

Application Grade Thesis

A Machine Learning method to classify sentences containing
biomedical entities in academic text

Student’s Name: Apostolos Boumpakis

Supervisor’s Name: Alexandros Kanterakis

Date of completion: 24/02/2022

This dissertation is submitted as a partial fulfilment of the requirements for the Master’s degree of

Biomedical Engineering M.Sc. program

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 2 of 64

Abstract

Nowadays, the amount of biomedical literature is getting larger and larger and thus Natural Language

Processing (NLP) research in clinical documents is gaining a very significant role. The automated

analysis of biomedical literature is rapidly growing, stimulating the development of several techniques

of automatic Named Entity Recognition (NER) and document classification. However, despite the

existence of so many techniques for the classification of biomedical entity sentences, few types of

entities can be easily recognized.

The aim of this study is to recognize Disease, Gene, SNP and Chemical entities from biomedical texts,

using Bidirectional Encoder Representations from Transformers (BERT), a new and advanced Named

Entity Recognition technique.

Briefly, hundreds of biomedical papers were parsed and analyzed to their sentences, classified and

labeled accordingly, in order to create different datasets. Finally, they were passed through the BERT

model in order to sort the sentences that include the aforementioned entities.

The results showed that by appropriately pre-training the BERT model, great recognition performance

can be achieved, without extensive fine-tuning and optimization requirements, while outperforming

previous models on NER biomedical text mining task. However, there is by all means space for further

tuning and much more future work and new challenges.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 3 of 64

Table of contents

Abstract ... 2

Table of contents .. 3

List of figures ... 4

List of tables .. 6

Chapter 1: Introduction .. 7

Chapter 2: State-of-the-art ... 8

2.1 NLP .. 8

2.1.1 Biomedical NLP ... 9

2.1.2 Pubtator .. 10

2.1.3 BioC ... 10

2.2 Deep Neural Network in Biomedical NLP ... 12

2.2.1 Machine Learning .. 12

2.2.2 Deep Neural Network ... 15

2.2.3 Transformers ... 18

2.2.4 BERT .. 19

2.2.5 BioBERT ... 24

2.3 Google Colab ... 25

2.3.1 Jupyter ... 25

Chapter 3: Research methodology ... 26

3.1 Calculation of a prediction .. 45

Chapter 4: Research findings / results .. 46

Chapter 5: Discussion and analysis of findings ... 56

Chapter 6: Challenges and future work .. 57

Chapter 7: Conclusion ... 60

References .. 61

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 4 of 64

List of figures

Fig. 1 Rectified Linear Unit (ReLU) activation function…………………………………………………...…… 16

Fig. 2 Recurrent Neural Network architecture………………………………………………………………....… 17

Fig. 3 BERT’s neural network architecture versus previous contextual pre-training models... 20

Fig. 4 BERT’s neural network architecture………………………………………………………………………..... 21

Fig. 5 Single head attention architecture………………………………………………………………………….... 23

Fig. 6 GPU detection check………………………………………………………………………………………………... 26

Fig. 7 In order for the torch library to use the GPU, the GPU was identified and specified as

the device………......

26

Fig. 8 Importation of necessary packages…………………………………………………………………………... 27

Fig. 9 Definition of basic functions……………………………………………………………………………………... 27

Fig. 10 Definition of basic functions……………………………………………………………………………………... 28

Fig. 11 Definition of basic functions……………………………………………………………………………………... 29

Fig. 12 Conversion of the list_wt_v variable to the correct form for a future part of the

algorithm………..

30

Fig. 13 Creation of sets containing different entities (part 1)……………………………….……………….. 30

Fig. 14 Creation of sets containing different entities (part 2)……………………………….……………….. 31

Fig. 15 Dataset extraction (part 1)……………………………………………………………………….……………….. 33

Fig. 16 Dataset extraction (part 2)……………………………………………………………………….……………….. 34

Fig. 17 Installation of the huggingface Transformers library………………………………….……………… 35

Fig. 18 Importation of necessary libraries……………………………………………………………….……………. 35

Fig. 19 Mount of Google Drive to Google Colab………………………………………………………..…………… 35

Fig. 20 Dataset importation…………………………………………………………………………………………………. 35

Fig. 21 Dataset shuffle……. 36

Fig. 22 Count of sentences with label 0 and sentences with label 1...…………………………………….. 36

Fig. 23 Number of sentences labeled with 0 and 1 after choosing the first 2,000 sentences

before the adjustment of the dataset range……………………….……………………………………..

36

Fig. 24 Number of sentences labeled with 0 and 1 after choosing the first 2,000 sentences

after the adjustment of the dataset range…………………………....……………………………………

36

Fig. 25 Creation of the embeddings for the input sentences using the pre-trained distilBERT

model………..

37

Fig. 26 Sigmoid function curve………………………………………………………….………………………………….. 38

Fig. 27 Natural logarithm function curve………………………………………….…………………………………… 38

Fig. 28 A general depiction of the flow path through distilBERT till the output of the label...…. 40

Fig. 29 Train/Test split for the output of distilBert model creates the dataset that will be

trained and evaluated on the Logistic Regression model…………………………………………...

40

Fig. 30 Pre-trained distilBERT model loaded with a distilBERT tokenizer……………………………….. 41

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 5 of 64

Fig. 31 Tokenization for all sentences together as a batch……………………..……………………………… 41

Fig. 32 Conversion of sentences to lists of numbers……………………………….…………………………….. 41

Fig. 33 Padding of lists to the same size…………………………………………………..……………………………. 42

Fig. 34 Creation of the attention mask…………………………………………………………………………………. 42

Fig. 35 The final matrix that is passed to distilBERT. This matrix is the result of the

print(padded) command. It depicts the tokens in each sentence of n input

sentences………………………………………………………………………………………………………............

42

Fig. 36 Creation of the input tensor and the attention mask arrays…………..………………………….. 43

Fig. 37 The optical output of the last_hidden_states variable. BERT output tensor /

predictions……..

43

Fig. 38 The new 2D last_hidden_states matrix and its shape……………………..…………………………. 44

Fig. 39 A 2D numpy array containing the sentence embeddings of all the (n) sentences in the

dataset……………………………………………………………………………………………......…………………..

44

Fig. 40 Assignment of all labels to a new variable……………………………………………..…………………… 44

Fig. 41 Creation of the training and test data for the features and the labels……...…………………. 45

Fig. 42 Training of the Logistic Regression model……………………………………………….………………… 46

Fig. 43 String representation of the fitted model……………………………………………….…………………. 46

Fig. 44 Evaluation of the model………………………………………………………………………….……………….. 47

Fig. 45 The Accuracy metric…………………………………………………………………………………………………. 48

Fig. 46 The Precision metric…………………………………………………………………………………………………. 48

Fig. 47 The Recall metric…………………….………………………………………………………………………………… 48

Fig. 48 Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different

numbers of sentences (entity: Disease, task: ML12)………….……………………………………….

52

Fig. 49 Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different

numbers of sentences (entity: Disease, task: ML13)………….……………………………………….

52

Fig. 50 Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different

numbers of sentences (entity: Gene, task: ML12)………………...……………………………………

53

Fig. 51 Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different

numbers of sentences (entity: Gene, task: ML13)………………….…………………………………..

53

Fig. 52 Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different

numbers of sentences (entity: Chemical, task: ML12)……………..………………………………….

54

Fig. 53 Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different

numbers of sentences (entity: Chemical, task: ML13)……………..………………………………….

54

Fig. 54 Execution time versus different batch sizes……………………………..………………………………… 55

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 6 of 64

List of tables

Table 1 Number of sentences per entity and category……………………………………………………….. 32

Table 2 Evaluation scores for the Disease entity………………………………………………………………… 50

Table 3 Evaluation scores for the Gene entity……………………………………………………………………. 51

Table 4 Evaluation scores for the Chemical entity………………………………………………………………. 51

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 7 of 64

Chapter 1: Introduction

To date, a large amount of biomedical content has been published for clinical documents. Millions of

articles are published each year about new discoveries in the medical field. That is why it is of

considerable significance to conduct Natural Language Processing (NLP) [1] research in biomedical

literature. The automated analysis of biomedical literature has rapidly grown in research during the

last years. This area of research has stimulated the development of several techniques of automatic

Named Entity Recognition (NER) and document classification. Nevertheless, many open issues must

be addressed in order to obtain satisfactory results. Despite the existence of a plethora of methods

for classification of sentences containing biomedical entities and entities with deep Neural Network

frameworks, it is an open question which types of entities can be easily recognized.

The final goal of this study is to present the state-of-the-art Named Entity Recognition technique,

Bidirectional Encoder Representations from Transformers (BERT) [2], in order to recognize/extract

Disease, Gene, SNP and Chemical entities from biomedical texts. The reason why BERT was chosen is

the fact that it is the most widespread Neural Network architecture for training language models,

having led to considerable improvements in various NLP tasks.

In general, the more the parameters in a BERT model, the better the results obtained. Unfortunately,

due to the fact that the memory consumption increases with the size of these models, the lighter BERT

variant, distilBERT [3,4], was applied. This technique was evaluated on two NER tasks for each entity.

All in all, in outline, hundreds of biomedical papers were parsed in an XML format, analyzed to their

sentences, classified and labeled accordingly, so as to create different datasets. Finally, they were

passed through the BERT model to recognize sentences that include (or not) specific entities.

The study proceeds as follows: Chapter 2 analyzes the background and the literature about the

investigated topic, underlying the original contribution of this research and making the reader familiar

with the existing key theories. Chapter 3 describes the methodology carried out for the study and the

justification behind this research design. Chapter 4 is the results chapter, where the data collection

results are presented. Chapter 5 interprets the data and discusses the results obtained. Chapter 6

states the challenges and suggests potential future work. Finally, Chapter 7 concludes the study. It ties

it together and highlights the key takeaways.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 8 of 64

Chapter 2: State-of-the-art

2.1 NLP

Nowadays, the reality of having machines talk and respond like humans keeps getting more and more

plausible. People you ask for queries on websites, smart assistants (such as Cortana, Siri) etc. are not

human. But how do they manage to seem so human-like, so much intelligent? This is where Natural

Language Processing (NLP) comes in, which refers to the Artificial Intelligence method of

communicating with an intelligent system using the natural language [1]. In other words, it gives the

machines the ability to understand text and spoken words.

Enormous quantities of data are transferred due to the everyday use of social media by humans,

providing useful information about human behavior and habits, so that machines can mimic human

linguistic behavior. Some of the applications of NLP are the following [5]: First of all, autocorrect, which

automatically corrects a misspelled word. Then, we have customer chat services, for example chatbots

or assistants like Cortana, as previously mentioned. Machine translation is also another use-case of

NLP, with Google translate being the most common example for it.

Various steps are involved in order to transform a text into a form comprehensible by the machine

[6]. Firstly, segmentation needs to be performed. Segmentation is the process of breaking the whole

text into its constituent sentences. After that, each sentence is divided into tokens, constituent words.

The next process in NLP is stemming, which is the process of reducing the words to their root form by

cutting off the beginning and the end of the word, taking into account a list of common prefixes and

suffixes. Another way to identify the base words is lemmatization, where words are mapped to their

actual form via a dictionary used by transformation. Once the tokens are divided into their root form,

their part of speech (POS) is determined as many words, especially common ones, that can serve as

multiple parts of speech, subject to the situation in which they are used. Next, the machine is

introduced to Named Entity Recognition (NER), which is the process of determining which items in the

text map to proper names, like places or people, and what the class of each such name is (e.g., person,

location, organization).

Once base words and tags are defined, a Machine Learning algorithm is used in order to teach the

model human sentiment and speech. In order to execute all these programs and all of this function on

a given text file, Python programing language has come up with the Natural Language Toolkit (NLTK),

an open-source collection of libraries, programs, and education resources for building NLP programs

[1]. The NLTK includes libraries for many NLP tasks, plus libraries for subtasks, such as sentence

parsing, word segmentation, stemming and lemmatization and tokenization. It also includes libraries

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 9 of 64

for implementing capabilities, such as semantic reasoning, the ability to deduce rational assumptions

centered on facts extracted from text. It has over 100 corpora and a lot of pre-trained models, as well.

Other popular Python libraries are Textblob, which is used for processing text-based data and which

provides simple APIs, Spacy, which is another common library used for advanced NLP and works well

with deep learning frameworks, Gensim, Corenlp and many others. All the above libraries provide all

the aforementioned features as well (tokenization, stemming, etc.).

2.1.1 Biomedical NLP

As previously mentioned, with the recent statistical and neural revolutions, the research community

has made great strides in many fronts, such as question answering, machine translation, speech

recognition, etc. However, the mainstream NLP focuses on general domains, such as the web. In

contrast, specialized domains, such as biomedicine have received relatively little attention.

As a field of research, biomedical NLP incorporates ideas from NLP, bioinformatics, medical

informatics and computational linguistics [7]. Thanks to the rapid digitization of health records, the

growing number of biomedical publications, and the escalating presence of health information online,

biomedicine is taking more and more steps towards precision medicine, where treatments become

increasingly effective by tailoring to individual patients. Automatic extraction of molecular

mechanisms NLP can play a key role in this revolution, as a large quantity of biomedicine is conducted

and recorded in natural language [8]. For example, PubMed alone adds millions of biomedical papers

every year. PubMed is a collection of biomedical research literature available to read on the web [9].

Biomedical text is drastically different from general-domain one.

Although annotated corpora, used in the development and training of general purpose, may provide

evidence of general text properties such as parts of speech, there is a word distribution shift from

general domain corpora to biomedical corpora. Biomedical named-entity recognition (BM-NER) plays

an essential role in biomedical language processing: terms of interest are identified and mapped to a

pre-defined set of semantic categories [10]. Examples of BM-NER systems include identifying diseases

and drug names, and detecting Gene, Protein, or Disease mentions in biomedical papers. BM-NER is

getting better with the rise of more annotated corpora to learn from. Publicly available tools specific

for biomedical literature research include PubMed search, Europe PubMed Central search, GeneView

and APSE. The unstructured components of the Electronic Medical Records (EMRs) and the Electronic

Health Records (EHRs) collected during a diagnosis are often free-text and difficult to search. Thus, in

order for them to be analyzed, various tools have been developed, such as the MedLEE system (for

chest radiology reports analysis), or PubTator, cTAKES, and CLAMP (for clinical text annotation).

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 10 of 64

2.1.2 Pubtator

Manually extracting useful information (e.g., annotations) from biomedical literature and turning it

into structured databases is a very expensive and time-consuming task. That is why, there is the need

of automated text mining tools. PubTator is a free access web-based system, which provides

automatic annotations of biomedical concepts, such as Genes, Diseases, Species, Chemicals and

Mutations [11]. It includes about 3 million of the full-text articles in the PMC Open Access subset and

about 30 million of abstracts in PubMed. It is a tool perfectly suited for biocurators (i.e., researchers

who collect and annotate information which is distributed by biological databases) with little text-

mining experience, due to its various unique features compared to other tools.

First of all, being a web-based system, it is available to all computer platforms, without the need for

installation or maintenance. Moreover, a user who is familiar with PubMed will have no problem using

PubTator, since its interface is very close to PubMed. Thirdly, it can very efficiently generate automatic

computer pre-annotations in computer-assisted extraction of knowledge from unstructured biological

data into a computable form (biocuration). Finally, with PubTator, the user is able to either search and

retrieve articles or input a list of PubMed articles and by the completion of the biocuration, they can

download and export the annotations for database integration in multiple formats (XML, JSON and

tab delimited).

Some entity recognition tools that ensure the automatic process of results are GeneTUKit for Gene

mention, GenNorm for Gene normalization, SR4GN for Species, DNorm for Diseases, tmVar for

Mutations and a dictionary-based lookup approach for Chemicals [12].

A significant drawback of PubTator is the fact that it only provides automated concept annotations

across abstracts. However, since 2019, PubTator Central (PTC) has made its appearance, which is able

to expand the automated concept annotation to full text articles. It includes a web interface designed

for full text, updated concept annotation methods, and an expanded set of concept types. Annotations

in PTC are also available in XML, JSON and tab delimited format via the online interface, a RESTful web

service (API) for programmatic access or FTP download in bulk. PTC adds new articles every day to

always keep in synchronization with PubMed and PMC.

2.1.3 BioC

Although NLP tools are becoming more and more sophisticated, there still exists the challenge of

dealing with more complex systems. Also, according to their expertise, researchers write specific

software in order to process data in various formats. However, this results in hardly adaptable systems

and of limited use. A solution towards the aforementioned issues has to do with the discovery of BioC,

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 11 of 64

which is a simple format to represent, store and share text data, offering broad use and reuse. It is a

straightforward data structure for dealing with text and annotations, in order to achieve

interoperability and it can easily handle documents of various lengths, abstracts or full-text articles

and different annotations, including tokens, sentences, named entities (Genes, Chemicals etc.) [13].

The main goal of BioC is to provide an ease in sharing the results of an algorithm, so as to get rid of

the most essential impediment, which is the reuse of the tools, and thus support the development of

text mining systems designed for different workflows. Developers use Windows, Linux, Mac and work

in C, C++, C#, Python and so forth. That is why interoperability plays, too, a crucial role and requires

an unhindered connection among data.

In order to deal with the problems mentioned above and especially interoperability, an XML type

definition (DTD) is used [9]. XML elements contain “infon” elements that store key-value pairs with

any desired semantic information. Semantics are defined via a “key” file, which is a simple text file,

where the developer defines the semantics associated with the data. Key files may describe data not

seen before, that is why BioC users need to manually add new key files, in order to represent their

BioC data collections.

Another model that makes it possible to analyze biomedical text and annotations is the Resource

Description Framework (RDF), a standard model for data interchange on the Web. Nonetheless, XML

is better, and more widely used. Be that as it may, a combination between those two could possibly

lead to even better results.

There are dedicated libraries for BioC XML that populate and preserve native BioC classes, or data

structures, in a number of different programming languages, thus there is no requirement for internal

or external XML format knowledge. This means that text and annotations can easily be shared

between various tools. PubMed Central articles are available as large File Transfer Protocol (FTP) files

in order to be able to obtain a large number of articles. Apart from that, it is possible to download

exactly the articles needed, thanks to a RESTful web service, making it easier for updating a large

collection.

The BioC process sequence is the following: First, the data is read into BioC data classes via an Input

Connector and the XML input is either a file or from a web server. Second, the Data Processing module,

which is any kind of NLP process. Third, the Output Processor, where the output data from the BioC

class is passed, in order to produce new data in the BioC format.

The basic elements of a BioC XML file are the following:

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 12 of 64

• Collection of documents: The BioC XML file format starts with a collection of documents. It is

a set of documents with information about the original source and the creation date. The documents

consist of a succession of passages that include all the sections of a journal article.

• Sentence segmentation: Each passage consists of a set of sentences instead of the text of the

passage, as their distinction is important for NLP tools.

• Text annotations: Text annotations refer to the input and output for biomedical text

processing programs. Some biomedical examples include Genes, SNPs and Chemicals. The location tag

connects this information with the original text. An annotation is usually one continuous segment of

text. However, multi-segment annotations can also be represented. Moreover, the attribute “id” can

be added, allowing the annotation to be referenced in relations.

• Relation annotations: Relation annotations refer to the relation between entities and other

features (e.g., Gene–Chemical correlations) by specifying a set of annotations which participate in the

relation and the role of each item in this. Once again, by adding the attribute “id”, a relation can be a

member of other relations.

As already mentioned, an important feature of the BioC XML format is the “infon”, which keeps a key-

value pair with any desired semantic information. Key files define the “key” strings and the “value”

strings. A passage infon with key=“type” signals values such as “Introduction” or “Methods” of the

whole text. An annotation infon with key=“type” could indicate “Gene”, “Chemical” etc.

2.2 Deep Neural Network in Biomedical NLP

2.2.1 Machine Learning

The main difference between humans and computers is that humans learn from past experiences,

whereas computers need to be told what to do, to follow instructions. In order to get computers to

learn from experience too, Machine Learning was discovered. Of course, past experiences for humans

correspond to past data for computers. Machine Learning is an application of Artificial Intelligence

that provides systems the power to learn and improve from their own experience, without being

explicitly programmed [14]. Diving in a little deeper, we can see that the process of learning begins

with the analysis of the input data, such as examples or instructions and then the system tries to find

patterns like shapes, size, color etc. Based on these patterns, the system tries to predict the different

types of the input data and segregate them. Finally, it keeps track of all such decisions it took in the

process, in order to make sure it is learning. Thus, the next time the system is asked to predict and

segregate the different types of input data, it will not have to go through the entire process again.

The three primary types of Machine Learning [15] are, first of all, supervised Machine Learning, which

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 13 of 64

involves supervising a model, as it trains to fit on a set of trained data. Labeled training data is required

in order to predict the future, by applying what has been learned in the past. The learning algorithm

can also compare the extracted output with the correct one and find errors, so as to modify the model

accordingly. This kind of a model is generally used into filtering spam mails from email accounts for

example. In contrast, unsupervised Machine Learning algorithms consist of training data, but

unlabeled ones, so as for systems to infer a function for describing a hidden structure. Finally, there is

reinforcement learning, where the system learns on its own by interacting with its environment and

discovering errors and rewards. In other words, it is mostly based on trial and error and delayed

reward. This method could lead to maximum performance, since machines are trained to

automatically determine the ideal behavior within a specific context.

One should be very careful when selecting the kind of solution for a model, in order not to lose time

and processing cost. The factors that help to the selection of the right kind of Machine Learning

solution are the following: First, the statement of the problem, meaning the description of the model

that will be built. A very good perception of the problem can lead to the choice of the right algorithm.

Then comes the size, quality and nature of the data. For example, large and categorical data lead to

supervised learning solutions. Finally, another factor that needs to be taken into account is the

complexity of the algorithm. If a problem can be dealt with supervised learning solutions, there is no

need to apply reinforcement learning, as this would be very difficult and time consuming for no

reason.

Three common types of Machine Learning problems are classification, regression and clustering [16].

A classification problem involves predicting whether a given observation belongs to a certain category.

Based on earlier observations of how the input maps to the output, classification “guesses” a classifier

which can generate an output for arbitrary input. A classifier can then label an unseen example with

a class. For example, after a set of clinical examinations that relate vital signals to a disease, one can

predict whether a new patient with an unseen set of vital signals suffers that disease and needs further

treatment. The algorithms that fall on the classification are Naive Bayes, KNN, Logistic Regression and

Random Forest. Moving on, a regression problem is a kind of Machine Learning problem that tries to

predict a continuous value for an input based on previous information. The input variables are called

the predictors and output the response. Regression is similar to classification, as it also estimates a

function that maps input to output, based on early observations. But this time an actual value is

estimated, not just a class of an observation. There are many different applications of regression, such

as the estimation of the chances of getting hired for a specific job based on the university grades.

Finally, in clustering, the goal is to group objects that are similar in clusters, while making sure that the

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 14 of 64

clusters themselves are not similar. Clustering is different in the sense that you don’t need any

knowledge about the labels. Also, there is no right or wrong. Different clustering reveals different

information about the objects. A popular clustering method is k-Means, which clusters the data in k

clusters, based on some similarity measure.

There is an alternative and shortened definition of Machine Learning: “The use of data in order to

answer questions” [17]. Using data is what we refer to as training and answering questions is what we

refer to as making predictions. Training refers to using the data, in order to fine-tune a predictive

model, which is then used to make predictions on previously unseen data. The more the data, the

better the model.

Let's now put together the 5 main areas of the Machine Learning process [18]:

• Data collection and preparation: This step includes the whole process from choosing where

to get the data, up to the point it is ready for feature engineering. During data preparation, we load

the data in order to use it in Machine Learning training. Moreover, data needs to be split into two

parts. The first part is used for the training of the model and is the majority of the dataset. The second

part is used for the evaluation of the trained model’s performance. This is a very important step, since

the quality and quantity of the data determine the performance of the model.

• Feature selection and feature engineering: This step includes all the changes applied to the

data, from the clean up until its importation into the Machine Learning model.

• Selection of the Machine Learning algorithm and training of the first model: Training is

considered the bulk of Machine Learning. In this step, data is used to incrementally improve the

model’s performance. In a small scale, the formula for a straight line is y=m∙x+b. The variable x is the

input, y is the value of the line at position x, m is the slope of the line and b is the y-intercept. The m

and b values are used for training, affecting the position of the line. In Machine Learning, there are

many features, meaning that there are many ms as well, which all together form a matrix, denoted as

W and called weight matrix. The same applies for the b values, which are called biases.

Before training, some random values are initially assumed for W and b, in order to predict the output

during the training process. As it is expected, poor results are extracted. After that, the model’s

predictions are compared to the expected output and the values in W and b are adjusted, so as to

produce more correct predictions. This process is then repeated and after each iteration, the weights

and the biases are accordingly adjusted.

• Model evaluation: After training, the model is tested against data that has never been used

for training, so as to evaluate how well the model performs against data not seen before. Usually, a

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 15 of 64

training-evaluation split is somewhere in the order of 80/20 or 70/30. depending on the size of the

original source dataset. A lot of data means no need for a big fraction for the evaluation dataset.

• Model tweaking, regularization, and hyperparameter tuning: This is where the model is

iteratively further improved by tuning the training parameters. One example, leading to higher

accuracies, is by running through the training dataset multiple times. Another tuning parameter is the

learning rate, which determines the step size at each iteration while moving towards a minimum of a

loss function, based on the information from the previous training step.

It is important that a good model is defined from the start, otherwise it might take too much time to

make small changes in order to improve the model.

These parameters are referred to as “hyperparameters”. They are parameters that work at a higher

level and control the behavior of the learning algorithm. The tuning of these hyperparameters can be

set by the designer or they can also be learnt through the process of validation. It is an experimental

process that depends on the specifics of the dataset, model, and training process.

2.2.2 Deep Neural Network

Artificial Neural Networks (ANN) are finite specific part of Machine Learning. An ANN is a function that

transforms input data to output data based on training over many correct examples [19]. It is a

network that is a collection of neurons connected together. Each neuron acts as a processing unit,

collects input, computes its weighted sum and activates the output. Although individual neurons are

simple, the entire neural network exhibits great processing potential. If this is done correctly, then

flexible, nonlinear systems will be created, which might exhibit “artificial intelligence”, such as the one

of the human brain. Early networks used a function called sigmoid function, in order to squish the

relevant weighted sum into the interval between zero and one, motivated by the biological analogy,

either being inactive or active. However, few modern networks use sigmoid anymore. Nowadays,

ReLU is very popular, as it seems much easier to train [20]. ReLU stands for Rectified Linear Unit and

has an activation function of the form depicted in Fig. 1. So, below zero, the output is zero and above

zero the output is linear. Thus, it is a piecewise linear function with a very simple implementation.

Moreover, activation functions that lead to probability distributions can be defined. These are known

as SoftMax Neurons. The key idea is that if I have a collection of numbers in my output, where the

higher the number the higher the probability for the output to correspond to this particular output,

using the SoftMax equation:

𝑦
𝑙
(k) =

𝑒𝑧𝑙(𝑘)

∑ 𝑒𝑧𝑙(𝑖)𝑑𝑙
𝑖=1

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 16 of 64

These numbers can be transformed into a probability distribution. The output values are between

zero and one and sum to one and the output of a neuron depends on the outputs of all the other

neurons in its layer.

Neural Networks are not isolated neurons. We have to think of a global structure. Typically, in order

to form a NN, neurons have to be organized in layers. In its simplest form, we have a layer of neurons,

the output layer and an input layer which is a layer of input values. These values are fed into the

neurons and each connection has its own weight. The real layers are the weights, also called as hidden

layers and not the inputs and the outputs. Three or more layers are able to create complex shapes.

Two very famous network topologies are the Feedforward NN (FNN) and the Recurrent NN (RNN)

[20,21]. The FNN starts with the input layer. Information is propagated through all hidden layers and

eventually arrives to the output layer. There are no connections between neurons in the same layer

and from one layer to the previous one. This does not apply for the RNN. In this case, the processing

capability is much higher, but on the other hand, the entire system may exhibit complicated dynamics

and be difficult to train. In practice, its architecture is like having an FNN that unrolls over time. A

single neuron receives an input, produces an output and sends its own output to another neuron that

receives the next input and combines it to compute the output and also sends its output to the next

neuron and so on (see Fig. 2). Thus, having just one neuron with the recurrent connection is more or

less equivalent to having multiple neurons implementing some kind of recurrent relation.

As far as the learning process of NNs is concerned, its structure is predefined, meaning that neurons

cannot be added or removed as the network is trained. So, typically, we start with a fixed number of

neurons and layers and then we try to adjust the parameters of the model. So, in the learning

Fig. 1: Rectified Linear Unit (ReLU) activation function.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 17 of 64

Fig. 2: Recurrent Neural Network architecture.

process, we try to fix just the parameters, but this is done using labeled training examples. That means

that, for specific inputs, we know the correct output and we present those examples to the network.

This process is done for several thousands of examples and since these are labeled correctly, the

network is, in a sense, taught what we want to do. This is called supervised learning as already

mentioned.

Now let’s move on to deep NNs and see what “deep” means. The simple answer is that deep means

more than two hidden and output layers. So, strictly speaking, it is not something “new”. The reason

why we need at least two layers is because we have a universal approximator. The universal

approximator theorem states that “A feed-forward network with a single hidden layer containing a

finite number of neurons, can approximate continuous functions on compact subsets of Rn, under mild

assumptions on the activation function.” [22]. Recent theoretical results show that there is indeed

some power into using deep architecture with many hidden layers, because the same function can be

represented with exponentially fewer units. The reason why DNNs came into life during just the last

decade and not earlier has to do with the fact that CPUs are now much more powerful, the GPUs

appeared to support graphics computations but, in a sense, they are also used for the parallel

computations required for training deep architectures and finally the fact that big data also appeared.

RNNs have had a lot of success with natural language data, but they do have some drawbacks. Two of

the biggest drawbacks are that each sequence needs to be “seen” in order, which means that there is

a limit to how much you can parallelize the processing, breaking apart the beginning and the end of

the sequence and then handling those on different machines. As a result, there is a bottleneck to how

fast you can train these models. Another drawback is that it is easier for them to capture relationships

between points that are close to each other than it is to capture relationships between points far from

each other.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 18 of 64

2.2.3 Transformers

In order to help address some of these problems, Transformers were proposed [23]. Transformers are

models that can translate text to even generate computer code. They are also currently being used in

biology in order to solve the protein folding problem.

In general, Transformers are a type of NN architecture and until they came around, the way deep

learning was used to understand text was with the RNN model. Let’s say we translate a sentence from

English to Greek. An RNN takes as input an English sentence and processes the words one at a time

and then sequentially extracts their Greek counterparts. However, as already mentioned, RNNs have

problems with large sequences of text and they are hard to train. This is where the Transformers

appeared, initially as their only purpose to do translation. Unlike RNNs, Transformers can easily be

parallelized, meaning that huge models can be trained.

There are three main innovations that make this model work so well: Positioning, Attention and Self-

Attention. To begin with, Positional Encodings is the idea that instead of looking at words sequentially,

each word of the sentence is given a number before being fed into the NN, depending on its order in

the sentence. In other words, information about word order is stored in the data itself rather than in

the structure of the network. Then, as the network is trained on lots of text data, it learns how to

interpret these positional encodings. More specifically, the positional encoder is a vector that has

information on distances between words. The English sentence is passed through the input

embedding [24] and the vector encoding of position in sentence is applied, thus getting word vectors

which have positional information, the context. So, the NN learns the importance of word order from

the data. The next innovation, the Attention mechanism, is a NN structure that allows the text model

to look at every word in the original sentence when making a decision about how to translate a word

in the output sentence. The model knows which words it attends to by learning over time from data.

By seeing thousands of examples of English to Greek sentence pairs, the model learns about word

order, gender and generally all the grammatical stuff. However, the real innovation of the last years is

Self-Attention. Self-Attention is not just trying to align words, but instead it tries to understand the

underlying meaning in language, so as to build a network that can do any number of language tasks.

Attention can be a very effective way to get a NN to understand language if it is turned on the input

text itself. Self-Attention allows a NN to understand a word in the context of the words around it. It

can also help NNs distinguish the meaning of the same word between different sentences, or

recognize parts of speech. For each word, we have an attention vector that captures contextual

relationships between words in the sentence. Self-Attention looks at the relationship between each

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 19 of 64

item in the input sequence and every other item in the input sequence. This is done several times, so

each head learns attention relationships independently. This is called multi-headed self-attention.

To sum up, the overall Transformer architecture uses a model that has an encoder and a decoder. The

encoder takes in the input sequence and transforms it into embeddings (numeric representations of

the input sequence). The decoder takes this embedding, in order to create the output sequence. The

encoder and the decoder are both made up of many multi-headed self-attention modules stacked on

top of each other.

Before the appearance of Transformers, Long Short-Term Memory (LSTM) networks were used for

language translation [25]. However, they had some serious drawbacks. They were slow to train, since

words were passed in and generated sequentially, so it took many time steps for the NN to learn. Also,

although the bidirectional system was applied, they were learning left to right and right to left context

separately and then concatenating them, thus losing the context.

One of the most popular Transformer-based models is called BERT and it is going to be explained at

the next section.

2.2.4 BERT

As time goes by, progress is rapidly accelerating in Machine Learning models that process language.

This progress in natural language understanding, as applied in research, represents one of the biggest

steps forward in the history of it (i.e., the research).

One very big challenge in NLP is the shortage of training data, because it applies too many distinct

tasks [2]. Thus, each task datasets are very specific and contain limited training examples. However,

deep learning-based NLP models exploit large amounts of data. In order to tackle this problem

concerning data, researchers have developed techniques for training general purpose language

representation models, using unannotated text that exists in abundance on the web. The model is

then fine-tuned on small-data NLP tasks, thus improving in accuracy compared to training from

scratch.

Three years ago, a new technique was developed for NLP pre-training, called Bidirectional Encoder

Representations from Transformers (BERT) [2,26,27]. Thanks to this technique, one can now train their

own sentiment analysis task, named entity recognition, question answering and other models in less

than an hour on a single Cloud TPU, or in a few hours using a single GPU.

BERT is based on existing strategies for applying pre-training language representations, such as

Generative Pre-Training Transformer and ELMo [28]. However, this is the first deeply bidirectional,

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 20 of 64

unsupervised language representation, pre-trained using only a plain text corpus [2]. BERT prevails

over other contextual models, which generate a representation of each word that is based on the

other words in the sentence, as it represents a word using both its previous and next context, starting

from the bottom of a deep neural network, so it makes it bidirectional.

In other words, BERT models “weight” the full context of a word by looking at the words that come

before and after it. BERT’s neural network architecture is shown in Fig. 3 [2], depicting its differences

compared to previous contextual pre-training models.

The arrows indicate the information flow from one layer to the next. The green boxes indicate the

final contextualized representation of each input word.

BERT is the first model successfully used to pre-train a deep neural network. It is the result we get if

we stack the encoders of the Transformers model on top of each other and make the model deeper

with 12 layers (Fig. 4) [29].

BERT is trained on huge text dataset. But where does it come from? When we are doing machine

translation, we have got sentences from different languages thus we have labeled training data. But

if we remove the decoders, how are the encoders trained? The answer is the key contribution of BERT.

That is figuring out tasks to train BERT on, for which we have tones of labeled training data.

Fig. 3: BERT’s neural network architecture versus previous contextual pre-training models [2].

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 21 of 64

Fig. 4: BERT’s neural network architecture.

So, its training consists of two steps. The first step is pre-training, so that the model can understand

language and context and the second step is fine-tuning, where the model learns how to solve specific

tasks, knowing the language [27].

As far as the first step is concerned, although a unidirectional model is trained conditioning each word

on its previous words, this method cannot be applied to a bidirectional model. That is why the mask

technique is used, where some random words of the input are masked out and then each word is

conditioned bidirectionally, in order to predict the masked words/tokens.

Another task included in the pre-training model, in order to help BERT handle relationships between

sentences and understand context across different sentences themselves, is next sentence prediction.

BERT takes in two sentences and predicts if the second sentence follows the first.

Two sentences are given as input, with some random masked words. The embedding vector that is

used as input consists of three embeddings: The token embeddings which are the pretrained

embeddings, the segment embeddings, which is the sentence number encoded into a vector and the

position embeddings, which is the position of a word within the sentence that is encoded into a vector.

The last two embeddings account for the ordering of the inputs.

Inside an encoder, it is like having two main layers: A multi-headed self-attention layer and an FFNN

[29].

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 22 of 64

Thanks to the self-attention layer, the encoder can look at all the other words around it in the input

sentence as it encodes a specific word. It figures out how to incorporate those words into the encoding

of this specific word. Then, the results of the self-attention are fed to the FFNN. Each word has a

vertical line going through the 12 Transformer layers (see Fig. 4 above). Let’s analyze what these lines

represent.

We know that words are represented by embeddings. They have their own vector of length 768. Let’s

say that the encoder encodes one word at a time. The encoder receives a list of vectors, one vector

per token and passes them into a “self-attention” layer and then into an FFNN. The output, the

“enriched” embedding is sent out upwards to the next encoder and so on.

Self-attention’s mechanism resembling the one RNNs are using, combines their representation of

previous words (and consequently vectors) that they have processed with the current one that they

are processing, by maintaining a hidden state. So, we have the creation of an attention vector, which

captures contextual relationships among words in the input sentence. Eight such attention vectors are

determined per word and a weighted average is taken in order to compute the final attention vector

for every word.

A single-headed attention looks like this: For every single word, we have V, K and Q vectors that extract

the attention vectors for it (Fig. 5). They are used in order to compute the outputs of the self-attention

layer, applying the following formula:

Z = softmax(
𝑄 ∙ 𝐾𝑇

√𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑄,𝐾 𝑜𝑟 𝑉
) ∙ V

For multi-headed attention, we have multi-headed matrices WV, WK and WQ. So, we will have one

attention vector Zi for every word. More specifically, this self-attention calculation mentioned above

is performed eight times with weight different matrices, thus ending up with eight different Z matrices.

However, the FFNN is expecting one matrix, one vector for each word. That is why these eight matrices

are concatenated and multiplied by another weighted matrix, WZ, resulting in a Z matrix that is sent

forward to the FFNN.

Each word’s line/path is independent of the others’. Thus, we can use parallelization. That is why all

the words can be passed on to the encoder block at the same time. The output is a set of encoded

vectors, one for every word.

Concerning the output, [CLS] is the binary output for the next sentence prediction, producing 1 if the

second sentence follows the first in context and 0 if it doesn’t. It is used as a token to represent the

classification of a specific input. The [SEP] tokens are used at the end of every input sequence. The Ts

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 23 of 64

Fig. 5: Single head attention architecture.

are word vectors that are generated simultaneously and correspond to the outputs for the masked

language model problem.

As far as fine-tuning is concerned, BERT can be further trained on specific NLP tasks, such as question

answering. This model is trained by modifying the inputs/weights and the output layer. As inputs, the

question is given along with a passage that contains the answer. The output layer outputs the start

and end words that include the answer.

Since the first paper [27] was published, there has been a lot of work on BERT. The architecture has

been extended to make it smaller, more compact and cheaper to run. Some popular extensions are

RoBERTa, DistilBERT and AlBERT.

There are some real benefits to using BERT. The most important one is that since it is pretrained, it

can be used as input to a smaller model, avoiding recomputing the large BERT model. Moreover, if the

fine-tuning is successful, a very good accuracy can be achieved. Also, BERT’s performance depends on

how big we want it to be. The BERT Large model has 340 million parameters and achieves much higher

accuracies than the BERT Base which has 110 parameters. Furthermore, the Base version has twelve

encoder layers, and the Large version twenty four. They both have large feedforward-networks (768

and 1024 hidden units, respectively), and many attention heads (12 and 16, respectively). Finally, pre-

trained BERT models are available in more than a hundred languages. On the other hand, there is an

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 24 of 64

important drawback. Due to the fact that there is a lot of weights to update, it is slow to train, thus

leading to the need of a lot of computing, so it is expensive.

2.2.5 BioBERT

The progress of NLP along with the increase of the number of biomedical literature has led to the

growing development of expert, biomedical text mining for extracting information. However, even

with the application of advanced NLP methodologies, such as Word2Vec and BERT, the performance

of the models is not so good, due to the fact that those models are trained on texts of general context

and not on expert, biomedical literature, where the corpora are different. Due to the fact that BERT

achieves better and better performances, it is now adapted for the biomedical domain, so as to

achieve more satisfactory results on biomedical texts. Thus, BioBERT was introduced (Bidirectional

Encoder Representations from Transformers for Biomedical Text Mining), which is an NLP system

focused and trained on biomedical corpora of a very large scale [30]. This pre-training has a drastic

effect on the model’s performance. More specifically, according to the evaluation of [30], BioBERT

obtains higher F1 scores - F1 Score is the weighted average of Precision and Recall, score metrics that

will be described in later chapters - in biomedical named entity recognition (NER) (0.62) and

biomedical relation extraction (RE) (2.80), and a higher Mean Reciprocal Rank (MRR) score (12.24) in

biomedical question answering (QA) than the current advanced models. In order to tackle the problem

of words not existing in the vocabulary, BioBERT uses WordPiece tokenization, meaning that words

are sub-tokenized to smaller tokens, which, added together, constitute the primary word.

BioBERT can be applied to several text mining tasks including Named Entity Recognition (NER). NER is

a technique used for identifying domain-specific nouns in a biomedical corpus. BioBERT learns

WordPiece embeddings during pre-training and fine-tuning.

The technique of relation extraction is used for detecting relations of named entities in a biomedical

corpus. Target named entities are anonymized in a sentence using pre-defined tags such as @GENE$

or @CHEMICALS$ [30].

Question answering is a technique within the fields of NLP in order to build systems that automatically

answer questions posed in natural language given related passages. The fine-tuning of BioBERT for QA

was done using the same BERT architecture used for SQuAD [31]. Token level probabilities for the

start/end location of answer phrases were computed using a single output layer. Also, by using the

same pre-training process of [32], the performance of both BERT and BioBERT was drastically

improved.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 25 of 64

While BERT often does not recognize some biomedical named entities, BioBERT will most probably

recognize them and also find their exact boundaries. BioBERT can give correct answers to simple

biomedical questions that BERT cannot, as well as provide longer named entities as answers.

2.3 Google Colab

Google Colab is an executable document that lets you write, run and share code with Google Drive

[33]. It connects Notebook to a cloud-based runtime, thus giving the user the possibility to execute

Python code without any required setup on their machine. If you would like to share your notebook

with others, you can do so via Google Drive sharing or by exporting the Notebook to GitHub. Google

Colab is essentially a Jupyter Notebook hosted on Google servers with additional functionalities,

making it especially popular among data science artificial intelligence communities. So, the Notebooks

created in Colab can be viewed and executed in Jupyter Notebook, JupyterLab and other compatible

frameworks. Moreover, all the major libraries and tools are already pre-installed and pre-setup.

There are three types of servers that Google can allocate to the user: It is possible to choose among a

GPU or a TPU hardware accelerator, or no accelerator, meaning that the code will run on CPUs. The

accelerators are needed in cases that the algorithms need more computational power.

Google Colab gives us ~12-13 GB of RAM for free. However, most of BERT_Large’s results cannot be

reproduced using this amount of RAM memory, because the maximum batch size that can fit in

memory is too small. That is why lighter BERT architectures are used, as mentioned in the previous

section.

2.3.1 Jupyter

Jupyter is an open-source software that supports scientific computing and interactive data science

across programming languages. It supports over 40 programming languages, such as Python and R

[34].

Jupyter is centered around Jupyter Notebook, which is a web - based environment, where we can put

text, mathematics and figures, explaining what we are going to do. Then, we can write the code that

implements what we want to do. It is useful for researchers, as an interactive exploratory

environment. Since it is a document-based interface, what you get in the end is a document that you

can share.

Python is usually preferred because it is a language of choice for data science, for people who want to

have “real” results. It combines the power of encrypting languages and the compiled languages have

a very simple and easy to read syntax.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 26 of 64

Chapter 3: Research methodology

As already mentioned, Google Colab offers free GPUs and TPUs. Since the computational power

needed for this task is very big, we take advantage of this by attaching a GPU. The GPU was added by

going to the menu and selecting: Edit → Notebook Settings → Hardware accelerator → (GPU).

Then the following code (Fig. 6) was run to confirm that the GPU was detected.

Fig. 6: GPU detection check.

In order for the torch library to use the GPU, the GPU was identified and specified as the device (Fig. 7).

Later, data was loaded onto the device.

Fig. 7: In order for the torch library to use the GPU, the GPU was identified and specified as the device.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 27 of 64

Afterwards, all the necessary for the implementation of our goal packages were imported, such as the

library for regular expression operations, the BioC library in order to deal with BioCreative XML data,

meaning to read from and write to it, the pandas library and others (Fig. 8).

Fig. 8: Importation of necessary packages.

After the importation of the libraries, some basic functions were defined (Fig. 9). The get_filenames

function seeks the path where all the BioC XML files are and returns those files. The parse_bioc

function reads and returns the text from each file that it loads.

Fig. 9: Definition of basic functions.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 28 of 64

As already briefly mentioned above, the structure of the XML files is the following: Collection →

Document → Passage → Annotation. Collection is the “title” of the file, the main/initial tag that

encapsulates all the information of the file. The document tag corresponds to the papers. Thus, each

document is one paper. The bio XML files that were used for this thesis include about 100 papers,

each. The passage tag is what its name infers. Each passage corresponds to small passages of the

whole text of each paper/document. Finally, the annotation tag encapsulates information about

domain-specific nouns, such as their name (e.g., GLUT9) and their type (e.g., Gene).

Fig. 10: Definition of basic functions.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 29 of 64

Having mentioned all these, the parse_collection function scans each paper and returns the whole

text of the file and then all the entities (Fig. 10). More specifically, four sets were created, one

containing all the Disease entities, one containing all the Gene entities, one containing all the Chemical

entities and finally, the fourth set contains all the SNP entities.

The import_graph function calls the get_filenames function and the parse_bioc function and returns

the whole text and all the entities from all the XML files that exist in the given directory, again

separated into their own sets (Fig. 11).

Fig. 11: Definition of basic functions.

Here, the import_graph function is called, so the wtext variable contains the whole text and the

variables stext_D, stext_S, stext_G, stext_C contain the Disease, the SNP, the Gene and the Chemical

entities, respectively. For this study, 1,000 files were parsed, which are translated to roughly 100,000

papers.

The wtext variable was converted to list and the list_wt_v variable made some changes to specific

sentences that lacked some spaces or a full stop, so as to be in the correct form for a future part of

the algorithm (Fig. 12).

The datatostring function converts the given list (the list_wt_v list in our case) of sentences to strings

(Fig. 12).

The next step is depicted in Fig. 13. Regular expressions were used, in order to split the sentences by

the dot (“.”) delimiter. Then the algorithm scanned the sentences one by one and each sentence was

split to its words. After this “tokenization”, the algorithm, having the sets with the entities, searched

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 30 of 64

Fig. 12: Conversion of the list_wt_v variable to the correct form for a future part of the algorithm.

each token and if it identified an entity, it would add the sentence that has this token to a new set,

called entities.

Otherwise, the rest of the sentences were added to another set, called set_wd. This set has all the

sentences that do not contain any entity at all. After that, each sentence of the set entities was

Fig. 13: Creation of sets containing different entities (part 1).

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 31 of 64

scanned and “tokenized”. The algorithm deciphered the type of the entity that the scanned sentence

contained and put this sentence to a new set that only contains this kind of sentences. Thus, if the

algorithm identifies an entity which is a Disease, it adds the corresponding sentence to set that only

includes sentences which have at least one Disease entity. The same applies for the rest three entities.

It is important to mention that these new sets do not include sentences that only have one type of

entity. For example, one sentence can contain both a Disease and a Gene. This means that the same

sentence will be added to two sets.

The next step was to create sets that contain sentences with only one entity each and sets that contain

any entity but one, each (see Fig. 14). For instance, the set named not_disease contains sentences that

include Genes, SNPs or Chemicals but no Disease entities.

Fig. 14: Creation of sets containing different entities (part 2).

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 32 of 64

In table 1, the number of sentences of each aforementioned set is depicted.

Table 1: Number of sentences per entity and category.

Total sentences 7,995,701

Sentences with no

entities
299,718

Sentences that:

have this entity in

general

do not have this entity

but have other

entities

have only this entity

Disease 3,353,854 4,422,129 33,574

SNP 3,432 7,769,516 22

Gene 7,526,112 249,871 966,635

Chemical 6,317,236 1,458,747 158,584

At the final step of this pre-processing part of the code, meaning the preparation of the dataset, two

datasets were created for each entity: More specifically, the first dataset, which was named ML12,

contained the sentences that had a specific entity and the sentences that contained any other entity

except for this specific one. The second dataset, which was named ML13, again contained the

sentences that had a specific entity and sentences that did not contain any entity at all. For each

dataset, one category of sentences was labeled with the number 0 and the other with the number 1,

so as to be separated. In total, eight datasets were created, two for each entity (Disease, Gene, SNP,

Chemical).

The code below depicts the procedure followed, in order to create the two datasets for the case of

the Disease entity (see Fig. 15,16). At first, the sentences of the already calculated set that contains

Disease entities were labeled with 1, whereas the sentences that contained any other entity were

labeled with 0. Finally, all datasets were extracted in a .tsv as well as in a .csv format for the needs of

the following steps. The same procedure was followed for the rest of the entities, so in total, eight .tsv

and eight .csv files were created.

It is important to mention that only sentences that were comprised of more than 15 and less than 300

letters were extracted. As it was observed, most sentences with less than 15 letters corresponded to

titles of paragraphs, or the declaration of the authors of the papers, that is why they were excluded.

The reason why sentences with more than 300 letters were excluded had to do with the computational

power during the Machine Learning process that will be described in a more analytic way, in the next

Chapter.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 33 of 64

Fig. 15: Dataset extraction (part 1).

Up to this point of the code, the model was running for about two hours. The part where the

processing of the algorithm “stack” was the parsing of the BioC files, due to their high volume.

The next and final step was the classification of the sentences containing those four biomedical

entities, so as to answer the question about which types of entities can be easily recognized. The aim

of the model is, after being given a sentence, just like those given in the dataset, to be able to label it

with either 1 or 0, thus informing the user if it contains a specific biomedical entity (SNP, Disease, Gene

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 34 of 64

Fig. 16: Dataset extraction (part 2).

or Chemical), if it contains entities except for a specific one, or finally, if it doesn’t contain any

biomedical entity at all.

To begin with, the huggingface Transformers library [3,4] was installed, in order for the NLP model to

be able to be loaded (Fig. 17).

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 35 of 64

Fig. 17: Installation of the huggingface Transformers library.

Then, all the necessary tools were imported (Fig. 18).

Fig. 18: Importation of necessary libraries.

After that, Google Drive was mounted to Google Colab. All the dataset files that were extracted before,

were uploaded to Google Drive (Fig. 19).

Fig. 19: Mount of Google Drive to Google Colab.

By mounting Google Drive to Google Colab, the latter had access to the dataset files, so they were just

imported one by one directly into a pandas dataframe (Fig. 20).

Fig. 20: Dataset importation.

Each dataset file was sorted by the label value, meaning that all sentences labeled with 0 were output

after all the sentences labeled with 1. This means that if I want to pick a subset of the whole pandas

dataframe, let’s say the first 2,000 sentences, in order to proceed with the classification, only

sentences labeled with 1 will be picked. That is why the dataframe was firstly shuffled (Fig. 21).

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 36 of 64

Fig. 21: Dataset shuffle.

By executing the code depicted below, the number of “0s” and “1s” were printed. For the case of

Genes and the ML12 dataset for example, we can see that the “1s” are much more than the “0s” (see

Fig. 22).

Fig. 22: Count of sentences with label 0 and sentences with label 1.

If we choose to run the classification with (the first) 2,000 sentences in total for example, we observe

that the “1s” are again much more than the “0s” (Fig. 23).

Fig. 23: Number of sentences labeled with 0 and 1 after choosing the first 2,000 sentences before the

adjustment of the dataset range.

That is why the dataset was modified and adjusted appropriately for each entity, for each case, so as

to have a balanced number of sentences, independently of the chosen range (Fig. 24).

Fig. 24: Number of sentences labeled with 0 and 1 after choosing the first 2,000 sentences after the

adjustment of the dataset range.

This algorithm was split into two models, DistilBERT and Basic Logistic Regression.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 37 of 64

As already mentioned, DistilBERT is a more compact extension of BERT architecture, developed by the

Hugging Face team [3,4]. Hugging Face team applied a technique called distillation, which compresses

a large model (teacher) into a smaller model (student), and knowledge distillation, where the student

is trained to reproduce the behavior of the teacher model. For our case, the student is a small version

of BERT, without the token-type embeddings and the pooler that is used for the next sentence

classification. The layers were reduced to half and the rest of the architecture stayed the same.

Despite the aforementioned changes, the hidden size was kept constant, since changes in the hidden

dimension wouldn’t affect the Transformer architecture. So, reducing the hidden size would reduce

the parameters and make the model smaller. However, it wouldn’t make it faster.

The training setup is purposely limited in terms of resources. DistilBERT is trained on eight 16GB V100

GPUs for approximately three and a half days, using the concatenation of Toronto Book Corpus and

English Wikipedia (same data as original BERT) [3].

Deep learning inference is the process of using a trained DNN model to make predictions against

previously unseen data. So, as far as inference time is concerned, distilBERT is 60% faster than BERT.

All in all, distilBERT reduces the size of a BERT model by 40%, while retaining 97% of its language

understanding capabilities and being 60% faster.

Fig. 25: Creation of the embeddings for the input sentences using the pre-trained distilBERT model.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 38 of 64

The pre-trained distilBERT was used, so as to create the embeddings for the sentences initially given

from the dataset as input (Fig. 25).

After the distilBERT‘s processing was done, this extracted output was taken by a basic Logistic

Regression model from scikit-learn Machine Learning library [35]. The role of this basic Logistic

Regression model was to classify the input sentence to either 1 or 0. Logistic Regression is a statistical

method for predicting two or more binary classes [36]. It is based on the sigmoid function (Fig. 26) and

the natural logarithm function (Fig. 27).

Fig. 26: Sigmoid function curve.

Fig. 27: Natural logarithm function curve.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 39 of 64

The sigmoid function is applied for classification methods, due to the fact that it has values close to 0

and 1 across most of its domain. Fig. 27 depicts the natural logarithm log(𝑥) of some variable 𝑥, for

values of 𝑥 between 0 and 1.

Let’s say that we have a set of r independent variables 𝐱 = (𝑥₁, …, 𝑥ᵣ) and we want to implement the

Logistic Regression of a dependent variable y. We start with the known variables of the xi inputs and

the corresponding output yi for each observation 𝑖 = 1, …, 𝑛. The aim is to find the Logistic Regression

function p(x) such that the predicted outputs 𝑝(𝐱ᵢ) are as close as possible to the actual output 𝑦ᵢ for

each observation 𝑖 = 1, …, 𝑛. Thus, for our case, as close as possible to either 0 or 1. That is why the

sigmoid function is used.

Having the Logistic Regression function 𝑝(𝐱), we can predict the outputs for new and unseen inputs.

The basic methodology of Logistic Regression is the following. Since it is a linear classifier, the linear

function 𝑓(𝐱) = 𝑏₀ + 𝑏₁𝑥₁ + ⋯ + 𝑏ᵣ𝑥ᵣ is used. The variables 𝑏i are called the predicted weights or

coefficients. The Logistic Regression function 𝑝(𝐱) is the sigmoid function of

𝑓(𝐱): 𝑝(𝐱) = 1 / (1 + exp(−𝑓(𝐱)). That is why, it is close to either 0 or 1. The function 𝑝(𝐱) is the predicted

probability that the output for a given 𝐱 is equal to 1 and 1 − 𝑝(𝑥) is the probability that the output is

0. Logistic Regression determines the best predicted weights such that the function 𝑝(𝐱) is as close as

possible to all actual outputs 𝑦ᵢ, 𝑖 = 1, …, 𝑛, where 𝑛 is the number of observations. The process of

calculating the best weights using available observations is called model training or fitting.

Fig. 28 depicts a general view of the whole process described above. The data passed between these

models is a vector of size 768 (BERT Base), which is an embedding for the input sentence and comes

from the result of the first position, which receives the [CLS] token as input.

Between the above two models, only the Logistic Regression model was trained. For distillBERT, an

already pre-trained model was used. However, it was trained or fine-tuned for sentence classification.

Thus, the output of distilBERT was taken and split into a training and a testing set, so as for Logistic

Regression to evaluate this new dataset (Fig. 29). By default, 75% of the whole set was used as the

training set and the rest 25% was used as the testing set. Of note, the output was first shuffled before

being split, meaning that it doesn't just take the first 75% of examples as they appear in the dataset.

The next step was to train the Logistic Regression model on the training set.

Let’s go back to our code. A pre-trained distilBERT model was loaded with a distilBERT tokenizer (Fig.

30). The function loaded all the pre-trained weights for us from the distilBERT layers. The distilbert-

base-uncased model is a distilBERT model, pre-trained on the same data used to pre-train BERT, using

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 40 of 64

Fig. 28: A general depiction of the flow path through distilBERT till the output of the label.

distillation with the supervision of the “bert-base-uncased” version of BERT. “bert-base-uncased”

means that it is the version that has only lowercase letters and is the smaller (“base”) version of the

Fig. 29: Train/Test split for the output of distilBert model creates the dataset that will be trained and

evaluated on the Logistic Regression model.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 41 of 64

two. The model has 6 layers, 768 dimensions and 12 layers/heads, totalizing 66M parameters. In BERT

uncased the text has been lowercased before the WordPiece tokenization step.

The pre-trained tokenizer was loaded based on the “distilbert-base-uncased” model, with a vocabulary

size of 30,522 words, a maximum sentence length of 512 tokens and the following special tokens:

'unk_token': '[UNK]', 'sep_token': '[SEP]', 'pad_token': '[PAD]', 'cls_token': '[CLS]', 'mask_token':

'[MASK]' [4].

In order for the sentences to be passed through BERT, they need to be pre-processed, meaning to be

adjusted such that their format is compatible with BERT’s requirements.

So, the first step was the tokenization of the sentences. In other words, each sentence was split into

words and subwords (Fig. 30). It is important to mention again that BioBERT does not have its own

vocabulary of tokens based on the corpus.

Fig. 30: Pre-trained distilBERT model loaded with a distilBERT tokenizer.

Instead, it uses the same tokens as the original BERT, so as to maintain compatibility. The tokenization

was done for all sentences together as a batch (Fig. 31).

Fig. 31: Tokenization for all sentences together as a batch.

After tokenization, each sentence was turned into a list of numbers, of IDs (Fig. 32).

Fig. 32: Conversion of sentences to lists of numbers.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 42 of 64

The next step of pre-processing was padding. All the lists were padded to the same size, so the vectors

were made the same size, by adding the 0 token to the shorter sentences, till their length reached the

length of the longest sentence (Fig. 33).

In case that some sentences’ length is longer than 512 tokens, truncation is necessary as well. That

means the opposite of padding. Some tokens need to be dropped, hoping that the remaining text is

enough to perform the task well.

Fig. 33: Padding of lists to the same size.

The new matrix consists of many zero values due to the padding. Those 0 padding tokens are

incorporated into the model’s decision making, impacting both the training speed and the test set

accuracy. That is why an array was created in order to indicate the padding and ignore it (Fig. 34).

Fig. 34: Creation of the attention mask.

The new matrix is now ready to be passed to distilBERT (Fig. 35).

Fig. 35: The final matrix that is passed to distilBERT. This matrix is the result of the print(padded)

command. It depicts the tokens in each sentence of n input sentences.

Then, the input tensor and the attention mask arrays were created via the padded token matrix and

the attention mask array, respectively, in order to be sent to distilBERT (see Fig. 36).

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 43 of 64

Fig. 36: Creation of the input tensor and the attention mask arrays.

This step was run with torch.no_grad(). Torch.no_grad() is a context manager that deactivates

gradient calculation. It contributes to the reduction of the memory usage and it speeds up

computations.

The variable last_hidden_states holds the results of the processing. It is a tuple with shape (number

of sentences) x (max number of tokens of the longest sentence) x (768 which is the number of hidden

units in the distilBERT model) (Fig. 36,37).

As we know, BERT consists of 12 Transformer layers. On the output of the 12th Transformer, only the

first embedding is used by the classifier. The [CLS] token, which corresponds to the first token of each

sentence, is the only significant part of the sentence when we apply sentence classification. That is

why the rest tokens of the sentences are discarded and only the output for the [CLS] token is kept,

which represents an embedding for the entire sentence.

Fig. 37: The optical output of the last_hidden_states variable. BERT output tensor / predictions.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 44 of 64

The 3D last_hidden_states matrix becomes now a 2D matrix called features, after applying the

following command (Fig. 38).

Fig. 38: The new 2D last_hidden_states matrix and its shape.

Each row corresponds to a sentence of the input dataset. Each column corresponds to the output of

a hidden unit from the FFNN (see Fig. 39).

Fig. 39: A 2D numpy array containing the sentence embeddings of all the (n) sentences in the dataset.

Now, only the values of the labels from variable batch_1 into the variable labels were kept (Fig. 40).

Fig. 40: Assignment of all labels to a new variable.

Then, our dataset was split into a training set and testing set (75% - 25% by default). So, now we have

got our dataset divided into training inputs and validation inputs, along with their labels and their

attention masks.

In the past, the data was shuffled and split by hand, using pandas. However, all this procedure does

not need to be done, since scikit-learn has consolidated these tasks into one function, the

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 45 of 64

train_test_split function (Fig. 41). The train_test_split function creates training and test data for the

features and the labels.

Fig. 41: Creation of the training and test data for the features and the labels.

3.1 Calculation of a prediction

In a nutshell, the steps needed in order to reach a prediction of the output, given a sentence as input,

provided that the model is trained, are the following:

➢ The BERT tokenizer splits the word into tokens.

➢ The special tokens needed for sentence classification, [CLS] at the first position and [SEP] at the

end of the sentence, are added.

➢ Each token is replaced with its embedding thanks to the trained model.

Note that the tokenizer does all these steps in a single line of code:

tokenizer.encode(“a visually stunning rumination on love”, add_special_tokens=True)

➢ The input sentence is then passed to distilBERT which gives as output a vector for each input

token. This vector contains 768 numbers for each token.

➢ Since this task has to do with sentence classification, only the first vector (the one associated with

the [CLS] token) is taken into account and passed into the Logistic Regression model. The Logistic

Regression model by its turn, classifies the vector thanks to the knowledge it gained from its

training phase.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 46 of 64

Chapter 4: Research findings / results

The Logistic Regression model was trained on the training set (Fig. 42). So, now the machine is officially

learning and is ready to make predictions on unseen data.

The method “fit” trains the model. Model fitting is the process of determining the coefficients 𝑏₀, 𝑏₁,

…, 𝑏ᵣ that correspond to the best value of the cost function.

Fig. 42: Training of the Logistic Regression model.

The obtained string representation of the fitted model is as follows (Fig. 43).

Fig. 43: String representation of the fitted model.

We observe several parameters which are responsible for the behavior of the model and which can

be adjusted. Some parameters worth mentioning are:

• C, which is a positive floating-point number that defines the relative strength of regularization.

Smaller values indicate stronger regularization. The default number 1 was applied in our case.

• class_weight, which is a dictionary that defines the weights related to each class. The default

‘None’ means that all classes have the weight 1.

• max_iter, which is an integer that defines the maximum number of iterations by the solver

during model fitting. The default input is 100.

• solver is a string (“liblinear” by default) that decides which solver to use for the model fitting.

The default option that was used is “liblinear”. This option is recommended when you have high

dimension dataset (recommended for solving large-scale classification problems). Other options are

“newton-cg”, “lbfgs”, “sag”, and “saga”. More information about solvers can be found in [37].

After the end of the training, evaluation was done. In order to get a holistic view of how well the model

performed, the confusion matrix was extracted [38] (see Fig. 44). A confusion matrix is used for

evaluating the performance of a classification model. It compares the actual target values with those

predicted by the Machine Learning model.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 47 of 64

Fig. 44: Evaluation of the model.

In our case (binary classification), the confusion matrix shows the numbers of the following:

• True positives in the upper-left position

• False positives in the upper-right position

• False negatives in the lower-left position

• True negatives in the lower-right position

The columns represent the actual values of the target variable and the rows represent the predicted

values of the target variable. True Positive means that the actual value was positive and the model

predicted a positive value. False Positive means that the actual value was negative but the model

predicted a positive value. False Negative means that the actual value was positive but the model

predicted a negative value. Finally, True Negative means that the actual value was negative and the

model predicted a negative value.

The computation of the confusion matrix allows more detailed analysis than mere proportion of

correct classifications (Accuracy). Sometimes, Accuracy is giving the wrong idea about the results

when the numbers of observations in different classes vary greatly. For example, if there are 90

sentences that contain Gene entities and 10 that contain no entities in the data, the classifier might

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 48 of 64

classify all the observations as sentences with Gene entities. Accuracy is the ratio of the number of

correct predictions to the total number of predictions (or observations) (Fig. 45).

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝐹𝑃

Fig. 45: The Accuracy metric.

Thus, although the Accuracy is 95%, the classifier has 100% sensitivity for the sentences with the Genes

and will not recognize any of the other types of sentences.

That is why, two more concepts were used in order to extract a better evaluation, as they are more

informative in cases when one wants to avoid false negatives more than false positives or vice versa,

Precision and Recall.

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

Fig. 46: The Precision metric.

Precision indicates how many of the correctly predicted cases are actually positive and determines the

reliability of the model (Fig. 46). It is especially useful when False Positives are more important than

False Negatives.

Recall indicates how many of the actual positive cases are correctly predicted by the model (Fig. 47).

It is especially useful when False Negative is more important than False Positive. Recall is important in

medical cases where the actual positive cases should always be detected and predicting False Negative

is not harmful.

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁

Fig. 47: The Recall metric.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 49 of 64

As already mentioned, the code described above was applied in order to perform two different tasks.

The first task, ML12 task, had to do with the classification between sentences that contain at least one

specific type of entity among Disease, Gene, SNP and Chemical, and sentences that contain at least

one of the rest three entities but not the given entity.

For example, for the case of Genes, a group of sentences contain at least one Gene, each. This means

that one sentence can contain other types of entities as well or no other entity. The other group of

sentences, labeled with 0, does not contain a Gene, but it must contain any other of the rest three

entities (Chemical, SNP, or Disease).

The second task, ML13 task, had to do with the classification between sentences that again contain at

least one specific type of entity, but the other group of sentences, labeled with 0, does not contain

any entity at all.

The initial goal of this study was to perform both tasks (ML12 and ML13) for all four entities (Disease,

Gene, SNP, Chemical). Each task was about to be performed for different batch ranges and ten times

per batch. More specifically, seven different batch ranges were chosen. Batches of 100, 500, 1,000,

1,500, 2,000, 2,500 and 3,000 sentences. The reason for this choice had to do with the evaluation of

the change of the Accuracy, Precision and Recall scores as the number of sentences was increasing.

For each batch, the code would have to be run ten times for ten different batches of the same size, in

order to extract the average value and thus a more representative result for each case.

However, as it can be seen from table 1, the size of the dataset that represents the number of

sentences that have at least one SNP entity in general is 3,432. This means that tasks ML12 and ML13

cannot be performed for the SNPs, due to the fact that dataset size is not big enough, so as to end up

to reliable results/conclusions. Thus, the two tasks were performed for the rest three entities (Disease,

Gene, Chemical).

It is important to be mentioned that the reason why the maximum batch size that was chosen is 3,000

sentences has to do with the computational power of the system. Google Colab provided a 12 GB

RAM, powerful enough to run the code for no more than 3,000 sentences. Of note that the size of

each sentence plays a key role as well to the number of the permitted input sentences. The longer the

sentences, the smaller the maximum input batch size. As already mentioned in Chapter 3, only

sentences that were comprised of more than 15 and less than 300 letters were extracted. It was

observed that less than 15 did not constitute representative sentences. Looking at the datasets, we

find that they have many sentences like ‘0.26 * 0.24 *’, ‘(n=4)’ or sentences that correspond to titles

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 50 of 64

of paragraphs, or the declaration of the papers’ authors. These sentences have no practical meaning

and introduce noise that interferes with the model to extract features. So, the dataset was reduced

by excluding those “sentences” and the noise is also reduced, thus improving the performance of the

models.

As far as the maximum size of sentences is concerned, it has to be noted that sentences with more

than 300 letters could be included. However, this would have as a result to run the Machine Learning

process with less than 3,000 sentences, due to the confined computational power of the system.

Sentences of up to 200 letters would allow the system to take as input datasets of about 4,000

sentences, but on the other side, the quality of these sentences wouldn’t be the best possible, leading

to confusing and uncertain results after the BERT model process. All in all, a happy medium was found

between choosing the right size of sentences and the right dataset size.

Below, tables 2, 3 and 4 depict the average Accuracy, Precision, Recall, as well as the average execution

time for each batch size, of each of the two tasks, of each of the three entities.

The acquired data presented below were plotted in order to get a visual depiction of the results,

making it easier to interpret it and reach to conclusions (see Fig. 48, 49, 50, 51, 52, 53).

Table 2: Evaluation scores for the Disease entity.

Disease

ML12 Accuracy Precision Recall Duration

N
u

m
b

er
 o

f
se

n
te

n
ce

s 100 0.748 0.79 0.77 25’’

500 0.759 0.81 0.78 1’05’’

1,000 0.778 0.823 0.79 1’30’’

1,500 0.793 0.841 0.814 3’

2,000 0.8 0.84 0.823 3’50’’

2,500 0.81 0.86 0.836 4’30’’

3,000 0.829 0.89 0.846 5’

ML13 Accuracy Precision Recall Duration

N
u

m
b

er
 o

f
se

n
te

n
ce

s 100 0.856 0.841 0.882 30’’

500 0.899 0.903 0.905 1’20’’

1,000 0.9 0.901 0.903 2’

1,500 0.907 0.907 0.906 3’35’’

2,000 0.911 0.913 0.909 4’30’’

2,500 0.915 0.914 0.917 6’

3,000 0.909 0.91 0.909 7’

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 51 of 64

Table 3: Evaluation scores for the Gene entity.

Gene

ML12 Accuracy Precision Recall Duration
N

u
m

b
er

 o
f

se
n

te
n

ce
s 100 0.668 0.651 0.666 35’’

500 0.789 0.763 0.791 1’25’’

1,000 0.819 0.818 0.813 3’

1,500 0.832 0.826 0.838 6’

2,000 0.828 0.823 0.827 4’20’’

2,500 0.834 0.836 0.834 4’50’’

3,000 0.847 0.838 0.845 6’

ML13 Accuracy Precision Recall Duration

N
u

m
b

er
 o

f
se

n
te

n
ce

s 100 0.768 0.735 0.752 15’’

500 0.84 0.835 0.826 45’’

1,000 0.839 0.822 0.84 1’40’’

1,500 0.86 0.853 0.854 2’30’’

2,000 0.866 0.847 0.858 3’30’’

2,500 0.871 0.873 0.861 3’55’’

3,000 0.872 0.862 0.858 5’

Table 4: Evaluation scores for the Chemical entity.

Chemical

ML12 Accuracy Precision Recall Duration

N
u

m
b

er
 o

f
se

n
te

n
ce

s 100 0.54 0.579 0.551 14’’

500 0.608 0.612 0.635 45’’

1,000 0.65 0.669 0.654 1’40’’

1,500 0.668 0.681 0.673 2’20’’

2,000 0.687 0.714 0.681 3’

2,500 0.705 0.729 0.7 4’20’’

3,000 0.701 0.725 0.702 4’40’’

ML13 Accuracy Precision Recall Duration

N
u

m
b

er
 o

f
se

n
te

n
ce

s 100 0.796 0.819 0.778 12’’

500 0.87 0.868 0.876 45’’

1,000 0.892 0.886 0.889 1’40’’

1,500 0.898 0.89 0.907 2’50’’

2,000 0.902 0.893 0.904 3’55’’

2,500 0.908 0.908 0.91 4’55’’

3,000 0.91 0.907 0.914 5’35’’

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 52 of 64

Fig. 48: Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different numbers of

sentences (entity: Disease, task: ML12).

Fig. 49: Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different numbers of

sentences (entity: Disease, task: ML13).

0,74

0,76

0,78

0,8

0,82

0,84

0,86

0,88

0,9

0 500 1000 1500 2000 2500 3000

EV
A

LU
A

TI
O

N
SC

O
R

E

NUMBER OF SENTENCES

ML12_Disease

Accuracy Precision Recall

0,83

0,84

0,85

0,86

0,87

0,88

0,89

0,9

0,91

0,92

0,93

0 500 1000 1500 2000 2500 3000

EV
A

LU
A

TI
O

N
 S

C
O

R
E

NUMBER OF SENTENCES

ML13_Disease

Accuracy Precision Recall

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 53 of 64

Fig. 50: Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different numbers of

sentences (entity: Gene, task: ML12).

Fig. 51: Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different numbers of

sentences (entity: Gene, task: ML13).

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0 500 1000 1500 2000 2500 3000

EV
A

LU
A

TI
O

N
 S

C
O

R
E

NUMBER OF SENTENCES

ML12_Gene

Accuracy Precision Recall

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0 500 1000 1500 2000 2500 3000

EV
A

LU
A

TI
O

N
 S

C
O

R
E

NUMBER OF SENTENCES

ML13_Gene

Accuracy Precision Recall

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 54 of 64

Fig. 52: Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different numbers of

sentences (entity: Chemical, task: ML12).

Fig. 53: Evaluation scores of the three metrics (Accuracy, Precision, Recall) for different numbers of

sentences (entity: Chemical, task: ML13).

0,5

0,55

0,6

0,65

0,7

0,75

0 500 1000 1500 2000 2500 3000

EV
A

LU
A

TI
O

N
 S

C
O

R
E

NUMBER OF SENTENCES

ML12_Chemical

Accuracy Precision Recall

0,76

0,78

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0 500 1000 1500 2000 2500 3000

EV
A

LU
A

TI
O

N
 S

C
O

R
E

NUMBER OF SENTENCES

ML13_Chemical

Accuracy Precision Recall

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 55 of 64

Fig. 54: Execution time versus different batch sizes.

Fig. 54 depicts the average time – among ten different executions of the model per n sentences, where

n = 100, 500, 1,000, 1,500, 2,000, 2,500, 3,000 – needed to run each model for different dataset sizes.

Of course, the more the sentences the longer the execution time, whose curve seems to present a

linear behavior.

If, instead of distilBERT, BERT was applied, the increase in execution time would be so big that the

percentage of its score increase would be negligible for the purpose of this study.

Thanks to Google Colab and its free providence of such a powerful GPU, less time is spent waiting for

the execution of the code, and the computational power is very big, paving the road for more

systematic research.

0

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000

T
im

e
 [
m

in
]

Number of sentences

Execution time

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 56 of 64

Chapter 5: Discussion and analysis of findings

Many useful remarks can be made by observing the plots of the previous Chapter. By comparing the

two tasks, ML12 and ML13, for all entities, it can be observed that ML13 task achieves higher scores.

On average, ML13 tasks’ scores are ~5-7% higher, especially for the larger datasets. Moreover, ML13

tasks’ curves present an early flattening already from datasets with 500 or 1,000 sentences. More

specifically, the ML13_Disease task reaches ~90% score already from 500 sentences dataset and

ML13_Gene and ML13_Chemical tasks reach ~86% and ~90% scores, respectively, for dataset sizes of

1,000 sentences. This means that no more sentences are needed for this task to reach its maximum

potential.

The model performs better when the ML13 dataset is given as input because it has to retrieve a

specific biomedical entity between sentences that include one entity and sentences that have no

entities at all. The ML12 task makes things worse, because the second category of labeled sentences

also includes entities and more specifically, the other two entities and not the one we are searching

for. This makes it more difficult for the model to decipher all these entities.

As far as the ML12 task is concerned, when it comes to the Gene entity, it can be noticed that the

curve flattens after 1,000 sentences, so no larger dataset is needed. However, when it comes to the

ML12_Chemical task, the evaluation scores seem to start stabilizing after datasets of 2,500 sentences.

Nevertheless, larger batches of 3,500 or 4,000 sentences could help assert this conclusion. Finally, the

model that behaves differently compared to the other tasks is the ML12_Disease task, where we see

that, as the dataset gets larger, the scores keep increasing as well. That means that our larger dataset

of 3,000 sentences is not sufficient and thus, larger batches are needed in order to reach to

trustworthy evaluations and of course, more efficiently classify sentences that include Disease

entities.

Finally, one last noteworthy observation has to do with the fact that the ML12_Disease task scores

are ~10-20% lower than the rest tasks’ scores, meaning that the model “struggles” more to classify

sentences that contain a Disease entity and sentences that contain all other entities but Disease ones.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 57 of 64

Chapter 6: Challenges and future work

These days, more and more datasets are created which contain the same bioentity types, but usually

different annotations. For instance, a dataset might label an entity as a Protein entity, whereas

another one might consider it to be a Gene entity. Another issue has to do with the fact that some

biomedical formats consider a long entity of many words as one entity, whereas other datasets split

this entity to two or more entities. These two problems deteriorate the accuracy of the models and

that is why a uniform annotation standard needs to be developed.

BioNER requires a large amount of annotated training data, many samples and of high quality. Many

high-quality and high-quantity corpora for bioentities already exist. However, there is still a lack of

corpora that contain entities, such as Mutations, Species and of course, as we noticed above, SNPs.

The larger the dataset size, the better the recognition of these entities and consequently, the better

the performance of the model.

Thus, the pre-processing part of the code that was analyzed in Chapter 3 could also be applied for new

biomedical entities, such as Mutations, in order to enrich the number of different biomedical datasets.

Of course, after the pre-processing, these datasets would pass through the BERT model, as was the

case for the three entities of this study.

As far as the SNPs are concerned, as already mentioned, although 1,000 BioC files were parsed, which

correspond to 100,000 papers, the sentences that contained SNP entities were not so many, in order

to create datasets big enough to extract safe conclusions. So, as a future work, much more files could

be parsed, maybe 2,000-3,000, which correspond to about 200,000-300,000 papers, in order to

extract more sentences and perform these classification tasks for this type of entity, too.

As it was stated in Chapter 4, for each task and entity the model was run for different batch sizes and

ten times per batch size. For each iteration, Accuracy, Precision and Recall were calculated and in the

end of the ten iterations, an average value of these metrics was taken. However, in some cases,

especially for small size datasets, the disparity of these values among each iteration was very big. Thus,

more iterations would stabilize the moving average of these values.

Another future work that would improve the model’s ability to classify these sentences and distinguish

among the bioentities is the addition of new kind of datasets. One idea would be to keep the sentences

that create only one type of entity and then compare them among each other. Thus, 3 new datasets

could be created. One dataset with sentences that contain only Chemicals versus sentences that

contain only Genes. Another one with sentences that contain only Genes versus sentences that contain

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 58 of 64

only Diseases and the last one with Diseases versus Chemicals. Those three new tasks would

contribute to better distinguish classes of bioentities in biomedical text.

By directly applying the state-of-the-art NLP methods to biomedical sources could lead to poor results,

due to a word distribution drift from the general domain corpora to corpora of the biomedical domain,

ending up to linguistic ambiguities. To overcome these challenges and generally improve this study’s

model, bioBERT, the domain specific deep neural network model could be used. As we know from

section 2.2.5, bioBERT is pre-trained on biomedical domain corpora in order to handle the linguistic

challenges within biomedical literature. According to [30], bioBERT obtains higher scores in biomedical

NER than the current state-of-the-art models. BioBERT can recognize biomedical named entities that

BERT cannot and can find the exact boundaries of named entities. This gave rise to enhanced

performance on many biomedical NLP tasks [40].

Moreover, since in the scope of this study, the experiments were performed using the distilBERT

model, an increase of the model size would be expected to further improve the results. Therefore, a

future work would be to re-run the experiments using BERT-Large, which requires even more

computation time.

The only change in the code would be the following:

model_class, tokenizer_class, pretrained_weights =

(ppb.DistilBertModel, ppb.DistilBertTokenizer, 'distilbert-base-uncased')

model_class, tokenizer_class, pretrained_weights =

(ppb.BertModel, ppb.BertTokenizer, 'bert-base-uncased')

The highest accuracy score for these datasets is between 96-97%. DistilBERT can be trained to improve

its score on this task, thanks to a process called fine-tuning. Through fine-tuning, BERT’s weights are

updated in order to improve its performance in the sentence classification.

One more way to improve the model is by setting different parameters that are given as input to the

LogisticRegression function, which represents the classification model [see Chapter 3 and 4]. For

example, by setting the regularization strength C equal to 10.0, instead of the default value of 1.0,

another model is created with different parameters and consequently, a different probability matrix

and a different set of coefficients and predictions. The absolute values of the intercept 𝑏₀ and the

coefficient 𝑏₁ become larger, because of the larger C value, which means weaker regularization, or

weaker penalization related to high 𝑏₀ and 𝑏₁ values. The change of the 𝑏₀ and 𝑏₁ values, has as a result

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 59 of 64

a change of the linear function f(x), different probabilities p(x) and a different regression line. Also,

the classification performance and other predicted outputs might change as well. The confusion

matrix changes and thus the Accuracy, the Recall and the Precision metrics get higher, provided that

the new parameters are tuned correctly.

A very common challenge is to exceed the already fairly large amount of text that fits into the BERT

input. Unfortunately, there is no obvious solution to this problem. However, there are a number of

different ideas that could be tried. According to [41], dropping some of the tokens will not affect the

performance of the task. The tokens could be dropped from the beginning of the text, the end of it or

keep some of the beginning, some of the end and cut out some of the middle. These three truncation

methods are described as head-only, meaning that the first 510 tokens of the text are kept. This

number of tokens means that we have to leave space for the special [CLS] token in the beginning and

the [SEP] token in the end. Keeping just the last tokens is tail-only. Head+tail is cutting some of the

middle tokens. Some different numbers were tried and it was found out that picking the first 128

tokens plus the last 382 tokens, worked the best.

Another strategy we could take is to break the text into multiple chunks, process the chunks separately

and then combine the results. Let’s say we have a piece of text that is 1,200 tokens long and we break

it into two chunks of 512 tokens each and then one more of 176 for the balance. So, in the same paper,

[41], the text is divided in chunks and for each of those chunks it is sent through the BERT model. An

embedding is extracted for the chunk and then the embeddings are pooled together. Minimum

pooling, maximum pooling and averaging were tried.

One more idea would be text summarization, meaning the condensation of the document into a

smaller length that BERT can handle. There are two types of text summarization: extractive and

abstractive. Extractive means that you go through the document and pick out the most pertinent

sentences. Then you return those as the summarization. So, you don’t modify the text. You just kind

of pick out the most pertinent text. Also, you typically get to pick the number of sentences that you

want to summarize the document down to, thus you have the ability to keep a lot of text in the

summarization strategy. Abstractive means that you are allowed to generate new text to try and

summarize.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 60 of 64

Chapter 7: Conclusion

The aim of this study was to recognize four bioentities (Disease, Gene, Chemical, SNP) in biomedical

text using the state-of-the-art BERT technique/model – for classification of sentences.

The datasets used were created by parsing and processing BioC XML files.

The results showed that an appropriately pre-trained BERT model delivers state-of-the-art recognition

performance in many cases, without extensive fine-tuning and optimization requirements,

outperforming previous models on the NER biomedical text mining task.

This outcome encourages further tuning, new methodologies and generates new challenges.

Therefore, the experiments could be re-run dealing with issues stated in the previous Chapter and

applying the “future work” goals, also stated above.

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 61 of 64

References

1. IBM Cloud Education (2020, July 2), “Natural Language Processing (NLP)” [Blog post], Available

at: https://www.ibm.com/cloud/learn/natural-language-

processing?utm_medium=OSocial&utm_source=Youtube&utm_content=000027BD&utm_term

=10004432&utm_id=YTDescription-101-What-is-NLP-LH-Natural-Language-Processing-Guide

(Accessed: 2021, December 3).

2. Google AI Blog – The latest from Google Research (2018, November), “Open Sourcing BERT: State-

of-the-Art Pre-training for Natural Language Processing” [Blog post], Available at:

https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html (Accessed: 2021,

November 22).

3. HuggingFace (2019, August), “Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled

version of BERT” [Blog post], Available at: https://medium.com/huggingface/distilbert-

8cf3380435b5 (Accessed: 2021, November 22).

4. Sanh V., Debut L., Chaumond J., Wolf T. (2020, March), “DistilBERT, a distilled version of BERT:

smaller, faster, cheaper and lighter”, arXiv:1910.01108.

5. “Natural language processing” (2021, November 21), Wikipedia, Available at:

https://en.wikipedia.org/wiki/Natural_language_processing, (Accessed: 2021, November 20).

6. Simplilearn (2021, March 17), Natural Language Processing In 5 Minutes | What Is NLP And How

Does It Work? [Video File], Available at:

https://www.youtube.com/watch?v=CMrHM8a3hqw&ab_channel=Simplilearn (Accessed: 2021,

November 25).

7. “Biomedical text mining” (2021, August 22), Wikipedia, Available at:

https://en.wikipedia.org/wiki/Biomedical_text_mining, (Accessed: 2021, November 29).

8. Friedman C., Anderson P. O., Austin J. H. M., Cimino J. J., Johnson S. B. (1994, April), “A general

Natural-language Text Processor for Clinical Radiology”, Journal of the American Medical

Informatics Association, volume 1 [2].

9. Comeau D. C., Wei C. - H., Doğan R. I., Lu Z. (2019, September), “PMC text mining subset in BioC:

about three million full-text articles and growing”, Bioinformatics, volume 35 [18], pp. 3533–

3535.

10. Zhang S., Elhadad N. (2013, December), “Unsupervised biomedical named entity recognition:

Experiments with clinical and biological texts”, Journal of Biomedical Informatics, volume 46 [6],

pp. 1088-1098.

https://medium.com/huggingface/distilbert-8cf3380435b5
https://medium.com/huggingface/distilbert-8cf3380435b5
https://en.wikipedia.org/wiki/Natural_language_processing
https://www.youtube.com/watch?v=CMrHM8a3hqw&ab_channel=Simplilearn

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 62 of 64

11. Wei C. - H., Allot A., Leaman R., Lu Z. (2019, May), “PubTator central: automated concept

annotation for biomedical full text articles”, Nucleic Acids Research, volume 47 [1], pp. 587-593,

doi: https://doi.org/10.1093/nar/gkz389.

12. Wei C. – H., Kao H. – Y., Lu Z. (2013, July), “PubTator: a web-based text mining tool for assisting

biocuration”, Nucleic Acids Research, volume 41, pp. 518-522, doi: 10.1093/nar/gkt441.

13. Comeau D. C., Doğan R. I., Ciccarese P., Cohen K. B., Krallinger M., Leitner F., Lu Z, Peng Y., Rinaldi

F., Torii M., Valencia A., Verspoor K., Wiegers T. C., Wu C. H., Wilbur W. J. (2013, September),

“BioC: a minimalist approach to interoperability for biomedical text processing”, Database: The

journal of biological databases and curation, volume 2013, doi:

https://doi.org/10.1093/database/bat064.

14. Serrano.Academy (2016, September 9), A Friendly Introduction to Machine Learning [Video File],

Available at: https://www.youtube.com/watch?v=IpGxLWOIZy4&ab_channel=Serrano.Academy

(Accessed: 2021, November 25).

15. Simplilearn (2018, February 13), Machine Learning Tutorial | Machine Learning Basics | Machine

Learning Algorithms [Video File], Available at:

https://www.youtube.com/watch?v=G7fPB4OHkys&ab_channel=Simplilearn (Accessed: 2021,

November 22).

16. MIT OpenCourseWare (2017, May 19), 11. Introduction to Machine Learning [Video File],

Available at:

https://www.youtube.com/watch?v=h0e2HAPTGF4&ab_channel=MITOpenCourseWare

(Accessed: 2021, November 29).

17. Google Cloud Tech (2017, August 25), What is Machine Learning? [Video File], Available at:

https://www.youtube.com/watch?v=HcqpanDadyQ&ab_channel=GoogleCloudTech (Accessed:

2021, November 29).

18. KD NuggetsTM (2018, May), “Frameworks for Approaching the Machine Learning Process” [Blog

post], Available at: https://www.kdnuggets.com/2018/05/general-approaches-machine-

learning-process.html (Accessed: 2021, December 3).

19. Michael Nielsen (2019, December), “Neural Networks and Deep Learning” [Blog post], Available

at: http://neuralnetworksanddeeplearning.com/index.html (Accessed: 2021, December 1).

20. freeCodeCamp.org (2019, April 16), How Deep Neural Networks Work - Full Course for Beginners

[Video File], Available at:

https://www.youtube.com/watch?v=dPWYUELwIdM&ab_channel=freeCodeCamp.org

(Accessed: 2021, November 29).

21. Yuxi Li (2018, November), “Deep Reinforcement Learning: An Overview”, arXiv:1701.07274.

https://doi.org/10.1093/nar/gkz389
https://doi.org/10.1093/database/bat064
https://www.youtube.com/watch?v=G7fPB4OHkys&ab_channel=Simplilearn
https://www.youtube.com/watch?v=h0e2HAPTGF4&ab_channel=MITOpenCourseWare
https://www.youtube.com/watch?v=HcqpanDadyQ&ab_channel=GoogleCloudTech
http://neuralnetworksanddeeplearning.com/index.html

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 63 of 64

22. Cybenko G. (1989, December), “Approximation by superpositions of a sigmoidal function”,

Mathematics of Control, Signals and Systems, volume 2, pp. 303-314.

23. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L., Polosukhin I.

(2017), “Attention is all you need”, 31st Conference on Neural Information Processing Systems,

Long Beach, CA, USA.

24. “Word embedding” (2021, November 19), Wikipedia, Available at:

https://en.wikipedia.org/wiki/Word_embedding, (Accessed: 2021, November 20).

25. Hochreiter S., Schmidhuber J. (1997), “Long Short-Term Memory”, Neural Comput, volume 9 [8],

pp. 1735–1780, doi: https://doi.org/10.1162/neco.1997.9.8.1735.

26. Google – The Keyword (2019, October), “Understanding searches better than ever before” [Blog

post], Available at: https://www.blog.google/products/search/search-language-understanding-

bert/ (Accessed: 2021, November 22).

27. Devlin J., Chang M. – W., Lee K., Toutanova K. (2019, May), “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding”, arXiv:1810.04805.

28. Peters M. E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K., Zettlemoyer L. (2018, June),

“Deep contextualized word representations”, Proceedings of NAACL-HLT 2018, New Orleans,

Louisiana, Association for Computational Linguistics, pp. 2227–2237.

29. Jay Alammar (2018, December), “Visualizing machine learning one concept at a time” [Blog post],

Available at: https://jalammar.github.io/illustrated-bert/ (Accessed: 2021, November 25).

30. Lee J., Yoon W., Kim S., Kim D., Kim S., So C. H., Kang J. (2019, September), “BioBERT: a pre-trained

biomedical language representation model for biomedical text mining”, Bioinformatics, volume

36 [4], pp. 1234-1240, doi: 10.1093/bioinformatics/btz682.

31. Rajpurkar P., Zhang J., Lopyrev K., Liang P. (2016), “Squad: 100,000þ questions for machine

comprehension of text”, Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing, Austin, TX., pp. 2383–2392, Association for Computational Linguistics,

https://www.aclweb.org/anthology/D16-1264.

32. Wiese G., Weissenborn D., Neves M. (2017, June), “Neural domain adaptation for biomedical

question answering”, Proceedings of the 21st Conference on Computational Natural Language

Learning (CoNLL 2017), Vancouver, Canada, pp. 281–289, Association for Computational

Linguistics. https://www.aclweb.org/anthology/K17-1029.

33. Google Colab, “What is Colaboratory?” [Blog post], Available at:

https://colab.research.google.com/ (Accessed: 2021, November 15).

34. Kluyver T., Ragan-Kelley B., Perez F., Granger B., Bussonnier M., Frederic J., et al. (2016), “Jupyter

Notebooks – a publishing format for reproducible computational workflows”, Loizides F, Schmidt

https://jalammar.github.io/illustrated-bert/
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/K17-1029

Application Grade Thesis

Biomedical Engineering MSc Program -https://www.bme-crete.edu.gr/

Page 64 of 64

B, editors, Positioning and Power in Academic Publishing: Players, Agents and Agendas, p. 87–90,

doi: 10.3233/978-1-61499-649-1-87.

35. “scikit-learn” (2021, November 20), Wikipedia, Available at: https://en.wikipedia.org/wiki/Scikit-

learn, (Accessed: 2021, November 10).

36. RealPython (2019), “Logistic Regression in Python” [Blog post], Available at:

https://realpython.com/logistic-regression-python/ (Accessed: 2021, December 2).

37. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., et al. (2011),

“Scikit-learn: Machine Learning in Python”, Journal of Machine Learning Research, volume 12, pp.

2825-2830.

38. Analytics Vidhya (2020, April), “Everything you Should Know about Confusion Matrix for Machine

Learning” [Blog post], Available at: https://www.analyticsvidhya.com/blog/2020/04/confusion-

matrix-machine-learning/ (Accessed: 2021, November 29).

39. Song Β., Li F., Liu Y., Zeng X. (2021), “Deep learning methods for biomedical named entity

recognition: a survey and qualitative comparison”, Briefings in Bioinformatics, 00 [0], pp. 1–18,

doi: https://doi.org/10.1093/bib/bbab282.

40. Naseem U., Musial K., Eklund P. W., Prasad M. (2020, August), “Biomedical Named-Entity

Recognition by Hierarchically Fusing BioBERT Representations and Deep Contextual-Level Word-

Embedding”, doi: 10.1109/IJCNN48605.2020.9206808.

41. Sun C., Qiu X., Xu Y., Huang Y. (2020), “How to Fine-Tune BERT for Text Classification?

arXiv:1905.05583.

https://doi.org/10.1093/bib/bbab282

