecting hundreds to thousands of electrical compartments each with their
conductances. These models are ideal for investigating how specific subcellular
mechanisms (such as ionic conductances, receptors, and synaptic machinery) or
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morphological features (for example, branch points) interact with one another and influence
dendritic integration and/or neuronal output over time and/or space. These models provide
mechanistic inferences that, in turn, allow for direct experimental testing of
single-neuron-level computational hypotheses. However, they are computationally costly, as
they have hundreds to thousands of parameters and require solving numerous differential
equations to simulate current (I) and voltage (V) changes over time and space. Various
algorithms have been developed for the optimization of the respective parameters. b |
Examples of reduced models include simplification of multicompartmental models to just two
compartments or integrate- and- fire models that use a few equations to describe the
somatic and dendritic activity. These models are ideal for capturing simple features, such as
the mean firing rate or the pattern of somatic output (for example, regular firing versus
bursting). In such a model, the dendritic morphology and biophysics can be simplified or
completely omitted. Reduced models ensure computational savings and also maintain the
ability to probe the effects of selected mechanisms on neuronal output. Depending on the
level of description implemented for dendrites, reduced models can account for some
phenomena, such as the role of dendritic spikes in memory engrams or information binding.
They are not appropriate, however, for studying the contributions of different membrane
mechanisms to dendritic integration or the effect of morphological features on dendritic or
neuronal output. c | Artificial neural network (ANN) abstraction of a neuron with two types of
dendrites that are depicted as sigmoidal and saturating linear nodes. If the goal is not to
simulate the activity of a neuron but, rather, to come up with a mathematical formalism that
captures what a neuron computes, the best model can take the form of known statistical (for
example, Bayesian), cascade (such as in linear–non- linear models) or other mathematical
tools, such as ANNs. Theoretical models are ideal for formalizing neuronal computations and
transferring insights from neuroscience to other disciplines (such as machine learning (ml)
and artificial intelligence). They cannot, however, be used to identify the mechanistic
underpinnings of the said computations in the neural tissue. d | Multicompartmental models
of neurons can be connected to form detailed circuit models. These models can investigate
network-level hypotheses and predict relevant biophysical mechanisms. e | Circuit models
can be composed of different cell types that are represented by reduced compartmental or
integrate- and- fire models with a small number of dendritic compartments. f | Deep ANN
architectures can also consider dendrites through a structured connectivity scheme. Such
architectures can be used to advance ml algorithms through the incorporation of biological
features and/or to provide insights regarding potential dendritic or neuronal contributions to
specific functions. Cm, specific membrane capacitance; gx, the conductance of ion x; ID,
dendritic current; IS, somatic current; IDS, dendro- somatic current; red dotted arrow,
voltage-gated conductance; PV+, parvalbumin-expressing; PYR, pyramidal; SST+,
somatostatin expressing; VIP+, vasoactive intestinal peptide- expressing. Parts a,d adapted
with permission from ref., American Physiological Society. ( Adapted by Poirazi & Papoutsi,
2020)
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2. Material and Methods

The hippocampal model implemented here consists of three sub-networks, those of
the DG, CA3, and CA1. These models were inspired by previous works of our
laboratory, i.e., DG from Chavlis et al. (2017), CA1, and CA3 from Turi et al. (2019).
For computational efficiency and biological relevance, we used the mice’s population
of neurons for each region scaled down to a ratio of 1:500. The simulations were
performed using the BRIAN 2.5.0.3 Simulator (Stimberg et al., 2019), written in
python (version 3.8.5) (https://python.org), and running on high-performance
computing cluster (HPCC).

2.1 Conductance adaptive exponential integrate-and-fire
models (CAdEx)
The CAdEx integrate-and-fire model is a two-equation phenomenological model,
which combines low computational cost and biophysical realism. It was inspired by a
widely used two-variable model, the Adaptive Exponential (AdEx) integrate-and-fire
model (Brette & Gerstner, 2005). These models are simplified phenomenological
neuron models that require fewer free parameters than the Hodgin-Huxley
formalism. The first equation of these models represents the membrane voltage,
whereas the second one represents an adaptation factor allowing a wide variety of
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dynamics and firing patterns, similar to biological recordings. The difference between
AdEx and CAdEx is in the second variable. AdEx has the adaptation in the form of
current and has linear subthreshold adaptation causing unrealistic behaviors after
intense neuronal firings, instead, the adaptation in CAdEx has the form of
conductance and a sigmoid dependence of subthreshold adaptation (Górski et al.,
2021). We changed the equations slightly for better computational performance and
these equations are as follows:

with after-spike reset mechanism:

In the first equation: C is the membrane capacitance, V is the membrane voltage, gL

is the leak conductance, EL is the reversal potential (i.e., the resting potential), gA is
the adaptation conductance, EA is the reversal potential of the adaptation
conductance, and IS is an input current. In the second equation: τΑ is the time
constant of adaptation, gA is the adaptation conductance, ḡA is the maximal
subthreshold adaptation conductance, VA is the subthreshold adaptation activation
voltage, and ΔΑ is the slope of subthreshold adaptation. The input resistance (Rin) is
calculated by dividing the membrane capacitance by the leak conductance:

Rin = C / gL (4)

The third equation describes what happens to the model when an action potential
occurs. Firstly, a condition must be satisfied for spike initiation: the membrane
voltage (V) must reach or pass the threshold for action potential initiation (VT). After a
spike is fired, the membrane voltage (V) resets to a specific reset value (VR), and the
adaptation conductance (gA) is incremented by a quantal conductance (δgA).

All the neurons and dendrites of PCs are using these equations, with the difference
that in dendrites the adaptation is always set to zero because their spiking
mechanisms already incorporate adaptation.
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2.2 Compartmental modeling
All of our principal neurons are modeled with a sphere for soma and cylinders for
dendrites. After a full 3-D image of a neuron is attained, its modeling can begin by
breaking it down into a series of cylinders with different lengths and diameters for its
mathematical and computational description. For a given cylindrical compartment,
the membrane resistance (Rm) is related to the area of the compartment as is the
capacitance. Given a specific resistivity in Ohm-cm2, the total resistance (RM) is just
this value divided by the area, Rm=RM/A, where A is the area. The capacitance for
the compartment is also proportional to the area.

There are a few rules to compute the axial resistance (Ri) between two
compartments:

● If both are cylinders, we use the average of the two resistances
● If one is a sphere and the other is a cylinder, we use the cylinder’s resistance

Given that we have two compartments with neuron’s axial resistivity Ra Ω*cm, and
length x diameter L1 μm x D1 μm & L2 μm x D2 μm, we get the following equations:

A1 = L1 × D1 × π μm2 (5)
A2 = L2 × D2 × π μm2 (6)
Ri1 = Ra × L1 / (π × (D1 / 2)2 (7)
Ri2 = Ra × L2 / (π × (D2 / 2)2 (8)

So, the Ri between the two compartments is equal to

Ri = (Ri1 +Ri2) / 2 (9)

This adds a current, I1-2 and I2-1 to the first and the second cylinder, respectively, to
their voltage equation (1) and transforming them (12) and (13), respectively:

I1-2 = (V2 - V1) /( A1 × Ri) (10)
I2-1 = (V1 - V2) /( A2 × Ri) (11)

These two equations may seem identical, but the coupling strength between them is
different. This way, the bigger compartments have more influence on the smaller
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ones, and on the contrary, the smaller compartment has less influence on the bigger
compartment (Ermentrout & Terman, 2010).

For our convenience, we will be using a general name, current Icoupling, for the
currents I1-2 and I2-1. Therefore, equation (1) is transformed into a general form

The membrane capacitance (C) and the leak conductance (gL) differ for each
compartment of all the principal neurons. These parameters are calculated according
to two standard equations (15) (16) multiplied by the area of each compartment

C = 1 × sf μF/cm2 (15)
gL = C / τm (16)

where sf is a scale factor that adjusts the size of the neuron’s model, and τm is the
neuron’s membrane time constant.

For example, considering we want to model a spherical soma of diameter Dsoma and
area Asoma, the equation (15) (16) would be transformed into

Csoma = C × Asoma (17)
gL_soma = Csoma / τm (18)

Point neurons do not have dimensions, therefore, they do not have axial resistivity
(Ra) and we directly put their membrane capacitance (C) parameter. Moreover, their
Icoupling is always equal to 0 pA.

2.3 Membrane Noise
The resting membrane potential of neurons from in vivo measurements (fig. 10A)
(Malezieux et al., 2020) is completely different from the in vitro measurements (fig.
10B) (Sun et al., 2017). For this reason, we incorporated a colored noise current
(Inoise) into equation (14) of the membrane potential, which drives into more positive
values (Bono & Clopath, 2017). So equation (14) is transformed into

where Inoise is calculated by
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In this equation: σnoise is the standard deviation, μnoise is the mean, τnoise is the
time-constant for the low-pass filtering of the noise, and ξ is Gaussian white noise
with zero mean and unit s.d. (Bono & Clopath, 2017).

Figure 10. A) Example whole-cell recordings from two different CA3 PCs (top), with the
simultaneous theta/delta power ratio of the nearby LFP and the running speed of the mouse
(bottom). The gray trace superimposed on the raw membrane potential (Vm) is the
smoothed Vm after spike removal, and green shading represents theta events. Spikes are
truncated in the raw membrane potential traces. (Adapted from Malezieux et al., 2020) B)
Mean resting membrane potential in indicated subregions. Error bars show SE. **p < 0.01,
***p < 0.001. n = 16–32 neurons per group. (Adapted from Sun et al., 2017)
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2.4 Modeling synapses
For the synapses of the principal cells, we modeled the currents of three major
ionotropic receptors: 1) AMPA receptors (AMPARs), 2) NMDA receptors (NMDARs),
and 3) GABAA receptors (GABARs), whereas for all the other cells we modeled only
the currents of AMPARs and GABARs. Across time, equation (21) can describe the
majority of the ligand-gated ion channels, like AMPARs and GABARs, which, when
they are active, display a linear current-voltage relationship.

IAMPA/GABA = gAMPA/GABA(t) × (V(t) - EAMPA/GABA) (21)

where gAMPA/GABA is the ohmic conductance of a channel, V is the membrane potential,
and EAMPA/GABA is the reversal (equilibrium) potential.

However, the conductance of the NMDARs is not that simple because of the gate
blockage by magnesium ions (Mg2+) near the resting membrane potential. Along with
the glutamate binding on the receptor, they need an electrostatic repulsion of the
Mg2+ by the influx of positive ions caused by the opening of AMPARs. A sigmoidal
function (s) can represent the fraction of NMDA channels that are unblocked:

where η is the sensitivity of Mg2+ unblock, γ is the steepness of Mg2+ unblock, and
[Mg2+]o is the concentration of extracellular Mg2+. So, the equation that describes
NMDAR’s current is

INMDA = gNMDA(t) × s(V) × (V(t) - ENMDA)    (23)

which is the same as the equation (21) with the addition of the sigmoidal function
(22). All these currents are added in equation (15), but for our convenience, we will
firstly include them all in a single synaptic current (Isyn), and then we will add this to
the final equation.

Isyn = INMDA + IAMPA + IGABA (24)
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2.5 The Dentate gyrus network
The DG was built according to previous works (Chavlis et al., 2017; Myers &
Scharfman, 2009, 2011), using the biological relevant numbers of neurons
(Buckmaster & Jongen-Rêlo, 1999; West et al., 1991) scaled down to a ratio of 1:500
and incorporates new information about connectivity. More specifically, the new
connections are inhibitory synapses from the HIPP cells to other HIPP cells and
BCs, so we could have a disinhibitory system and excitatory synapses from MCs to
GCs for Backprojection purposes that we will describe later. These details are
gathered in Table 2 and a schematic representation (fig. 11).

Four major dentate neuron types were modeled, GCs, BCs, HIPP cells, and MCs.
GCs because they are the principal cells of DG and MCs because they are another
category of glutamatergic cells, a phenomenon not observed in other hippocampal
sub-regions, and they modulate the DG network (Scharfman, 2016). BCs and HIPP
cells were chosen to represent the interneurons of the DG, for the perisomatic
inhibition and dendritic inhibition, respectively. This choice was made since there is
not much data to model other interneurons.

Table 2. In the first column are the names of the cell types used in our model. The second
column shows the biological measured numbers of these populations (Source:
Dyhrfjeld-Johnsen et al., 2006), and in the third column are the numbers we used in our DG
model.

Neuron’s population

Type Biological DG Model

Granule cells 1.000.000 2.000

Basket cells 10.000 20

HIPP cells 12.000 24

Mossy cells 30.000 60
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Figure 11. Schematic representation of the connections of the Dentate gyrus model.
Excitatory inputs are represented by the pointy arrows. Inhibitory inputs are represented by
the spheres. Recurrent synapses between the same population are represented by curved
arrows.

2.5.1 Granule cells
Among the hippocampus principal cells, GCs have a characteristic morphology.
Firstly, GC’s cell bodies have an elliptical morph with a width of ~10 μm and a height
of ~18 μm (Claiborne et al., 1990), they are densely packed in the gcl. They extend
their dendrites from a big trunk into the ml, while the further they extend the thinner
they become. Usually, their axon emerges from their basal pole and extends into the
Hilus and CA3 region (fig. 12A) (Amaral et al., 2007). Usually, GCs do not have
basal dendrites, but a small portion in healthy humans and monkeys, and a bigger in
epileptic DG, appear to have basal dendrites (fig. 12B) (Becker et al., 2012; Kelly &
Beck, 2017; Seress & Mrzljak, 1987). In our model, we did not include any GC with
basal dendrite.
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Figure 12. (A, B) Alexa-filled dentate GCs were reconstructed in confocal image stacks
using Neuronstudio software. 2D-projected image stacks (left) and the corresponding
reconstructed skeletons (right) are shown for a granule cell without (A) and with a hilar basal
dendrite (hBD) (B). Scale bar: 50 µm. (Adapted from Becker et al., 2012)

For our model, we have built a reduced morphology of the GC using the diameter
and length for each compartment from the work of Becker et al. (2012) (fig. 13). Our
GC is made of: 1) a spherical soma, which receives inhibitory inputs from the BCs, 2)
a short and big trunk sprouting from the soma, 3) a second thinner and longer trunk
continuing from the first one, which receives excitatory inputs from the MCs 4) two
oblique dendrites sprouting from the second trunk, and 5) two distal dendrites, each
sprouting from an oblique dendrite. The oblique and distal dendrites are receiving
excitatory inputs from the EC and inhibitory inputs from the HIPP cells. A cartoon
along with the values of each compartment’s length and diameter are presented in
Figure 14.
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Figure 13. (F) The Sholl-analysis of the two GC populations showed a comparable
complexity of the dendritic trees (distance of circles/spheres in F, 25 µm). (Adapted from
Becker et al., 2012)

Figure 14. A) Representation of the granule cell model. (g1 is the gcoupling from oblique
dendrites to trunk2 with a value of 13.48 nS, g2 is the gcoupling from trunk 2 to oblique
dendrites with a value of 12 nS, g3 is the gcoupling from trunk2 to trunk1 with a value of 20 nS,
and g4 is the gcoupling from trunk1 to trunk2 with a value of 17 nS) B) The diameters (Diam_)
and lengths (Len_) of the GC model’s compartments.
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For the biophysical parameters of our GC model, we used the information from
experimental works (Mishra & Narayanan, 2020; Vida et al., 2018) and a database
containing information about the biophysical characteristics of the hippocampal
neurons (http://hippocampome.org/php/index.php). According to equations (25),
(2), and (9), for each compartment the distances and lengths are the same as in
Figure 14B, the resting membrane potential (EL) is equal to -75 mV, the axial
resistivity (Ra) is equal to 194 Ω*cm, the input resistance (Rin) is equal to 300.95 ΜΩ,
the membrane time constant (τm) is equal to 32 ms, the threshold for action potential
initiation (VT) is equal to -45 mV, the reset value (VR) is equal to -55 mV, the
time-constant for the low-pass filtering of the noise (τnoise) is equal to 10 ms, the noise
standard deviation (σnoise) is equal to 0.5 pA, the mean (μnoise) is equal to 1 pA, the
scale factor (sf) is equal to 5, and for the adaptation of the soma the maximal
subthreshold adaptation conductance (ḡA) is equal to 1.8 nS, the reversal potential of
the adaptation conductance (EA) is equal to -77.5 mV, the subthreshold adaptation
activation voltage (VA) is equal to -51 mV, the slope of subthreshold adaptation (ΔΑ)
is equal to 5 mV, the time constant of adaptation (τΑ) is equal to 90 ms, and the
quantal conductance (δgA) is equal to 2.9 nS. We changed slightly the
backpropagating gcoupling from “trunk1” to “trunk2”, and from “trunk2” to “oblique”
dendrites, so we could achieve high backpropagate attenuation (fig. 14A).

2.5.2 Basket cells
In the borders between the gcl-Hilus, with a pyramidal-shaped cell body, a major
GABAergic parvalbumin-positive (PV+) group of interneurons, the BC (PV+ BCs),
exists. They got their name because they form a basket-like pericellular plexus
around the cell body of GCs (fig. 15) (Amaral et al, 2007), targeting the somatic and
perisomatic are of GCs (Kraushaar & Jonas, 2000). BCs are fast-spiking
interneurons, meaning that they have high-frequency bursts of action potentials, and
this was shown in in-vitro and in-vivo studies (Vida et al., 2006). This behavior
provides potent inhibitory feedback to GCs, contributing this way to the DG
computations (Seress & Ribak, 1990).
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Figure 15. Morphology of the PV+ BC. Soma and dendrites are in black and the axon is in
red. (Adapted from Booker & Vida, 2018)

BCs connect, receive and send synapses, with GCs, other BCs (Booker & Vida,
2018), HIPP cells (Savanthrapadian et al., 2014), and MCs (Dyhrfjeld-Johnsen et al.,
2007).

For the biophysical parameters of our BC model, we used the information from
experimental works (Lübke et al., 1998) and a database containing information about
the biophysical characteristics of the hippocampal neurons
(http://hippocampome.org/php/index.php). According to equations (25), (2), the
resting membrane potential (EL) is equal to -57 mV, the input resistance (Rin) is equal
to 53.46 ΜΩ, the membrane capacitance (C) is equal to 179.3 pF, the membrane
time constant (τm) is equal to 9.96 ms, the threshold for action potential initiation (VT)
is equal to -45.2 mV, the reset value (VR) is equal to -50 mV, the time-constant for the
low-pass filtering of the noise (τnoise) is equal to 15 ms, the noise standard deviation
(σnoise) is equal to 3 pA, the mean (μnoise) is equal to 5 pA, and for the adaptation of
the soma the maximal subthreshold adaptation conductance (ḡA) is equal to 1 nS,
the reversal potential of the adaptation conductance (EA) is equal to -59 mV, the
subthreshold adaptation activation voltage (VA) is equal to -45 mV, the slope of
subthreshold adaptation (ΔΑ) is equal to -10 mV, the time constant of adaptation (τΑ)
is equal to 165 ms, and the quantal conductance (δgA) is equal to 1.3 nS.

2.5.3 HIPP cells
SST+ hilar perforant path (HIPP) cells have their somata in the pcl and they are
characterized by spiny horizontal, bipolar dendrites, which expand only in the gcl
(fig. 16). Their axon emerges from a proximal dendrite, branching at a high rate in
the oml and inhibiting the oblique and distal dendrites of GCs. A small portion of their
axon remains in the hilus and contacts interneurons, making a disinhibitory circuit
(Booker & Vida, 2018).
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Figure 15. Morphology of the HIPP cell. Soma and dendrites are in black and the axon is in
red. (Adapted from Booker & Vida, 2018)

For the biophysical parameters of our HIPP model, we used the information from
experimental works (Yuan et al., 2017) and a database containing information about
the biophysical characteristics of the hippocampal neurons
(http://hippocampome.org/php/index.php). According to equations (25), (2), the
resting membrane potential (EL) is equal to -54.5 mV, the input resistance (Rin) is
equal to 311.52 ΜΩ, the membrane capacitance (C) is equal to 45 pF, the membrane
time constant (τm) is equal to 14.01 ms, the threshold for action potential initiation
(VT) is equal to -35 mV, the reset value (VR) is equal to -45 mV, the time-constant for
the low-pass filtering of the noise (τnoise) is equal to 10 ms, the noise standard
deviation (σnoise) is equal to 3 pA, the mean (μnoise) is equal to 5 pA, and for the
adaptation of the soma the maximal subthreshold adaptation conductance (ḡA) is
equal to 1 nS, the reversal potential of the adaptation conductance (EA) is equal to
-56 mV, the subthreshold adaptation activation voltage (VA) is equal to -41 mV, the
slope of subthreshold adaptation (ΔΑ) is equal to 5 mV, the time constant of
adaptation (τΑ) is equal to 65 ms, and the quantal conductance (δgA) is equal to 3 nS.

2.5.4 Mossy cells
In the hilus, there is a category of neurons different from the inhibitory cells, the MCs.
MCs are excitatory neurons that do not define as a component of the classical
trisynaptic pathway (Hedrick et al., 2017). MCs are contacting both GCs and
interneurons, and even though they send excitatory synapses to GCs, their main role
is to inhibit them through interneurons (Scharfman, 2016). They are characterized by
a large cell body with a triangular or multipolar shape (fig. 16) (Amaral et al., 1990;
Scharfman, 2016). They receive excitatory inputs from GCs and CA3 pyramidals
backprojection (Hedrick et al., 2017).
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Figure 16. Morphological characteristics of hilar MCs. H, hilar region; GL, granule cell layer;
Scale bar: 100 μm. (Adapted from Lübke et al., 1998)

For the biophysical parameters of our MC model, we used the information from
experimental works (Lübke et al., 1998) and a database containing information about
the biophysical characteristics of the hippocampal neurons
(http://hippocampome.org/php/index.php). According to equations (25), (2), the
resting membrane potential (EL) is equal to -62 mV, the input resistance (Rin) is equal
to 199.99 ΜΩ, the membrane capacitance (C) is equal to 205 pF, the membrane time
constant (τm) is equal to 41 ms, the threshold for action potential initiation (VT) is
equal to -39 mV, the reset value (VR) is equal to -50 mV, the time-constant for the
low-pass filtering of the noise (τnoise) is equal to 10 ms, the noise standard deviation
(σnoise) is equal to 3 pA, the mean (μnoise) is equal to 5 pA, and for the adaptation of
the soma the maximal subthreshold adaptation conductance (ḡA) is equal to 1.8 nS,
the reversal potential of the adaptation conductance (EA) is equal to -64 mV, the
subthreshold adaptation activation voltage (VA) is equal to -46 mV, the slope of
subthreshold adaptation (ΔΑ) is equal to 5 mV, the time constant of adaptation (τΑ) is
equal to 100 ms, and the quantal conductance (δgA) is equal to 10 nS.

2.5.5 The network
In detail, 2,000 GCs and 20 BCs are organized in 10 nonoverlapping clusters of 200
GCs and 2 BCs each to replicate the lamellar organization across the septotemporal
axis of DG (Sloviter & Lømo, 2012). In each cluster, all the GCs are contacting all the
BCs and vice versa. This connectivity was chosen for two reasons: 1) using the
connectivity of BCs to GCs from biological measurements (Dyhrfjeld-Johnsen et al.,
2007) would not be enough to facilitate inhibition to all the GCs, and 2) this way we
can achieve the “winner-take-all” competition (Coultrip et al., 1992) in which only the
strongest activated GCs in a cluster will remain active. By using this method, we
reached a granular activity of 2-5%, the same as the theoretical and experimental
estimations (Treves et al., 2008). However, 24 HIPP cells and 60 MCs do not have a
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topological organization because their numbers are not enough to attain this
characteristic in our model (Morgan et al., 2007). The HIPP cells send synapses to
GCs in a way to contact randomly 20% of GCs (Chavlis et al., 2017), they contact
other HIPP cells with a probability of 5.2% and BCs with a probability of 12.8%
(Savanthrapadian et al., 2014). The MCs receive synapses from the GCs with a
probability of 20% (Chavlis et al., 2017), and they send synapses back to the GCs
with a probability of 3.25%. Each MC connects with every BC.

As for the input in the DG network, 200,000 EC cells (Amaral et al, 1990),
scaled-down by 500 times to match the whole network cell numbers, were modeled
as random Poisson inputs with the frequency of 40 Hz (Chavlis et al., 2017, Myers &
Scharfman, 2009), in agreement with experimental data (Hafting et al., 2005). In
previous experimental work, it was shown that 10% of the total 4,000 EC afferents
that each GC receives are active and are needed to discharge it (McNaughton et al.,
1991). With our 400 EC inputs, that would mean each GC receiving only 8 synapses,
which would be insufficient for their activation. For this reason, we used a randomly
determined 10% of the ECs for each GC as input. EC layer II cells are connected to
the HIPP cells with a random probability of 20% (Chavlis et al., 2017, Myers &
Scharfman, 2009).

2.6 The Cornu Ammonis networks
The CA3 and CA1 networks were built similarly for three reasons. First, CA3 and
CA1 have a similar constitution of neuron populations, and in our effort to keep the
whole network simple, we used the same interneuron models. Second, there is not
enough data about the numbers of interneurons in the CA3 region, but there is
excess data for the CA1, so we used the same proportions according to the principal
neuron’s number. Lastly, we experienced the same problem with the intrinsic
connectivity of the CA3, so we used connectivity according to the CA1 region.

So, we will be referring to both of them as CA networks, and wherever there is the
need to point more specific-region details we will be using the specific-region name.
The size of CA3 pyramidals (Hosseini-Sharifabad & Nyengaard, 2007), CA1
pyramidals, and interneurons (Bezaire & Soltesz, 2013) were scaled down to a ratio
of 1:500, but the interneuron’s numbers of each region were multiplied so they would
consist ~20% of the principal cells (Table 3) (Basu & Siegelbaum, 2015; Honoré et
al., 2021). For the connections of the CA networks, we used data from experimental
data (Bezaire et al., 2016; Bezaire & Soltesz, 2013) and scaled it down 35 times to
match the reduced size of our network (Table 4). There are three differences
between the two sub-networks: 1) CA3 pyramidals receive synapses, in the form of
big boutons, from the GCs into their trunk, while CA1 pyramidals receive afferents
from CA3 pyramidals into their oblique and basal dendrites, 2) CA3 pyramidals are
characterized by their extensive recurrent connections (Rebola et al., 2017), while
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CA1 pyramidals were shown to have low rates of recurrent synapses (Owen et al.,
2021; Yang et al., 2014), and 3) CA3 region receive afferent inputs mainly from the
EC layer II, while CA1 region receives afferents from EC III (Andersen et al., 2007).

Table 3. In the first column are the names of the cell types used in our model. The second
column shows the biological measured numbers of these populations (Source: 1) Honore et
al., 2021, 2) Basu & Siegelbaum, 2015), in the third column are the numbers we used in our
CA3 model, and in the fourth column are the numbers we used in our CA1 model.

Neuron’s population

Type Biological
CA3 / CA1

CA3 model CA1 model

PCs 200,0001 / 311,5002 400 623

BCs 5,5302 44 66

BiCs 2,2102 18 26

OLMs 1,6402 12 20

VIPs 1,2502 10 15

Table 4. Connectivity matrix (number of synaptic connections) of the CA model networks.

From/to PCs BCs BICs OLMs VIPs

EC 8 4 25 x 32

CA3 8 345 330 57 143

PC 6 36 31 203 118

BC 5 1 1 x 1

BIC 3 4 4 11 1

OLM 2 2 2 2 1

VIP x 3 x 11 x

We modeled five major neuron groups, pyramidals, which are the principal cells
(PCs), BCs, BiCs, OLMs, and VIPs. These interneurons were chosen because they
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are well studied, and to be more precise, each one of them has a unique attribute.
BCs interfere with the pyramidal’s excitatory inputs via perisomatic inhibition, BiCs
counterbalance the excitatory inputs on the basal and proximal dendrites, whilst
OLMs counterbalance them on the distal dendrites of the pyramidals. VIPs act as the
main disinhibitory mechanism, controlling the IN’s activity. We made schematic
representations for the connectivity pathways of CA3 (fig. 17) and CA1 (fig. 18)
networks.

Figure 17. Schematic representation of the connections of the CA3 model. Excitatory inputs
are represented by the pointy arrows. Inhibitory inputs are represented by the spheres.
Recurrent synapses between the same population are represented by curved arrows.
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Figure 18. Schematic representation of the connections of the CA1 model. Excitatory inputs
are represented by the pointy arrows. Inhibitory inputs are represented by the spheres.
Recurrent synapses between the same population are represented by curved arrows.

2.6.1 CA3 pyramidal cell
CA3 pyramidal neurons are characterized by their bigger pyramid-shaped somata,
compared to the CA1 pyramidals, which are located in sp and sprout basal and
apical dendrites. They have basal dendrites that extend in the whole so, a short
apical trunk in sl that branches into a few more secondary trunks, oblique dendrites
in the sr, and distal dendrites in the sl-m. But across the whole region, CA3
pyramidal neurons differ in their organization and total dendritic length (Andersen et
al., 2007)

For our model, we have built a reduced morphology of the CA3 pyramidal cell using
the diameters of the CA1 pyramidal cells (Benavides-Piccione et al., 2020) with
slightly bigger diameters for the soma and trunks, and CA3 pyramidal cell’s lengths
(fig. 19) (Sun et al., 2017). The model consists of 1) a big spherical soma, which
receives inhibitory inputs from the BCs, 2) a trunk sprouting from the soma, which
receives excitatory inputs from the GCs, 3) a second thinner and longer trunk
continuing from the first one, 4) two oblique dendrites sprouting from the first trunk,
5) two distal dendrites sprouting from the second trunk, which receive excitatory
inputs from the EC layer II and inhibitory inputs from the OLMs, and 6) two basal
dendrites sprouting directly from the soma (fig. 20). The oblique and basal dendrites
receive excitatory synapses from other CA3 pyramidals and inhibitory synapses from
the BiCs (fig. 17).
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Figure 19. Representative morphology from biocytin-based reconstructions of hippocampal
pyramidal neurons. (Adapted from Sun et al., 2017)

Figure 20. A) Representation of the CA3 pyramidal cell model. B) The diameters (Diam_)
and lengths (Len_) of the CA3 pyramidal model’s compartments.
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For the biophysical parameters of our CA3 model, we used the information from
experimental work (Sun et al., 2017) and a database containing information about
the biophysical characteristics of the hippocampal neurons
(http://hippocampome.org/php/index.php). According to equations (25), (2), and
(9), for each compartment the distances and lengths are the same as in Figure 20,
the resting membrane potential (EL) is equal to -72 mV, the axial resistivity (Ra) is
equal to 192 Ω*cm, the input resistance (Rin) is equal to ~203 ΜΩ, the membrane
time constant (τm) is equal to 36 ms, the threshold for action potential initiation (VT) is
equal to -44 mV, the reset value (VR) is equal to -60 mV, the time-constant for the
low-pass filtering of the noise (τnoise) is equal to 5 ms, the noise standard deviation
(σnoise) is equal to 4 pA, the mean (μnoise) is equal to 9 pA, the scale factor (sf) is equal
to 5, and for the adaptation of the soma the maximal subthreshold adaptation
conductance (ḡA) is equal to 1.4 nS, the reversal potential of the adaptation
conductance (EA) is equal to -75 mV, the subthreshold adaptation activation voltage
(VA) is equal to -50 mV, the slope of subthreshold adaptation (ΔΑ) is equal to 5 mV,
the time constant of adaptation (τΑ) is equal to 320 ms, and the quantal conductance
(δgA) is equal to 7.6 nS.

2.6.2 CA1 pyramidal cell
CA1 pyramidal neurons are similar to the CA3 ones, but they have smaller
pyramid-shaped somata, which are located in sp and sprout basal and apical
dendrites. Their dendrites most of the time extend in a roughly conical area. These
pyramidals can be classified into two groups, one which their trunk bifurcates, after it
crossed all the sr, in the sl-m, and one which their trunk bifurcates in the sr. But
across the whole region, CA1 pyramidal neurons differ in their organization and total
dendritic length (Andersen et al., 2007).

For our model, we have built a reduced morphology of the CA1 pyramidal cell using
the diameters from the work of Benavides-Piccione et al. (2019) and lengths from
Figure 19 (Sun et al., 2017). The model consists of 1) a spherical soma, which
receives inhibitory inputs from the BCs, 2) a trunk sprouting from the soma, 3) a
second thinner and longer trunk continuing from the first one, 4) two oblique
dendrites sprouting from the first trunk, 5) two distal dendrites sprouting from the
second trunk, which receive excitatory inputs from the EC layer II and inhibitory
inputs from the OLMs, and 6) two basal dendrites sprouting directly from the soma
(fig. 21). The oblique and basal dendrites receive excitatory synapses from the CA3
pyramidals and inhibitory synapses from the BiCs. Moreover, the basal dendrites
receive collateral synapses from other CA1 pyramidals (fig. 18).

For the biophysical parameters of our CA1 model, we used the information from
experimental work (Masurkar et al., 2020) and a database containing information
about the biophysical characteristics of the hippocampal neurons
(http://hippocampome.org/php/index.php). According to equations (25), (2), and
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(9), for each compartment the distances and lengths are the same as in Figure 21,
the resting membrane potential (EL) is equal to -64 mV, the axial resistivity (Ra) is
equal to 200 Ω*cm, the input resistance (Rin) is equal to ~166 ΜΩ, the membrane
time constant (τm) is equal to 22 ms, the threshold for action potential initiation (VT) is
equal to -44 mV, the reset value (VR) is equal to -50 mV, the time-constant for the
low-pass filtering of the noise (τnoise) is equal to 15 ms, the noise standard deviation
(σnoise) is equal to 3 pA, the mean (μnoise) is equal to 5.5 pA, the scale factor (sf) is
equal to 5, and for the adaptation of the soma the maximal subthreshold adaptation
conductance (ḡA) is equal to 2.2 nS, the reversal potential of the adaptation
conductance (EA) is equal to -69 mV, the subthreshold adaptation activation voltage
(VA) is equal to -52 mV, the slope of subthreshold adaptation (ΔΑ) is equal to 5 mV,
the time constant of adaptation (τΑ) is equal to 170 ms, and the quantal conductance
(δgA) is equal to 3.15 nS.

Figure 21. A) Representation of the CA1 pyramidal cell model. B) The diameters (Diam_)
and lengths (Len_) of the CA1 pyramidal model’s compartments.
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2.6.3 Basket cell
With somata inside or near the borders of the sp layer, fast-spiking PV+ BCs account
for the major category of the CA region’s BCs (fig. 22). They target the somata and
proximal dendrites of the pyramidal neurons, other PV+ BCs, BiCs, and VIPs (
Bezaire & Soltesz, 2013; Booker & Vida, 2018)

Figure 22. Example reconstructions of PV BCs. Soma and dendrites are shown as black,
while the axon is shown as red. All reconstructions are shown with respect to CA1 layers:
Ori, str. oriens; Pyr, str. pyramidale; Rad., str. radiatum; L-M, str. lacunosum-moleculare
(Adapted from Booker & Vida, 2018)

For the biophysical parameters of our CA network's BCs model, we used the
information from experimental work (Papp et al., 2013) and a database containing
information about the biophysical characteristics of the hippocampal neurons
(http://hippocampome.org/php/index.php). According to equations (25), (2), the
resting membrane potential (EL) is equal to -57 mV, the input resistance (Rin) is equal
to ~96 ΜΩ, the membrane capacitance (C) is equal to 105.6 pF, the membrane time
constant (τm) is equal to 11 ms, the threshold for action potential initiation (VT) is
equal to -38 mV, the reset value (VR) is equal to -50 mV, the time-constant for the
low-pass filtering of the noise (τnoise) is equal to 10 ms, the noise standard deviation
(σnoise) is equal to 3 pA, the mean (μnoise) is equal to 5 pA, and for the adaptation of
the soma the maximal subthreshold adaptation conductance (ḡA) is equal to 1 nS,
the reversal potential of the adaptation conductance (EA) is equal to -59 mV, the
subthreshold adaptation activation voltage (VA) is equal to -45 mV, the slope of
subthreshold adaptation (ΔΑ) is equal to -10 mV, the time constant of adaptation (τΑ)
is equal to 165 ms, and the quantal conductance (δgA) is equal to 0.6 nS.
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2.6.4 Bistratified cell
With dendrites across all layers, an axon that ramifies strong within the sr and so,
and a soma located near the sp, the vertical BiC are SST+ and account for 16-25% of
all PV interneurons (fig. 23). Therefore, they inhibit the oblique and basal dendrites
of the pyramidal neurons (Booker & Vida, 2018). They also contact other BiCs, BCs,
VIPs, and OLMs (Bezaire & Soltesz, 2013).

Figure 22. Example reconstruction of PV BiC. Soma and dendrites are shown as black,
while the axon is shown as gray. The reconstruction is shown with respect to CA1 layers:
Ori, str. oriens; Pyr, str. pyramidale; Rad., str. radiatum; L-M, str. lacunosum-moleculare.
(Adapted from Booker & Vida, 2018)

For the biophysical parameters of our CA network's BiCs model, we used the
information from experimental works (Bezaire et al., 2016) and a database
containing information about the biophysical characteristics of the hippocampal
neurons (http://hippocampome.org/php/index.php). According to equations (25),
(2), the resting membrane potential (EL) is equal to -67 mV, the input resistance (Rin)
is equal to ~96 ΜΩ, the membrane capacitance (C) is equal to 100 pF, the
membrane time constant (τm) is equal to 11.6 ms, the threshold for action potential
initiation (VT) is equal to -43 mV, the reset value (VR) is equal to -58 mV, the
time-constant for the low-pass filtering of the noise (τnoise) is equal to 10 ms, the noise
standard deviation (σnoise) is equal to 3 pA, the mean (μnoise) is equal to 5 pA, and for
the adaptation of the soma the maximal subthreshold adaptation conductance (ḡA) is
equal to 0.8 nS, the reversal potential of the adaptation conductance (EA) is equal to
-69 mV, the subthreshold adaptation activation voltage (VA) is equal to -43 mV, the
slope of subthreshold adaptation (ΔΑ) is equal to 5 mV, the time constant of
adaptation (τΑ) is equal to 18 ms, and the quantal conductance (δgA) is equal to 0.6
nS.
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2.6.5 OLM cell
Oriens lacunosum moleculare (OLM) cells are also expressing the neuropeptide
soM. Their somata are located in the so/alveus border, their dendrites usually form
tufts in the alveus, and their axon extends into the sl-m where it ramifies heavily (fig.
23). Hence, OLMs inhibit the distal dendrites of the pyramidal cells (Booker & Vida,
2018). Moreover, they send synapses into other OLMs, BCs, BiCs, and VIPs
(Bezaire & Soltesz, 2013)

Figure 23. Example reconstruction of soM OLM. Soma and dendrites are shown as black,
while the axon is shown as red. The reconstruction is shown with respect to CA1 layers: Ori,
str. oriens; Pyr, str. pyramidale; Rad., str. radiatum; L-M, str. lacunosum-moleculare.
(Adapted from Booker & Vida, 2018)

For the biophysical parameters of our CA network's OLMs model, we used the
information from experimental works (Gloveli et al., 2005; Hilscher et al., 2019) and a
database containing information about the biophysical characteristics of the
hippocampal neurons (http://hippocampome.org/php/index.php). According to
equations (25), (2), the resting membrane potential (EL) is equal to -60 mV, the input
resistance (Rin) is equal to ~333 ΜΩ, the membrane capacitance (C) is equal to 99
pF, the membrane time constant (τm) is equal to 33 ms, the threshold for action
potential initiation (VT) is equal to -46 mV, the reset value (VR) is equal to -50 mV, the
time-constant for the low-pass filtering of the noise (τnoise) is equal to 10 ms, the noise
standard deviation (σnoise) is equal to 3 pA, the mean (μnoise) is equal to 5 pA, and for
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the adaptation of the soma the maximal subthreshold adaptation conductance (ḡA) is
equal to -0.3 nS, the reversal potential of the adaptation conductance (EA) is equal to
-63 mV, the subthreshold adaptation activation voltage (VA) is equal to -48mV, the
slope of subthreshold adaptation (ΔΑ) is equal to 5 mV, the time constant of
adaptation (τΑ) is equal to 80 ms, and the quantal conductance (δgA) is equal to 2.5
nS.

2.6.6 VIP cell
There is a big group of, calretinin (CR) and/or Vasoactive intestinal peptide (VIP)
positive, interneurons whose main role is to inhibit other interneurons instead of
principal cells (interneuron-specific interneurons (IS-INs)). In our model, we
incorporated the IS-IN type III (VIP), which is CR+/VIP+ and innervates mostly, if not
only, other interneurons. Their somata are located in the sp and sr, their dendrites
expand in all layers forming a tuft in sl-m, and their axon ramifies exclusively in the
so (fig. 24) (Booker & Vida, 2018).

Figure 24. IN-specific INs of hippocampal subfield CA1: distribution of CR immunoreactive
IS-INs with respect to the somatodendritic axis (black) and axonal arborization (red). (Source
from Freund & Buzsáki, 1996)
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For the biophysical parameters of our CA network's VIPs model, we used the
information from experimental work (Francavilla et al., 2020) and a database
containing information about the biophysical characteristics of the hippocampal
neurons (http://hippocampome.org/php/index.php). According to equations (25),
(2), the resting membrane potential (EL) is equal to -58.1 mV, the input resistance
(Rin) is equal to ~602 ΜΩ, the membrane capacitance (C) is equal to 50 pF, the
membrane time constant (τm) is equal to 30.12 ms, the threshold for action potential
initiation (VT) is equal to -44.8 mV, the reset value (VR) is equal to -55 mV, the
time-constant for the low-pass filtering of the noise (τnoise) is equal to 10 ms, the noise
standard deviation (σnoise) is equal to 3 pA, the mean (μnoise) is equal to 5 pA, and for
the adaptation of the soma the maximal subthreshold adaptation conductance (ḡA) is
equal to -0.3 nS, the reversal potential of the adaptation conductance (EA) is equal to
-60 mV, the subthreshold adaptation activation voltage (VA) is equal to -50mV, the
slope of subthreshold adaptation (ΔΑ) is equal to 10 mV, the time constant of
adaptation (τΑ) is equal to 37.8 ms, and the quantal conductance (δgA) is equal to 0.9
nS.

2.6.7 The CA1 network
In detail, 623 CA1 pyramidal cells, 66 BCs, 26 BiCs, 20 OLMs, and 15 VIPs are
modeled without a specific topological organization. The CA1 pyramidals send
excitatory synapses to other CA1 pyramidal’s basal dendrites with a probability of
0.48%, to BCs with a probability of 5.6%, to BiCs with a probability of 4.97%, to
OLMs with a probability of 31.8%, and VIPs with a probability of 18.4%. They receive
inhibitory synapses to their somata from BCs with a probability of 4.6%, to their basal
and oblique dendrites from BiCs with a probability of 7.68%, and their distal
dendrites from OLMs with a probability of 10%. For the interconnections between the
interneurons, BCs send synapses to other BCs, BiCs, and VIPs with a probability of
1.5%. BiCs inhibit other BiCs and BCs with a probability of 15.4%, OLMs with a
probability of 42.3%, and VIPs with a probability of 3.84%. OLMs inhibit other OLMs
with a probability of 10%, BiCs, and BCs with a probability of 15%, VIPs with a
probability of 5%. Finally, VIPs inhibit BCs with a probability of 20%, and OLMs with
a probability of 73.3% (Bezaire et al., 2016; Bezaire & Soltesz, 2013).

As for the input of the CA1 network, 400 EC layer III cells, to match the number of
EC layer II cells, were modeled to fire with a rate of 10Hz, in the theta frequency
band (López-Madrona & Canals, 2021). They contact CA1 pyramidal’s distal
dendrites with a probability of 18.5%, BCs with a probability of 0.75%, BiCs with a
probability of 6%, and VIPs with a probability of 7.5% (Bezaire et al., 2016; Bezaire &
Soltesz, 2013).
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2.6.8 The CA3 network
In detail, 400 CA3 pyramidal cells are modeled into 10 lamellae of 40 cells per
lamellae, to match the lamellar organization of the DG. Moreover, 44 BCs, 18 BiCs,
12 OLMs, and 10 VIPs are modeled freely in the space. The CA3 pyramidals contact
other CA3 pyramidal’s basal and oblique dendrites, inside the same cluster with a
probability of 40%, and outside the cluster with a probability of 4% (Myers &
Scharfman, 2011), BCs with a probability of 10%, BiCs with a probability of 8%,
OLMs with a probability of 50%, and VIPs with a probability of 19%. They receive
inhibitory synapses to their somata from BCs with a probability of 10%, to their basal
and oblique dendrites from BiCs with a probability of 40%, and their distal dendrites
from the OLMs that they contact (Maccaferri, 2005). For the interconnections
between the interneurons, BCs send synapses to other BCs with a probability of
1.5%, BiCs with a probability of 3%, and VIPs with a probability of 2.5%. BiCs inhibit
other BiCs and BCs with a probability of 16%, OLMs with a probability of 45%, and
VIPs with a probability of 4%. OLMs inhibit other OLMs with a probability of 10%,
BiCs, and BCs with a probability of 10%, VIPs with a probability of 8%. Finally, VIPs
inhibit BCs with a probability of 20%, and OLMs with a probability of 75% (Bezaire et
al., 2016; Bezaire & Soltesz, 2013).

As for the input of the CA3 network, it uses the same 400 EC layer II cells of the DG
network. They contact CA3 pyramidal’s distal dendrites with a probability of 4%, BCs
with a probability of 1%, BiCs with a probability of 6.5%, and VIPs with a probability
of 8% (Bezaire et al., 2016; Bezaire & Soltesz, 2013).

2.6.9 Networks interconnections
All the networks, except the inputs from the EC layers, connect and form the
trisynaptic circuit. DG sends excitatory synapses, through the MF of GCs to the CA3
region, with one GC contacting only one pyramidal cell, and so five GCs from the
same cluster will contact one pyramidal cell. Moreover, GCs contact CA3 region’s
BCs with a probability of 40%, BiCs with a probability of 2.5%, and OLMs with a
probability of 4%. We incorporated backprojections from CA3 pyramidal neurons to
MCs with a probability of 2% (Maccaferri, 2005), and each pyramidal contacts all the
BCs from the same lamellae that excite it (Myers & Scharfman, 2011).

Afferents from CA3 pyramidals end up in the CA1 network exciting the pyramidal
neurons but promoting the feedforward inhibition through the excitation of the
interneurons. Therefore, CA3 pyramidals contacting the CA1 pyramidals with a
probability of 85.5%, the CA1 BCs with a probability of 84%, the CA1 BiCs with a
probability of 80.25%, the CA1 OLMs with a probability of 13.75%, and CA1 VIPs
with a probability of 34.75% (Bezaire et al., 2016; Bezaire & Soltesz, 2013).
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To model the distances that the signals have to travel, we incorporated synapse
delays. The intraconnections of each network have a synaptic delay of 2.2 ms, while
the interconnections have a synaptic delay of 6.6 ms. Synapses from EC to CA3 and
CA1 have a latency of 5 ms, while EC inputs to DG have a latency of 5.5 ms (Leung
et al., 1995).

2.7 LTP

According to a previous model (Myers & Scharfman, 2011), we modeled synaptic
plasticity into the CA3 pyramidal neurons in the form of spike-timing-dependent
plasticity (STDP) rule of a time window ± 100 ms (fig. 25) (Mishra et al., 2016),
meaning that if there was a presynaptic spike and then during the next 100 ms a
postsynaptic spike or first a postsynaptic spike and then during the next 100 ms a
presynaptic spike, the synaptic strength between them increases. This leads to a
bigger EPSP the next time the cell will receive input from the same source.
Increasing the synaptic weight between pairs of coactive pyramidals and between
coactive EC and pyramidal cells leads to the “storage mode” of the pattern. At the
same time, synaptic strength decreases if these rules are not met.

Figure 25. A broad and symmetric [Ca2+] transient summation curve in CA3 pyramidal
neuron spines. Peak amplitude of [Ca2+] transients during combined pre–postsynaptic or
post–presynaptic stimulation, normalized to that of isolated EPsps, was plotted against
pairing time interval Δt (7 cells total). Red curve, Gaussian function with offset fit to the data
points (best-fit value for offset, 23.7%). Note that the [Ca2+] transient amplitude versus
pairing interval curve was broad and symmetric, similar to the STDP curve. (Adapted from
Mishra et al., 2016)
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3. Results

3.1 Validation of the neurons
To ensure the biological validity of our models we constrained their parameters using
a broad range of mouse anatomical and electrophysiological data For the majority of
modeled neurons, we successfully replicated the same experimental procedures for
the Frequency-Current curves (F-I curves), Voltage-Current curves (V-I curves), or
the Voltage traces after the injection of square current pulses. Furthermore, we
replicated the essential dendritic properties of all principal cells.

3.1.1 Granule cell
For the GCs, we replicated in silico the experimental procedures from Mishra et al.
(2020). For the V-I curve, we injected, at the soma, at resting membrane potential,
square current pulses varying from -50 to +50 pA, with a 10 pA step (1000 ms
duration), and recorded the voltage responses (ΔV) (fig. 26A). To observe the
voltage trace, we injected, to the soma, a square current pulse of 250 pA for 1000
ms (fig. 26B), leading to a frequency of 19 Hz. For the F-I curve, we injected, to the
soma, six square current pulses from 0 pA to 250 pA with a 50 pA step for 1000 ms
(fig. 26C). All these procedures resulted in similar behavior of our model, compared
with the experimental work.

GCs are characterized by their high attenuation, which is important for their sparsely
firing (Krueppel et al., 2011). In our effort to replicate the experimental passive and
active electrophysiological properties, we attained this feature (fig. 27A), however
higher than the experimental (fig. 27B & 27C) (Kim et al., 2018). For example, we
injected a current of +200 pA for 700 ms to the soma and traced the voltage
responses of all the compartments. While all the other compartments felt the first
spike with a time interval of 0.9 - 2.2 ms, from closer to distant compartments, the
distal dendrites did not feel the first action potential of the soma (the first membrane
spike of the distal dendrites was observed 26.5 ms after the first action potential).
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Figure 26. Active properties of GCs. A) V-I curve of a real GC(left) and our modeled GC
(right). B) Voltage trace of a real GC (left) and our GC model (right) in response to somatic
current injection (250 pA for 1 s). C) F-I curves of a real GC (left) and our GC model (right).
(Experimental figures are adapted from Mishra & Narayanan, 2020))
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Figure 27. Attenuation of GCs. A) Backpropagation voltage traces of a GC after somatic
current injection of +200 pA for 700 ms (the red arrows indicate the time of the first
membrane spike, the black arrows indicate the maximum voltage of the spike from the
resting membrane potential). (yellow: voltage trace of the soma, green: voltage trace of the
first trunk (10 μm from the soma), red: voltage trace of the second trunk (30 μm from the
soma), pink: voltage trace of one of the two oblique dendrites (100 μm from the soma),
black: voltage trace of one of the two distal dendrites (200 μm from the soma)). B) Scatter
plot of AP latency as a function of the distance from the soma (56 somatodendritic
recordings) together with a linear regression (dashed line) to compute the average
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conduction velocity of the AP into the dendrites; dendritic AP propagation velocity was 226
mm/ms.C) Scatter plot of the peak amplitude of the backpropagating AP against the
absolute physical distance of the recording site from the soma (56 somatodendritic
recordings). The dashed curve represents a mono-exponential fit to the data points between
0 and 212 μm. (Experimental figures adapted from (Kim et al., 2018))

3.1.2 DG basket cell
For the DG BCs, we used the experimental procedures from the work of Lübke et al.
(1998). For the V-I curve, we performed a current injection of -100 to +220 pA with a
step of 20 pA for 1000 ms, into a resting state BCs (fig. 28A). Due to limitations of
the CAdEx model, while injecting +220 pA into a BC, we achieved the same firing
frequency although the timing of spikes was not identical to the experimental
trace(fig. 28B).

Figure 28. Active electrophysiological properties of DG BCs. A) V-I curve to current
injections of −100 to +220 pA in 20-pA increments. B) Voltage response to +220 pA current
injection. (real BC (left) and our model (right)). (Experimental figures adapted from Lübke et
al., 1998)

58

https://paperpile.com/c/NErQ3R/ddXe6


3.1.3 HIPP cell
The validation of active properties for our HIPP model was based on the work of
Yuan et al. (2017). We first injected a +300 pA square current pulse for 1000 ms into
our HIPP model and observed similar activity with the experimental measurement
(fig. 29A). After that, we injected square current pulses varying from 0 to +500 pA
with 100 pA increments, to examine the max action potential frequency in each
pulse, and found similar activity with real HIPP cells at +500 pA (fig. 29B).

Figure 29. Validation of the active properties of our HIPP model. A) Voltage response at
+300 pA current injection for 1 s. B) Max action potential (AP) frequency at +500 pA (top)
and 0 to +500 pA with a 100 pA step (bottom) current injection. (Top a real HIPP cell and
bottom our model). (Experimental figures adapted from Yuan et al., 2017)

3.1.4 Mossy cell
For our MC model, we used again the work of Lübke et al. (1998). Firstly, we injected
-150 to +100 pA with a 5 pA increment square current pulses for 1000 ms and
observed similar responses to real MCs (fig. 30A). Then, we injected a square
current pulse of +150 pA for 1000 ms into a resting MC. We achieved the same
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number of spikes (3 APs) as in the experimental results, but we experienced the
same limitation of the CAdEx model in our DG BC model, we could not replicate the
late response (fig. 30B). However, the MC model had a similar response to
experimental results with a 1000 pA current injection (fig. 30B).

Figure 30. Validation of active properties for our mossy cell (MC) model. A) V-I curve to
current injections of −100 to +220 pA in 20-pA increments for our model (left) and current
injections of −150 to +150 pA in 50-pA increments and −40 to +40 pA in 10-pA increments
for real MC (right). B) Voltage responses to current injection of +150 pA for real MC (top left)
and our model (bottom left), and to current injection of +1000 pA for real MC (top right) and
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our model (bottom right). The time of each current injection was 1 s. (Experimental figures
adapted from Lübke et al., 1998)

3.1.5 CA basket cell
For our CA BC model, we replicated the experimental procedures from the work of
Papp et al. (2013). We injected square current pulses of +100, +150, +200, and
+600 pA to examine the max action potential frequency in each pulse, and found
similar activity with real BCs at +600 pA (fig. 31A). We traced the voltage responses
to current injections of +200 and +600 pA for 800 ms (fig. 31B). Again, the same
limitation of the CAdEx model was observed. We could not replicate the late
response of APs, which led our model to miss the accumulated APs at the end of the
current injection.

Figure 31. Validation of the active properties of our CA BC model. A) Max action potential
(AP) frequency at +600 pA (top) and +100, +150, +200, and +600 pA (bottom) current
injection. B) Voltage responses to current injection of +200 (top left) and +600 pA (top right),
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for 800 ms. (Top a real CA BC cell and bottom our model). (Experimental figures adapted
from Papp et al., 2013)

3.1.6 Bistratified cell
BiCs have a steep change to their maximum firing rates from their rheobase (fig.
32A). We observed that phenomenon trying to compare the maximum frequency of
our model to real BiCs, using square current injections of 0 to +400 pA with 1 pA
increment. Then, we injected +350 pA current for 1000 ms into a resting BiC and
compared its voltage trace to another model and a real BiC (fig. 32B). For the
comparisons, we used the results from the work of Bezaire et al. (2016).

Figure 32. Validation of the active properties of our BiC model. A) Firing rate of experimental
BiCs (top, indicated by the arrows) and our model (bottom). B) Voltage responses to current
injection of +350 pA for 1 s, of another model (Bezaire et al., 2016) (top left), a real BiC (top
right), and our model (bottom). (Experimental figures adapted from Bezaire et al., 2016)

3.1.7 OLM
For our OLM model, we replicated the experimental procedures from the work of
Gloveli et al. (2005). First, we injected a +300 pA current for 500 ms and observed a
similar bursting at the beginning of the injection (fig. 33A). Then, we evaluated the
max firing rates for current injections of +100 to +600 pA with a 100 pA increment
and got similar results (fig. 33B). Lastly, we made the V-I curve with current
injections of -200 to +40 pA with a 20 pA increment for 800 ms (fig. 33C). For the
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currents -140 pA and more positive we had similar activity, but for more negative
currents than -140 pA, our model reached more negative membrane potentials.

Figure 33. Validation of the active properties of our OLM model. A) Voltage responses to
current injection of +300 pA for 500 ms. B) Max action potential (AP) frequency to current
injections of +100 to +600 pA with a step of 100 pA. C) V-I curve of current injections of −200
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to +40 pA in 20-pA increments. (Left are the results of our model; Right are the results of
experimental OLMs) (Experimental figures adapted from Gloveli et al., 2005)

3.1.8 VIP
We tried to replicate the active properties of our VIP model according to
experimental results for VIP cells from young mice from the work of Francavilla et al.
(2020). First, we injected four currents of 19, 20, 40, and 140 pA to evaluate the
rheobase current and the maximum frequency at 140 pA (fig. 34A). Then, we
injected currents of 20 (rheobase) and 40 pA for 1000 ms to track the voltage traces
(fig. 34B), and we got similar results to experimental.

Figure 34. Validation of the active properties of our VIP model. A) F-I curve for current
injections of +70 and +140 pA (top) and only +140 pA (bottom) (the green arrow indicates
VIP neurons in young mice, while the red bar is for old mice). B) Representative voltage
responses indicating the firing pattern of VIP cells in young mice in response to depolarizing
(+20 pA and +40 pA) current injections corresponding to rheobase and 2x rheobase current,
respectively. Scale bar: 20 pA (Top: our model; Bottom: real VIP) (Experimental figures
adapted from Francavilla et al., 2020)
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3.1.9 CA1 pyramidal cell
Masurkar et al. (2020) showed that CA1 pyramidal neurons have different
electrophysiological properties depending on their position, deep or superficial, in the
CA1 region. We tried to model an average of these properties because we did not
incorporate topological details in our networks. Firstly, we injected +350 pA current
for 1000 ms to get the voltage trace and it looked similar to the experimental one
(fig. 35A). Then, we made a firing frequency-input current (F-I) curve by injecting
currents from +100 to +350 pA with a step of 50 pA and we matched the F-I of the
CA1b deep pyramidals (fig. 35B). Moreover, we validated the NMDA and AMPA
channels to achieve the suprathreshold activity of the dendrites (fig. 36) (Harnett et
al., 2012). For this reason, we simulated excitatory synapses, into the dendrites,
varying from 0 to 25 synapses.

Figure 35. Validation of the active properties of our CA1 pyramidal model. A) Example of
voltage trace by a +350 pA, 1 s current injection. B) Firing frequency-input current (F-I)
curves by giving a range of current injections from +100 to +350 pA with 50 pA increments.
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(Top: our model; Bottom: real CA1 pyramidal cell; In experimental figures with black is the
superficial pyramidal and with blue the deep pyramidal cell) (Experimental figures adapted
from Masurkar et al. 2020)

Figure 36. The effect of NMDARs on signal integration. Expected vs measured EPsp plot for
increasing numbers of synapses under control conditions (black & orange) and without the
NMDARs (grey & blue). The grey dashed lines indicate unity. (Left: experimental; Right: our
model) (Experimental figure adapted from Harnettet al., 2012)

3.1.10 CA3 pyramidal cell
Similar to the CA1 region’s pyramidal cells, Sun et al. (2017) and Sun et al. (2020)
showed that across the transverse (proximodistal) and longitudinal (dorsoventral)
axis of the hippocampus, CA3 pyramidal neurons differed from each other in their
morphology and intrinsic membrane properties. Therefore, we tried to model a CA3
pyramidal neuron using the average of the passive and active biophysical properties.
To compare our model with the experimental results, we injected four different
currents into the somata of resting cells and observed similar behavior, especially the
bursting in the beginning, to mid-CA3 region (CA3b) along the transverse axis (fig.
37A). Then, we injected currents to make a firing frequency-input current curve by
injecting different current amplitudes, and, once again, we observed a similar curve
to CA3b pyramidal neurons (fig. 37B).
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Figure 37. Validation of the active properties of our CA3 pyramidal model. A) Example of
voltage traces by a +200 pA (top subplots), +400 pA (mid subplots), and +800 pA (bottom
subplots), 1 s current injection. B) Firing frequency-input current (F-I) curves by giving a
range of current injections from 0 to 1000 pA with 100-pA increments (top: real CA3
pyramidal cell; bottom: our model (Experimental figures adapted from Sun et al., 2017)

Then, we tried to validate, according to the computational work of Humphries et al.
(2021), the NMDA and AMPA channels so the dendrites could acquire their supra- or
sub-threshold activity (fig. 38). Lastly, we tried to validate the sodium (Na+) spikes of
the dendrites (fig. 39) (Kim et al., 2012) because they are necessary for signal
transmission from the dendrites to soma and backpropagation properties of action
potentials from the soma to dendrites.
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Figure 38. Nonlinearity plots from distal (sl-m) and oblique (sr) dendrites. The amplitude of
NMDA voltage responses for different numbers of synapses. A) sl-m dendrites of the
exemplar model (left) and our model (right). (B) sr dendrites of the exemplar model (left) and
our model (right). (Experimental figures adapted from Humphries et al., 2021)
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Figure 39. Examples of a dendritic spike in CA3 pyramidal neurons (left) and our model
(right). The black arrow indicates the difference of membrane voltage from the spike
threshold (-36 mV) (Experimental figure adapted from Kim et al., 2012)

3.2 Validation of the networks

3.2.1 Pattern separation and pattern completion
After all the validations for the passive and active properties of our neuron models,
the next step was to build the sub-networks (DG, CA3, and CA1) and to validate
them. As the initiator of the trisynaptic circuit, DG was the first network we tried to
assemble. Using 5 different random connectivities and 50 different EC inputs (400
EC cells with only 40 cells active) for each, we saw that our model could be applied
to empirical data from Leutgeb et al. (2007) and model data from Myers and
Scharfman (2009). For each input, we performed 7 trials, with each trial having a
10% different input from the previous one (we changed 4 cells out of the active 40).
Then, to assess pattern separation, we calculated the Hamming distance (HD)
between the original input I0 and one of the trials Ix. HD is a good metric to quantify
the overlap of two output patterns. The HD between two input patterns, Ix and Iy, is
defined as the number of mismatching elements in Ix versus Iy. We calculated the
average HD, normalized as a percent of the total number of elements in each pattern
E, across the entire set of N trials using the equation (26), so we could compare
across pattern sets with different values for E.
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For the DG network’s output, we used the activity of the GCs. We observed a better
pattern separation compared to the model of Myers and Scharfman (2009) (fig. 40).

Figure 40. A) Population responses from dentate GCs in the Myers and Scharfman model
(“Output”) also show reduced correlation for neighboring stimuli, compared with correlations
that exist in the input patterns (“Input”) (Adapted from Myers & Scharfman, 2009). B)
Comparison between input (“Input”) and output (“DG”) of our model. For the output, the dots
are the mean from all 250 simulations and the shadow is the standard deviation

After we saw that our DG model can achieve pattern separation, we moved on to the
CA3 network’s modeling. We used the same references as DG, and we tried to
assess the network’s ability of separation and completion. We used the same EC
inputs and our DG network’s output for each one of these inputs. For the separation,
we used the same protocol as in the DG, but for the pattern completion, instead of
changing the input by 10%, we deleted randomly 10% of the total EC activity in each
trial. Then we calculated the HD of the DG and CA3 output (GCs and CA3
pyramidals activity, respectively) in the same way as before. We even compared the
effect of the presence (backprojection model) to the absence (standard model) of
backprojection in our network. We observed that our CA3 model was able to perform
pattern separation, but not to the same extent as in the experimental data or the
Myers and Scharfman model (fig. 41). However, our model with backprojection
caught the strong decrease in population correlation between the initial input and the
next one with the 10% difference in activity (fig. 41C).

For the completion, we compared the activity of our standard and backprojection
models to Myers and Scharfman model (fig. 42). At the same time, we assessed the
effect of plasticity on the network’s ability of pattern completion. In both standard and
backprojection models, the presence of the LTP improved significantly the ability of
pattern completion (fig. 42B-C). Backprojection improved our network’s ability of
pattern completion, following the Myers and Scharfman model (fig. 43)
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Figure 41. A) In vivo, rodents that were exposed to progressively ‘‘morphed’’ environments 1
to 7, as described in Figure 6, were evaluated with electrodes in CA3 or the DG. CA3
pyramidal neurons showed a smooth decline in population correlation as environments
gradually changed. In contrast, there was a much lower population correlation for presumed
dentate GCs for environments that were similar. (Adapted from Leutgeb et al., 2007) B)
Pattern separation in the standard model, without backprojection. In both Myers and
Scharfman model and our model the population correlation in the first trial is similar between
CA3 and DG, which is inconsistent with the empirical data in A). C) In the backprojection
models, the population correlation for the first trial decreased in DG, similar to empirical data
in A). We had slight differences for the other trials. (B and C top figures are adapted from
Myers and Scharfman, 2011)
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Figure 42. A)The backprojection model is better than the standard model at retrieving
progressively more distorted versions of the inputs. (Adapted from Myers and Scharfman,
2011) B) & C) The presence of plasticity improved the pattern completion in both standard B)
and backprojection C) model.
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Figure 43. Comparison of our model’s ability of pattern completion between different
variations. The presence of plasticity and backprojection improve the pattern completion.
(Blue color: no plasticity and no backprojection; Orange: with plasticity and no
backprojection; Green: no plasticity and with backprojection; Red: with plasticity and with
backprojection) For each comparison, we performed paired t-test with Bonferroni correction.
All the 4-star are for p<<0.0001.

3.2.2 CA1 place cells
After we have built a good representative DG-CA3 model, that can accomplish
pattern separation and pattern completion, we ought to model the CA1 network. We
used the work of Turi et al. (2019) to compare our network’s activity and ability to
form place cells. For that, we simulated inputs from a mouse running in a linear track
for 1 meter with constant speed, using octal of grid-like inputs from EC layer III and
octal from CA3 pyramidal cells (here we did not use our CA3 model as input
because we did not have the information to make EC layer II inputs so that our CA3
model would have grid-like output). We the inputs into a specific group of ~20% of
the total pyramidals (120 cells), and to simulate network noise, we gave the whole
input into a random 20% of the pyramidals. We observed place cells in our network,
so we assessed the role of inhibition on its activity by simulating without (fig. 44) or
with inhibition (fig. 45). The presence of inhibition decreased a lot the activity of
non-place cells, “network noise”, and the offset firings of the place cells. We got
similar results to those of Turi et al. (2019), but not the same image because the
inputs were designed for a smaller network (130 pyramidal cells) (fig. 45)
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Figure 44. CA1 pyramidals activity without inhibition, for the whole network (left) and place
cells (right), normalized.

Figure 44. CA1 pyramidals activity with inhibition, for the whole network (left) and place cells
(right), normalized

Figure 45. CA1PC activity before learning (Adapted from Turi et al., 2019)
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3.2.3 The network
With all these validations done, we combined all three networks, DG, CA3, and CA1.
We used the inputs as described in Methods and run each simulation for 1500 ms.
We observed that despite the randomness and frequency of our inputs for both
DG-CA3 (40 Hz) and CA1 (10 Hz) network, our hippocampus model transformed
them into an activity in the theta (4-8 Hz) frequency band (fig. 46) (Buzsáki, 2002).

Figure 46. The activity of principal cells of our trisynaptic model. We observe theta
oscillatory transformation of the sparse output from DG to a theta-like output from CA3 to
theta oscillations from CA1. (Each dot represents an action potential from a single neuron;
Theta oscillations: ~150 ms between the spikes)
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4. Discussion

We presented a simplified yet biologically accurate model of the hippocampal
circuitry consisting of three different subregions and multiple excitatory and inhibitory
neuronal populations. All model features, ranging from single-cell
electrophysiological properties to network connectivity patterns were constrained
using a broad range of experimental data. For the principal neurons, we developed
reduced compartmental neuron models with active dendrites, whereas INs were
simulated as point neurons for the sake of simplicity. Apart from modeling the
trisynaptic pathway, we also included ‘non-canonical’ synaptic pathways that have
been generally overlooked by the majority of prior modeling studies. Furthermore, we
modeled noise for the membrane potential to mimic the biological variability of the
neurons.

Several hippocampal models are readily available in the literature. Some of them are
quite abstract (e.g., rate models) and do not incorporate biophysical properties or
dendrites (Neher et al., 2015; Pilly et al., 2018; Schapiro et al., 2017)Thus they are
not suitable for studying how subcellular properties contribute to hippocampal
memory functions. Conversely, other modeling approaches utilize models of higher
biophysical complexity (Cutsuridis & Poirazi, 2015) however they are limited by their
small network size and simplistic connectivity. In general, morphologically detailed
models are impractical for large network simulations due to high computational cost
Here comes our simplified, yet biological relevant, hippocampal network model,
which can replicate biological behaviors from a single neuron to the whole network
level, e.g., the F-I curve of the CA1 pyramidal cell and the pattern completion,
respectively. By incorporating many passive properties of the neurons and dendritic
mechanisms, we can study their role in the activity of the network. To summarize, our
innovations were: 1) a data-driven approach that resulted in biological accurate
single-cell properties, network connectivity, and network functions across three
different hippocampal regions, 2) our principal neurons were modeled solely with
phenomenological and event-driven mechanisms (not so detailed as Hodgkey and
Huxley model), though they achieve high biological accuracy, and 3) we have a good
balance between simulation performance and biological realism.

However, we have made abstractions, like not using many ion channels, e.g., CA2+

channels, and reduced population size, so we would have fewer free parameters to
explore and validate, and our simulations could run faster without the need for high
computational power. Nevertheless, we have the flexibility to add or remove specific
neuronal/network parameters. Hence, we have built a hippocampal model that upon
slight modifications, it can be used to answer various scientific questions. We have
already proved that our model can replicate the pattern separation and pattern
completion functions, so we set as our next goal to explore the role of dendritic
mechanisms, i.e., Na+ and NMDA spikes, on signal integration from afferents and
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efferents, and the effect of backpropagation of somatic action potentials. We can
accomplish that by inhibiting one or both local spiking mechanisms, in one or
multiple dendrites. Then, we wanted to assess how and which interneurons control
and affect these behaviors. By removing the synapses of some interneuron groups
to either other interneurons or principal cells, we could observe changes from a
single neuron’s membrane voltage to the whole network’s firing rates.

It must be noted that our model comes with some limitations too. First, reduced
compartmental models cannot compete with morphologically detailed models in
terms of spatial resolution. More specifically, in detailed models, each dendrite
consists of several segments used to ensure numerical simulation stability and allow
more sophisticated and realistic synaptic placement. Second, the absence of
biological information, such as different types of interneurons, may lead the
experiments to miss unique behaviors. Another limitation comes straight from the
neuronal model (CAdEx) we use, i.e., its loss of detailed biophysical explanations,
like the description of a class of inactivating ionic channels (Górski et al., 2021).

With this work, we aim not only to inspire new hypotheses but also to provide the
computational tools to explore them and promote the understanding of hippocampal
memory processes. Some ideas for future research are the role of plasticity in DG
and CA1 or the study of the mechanisms behind brain disorders. By introducing
plasticity rules to GCs and CA1 pyramidal cells, our network model could predict
their contribution to the pattern separation task and the formation of place cells,
respectively. Additionally, we could explore epileptic behaviors by changing the
connectivity between the neurons, the synaptic weights of specific pathways, or even
the number of some neuronal populations. Moreover, as the technology evolves and
the computational systems will be able to handle complex computations more
efficiently, our model could be upgraded with larger neural populations, more types of
interneurons, more dendritic compartments in the principal cells, or even to
incorporate dendrites into the interneurons, leading to a more biologically relevant
model.
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