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Analysis of the Activity Patterns in Focal Cortical
Seizures using the 4-AP model

Abstract

Epilepsy affects about 3% of the worldwide population. It is characterized by
the repeated occurrence of highly synchronized and unprovoked bursts of neuronal
activity, known as seizures. However, our understanding of how neurons interact
to generate the abnormal network activity patterns that underlie ictogenesis is
limited. It is important to understand what changes in the cortical circuit allow
a highly-correlated firing state to emerge, evolve, and recur. To analyse the emer-
gence and spread of focally initiated seizures, we used the 4-aminopyridine (4-AP)
model, a well-established, reliable model of acute focal neocortical seizures. Us-
ing the calcium indicator GCaMP6s with in vivo two-photon cellular microscopy,
we examined the activity profiles of individual neurons in layer 2/3 (L2/3) of the
visual cortex during focal seizures induced by 4-AP injections in mice.

We identified significant activity epochs in this context using two methodolo-
gies: a novel methodology based on the identification of the noise intervals of
the fluorescence signal of each neuron, and another one based on the Recurrence
Quantification Analysis, a powerful tool based on the topological analysis of the
phase space of the underlying dynamics. Their results are consistent in terms of
the presence of significant activity epochs and their duration. These approaches
enable the identification of the onset of events of significant activity, aiming to
dissect the mechanisms of seizure initiation and recruitment of neurons within the
field of view.

We also characterized the functional network connectivity using graph-theoretical
metrics, such as normalized degree of connectivity, clustering coefficient, and
weighted clustering coefficient. To capture the contribution and influence of a
neuron to the connectivity of the network within a larger region, we introduced
the affinity, a belief-propagation-based metric, that integrates the pairwise tempo-
ral correlation of the firing events of neurons in a sub-network. The analysis reveals
the structure of the functional networks after the 4-AP injection, the significant
increase of the temporal correlation of neurons, and the influence of neurons in the
region close to the 4-AP injection. It comparatively examines the findings with
other network architectures, including the functional network of the control (prior
to the injection) as well as random graphs with well-defined structure.





Ανάλυση των μοτίβων δραστηριότητας στις

εστιακές επιληπτικές κρίσεις χρησιμοποιώντας το

4-ΑΡ μοντέλο

Περίληψη

Η επιληψία επηρεάζει περίπου το 3% του παγκόσμιου πληθυσμού. Χαρακτηρίζεται

από την επαναλαμβανόμενη εμφάνιση συγχρονισμένων ξεσπασμάτων της δραστηριότη-

τας των νευρώνων, τις ευρέως γνωστές επιληπτικές κρίσεις. Ωστόσο, η κατανόησή μας

για το πως οι νευρώνες αλληλλεπιδρούν για να παράγουν μη κανονική λειτουργία του

δικτύου που οδηγεί στην επιλεπτογένεση είναι περιορισμένη. Είναι λοιπόν σημαντικό

να καταλάβουμε ποιες αλλαγές στο δίκτυο του εγκεφάλου επιτρέπουν αυτήν την υψη-

λά συσχετιζόμενη δραστηριότητα πυροδοτήσεων να εμφανιστεί, να εξελιχθεί, και να

επαναληφθεί. Για την μελέτη του σχηματισμού και της εξάπλωσης των εστιακών επι-

ληπτικών κρίσεων, χρησιμοποιήθηκε το 4-AP μοντέλο, ένα αξιόπιστο μοντέλο οξείων

εστιακών επιληπτικών κρίσεων του νεοφλοιού. Χρησιμοποιώντας δείκτη ασβεστίου

GCaMP6s σε πειράματα μικροσκοπίας δύο φωτονίων, εξετάστηκε η δραστηριότητα

των επιμέρους νευρώνων του επιπέδου 2/3 του οπτικού φλοιού κατά την διάρκεια ε-

στιακών κρίσεων που προκλήθηκαν από την έγχυση διαλύματος4-AP στον εγκέφαλο

ποντικών.

Χρησιμοποιήθηκαν δύο μεθοδολογίες για την ανίχνευση περιόδων σημαντικής δρα-

στηριότητας: η μια βασιζόμενη στην αναγνώριση διαστημάτων θορύβου στα σήματα

φθορισμού του κάθε νευρώνα, και η λεγόμενη Ανάλυση Ποσοτικής Επαναληψιμότη-

τας (RQA),που αποτελεί ένα ισχυρό εργαλείο που βασιζεται σε τοπολογική ανάλυση

του χώρου φάσεων των υποβόσκουσων δυναμικών για την επαλήθευση των αποτελε-

σμάτων. Και οι δύο μέθοδοι ανιχνεύουν την έναρξη περιόδων σημαντικής δραστηρι-

ότητας, αναδύοντας τους μηχανισμούς της έναρξης των επιληπτικών κρίσεων. Επίσης,

χαρακτηρίστηκε η λειτουργική συνδεσιμότητα του δικτύου χρησιμοποιώντας γραφο-

θεωρητικές μετρικές, όπως ο κανονικοποιημένος βαθμός συνδεσιμότητας (normalized
degree of connectivity), ο συντελεστής συσταδοποίησης (clustering coefficient), αλ-
λά και το affinity , μια μετρική που ενσωματώνει την χρονική συσχέτιση των πυρο-

δοτήσεων των νευρώνων σε ένα υποδίκτυο, για την αξιολόγηση της συνεισφοράς και

της επιρροής των νευρώνων στην συνδεσιμότητα του δικτύου σε μια ευρύτερη περιοχή.

Η ανάλυση της παρούσας εργασίας αποκαλύπτει την δομή των λειτουργικών δικτύων

των νευρώνων μετά την τοπική έγχυση του 4-AP,την σημαντική αύξηση του χρονικού

συσχετισμού των πυροδοτήσεων των νευρώνων, υπογραμμίζοντας την επιρροή τους

σε μια περιοχή κοντά στο σημείο έγχυσης της ουσίας. Επίσης, συγκρίνει τα ευρήματα

με άλλες δικτυακές αρχιτεκτονικές, συμπεριλαμβανομένου του λειτουργικού δικτύου

κάτω από κανονικές συνθήκες (πριν την έγχυση ουσίας που προκαλεί τις κρίσεις),

καθώς και με γράφους που έχουν σαφώς ορισμένη δομή/μορφή.
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Chapter 1

Introduction

Epilepsy affects about 3% of the worldwide population. It is characterized by
the repeated occurrence of highly synchronized and unprovoked bursts of neu-
ronal activity, known as seizures [2]. Brain-injury patients carry high-risk of de-
veloping epilepsy for decades following the injury, causing morbidity [3]. Injury
causing epilepsy typically leads to excitation/inhibition imbalance, which drives
neural circuits into self-perpetuating oscillatory activity-states, feeding the hyper-
synchronous epileptic-bursts seen on cortical-surface EEG [4, 5]. Our knowledge
of how exactly do neurons interact to generate the abnormal network activity pat-
terns that underlie ictogenesis is limited [6]. It is important to understand what
changes in the cortical circuit allow a highly-correlated firing state to emerge,
evolve, and recur after focal-cortical injury.

The large number of people affected by epilepsy outlines the need for more
extensive research for the diagnosis, treatment, and potential prevention of this
neurogenerative disorder. Even though research on human epilepsy should be
ideally based on human patients, various ethical constraints arise, such as the in-
vasiveness of the applied methods and the difficulty to control the conditions under
which measurements are conducted. For this reason animal models of epilepsy are
vital to epilepsy research. Animal models of epilepsy are mostly used to elucidate
the fundamental neuronal mechanisms of brain function (normal and epileptic)
but also for research related to novel therapeutic interventions.

Several models of acute focal neocortical epilepsy have been established in
the past. One of them is the 4-aminopyridine (4-AP) model, a well-established,
reliable model of acute focal neocortical seizures [7, 8, 9, 10, 11, 12, 13], that
has been used successfully in the past to test the potential of various therapeutic
approaches [14, 15] 1. It allows to control and standardize the extent of the focus,

1One possible criticism is that the team could have chosen a more realistic focal epilepsy
model, such as epilepsy in a mouse model of traumatic brain injury [16, 17], stroke [18] or after
hemoglobin or iron injection [19, 20]. These models are undeniably important and they do plan
to study them in the future. However, in order to increase the power of our observations, it is
important to begin our study in an established model where we can control as many variables as
possible.

1
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particularly as the 4-AP spread after temporally restricted application is limited
[21]. Since the 4-AP primarily induces focal hyper-excitability, it provides a way to
directly observe how the resulting excitation/inhibition imbalance emerges around
the cortical focus and how it spreads in cortical circuits in the context of essentially
normal inhibition [22]. This is a difficult task in direct injury models, in which
there is not a priori knowledge of which regions in the highly variable penumbra
of the lesion play the important role in epileptogenesis.

We study focal epileptic seizures at the visual cortex (V1) with simultane-
ous electrocorticography (ECoG) and two-photon imaging microscopy. The visual
cortex was chosen as it allows us to take advantage of existing background knowl-
edge and to directly measure how epileptic circuits respond to provocation by
epileptogenic photic stimulation. Well-established methods can be used to mea-
sure cell gain and contrast response functions of different cell types [23], evaluating
how these properties change in the epileptic state. Observing a deviation in these
properties from normal will strongly suggest the mechanism that underlies cortical
network malfunction. ECoG, a specific type of EEG, combines adequate temporal
and spatial resolution with low risks of medical complications compared to other
invasive methods. This is also a valuable tool as the onset of a seizure is often
characterized by abrupt frequency changes in the EEG.

Objectives In the current thesis, we aim to unravel the neuronal activity
patterns of focal epilepsy initiation and progression. We examine the finer spatio-
temporal dynamics of the ictogenesis process, and micro-phases, including the
order of the recruitment of neurons in the seizures. The analysis follows two
directions: (a) the functional network connectivity characterisation under different
states, using both weighted and unweighted graphs, and metrics, such as degree
of connectivity, clustering coefficient, and belief propagation based activity, and
(b) the detection of significant activity patterns of the fluorescence signals analysis
under epileptic conditions. Fig. 1.1 presents a summary of this analysis.

Innovation To the best of our knowledge is the first study that discusses the
functional network connectivity in the context of 4-AP induced seizures. It is also
the first time Fast Belief Propagation is applied on neural data, and specifically on
weighted graphs, revealing the neurons with the influence on the network during
epileptic conditions. Towards the second direction we developed a novel method of
identification of periods of significant fluorescence activity on neuron and popula-
tion level but also employed Recurrence quantification Analysis (RQA), a powerful
tool based on the topological analysis of the phase space of the underlying dynam-
ics. Finally, we used ranking correlation metrics to assess the recruitment order of
neurons across significant activity epochs and showed that recruitment mechanisms
change over time, as the seizure-like activity contaminates the imaged region.

Contributions Parts of this work have been submitted acknowledged confer-
ences. Our abstract titled “Using RQA to identify the structure of 4-AP induced
seizure events” by T. Asvestopoulou, M. Kampourakis, M. Markaki, J. Lombardo,
G. Palagina, S. Smirnakis, and M. Papadopouli, was submitted and accepted for
presentation at AREADNE 2020 (Research in Encoding And Decoding of Neural
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Figure 1.1: Overview of the main methodology. Two main threads: (a) Functional
connectivity analysis through temporal correlation of the obtained spike trains,
and (b) Identification of significant activity during epileptic seizures using two
different approaches; a novel method based on the noise intervals identification, and
Recurrent Quantification Analysis (RQA), a tool able to understand the underlying
dynamics of a signal.

Ensembles) . Recently (late October 2020), two papers were also submitted for
review at International Conference on Acoustics, Speech and Signal Processing
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(ICASSP) 2021, namely “On Functional Network Connectivity in Focal Neocorti-
cal Seizures using Belief-Propagation Metrics” by T. Asvestopoulou, M. Markaki,
J. Lombardo, S. M. Smirnakis, M. Papadopouli, and “On the Identification and
Characterization of epochs of significant changes in Focal Neocortical Seizures”
by T. Asvestopoulou, G. Tzagkarakis, J. Lombardo, S. M. Smirnakis and M.
Papadopouli. By the completion of the validation process with the rest of the
available datasets, we plan to publish our results in an acknowledged neuroscience
journal.

The rest of the thesis is structured as follows: Section 2 does a literature review
about epilepsy and its characteristics, recording of brain activity, the 4-AP model
and recent related work. Section 3 presents the methods for the analysis described
in Section 5. Finally, Section 6 summarizes of the key results and describes our
future work plans.



Chapter 2

Related Work

This chapter provides an overview of the visual cortex and epilepsy in the brain,
its etiology, and its main clinical characteristics. It also describes the two methods
used for the activity monitoring. First, it describes the two-photon imaging, its
advantages over one-photon imaging, and the main restrictions of the method.
Then, it provides a description of the EEG and ECoG, methods used to record the
electrical signals of the brain and how to study their spectral characteristics. It
also describes some differences between the human and rodent frequencies in the
brain. Finally, it provides a description of the 4-AP model and its characteristics,
and an overview of the most recent 4-AP studies.

2.1 Brain & the primary visual cortex

The human brain is a complex structure. It contains about 100 billion neurons [24]
connected with other neurons through synapses. The majority of these cells are
found in the cerebellum and the neocortex. The cerebellum plays an important role
in motor control, while the neocortex is involved in higher-order brain functions
such as perception, cognition, generation of motor commands, and language [25].

Neocortex is a six-layered, folded, sheet-like structure that consists of billions
of neurons, both excitatory and inhibitory. Inhibitory interneurons modulate the
activity of excitatory pyramidal neurons which transmit information between neu-
ronal assemblies. Appropriate brain function depends on highly interconnected
and well-organized networks of the inhibitory interneurons and excitatory pyrami-
dal neurons in a balanced excitation–inhibition interaction [26, 27, 28]. Imbalance
between these network components can lead to brain malfunction and neurological
diseases, including epilepsy, schizophrenia, and autism-spectrum disorder [29].

The neocortex is divided into regions named after the overlying cranial bones:
the frontal, the parietal, the occipital, and the temporal lobes, which perform
different functions. Visual information is passed from the retina to the lateral
geniculate nucleus (LGN) and from there to the temporal lobe, that contains
primary visual cortex (V1). V1, which also consists of six layers of cells, is the
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primary relay of visual information to the rest of the cortex and serves as a model
area for studying visual representations in the brain. It receives sensory inputs in
layer 4 (L4), processed vertically through the cortical column and laterally within
each layer, and then projected “forward” to higher areas by V1 layers 2/3 (L2/3),
and “backwards” as feedback to lower areas by V1 layers 5/6 (L5/6) [30].

The study of the visual cortex allows to take advantage of existing background
knowledge and to directly measure how circuits respond to provocation by epilep-
togenic stimulation. Well-established methods can be used to measure cell gain
and contrast response functions of different cell types [23], evaluating how these
properties change in the epileptic state. Observing a deviation in these properties
from normal will strongly suggest the mechanism that underlies cortical network
malfunction.

2.2 Epilepsy

Epilepsy is one of the most common neurological disorders affecting about 50 mil-
lion people worldwide (according to the World Health Organization 2019 factsheet
on epilepsy), characterized by the repeated occurrence of highly synchronized and
unprovoked bursts of neuronal activity, known as seizures [2]. It is a diverse disor-
der with several recognized epileptic syndromes [31]. Focal seizures typically start
in confined brain regions and remain restricted to these areas (simple focal seizures)
or spread to other brain regions (secondary generalization). By contrast, general-
ized seizures are characterized by the synchronous bihemispheric onset of epileptic
activity on EEG. The mechanisms leading to these different types of seizures and
epileptic syndromes still need to be clarified [6]. However, recent genetic studies
in patients with epilepsy, and the ongoing investigation of various animal models
of epilepsy, shed light on epileptogenesis (the processes leading to epilepsy) and
ictogenesis (the process of seizure initiation) mechanisms.

Patients with post-traumatic brain injury carry a high risk of epilepsy for
decades following the injury, causing considerable morbidity [3]. Acquired trauma
and other etiologies that cause epilepsy typically lead to imbalance between excita-
tion and inhibition, which drives neural circuits into self-perpetuating oscillatory
activity states, feeding hyper-synchronous epileptic bursts seen on ECoG [4, 5].
Understanding what local cortical control mechanisms can abort the transition
from short, locally “contained”, ictal events, to longer, larger ictal events that
spread across cortical circuits including contralateral cortex is highly relevant to
post-traumatic epilepsy. Cortical malfunction is common in epilepsy syndromes of
traumatic origin [32, 33].

An important question in epilepsy is how single units get recruited in vivo dur-
ing the evolution of seizure events. Specifically, it is not known whether neurons
fire in a stereotyped pattern or sequence per seizure event, whether this happens
reliably, and how it depends on cell type. It is important to determine whether
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special (“gate”) units exist that are reliably engaged, potentially orchestrating cer-
tain patterns, and may therefore play an important role in seizure generation or
propagation. The identification of patterns of neuronal synchronicity (the so called
“functional connectivity” [34]) helps to understand how the interaction between
excitatory neurons and specific classes of inhibitory interneurons, as well as among
sets of neurons forming distinct “sub-networks”, leads to a transition from the nor-
mal (essentially uncorrelated) to the abnormal (highly correlated) cortical-circuit
state, and how this period of hyper-synchrony starts, escalates, and finally ends.
Studying epileptic models in vivo is important, since the full connectivity of epilep-
tic circuits is preserved [35], but still at its infancy. Note that being “functionally
connected” does not necessarily mean that neurons are anatomically connected to
each other. We need to understand what changes in the cortical circuits allow
correlated firing to emerge, evolve, and recur after focal cortical injury. Specif-
ically, we need to understand what is the sequence of recruitment of individual
neurons into epileptic events in vivo, how properties of recruitment change over
time, how recruitment depends on the interaction between excitatory neurons and
specific classes of inhibitory interneurons, and whether recruitment proceeds more
efficiently along some circuit pathways more than others.

2.3 Two-photon imaging

The two-photon microscopy technique is a fluorescence imaging technique, first
introduced by Denk et al. [36] that allows for imaging of living tissue. One major
limitation of this method is the need of a fluorescent specimen. Towards this end,
fluorescent calcium sensors have been developed. A known family of ultrasensitive
protein calcium sensors (GCaMP6) is widely used, as it has been proved that
in layer 2/3 pyramidal neurons of the mouse visual cortex in vivo, it can reliably
detect single action potentials in neuronal somata [37]. It relies on the phenomenon
of two-photon excited fluorescence. Two infrared photons must collide with a
fluorophore (i.e., a fluorescent chemical compound that can re-emit light upon light
excitation) simultaneously. Then, their combined energy excites the fluorophore.
This excitation is similar to excitation caused by a single photon of about half the
wavelength. The fluorophore relaxes back to the ground state, emitting a visible
photon. Because a fluorophore must absorb two photons per excitation event,
fluorescence depends on the square of the infrared light intensity. This non-linear
effect, combined with the sharp focusing of a microscope objective lens, allows
one to excite only a diffraction-limited spot within the specimen [38]. Compared
to one-photon imaging, it provides several advantages: It dramatically reduces
phototoxicity and dye bleaching, resulting to enhanced signal-to-noise ratio. It
also makes possible to reach greater imaging depths [38].
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2.4 Electrical signals in the brain and epilepsy

Our brain is the central control and processing unit. The neural activity of the
brain uses action potentials by which the brain activity can be recorded by means
of electrodes, such as in electroencephalogram (EEG). The analysis of the spectral
properties of the EEG is an important aspect of understanding the signal. Specif-
ically, the absence or presence of waves (and or spikes) in specific frequency bands
is very useful for diagnostic purposes and the identification of several medical
conditions.

The more typical frequency bands are the delta (δ), theta (θ), alpha (α), and
beta (β) waves. Let us define them in more detail, from lower to higher frequencies.

Delta waves lie within the range 0.5 to 4 Hz and are associated with deep sleep.
They can also be present in the waking state.

Theta band ranges from 4 to 7.5 Hz. These waves have been associated with
access to unconscious material, creative inspiration and deep meditation. The
name of this category is sometimes related to the physiological origin of these
waves, the thalamus.

Alpha waves follow, ranging from 8 to 13 Hz. They appear in the posterior
half of the head and are usually found over the occipital region of the brain and
can be detected in all parts of brain posterior lobes. The alpha waves are the most
prominent of the brain activity waves.

Beta waves lie within the range 13 to 26 Hz (however, in some references no
upper bound is given). Beta waves are related to the waking state of the brain and
associated with active thinking and paying attention, as well as problem solving,
and is found in normal adults.

Frequencies above 30 Hz correspond to the gamma (γ) band. Even though
these waves have very low amplitude and they rarely appear, detecting them can
be used for confirmation of certain conditions of the brain.

In the literature these aforementioned frequency bands are more or less the
same, but there may be some small variations of their limits. For example, Moffett
et al. [39] also talked about expanding the “tranditional” frequency bands and
introduced psi (ψ) band (260-280 Hz) and omega (ω) band that covers frequencies
from 400 to 500 Hz. Also, Pizarro et al. [40] are using in their analysis a slightly
different definition of the usual bands ( delta (1 – 4 Hz), theta (4 – 8 Hz), alpha
(8 – 13 Hz), beta (13 – 30 Hz) ) and use some additional bands of lower ( slow
delta (0.1 – 1 Hz) ) but also higher frequencies up to 500 Hz( (gamma (30 – 70
Hz), high gamma (70 – 120Hz), ripples (120 – 250 Hz), and fast ripples (250–50
0Hz) ).

As research evolves, differences between the human and rodent brain activity
are revealed: Jing et al. [41] observed that rats have an overall faster frequency
(∼ 21 Hz posteriorly and 16 Hz anteriorly) than humans. Watrous et al. [42]
mentioned that theta band in rodents (6-10 Hz) is different from human theta
(4-7 Hz) and faster. Also, according to Maheshwari and Noebels [43] models of
absence epilepsy in rodents are usually characterized by generalized spike-and-wave
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discharges occurring at a rate from 5 to 9 Hz, which is much faster than the 3 Hz
discharges of human patients with childhood absence epilepsy. High frequency
bands (>80 Hz) analysis in rodent temporal lobe epilepsy models revealed that
fast ripples (250-500 Hz) may be an indication of epilepsy, prior to the seizure
activity (Lévesque and Avoli [44]).

Often the onset of a seizure is characterized by sudden frequency changes in
the EEG. These changes lie usually within the alpha band (increase in amplitude
during the seizure period). The transition from normal to ictal state for focal
epileptic seizures constitutes of gradual changes and signal is transformed from
chaotic to more ordered form. There is not a correlation of the EEG spikes to the
severity of the seizure [45].

A special type of EEG is the electrocorticography (ECoG), which combines
adequate temporal and spatial resolution with low risks of medical complications
compared to other invasive methods. It is a neurophysiological technique used
mostly in the operating room and records the same type of potentials as the scalp
EEG. While ECoG resembles EEG recordings [46], it has greater amplitude (less
attenuation of the signal as it is directly recorded from the brain surface), higher
spatial resolution and broader frequency range [47]. ECoG is considered superior
to EEG for monitoring cortical low-frequency oscillations [48] and high-frequency
activity specifically in gamma range [47].

2.5 4-AP model of acute focal epilepsy

The 4-aminopyridine (4-AP) model is a well-established, reliable, model of acute
focal neocortical seizures [7, 8, 9, 10, 11, 12, 13], that has been used successfully
in the past to test the potential of various therapeutic approaches [14, 15]. It
allows to control and standardize the extent of the focus (particularly as the 4-AP
spread after temporally restricted application is limited [21]). Since 4-AP primarily
induces focal hyper-excitability without immediate cell death or inflammation, it
allows us to observe directly how the resulting excitation/inhibition imbalance
emerges around the cortical focus and spreads in cortical circuits in the context
of essentially normal inhibition. This is difficult to do in direct injury models, in
which we do not know a priori which regions in the highly variable penumbra of
the lesion play the important role in epileptogenesis.

More specifically, 4-aminopyridine (4-AP) is a specific blocker of transient
potassium channels. It affects transient currents containing voltage-activated K+

(Kv) 1.3 and 1.4 sub-units at low concentrations. 4-AP usually induces recur-
rent discharges in the rat hippocampus. Specifically, it elicits seizure-like events
in parahippocampal structures [49] but also in the amygdala [50]. In interface
recordings, the activity begins about 40 minutes after application of 50 or 100mM
4-AP [51].
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2.6 4-AP model analysis related work

Over the last years several studies are focusing on 4-AP model of acute focal
seizures and its properties. Rossi et al. [52] studied picrotoxin induced focal
seizures in V1 of awake mice, and compared their propagation to the retinotopic
organization of V1 and higher visual areas through simultaneous LFP recordings
and wide-field imaging on transgenic mice expressing GCaMP in excitatory neu-
rons. They categorised the epileptic-like activity of LFP measurements based on
their shape and duration to seizures and interictal events. The events manifested
different temporal and spectral features; The median reported seizure duration
is 8.6 sec, while interictal events were much briefer with 0.5 sec median. Inter-
ictal events were characterized by a sharp decrease lasting 50-100 ms, opposed
to seizures that were similar in terms of their onset, but were followed by rapid
increase of activity and increased power in the range between 6 and 30 Hz. The
majority of the events started in V1, close to injection site. Seizures propagated
both locally but also to more distant homotopic (i.e., with matching retinotopic
preference) areas, and eventually contaminated the entire visual cortex. There-
fore, the seizure invasion does not only depend linearly on the cortical distance
from the focus but also on homotopy (distance in visual preference). They try to
approximate the spread in V1 with a gaussian function using the distace from the
focus.

Wenzel et al. [53] combined local field potential (LFP) and two-photon imaging
to investigate at single-cell level the spread of locally induced (4-AP or picrotoxin)
seizures in anesthetized and awake mice. Most experiments in this study involved
imaging of somatosensory cortex (layer 2/3). However, they also performed exper-
iments where they imaged in visual cortex with consistent results. They were able
to record the activity of different cortical layers and reported a reliable recruitment
of local neural populations within and across cortical layers, along with the layer-
specific temporal delays. Ictal events of layer 2/3 after the 4-AP injection involved
continuous firing of a lot of neurons in a wave-fashion that slowly propagated
across the FoV, opposed to the sparse firing in the absence of any injection and
epileptic-like activity. Their analyses showed relatively stable recruitment ordering
to subsequent seizures implying that seizures propagate in a spatially organized
manner. However, the absolute ictal network recruitment ordering varied a lot in
time. There is temporal variability across events, revealing an ictal network that
stretches and compresses in time. Specifically, 4-AP induced seizures lasted 71 ±
7.1 sec.

In a follow-up study [54] they emphasized on 4-AP induced seizures in two
spatially separated areas: the so-called initiation area (area of chemoconvulsant
injection) and the propagation area (1.5-2 mm farther away). They reported that
seizures originate within the initiation site and spread into farther away regions
in a saltatory fashion. They demonstrated differences in the propagation patterns
of seizures within the different areas. Specifically, within the propagation area
seizure invasion occurs in a continuous wave of neuronal firing advancing slowly
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across the FoV, while in the initiation site the invasion resembles a step-wise func-
tion. Moreover, they show a conserved spatial patterns of relative cell recruitment
across seizures by ordering cell points based on time of recruitment (from early
to late) and combined this information with the location of the cells. However,
their patterns refer to a somehow crude clustering of neurons to 4 temporal quar-
tiles. They also studied the interneurons’ activity and found that they were among
the neurons displaying the strongest calcium activity during the 40-second time
period prior to the electrographic seizure onset. Also, interneurons manifest spa-
tially heterogeneous recruitment patterns within epileptic networks. On average
they increase their firing during ictal transition.

In a more recent study, Aeed et al. [55] used the 4-AP model of epilepsy
with 2-photon calcium imaging and extracellular electrophysiological recordings
on different types of neurons and different layers. They characterized epileptic-like
discharges in the LFP in two categories: spikes (discharges with duration less than
0.5 seconds) and seizures (duration of at least 5 seconds). After the identification
of these discharges they performed analysis on small windows around the onset in
the ∆f/f of individual neurons and examined the pairwise Pearson correlation of
neurons’ signals in these small windows around the (seizure/spike) onset. They
report that the identified seizures lasted 74.4 ± 5.5 seconds and involved all the
imaged cortical layers. Almost all the recorded seizures were accompanied by
hyper-synchronous ictal onset patterns, with rhythmic high amplitude delta fre-
quency components. They observed that both spikes and seizures involved rapid
and synchronized activation of the recorded pyramidal neurons of layer 2/3. More-
over, these events were accompanied by recruitment of almost all the recorded PV-
expressing interneurons. They hypothesize that PV-expressing interneurons fail to
fully respond to the organized and intense activation of pyramidal neurons, lead-
ing to imbalance of excitatory to inhibitory activity in the cortex, which is what
leads to seizures. Layer 4 neurons are synchronously recruited during the onset
of events (in a similar way with layer 2/3). However, this layer does not develop
transient excitatory to inhibitory imbalance at the onset of seizures. Opposing to
layer 2/3, layer 5 pyramidal neurons were gradually and asynchronously recruited
into seizures. They also used picrotoxin induced seizures (a different chemocon-
vulsant). Similar to 4-AP results, layer 2/3 initiated the epileptiform discharges
and these only partially spread and reached layer 5 pyramidal cells.
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Chapter 3

Background

This chapter provides the required background knowledge to understand the anal-
ysis of the next chapter. At first, the basics of the graph theory are described,
which will make easier the understanding of the functional connectivity analysis.
Then, we provide the basics of the spectral analysis that will be used to study the
frequency components of the ECoG signals. A short description of the Spearman’s
rank coefficient follows, as it is used to assess whether the order of neurons’ re-
cruitment persists across recognized events. Then, two different variations of the
Spike Time Tiling Coefficient, a measure that quantifies the temporal correlation
of spike trains, are described. Finally, Recurrent Quantification Analysis, a tool
based on the topological analysis of the phase space of the underlying dynamics
of signals.

3.1 Graph Theory

Geometrically, a graph is defined as a set of points (vertices) in space connected
with each other by a set of lines (edges). Mathematically, a graph G = (V,E)
consists of a set of nodes V and a set of edges E. An edge is specified by the
vertices (or nodes) that it connects. If e is between vi and vj then eij = (vi, vj)
or eji = (vj , vi). If a vertex v is connected with another vertex through an edge
e, then we say that e is incident with v. Also if u and v are vertices connected to
each other (there is an edge between them), then u is considered adjacent to v.

The degree of a vertex v, denoted by d(v) is the number of edges that include
vertex v. A path from v1 to vi, is a sequence edges that connect these two vertices.
If v1=vi, then a cycle path exists in the graph. In a simple graph a path can be
simply described by the sequence of vertices. If a vertex exists only once in a path
, then the followed sequence is called a simple path. If each vertex appears once,
then the path is called simple circuit. The length of a path is the number of edges
it contains.

Two vertices vi and vj are connected if there is an edge from vi to vj . The
vertex set of a graph can be divided to subsets of vertices V1, V2,..., Vk based on the
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connections between vertices. A pair of vertices is connected if and only if they
belong to the same subset of the vertex set partition. The sub-graphs induced
in turn by the subsets V1, V2,..., Vk are called the components of the graph. A
connected graph has only one component, otherwise it is disconnected.

In some applications we may need to provide a direction to each edge, which is
presented with an arrow when we draw the graph. A graph with directed edges is
called a directed graph or a digraph. If e is an edge of a digraph then the order of
vi and vj becomes significant. The edge is be directed from the first vertex vi to
the second vertex vj . Thus, if a digraph contains the edge (vi, vj) then it may or
it may not contain the edge (vj , vi). For a vertex v, the out-degree d+(v) and the
in-degree d−(v) are the number of edges starting from v and the number of edges
ending up to v, respectively. A symmetric directed graph is a digraph in which for
every edge (vi, vj) there is an edge (vj , vi). We call a digraph balanced if d+(v) =
d−(v) for every vertex v. Additional to the directed graphs, weighted graphs are
very useful in some applications. To create a weighted graph a number (weight)
w(e) is assigned to each edge. [56]

Clustering coefficient is a measure of the degree to which nodes in a graph tend to
group (cluster) together. This metric comes in two variations: the global and the
local clustering coefficient. The global was designed to characterise the clustering
of the entire graph, whereas the local refers to the connectivity of individual nodes
of the graph.

A. Global clustering coefficient The global clustering coefficient is based on
node triplets, i.e. three connected nodes. Three closed triplets, one centered on
each of the nodes, create triangles. The global clustering coefficient is the number
of closed triplets over the total number of all possible triplets. This can be applied
to both undirected and directed networks and measures the clustering of the whole
graph (global).

B. Local clustering coefficient As described earlier, a graph G = (V,E) consists
of a set of vertices V and a set of edges E that connect them. A vertex vi is
connected through edge eij with vertex vj . The immediately connected neighbors
of a vertex vi constitute a neighborhood Ni :

Ni = {vj : eij ∈ E or eji ∈ E}. (3.1)

We define ki = |Ni| as the number of vertices in the neighbourhood, Ni. The local
clustering coefficient Ci of a vertex vi is defined as the proportion of connections
between the immediately connected neighbors divided by the number of all the
available connections that could exist between them. For a directed graph, for
each neighborhood there are ki(ki − 1) possible pairwise connections between the
vertices. Thus, the local clustering coefficient for directed graphs is given as

Ci =
|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
. (3.2)
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For an undirected graph ki(ki−1)
2 edges could exist between the vertices of a neigh-

borhood. Thus, the local clustering coefficient for undirected graphs can be defined
as

Ci =
2|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
. (3.3)

The clustering coefficient ranges from 0 (if there is not any connection between
the neighbors) to 1 (if all the neighbors are connected to each other within the
neighborhood).

Affinity metric The Belief-Propagation (BP), an efficient inference algorithm on
probabilistic graphical models, has been successfully applied to numerous domains,
including error-correcting codes, stereo imaging in computer vision, fraud detec-
tion, and malware detection ([57] and references therein). It uses the principle
of “homophily”, i.e., the general assumption that neighbors influence each other.
Indirectly, the affinity enables us to cluster the nodes in an unsupervised manner,
by identifying their membership in a class/subnetwork.

To measure node affinity, i.e. influence of node i to node j, we calculate the
affinity matrix S [57].

S = [sij ] = [I + ε2D− εA]−1 (3.4)

where:
sij : the affinity of node j w.r.t. node i.
I: n× n identity matrix,
A: n× n adjacency matrix with elements aij ,
D: n× n diagonal degree matrix, dii =

∑
j aij

ε: 1/(1 +maxi(dii)) positive constant (< 1) encoding the influence between neigh-
bors.

The sij entry of the matrix indicates the influence node i has on node j and
depends on all the r-step paths that connect nodes i and j. Intuitively, node i has
more influence/affinity to node j if there are many, short, heavily weighted paths
from node i to j.

Graph models with known properties

Erdös-Rényi (ER) model [58] is one of the first model networks and corre-
sponds to a random graph. This random graph model is characterized by the
number of vertices and the probability of edge existence between two randomly
selected vertices. Each of the vertices pairs get connected with the same proba-
bility independently from other pairs. The Erdös-Rényi model became acceptable
because its properties ease the network modeling.

Watts-Strogatz (WS) is also a random graph model. These graphs do have the
small-world property, i.e. small average shortest path length and high clustering
coefficient. Watts and Strogatz [59] created this category of graphs using inter-
polation of regular lattice with high clustering coefficient and random graph with



16 CHAPTER 3. BACKGROUND

the small-world property. These graphs start from a ring lattice with each vertex
having a degree k and with probability p to relocate. In this way, small values of
p are sufficient to significantly reduce the shortest path length, while the cluster-
ing coefficient remains high. A graph has a small-world property when it has a
high clustering coefficient and a small characteristic path length. High clustering
coefficient values typically result in a high number of cliques and near-cliques, in
other words they create sub-networks consisting of edges between all or almost all
vertices. Small characteristic path length corresponds to easily reached vertices
[60]. If L is the path length then it is considered small if L ∝ logN , where N is
the number of vertices of the graph.

3.2 Spectral Analysis

The analysis of a signal is a fundamental problem of engineering and is essentially
the process by which we obtain a better understanding of it and its characteristics.
Examining the behaviour of a signal as time passes is one way of looking at a
signal, known as time domain analysis. However, in many applications there are
advantages in studying the behaviour of a signal with respect to frequency rather
than time. This is known as frequency domain analysis. A frequency domain
representation of a signal can take several forms, ranging from simple plots of
amplitude or phase against frequency to more complex representations, such as
modal response diagrams.

It is easy to convert a signal from time to the frequency domain with a pair of
operators called transforms. The French mathematician Fourier introduced the so-
called Fourier transform (FT), which is based on the assumption that any periodic
waveform is equivalent to the sum of a number of sinusoids. By selecting the right
amplitudes, frequencies and phases any periodic waveform may be synthesized.
Each sinusoid used symbolizes a frequency component of the initial signal.

For a given signal x(t) the Fourier transform is a useful tool in order to study its
properties in the frequency domain. It is is calculated with the following formula
(assuming that the signal x(t) is continuous in time, i.e., ranging from −∞ to∞):

X(f) =

∫ ∞
−∞

x(t)e−j2πft dt (3.5)

X(f) contains the values of this Fourier transformation and is also called the
voltage density spectrum (in case of an electrical signal, such as the ECoG). Its
units then will be Volts × sec.

Sometimes the description of a process through the FT is possible. This is why
we use another metric of the frequency domain, the power spectral density (PSD).

First, we need to calculate the power PXX of the signal x(t):

PXX = lim
T→∞

1

2T

∫ T

−T
E[X2(t)] dt =

∫ ∞
−∞

lim
T→∞

E[XT (f)2]

2T
df (3.6)
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The power spectral density (PSD) can be defined as:

SXX(f) = lim
T→∞

E[XT (f)2]

2T
(3.7)

SXX(f) has units of Watt
Hz as this quantity multiplied with df in equation 3.2

(measured in Hz, as it represents frequency) will give us Watts, which is the unit
of the estimated power PXX. Based on that, the mean power of the signal can be
estimated by the integral:

PXX =

∫ ∞
−∞

SXX(f) df (3.8)

From this we understand that the power spectral density describes the distribution
of the signal’s power in frequency domain.

This is the straight-forward way to calculate the PSD of a signal. However,
we can calculate it using an intermediate step: by taking the FT of the auto-
correlation of the signal.

All the above were based on the assumption of a signal recorded continuously
in the history of time. In real life we usually have to estimate the PSD of a
signal through a finite number of samples. This sets limitations to the quality of
estimation of the PSD.

When a signal is statistically stable, the larger the sample size, the better the
achieved estimation. But if the signal is not stable, it is not easy to select how big
the sample needs to be to obtain a good estimation of its PSD. The quality of the
estimation depends on how fast the variations of a signal are. So the target is to
choose as less samples as possible that allow us to make a good estimation of the
spectral.

Estimation power spectral of random signals: The periodogram
Signals of finite energy do have a FT and can be characterized in the frequency do-
main with use of their energy spectral density. On the contrary, signals of random
processes do not have finite energy and therefore do not have FT. Such signals, do
have finite mean power and therefore can be characterized from their PSD. [61]
The real value of the PSD is the value of SXX when T→∞ (equation 3.2). When
finite number of samples are available to estimate the mean value by summing
from 0 to N − 1 lead to the transformed formula:

1

N
|
N−1∑
n=0

x(n)e−j2πfn| = 1

N
|X(f)|2 (3.9)

with X(f) the FT of x(n) , which results from sampling from the x(t). This form
of estimation of spectral density is called periodogram.

Several methods have been proposed for the estimation of the periodogram,
but Bartlett’s [62] and Welch’s [63] are the more commonly used. Both methods
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do not make any assumptions about the signal and for this reason they are called
non-parametric methods of PSD estimation. The Bartlett method aims to achieve
variance reduction of the estimated periodogram. It splits the signal into non-
overlapping windows of equal size, and then calculates the periodogram for each
of these windows. The average of the windows’ periodograms is the PSD estimate.
The Welch method modifies the Bartlett method in two ways. It allows overlapping
windows of the same size and applies a window function on the samples of each
window.

Factors affecting PSD estimation. In case of using the periodogram itself
(which considers the entire signal as one window, with use of rectangular window-
ing function) the number of points used for the FT calculation (DFT points N)
determines the frequency resolution (i.e., how many Hz each DFT bin represents)
of the spectrum based on the sampling frequency (freq resolution = Fs/N). A
usually followed convention is to set N equal to the power of two that is next above
the length of the signal. It is recommended not to set this parameter smaller than
the signal length because the FT will only utilize the first N samples of the data
to estimate PSD and eliminate the rest. In case of using windowing methods we
have to be aware of the window function and length, the percentage of window
overlapping, and the number of DFT points. Smaller window sizes increase the to-
tal number of windows the signal will be split into which results in turn to smooth
PSD estimates because the random effects of noise will be averaged out. However,
too small windows are compromising the frequency resolution. By increasing the
overlapping of consecutive windows (for a given window size), the total number
of windows to be considered is increased, which averages noise out. As for the
number of DFT points it is recommended to be set equal to the window length.

3.3 Spearman’s rank correlation

Spearman’s rank test is a non-parametric method (not making any assumption
about the underlying distribution of the data that are tested) that is used to
measure the correlation of two variables X and Y . Instead of using the exact
values of the variables, the data are ranked (i.e., ordered according to their values)
from 1 to N , where N corresponds to the number of elements the variables. If X
and Y are ranked in such a manner, the Spearman’s rank correlation coefficient,
is given by

rS = 1− 6
∑
D2

N(N2 − 1)
(3.10)

where D denotes the differences between the ranks of corresponding values of X
and Y , and where N is the number of pairs of values (X,Y ) in the data.

It provides a measure of linear association between the ranks of the variables
and its values range from −1 to 1. If rS is fairly large and positive, then there is
positive agreement between the ranks of the two variables. If rS is close to -1, then,
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when one variable has a high rank, the other one tends to have a low rank, and
vice versa. Also, when rS is near zero, the ranks of the two variables are almost
independent [64].

3.4 Spike time tiling coefficient (STTC)

Towards the estimation of the temporal correlation among time-series of the firing
events of neurons we need to be careful to take into consideration of the special
features of spike trains. For relatively long time-series, Spike Time Tiling Coef-
ficient (STTC) [1] is superior to commonly used measures, including Pearson, as
it accounts for relative time shifts, local fluctuations of neural activity or noise,
and the presence of periods without firing events. We also developed an advanced
version of STTC that can integrate order (directionality).

To quantify the degree of correlation between firing events of two neurons A
and B we used a modified version of the spike time tiling coefficient (STTC) [1]
which was originally defined as:

STTCA,B =
1

2
(

PA − TB

1− PATB
+

PB − TA

1− PBTA
) (3.11)

where TA the proportion of the recording duration within an interval ∆t around
each firing event of neuron A, PA the proportion of firing events of neuron A found
within an interval ∆t around each firing event of neuron B, and likewise for TB

and PB. This correlation index is robust against varying firing rates and has only
one free parameter, the time window ∆t.

To incorporate the temporal order of the firing events of two neurons A and
B, we developed the directional STTC:

STTCA,B =
1

2
(

PB
−

A − TB−

1− PB
−

A TB−
+

PA
+

B − TA+

1− PA
+

B TA+

) (3.12)

where TA+ is the fraction of the total recording duration within a time window ∆t
after each spike of A TB- is the fraction of the total recording duration within a
time window ∆t before each spike of B, PA

B-
is the proportion of firing events of

A within a time window ∆t before each firing of B, and PA+
B is the proportion of

firing events of B within a time window ∆t after each firing event of A. The direc-
tional STTC retains the desirable properties of the original STTC, while providing
information on the temporal direction of correlation between two neurons. The
directional STTC that excludes the synchronous spikes is called strictly directional
STTC.

We chose to evaluate the STTC between neurons in our datasets with two
different values for ∆t based on physiological considerations: 0, 0.208 seconds.
Specifically, we consider the synchronous firing of spike trains, as well as the strictly
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directional firing with lag of one frame (0.208 seconds). In the first case the extent
of synchronicity of neuronal firing is examined, while in the case of the strictly
directional STTC we aim to study the diffusion of spikes in the neurons of the
FoV.

To evaluate the extend to which the observed STTC values could arise by se-
quences with the same number of firing events without any temporal structure,
we circularly shifted the firing events of each neuron A by a uniformly sampled
integer number of imaging frames within the interval [1,nframes] 500 times inde-
pendently, where nframes is the total number of imaging frames. From these 500
iterations we obtained a null distribution of STTC values for each pair of neurons.
The z − score of each edge between neurons A and B is defined as

zA,B =
STTCobs

A,B − STTCnull
A,B

σnullA,B

(3.13)

The z−score quantifies the distance of the observed STTC value, STTCobsA,B , from

the mean of the null STTC distribution, STTCnull
A,B which should be close to 0, in

units of standard deviations of the null STTC distribution, σnullA,B. High z − score
values correspond to statistically significant observed STTC values, i.e. temporal
relationship that happens above chance.

3.5 Recurrent Quantification Analysis (RQA)

First, we give a brief overview of the global recurrence plot (RP), which is a key
component of our proposed data analysis pipeline. More specifically, a RP is a
square matrix whose elements express the times at which a state of a dynamical
system recurs, thus revealing all the times when the phase space trajectory of the
dynamical system visits roughly the same area in the phase space. To this end,
RPs enable the investigation of an m-dimensional phase space trajectory through
a two-dimensional representation of its recurrences. Such recurrence of a state
occurring at time i, at a different time j is represented within a two-dimensional
square matrix with ones (recurrence) and zeros (non-recurrence), where both axes
are time axes.

Global recurrence plot (RP) of signal s. Given a signal s of length N , {ri}Ni=1,
a phase space trajectory is reconstructed via time-delay embedding,

xi = [ri, ri+τ , . . . , ri+(m−1)τ ] , i = 1, . . . , Ns (3.14)

where m is the embedding dimension, τ is the delay, and Ns = N − (m − 1)τ is
the number of states. Having constructed a phase space representation, the RP is
defined by

Ri,j = Θ (ε− |xi − xj |p) , i, j = 1, . . . , Ns , (3.15)
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Figure 3.1: Diagram to demonstrate the calculation of the spike time tiling coef-
ficient. The four quantities required to calculate the spike time tiling coefficient
are PA, PB, TA, TB. The only free parameter is ∆t. Values and scales are for
demonstration only. Plot adopted from Cutts et al. [1].

where xi,xj ∈ R m are the states, ε is threshold, | · |p denotes a general `p norm
(Euclidean distance (p = 2) is commonly used), and Θ(·) is the Heaviside step
function, whose discrete form is defined by

Θ(n) =

{
1, if n ≥ 0

0, if n < 0
, n ∈ R . (3.16)

The resulting matrix R exhibits always a main diagonal, Ri,i = 1, i = 1, . . . , N ,
also known as the line of identity (LOI). Typically, several linear (and/or curvi-
linear) structures appear in RPs, which give hints about the time evolution of the
high-dimensional phase space trajectories. Besides, a major advantage of RPs is
that they can also be applied to rather short and even non-stationary data. Since
we are interested in detecting precisely the onset and offset times of events in the
associated sequence t, a global RP can enhance the understanding of the phase
space trajectories and detect phase synchronous dynamics even when two distinct
states of r do not converge.
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Figure 3.2: Recurrent Quantification Analysis pipeline for the detection of state
changes (or events) in a signal.

Estimation of embedding parameters. In our implementation, the optimal
time delay τ is estimated as the first minimum of the average mutual information
(AMI) function [65]. Concerning the embedding dimension m, a minimal sufficient
value is estimated using the method of false nearest neighbours (FNN) [66]. In
practice, the minimal embedding dimension is defined as the dimension for which
the fraction of false neighboring points is zero, or at least sufficiently small.

State-change onset/offset detection method. A key property of RPs, which
is exploited in the detection of state-change instants, is that it reveals the local
difference of the dynamical evolution of close trajectory segments in the phase
space of the signal s. A time dilation or a compression of the time intervals, where
a state-change appears in the signal, causes a distortion of the diagonal lines in the
corresponding RP. Then, the LOI will be disrupted yielding the, so called, line of
synchronization (LOS) [67]. Although the LOS is continuous, it is not a straight
diagonal line. This enables the estimation of a non-parametric rescaling function
between the states of the signal s.

Let l ∈ RNs denote the LOS. The interpretation of l is the following: if li = k,
for some i = 1, . . . , Ns, then, the state of the signal s at time i approximates the
state at time k. Here, the LOS is a piecewise linear function. Since, in general,
Ns 6= N , in practice we apply a zero padding to r in order to obtain a LOS vector
l whose length is equal to that of the index vector t.

Finally, having estimated the LOS, we calculate the first-order differences,

dl,i = li+1 − li , i = 2, . . . , N . (3.17)

Doing so, the vector dl ∈ RN will be of the form,

d = [NaN, . . . , 0, di, 0, 0, . . . , 0, dj , 0, . . .], (3.18)

with the zeros corresponding to the intervals where the LOS is constant. Then,
given that di 6= 0 and dj 6= 0, we consider di to be the onset time and dj the offset
time of an epoch of significant activity. This interpretation is justified by the fact
that the constant segments of the LOS, or equivalently the zero segments of dl,
correspond to time periods in the signal s whose dynamics, as expressed by the
corresponding state vectors, are driven by the same seizure.



Chapter 4

Data collection and
preprocessing

This chapter provides a short description of the experimental procedure and then
describes the method used to obtain the spike trains.

4.1 Experiments

Figure 4.1: A. The mouse is headposted rested awake and free to walk on a tread-
mill. B. Skull picture showing electrode implantation and site of planned window
to overly visual cortex. C. (Left) Craniotomy window after implantation. Green
frame illustrates approximately the field of view (FOV). (Right) FOV (diameter
≈ 500µm) showing spontaneous activity prior to the 4-AP injection, scanned by
the spiral scanning method. Note that since the spiral is tight at the beginning,
the center of the FOV is excluded to avoid causing photodamage.

Animal preparation

All experiments and animal procedures were performed in accordance with guide-
lines of the National Institutes of Health for the care and use of laboratory animals
and were approved by the IACUC at VA Jamaica Plain.

23
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Experiments were performed on an adult (>8 weeks old) Thy1-GCaMP6s mouse
which expresses the GCaMP6s calcium indicator in pyramidal neurons [68]. Dur-
ing surgery, mice were anesthetized with 1–2% isoflurane, and Baytril (5 mg/kg),
meloxicam (5 mg/kg), and dexamethasone (1.5 mg/kg) were administered subcu-
taneously to minimize brain swelling [69]. A craniotomy with diameter of 3 mm
was made over the center of visual cortex: 2.7 mm lateral to the midline and 1.5
mm anterior to lambda. Then, the craniotomy was covered with a glass window. 1
mm long, flat Ag/AgCl electrodes were placed epidurally over the somatosensory
cortex, 2 mm anterior to the midline of the craniotomy, and over the same po-
sition on the contralateral hemisphere. A reference electrode was implanted over
the cerebellum. Finally, a titanium headpost was permanently attached on the
skull with dental cement.

Imaging

Two-photon experiments were performed ∼3 weeks after the surgery, when
inflammation had completely subsided. Neurons located ∼150 µm below the pia
were imaged with a water-immersion 16×, 0.8 NA (Nikon) objective lenses, in a
modified Prairie Ultima IV two-photon laser scanning microscope (Bruker), fed
by a Chameleon Ultra II laser (Coherent). Cell populations were imaged at frame
rates of ∼5 Hz. The laser power was kept between 20 mW at the surface and 50
mW at depths ¡ 200 µm, at 910 nm wavelength.

We imaged layer 2/3 pyramidal neurons at ∼ 150 µm from the pial surface. A
150-200 µl solution of 12.5 µM 4-AP or an equal volume of vehicle (0.9% NaCl)
was injected 1 mm antero-laterally to the imaged FoV at the level of the primary
visual cortex (V1) at the infragranular layer (∼ 600 µm deep from the pial surface).
About 20 min after each injection, the post injection activity was recorded. Each
recording lasts approximately 10 min. We have three different measurements for
the same mouse: pre-injection (control), then post-vehicle injection, and post-4-AP
injection.

Both the animal preparation and the imaging were conducted by Dr. Joseph
Lombardo, postdoctoral member of Smirnakis Lab.

4.2 Generation of spike trains - eventograms

The fluorescence recordings obtained through two-photon microscopy were initially
preprocessed in order to remove motion correction artifacts and perform regions
of interest (ROI) selection in order to end up with the signal that corresponds to
each neuron. This stage of the preprocessing was performed by members of Dr.
Smirnakis’ lab. Next, we refer to this preprocessed signal of the neuron with the
term raw fluorescence.

Step 1. Calculate the df/f of each neuron. In order to get rid of the scale
of the fluorescence values we are creating the df/f of each neuron, which uses the
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baseline of the neuron to create this scale-free version. Over the literature we have
seen different definitions of the baseline. We end up to define the baseline as the
10th percentile of the fluorescence signal F . The df/f for each neuron is computed
using the following formula:

df/f =
F − 10thpercentile of F

10thpercentile of F
(4.1)

Step 2. Run the deconvolution algorithm on df/f . Then we use a
deconvolution algorithm in the form that appears in Vogelstein et al. [70]. This
algorithm is essentially a Bayesian estimation algorithm and yields the most prob-
able spike train given the recorded signal. A linear dependence of the fluorescence
on the calcium concentration is assumed. This calcium concentration is taken to
decay exponentially to the calcium baseline upon excitation.

Step 3. Calculate noise intervals based on df/f . An issue of this method
is that it does not produce binary spike trains, but it rather gives a continuous
output s that represents the probability of spike existence at each frame. To con-
vert this into an eventogram a threshold is used. If the deconvolution output is
above the threshold an event is inserted, otherwise no event takes place. The
way the threshold is set is through the assignment of noise intervals on the df/f .
This is done under the assumption that 20 % of the recording contains noise. Un-
der this assumption the 20thpercentile corresponds to noise. To find secure noise
intervals in the df/f we consider the values where the df/f value is below the
20thpercentile. To get a more representative noise signal we create an artificial
copy of these values over which we assign reflected fluorescence values with respect
to the 20thpercentile. We calculate the mean + 2standarddeviations of this dis-
tribution we created and find the frames that have values less than this quantity.
All these frames constitute the “noise intervals”.

Step 4. Threshold the output of Step 2 to obtain spike trains. Once
the “noise intervals” are obtained, we restrict the Vogelstein output signal on
these intervals. The threshold used for the Vogelstein output signal is based on
the 99thpercentile of the noise intervals. The reason for using the 99thpercentile of
the values of the deconvolved signal found in the noise intervals is that there might
be valuable information even in the noise intervals. Moreover, there might be noise
even outside the noise intervals and by applying the thresholding we are able to
“catch” this noise as well. When the Vogelstein’s deconvolution algorithm output
is below this threshold we assume no spike (0), otherwise we assume presence of
spikes (1). In this way, we end up with spike trains (or eventograms) that let us
know about the neuronal firing activity.

A schematic summary of the followed pipeline is presented in Fig. 4.2.

In Appendix A the sensitivity analysis of the used thresholds for the definition
of noise intervals and the spike train production is presented. Some examples of
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the application of the algorithm on specific neurons of the control and the 4-AP
condition are also presented there.
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Figure 4.2: Spike train production pipeline. Starting from the fluorescence signal
of a neuron, we produce its df/f by subtracting and dividing with the baseline
of the signal (10th percentile of the signal). We use the df/f as an iput for the
Vogelstein’s deconvolution algorithm. This estimates the probability of having a
spike at each frame. In order to obtain binary spike trains we need to threshold
this probability properly. To this end, we estimate the noise intervals based on the
df/f and then project those noise intervals on the deconvolved signal. The frames
with values less than the 99th percentile of the noise correspond to 0, while the
rest correspond to 1 (spikes).
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Chapter 5

Analysis

The results are split into two subsections based on the signals they are based on
(spike trains or fluorescence signals). Based on the spike trains and the temporal
correlations of the neurons we construct functional connectivity graphs and analyse
them in terms of degree of connectivity, clustering coefficient, and affinity. We also
compare the acquired graphs with random graphs of known properties. Then, we
work on the fluorescence signals of the post 4-AP condition to identify significant
activity using two methods: a novel methodology based on the noise intervals of the
signal and the recurrent quantification analysis. We study the neuron participation
in significant activity epochs and assess the temporal aspect of the recruitment
across all significant activity periods. Finally, we analyse the ECoG signals based
on the identified periods.

5.1 Functional connectivity analysis

After the 4-AP injection neurons are firing more compared to the control (Fig. 5.1
(left)). Also, population activity is more organized and synchronous, with some
periods of complete silence and some periods of high population activity (Fig. 5.1
(right)). From these plots it is also evident that the entire neuronal population
gets recruited at specific frames towards the end of the recording.

After producing the spike trains for each condition (control, and after 4-AP
injection) as described in Section 4.2, STTC analysis was performed (as described
in Section 3.4).

We calculate the temporal correlation of the synchronous firing of spike trains
of two neurons (i.e., two neurons exhibit a firing event within the same frame) as
well as the strictly directional with lag approximately 0.2 sec (i.e., the firing of two
neurons with lag of exactly one frame). Note that the strictly directional approach
does not consider synchronous firing (co-firing within the same frame).

In our data, each FOV was represented as a graph G(N,E), where N is the
set of the graph’s nodes (neurons) and E the set of the graph’s edges, with a
square adjacency matrix A whose each element αi,j was a boolean value, with 1

29
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Figure 5.1: Comparative ECDF of mean firing rate of each neuron in control and
in post 4-AP condition (left). Percentage of neuronal population having a spike
per frame(right).

Figure 5.2: Snapshots of the FoV for control (left) and post 4-AP condition (left).
Points with lighter color correspond to firing neurons.

if neurons i, j were connected and 0 otherwise. We assigned αi,j values based on
whether the observed STTC value exceeded a z − score threshold. This matrix
was symmetrical when graphs were considered to be undirectional, with αi,j filled
with 1 if either Ei → j or Ej → i existed, i.e. had an STTC value greater than the
z − score threshold. For directional graphs, αi,j were filled with 1 if, and only if,
Ei → j existed.

Based on the directional STTC with ∆t = 0 (i.e., synchronous case), we define
undirectional graphs, while for the case of strictly directional STTC with ∆t = 0.2
sec (1 frame lag) we define directional graphs. For each z−score threshold adopted
we compared the degree of connectivity, the percentage of significant edges, and
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the clustering coefficient. Please, note that as the z− score threshold gets higher,
less and less edges are considered significant.

Figure 5.3: STTC values for control and post 4-AP for synchronous STTC (lag 0)
(left) and strictly directional STTC (lag 1 frame) (right). All edges included (no
z − score threshold applied).

Figure 5.4: Percentage of significant edges for different z-score thresholds both for
results of synchronous STTC and results of strictly directional STTC with ∆t =
0.208 sec (1 frame).

Next we characterize the functional network connectivity using graph-theoretical
metrics, such as normalized degree of connectivity, clustering coefficient, and
weighted clustering coefficient.
Statistically significant temporal correlation in control and post 4-AP
conditions. The post 4-AP exhibits significant temporal correlations, stronger
than the control, for both the synchronous case as well as the strictly directional
with lag of 1 frame (Fig. 5.6, left and right, respectively). The differences of the
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Figure 5.5: ECDFs of (normalized) degree of connectivity (left) and local clustering
coefficient (bottom) for z − score > 4 (unweighted graphs) for ∆t = 0 and ∆t =
0.2 sec (1 frame) (right).

post 4-AP vs. the control vs. null are prominent.

Figure 5.6: STTC values for control and post 4-AP for synchronous STTC (left)
and strictly directional STTC (lag of 1 frame) (right). The histograms have been
normalized by the total number of possible edges for each case: (only statistically
significant edges (z − score > 4); the null has a few edges and is not visible.

Dense functional connectivity in post 4-AP condition compared to
the control. Compared to the control, post 4-AP exhibits denser functional con-
nectivity, as illustrated with the larger percentage of significant edges, clustering
coefficient, and affinity metrics in the synchronous case. The temporal correlation
persists in the strictly directional STTC (lag of 1 frame) results.

The strong functional connectivity of the 4-AP condition, higher than that of
the control, is illustrated by the high normalized degree of connectivity (normalized
as the different FoVs have different number of neurons and we need to make a fair
comparison), and weighted directed clustering coefficients as shown in Table 5.2
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Table 5.1: Percentage of statistically significant edges

lag 0 lag 1

4-AP - z − score > 4 99.78% 89.14%
control - z − score > 4 42.20% 30.57%

Table 5.2: Median normalized degree of connectivity (DoC) & weighted directed
clustering coefficient (WCC) for control & post-4-AP (strictly directional STTC
with lag of 1 frame); KS test p-value < 0.001.

Graph DoC WCC

4-AP 0.996± 0.084 0.932± 0.037
control 0.580± 0.305 0.391± 0.120

and Fig. 5.7.

Affinity and Fast Belief Propagation. The following results are part of the
ICASSP 2021 submission, “On Functional Network Connectivity in Focal Neocor-
tical Seizures using Belief-Propagation Metrics” with the valuable contribution of
Dr. Maria Markaki using the aforementioned STTC analysis.

To capture the contribution and influence of a neuron to the connectivity of
the network within a larger region, we introduce the affinity, a belief-propagation-
based metric, that integrates the pairwise temporal correlation of neurons’ firing
events in a sub-network.

Belief Propagation (BP) combines weak signals to derive stronger ones, employ-
ing the principle of the homophily. Homophily refers to the tendency of similarly-
behavioring nodes to interact with one another in networks. Here we use the Fast
Belief Propagation (FaBP), an algorithm that runs two times faster, with equal or
higher accuracy than BP, and is guaranteed to converge [57]. It has been extended
to weighted, directed networks using weighted non-symmetric adjacency matrices.
The incorporation of STTC values in the form of edge weights can produce affin-
ity values which capture more information about the role of the neurons in the
network and the diffusion of information.

Prominent differences of the 4-AP compared to the other network topolo-
gies. The differences in the topology of the post 4-AP compared to the Erdös-
Rényi (ER), Watts-Strogatz (WS), and null graphs are prominent. ER and WS
graphs are constructed with the same number of nodes and edges as the 4-AP
graph constructed based of strictly directional STTC (lag of 1 frame); their edge
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Table 5.3: Affinity for various graphs, equivalent to the post 4-AP (strictly direc-
tional STTC with lag of 1 frame, z − score > 4); KS test used.

Graph Median affinity (± 2σ) p-value

4-AP 0.2329± 0.0449 -
Null 0.1453± 0.0051 < 0.001
ER 0.1766± 0.0026 < 0.001
WS 0.1609± 0.0009 < 0.001
Control 0.1563± 0.0102 < 0.001

weights were all set to the same value, equal to the mean STTC value of 4-AP
graph edges. The corresponding statistically significant null graph was constructed
as described before (in section 3.4. In the control, a different number of nodes was
recorded as we do have slightly different FoVs. Table 5.3 presents the median
affinities of nodes of the corresponding graphs. The affinity vector of the 4-AP
graph with lag of 1 frame is statistically different from the corresponding control,
null, ER, and WS graphs ; p-values for significance of difference of affinities were
estimated using the 2-sample K-S test.

Comparing the affinity metric to clustering coefficient. Unlike in the case
of 4-AP and control graphs without weights, where their affinity distributions for
lag of 1 frame had a small overlap, the weighted affinity distributions of the corre-
sponding graphs, i.e., edges integrated with the STTC weights, are well-separated.
Moreover, the weighted affinity reveals an interesting localization property (Fig. 5.7
(top)), which was not present in the case of synchronous graph (Fig. 5.9 (top)).
Opposed to clustering coefficient, which is a strictly local metric, the affinity cap-
tures the connectivity of a neuron along a larger area (e.g., within a range of 10-hop
away neighbors) catching the most active neural network in the 4-AP condition.
The lower right part of the FoV is closer the 4-AP injection area, which is the area
with the most activity as observed at the video of the recording (Fig. 5.8).
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Figure 5.7: Weighted directed affinity (top) compared to weighted directed clus-
tering coefficient (bottom). For the weighted directed graph constructed based on
strictly directional STTC (lag of 1 frame) and z − score > 4.

Figure 5.8: Snapshot of the 4-AP recording (left) Weighted directed affinity induces
unsupervised clustering of neurons in 4-AP (strictly directional STTC, lag of 1
frame) (right).
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Figure 5.9: Weighted affinity (top) compared to weighted clustering coefficient
(bottom). For the weighted undirected graph constructed based on synchronous
STTC (lag of 0 frames) and z − score > 4.

5.2 Fluorescence-based analysis post 4-AP

Besides the analysis based on the spike trains that provides some insights about
the network that is created based on the temporal correlations estimated through
the STTC, we work on the fluorescence signals and investigate the existence of
significant activity related to seizures and the recruitment of the neurons to them.

5.2.1 Noise-interval-based identification of significant activity epochs

We develop a procedure to identify the epochs of significant fluorescence activity
in the post 4-AP recording, called noise-interval-based approach.

This procedure first operates on individual neuron level, as follows:
Step A0. Calculate the df/f of each neuron as described in eq. 4.2,
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Step A1. Calculate noise intervals for each neuron based on df/f . For that,
find the frames with values less than the 20th percentile of the neuron’s df/f and
“mirror” their values around the 20th percentile we calculated. Then find the
frames with df/f less than the 20th percentile + 2 × standard deviation of this
synthetic distribution. These frames are the noise intervals.
Step A2. Count the consecutive frames of the noise intervals. If there are intervals
with 7 or less consecutive frames, they are no longer considered as noise interval
frames.
Step A3. Count inter-arrival time of remaining noise intervals of previous step.
If inter-arrival time is small (7 or less frames), then it will no longer be considered
as inter-arrival interval but it will get concatenated together with the prior and
following noise interval. Inter-arrivals of larger duration remain the same. Step
A4. Define as (local) valleys the “cleaned up” noise intervals of the previous step.
Step A5. Define as (local) plateaus the in-between frames. Plateaus correspond
to epochs of significant activity.
Step A6. Create a time series for each neuron with 0 at frames of valleys and 1
at plateau frames (this is useful for the global plateau/valley definition as well as
the matching of global and local plateaus).

After defining the plateaus and valleys on single neuron level it is time to define
them for the entire neuronal population as well. The population or global events
are based on the aggregation of the single neuron events:
Step B1. Sum the time series of Step A6 per frame in order to create the
aggregate signal based on which we will define the global valleys and plateaus.
Step B2. Find the frames with 7% or less of the neurons having local plateaus
simultaneously in order to define the global level noise intervals.
Step B3. Do Steps A2-A5 of procedure followed for single neurons to end up
with global valleys and plateaus respectively.

Based on the stability of the number of neuron plateaus and the number of
global plateaus, we decided to end up with the setting 7 frames for an event to be
considered as small and 7% of neurons being active for the definition of the global
plateaus and valleys (see Appendix B).

This approach led to the definition of 15 plateaus of varying duration. On
individual neuron level the number of plateaus ranges from 14 to 25 (mean 17.6,
median 18), also with varying duration. The identified plateaus if to be considered
as seizure activity do have differences in terms of duration with the literature
reviewed. The median duration of the identified plateaus is 24.5 sec while the
mean duration 31.8 sec. However, seizures caused by 4-AP injection reported in
recent studies are longer 71± 7.1 sec [53] and 74.4±5.5 seconds [55]. A probable
explanation on these differences may be that other studies identified electrographic
seizures (based on the LFP measurements), while the plateaus identified in our
study are based on the fluorescence of the cells under epileptic conditions.
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Figure 5.10: Identified significant activity examples. Top 3 panels correspond to
examples of significant activity identified 3 different neurons. The bottom one
corresponds to the identification of the global significant activity periods based on
the identification made on the single neuron level.
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5.2.2 Recurrence quantification Analysis.

The following results are part of the ICASSP 2021 submission, “On the Identifi-
cation and Characterization of epochs of significant changes in Focal Neocortical
Seizures” with the contribution of Dr. George Tzagkarakis.

This subsection describes the application of RQA on the population df/f (sum
of df/f of all neurons per frame) during epileptic seizures, and comparatively anal-
yses the results with the previous subsection results. We perform the recurrence
quantification analysis (RQA) [67, 71] for the detection of critical transitions in
the underlying time-evolving dynamics. Specifically, recurrence plots (RPs) were
proposed as an advanced graphical technique of visual nonlinear data analysis,
which reveals all the times of recurrences, that is, when the phase space trajectory
of the dynamical system visits roughly the same area in the phase space. Due
to the highly subjective nature of a visual interpretation of RPs, RQA was in-
troduced to perform nonlinear analysis of time series, which is also able to treat
non-stationary and short data series. RQA comprises of a set of appropriate quan-
titative measures for the quantification of recurrence structures, and the detection
of critical transitions in the system’s dynamics (e.g., deterministic, stochastic),
which is precisely one of the two objectives of this work.

Consistent results between RQA and noise-interval based method in
the identification of significant activity. The identification of the epochs of
significant activity based on the noise-interval approach (plateaus) and the RQA
events is shown in Fig. 5.11 (top). After the merging of the small RQA events, ac-
cording to the same procedure as for the noise-interval-based approach, 16 events
remain (marked with green color), while the noise-interval-based identification re-
sults in 14 events (marked with blue color). The duration of these events varies
(Fig. 5.11 (bottom)). The start and end of events set by the RQA events tend to
be earlier and later, respectively, compared with the start and end of the global
plateaus identified by the noise-interval-based method. This can be attributed to
the time-delayed embedding process, which generates state vectors whose elements
may span adjacent regions of the signal with different dynamics. Doing so, RQA
is able to “foresee” upcoming switching regimes with respect to the inherent dy-
namics, when entering these regions (“onset” times), while still maintaining some
memory when exiting them (“offset” times).

5.2.3 Recruitment of neurons in plateaus

For each neuron, and for each global plateau, the relative time lag of the onset
of its local plateau compared to the corresponding global plateau onset is esti-
mated. In order to match the global plateaus with local ones we need to find local
events that have at least 1 frame in common with the examined global plateau
interval. When more than one local plateaus are matched with a global one, we
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Figure 5.11: Events identified by RQA (green color) and noise interval method
(blue color) (top). Comparative ECDFs of the event duration (bottom).

take into consideration only the first one (first in terms of its start). Also, one
more convention is followed: in cases that the first local plateau that matches a
global plateau has started during the prior global plateau, then this local plateau
is not considered for the current global plateau that we are examining. Negative
lag means that the neuron’s plateau starts prior to the global plateau onset, while
positive means the neuron is recruited after the global onset.

Spearman’s rank coefficient of plateaus We attempted to assess whether
there is a persistent order of recruitment of neurons across all neuron plateaus.
To do so, we assigned a number to each neuron id based on the lag it has at each
global plateau. The first neuron to be recruited was assigned rank = 1 and the
last neuron to be recruited rank = N (number of neurons). If two or more neurons
have the same lag for a specific global plateau, this means they should have the
same rank, and therefore they are assigned the mean of the ranks they would be
assigned if they were ranked individually.

The results of the Spearman’s ranking coefficient from the pairwise comparison
of the ranks of the global plateaus are presented in Fig. 5.12. There is not very
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Figure 5.12: Spearman’s rank coefficient heatmap. The ids specified on the x-axis
and y-axis respectively specify the global plateaus that are compared in a pairwise
manner. Note that the 1st global plateau is excluded from this analysis as its start
is the start of the recording and we do not have any prior starting neurons.

high rank correlation across all the plateau pairs. Specifically, we see that there are
similar high values for consecutive global plateaus at the beginning and towards
the end of the recording (the yellow-colored tiles for global plateaus with ids 2-4
and 11-15 in Fig. 5.12). However, in the intermediate plateaus mush smaller values
are observed. This is an indication that the order of recruitment is changing as
the time passes and the epileptic activity is further propagated in the brain (FoV)
farther away from the focal point. Another possible explanation of the small
values is that a lot of neurons get recruited (have the onset of their local plateaus)
simultaneously, which means they are assigned the same rank with each other.
This may in turn affect the results and create big ranking differences which lead
in turn to smaller ranking coefficient.

The issues described earlier regarding the Spearman’s rank coefficient urged us
to use a different approach to evaluate the recruitment order of the neurons. As
mentioned earlier, for each global plateau, we estimate the lag of the onset of the
corresponding local plateau of each neuron from the onset of that global plateau.
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Figure 5.13: Neurons of the post 4-AP FoV colored based on the percentage of
global plateaus it starts earlier (a), synchronously (b) or after (c) the global plateau
onset.

near 

injection

far from 

injection

mean df/f per region

Figure 5.14: Mean df/f of the sub-populations of neurons at the four regions of
FoV neurons (colored based on their distances from the injection point). Two
representative global plateaus are zoomed to better examine the mean df/f of
each region.

We opt to measure for each neuron the percentage of global plateaus at which the
matched local plateaus start earlier, are synchronous or are following the global
plateaus onsets. This analysis revealed that the majority of neurons get recruited
after the onset of the global plateaus. Neurons with onsets before the start of
global plateaus are spread all over the FoV (Fig. 5.13), suggesting that the effect
of 4-AP is long-range, consistent with observations of Rossi et al. [52].

We decided to separate the FoV in 4 regions based on the physical distance
from the approximate location of the 4-AP injection (Fig. 5.14, left). This provides
a more “mesoscopic” point of view as we are looking the trends per region, and
not at single-cell resolution. Taking into consideration the level of the df/f as well
as the lags of neurons from different regions, our analysis revealed two phases of
the ictogenesis process: In the first phase, up to about the frame 1500 (about first
5min of the recording), the sub-population near the injection point (indicated with
the blue color in Fig. 5.14) reaches relatively high df/f levels, while the other three
sub-populations have significantly lower values. During that phase, the population
closer to the injection has larger lag compared to the other sub-populations, with
respect to the global plateaus onsets engagement. As the epileptic activity evolves,
the sub-population closer to the injection area starts its ictal-like events earlier than
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the others (on average) (Fig. 5.15 (right)) and the df/f gradually increases.

(2) (3) (4) (5)

(6) (7) (8) (9)

(10) (11) (12) (13)

Figure 5.15: ECDFs of the lag of the local plateau of each neuron with respect to
the onset of the global plateaus 2 through 13, respectively; colored based on their
region as in Fig. 5.14(left).
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(14) (15)

Figure 5.16: ECDFs of the lag of the local plateau of each neuron with respect
to the onset of the global plateaus 14 and 15, respectively; colored based on their
region as in Fig. 5.14(left).

We do observe that as the epileptic activity evolves there is a gradual increase
of the recorded fluorescence level in all 4 regions of the FoV that we defined. This
observation is consistent with layer 2/3 pyramidal neurons fluorescence increase in
[55].

If we comparatively observe the recruitment lags per region (Fig. 5.15 and
5.16) we do observe some kind of stochastic order. For plateaus 2-6 there are
similar trends with the blue population being recruited later on average. For
global plateau 7 the sub-population recruitment order changes a lot. However, the
trends of plateaus 2-6 are “restored” for the 8th. For the following 4 plateaus the
order gradually changes and for 14 and 15 there is similarity with the population
near the injection point (blue) leading the activity on average.

5.2.4 Spectral Analysis of ECoG during the identified events

In our experimental setting, besides the two-photon imaging recording, two ECoG
electrodes were also used to capture longer range and more aggregate activity.
They were placed on the surface of the brain and not in the brain, and tend to
pick up the ensemble activity of most of the cortex of the brain hemisphere on
which they’re placed. One electrode was located antero-laterally to the imaging
window (ipsilateral) and another one is located contra-laterally on the other brain
hemisphere. The sampling frequency of the ECoG signals was 10kHz.

Before proceeding with the EEG signal analysis some preprocessing took place.
First, the 60 Hz frequency component (noise from electric power network) and
its harmonics were removed with use of notch filters centered at these specific
frequencies. Then, frequencies below 0.5 Hz were also removed with use of high-
pass filter and finally a low-pass filter with cut-off frequency of 4000Hz was used
to remove the very high frequency components, as higher frequencies do not play
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any biological role and are not of interest.

Then, we employed the Welch method (described in Section 3) to study the
spectral density of the signals. The window size is set to be small enough to study
the short intervals but also big enough to provide sufficient frequency resolution.
In case of the analysis of the identified significant activity periods (plateaus) and
the noise-intervals the window size was set to 3 sec in order to run for all the
available periods. This window size yields frequency resolution of 0.33 Hz.

Energy of the ECoG signal in the 4-AP is higher than that in the
control. Specifically, there is a high energy frequency components in the delta
band (Fig. 5.17). Interestingly, there are small differences between the dominant
frequency components within the delta range, with the contra-lateral side mani-
festing its highest peak at 1.33 Hz while the ipsi-lateral signal has its own highest
peak at 2.66 Hz, indicating that the seizure has affected more the ipsi-lateral part.
This may have to do with the fact that the ipsi-lateral hemisphere is more con-
taminated by the seizure activity and is functioning in a faster way, compared to
the contra-lateral hemisphere that is not fully contaminated yet.

Figure 5.17: Power Spectral Density estimated with the use of Welch method,
window size = 3 seconds, 50% overlapping of windows. Linear scale (left) and log
scale (right). For the ispilateral (top) and the contralateral (bottom) sides of the
brain.
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Then we divided the ECoG in post 4-AP condition in intervals equivalent to
the plateaus and valleys in order to have indication of their spectral differences.
On average during plateaus more energy is released than the during the valleys.
However, the standard error of the mean in the acquired plots (Fig. 5.18) shows
that there is not a very distinct separation of these events in terms of ECoG energy.

Figure 5.18: Power Spectral Density estimated with the use of Welch method,
window size = 3 seconds, 50% overlapping of windows. Linear scale (left) and
log scale (right). The error bars indicate the standard error of the mean of the
corresponding periods.



Chapter 6

Conclusions and Future Work

This work demonstrates the high temporal correlation of neurons in the context of
4-AP and its denser functional network connectivity, compared to other network
architectures and conditions. Moreover, it highlights the power of the weighted
graphs and affinity to identify neurons that play an important role in the evolu-
tion of the ictogenesis. In contrast to the clustering coefficient and the normalized
degree of connectivity metrics, the affinity of the weighted graph helps to identify
neurons that are used as proxies of the increased activity after the 4-AP injec-
tion. To the best of our knowledge is the first study that discusses the functional
network connectivity in the context of 4-AP induced seizures. It has been previ-
ously applied in absence epilepsy seizures [72]. Absence epilepsy interrupts normal
cortical processing, producing reversible episodes of altered consciousness. During
inter-ictal activity, most neurons are functionally connected with a large number
of neighbors within the FoV, while in seizure epochs, the connectivity is reduced
substantially. The evolution of ictogenesis in 4-AP differs substantially from the
absence epilepsy.

The STTC emphasizes on the identified spikes over time to assess the temporal
correlation of neuronal activity, while conventional correlation approaches (such
as Pearson’s correlation) would count coexistence of no spike as correlation, which
is not the case. Other 4-AP related studies (e.g., [55]) quantify the temporal
correlation of neurons based on their df/f . However, in df/f it is not clear what
a spike is and what is not, making the estimation of the temporal correlation
a challenging task. The inherent noise in the signal may also introduce “false”
correlation to some extent. On the contrary, spike trains are defined with a well-
established methodology from the original signals and provide a reliable estimate
of the firing events of neurons over time. For this reason a correlation metric (such
as Pearson correlation) using df/f will probably not be capable to successfully
assess the temporal correlation of firing events.

We also define a methodology to identify the significant activity of the fluo-
rescence signals under epileptic conditions but also used RQA-based techniques

47
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towards that direction. The two approaches yield similar results in terms of num-
ber of events and duration. The start and end of events set by the RQA events tend
to be earlier and later, respectively, compared with the start and end of the global
plateaus identified by the noise-interval-based method. This can be attributed to
the time-delayed embedding process, which generates state vectors whose elements
may span adjacent regions of the signal with different dynamics. Doing so, RQA
is able to “foresee” upcoming switching patterns with respect to the inherent dy-
namics, when entering these regions (“onset” times), while still maintaining some
memory when exiting them (“offset” times). RQA has been previously used to
identify seizures in EEG recordings [73, 74, 75, 76], but it the first time that RQA-
based techniques are applied to identify the neuronal activity patterns of interest,
and dissect, in vivo, the mechanisms of focal epilepsy.

We also studied the recruitment of neurons into seizures in differently located
regions of the FoV. The Spearman’s rank correlation showed different recruitment
patterns in the start and the end of the recorded activity. Neurons in general do not
play a persistent role to significant activity initiation across the entire recording
(starting prior, in sync or starting after). Farther away from the approximate
injection point, neuronal activity seems to change the most; At first there are very
small amplitude oscillations that gain amplitude as the seizures get expanded in
the imaged FoV.

Our long-term objective is to unravel the mechanisms of seizure initiation and
propagation to more precisely model in vivo epileptic cortical networks. We aim
to examine the finer spatio-temporal dynamics of the ictogenesis process, and
micro-phases, including the order of the recruitment of neurons in the seizures,
integrating information from the EEG. We plan to examine whether the EEG
signal may reveal information about the states of other neurons (e.g., interneurons
outside the FoV) that may play important role in the propagation or in the control
of seizures.

We are in the process of validating the results with other mice recordings. The
newly available datasets cover larger periods of time (∼ 1 hour long recordings)
and have finer level information (sampling rate: 30 Hz vs. 5 Hz of the currently
analysed mouse). In these new datasets, the ROI matching between conditions
may be possible and this will enable work on temporal graphs and comparison of
these in terms of connectivity and hub creation. So far, we have seen that time
plays an important role and as time passes the center of the epileptic activity seem
to move further away from the approximate injection area.

We will use the cross correlation of the df//f of neuron pairs within small
windows around the global plateau onsets to further study the lags of neurons.
Lack of symmetry in the cross correlation of two signals suggests the existence of
prominent lags and a leader-follower relationship between these signals. This will
help us to better understand the neuronal dynamics and the evolution of seizures
in the imaged area. Moreover, we aim to study the slope of the rise and drop of the
df/f at the onsets and offsets of the neuronal plateaus and compare/observe the
trends of different neurons to perform a profiling of neurons based on the plateaus
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dynamics (slope, shape, amplitude, duration of their local plateaus).
In order to indirectly examine the expansion of seizures to farther away regions,

such as the motor cortex, the correlation of the plateaus with the speed of the wheel
the mouse is moving on will be examined.

We would also like to examine the extent to which the 4-AP injection changes
the cortical organisation in general. For that purpose, additional lab measurements
were performed on the day after but also some weeks after the 4-AP injection to
be able to observe such trends.

The role of the interneuronal activity needs to be examined as well, as it may
be particularly revealing about the organization of the brain areas, about the way
pyramidal neurons are orchestrated by interneurons, and about how the changes
in the balance of inhibitory and excitatory activity affect the epileptic mechanism.

We would also like to model the epilepsy on the graph and predict the next
moves of the epileptic spread. More specifically, we would be interested to model
the exact behavior of neurons and see what will happen if key neurons or neuronal
sub-networks are removed. This way we would be able to design pharmaceutical
solutions to stop the expansion of seizures.

To extract the sub-networks with the dominant predictive power on detecting
the end of the ictal phases, Long-Short Term Memory (LSTM) networks [77, 78]
can be applied. LSTM have been recently applied on EEG data to declare an
imminent seizure with an increased accuracy compared to convolutional neural
networks and other traditional machine learning approaches [79]. Another study
applied a LSTM network on EEG data for the detection of distinctive electro-
graphic events such as epileptic spikes, ripples and ripples-on-spikes [80]. LSTM
can nicely integrate the temporal dimension (accurately modeling both short and
long-term dependencies in the data) [78] and more specifically the sequence that
identified neuronal patterns manifest during the evolution of ictal-events. LSTMs
will model the sequence of transitions of these neurons. Specifically, the input
layers of LSTM networks will correspond to the actual neurons under different
realization conditions, namely spontaneous and focal epileptiform activities. The
different types of phases will correspond to the output layer. These LSTM net-
works will be trained and evaluated using the collected time-series or extracted
features, such as, statistical properties of the time-series, power spectral density
in specific frequency ranges, graph-theoretical properties based on the significant
pairs as reported from the STTC, and RQA analysis. The configuration of the
memory “cell” building blocks of these LSTM networks parameters, at the com-
pletion of the training and validation of these networks, will reflect the neuronal
inter-dependencies (sub-networks) and their impact on predicting the transitions
between the various phases of the ictal-like events.
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Appendix A

Sensitivity analysis of spike
train production

Towards the spike train production several decisions should be taken. The first
one of them is related to how we are going to define the noise intervals. For that,
we performed a sensitivity analysis on the percentile used for the definition of the
synthetic distribution of what we do consider as noise.

The initial choice was the use of the 50th percentile. That choice was used based
on the assumption that a neuron fires sparsely, i.e. less than 50% of the time.
However, this choice seems to be invalid for neurons under epileptic conditions
during which we do have neuronal hyper-excitability and increased number of
firing events. As the same definition of noise intervals should be used both for
the control and epileptic conditions, we opt to lower the percentage of frames
considered noisy in order to choose a percentile that manifests small variance of
values across all neurons (Fig. A.1). Based on that, the 20th and 30th percentiles of
the signal were used as a basis for the noise intervals definitions and the obtained
results were comparatively examined.

Another important decision we had to make was related to the threshold ap-
plied to the output of the deconvolution algorithm (Vogelstein et al. [70]) in order
to obtain binary spike trains. Towards that direction we opt to project the cal-
culated noise intervals (based on the df/f) to the deconvolved signal and use a
percentile of those projected values as a threshold to decide what is to be considered
as a spike and what is not. The reason we project these intervals on the decon-
volved signal and then use a percentile of this distribution is to better control the
amount of noise allowed but also to take into consideration the noise that can be
found outside the noise intervals defined on the df/f . We performed a sensitivity
analysis on the applied threshold using the 95th and the 99th percentiles.

The final setting was chosen based on the effect our choices on the neuronal
firing rates. The 95th percentile for thresholding of the deconvolved signal results
to higher firing rates compared to the case of the 99th percentile. When using the
50th percentile for the noise interval definition we observe that the control and

53



54APPENDIX A. SENSITIVITY ANALYSIS OF SPIKE TRAIN PRODUCTION

E
C

D
F

df/f of neurons

control

df/f of neurons

4-AP

Figure A.1: ECDF of neurons’ df/f for control (left) and post 4-AP condition
(right). Each plotted line corresponds to one neuron.

4-AP firing rates are having the same range, which is not expected, as in the 4-AP
condition we do know that there is more activity. The 30th and the 20th percentiles
for the noise interval distribution result in more separable distributions but with
the use of 20th percentile we do observe a more clear separation between control
and 4-AP conditions (Fig. A.2). In order to come up with the best combination,
we compared the resulting firing rates with the ones reported in other studies for
awake mice under spontaneous conditions [81, 82].

The aforementioned analysis has been also performed on neuropil subtracted
fluorescence signals and we did not observe significant changes (Fig. A.3). Neuropil
subtraction is a procedure during which the activity of the surrounding pixels of
each ROI (neuron) is subtracted as it is assumed to introduce noise from surround-
ing neuropil activity and contamination of the fluorescence by the surrounding
area.

Some examples of how the procedure looked on individual neurons follow both
for control and 4-AP. Such plots were examined one by one for all the neurons
(ROIs) in order to find the setting that best captures the neuronal activity with-
out allowing a lot of noisy spikes. For the control the 50th percentile for the
noise interval definition works relatively well. However, for the 4-AP conditions
in neurons with continuous high activity through the recording this threshold was
creating sub-optimal threshold that resulted in reduced firing compared to the
actual one.
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Figure A.2: Comparative ECDFs of neuronal firing rates for different setting com-
binations of noise interval and deconvolution thresholding.
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Figure A.3: Comparative ECDFs of neuronal firing rates for different setting com-
binations of noise interval and deconvolution thresholding for signals after per-
forming neuropil subtraction.
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Figure A.4: Steps of spike train production procedure for neuron 100 under normal
conditions (control). The 1st vertical panel contains the initial time series and the
estimated baseline. The 2nd vertical panel shows the df/f estimated based on the
signal and the baseline and the lines that define the noise intervals for different
settings examined. The 3rd panel shows the deconvolution result and the thresholds
which will result in the spike trains of the 4th panel.
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Figure A.5: Steps of spike train production procedure for neuron 100 under normal
conditions (control) for a zoomed window of 500 frames (∼ 100 sec) of the signal.
The 1st vertical panel contains the initial time series and the estimated baseline.
The 2nd vertical panel shows the df/f estimated based on the signal and the
baseline and the lines that define the noise intervals for different settings examined.
The 3rd panel shows the deconvolution result and the thresholds which will result
in the spike trains of the 4th panel.
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Figure A.6: Steps of spike train production procedure for neuron 30 of post 4-AP
condition. The 1st vertical panel contains the initial time series and the estimated
baseline. The 2nd vertical panel shows the df/f estimated based on the signal
and the baseline and the lines that define the noise intervals for different settings
examined. The 3rd panel shows the deconvolution result and the thresholds which
will result in the spike trains of the 4th panel.
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Figure A.7: Steps of spike train production procedure for neuron 30 of post 4-AP
condition for a zoomed window of 500 frames (∼ 100 sec) of the signal. The 1st

vertical panel contains the initial time series and the estimated baseline. The 2nd

vertical panel shows the df/f estimated based on the signal and the baseline and
the lines that define the noise intervals for different settings examined. The 3rd

panel shows the deconvolution result and the thresholds which will result in the
spike trains of the 4th panel.



Appendix B

Sensitivity analysis of
identification of significant
activity

After making the decision about the noise interval definition (based on what value
would the synthetic distribution be centered) we developed the algorithm of the
plateaus and valleys analysis.

For the definition of the noise intervals we performed a sensitivity analysis on
the number of consecutive frames that we consider as short intervals that need
to be treated properly (less than or equal to: 5 to 10 frames). We decided to
discard these short intervals noise intervals and perform concatenation of these
short inter-arrival intervals with the prior and following noise intervals due to the
noisy nature of the df/f signal but also based on the knowledge from prior work
that said that seizures should be in the order of several seconds. In our setting, 5
frames = 1 second. One way to alleviate our approach from the need for discarding
and/or concatenation of small events could be to use smoothing functions on the
signal. However, smoothing tends to displace/move the start and the end of the
events earlier and after respectively, which may lead to prolonged events.

We also opt to define the global plateaus based on the individual neurons’
plateaus (i.e., taking advantage of the knowledge of the single-cell dynamics). More
specifically we decided to use the percentage of neurons having a plateau at the
same moment as a criterion for the plateau definition on the entire population. For
that reason we performed a sensitivity analysis ranging from 5 to 50% of neurons
having a plateau to examine how the number of plateaus change.

Based on the stability of the algorithm (in terms of number of global plateaus
and estimated plateau durations) and the need to “catch” the global events early
on, we choose the 7% of the neurons to define the onsets and offsets of the global
events (Fig. B.1).
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Figure B.1: Results of sensitivity analysis. X-axis corresponds to the number of
identified global plateaus based on the % of neurons having their plateau for global
plateau onset indicated on the y-axis. The number of frames for considering an
interval small is indicated on the top of each plot.
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matic brain injury to posttraumatic epilepsy: What animal models tell us
about the process and treatment options,” Epilepsia, vol. 50, no. s2, pp. 21–
29, 2009.

[18] J. T. Paz, C. A. Christian, I. Parada, D. A. Prince, and J. R. Huguenard, “Fo-
cal cortical infarcts alter intrinsic excitability and synaptic excitation in the
reticular thalamic nucleus,” Journal of Neuroscience, vol. 30, no. 15, pp. 5465–
5479, 2010.

[19] A. Rosen and N. Frumin, “Focal epileptogenesis after intracortical hemoglobin
injection,” Experimental Neurology, vol. 66, no. 2, pp. 277 – 284, 1979.

[20] L. Willmore, G. Sypert, J. Munson, and R. Hurd, “Chronic focal epileptiform
discharges induced by injection of iron into rat and cat cortex,” Science,
vol. 200, no. 4349, pp. 1501–1503, 1978.

[21] A. Mihaly, G. Toth, M. Szente, and F. Joó, “Neocortical cytopathology in
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