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Summary 

DNA microarrays have demonstrated an excellent potential in correlating specific 
gene expression profiles to specific conditions (e.g., disease) as they allow the 
concurrent observation of all known genes. Because patterns of gene expression 
correlate strongly with function, microarrays are providing unprecedented information 
both on basic research, such as the expression profiles of different tissues and the 
effect of deletion of specific genes, as well as on applied research, such as human 
disease, aging, drug and hormone action, mental illness, diet and many other clinical 
matters. 

Microarray experiments, however, involve a large number of error-prone procedures 
that lead to a high level of noise in the resulting data. The high level of the uncertainty 
associated with each microarray experiment originates by biological variations 
(corresponding to real differences between different cell types and tissues) and 
experimental noise. This uncertainty often obscures some of the important 
characteristics of the biological processes of interest. More specifically, changes in the 
measured transcript values in the samples render the clustering of genes into 
functional groups and the classification of samples difficult. 

A major challenge in DNA microarray analysis is to eliminate the effect of the noise, 
which has an additive and a multiplicative component, and recover the gene 
expression measurements. A number of well-known image processing techniques, 
including soft and hard thresholding, Bayesian denoising based on Gaussian or 
Laplacian signal modeling and multiresolution methods that exploit the correlation 
between the representation coefficients of adjacent scales, have been applied to 
microarray images by ordinarily assuming the presence of either additive or 
multiplicative noise. 

In this dissertation, we propose an image denoising method which accounts for both 
noise components and makes the microarray spot area more homogeneous and more 
distinctive from their local background. The proposed approach consists of two 
stages: one that processes the additive component of the noise and one that processes 
the multiplicative component. The method first performs a multiresolution 
decomposition of the image and then accounts for the heavy-tailed statistical behavior 
of the representation coefficients as well as for their strong statistical dependence 
across multiple scales. The utility of this framework is validated with real microarray 
data through visual evaluation and quantitative performance metrics. 
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Περίληψη 

Οι μικροσυστοιχίες DNA έχουν επιδείξει μια εκπληκτική δυνατότητα στη συσχέτιση 
συγκεκριμένων προφίλ γονιδιακής έκφρασης με συγκεκριμένες καταστάσεις (π.χ. 
ασθένεια) αφού επιτρέπουν την ταυτόχρονη παρατήρηση όλων των γνωστών 
γονιδίων. Επειδή κάποια πρότυπα γονιδιακής έκφρασης συσχετίζονται σε μεγάλο 
βαθμό με συγκεκριμένες λειτουργίες, οι μικροσυστοιχίες προσφέρουν νέα 
πληροφορία τόσο στη βασική έρευνα, όπως στα προφίλ έκφρασης διαφορετικών 
ιστών και στο πώς επιδρά η απαλοιφή συγκεκριμένων γονιδίων, όσο και στην 
εφαρμοσμένη έρευνα, όπως στις ανθρώπινες ασθένειες, στη γήρανση, στη 
φαρμακευτική και ορμονική δράση, στις νοητικές ασθένειες και σε πολλά άλλα 
κλινικά θέματα. 

Τα πειράματα μικροσυτοιχιών, όμως, συνιστώνται από έναν μεγάλο αριθμό 
διαδικασιών, οι οποίες είναι επιρρεπείς στα σφάλματα και έτσι τα τελικά 
αποτελέσματα περιέχουν μεγάλο ποσοστό θορύβου. Οι παρατηρούμενες διαφορές 
στη γονιδιακή έκφραση σε κάθε πείραμα μικροσυστοιχιών προέρχεται από βιολογικές 
διαφορές (που αντιστοιχούν σε πραγματικές διαφορές μεταξύ διαφορετικών τύπων 
κυττάρων και ιστών) και σε πειραματικό θόρυβο. Αυτή η αβεβαιότητα καθιστά συχνά 
μη εμφανή κάποια από τα πιο σημαντικά χαρακτηριστικά της βιολογικής διεργασίας. 
Πιο συγκεκριμένα, οι μεταβολές στις μετρούμενες τιμές μετάφρασης στα δείγματα 
καθιστούν δύσκολη την ομαδοποίηση των γονιδίων σε λειτουργικές ομάδες και την 
ταξινόμηση των δειγμάτων.  

Μεγάλη πρόκληση στην ανάλυση των DNA μικροσυστοιχιών αποτελεί η εξάλειψη 
του θορύβου, ο οποίος έχει μια αθροιστική και μια πολλαπλασιαστική συνιστώσα, και 
η ανάκτηση των μετρήσεων της γονιδιακής ρύθμισης. Σε αυτήν την εργασία, 
προτείνουμε μια μέθοδο αποθορύβωσης εικόνας που λαμβάνει υπόψη και τις δύο 
συνιστώσες του θορύβου και κάνει τις περιοχές των spots πιο ομογενείς και πιο 
διακριτές από το τοπικό υπόβαθρο. Η προτεινόμενη μέθοδος αποτελείται από δύο 
στάδια: ένα για την επεξεργασία της αθροιστικής συνιστώσας του θορύβου κι ένα για 
αυτή της πολλαπλασιαστικής. Η μέθοδος πρώτα εκτελεί μια ανάλυση πολλαπλής 
διακριτικής ικανότητας στην εικόνα και στη συνέχεια αντιμετωπίζει τη στατιστική 
συμπεριφορά των συντελεστών αναπαράστασης που εμφανίζει βαριές ουρές, αλλά 
και τη συσχέτιση που υπάρχει ανάμεσα στους συντελεστές της αναπαράστασης σε 
διαδοχικά επίπεδα ανάλυσης. Η χρησιμότητα αυτής της μεθόδου αξιολογήθηκε με 
πραγματικά δεδομένα από μικροσυστοιχίες μέσω οπτικής αξιολόγησης και 
ποσοτικών μέτρων επίδοσης. 

 

 
Επόπτης: Παναγιώτης Τσακαλίδης  

Αναπληρωτής Καθηγητής 





     

Ευχαριστίες 

Αισθάνομαι την ανάγκη να εκφράσω ένα μεγάλο ευχαριστώ στον επόπτη μου, Καθ. 
Παναγιώτη Τσακαλίδη, για τη διαθεσιμότητά του κάθε στιγμή που τον χρειαζόμουν, 
για το οργανωτικό του πνεύμα που με βοήθησε να συντονίσω την προσπάθειά μου 
και να μάθω τον τρόπο διεξαγωγής έρευνας, για την ουσιαστική καθοδήγηση και 
συμβολή του στην ολοκλήρωση της παρούσας εργασίας, για την ώθηση που μου 
έδινε κάθε φορά που καταλάβαινε ότι έμενα πίσω. 

Επίσης, θα ήθελα να ευχαριστήσω τον Καθ. Γιάννη Τόλλη για τη συμμετοχή του 
στην εξεταστική επιτροπή και για τις καίριες παρατηρήσεις του. 

Ευχαριστώ θερμά τον Κώστα Μαριά, Ερευνητή του ΙΤΕ – ΙΠ, για τη υποστήριξη που 
μου παρείχε προτού ακόμα γίνω δεκτή ως μεταπτυχιακή φοιτήτρια στο Τμήμα 
Υπολογιστών του Πανεπιστημίου Κρήτης και καθόλη τη διάρκεια των σπουδών μου. 
Τον ευχαριστώ ακόμα για τις πολύτιμες συμβουλές και τα δημιουργικά σχόλια του 
κατά τη διεκπεραίωση αυτής της εργασίας, καθώς και τον πολύτιμο χρόνο που μου 
αφιέρωνε.  

Ιδιαίτερες ευχαριστίες θέλω να δώσω στον Θανάση Μαργαρίτη, διδακτορικό φοιτητή 
του τμήματος Βιολογίας του Πανεπιστημίου Κρήτης και του ΙΤΕ – ΙΜΒΒ, για τη 
μετάδοση των βιολογικών γνώσεων, για τη συμβολή του στην εργασία αυτή με τη 
συνεχή τροφοδότηση νέων ιδεών και γιατί ήταν πάντα διαθέσιμος σε μια εποχή της 
ζωής του με λιγοστό ελεύθερο χρόνο. 

Περισσότερο, όμως, από όλους ευχαριστώ την οικογένειά μου για την συνεχή 
στήριξη σε όλη τη διάρκεια των σπουδών μου και κυρίως τα δύο τελευταία χρόνια, 
που ήμουν μακριά τους. Τον πατέρα μου, Γιώργο, που αν και έλειπε συχνά, δεν 
άφηνε να γίνει αισθητή η απουσία του με τις συμβουλές του και τη συνεχή 
παρότρυνση να υλοποιώ τις επιθυμίες μου. Τη μητέρα μου, Καίτη, για την ανατροφή 
μου, την παρότρυνσή της για συνεχές διάβασμα, το ενδιαφέρον της για την εξέλιξή 
μου και την υποστήριξη ακόμα και σε εποχές δύσκολες για εκείνη. Την αδερφή μου, 
Μαίρη, για την ψυχολογική υποστήριξη και γιατί είναι πάντα δίπλα μου σε ό,τι και αν 
τη χρειαστώ. 

Τέλος, ευχαριστώ τους φίλους μου και ιδιαίτερα το Δημήτρη Μανακανάτα που με 
βοήθησε ψυχολογικά όποτε το χρειαζόμουν, αλλά και πρακτικά με τις καίριες 
επισημάνσεις του. 





    i 

 

 TABLE OF CONTENTS 
1 INTRODUCTION ........................................................................................................................ 1 

1.1 MOTIVATION..........................................................................................................................2 
1.2 CONTRIBUTIONS.....................................................................................................................3 
1.3 ORGANIZATION ......................................................................................................................3 

2 MICROARRAYS.......................................................................................................................... 5 
2.1 WHAT IS A MICROARRAY? .....................................................................................................5 
2.2 TYPES OF MICROARRAYS .......................................................................................................5 

2.2.1 Regarding the Technology................................................................................................5 
2.2.1.1 Affymetrix Microarrays ........................................................................................................ 6 
2.2.1.2 Spotted Microarrays.............................................................................................................. 6 

2.2.2 Regarding the Type of the Probe ......................................................................................7 
2.3 THE MICROARRAY PROCEDURE .............................................................................................7 

2.3.1 Fabrication .......................................................................................................................8 
2.3.2 Target labelling and hybridization ...................................................................................9 
2.3.3 Image analysis and data extraction ................................................................................10 
2.3.4 Data management and mining........................................................................................12 

2.4 MICROARRAY SCANNING .....................................................................................................12 
2.4.1 Parameters for a Microarray Scanner Designing ..........................................................13 

2.4.1.1 Resolution ........................................................................................................................... 13 
2.4.1.2 Sensitivity ........................................................................................................................... 13 
2.4.1.3 Multiple Dyes...................................................................................................................... 13 
2.4.1.4 Substrates ............................................................................................................................ 14 
2.4.1.5 High Quality of Data........................................................................................................... 14 

2.4.2 Types of Microarray Scanners........................................................................................14 
2.5 MICROARRAY IMAGE PROCESSING ......................................................................................15 

2.5.1 Addressing ......................................................................................................................16 
2.5.2 Segmentation ..................................................................................................................16 

2.5.2.1 Fixed circle segmentation ................................................................................................... 17 
2.5.2.2 Adaptive circle segmentation .............................................................................................. 18 
2.5.2.3 Adaptive shape segmentation.............................................................................................. 18 

2.5.2.3.1 The Watershed Segmentation ........................................................................................ 18 
2.5.2.3.2 Seeded Region Growing (SRG)..................................................................................... 19 

2.5.2.4 Histogram segmentation...................................................................................................... 20 
2.5.3 Information Extraction ...................................................................................................20 

2.5.3.1 Spot intensity ...................................................................................................................... 20 
2.5.3.2 Background intensity .......................................................................................................... 21 

2.5.3.2.1 Local background .......................................................................................................... 21 
2.5.3.2.2 Morphological opening.................................................................................................. 22 
2.5.3.2.3 Constant background ..................................................................................................... 23 
2.5.3.2.4 No adjustment................................................................................................................ 23 

2.5.3.3 Quality measures................................................................................................................. 23 
3 SIGNAL AND NOISE IN MICROARRAY EXPERIMENTS ............................................... 25 

3.1 SIGNAL DETERMINANTS...............................................................................................25 
3.2 NOISE IN MICROARRAY EXPERIMENTS ....................................................................26 

3.2.1 Systematic Noise vs. Random Noise ...............................................................................26 
3.2.2 Noise Sources .................................................................................................................27 

3.2.2.1 Biological Noise.................................................................................................................. 27 
3.2.2.2 Experimental Noise............................................................................................................. 27 

3.2.2.2.1 Dark Current .................................................................................................................. 27 
3.2.2.2.2 Electronic Noise............................................................................................................. 28 
3.2.2.2.3 Shot Noise...................................................................................................................... 28 
3.2.2.2.4 PMT Noise..................................................................................................................... 28 
3.2.2.2.5 Laser Noise .................................................................................................................... 29 
3.2.2.2.6 Non-Uniformity ............................................................................................................. 29 
3.2.2.2.7 Optical Noise ................................................................................................................. 30 
3.2.2.2.8 Fixed-pattern noise ........................................................................................................ 30 
3.2.2.2.9 Substrate Noise .............................................................................................................. 30 
3.2.2.2.10 Sample Noise ................................................................................................................. 31 
3.2.2.2.11 Quantization noise ......................................................................................................... 31 



ii   

 

4 SIGNAL TRANSFORMATION ............................................................................................... 33 
4.1 WAVELETS .......................................................................................................................34 

4.1.1 Continuous Wavelet Transform (CWT) ..........................................................................34 
4.1.2 Discrete Wavelet Transform (DWT) ...............................................................................37 
4.1.3 Multi-Resolution Analysis (MRA)...................................................................................40 
4.1.4 Decimation......................................................................................................................43 

4.1.4.1 À Trous Algorithm.............................................................................................................. 44 
4.1.5 Signal Synthesis or Reconstruction.................................................................................46 

5 DENOISING STEP..................................................................................................................... 51 
5.1 DENOISING VIA THRESHOLDING...........................................................................................51 
5.2 CORING SUPPRESION............................................................................................................53 
5.3 DENOISING BASED ON COEFFICIENT CORRELATION .............................................................57 
5.4 TWO-STAGE MULTIRESOLUTION TECHNIQUE.......................................................................59 

6 RESULTS .................................................................................................................................... 61 
6.1 MATERIALS ..........................................................................................................................61 
6.2 EVALUATION METRICS ........................................................................................................61 

6.2.1 Coefficient of Variation (CV)..........................................................................................61 
6.2.2 Confidence Interval (CI).................................................................................................62 
6.2.3 Mahalanobis Distance ....................................................................................................63 

6.3 RESULTS PRESENTATION......................................................................................................63 
7 CONCLUSIONS ......................................................................................................................... 79 
8 REFERENCES............................................................................................................................ 81 
 



    iii 

 

LIST OF FIGURES 
 

FIGURE 2.1 – THE MICROARRAY EXPERIMENT [23]. ...............................................................................10 
FIGURE 2.2 – A PMT DETECTOR. ............................................................................................................15 
FIGURE 2.3 – DIFFERENT LOCAL BACKGROUND APPROACHES. ................................................................22 
FIGURE 3.1 – NOISY IMAGES. ..................................................................................................................32 
FIGURE 4.1 – FREQUENCY AND WAVELET BASED SIGNAL VIEWS. ...........................................................34 
FIGURE 4.2 – STEPS 1– 4 OF THE CWT COEFFICIENTS’ COMPUTATION ALGORITHM. ...............................36 
FIGURE 4.3 – WAVELET COEFFICIENTS’ PRESENTATION. .........................................................................36 
FIGURE 4.4 – ANOTHER PRESENTATION OF FIGURE 4.3. ..........................................................................37 
FIGURE 4.5 – DISCRETE VERSUS CONTINUOUS WAVELET TRANSFORM. .................................................38 
FIGURE 4.6 – FILTERING PROCEDURE......................................................................................................38 
FIGURE 4.7 – DWT COEFFICIENTS’ PRODUCTION. ...................................................................................38 
FIGURE 4.8 – MULTI-RESOLUTION ANALYSIS REPRESENTATION..............................................................40 
FIGURE 4.9 – MULTI-RESOLUTION ANALYSIS OF A SIGNAL......................................................................41 
FIGURE 4.11 - UNDECIMATED DISCRETE WAVELET TRANSFORM. ..........................................................46 
FIGURE 4.12 – DECOMPOSITION AND RECONSTRUCTION PROCESSES. .....................................................48 
FIGURE 4.13 – APPROXIMATION RECONSTRUCTION................................................................................48 
FIGURE 4.14 – DETAILS RECONSTRUCTION .............................................................................................48 
FIGURE 4.15 – SIGNAL RECONSTRUCTION FROM THE APPROXIMATION AND DETAILS..............................49 
FIGURE 5.1 – THRESHOLDING RULES.......................................................................................................52 
FIGURE 5.2 - (A) GAUSSIAN PDF. (B) CORRESPONDING SHRINKAGE FUNCTION........................................55 
FIGURE 5.3 - (A) LAPLACIAN PDF (B) CORRESPONDING SHRINKAGE FUNCTION .......................................57 
FIGURE 5.4 – BLOCK DIAGRAM OF THE PROPOSED METHOD ....................................................................59 
FIGURE 6.1 - RESULTS OF THE PROPOSED TWO-STAGE APPROACH FOR IMAGE1G: CORRELATION STAGE 

FOR ADDITIVE NOISE REMOVAL AND CORING STAGE FOR MULTIPLICATIVE NOISE REMOVAL.
............................................................................................................................................64 

FIGURE 6.2 - RESULTS WHEN CONSIDERING THE ADDITIVE COMPONENT OF NOISE FOR IMAGE1G...........65 
FIGURE 6.3 - RESULTS WHEN CONSIDERING THE MULTIPLICATIVE COMPONENT OF NOISE FOR IMAGE1G.

............................................................................................................................................65 
FIGURE 6.4 - EFFECT OF THE TWO-STAGE APPROACH ON THE HOMOGENEITY OF THE MICROARRAY SPOT 

AND BACKGROUND AREAS FOR IMAGE1G. ..........................................................................66 
FIGURE 6.5 - IMPROVEMENT OF THE MAHALANOBIS DISTANCE OF SPOTS AND BACKGROUND BETWEEN 

THE ORIGINAL AND THE PROCESSED IMAGES AS A FUNCTION OF THE SPOT-TO-BACKGROUND 
INTENSITY RATIO FOR IMAGE1G..........................................................................................67 

FIGURE 6.6 – (A) SPOT SELECTION. (B) SEGMENTATION RESULTS FROM IMAGENE FOR IMAGE1G..........68 
FIGURE 6.7 - RESULTS OF THE PROPOSED TWO-STAGE APPROACH FOR IMAGE1R: CORRELATION STAGE 

FOR ADDITIVE NOISE REMOVAL AND CORING STAGE FOR MULTIPLICATIVE NOISE REMOVAL.
............................................................................................................................................69 

FIGURE 6.8 - RESULTS WHEN CONSIDERING THE ADDITIVE COMPONENT OF NOISE FOR IMAGE1R. ..........70 
FIGURE 6.9 - RESULTS WHEN CONSIDERING THE MULTIPLICATIVE COMPONENT OF NOISE FOR IMAGE1R.

............................................................................................................................................70 
FIGURE 6.10 - EFFECT OF THE TWO-STAGE APPROACH ON THE HOMOGENEITY OF THE MICROARRAY SPOT 

AND BACKGROUND AREAS FOR IMAGE1R............................................................................71 
FIGURE 6.11 - IMPROVEMENT OF THE MAHALANOBIS DISTANCE OF SPOTS AND BACKGROUND BETWEEN 

THE ORIGINAL AND THE PROCESSED IMAGES AS A FUNCTION OF THE SPOT-TO-BACKGROUND 
INTENSITY RATIO FOR IMAGE1R..........................................................................................72 

FIGURE 6.12 – (A) SPOT SELECTION. (B) SEGMENTATION RESULTS FROM IMAGENE FOR IMAGE1R. .......73 



iv   

 

FIGURE 6.13 - RESULTS OF THE PROPOSED TWO-STAGE APPROACH FOR  IMAGE2R: CORRELATION STAGE 
FOR ADDITIVE NOISE REMOVAL AND CORING STAGE FOR MULTIPLICATIVE NOISE REMOVAL.
............................................................................................................................................74 

FIGURE 6.14 - EFFECT OF THE TWO-STAGE APPROACH ON THE HOMOGENEITY OF THE MICROARRAY SPOT 
AND BACKGROUND AREAS FOR  IMAGE2R...........................................................................75 

FIGURE 6.15 - IMPROVEMENT OF THE MAHALANOBIS DISTANCE OF SPOTS AND BACKGROUND BETWEEN 
THE ORIGINAL AND THE PROCESSED IMAGES AS A FUNCTION OF THE SPOT-TO-BACKGROUND 
INTENSITY RATIO FOR IMAGE2R..........................................................................................75 

FIGURE 6.16 – (A) SPOT SELECTION. (B) SEGMENTATION RESULTS FROM IMAGENE FOR  IMAGE2R. ......76 
 



    v 

 

LIST OF TABLES  
 

TABLE 2.1 – SEGMENTATION METHODS AND EXAMPLES OF ALGORITHMS AND SOFTWARE 
IMPLEMENTATION ...............................................................................................................17 

TABLE 5.1 - LENGTH OF WAVELET FILTER SUPPORT ................................................................................57 
TABLE 6.1 – RESULTS FROM SPOTSEGMENTATION FOR IMAGE1R AND IMAGE1G...................................74 
TABLE 6.2 – RESULTS FROM SPOTSEGMENTATION FOR IMAGE2R AND IMAGE2G...................................77 

 

 





1     INTRODUCTION                                                                                                 1 

 

Hara Stefanou 

1 INTRODUCTION 

Over the last decade, a revolution has been witnessed in the biosciences, medical 
sciences, biotechnology and pharmaceutical industry. High-throughput technologies 
are producing massive amounts of data of the -omes (genome, transcriptome, 
proteome, metabolome, etc.) instead of the traditional analysis of single genes. The 
revolution is driven mostly by microarray technology [69,78]. The technology has 
centered on providing a platform for determining, in a single experiment, the gene 
expression profiles of hundreds to tens of thousands of genes in tissue, tumors, cells 
or biological fluids. The rapid and global adoption of this technology has been 
predicated on its simplicity and success in providing large amounts of highly relevant 
data.  

DNA microarray technology has a profound impact on research as it allows the 
concurrent observation of the expression of all known genes. Because patterns of 
gene expression correlate strongly with function [26,88], microarrays are providing 
unprecedented information both on basic research, such as the expression profiles of 
different tissues [93] and the effect of deletion of specific genes [38], as well as on 
applied research, such as human disease, aging, drug and hormone action, mental 
illness and many other clinical matters. Microarrays can also be used for the 
identification of alterations in gene sequences, paving the way for a new era of 
genetic screening, testing and diagnostics. 

The correlation between gene mutation, altered protein, and disease was first made 
by Pauling and co-workers [66]. It was showed that hemoglobin from sickle cell 
patients differs from hemoglobin in healthy individuals in that it migrates abnormally 
in gel electrophoresis assays, a finding the authors attributed correctly to a change in 
the surface charge of hemoglobin. By examining normal individuals, earners and 
patients with sickle cell disease, Pauling and co-workers concluded that changes in 
the hemoglobin gene were responsible for the altered protein, which was verified 
later in gene sequencing studies. This remarkable paper paved the way for the 
molecular genetic analysis of human disease, and provided a conceptual foundation 
for the use of microarrays in genetic screening, testing, and diagnostics. 

Maxam and Gilbert [59] at Harvard and Sanger and co-workers [76] at the Medical 
Research Council (MRC) developed DNA sequencing technology independently. 
Gilbert and Sanger shared half of the Nobel Prize in 1980 “for their contributions 
concerning the determination of base sequences in nucleic acids” [64]. Sanger 
chemistry was used to sequence the human genome and has provided much of the 
sequence database information used to manufacture DNA microarrays. 

The origin of the microarray technique was evolved from E. Southern’s technique in 
the 1970s [90]. In the late 1980’s a team of scientists led by Stephen P.A. Fodor, 
Ph.D. made the first microarray protocol. The publication in 1994 [69] was the first 
reported description of microarray technology. This was the Affymetrix VLSIPS 
technology which was adapted for the production of the first two-color DNA 
microarray by Dr. Schena and his colleagues at Stanford University. Their first 
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publication in Science [78] is the first one on microarrays and the most highly cited 
one. The Scientist places Dr. Schena at positions 1 and 2 on “the microarray family 
tree”, confirming his role as the founder of microarray technology and substantiating 
his “Father of Microarray Technology” status [96]. 

In the near future, it will be possible to profile the whole transcriptome of higher 
organisms with only a few DNA gene chips. This will allow us to obtain a global 
view of the genotypes corresponding to different cell phenotypes. Such capability 
will greatly accelerate and perhaps fundamentally change biomedical research and 
development in many areas, ranging from developing advanced diagnostics to 
unravelling complex biological pathways and networks, to eventually facilitating 
individual-based medicine [53,12]. The demand to conduct analysis on a genome-
wide basis grows and so does the need for improved data extraction and analysis.  

1.1 Motivation 

DNA microarray experiments consist of procedures that are prone to errors yielding 
data with a high level of noise. This noisy nature makes deciphering high throughput 
gene expression experiments difficult. In general, the changes in the measured 
transcript values between different experiments are caused by both biological 
variations (corresponding to real differences between different cell types and tissues) 
and experimental noise. A major challenge in DNA microarray analysis is to 
effectively dissociate gene expression values from experimental noise. Elucidating 
the sources of noise may be of help for identifying the steps of the techniques that 
need to be modified to improve the signal-to-noise ratio. 

Several authors have addressed the noise issue explicitly. Lee et al. [49] have noticed 
that results from repeated gene array experiments differed substantially, reaching in 
that way the conclusion that repetition can increase the significance of conclusions 
from gene array experiments. Chen et al. [14] and Ermolaeva et al. [29] used a ratio 
distribution to determine the statistical significance of an observed change in 
expression levels. Hughes et al. [39] suggested statistics for estimation and 
uncertainty from multiple repetitions. Unlike the purely additive model of Chen et al. 
[14] and Ermolaeva et al. [29], the model of Hughes et al. [39] incorporates both 
additive and multiplicative noise. Yet, these methods consider only the process 
statistics. Hartemink et al. [34] claimed that the Affymetrix chip data follow a log-
normal distribution. Rocke and Durbin [74] introduced a model for measurement 
error in gene expression arrays as a function of the expression level. The Bayesian 
estimation of array measurements (BEAM) technique, proposed by Dror et al. [21], 
results in a noise model for Affymetrix chips that includes a heavy-tailed additive 
noise and a gene-specific bias term. 

These techniques deal mainly with the measurement error and not the noise inherent 
in the microarray images. Currently, there are various techniques which deal with the 
image noise by increasing the accuracy and signal-to-noise ratio (SNR) of the 
estimated values [110]. Nonetheless, most techniques rely on mathematical 
algorithms which distinguish between noise and real signal, the well-known 
thresholding methods [2], [103]. Thresholding methods, however, have some 
drawbacks. Mastriani and Giraldez [58] made an attempt to overcome the 
disadvantages of thresholding by applying a bidimensional smoothing within each 

http://www.the-scientist.com/yr2003/aug/upfront3_030825.html
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highest subband. This method, as all smoothing methods, does not discriminate 
between spots and noise; therefore, spot information may be removed together with 
noise. Another technique [55] uses vector processing filters based on fuzzy logic 
concepts for the attenuation of noise in two-channel images, i.e. cDNA microarrays. 
But this technique deals only with the additive noise component. However, none of 
these studies actually quantify the benefit of image enhancement in facilitating 
segmentation and consequently gene quantification. Consequently, a new technique 
which removes both microarray image noise components and enhances the image has 
to be employed.  

1.2 Contributions 
The main contributions of this dissertation are: 

 application of a noise removal algorithm on the microarray image, 
 implementation of a noise removal method which deals with both noise 

components, 
 account for the heavy-tailed statistical behavior of the representation 

coefficients, 
 account for the coefficients’ strong statistical dependence across multiple 

scales, 
 enhancement of the dynamic range of existing microarray imaging technology 

in the resulting image, 
 identification of the most significant spots with increased accuracy and 

robustness, 
 better spot segmentation. 

1.3 Organization 

This dissertation is organized as follows. Section 2 is an introduction to the 
microarray technology containing an overview of microarray types, types of probes 
and the procedure for microarray production. The latter consists of the fabrication, 
label targeting, array scanning, typical image processing and information extraction. 
Section 3 accounts for the characteristics of the microarray signal and noise and 
presents most microarray noise sources. Section 4 is an analytical presentation of the 
decimated and undecimated wavelet transform and the multi-resolution analysis.  

The proposed denoising method is described in Section 5, along with some other 
denoising techniques, including including soft and hard thresholding, Bayesian 
denoising based on Gaussian or Laplacian signal modeling, and multiresolution 
methods that exploit the correlation between the wavelet coefficients of adjacent 
scales, that were used for the comparison and the evaluation of our method. Section 6 
describes the characteristics of the used microarray images and presents the processed 
images, the spot segmentation results and quantitative metrics that were used for the 
evaluation of the proposed method. The conclusions of this work are drawn in Section 
7.  
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2 MICROARRAYS 

2.1 What is a Microarray? 

In their most generic form, microarrays are ordered arrays of microscopic elements 
(probes) on a planar substrate that allows the specific binding of genes or gene 
products [80]. Hundreds to tens of thousands DNA molecules are organized in a two 
dimensional array (matrix). The DNA molecules are typically either oligonucleotide 
(ranging from 35 base pairs to several hundred) or cDNAs1. The substrate to which 
the DNA molecule is attached is usually glass, silicon, or nylon.  

2.2 Types of Microarrays 
Microarrays are categorized into several groups regarding the technology used in 
their production and the type of probe they use. The latter parameter for 
discrimination is taken into consideration only in spotted microarrays where many 
types of material can be used for the probes. 

2.2.1 Regarding the Technology 

When DNA microarrays are used for measuring the concentration of mRNA in living 
cells, a probe of one DNA strand that matches a particular mRNA in the cell is used. 
The concentration of a particular mRNA is a result of expression of its corresponding 
gene, so this application is often referred to as expression analysis. For expression 
analysis, there are many technologies of microarrays production but the field has been 
dominated in the past by two major technologies, the Affymetrix chips and the spotted 
microarrays.  

The Affymetrix, Inc. GeneChip system [52,69] uses prefabricated oligonucleotide 
chips made by light mask technology while custom-made chips use a robot to spot 
cDNA, oligonucleotides or PCR2 products on a solid support. The first is easier to 
control and therefore the variation between these chips is smaller. On the other hand, 
spotted arrays [79] are more flexible. Moreover, digital micromirror arrays [86] of 
NimbleGen Systems Inc. and Febit Biotech Gmbh combine the flexibility of the 
spotted arrays with the speed of the prefabricated Affymetrix chips due to their ability 
to control light-directed synthesis of oligonucleotide microarrays. Agilent 
manufactures DNA microarrays on glass slides using the inkjet technology of Hewlett 
Packard. These arrays are known as inkjet microarrays [38]. The bead-based array 
system of Illumina Inc. allows small glass beads with covalently attached oligo probes 
self-assemble into etched substrates. The location of each bead on the array is then 

                                                 
 
1 Complementary DNA. Single-stranded DNA that is complementary to messenger RNA or DNA that 
has been synthesized from messenger RNA by reverse transcriptase [95]. 
2 Polymerase Chain Reaction. Revolutionary technology developed during the 1980’s that allows 
massive amplification of any gene sequence of interest [80]. 
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read by a decoder. Serial analysis of gene expression (SAGE) [101] measures the 
times a cDNA fragment occurs in the sequence of concatenated fragments of DNA 
and this number is proportional to the abundance of its corresponding mRNA [48]. A 
more detailed description of the two major technologies – Affymetrix and spotted 
arrays – follows. 

2.2.1.1 Affymetrix Microarrays 

The production of an Affymetrix microarray consists of six steps. Firstly, a photo-
protected glass substrate is selectively illuminated by light passing through a 
photolithographic mask. After that, the de-protected areas are activated and chemical 
coupling occurs at the activated positions with the nucleoside incubation following 
up. Then the coupling step is repeated with a new mask pattern applied and this 
process is repeated until the desired set of probes is obtained.  

In Affymetrix microarrays each gene or portion of a gene is represented by 11 to 20 
oligonucleotides of 25 base-pairs and the probe is an oligonucleotide of those, i.e. a 
25-mer. The perfect-match (PM) is a 25-mer complementary to a reference sequence 
of interest while a mismatch (MM) is the same as a PM but with a single homomeric 
base change for the middle – that is the 13th – base. Both PM and MM constitute a 
probe-pair and a collection of these probe pairs (from 11 to 20) related to a common 
gene or fraction of a gene is a probe-pair set. 

Affymetrix claims that the MM oligonucleotides will be able to detect non-specific 
and background hybridization, which is important for quantifying weakly expressed 
mRNAs. However, for weakly expressed mRNAs where the signal-to-noise ratio is 
smallest, subtracting mismatch from perfect match adds considerably to the noise in 
the data [77]. That is because subtracting one noisy signal from another noisy one 
yields a third signal with even more noise. 

2.2.1.2 Spotted Microarrays 
In spotted arrays a robot spotter is used to move small quantities of probe in solution 
from a microtiter plate to the surface of a glass plate. The probe can consist of cDNA, 
oligonucleotides, proteins and even a whole section from a human tumor. Each probe 
is complementary to a unique gene. Probes can be fixed to the surface in a number of 
ways. The classical way is by non-specific binding to slides. The slides are first 
coated with polylysine while the probes are prepared in microtiter plates. The robot 
spots the probes on the glass slides and when this procedure is over the remaining 
exposed amines of polylysine are blocked with succinic anhydride. The cDNA has to 
be denatured to produce single-stranded DNA for the hybridization step.  

Extracted mRNA from cells is converted to cDNA and then every sample is labelled 
fluorescently with different dyes. The two most commonly used dyes – usually 
referred as fluorochromes – are rhodamine (Cy3) that is green and flourescein (Cy5) 
that is red. After mixing, the labelled samples are hybridized to the probes on the 
glass slides. Then, the unhybridized material is washed away and the slide is scanned 
with a confocal laser.  

The advantage of spotted arrays compared to the Affymetrix GeneChips is that any 
probe for spotting on the array can be designed. However, the spotting will not be 



2     MICROARRAYS                                                                                                 7 

 

Hara Stefanou 

nearly as uniform as the in-situ synthesized Affymetrix chips and the cost of 
oligonucleotides, for chips containing thousands of probes, increases. As far as the 
data analysis is concerned, in cDNA microarrays the two samples are hybridized to 
the same chip using different fluorochromes, whereas the Affymetrix chip can handle 
only one fluorochrome so two chips are required for the comparison between two 
samples. 

In this dissertation we used a spotted cDNA microarray and later on we will further 
analyze the procedure of making such a microarray.  

2.2.2 Regarding the Type of the Probe 

The first microarray experiments were performed with cDNA microarrays and 
continue to find wide use in gene expression assays. A cDNA is a nucleic acid 
molecule derived from mRNA and its length is typically 500-2500 base pairs. 
Microarrays containing such molecules provide intense hybridization signals because 
of their extensive complementarity to fluorescent probe molecules in solution. 
Database analysis of 2000 microarray citations (arrayit.com/e-library) reveals that 
cDNA microarrays account for approximately 65% of all microarray publications. 

Oligonucleotide microarray is another commonly used microarray, finding wide use 
in a variety of applications, including gene expression profiling and genotyping. 
Oligonucleotides are single-stranded 15- to 70-nucleotide molecules made by 
chemical synthesis, and these synthetic targets produce high specificity and good 
signal strength in hybridization reactions. More than one quarter of all microarray 
publications to date use oligonucleotides as the target molecules. Complementary 
DNA and oligonucleotide microarrays both exploit the chemical process of 
hybridization to generate microarray signals. They, also, fall into a broader category 
known as nucleic acid microarrays, which encompasses microarrays containing any 
type of DNA or RNA as the target material. 

Tissue and protein microarrays are more recent than nucleic acid microarrays, but are 
being used with increasing frequency, combining for nearly 10% of the scientific 
publications to date. Tissue microarrays contain sections from human tumor 
specimens and oilier tissues of interest, and protein microarrays contain pure proteins 
or cell extracts at each microarray location. These new microarray formats are 
replacing many of the traditional histological and biochemical assays because the 
parallelism, miniaturization, and automation of microarray assays afford a precision, 
speed, and information content unattainable with the antecedent technologies. 

2.3 The Microarray Procedure 

The procedure of a spotted DNA microarray production consists of four steps. A 
short outline of these steps is going to be presented, though every step is going to be 
analyzed in the rest of this section. Firstly, the matrix is typically coated with 
chemicals to make the matrix reactive. Usually, the DNA is attached to it using UV 
radiation or covalent coupling to permanently link the DNA to the surface. In this 
form a cDNA or oligonucleotide, corresponding to a specific sequence of a gene, can 
be spotted onto the solid surface. That can be repeated for hundreds to tens of 
thousands of genes. With this set of DNA segments attached to the surface, RNA 



8                              2     MICROARRAYS 

Master Thesis 

from a specimen (e.g. tissue, cell line, tumor) can be labeled directly or indirectly 
(usually with a fluorescent nucleotide) and hybridized to the array of genes. The 
amount of fluorescence at each DNA spot corresponds to the transcript level of that 
particular gene. Therefore, the expression of thousands of genes can be analyzed in a 
single specimen by analyzing the microarray image. 

2.3.1 Fabrication 

Production of spotted arrays begins with the selection of the probes to be printed on 
the array. In many cases, these are chosen directly from databases including GenBank 
[6], dbEST [10] and UniGene [82]. Additionally, full−length cDNAs, collections of 
partially sequenced cDNAs (or ESTs3), or randomly chosen cDNAs from any library 
of interest can be used. Arrays for higher eukaryotes are typically based on the EST 
portions of these projects, whereas for yeast and prokaryotes, probes are usually 
generated by amplifying genomic DNA with gene−specific primers4. Given the 
expense of obtaining clones, producing DNA from them and printing them, it is 
usually preferable to produce arrays with a low redundancy of representation, so as to 
survey the broadest possible set of genes. 

cDNA arrays are produced by spotting PCR products representing specific genes onto 
a matrix. These are usually generated from purified templates, so that cellular 
contaminants do not find their way onto the array. Typically, the PCR product is 
partially purified by precipitation, gel−filtration, or both — to remove unwanted salts, 
detergents, PCR primers and proteins present in the PCR cocktail. For both glass and 
membrane matrices, each array element is generated by the deposition of a few 
nanoliters of purified PCR product [16]. A robot spots a sample of each gene product 
onto a number of matrices in a serial operation performing in this way the printing. 
The first spotting robots relied on contact printing with a device like a fountain pen. 
Many variations on this design are now available [11], in addition to a “spotter” that 
is a capillary tube, to which a low but constant pressure is applied. Non−contact 
printing modes, using either piezo or ink−jet devices, are also being evaluated. 

The types of membranes commonly used are nitrocellulose and charged nylon 
commercial varieties that are used for various blotting assays. Glass−based arrays are 
most often made on microscope slides, which have low inherent fluorescence. Glass 
has many of the advantages of nylon but it also has some unique merits:  
i. DNA samples can be covalently attached onto a treated glass surface.  
ii. Glass is a durable material that sustains high temperatures and washes of high 

ionic strength.  
iii. It is non-porous so the hybridization volume can be kept to a minimum, thus 

enhancing the kinetics of annealing probes to targets.  
iv. As a consequence of its low fluorescence, it does not significantly contribute to 

background noise.  

                                                 
 
3 Expressed Sequence Tag. A short sub-sequence of a transcribed protein-coding or non-protein coding 
DNA sequence [105]. 
4A primer is a nucleic acid strand (or related molecule) that serves as a starting point for DNA 
replication [104]. 



2     MICROARRAYS                                                                                                 9 

 

Hara Stefanou 

v. Two different probes can be labelled with different fluors, and simultaneously 
incubated with a microarray in a single reaction [16]. The glass−based arrays 
are coated with some chemicals which enhance both the hydrophobicity of the 
slide and the adherence of the deposited DNA. They also limit the spread of the 
spotted DNA droplet on the slide. 

In most cases, DNA is cross−linked to the matrix by ultraviolet irradiation. After 
fixation, residual amines on the slide surface are reacted with succinic anhydride to 
reduce the positive charge at the surface. As a final step, some percentage of the DNA 
deposited is rendered single−stranded by heat or alkali [16]. The state of bound DNA 
is ill−defined. It is deposited in double−stranded form, intra−strand cross−linked to 
some extent, and may well have multiple constraining contacts with the matrix along 
its length (induced by drying the DNA onto the matrix). It is therefore probably not 
the best hybridization probe. One can imagine that oligonucleotide matrices, with 
their short chains and single points of constraint at each chain end, may be a far better 
probe for hybridization. Against this advantage, however, the disadvantages of using 
short−chain detectors must be weighed. Chief among these are the variations in 
melting temperature due to AT−GC composition, and the reduction in specificity due 
to truncating the number of nucleotides from hundreds to as few as twenty. A format 
in which the accessibility of a simply tethered, single−stranded probe could be 
combined with the specificity of a long probe would provide a considerable 
improvement for the field [23]. 

2.3.2 Target labelling and hybridization 

The targets for arrays are labelled representations of cellular mRNA pools. Typically, 
reverse transcription from an oligo−dT primer5 is used. This has the virtue of 
producing a labelled product from the 3´ end of the gene, directly complementary to 
immobilized targets synthesized from ESTs. Frequently, total RNA pools (rather than 
mRNA selected on oligo−dT) are labelled, to maximize the amount of message that 
can be obtained from a given amount of tissue. The purity of RNA is a critical factor 
in hybridization performance, particularly when using fluorescence, as cellular 
protein, lipid and carbohydrate can mediate significant non−specific binding of 
fluorescently labelled cDNAs to slide surfaces. The fact that array elements are 
physically close to each other and strong hybridization with a radioactive target can 
easily interfere with detection of weak hybridization in surrounding targets has to be 
taken into consideration. As far as the fluorescent labels are concerned, Cy3 and Cy5 
are frequently paired, as they have relatively high incorporation efficiencies with 
reverse transcriptase, good photostability and yield and are widely separated in their 
excitation and emission spectra, allowing highly discriminating optical filtration [23]. 

A clear limitation to the application of this technology is the large amount of RNA 
required per hybridization. If not a quite large amount of total RNA is used in the 
hybridization there will not be an adequate fluorescence, because a few fluors will be 
present in a scanned pixel from a specific probe. Such low levels of signal are at the 
lower limit of fluorescence detection, and could easily be rendered undetectable by 
assay noise. Although radioactive targets may have a higher intrinsic detectability, 
                                                 
 
5 The oligo-dT primer consists of a string of deoxythymidylic acid residues and is designed to prime 
poly A+ RNA molecules for first-strand cDNA synthesis [40]. 
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they too reach a level of dilution that prohibits effective detection, thus making 
experimentation on very small numbers of cells impossible [23]. 

A variety of means by which to improve signal from limited RNA has been proposed. 
Efficient mixing of the hybridization fluid should bring more molecules into contact 
with their cognate probe, increasing the number of productive events. This entails, 
however, a larger mixing volume, which might offset the potential gain. Methods that 
produce multiple copies of mRNA using highly efficient phage RNA polymerases 
have been developed [70]. A version of this approach, in which labelled target 
(cRNA) is made directly from a cDNA pool, having a T7 RNA polymerase promoter 
site at one end via in vitro transcription, has been applied to arrays [52]. 
Post−hybridization amplification methods have also been reported in which 
detectable molecules are precipitated at the target by the action of enzymes 
“sandwiched” to the cDNA target [15]. Detection of hybridized species using mass 
spectroscopy or local changes in electronic properties can also be imagined [98,57]. 

 
Figure 2.1 – The Microarray Experiment [23]. 

2.3.3 Image analysis and data extraction  

Image data is prone to extraction by highly developed, digital image processing 
procedures due to the highly regular arrangement of detector elements and crisply 
delineated signals that result from robotic printing and confocal imaging of 
fluor−detected arrays. Grids specifying target locations can be readily overlaid on the 
images. Local sampling of background can be used to specify a threshold which true 
signal must exceed and mathematical morphology methods to predict the likely shape 
and placement of the hybridization signal. By applying these methods it is possible to 
accurately detect even weak signals [14] and extract a mean intensity above 
background for the target. In contrast, extraction of data from film or 
phosphor−image representations of radioactive hybridizations presents many 
difficulties for image analysis. If the array is on a membrane, there is frequently 
non−linear warping of the matrix, which means that the observed array will not have 
the strict geometric regularity of an array printed to a stiff matrix, such as glass. This 

http://www.nature.com/ng/journal/v21/n1s/pdf/ng0199supp_10.pdf
http://www.nature.com/ng/journal/v21/n1s/pdf/ng0199supp_10.pdf
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introduces difficulty in developing highly accurate grids to specify target locations. 
The spread of detectable particles from a disintegrating nuclide to the detector is 
highly sensitive to variations in distance between source and detector, and produces a 
smooth transition from the highest levels of intensity to background. This ensures that 
the image produced by radioactive exposure is composed of sections at many focal 
planes, and renders impossible the application of single, simple, point−spread 
functions to reconstitute a “focused” representation of the data. The smoothness of 
the transition from maximum signal intensity to background signal intensity makes 
consideration of local background for each signal a difficult proposition as one does 
not observe an abrupt, readily discerned transition between signal and background, 
but a smooth curve without a sharp derivative [23]. 

In carrying out comparisons of expression data using measurements from a single 
array or multiple arrays, the question of normalizing data arises. All experiments are 
carried out under conditions of a large excess of immobilized probe relative to 
labelled target. The kinetics of hybridization is therefore pseudo−first order, and 
inter−probe competition is not a factor. Under these conditions, the linear differences 
arising from exact amount of applied target, extent of target labelling, efficiencies of 
fluor excitation and emission, and detector efficiency can be compounded into a 
single variable and the information from each detection channel normalized. It is best 
to achieve normalization by adjusting the sensitivity of detection (photomultiplier 
voltage with fluorescence or exposure time with radioactivity) so that the 
measurements occupy the same dynamic range in the detector. There are essentially 
two strategies that can be followed in carrying out the normalization. One is based on 
a consideration of all of the genes in the sample, and the other, on a designated subset 
expected to be unchanging over most circumstances. In either case, variance of the 
normalizing set can be used to generate estimates of expected variance, leading to 
predicted confidence intervals. In instances of closely related samples, the transcript 
level of many genes will remain unchanged, making global normalization a useful 
tool. As samples become more divergent, the fraction of genes showing altered 
transcript levels increases, and global normalization yields a poorer estimate of 
normalization than would be achieved using a subset of constantly expressed genes. 
Explicit methods have been developed which make use of a subset of genes for 
normalization, and extract from this subset’s variance statistics for evaluating the 
significance of observed changes in the complete dataset [14].  

A common aspect is the extent of reliability and variance in measurements. So far, 
most array methods have been validated by probing northern blots [3] of the 
biological samples. As with sequencing, the best comparisons and measures of 
reliability can be made only when large data sets contain significant repetitions and 
overlapping data are freely available. One can, however, clearly envisage strengths 
and weaknesses. The simple and highly determined nature of immobilized 
hybridization probes in oligonucleotide arrays make them likely to yield the highest 
level of reproducibility of absolute measurement for a given element. The ability of 
cDNA arrays to achieve element−by−element normalization with two−colour 
fluorescence detection and to use a single, highly specific immobilized probe could 
provide the most accurate measurements of relative expression levels. All methods 
should readily disclose large changes in transcript levels among those readily detected 
genes [23]. 

The main objectives in microarray image analysis are: 
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• Noise suppression. 
• Spot localization and detection, including the extraction of the background 

intensity, the spot position and the spot boundary and size. 
• Data quantification and quality assessment. 

All these processing steps are going to further analyzed in Sections 2.5 and 5. 

2.3.4 Data management and mining 
All array methods require the construction of databases for the management of 
information on the genes represented on the array, the primary results of 
hybridization and the construction of algorithms to make it possible to examine the 
outputs from single and multiple array experiments. Correlation−based approaches 
that apply methods developed for the analysis of data which are more highly 
constrained (such as protein or amino acid sequence comparisons) than at the 
transcript level have been applied to microarray data analysis. This level of analysis 
on large data sets provides new perspectives of the operation of genetic networks. 
Comparison of expression profiles undoubtedly provides useful insights into the 
molecular pathogenesis of a variety of diseases [47,17]. It cannot, however, deliver 
the kind of intimate understanding of the highly interrelated control circuitry that is 
necessary to achieve true understanding of genome function. A number of 
publications [60,109,30] suggest that to achieve this objective, we should reconsider 
our perception of transcriptional control as a simple on−off switch to a model 
whereby control is analogous to a highly gated logic circuit, where numerous, often 
contradictory, inputs are summed to produce a response. To reach these goals, 
biologists must expand the arsenal of tools they use to analyse expression data — 
recruiting statisticians and mathematicians to consider multivariant problems of a size 
never before attempted.  

2.4 Microarray Scanning 

After competitive hybridisation with the control and the query labelled DNAs, the 
array is scanned. Many scanners for microarray analysis exist on the market today 
differing in technology, size, speed, sensitivity, capacity and many more. Though, it 
is quite difficult to discriminate which scanner is the best one due to the quick 
evolution of the field of biochip microarrays. 

As array technology transitioned from nylon-based arrays to glass substrate, new 
instrumentation became necessary to measure the fluorophores used in target 
labeling. To that end, all scanners were designed to measure the amount of 
fluorescence emitted from a microarray slide. However, because it is assumed that the 
quantity of fluorophores in a given location (feature or DNA spot) correlates to the 
level of endogenous gene transcription, it is important to obtain an accurate 
measurement of this fluorescent signal. Consequently, scanner specifications 
(regarding sensitivity, uniformity, resolution, throughput, dynamic range and cross-
talk) are important for selecting a quality optical instrument. In addition, engineering 
improvements to reduce noise and image-extraction algorithms to estimate noise have 
important implications for detecting subtle differences in gene expression with 
confidence based on statistical analysis [44]. 



2     MICROARRAYS                                                                                                 13 

 

Hara Stefanou 

2.4.1 Parameters for a Microarray Scanner Designing  
A microarray scanner designing should take into consideration several key points in 
order to produce an image that suffers from noise as less as possible. The most 
important parameters along with the ones responsible for a noisy result are 
analytically described in the following sections.  

2.4.1.1 Resolution 

A frequently-used rule of thumb is that the scanning resolution of each pixel should 
be set as 1/10 the diameter of the spot being scanned. Since not all genes in the 
human genome are needed in a microarray experiment, the number of spots per slide 
is reduced so the diameter of each spot can be larger. However, having only one 
replicate of each gene feature per chip may not be sufficient to generate reliable data. 
In order to calculate statistics, such as confidence intervals, it is necessary to include 
replicates, positive and negative controls, and introduce quality control features. So, 
in theory, a well-designed complete human genome microarray chip should contain 
100000 features (while the human genome consists of 30000 to 40000 genes), many 
of which are replicates and controls [61]. 

2.4.1.2 Sensitivity 

Generating a good image from microarray scanners can be challenging because the 
quantity of fluorescently-labeled DNA hybridized to the probes on the microarray is 
not very large. Additionally, the glass substrate for the microarray generates a low, 
but significant, level of background fluorescence. Therefore, it is necessary to use 
extremely sensitive scanning and detection strategies that enable the scanner to detect 
the faint signals and block out as much of the undesirable background fluorescence as 
possible.  

A simple way to increase sensitivity is to increase the power of the excitation light 
source in order to attempt to make the fluorophores emit greater quantities of 
fluorescent light. However, it is known that organic fluorophores can only be excited 
a finite number of times before they are photobleached, which means the dye 
undergoes a permanent chemical change and is destroyed. It is also possible to 
increase sensitivity by increasing the detector gain. Depending on the type of 
detector, there is usually an optimal setting for the detector gain, and further increase 
of the gain often results in increased noise, which is unwanted. Therefore, 
diminishing returns are encountered when attempting to increase sensitivity by 
increasing the power of the light source or increasing the detector gain beyond certain 
limits. However, if the optimal combination of components is chosen, then excellent 
sensitivity can be achieved [61].  

2.4.1.3 Multiple Dyes 

The absorption and emission spectral curves of the fluorescent dyes, used to label the 
samples, must be well separated to minimize cross-talk. Cross-talk results from either 
the simultaneous excitation of multiple dyes by one light source, the simultaneous 
detection of multiple dyes in one detector channel or both. More than two dyes in one 
experiment would be desirable so that additional controls are added or more data 
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from one slide are generated. However, the risk of cross-talk increases with the 
increase of the number of dyes, because most organic fluorophores have rather broad 
absorption and emission spectral curves. Cross-talk can be reduced by selecting filters 
that have a narrow spectral range, at the expense of reduced sensitivity [61]. 

2.4.1.4 Substrates 

Many different types of microarray substrates are available such as glass, gold-plated, 
silicon, plastic or membrane-coated materials. The reasons for choosing a specific 
type of substrate vary. Some users may want to experiment with different adhesion 
chemistries that are only available on these different materials. Others may want to 
eliminate background fluorescence commonly caused by glass substrates. Often 
benefits of using new substrate materials come with trade-offs. Many of these 
materials are highly reflective and will direct the excitation light back into the 
detection optics and reduce the signal-to-background ratio, unless the scanner uses the 
proper optical design. Some substrates may have wells, which often have reflective 
walls and bottoms, and the biological materials of interest may be present at the 
bottom of the wells, or in the bulk solution. Coverslips present an interface where 
multiple reflections occur. Some provision for reducing reflections and the ability to 
scan into wells or beneath coverslips should be considered [61]. 

2.4.1.5 High Quality of Data 

Above all, the quality of the image generated by the microarray scanner must satisfy 
certain criteria for producing valid data. For instance the signal-to-noise ratio of the 
spot should be sufficiently high so automatic spot finding algorithms can readily 
detect the spot signal from its surrounding background signal. Equally important is 
that the pixel value is accurately registered. This means that each data pixel directly 
corresponds to the actual feature on the microarray that is being imaged. The 
resolution of the scanner must be sufficiently high to provide enough pixels per spot 
so that image analysis algorithms can accurately analyze the spot intensities. 
Misregistered pixels, especially around the edges of the spot, can lead to difficulties 
in defining the spot location, shape and size, which will impact the spot intensity 
calculations. Of course, there are also other causes of low quality data so a more 
general approach of improving data quality should be adopted [61]. 

2.4.2 Types of Microarray Scanners 

In general, microarray scanners fall into two main categories, those that use charged-
coupled devices (CCDs) and others that use laser light with photo-multiplier tube 
(PMT) detection. CCDs commonly use flood-illumination to simultaneously acquire a 
microarray image that is divided into pixels by the detector. Because a CCD detector 
cannot acquire the entire dimension of a microarray slide with high resolution, 
smaller regions are typically scanned and “stitched” together by software to improve 
image quality [4]. To improve resolution and subsequent software manipulation the 
slide has to be longer exposed, but this may cause implications on array 
photobleaching and image integrity. In addition, the use of flood-illumination 
typically results in a higher background illumination from the glass substrate and the 
opposite slide surface, as it prevents rejection of these undesired sources of 
background. Point-source illumination (a laser spot of essentially constant power 
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scanned across the sample) typically results in better spatial uniformity of the 
measurement. Although a CCD-based system may compensate for signal magnitude 
variations by post-processing the data, it cannot compensate for the resulting variation 
in shot-noise (see section 3.2.2.2.3). 

The more commonly used scanner technology involves laser excitation and PMT 
detection to build microarray images pixel by pixel via raster scanning. Here, well-
defined wavelengths of laser light, corresponding to the excitation peaks of 
incorporated fluorophores, are directed to the microarray slide in a simultaneous or 
sequential fashion. As the fluorophore-labeled target is excited, the emitted photons 
impinge upon a photocathode material (PC) to cause photoelectron (PE) emission. 
The PE charge is then amplified by multiple dynodes to produce a current pulse that 
is proportional to the amount of incident light [67]. The fraction of impinging photons 
that result in photoelectrons and contribute to the output signal is referred to as the 
quantum efficiency QE of the PMT (not to be confused with the quantum efficiency 
QE of the dye). Often, confocal or other depth-discriminating optical designs are 
combined with PMT detection to ensure that only photons emitted from a defined 
plane of focus (i.e. the microarray features) are quantified. This increases scanner 
sensitivity by eliminating out-of-focus light not originating from the targets of 
interest. For state-of-the-art systems this results in a lower limit of detection and – in 
other words – higher sensitivity [99]. 

 
Figure 2.2 – A PMT detector. 

2.5 Microarray Image Processing  

Image processing has a potentially large impact on the subsequent analysis. The 
processing of scanned microarray images can generally be separated into four tasks. 

• Denoising is the process of image noise removal. This step is going to be 
further analyzed in Section 5, where some denoising techniques are going to be 
presented. 

• Addressing or gridding is the process of locating the signal spots in images and 
estimate the size of each spot. Spots are features in the image that are small 
compared to the whole image, but indeed relatively large when analysed 
locally and they consist the major amount of the image information. 
Automating this part of the procedure permits high-throughput analysis while it 
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reduces the human effort, minimizes the potential for human error and offers 
high consistency in the quality of the data.  

• Segmentation allows the classification of pixels either as foreground – that is, 
within printed DNA spot – or as background. 

• The intensity extraction step includes calculating, for each spot on the array, 
red and green foreground fluorescence intensity pairs (R, G), background 
intensities, and, possibly, quality measures [107].  

Estimation of background intensity is generally considered necessary for the purpose 
of performing background correction. The motivation for background correction is 
that a spot’s measured fluorescence intensity includes a contribution which is not 
specifically due to the hybridization of the mRNA samples to the spotted DNA. 
Background correction of the spot intensities is usually performed by subtracting 
background estimates from the red and green foreground values, with the aim of 
improving accuracy, that is, reducing bias. Spot quality scores may include measures 
of spot size and shape, or measures of background intensity relative to foreground 
intensity [108]. 

2.5.1 Addressing 

The basic structure of a microarray image is determined by the arrayer and is 
therefore known. For example, it is known in advance that there are four rows and 
four columns of grids, and that within each grid there are 23 rows and 24 columns. 
However, to address the spots in an image – that is, to match an idealized model of 
the array with the scanned image data – a number of parameters need to be estimated. 
These parameters include separation between rows and columns of grids, individual 
translation of grids (caused by slight variations in print-tip positions), separation 
between rows and columns of spots within each grid, small individual translations of 
spots, and overall position of the array in the image. Within a batch of microarray 
images produced together, the last of these is usually the most highly variable. Other 
parameters that may in some cases need to be estimated are misregistration of the red 
and green channels, rotation of the array in the image, and skewness in the array. The 
last two parameters are important issues for automated gridding algorithms, but a 
minor problem if manual gridding techniques are used. In addition, with the 
improvement of printing and scanning technologies, some of these parameters such as 
misregistration between the two channels and small individual translations of spots 
are likely to decrease in importance [107]. 

To achieve higher levels of accuracy in the measurement process, it is desirable for 
the addressing procedure to be as reliable as possible. Reliability of the addressing 
stage can be enhanced by allowing user intervention. However, this can potentially 
make the process very slow. Ideally we seek reliability while attempting to minimize 
user intervention to maximize efficiency. The addressing steps are often referred to as 
“gridding” in the microarray literature. Most software systems now provide for both 
manual and automatic gridding procedures. 

2.5.2 Segmentation 
Generally, segmentation of an image can be defined as the process of partitioning an 
image into different regions, each having certain properties. In a microarray 
experiment, after the location of the spot is determined, a small area around the spot 
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(target region) is used to quantify the spot expression level; in other words, the signal 
and background pixel values are measured. The next step is to determine which of the 
pixels in the target region are due to the actual spot signal and which of them are 
considered background. Therefore, segmentation allows the classification of pixels as 
foreground or background, so that fluorescence intensities can be calculated for each 
spotted DNA sequence as measures of transcript abundance. Any segmentation 
method produces a spot mask, which consists of the set of foreground pixels for each 
given spot. Existing segmentation methods for microarray images can be categorized 
into four groups, according to the geometry of the spots they produce: 

• fixed circle segmentation, 
• adaptive circle segmentation, 
• adaptive shape segmentation, and 
• histogram segmentation. 

Table 2.1 lists different segmentation approaches and examples of software 
implementations. In general, most software packages implement a number of 
segmentation methods. 
 

Segmentation 
Methods 

Software Algorithms 

Fixed circle ScanAlyze, GenePix, 
QuantArray 

 

Adaptive circle GenePix, Dapple  
Adaptive shape Spot Region Growing and 

Watershed 
Histogram method ImaGene [106], QuantArray, 

DeArray, SpotSegmentation  
Adaptive Thresholding 

Table 2.1 – Segmentation methods and examples of algorithms and software implementation 

2.5.2.1 Fixed circle segmentation 

Fixed circle segmentation fits a circle with a constant diameter to all the spots in the 
image. This method is easy to implement and works nicely when all the spots are 
circular and of the same size. It was probably first implemented in the ScanAlyze 
software written by Eisen [28] and it is usually provided as an option in most 
software. A fixed diameter segmentation may not be satisfactory to detect the exact 
shape for spots varying in diameter. 

Theoretically, if the background affects the foreground values additively and the 
background value can be reliably estimated, one could use a very large fixed diameter 
for segmentation such that the entire spot is covered for all spots. That is, any 
segmentation that is too large can yield perfectly good (unbiased) estimates if the 
background contribution can be removed. On the other hand, an ability to detect the 
exact shape for all spots limits the amount of irregular noise within the spot mask (for 
example, bright pixels due to dust, scratch or contribution from neighboring spots) 
[107]. 
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2.5.2.2 Adaptive circle segmentation 

In this kind of segmentation, the circle’s diameter is estimated separately for each 
spot. The software GenePix for the Axon scanner [31] implements such an algorithm. 
Note that GenePix and other software provide the user with the option to adjust the 
circle diameter spot by spot. This practice can be very time consuming, since each 
array contains thousands of spots. The software Dapple [13] finds spots by detecting 
edges of spots. Briefly, Dapple calculates the negative second derivative (Laplacian) 
of the image. Pixels with high values in the Laplacian image correspond to edges of a 
spot. In addition, Dapple enforces a circularity constraint by finding the brightest ring 
(circle) in the Laplacian images. 

Adaptive circle segmentation methods will work rather well as circular spots are 
probably typical of most commercially produced arrays. However, spots printed from 
non-commercial arrayers are rarely perfectly circular and can exhibit oval or 
doughnut shapes [27]. A circular spot mask can thus provide a poor fit for a non-
circular shaped spot. Sources of non-circularity include the printing process (e.g. 
features of the print-tips, uneven solute deposition) or the post-processing of the 
slides after printing (e.g. insufficient time of rehydration). Again, segmentation 
algorithms that do not place restrictions on the shape of the spots are thus more 
desirable if one is attempting to determine the exact spot shape. 

2.5.2.3 Adaptive shape segmentation 

Two commonly used methods for adaptive segmentation in image analysis are the 
watershed [7,102] and seeded region growing (SRG) [1]. These methods are 
beginning to be applied in microarray analysis, although not in the most widely-used 
software packages. 

Both watershed and SRG segmentation require the specification of starting points, or 
seeds. A weakness of segmentation procedures using these methods can be the 
selection of the number and location of the seed points. In microarray image analysis, 
however, we are in the rather unusual situation where the number of features (spots) 
is known exactly a priori, and the approximate locations of the spot centres are 
determined at the addressing stage. Microarray images are therefore well suited to 
such methods. The SRG algorithm is implemented in Spot. Details regarding the 
placement of foreground and background seeds can be found in Yang et al [108]. 

2.5.2.3.1 The Watershed Segmentation 

Every grayscale image can be interpreted as a topographic surface where the gray-
levels of the image (or gradient image) represent altitudes. If the gradient image is 
used, region edges correspond to high watersheds, while low-gradient region interiors 
correspond to catchment basins. Watershed segmentation is a region-growing method 
[7,102]. In watershed segmentation, catchment basins represent the regions of the 
segmentation. In an image, every grayscale minimum represents a catchment basin 
and the idea lies in flooding with water every basin starting from the bottom. When 
floodings from two basins are about to merge a high dam is needed to be built in 
order to prevent this merging. When all the basins have been flooded the dams 
constructed represent the watershed lines. In a microarray image the catchment basins 
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correspond to the spots while the watershed lines are the lines separating two adjacent 
spots. 

However, there are some problems when using the watershed algorithm. Firstly, thick 
watersheds are often produced when dealing with discrete space, but this can be 
solved with careful distance computing and queue handling. Secondly, watershed 
segmentation often leads to over-segmented results, i.e., too many regions. There are 
various ways in solving this, such as pre-processing (e.g., smoothing to remove small 
local minima), seeding, in which a marker (seed) is put inside each region and only 
marked regions are allowed to be found, and post-processing by merging either on 
edge strength or on valley depth. 

2.5.2.3.2 Seeded Region Growing (SRG) 

In the seeded region growing (SRG) algorithm of Adams and Bischof [1], a number 
of seeds are provided as input to the algorithm. These are groups of pixels which 
serve as starting points for a region growing process. Often seeds consist of only a 
single pixel, but they can be of any size and do not need to form a connected set. We 
describe below how we construct the seeds in this application of SRG. 
After specification of seeds, the algorithm proceeds by growing all the foreground 
and background regions simultaneously until all pixels in the image have been 
allocated to one of the regions. At each stage, all pixels which are still unallocated, 
but which have at least one neighbor which has already been allocated, are considered 
for allocation. Out of all these region-neighboring pixels, the algorithm selects the 
one whose pixel value is nearest (in terms of absolute grey-level difference) to the 
average of the pixel values in the neighboring region. The process is repeated until all 
pixels have been allocated. Pixel queues are used to optimize the efficiency of the 
procedure. 
For microarray segmentation using SRG, the foreground and background seeds are 
chosen using the grids calculated in the addressing stage. An obvious way to choose a 
seed for each spot is to choose a single pixel from the intersections of the horizontal 
and vertical grid lines of the fitted foreground grid. However, it is possible, 
particularly when the spot is small, that this intersection pixel may not be inside the 
spot because of local irregularities or small errors in the grid estimation. To overcome 
this problem, a point is chosen by finding the maximum of the combined intensity 
surface over a small region centered at the intersection pixel. The foreground seed is 
then set to be an n-by-n square of pixels centered on this point. The integer n is 
specified by the user. 
Background seeds need to be computed also. A very simple approach would be to use 
the intersection points from the fitted background grids as background seeds, or 
indeed to use all of the grids together as one large background seed covering most of 
the image. Such a procedure has the advantage of separating the foreground seeds 
from each other and therefore ensuring that the segmented spots cannot merge or 
bleed into one another. There are, however, two reasons why the use of such large 
background seeds is undesirable. The first is that background intensity is often locally 
varying and poor performance is expected for SRG if regions are not homogeneous in 
intensity. A second reason is that we require local estimation of background intensity 
and this can be obtained by having smaller, more local background regions.  
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2.5.2.4 Histogram segmentation 

This method uses a target mask chosen to be larger than any other spot. For each spot, 
foreground and background intensity estimates are determined in some fashion from 
the histogram of pixel values for pixels within the masked area. For example, 
QuantArray software for the GSI Lumonics scanner [71] uses a square target mask 
and defines foreground and background as the mean intensities between some 
predefined percentile values. By default, these are the 5th and 20th percentiles for the 
background and the 80th and 95th percentiles for the foreground. These methods 
therefore do not use any local spatial information. 

Another example of this class of methods is described by Chen et al [14]. This 
method uses a circular target mask and computes a threshold value based on a Mann-
Whitney test. Pixels are classified as foreground if their value is greater than the 
threshold and as background otherwise. This method is also implemented in the 
QuantArray and DeArray by Scanalytics. Simplicity is the main advantage of this 
method. However, a major disadvantage is that quantification is unstable when a large 
target mask is set to compensate for variation in spot size. Furthermore, the resulting 
spot masks are not necessarily connected. 

SpotSegmentation software [51] employes a model-based clustering of pixels, which 
actually is a histogram-based method. This model-based clustering allows the 
estimation of the number of groups in the target area, and hence provides a formal 
basis for determining whether or not a spot is present. Typically, background pixels 
would be one group and pixels in the spot or foreground would be another. In 
addition, if an artifact is present, or if the spot is donut-shaped and has an inner hole, 
the corresponding pixels would form a third group. Artifacts often take the form of 
small disconnected groups, and so a thresholding on the size of the connected 
components in the spot cluster can identify a third cluster formed by artifacts. 

2.5.3 Information Extraction  
Information extraction deals with the measuring of the spot signal and background 
values. In microarrays, the key information that needs to be recorded is the expression 
strength of each target. When studying gene expression techniques we are typically 
interested in the difference in expression levels between the test and reference mRNA 
populations. This translates into differences in the intensities on the two images. 
Under idealized conditions, the total fluorescent intensity from a spot is proportional 
to the expression strength. To have this idealized situation we should prepare the 
probe cDNA so as its concentration in the solution is proportional to that in the tissue. 
Secondly, the hybridization experiment must be done in such a way that the amount 
of cDNA binding in the spots must be proportional to the probe cDNA concentration 
in the solution. Moreover, the amount of cDNA deposited on each spot during the 
chip fabrication should be constant, the spots must be uncontaminated and the signal 
pixels must be correctly identified by the image analysis software [44]. 

2.5.3.1 Spot intensity 

Each pixel value in a scanned image represents the level of hybridization at a specific 
location on the slide. The total amount of hybridization for a particular spotted DNA 
sequence is proportional to the total fluorescence at the spot. The natural measure of 
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spot intensity is therefore the sum of pixel intensities within the spot mask. Since later 
calculations are based on the ratio of fluorescence intensities, we compute the average 
pixel value over the spot mask. This yields identical results, as the ratio of averages is 
equal to the ratio of sums. An alternative measure used is ratio of medians, where the 
median pixel value over the spot mask is computed. This measure is not associated 
with any biological meaning but can be seen as a robust variant of the ratio of means. 

2.5.3.2 Background intensity 

The motivation for background adjustment is the belief that a spot's measured 
intensity includes a contribution not specifically due to the hybridization of the target 
to the probe, for example, nonspecific hybridization and other chemicals on the glass. 
If such a contribution is indeed present, we would like to measure and remove it to 
obtain a more accurate quantification of hybridization. The glass slides are treated 
chemically so that the spotted cDNA fragments will bind to them. After the cDNA 
spots are printed, the slides are treated again so that target DNA does not bind to 
them. Nevertheless, some binding of the target to the slide may occur. Furthermore, 
there may be some fluorescence away from the spots due to the slide's surface 
treatment and the glass. It seems likely that the fluorescence from regions of the slide 
not occupied by DNA is different from that from regions occupied by DNA. It 
follows that measuring the intensity in some region near a spot and subtracting it may 
not be the best way to correct for this extra contribution, even though this is what 
many people are doing. It would be interesting to compare the morphological and 
local background estimates to ones based on local negative controls (i.e. nearby 
spotted cDNA sequences which should have no hybridization signal). 

Apart from histogram-based methods, the rest segmentation procedures described 
above produce local background regions, as well. We can broadly classify the various 
background methods implemented in software packages into four categories. 

2.5.3.2.1 Local background 

Background intensities are estimated by focusing on small regions surrounding the 
spot mask. Usually, the background estimate is the median of pixel values within 
these specific regions. Most software packages we have encountered implement such 
an approach. 

The ScanAlyze package considers as background all pixels that are not within the 
spot mask but are within a square centred at the spot centre. This is represented by the 
dotted square in Figure 2.3. The median value of these pixels is used as an estimate of 
the local background intensity. One of the background adjustment methods 
implemented in QuantArray, ArrayVision and ImaGene considers the area between 
two concentric circles, such as the area between the two larger circles in Figure 2.3. 
By not considering the pixels immediately surrounding the spots, the background 
estimate is less sensitive to the performance of the segmentation procedure. An 
alternate set of pixels to be considered as background (implemented in Spot) is shown 
as the four dashed diamond-shaped areas in Figure 2.3. These regions are referred to 
as the valleys of the array and have the furthest distance from all four surrounding 
spots. The local background for each spot can be estimated by the median of values 
from the four surrounding valleys. Depending on the software, the local valley 
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regions are different, but this method of background estimation is somewhat 
independent of the segmentation results. The background method implemented by 
GenePix effectively calculates the median intensity from local valley regions. 

Using valley pixels which are very distant from all spots ensures to a large degree that 
the background estimate is not corrupted by pixels belonging to a spot. Such 
corruption by bright pixels may occur in the other methods, particularly in the 
ScanAlyze method, introducing an upward bias into the background estimate. Using 
remote pixels reduces this bias effectively but entails the use of a smaller number of 
pixels and therefore increases the variance of the estimate. This is an example of the 
bias—variance trade-off. Most software packages allow users to choose their 
preferred version of local background method. 

 
Figure 2.3 – Different local background approaches.  
The spot is limited by the red circle. The other colored lines bound the regions used for local 
background calculations by different methods. Green ring: QuantArray, ImaGene, Blue 
rectangle: ScanALyze, Purple diamonds: Spot. 

2.5.3.2.2 Morphological opening 

This approach to background adjustment relies on a non-linear filter called 
morphological opening [89]. This filter is obtained by computing a form of local 
minimum filter (an erosion) followed by a form of local maximum filter (a dilation) 
with the same window. In a microarray image, the effect of such non-linear filtering 
using a window that is larger than any of the spots is to remove all spots, replacing 
them by nearby background values. 

In Spot, morphological opening is applied to the original images R and G using a 
square structuring element with side length at least twice as large as the spot 
separation distance. This operation removes all the spots and generates an image that 
is an estimate of the background for the entire slide. For individual spots, the 
background is estimated by sampling this background image at the nominal centre of 
the spot. We simply chose to sample this image rather than take an average over a 
“background region” because very similar results are expected from both methods. A 
large window was used to create the morphological background image; hence it is 
expected to have slow spatial variation. 

Morphological opening results in lower background estimates than other simpler 
methods. More importantly, though, morphological background estimation is 
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expected to be less variable than the other methods, because spot background 
estimates are based on pixel values in a large local window, and yet are not corrupted 
(i.e. biased upwards) by brighter pixels belonging to or on the edge of the spots. 

2.5.3.2.3 Constant background 

This is a global method which subtracts a constant background for all spots. The 
approaches previously described assume that the non-specific binding to a spot can be 
estimated by the surrounding area. However, some findings [54] suggest that the 
binding of fluorescent dyes to “negative control spots” (e.g. spots corresponding to 
plant genes that should not hybridize with human mRNA samples) is lower than the 
binding to the glass slide. If this is the case, it may be more meaningful to estimate 
background based on a set of negative control spots. When there are no negative 
control spots, one could approximate the average background by, for example, the 
third percentile of all the spot foreground values. 

2.5.3.2.4 No adjustment 

Finally, we also consider the possibility of no background adjustment at all. 

2.5.3.3 Quality measures 

In addition to the actual spot foreground and background intensities, it is also 
desirable to collect statistics describing the quality of these measurements. Examples 
of quality measures provided in most software include variability measures in pixel 
values within each spot mask, spot size (area in pixels), a circularity measure and 
relative signal to background intensity. Most software packages provide a reject and 
accept assessment on spot quality. Dapple defines two measures: b-score measures 
the fraction of background intensities less than the median foreground intensity while 
p-score measures the extent to which the position of a spot deviates from a rigid 
rectangular grid. A classifier is built based on these two measures to accept, reject or 
flag any spots. Flagged spots need to be manually accepted or rejected. 

Most programs have yet to make fuller use of these measures in their analysis, as 
relating them to more common statistical concepts such as reproducibility seems to be 
difficult. Research along these lines is being carried out. 
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3 SIGNAL AND NOISE IN MICROARRAY EXPERIMENTS 

Microarray experiments involve a large number of error-prone procedures that lead to 
a high level of noise in the resulting data. The high level of the uncertainty associated 
with each microarray experiment originates by biological variations (corresponding to 
real differences between different cell types and tissues) and experimental noise. This 
uncertainty often obscures some of the important characteristics of the biological 
processes of interest. More specifically, changes in the measured transcript values in 
the samples render the clustering of genes into functional groups [26,72], and the 
classification of samples difficult [88,100].  
 
The main objective of this dissertation is to eliminate the effect of the noise and 
recover the gene expression measurements, which is a major challenge in microarray 
analysis. Before all, it is essential to discriminate signal from noise in a microarray 
experiment. Signal in a microarray experiment is defined as the desired output, 
whereas noise is defined as the sum of unwanted contributions to the instrument 
readings. Due to the fact that most microarray assays are based on fluorescent signals, 
the signal in nearly all microarray experiments derives from emission of fluorescent 
light from tags attached to the probe molecules. Noise, on the other hand, has many 
different origins. The quotient of signal and total noise is known as the signal-to-
noise ratio. Because the information in microarray assays in contained within the 
signal, one goal in all microarray experiments is to maximize the ratio of signal to 
noise [80]. 

3.1 SIGNAL DETERMINANTS 

Though the source of signal is much simpler to understand than the vast number of 
contributors to noise, total signal in a microarray analysis actually has three different 
determinants: intrinsic, extrinsic, and quantity. The intrinsic signal determinants are 
those that are inherent to the labels used on the probe molecules. Because nearly all 
microarray techniques use fluorescent labels, intrinsic signal determinants include the 
physical properties of the fluorescent dyes, such as molar extinction coefficient and 
quantum yield. To maximize microarray signals, prudent selection of dyes and other 
types of labels with superior intrinsic properties is the key. 

Extrinsic signal determinants are external contributors to signal, the most pertinent in 
microarray experiments being instrument determinants and environmental 
determinants. With fluorescent detection instruments, some of the key instrument 
determinants of signal include the power of the light source, excitation wavelength, 
detection dwell time, and efficiency of the light path, detector and arid analog-to-
digital converter. The main environmental determinants include the polarity of the 
solvent, pH of the buffer, presence of quenching species, and extent of energy transfer 
between adjacent dye molecules. Because most microarray substrates are detected in 
the dry state, solvent polarity, pH and presence of quenching species are fairly minor 
environmental signal determinants. Energy transfer or self-quenching, on the other 
hand, can exert a rather major effect on signal. Because energy transfer increases with 
the increasing proximity of dye molecules to each other, there can be a nonlinear 
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relationship between probe quantity and signal output. To obtain maximum 
microarray signals, all of the main extrinsic signal determinants, including instrument 
and environmental contributions, need to be optimized. 

Microarray signal is also determined by the quantity of the label present at a given 
position on the microarray. Quantity determinants include the number of probe 
molecules bound and the number of labels present per bound probe molecule. The 
number of labels attached to a given probe molecule is sometimes referred to as the 
specific activity of the probe. Because the specific activity can vary greatly depending 
on the labeling scheme, there is not a 1:1 relationship between the number of 
molecules bound and the number of labels present at a given microarray location. 
Under conditions of target excess, a greater probe concentration results in a larger 
number of probe molecules binding to the surface. Stronger microarray signals are 
always observed with greater probe concentrations and higher specific activities and 
the researcher should always endeavor to maximize the quantity determinants in order 
to achieve maximum signal. With fluorescent labeling schemes, nonlinearity can be 
observed at high dye concentrations due to energy transfer between adjacent dye 
molecules [80]. 

3.2 NOISE IN MICROARRAY EXPERIMENTS 

One of the major difficulties in decoding gene expression experiments comes from 
the noisy nature of the data. All undesirable features causing discrepancies in the 
digital image are considered noise. Noise is caused by both biological variations and 
experimental noise. To correctly interpret these data, it is crucial to understand the 
sources of the experimental noise. The noise sources are external (due to random 
nature of light, dust in the air, scratches on the objects being observed) or internal 
(due to the operation of the video sensor itself). In this dissertation, we are most 
interested in the noise which is caused by the microarray image generation process. 
Its origin, usually, involves the collection of fluorescence of the labeled samples, the 
amplification of the analog signal and the conversion to digital through dedicated 
imaging devices. In this section, most sources of noise in DNA microarray process 
are going to be presented [44, 99, 80, 81]. 

3.2.1 Systematic Noise vs. Random Noise  

In microarray analysis the most damaging noise is background reflection, array 
misalignment, or scratches and dust on the film surface. As far as where the 
discrepancies appear, the noise may be geometric (spatial discrepancies in the image) 
or radiometric (discrepancies in the pixel value), while regarding its effects noise is 
either systematic or random [35]. Systematic noise affects the accuracy of the 
measurements made from the images, and random noise affects also the precision. 
Random noise includes randomness in the biological process, the camera noise, as 
well as random variation in the spot size and shape. Notice that the systematic and 
random noise are combined in the image, so treating the systematic noise, by default 
requires understanding the random noise as well. 

Systematic noise is defined as the unwanted deviations from the intended detection 
protocol. If these errors are accurately evaluated, in theory, they can be compensated 
by post experiment data processing. If not, they result in a particular type of 
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measurement uncertainty, typically referred to as systematic noise. Systematic noise 
can be minimized by proper use of sensors, calibration procedures and proper set up 
of the experiment. 

We define random or inherent noise of the detection system as the unavoidable 
uncertainties even with ideal detection where no systematic error exists. Inherent 
noise is basically inevitable since it originates from the stochastic nature of molecular-
level interactions. Random noise, therefore, is not reproducible because there is 
variability in the pixel values each time images are taken. 

3.2.2 Noise Sources  
In general, the expression level uncertainty in microarray systems, fundamentally 
originates from the probabilistic characteristics of the detection process, all the way 
from sample extraction and mRNA purification to hybridization and imaging. We are 
at the greatest extend interested in the noise that originates from the microarray 
process because, as foresaid, this is the one that can help us in correctly interpret the 
gene expression microarray data. 

3.2.2.1 Biological Noise  
Noise enters very early in the microarray process due to biological variations. When 
the original volume, from which the sample is going to be extracted, noise due to 
randomness is introduced, because the position of the volume is not exactly the same 
in each repetition of the experiment. In the same way, the extraction of the desired 
fraction is also a random process. From the biological point of view, noise due to 
randomness occurs in three steps; first, in mRNA preparation, where probes may look 
very different from sample to sample depending on tissue and sensitivity to RNA 
degradation, second, in the reverse transcription to cDNA, which will result in DNA 
species of varying lengths, and finally in the fact that the clones of cDNA are 
subjected to PCR amplification, which is difficult to quantify and may fail 
completely. 

3.2.2.2 Experimental Noise 
Total noise in microarray detection is defined as the sum of all unwanted contri-
butions to the instrument readings. There are many different sources of noise, with the 
two types being instrument noise and microarray noise. Instrument noise includes – 
among others – dark current, electronic noise, shot noise and optical noise. Microarray 
noise includes all of the noninstrument noise components of the system and consists 
of the chip-based sources that include substrate noise and sample noise. In some of the 
early detection instruments, instrument noise was a major source of noise in the 
system. In most modem systems, the chief component of total noise derives from 
microarray noise, placing great importance on high-quality surfaces and reaction 
chemistries. Each of these sources of noise is explained below. 

3.2.2.2.1 Dark Current 

Dark current, as the term implies, is instrument noise that originates in the absence of 
light. Dark current, or dark count, originates from the instrument detector and derives 
mainly from thermal PE emissions from the dynodes, thermally excited PE’s leaving 
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the PC, or leakage currents between the electrodes [68], usually measured in electrons 
(e-) per pixel per second at a given temperature. All instrument detectors including 
photomultiplier tubes (PMTs), CCD cameras, and CMOS cameras exhibit measurable 
dark current. PMTs and cameras that have very low dark current ratings are obviously 
the devices of choice for microarray detection systems, which endeavor to provide the 
greatest detectivity possible. Because scanning systems acquire data over a given area 
very rapidly, dark current is a minor consideration for most modern scanners and can 
be nearly negated through the proper choice of PMTs. Dark current can be a major 
source of noise for imaging systems, which require up to 60 seconds to read a given 
area. Typically, dark current doubles with every increase of 8 degrees Celsius [5]. For 
this reason, most CCD- and CMOS-based imaging systems used cameras cooled 
down to as low as -50o C to reduce dark current noise, with high-quality cooled 
cameras providing ratings in the range of 0.5-2.0 e-/pixel/s [80]. This is necessary in 
applications where the signal level is weak compared to the noise level such as 
medical applications. 

3.2.2.2.2 Electronic Noise 

A second source of instrument noise is electronic noise, which arises from the 
nondetector electrical components of the detection system, notably the amplifiers, 
circuitry, and analog-to-digital converter. For most microarray detection systems, 
electronic noise contributes less instrument noise than dark current. 

3.2.2.2.3 Shot Noise 

Shot noise is unwanted signal that derives from the fundamental process of electrical 
current flow, which corresponds to the discrete movement of electrons rather than a. 
continuous flow process. Because microarray detection systems are light based, shot 
noise, more precisely, derives from the fact that electrical flow is determined by the 
emission of photons from fluorescent sources, which fundamentally consist of 
particles rather than continuous beams causing fluctuations of the photon levels in the 
incoming light. As signal intensity increases, so does the level of shot noise, albeit 
proportional to the square root of signal [44]. Although this type of noise cannot be 
eliminated from any scanner, it can be estimated and accounted for in the data 
extraction model. In well-designed optical systems, all other sources of instrumental 
noise are minimized such that shot noise is the major contributor [67]. It should be 
noted, that the square-root dependence of noise on signal described above has its 
limitations: if signal is increased by integrating over more photons, the overall signal-
to-noise ratio changes from being limited by photon statistics to being limited by 
molecular statistics [20]. For example, if only one photon is detected on average per 
hybridized molecule, then the resulting signal-to-noise ratio is already close to 70% of 
the limit set by the number of molecules present [99]. 

3.2.2.2.4 PMT Noise  

As described earlier, PMTs detect fluorophore-emitted photons and amplify the signal 
through a series of dynodes to produce a current pulse. Fluctuations in this signal 
amplification that are not reflective of the initial photon emission are considered PMT 
excess noise. This is a multiplicative noise. Dark current of a PMT (or other detector) 
may cause additional noise. This dark current noise and electronic noise is sometimes 
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referred to as the additive noise in the detector [67]. Furthermore, poor signal 
amplification and digitizing circuitry can contribute additional noise in poorly 
designed systems. High quality components, precision engineering and low noise 
design can minimize the contribution of PMT and electronic noise to the overall 
measurement. 

Because PMT gain/sensitivity is partially dependent upon an applied voltage, many 
commercial microarray scanners enable users to adjust this voltage with each slide. 
This allows users to increase the intensity of dim features on a microarray, or to 
decrease the intensity of saturated features. Although researchers may prefer visibly 
bright arrays, it should be noted that both signal and background intensity increase 
proportionally with increased PMT voltage. This means that researchers will typically 
not improve the signal-to-noise ratio of an array by increasing the PMT voltage, 
unless system noise was dominated by additive electronic noise or digitization noise 
which typically occurs for poorly designed systems only [4]. At very low PMT gain, 
the PMT excess noise may become noticeable too. In addition, adjusting PMT 
voltages often becomes a process of trial and error, as there is a highly non-linear 
relationship between PMT voltage and the resulting signal levels that a user sees in 
the image file. Even different PMTs from the same manufacturing lot can produce 
widely different results with the same applied voltage. 

3.2.2.2.5 Laser Noise 

In quantifying the fluorescent emission of microarray features, the assumption that the 
level of fluorescence is proportional to the amount of endogenous gene transcription 
is made. Because the level of fluorescence is also proportional to the amount of laser 
light falling on the array, it is important to compensate for laser drift over time. Noise 
in the laser can contribute to noise in the image, all other things being equal. Without 
laser monitoring and control, users may detect decreased microarray intensity over the 
life of the laser or even intensity fluctuations over the course of a single scan. 
Although some lasers can self-correct for temperature fluctuations or compensate for 
long-term laser light drift, these internal sensors respond in minutes and cannot 
compensate for real-time fluctuations. To maintain data integrity over the course of a 
single scan and consistent intensities over the life of the laser, users should consider 
scanners with external laser power modulation as well. This ensures that a uniform 
intensity of laser light will be applied to all features on the same microarray. In 
addition, external laser modulation virtually eliminates the long-term signal drift due 
to laser aging and enables calibration across scanners. This is critical for high 
throughput facilities where obtaining comparable results across multiple microarray 
scans and scanners is important. 

3.2.2.2.6 Non-Uniformity 

While scanning microarray slides in the X- and Y-direction, microarray scanners must 
also track the slides’ surface in the Z-direction. This maximizes scanner sensitivity by 
restricting measurements to the light emitted from DNA features on or close to the 
microarray surface, rather than out-of-focus light. In the absence of autofocus, spatial 
non-uniformity of sensitivity across the scanned image can occur. This may result in 
artifacts that add to signal noise or, worse still, cause a bias that may be mistaken for a 
biological change. This source of noise is important to consider because the glass 
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surface of microarrays varies in thickness, surface roughness, and curvature. If the 
scanner cannot accurately measure DNA features in the focal plane, then sensitivity, 
uniformity, and data integrity will be compromised. 

Some scanner manufacturers address this issue by widening the field of focus (depth 
discrimination). Although this approach addresses the surface variability, it decreases 
the overall scanner sensitivity by measuring light that does not originate from the 
DNA features of interest. Other manufacturers optimize the slide positioning in order 
to narrow the depth discrimination. Although this ensures maximal sensitivity for 
features within the set plane of focus, it does not account for curvature or variability 
in the glass surface. As a result, signal intensity will decrease for out-of-focus 
features. This reflects poorly on the scanner’s field uniformity and data integrity 
because the X-Y position of DNA features now becomes important in the resulting 
signal intensity. 

Poor scanner uniformity can be detected by scanning a microarray slide in one 
direction, turning the slide 180 degrees for re-scanning in the other direction, and 
comparing the data. Because variability in log ratios resulting from instrumentation 
can compromise the statistical confidence with which scientists measure differential 
gene expression, field uniformity specifications are important in selecting a quality 
microarray scanner. 

3.2.2.2.7 Optical Noise 

Optical noise refers to all components of instrument noise that require light, excluding 
shot noise. The most common sources of optical noise include reflected light from the 
substrate holder, spurious reflections from instrument enclosures, light leaks 
impinging on the detectors, and cosmic rays. In properly designed systems, optical 
noise can be greatly minimized but not eliminated. 

3.2.2.2.8 Fixed-pattern noise 

The non-uniformity in the physical characteristics of the individual sels is manifested 
in fixed pattern noise in dark images and flat fields. Dark images are images obtained 
with no presence of light (with lens caps on) and flat fields are obtained under 
uniform illumination (with an integrating sphere or defuse filters). Impulse noise is 
due to pixels whose responses differ significantly from their neighbors. A very high 
level of impulse noise is manifested as salt and pepper, or speckle noise, and an 
extremely high over-saturation of pixels, as blooming. 

3.2.2.2.9 Substrate Noise 

One of the two components of microarray noise is known as substrate noise. Noise 
from substrates derives either from the substrate material itself or from the surface 
treatment or surface coating that is applied to the substrate. Because most microarray 
substrates are made of glass, the inherent properties of transparency and low intrinsic 
fluorescence render glass substrates minimal contributors to substrate noise. Other 
substrate materials, including plastics and reflective metals, may present a 
considerable source of substrate noise in the system. 
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The noise contributed by surface treatments and surface coatings are generally the 
main source of substrate noise. The intrinsic fluorescence of different organic 
treatments can vary by more than three orders of magnitude, resulting in major 
research and developments efforts to reduce the noise contributed by the surface 
treatment. The high-quality organoamine and organoaldehyde surfaces generally 
contribute less than twofold noise above and beyond the contribution of glass itself 
and therefore enable remarkable detectivity when used with an appropriate detection 
instrument. Some of the older organic surface treatments produced noise levels that 
were 1000-fold greater than glass and thus reduced detectivity greatly. Gel and 
nitrocellulose coatings generally produce somewhat greater noise than the organic 
surface treatments, though microarray analysis with these surfaces can be successfully 
implemented by making adjustments to the instrument settings [80]. 

3.2.2.2.10 Sample Noise 

Sample noise represents the second component of microarray noise. Noise from 
samples is introduced by the targets, probes, or solutions used to dissolve these 
components. Because most target molecules and target buffers are non-fluorescent, 
microarray targets generally contribute little to the sample noise. The main component 
of sample noise far and away, is attributable to the fluorescent probe molecules. 
Labelled probe solutions can react in a non-specific manner with the surface. This 
non-specific sticking of probe molecules to the surface can mask the productive 
interactions between targets and probes, obscuring the microarray signal. The noise 
attributed to non-specific interactions between probe molecules and the microarray 
surface is known commonly as background. The background noise is due to thermally 
generated dark current and internal luminance in the camera. In all cases, the 
background noise is temperature dependent, so cameras must be warmed up before 
use to allow background noise to stabilize [45]. Background fluorescence reduces the 
signal-to-noise ratio by elevating the noise and, therefore, compromises microarray 
assay detectivity. Of all of the sources of noise in microarray systems, background 
noise contributed by non-specific probe molecule interactions with the surface 
generally constitutes the main component. Vast resources have been devoted over the 
past few years to reducing background noise, with major successes in new blocking 
schemes, labelling procedures, and reaction and wash chemistries. At present, it is 
possible to perform microarray analyses with instrument controls adjusted to the 
highest settings of lasers and detectors. At these instrument settings, it is possible to 
detect a few dozen molecules bound to a single microarray spot [80]. 

3.2.2.2.11 Quantization noise 

Quantization noise occurs from errors in assigning the pixel gray levels. When the 
number of quantization levels is not sufficient to represent faithfully the continuous 
signal, false contours may appear in the digital image. In addition, there is random 
quantization noise [91]. Geometric (spatial) noise is due mainly to the sampling 
process. The sels spacing puts a limit on the highest spatial frequency that could be 
recorded in the digital image and the area of the CCD chip on the lowest one. 
Geometric distortions in the images are in the center of the digital signal processing 
literature. In any case, violation of the sampling theorem leads to severe geometric or 
radiometric distortions [50,8]. For high quality digital cameras, these distortions are 
minimal. 
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Figure 3.1 – Noisy Images.  
From left to right: background illumination, blooming, dust, irregular spots locations and shapes 
(BioDiscovery, Inc.). 
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4 SIGNAL TRANSFORMATION 

In general, the expression level uncertainty in microarray systems, fundamentally 
originates from the probabilistic characteristics of the detection process, from sample 
extraction and mRNA purification to hybridization and imaging. In the following, we 
formulate the microarray image noise removal with a brief essential overview of the 
signal model.  

Denote by I(x,y) a noisy observation (i.e., the microarray image) of the two-
dimensional (2-D) function S(x,y) (i.e., the noise-free image that has to be recovered) 
and by nm(x,y) and na(x,y) the corrupting multiplicative and additive noise 
components, respectively. One can write  

 m aI(x,y) = S(x,y) n (x,y) + n (x,y)⋅  (4.1) 

The importance of including both additive and multiplicative measurement-specific 
noise in an error model for gene arrays is already established in the literature [74]. 
The omission of the measurement-specific additive noise term leads to exaggerated 
ratio estimates, false identification of significant differences, and understated 
uncertainty measures when the observations are small. The omission of the 
multiplicative noise term leads to similar problems when the observations are large. 

To estimate the multiplicative noise component we have to ignore the additive 
component na(x,y), and then (4.1) becomes 

 mI(x,y) = S(x,y) n (x,y)⋅  (4.2) 

To transform the multiplicative noise model into an additive one, we apply the 
logarithmic function on both sides of (4.2) 

 mlogI(x,y) = logS(x,y) + logn (x,y)  (4.3) 

Expression (4.3) can be rewritten as 

 f(x,y) = g(x,y) + e(x,y)  (4.4) 

where f(•), g(•), and e(•) are the logarithms of I(•), S(•), and nm(•), respectively. 

At this stage, one can consider to be white noise and subsequently apply any 
conventional additive noise suppression technique, such as Wiener filtering. However, 
it is recognized that standard noise filtering methods often result in blurred image 
features. Indeed, single-scale representations of signals, either in time or in frequency, 
are often inadequate when attempting to separate signals from noisy data. The wavelet 
transform has been proposed as a useful processing tool for signal recovery [2], [103], 
and is going to be analyzed straight forward. 

The wavelet transform is a linear operation. Consequently, after applying the DWT to 
(4.4) we get, in each of the three directions (horizontal, vertical, diagonal), sets of 
noisy wavelet coefficients written as the sum of the transformations of the signal and 
of the noise 
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 i i i 
j,k j,k j,kd = s + n  (4.5) 

where k = 0, …, 2J+j -1 and -1<j<-J refer to the decomposition level or scale and i = 1, 
2, 3 refers to the three spatial orientations. 

4.1 WAVELETS 
Microarray images appear to have areas with both high and small frequency. 
Therefore, Fourier transform is not the proper tool for the image analysis as it is a 
stationary transform. Thus we use the wavelet transform which is known to be a 
superior approach to other time-frequency analysis tools due to its window of varying 
time scale width. Window width can be increased in time domain (thus decreased in 
frequency domain) when small frequency attributes are analyzed and decreased in 
time domain (increased in frequency domain) when high frequency attributes are 
analyzed. Therefore, it can match identically the original signal.  

The wavelet transform provides an appropriate basis for separating noisy signal from 
the image signal. The motivation is that as the wavelet transform is good at energy 
compaction, the small coefficients are more likely due to noise and large coefficients 
due to important signal features [94,33,19]. These small coefficients can be processed 
in order to denoise the image without affecting the significant features of the image. 

          

Figure 4.1 – Frequency and Wavelet based signal views. 

4.1.1   Continuous Wavelet Transform (CWT) 

We begin with a window function ψ(t) which is called a mother wavelet or basic 
wavelet [43]. This function introduces a scale in the analysis and since we want the 
transform to be scale-independent we will use every possible scaling of ψ. To 
accomplish this, we arbitrarily fix p ≥ 0 and for any real, non-zero number a, which 
we shall call scale factor, we define 

 -p
a (t)  |a|  (t/a)ψ ψ≡  (4.6) 

For various scale factors we observe the following relations between ψa (t) and ψ: 
• for a >1, ψa(t) is a version of ψ stretched by a in the horizontal 

direction. 
• for 0< a <1, ψa (t) is a version of ψ compressed by a in the horizontal 

direction. 
• for a = -1, ψa (t) is the reflection of ψ . 
• for –1< a <0, ψa (t) is reflected and compressed version of ψ . 
• for a < -1, ψa (t) is a reflected and stretched version of ψ. 
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The factor|a|-p has a similar effect on the vertical direction. If p is positive then ψ is 
compressed along the vertical direction whenever stretched along the horizontal and it 
is stretched along the vertical whenever compressed along the horizontal. Usually p is 
set equal to ½ and so we get: 

 a
1( ) ( / )t t a
a

ψ ψ≡  (4.7) 

Time localization of signals is achieved by looking at them through translated version 
of ψa. If ψ(t) is supported on an interval of length T near t = 0, then ψa(t) is supported 
on an interval of length |a|T near t = 0 and the function  

 a,b a
1( ) ( ) ( )t bt t b

aa
ψ ψ ψ −

≡ − ≡  (4.8) 

is supported on an interval of length |a|T near t = b. The functions given by (4.7) are 
called wavelets and b is known as translation parameter.  

Continuous wavelet transform of a signal f(t) is defined as: 

 *
, , ,( , ) ( ) ( ) ,a b a b a bf a b dt t f t f fψ ψ ψ

∞

−∞
≡ = =∫�  (4.9) 

where a ε R+-{0}, b ε R  
and as a function of b for a given a it represents the details contained in the signal f(t) 
at the scale a. The result of CWT is a lot of wavelet coefficients, which are functions 
of time and frequency. 

By reducing a, the support of ψa,b is reduced in time and hence covers a larger 
frequency range. That is why, we consider the factor 1/a to be a frequency measure. 
On the other hand, b indicates the location of the wavelet window along the time axis. 
Thus, by altering a and b, CWT can be computed on the entire time-frequency plane 
[32]. 

For ψ to be a window function and to recover f(t) from the inverse wavelet transform, 
ψ(t) has to satisfy the following condition: 

 0)()0( == ∫
∞

∞−
dttψψ�  (4.10) 

which states that the zeroeth Fourier coefficient must be 0. For the satisfaction of 
(4.10), the wavelet has to be constructed so that it has a higher order of vanishing 
moments [32]. A wavelet is said to have vanishing moments of order m if 

 0)( =∫
∞

∞−
dttt pψ  p = 0, …, m-1 (4.11)  

Moreover, when the wavelet’s k + 1 moments are equal to zero all the polynomial 
signals s(t) = ∑

−≤≤ 10 mp

p
pta  have zero wavelet coefficients. As a consequence, the details 

are also zero. This property ensures the suppression of signals that are polynomials of 
a degree lower or equal to k [62]. 

In addition, equation (4.10) declares that all wavelets must oscillate, giving them the 
nature of small waves hence the name wavelets [32]. 
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CWT has the following property: 
If we scale the signal by a factor σ as we have done to the wavelet, that is  

 
1-
2f (t)  f(t/ )σ σ σ≡  (4.12) 

then we have 

 ),(~),(~ bafbaf =σσσ  (4.13) 

A more practical way to compute the CWT coefficients consists of the five following 
steps (Figure 4.2) [62]: 
1. Take a wavelet and compare it to a section at the start of the signal. 
2. Compute a number C (= f~ ), that represents how closely correlated the wavelet is 

with this specific section of the signal. The larger C is, the higher the correlation. 
More precisely, if signal’s and wavelet’s energies are equal to 1, C can be 
considered as a correlation coefficient. 

3. Shift the wavelet to the right and repeat steps 1 and 2 until you cover the whole 
signal. 

4. Stretch the wavelet and repeat steps 1 to 3.  

5. Repeat steps 1 to 4 for all scales. 

 

 
a) step 1-2 b) step 3 

 
c) step 4 

Figure 4.2 – Steps 1– 4 of the CWT coefficients’ computation algorithm. 

When you finish, you will have all coefficients produced at different scales by 
different sections of the signal. These coefficients can be presented as in Figure 4.4 
and Figure 4.3. 

 
Figure 4.3 – Wavelet coefficients’ presentation. 
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Figure 4.4 – Another presentation of Figure 4.3.  
The horizontal axis represents time, the vertical axis represents scale and the color at each point 
represents the magnitude of the wavelet coefficient. 

4.1.2  Discrete Wavelet Transform (DWT) 

Continuous Wavelet Transform has a serious disadvantage; the coefficients have to be 
computed for each possible scale, resulting in a great computational cost and a 
massive amount of data. If the scales and positions are power of two – thus called 
dyadic scales and positions – and Discrete Wavelet Transform is used for the signal 
processing, the analysis would be as precise as CWT and even more efficient. DWT 
keeps enough information of the signal such that it reconstructs the signal perfectly 
from the wavelet coefficients. This process is known as critical sampling [32]. 

The discrete wavelet transform is defined as: 

 fftftdtbaf bababa∫
∞

∞−
==≡ *

,,, ,)()(),(~ ψψψ  (4.14)  

where a = 2-s, b = k 2-s, s,k ε Z. 

If we discretize the function f(t) with sampling rate equal to 1, the above integral can 
be written as: 

 ∑ −≡−−

n

ssss knnfkf )2()(2)2,2(~ 2/ ψ  (4.15) 

To compute the wavelet transform of a function at some point in the time-scale plane, 
we do not need to know the function values for the entire time axis. All we need is the 
function at those values of time at which the wavelet is non-zero [32]. 

Figure 4.5 shows the differences arisen in a signal analysis when using DWT and 
CWT respectively. At DWT, time lies on the abscissa, scale α lies on the ordinate and 
is dyadic: 21, 22, 23, 24, 25, levels are between 1 and 5 and each coefficient at level k is 
repeated 2k times. At CWT, time lies on the abscissa, scale α lies on the ordinate and 
its value changes all the time from 21 to 25 with step equal to 1 [62]. 
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Figure 4.5 – Discrete versus Continuous Wavelet Transform. 

For most signals, low frequency content is very important because it gives the signal’s 
identity. High frequency components only give the fine differences between different 
signals. In wavelet analysis, low frequency – thus high scale – coefficients are called 
approximations while high frequency – thus low scale – ones are called details. 
Therefore, the filters that are used are a high-pass, which gives the details, and a low-
pass, which gives the approximations, which are complementary to each other. The 
procedure is illustrated in Figure 4.6. 

 
Figure 4.6 – Filtering Procedure. 

Unfortunately, if we actually perform this operation on a real digital signal, we wind 
up with twice as much data as we started with. This problem is confronted with 
decimation. Decimation restores the number of the samples by keeping only one every 
two samples. Two sequences that give the discrete wavelet transform coefficients are, 
thus, produced; cA (for approximations) which contains less noise than the initial 
signal and whose coefficients have large values, and cD (for the details) that contains 
a great amount of high frequency noise and whose coefficients have small values. 
This procedure is shown in Figure 4.7 and the device which implements it is called 
two-channel subband coder [56]. 
 

 
Figure 4.7 – DWT coefficients’ production. 
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The discrete wavelet transform coefficients are computed with the use of multi-
resolution analysis (MRA), which is further analyzed in section 4.1.3. At this point we 
accept that the following relations are true for MRA [32] 

 s s s k,s ,
k

x (t)   x (t) =  ,k sA α φ∈ ⇔ ∑  (4.16) 

 s+1 s+1 s+1 k,s+1 , 1
k

x (t)   x (t) =  ,k sA α φ +∈ ⇔ ∑  (4.17) 

 s s s k,s ,
k

y (t)   y (t) =  ,k sW w ψ∈ ⇔ ∑  (4.18) 

where Αs stands for the approximations and are generated by φ and Ws stands for the 
details and are generated by ψ. 

Therefore, Αs ⊕ Ws = Αs+1, which applies for this analysis, becomes  

 s+1 s sx (t) = x (t) + y (t)  (4.19) 

and thus 

 k,s+1 , 1 k,s , k,s ,
k k k

=  ,k s k s k swα φ α φ ψ+ +∑ ∑ ∑  (4.20) 

Let us define the decomposition relation  

 { }s +1 s s
0 1

k
(2 t - ) = h [2k - ] (2 t - k ) + h [2k - l] (2 t - k )  φ φ ψ∑A A  (4.21) 

where h0 and h1 are the low-pass and high-pass filters that are used in the algorithm, 
respectively. If we combine it with (4.20) we get that 

 k,s 0 ,s+1 =  h [2k - ]
k

α α∑ AA    and                 (4.22) 

 k,s 1 ,s+1 =  h [2k - ]
k

w α∑ AA  (4.23) 

where the right terms of the equations correspond to decimation every two samples 
after convolution, as former described.  

As foresaid, DWT is a sampled version of CWT. The salient feature of the former is 
that the sampling rate is automatically adjusted to the scale. This means that a given 
signal is sampled by first dividing its frequency spectrum into bands, and then the 
signal in each band is sampled at a rate proportional to the ratio of the frequency scale 
of that band to the total frequency spectrum [43]. 

For the validity of the proportional to (4.13) relation, in going from scale αm = σm to 
the next larger one αm+1 = σ ·αm, we must increase the time-sampling interval Δt by a 
factor σ. So, we choose Δt = σmτ where τ is a positive, non-zero number which is 
equal to the time-sampling interval at the unit scale α = 1. The signal is sampled only 
at times tm,n = nσmτ, where n is an integer, within the scale σm, which means that the 
time-sampling rate is automatically adjusted to the scale. 
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If we take a closer look at (4.15) we shall notice its time-variant nature. The DWT of 
a function shifted in time is not the same to DWT of the original function. If assumed 
that fm(t) = f(t – tm) it gives 

 ∫
∞

∞−

−− −= dtkntfkf s
m

sss )2()(2)2,2(~ 2/ ψ  (4.24) 
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From which we can conclude that for DWT, a shift in time of a function manifests 
itself in a rather complicated way [32]. 

4.1.3 Multi-Resolution Analysis (MRA) 

Let us consider a function consisting of slowly varying and rapidly varying segments 
and we would like to represent it at a single level of approximation, we should 
descritize it using a step determined by the rapidly varying segment. This will result – 
by no means – to a huge number of data points [32]. 

The wavelet transform provides the means of analyzing the input signal into a number 
of different resolution levels in a hierarchical fashion. This is known as Multi-
Resolution Analysis [32], [43], [97], [62]. Thus, signal components corresponding to 
different physical activities can be best represented at different resolution levels: short 
high-frequency activities at the finer resolution and long low-frequency ones at the 
coarser resolution levels [97].  

 
Figure 4.8 – Multi-resolution analysis representation. 

At the first phase signal function is analyzed to approximation (cA1) and details 
(cD1). Then, the approximation is further analyzed to approximation (cA2) and details 
(cD2) and this procedure is recursively executed for all levels defined by the user or 
the system. Figure 4.8 illustrates this analysis and Figure 4.9 the application on a 
signal. As it can be now realized, the words approximation and details are justified by 
the fact that the approximation of one level (cA1) arises from the approximation of the 
previous level (cA2) taking into account the low frequencies of cA2, whereas the 
details (cD2) corresponds to the high frequency correction. 
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Figure 4.9 – Multi-resolution analysis of a signal 

Instead of beginning with a mother wavelet, multi-resolution analysis begins with a 
basic function φ(t) called the scaling function [43]. This function will generate the 
wavelet ψ. The translated and dilated versions of φ are defined as: 

 s/2 s
k,s = 2 (2 t - k)φ φ , k ε Z       (4.25) 

and are used to sample signals at various times and scales. Unlike wavelet samples, 
which only provide details of the signal, the samples 〈 φk,  s,  f 〉 ≡ φ∗k,  s f are supposed 
to represent the values of the signal itself, averaged over a neighborhood of width 2sW 
around t =2s k. 

To achieve a multi-resolution analysis the scaling function has to satisfy certain 
conditions. Orthonormality within the scale s = 0 is one of them 

 ,  j
k j kφ φ δ≡  (4.26) 

It is proved that the operator which determines the time shift is unitary, so it is 〈φk,  φj〉 
= 〈φk - j,  φ〉 and the above relation becomes 

 k
* 0

k k  ,  = φ φ φ φ δ≡ ⋅ , kε Z    (4.27) 

Furthermore, we get  

 , ,  ,   ,  .k s j s k jφ φ φ φ=  (4.28) 

Hence equation (4.28) implies orthonormality at every scale. Notice that φk,s at 
different scales need not be orthogonal. 

If f  is considered to be the constant function f(t) = 1 and φ is integrable then  

 
* ˆ( ) ( ) (0) 1k f dt t k dt tφ φ φ φ

∞ ∞

−∞ −∞
= − = = =∫ ∫  (4.29) 

Relation 1)0(ˆ =φ  is the second condition which we will call the averaging property. 

Function φ(t) produces a sequence {Αs} which consists of the approximations and is 
defined as 

 s+1 sA A⊂   for each s ε Z. (4.30) 
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If a signal is sampled at Δt = 2s, the detail at scales less than 2s are expected to be lost. 
That is why, Αs has to be regarded as containing signal information only down to the 
time scale Δt = 2s

 and for this idea to be precise we require (4.30). It is obvious that 
{φk,  s : k ε Z} constitute an orthonormal basis for Αs. 

Moreover, scaling function satisfies the dilation equation or two-scale relation for φ  

 0( ) =  h [k ] ( )
k

t t kφ φ α −∑  (4.31) 

for some positive α and coefficients {h0[k]}ε A². Function φ(t) is a translated and 
scaled version of itself, hence the name scaling function. h0[k] is known as the two-
scale sequence or the set of filter coefficients for φ. 

Α0 is generated by {φ( – k ) : k ε Z} and, in general, Αs by {φk,  s : k, s ε Z}. As a 
result we get: 

 s s+1(t)   (2t) ,x A x A∈ ⇔ ∈  (4.32) 

 -s
s s(t)   (t+2 ) ,x A x A∈ ⇔ ∈  (4.33) 

These equations and the dilation equation define the functions that perform multi-
resolution analysis [32]. 

Details are generated by ψk,s(t) = 2s/2 ψ(2s t – k) in the same way as the approximations 
are generated by φ(t). Thus: 

 s s k,s(t)  (t) =  (2 )s
s

k
x A x t kα φ∈ ⇔ −∑   and (4.34) 

 s s k,s(t)  (t) =  (2 )s
s

k
y W y w t kψ∈ ⇔ −∑  (4.35) 

where Αs and Ws are the subspaces which contain the approximation and details 
respectively. 

For Αs and Ws, which is called wavelet subspace [32], we have that: 

 s s s+1A W  = A⊕ , (4.36) 

 s sA W  = {0}∩ ,    s ε Z. (4.37) 

Since s+1 s sA =A W   ⊕  we have 

 s+1 s s-1 s-2A =W W W ...⊕ ⊕ ⊕  (4.38) 

 or   
1

sA = W
s

ll

−

=−∝
⊕  (4.39) 

For some coefficients {αk,s}k ε Z, {wk,s}k ε Z ε A². 

Let us recall equations (4.22) and (4.23) which were proved in section 4.1.2  

 [ ]k,s 0 2 l,s+1
k

h k lα α= −∑  and [ ]k,s 1 2 l,s+1
k

w h k l α= −∑  (4.40) 
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These relations give the scaling function at any scale in terms of the scaling function 
and the wavelet at the next-lower scale. 

We notice that the wavelets constructed in this way form an orthonormal basis with as 
much locality and smoothness as desired. The unexpected existence of such bases is 
one of the reasons why wavelet analysis has gained such widespread popularity. 

4.1.4 Decimation 

Wavelet coefficients decimation is a complicated property of DWT which is 
performed during the decomposition. Decimation by two eliminates every other 
coefficient of the specific level. Hence, the calculation of the wavelet coefficients is 
quicker and needs less storage space. However, the important thing is that the original 
signal can be perfectly reconstructed from the coefficients left. As foresaid, 
decimation makes DWT a time-variant transform. Variance in translation means that 
the DWTs of a signal and its time-translated version are different because signal 
translations generate different wavelet coefficients. If we assume that sequence y is 
produced by decimation by two of the sequence x then we have: 

[y] = [x]↓2 ⇔ 

. .

. .
( 2) ( 4)
( 1) ( 2)
(0) (0)
(1) (2)
(2) (4)
(3) (6)

. .

. .

. .

y x
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y x
y x
y x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 ⇔         (4.41) 
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   ⇔  [y]  =  [DEC↓2] [x]. 

The shift-variant property is evident if we shift the input column either up or down by 
a given number of position. It is noticeable that [DEC↓2]-1 = [DEC↓2]t that is 
decimation is an orthogonal transformation [32]. 
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In order to ensure the shift invariance many algorithms for wavelet construction have 
been introduced. These algorithms are widely known as Undecimated Wavelet 
Transforms (UWT). 

Moreover, the undecimated wavelet transforms increase the information amount 
regarding the transformed signal by comparing it with that of DWT. The number of 
wavelet coefficients does not alter within the levels; it remains the same and equal to 
the image pixels number at each level. This added information is very useful to better 
analyze and comprehend the signal attributes. For instance, in image denoising 
applications the resolution between data and noise can be increased. Large data 
amount is essential when statistical methods are used for the wavelet coefficients 
decomposition. However, undeniable disadvantages of UWTs are the big 
computational and storage cost together with the coefficient redundancy. 

The most impulsive approach to the calculation of an undecimated wavelet transform 
is to omit the decimation step in DWT. The idea of the à trous algorithm, which is 
going to be further analyzed, is to double the filter coefficient number, which values 
are obtained by interpolation, and let the decimated sequence generated by DWT pass 
through this filter. 

4.1.4.1 À Trous Algorithm 

The difficulty in implementing a discrete wavelet series like the one below 

 1(2 ,2 ) ( 2 ) ( )
2

i i i

i
n

f k n k f nψ −≡ −∑� ,    where i = -s  (4.42) 

is that even for ψ(t) of finite support, as το i increases, )(tψ must be sampled at 
progressively more points, creating a large computational burden. Hence the à trous 
algorithm is applied as the next logical step [37], [82], [24]. This algorithm alters the 
filters at each step of the wavelet decomposition. While in DWT the filtered signal is 
downsampled, in the à trous algorithm the low-pass filter g is upsampled by inserting 
zeros between its coefficients, and then the discrete wavelet series of (4.42) passes 
through the filter. Thereafter, the even points’ values are approximated by 
interpolation while the odd points are left fixed via a finite filter h. These kinds of 
filters are related with non-orthogonal wavelet analysis. The detail coefficients are 
computed from the difference between two low-passed images in adjacent levels. This 
procedure is presented in Figure 4.10. The invert transform is produced by the 
aggregation of the detail coefficients that have arisen at all levels and the last low-
resolution image. 
 

 
             
             
 
 

            
 
 

h√2 

≈

Figure 4.10 - Dilation and interpolation of a function ψ(t). 
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Definition: The low-pass filter h is said to be an à trous filter if it satisfies  

 2nh  = (n) 2δ  (4.43) 

The result of the entire interpolation operation is  

 [h∗ Dg]k = [HּDg]k =∑
n

hk-2nψ(n) 

 2
1 ( )
2

kψ≈  (4.44) 

Thus, inserting the (4.44) into (4.43) and noting that ψ((n/2)-k) = ψ((n-2k)/2) we 
obtain 

                ∑ −−=
mn

nmmkn fghkf
,

22)2,2(~  

      ∑ −−=
',

'2'
mn

nnmmk fhg  

 [ ( ( ))]kg h f= ∗ Λ ∗  (4.45) 

where Λk,m = δ(2k-m) = δ2k,m is the decimation factor. 

The former equation is simply ji

j
jk

i
k fgf ][~ ∑ −=  with i = 1. Continuing inductively 

by replacing f with fi-1 we result in f~  (2i,2ik) i
kf

~
≈  for all i. For real h we get 

 ( )i+1 if  = h fΛ ∗  and (4.46) 

 i  = f g h∗�  (4.47) 

Equations (4.46) and (4.47) contribute à trous algorithm which is not, in general, 
tranlation invariant. That is why the concept of undecimation is introduced which 
promises invariance. Therefore, the undecimated à trous algorithm is now presented. 

We define Τm the operation of translation by m, i.e.: 

 m k k-m(T )  f f≡  (4.48) 

and due to the dependency of f 0 on f~ i
 equations (4.46) and (4.47) become 

 
0 i 0( ) = G( H)if f fΛ�

 (4.49) 

Moreover,  

 i
i i

nk 0,n-2 k
[( H) ]  = [( H) ]Λ Λ    and (4.50) 
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Λ∑ ∏  (4.51) 
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and it can be proved that f~ i is not translation invariant because [ f~ i(Τm f 0)]k ≠ 

∑ −Λ
n

nnmk
i fHG 0

,])([ . If we replace m with 2im and use (4.50) then we have  

 i 0 i 0
i k k-m2 m[ (T )] = [ ( )]f f f f�  (4.52) 

Thus, translating f 0 by 2im translates octave i by m. 

Note that the zeroth element of a series is invariant under decimation so that i
kf

~  
and i

kf  should coincide at k = 0. Utilizing this fact, we obtain the k–th output of the 
undecimated discrete wavelet transform by translating the signal back by k samples 
and taking the decimated transform at time zero. 

 
Definition: The undecimated discrete wavelet transform f in terms of the decimated 
transform f~ by 

 0 0
0[ ( )] [ ( )]i i i

k k kf f f f T f−≡ ≡� �  (4.53) 

It is clear that the desired invariance is achieved and also that sampling i
kf  every 2i 

points produces exactly i
kf

~ . 

By taking z transforms we can prove that f may be computed by the filter sequence 
pictured in Figure 4.11, accepting also that Dih is filter h with 2i – 1 zeros inserted 
between every pair of filter coefficients. That is, 

 i+1 i i = (D )f h f∗  and (4.54) 

 i i i = (D )f g f∗  (4.55) 

which is the original (undecimated) à trous algorithm. 

fi Dif fi+1 Di+1f fi+2

 

   
iw                        1+iw  

Figure 4.11 - Undecimated Discrete Wavelet Transform. 

4.1.5 Signal Synthesis or Reconstruction 

Up to now we analyzed how the signal is decomposed with the use of the wavelet 
transform either in the continuous or the discrete form. It is time we examined the 
other side of the coin; the signal synthesis or reconstruction from the coefficients that 
occurred during the transformation with no information loss. 

For CWT, signal reconstruction is given by [62]: 
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−
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          where Κψ is a constant depending on ψ. 

For DWT, signal reconstruction is given by [62]: 

 ,( ) (2 , 2 ) ( )s s
s k

s Z k Z
f t f k tψ− −

∈ ∈

=∑∑ �  (4.57) 

For multi-resolution analysis, the signal is reconstructed from the sum of the coarsest 
component and all the details components that have arose resulting in this way in a 
successively finer approximation [97]. From Figure 4.8 – which is displayed again for 
convenience – we get: 

 

 

While decomposition uses decimation after filtering, at synthesis we have upsampling 
before the coefficients pass the filters. Upsampling is a process reciprocal to 
decimation which inserts zeros every M samples and increases the signal length. 
Then, by interpolation we obtain the values of the added samples [32]. Interpolation 
function is: 
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or ( ) ( ) ( )
k

x n y k n kMδ′ = −∑ ,    k ε Ζ (4.59) 

Yet we can write interpolation by 2 in a matrix form:  
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⇔                             (4.60) 

 F = cA1 + cD1  
     = cA2 + cD2 + cD1 
     = cA3 + cD3 + cD2 + cD1. 
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 ⇔  [x] =  [ ΙΝΤ↑ 2] [y] . 

By carefully choosing filters for the decomposition and reconstruction phases that are 
closely related (but not identical) we can cancel out the effects of aliasing, a distortion 
which is introduced by decimation performed during the decomposition phase. The 
low- and high- pass decomposition filters (Η, L) together with their associated 
reconstruction filters (Η ٰ, L ٰ) form a system of what is called Quadrature Mirror 
Filters (QMF) [62]. Figure 4.12 illustrates the reconstruction process if there is one 
decomposition level. 

 
Figure 4.12 – Decomposition and Reconstruction processes. 

If we want to reconstruct a signal from the sequences that contain the approximation 
(cA) and details (cD) coefficients we should follow the next steps: upsample the 
approximation sequence, then low-pass filter it and finally combine it with a vector of 
zeros with the same length as cA which has been similarly processed except the fact 
that it has been high-pass filtered. The final sequence has double length, which is the 
initial signal length. The same procedure is applied on the details only the filters are 
reciprocal – the details are high-pass filtered and the zero vector low-pass filtered. In 
order to retrieve the initial signal we add the two generated sequences. Notice that the 
sequences’ summation has to be done always after their reconstruction so as to have 
obtained their initial length (Figure 4.13, Figure 4.14). 

 

 
Figure 4.13 – Approximation Reconstruction 

 
Figure 4.14 – Details Reconstruction 

Signal reconstruction can be described by the relation [32]: 
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 s s k,s k,s k,s k,s s+1x (t) + y (t) =  (t) +  w (t) = x (t)
k k
α φ ψ∑ ∑  (4.61) 

and substituting the two-scale relation for φ and ψ in (4.61) we get: 

 s+1 s+1 s+1
k,s 0 k,s 1 ,s+1[ ] (2 t-2k- ) +  w [ ] (2 t-2k- ) = (2 t- )l

k l k l l
h l l h l l lα φ φ α φ∑ ∑ ∑ ∑ ∑    (4.62) 

Comparing the coefficients of φ(2s+1 t – A) with both parts of the former equation we 
result in 

 { }l,s+1 0 k,s 1 k,s[ 2 ] [ 2 ]w  
k

h l k h l kα α= − + −∑  (4.63) 

where the right part of (4.63) represents interpolation followed by convolution as 
illustrated in Figure 4.15. 

 
Figure 4.15 – Signal reconstruction from the approximation and details. 
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5 DENOISING STEP 

Microarray images consist mostly of low-intensity features, which are not well 
distinguishable from the background. This is a result of the great differences on 
transcript abundance in all eukaryotic cells, which is a common knowledge for over 30 
years now [9]. These differences cover over six orders of magnitude, even in relative 
simple eukaryotes, such as yeast [36]. 

The most interesting genes, including cell cycle and transcriptional regulators have an 
extremely low average expression level of one copy per cell [46]. Microarray images 
can accurately represent around three orders of magnitude. To increase the dynamic 
range of the measurements and better determine the most interesting genes, researchers 
produce multiple images of the same microarray at increasing detection settings [22,87] 
and transform the intensity values of the individual genes into one “true” measurement. 
By increasing the detection settings, the source noise (mostly additive), which includes 
photon noise and dust on the slides, remains unaffected. On the other hand, the detector 
noise (mostly multiplicative), which includes features of the amplification and 
digitization process, is increased [108]. 

After having decomposed the signal, the coefficients arose will be further processed in 
order to get an image with better resolution and more distinctive attributes. We, 
therefore have to denoise the image in order to discard any useless information. A 
number of well-known image processing techniques, including soft and hard 
thresholding, Bayesian denoising based on Gaussian or Laplacian signal modeling, and 
multiresolution methods that exploit the correlation between the wavelet coefficients of 
adjacent scales have been applied to microarray images. The proposed method consists 
of a Bayesian denoising based on Laplacian signal modelling stage and a correlation 
based stage. 

5.1 Denoising via Thresholding 
The simplest method of denoising is thresholding. With this method all wavelet 
coefficients of the detail subbands whose amplitude is below a given value – the 
threshold – are set to zero while the approximation coefficients are left unaltered.  

It is clear that all coefficients subjected to thresholding that are smaller than the 
threshold is replaced by zero. Depending on how the coefficients are processed when 
their absolute value is larger than the threshold one can define different thresholding 
policies. The two most common thresholding polices are hard and soft. Hard 
thresholding can be described as the usual process of setting to zero the coefficients 
whose absolute values are lower than the threshold and left the rest of the coefficients 
unaltered. Soft thresholding is an extension of hard thresholding, first setting to zero the 
elements whose absolute values are lower than the threshold, and then shrinking the 
nonzero coefficients towards 0. By soft thresholding we do not confront the problem of 
discontinuities among the coefficients that are near the threshold values.  
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Some thresholding techniques try to compromise between hard and soft thresholding. 
The hyperbolic thresholding is an almost hard thresholder with the continuity property. 
The semisoft (firm) thresholding depends on two thresholds, 0≤τ1≤τ2 being, therefore, a 
generalization of soft and hard thresholding; when τ2 approaches infinity the semisoft 
rule transforms into soft thresholding with threshold τ1, and when τ2→ τ1 it transforms 
into hard thresholding. The non-negative garrotte shrinkage function is a continuous 
function which approaches the identity line as the absolute of the signal coefficient gets 
large, which provides a smaller bias than the soft shrinkage for large coefficient. 

The following equations are the relations that define all these types of thresholding 
(Figure 5.1): 

 hardT (x, ) = x (|x|> )τ τ⋅1  (5.1) 

 ( )softT (x, ) = x-sgn(x) (|x|> )τ τ τ⋅1 6 (5.2) 

 hyper 2 2T (x, ) = sgn(x) (|x|> )xτ τ τ− ⋅1  (5.3) 
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where x is the signal coefficient, τi are the thresholds value and 1(g) is defined as 
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Figure 5.1 – Thresholding rules.  

It is obvious that the selection of the threshold value is a critical and important step. If 
we choose a very small value then most detail coefficients are going to be left unaltered 
while by picking up a high one, most detail coefficients will be set to zero. In the first 
case, the image will not be thresholded therefore no noise is going to be discarded. On 
the other hand, when the threshold has a high value the final image is going to be an 
almost black canvas. Thus we should be very careful when selecting the threshold. 
                                                 
 
6 sgn(x) is called signum function and is defined as   

⎪⎩

⎪
⎨
⎧ ≠

=
otherwise

x
x
x

,0

0,
sgn(x)  
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In this work, the threshold is selected using the principle of Stein’s Unbiased Risk 
Estimate (SURE) [18]. In this method you get an estimate of the risk for a particular 
threshold value t. Minimizing the risks in t gives a selection of the threshold value. Let 

ξi
iid
~  N(μi,1), i = 1,…,k be the gaussian white noise and μ̂ be an estimator of μ

�
=(μ1, …, 

μk). If the function g = {gi}k
i=1 in representation ˆ ( ) ( )gμ ξ ξ ξ= +

� � � �
 is weakly differentiable, 

then 

 2 2ˆ|| || || ( ) || 2 ( )E k g gμ μμ μ ξ ξ− = +Ε + ∇
� � � �

 (5.7) 

where ∇g = 
i

i

g
ξ∂
∂ . It is interesting that estimator μ̂

�
 can be nearly arbitrary; for 

instance, biased and non-linear. The application of (5.7) to Tsoft(ξ
�

,τ) gives 

SURE(ξ
�

,τ) = k – 2 
2

1 1
(| | ) (| | )k k

i ii i
ξ τ ξ τ

= =
≤ + ∧∑ ∑1          (5.8) 

 
 The SURE is an unbiased estimator of risk, i.e., 

 2|| ( , ) ||softE T ξ τ μ−
� �

= E SURE(ξ
�

,τ) (5.9) 

The LLN argument motivates the following threshold selection: 
τSURE = arg

0
min

U≤Τ≤Τ
 SURE(ξ

�
,τ)         (5.10) 

where τU = σJlog2 ,  J is the highest level of the decomposition and σ is the noise 
standard deviation. τU is called universal threshold. 

It is possible to derive a SURE-type threshold for Thard and Thyper but the simplicity of 
the representation (5.8) is lost. 

Because ξ is supposed to be a Gaussian white noise, we expect that the thresholding 
method kills roughly all the coefficients and returns the result f(x) = 0. For Stein’s 
Unbiased Risk Estimate threshold, roughly 3% of coefficients are saved. So SURE 
threshold selection rule is more conservative and would be more convenient when 
small details of function f lie near the noise range, which is the case here. 

5.2 Coring Suppresion 
Thresholding has the following drawbacks: 1) it depends on the correct election of the 
type of thresholding, 2) the choice of the threshold, arguably the most important design 
parameter, is done in an ad hoc manner, 3) the threshold cannot be finely adjust after its 
calculation, 4) it should be applied at each level of decomposition, needed several 
levels, and 5) the specific distributions of the signal and noise may not be well matched 
at different scales. Therefore, methods without these constraints will represent an 
upgrade. 

This denoising method makes use of some models (Gaussian, Laplacian) for the 
subband statistics of the signal and develops a noise-removal algorithm, which 
performs a “coring” operation to the data. The “coring” non linear noise suppression 
preserves high-amplitude observations while suppressing low-amplitude values from 
the high-pass bands of a signal decomposition [86, 85].  
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In a Bayesian framework, referring to (4.5), di
j,k, si

j,k, and ξi
j,k are considered as 

samples of the random variables d, s, and ξ, respectively. The signal component is 
modeled according to a specific distribution (Gaussian, Laplacian), while the noise 
component is modeled as a zero-mean Gaussian random variable. Our goal is to find 
the Bayes risk estimator that minimizes the conditional risk, which is the loss averaged 
over the conditional distribution of s, given the set of wavelet coefficients,  

 |ˆ ˆ( ) arg min [ , ( )] ( | )s ds
s d L s s d P s d ds= ∫  (5.11) 

The Bayes risk estimator under a quadratic cost function minimizes the mean-square 
error (MSE) and is given by the conditional mean of s, given d 

 |ˆ( ) ( | )s ds d sP s d ds= ∫  (5.12) 

Bayes’ theorem gives the a posteriori probability density function of s based on the 
measured set of wavelet coefficients 

 |
|

|

( | ) ( )
( | )

( | ) ( )
d s s

s d
d s s

P d s P s
P s d

P d s P s ds
=
∫

 (5.13) 

where Ps(s) is the prior PDF of the signal component of the wavelet coefficients of the 
microarray image and Pd|s(d|s) is the likelihood function. Substituting (5.13) into(5.12), 
we get: 

 
( ) ( )

ˆ( )
( ) ( )

s

s

P P s sds
s d

P P s ds
ξ

ξ

ξ

ξ
= ∫
∫

 (5.14) 

and because ξ = d-s we have:  

 
( ) ( )

ˆ( )
( ) ( )

s

s

P d s P s sds
s d

P d s P s ds
ξ

ξ

−
=

−
∫
∫

 (5.15) 

Let ( ) ( )
( ) ( )

s

s

P d s P s ds
A

P d s P s ds
ξ

ξ

−
=

−∫
 and from (5.15) we have  

 ˆ( )s d A sds= ⋅∫  (5.16) 

Then, for the case of Gaussian signal (with standard deviation σs and zero mean) in 
Gaussian noise (with standard deviation σ and zero mean): 

 

22
22

2 2

22
22

2 2

11 ( )
22

11 ( )
22

1 1
2 2

1
2

s

s

s

s

sd s

sd s
A

e e
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σσ

σσ

πσ πσ

π σ σ

−− −

−− −

⋅ ⋅ ⋅

=

⋅ ∫

 (5.17) 

We know that  

 
21

2 2
s

dse π
−

=∫  and 1 1 2

2
3

2

1 ( )2 2
s kkk e ds k kπ

− −
=∫  (5.18) 
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thus, 

2 2
2 2

2 2 2
2 2

2 2 2 2

2 2 2
2 2 2 2
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1
2

( )1
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12
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s s

d s s
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d s s d
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⎡ ⎤⎜ ⎟
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 (5.19) 

Now let 
2 2

2 2
s

s
k σ σ

σ σ
=

+ . Substituting k,(5.19) into (5.16) we get: 
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1
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s
s

dsk
s d

k
sdse

σ
σ σ

π

⎛ ⎞
⎜ ⎟
⎜ ⎟
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= ∫  (5.20) 

Moreover, for Gaussian signals we have that  
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2

2
1

1 2
2

X

X

X
Xs

xdxe
μ

σ μ
πσ

⎛ ⎞
⎜ ⎟
⎝ ⎠

− −
=∫  (5.21) 

Therefore, for the case of Gaussian signal in Gaussian noise a well-known closed-form 
solution exists 

 
2

2 2ˆ( ) s

s

s d dσ
σ σ

= ⋅
+

 (5.22) 

It is a simple linear operation as illustrated in Figure 5.2.  

As proposed in [19], a robust estimate of the noise standard deviation, σ, is obtained in 
the finest decomposition scale by the measured wavelet coefficients as 

 ,
1 ({ ,0 2 })

0.6745
J

j kMAD d kσ = ≤ ≤  (5.23) 

where the operator MAD [75] signifies the median absolute deviation and J denotes the 
highest level of wavelet decomposition. A less robust estimation of σ is  

 ( )2

,
0

1
2 1

J

J kJ
k

d dσ
=

= −
− ∑  (5.24) 

 
Figure 5.2 - (a) Gaussian pdf. (b) Corresponding shrinkage function. 
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Let now consider a signal that follows the Laplacian distribution (with standard 
deviation σs) in zero-mean Gaussian noise (with standard deviation σ): 

 
2| |1( ) e

2
s

s
s

s

P s σ

σ

−
=  (5.25) 

To estimate s from the noisy observation d for this case we will use the maximum a-
posteriori (MAP) estimator which is  

 |ˆ( ) arg max ( | )s ds
s d p s d=  (5.26) 

Using Bayes rule7 we get: 

 ˆ( ) arg max ( ) ( )ss
s d p d s p sξ⎡ ⎤= − ⋅⎣ ⎦  (5.27) 

which is equivalent to  

 ( ) ( )ˆ( ) arg max log ( ) log ( )ss
s d p d s p sξ

⎡ ⎤= − +⎣ ⎦  (5.28) 

 

Let log(ps(s)) = f(s) which due to (5.25) is 

 
2

1( ) log log( 2) 2
2

s

s

s
ss

s
f s e σ σ

σσ

−⎛ ⎞
⎜ ⎟= = − −
⎜ ⎟
⎝ ⎠

 (5.29) 

and log(pξ(d-s)) = g(d-s) which in the same way becomes: 

 ( )2

2( ) log( 2 )
2

d s
g d s σ π

σ
−

− = − −  (5.30) 

Thus, ( )2

2ˆ( ) arg max 2
2 s

s

d s s
s d

σ σ

⎡ ⎤−
= −⎢ ⎥

⎢ ⎥⎣ ⎦
 which is equivalent to solving the following 

equation for ŝ  is ps(s) is assumed to be strictly convex and differentiable: 

 ( )2

2 2

22 0 0
2 s s

d s s d s
σ σ σ σ

′ ′⎛ ⎞ ⎛ ⎞− −⎜ ⎟ − = ⇔ − =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 (5.31) 

Then the estimator will be  

 
22ˆ( ) ( ) | |

s

s d sgn d d σ
σ

+

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (5.32) 

where 
⎩
⎨
⎧ <

=+ otherwiseg
gif

g
,

0,0
)(  

                                                 
 
7 Bayes rule: | |( | ) ( | ) ( ) ( ) ( )s d d s s sp s d p d s p s p d s p sξ= = −  
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Equation (5.32) is the classical soft shrinkage function with 
22

s

σ
σ

 as the threshold. 

The Laplacian pdf and corresponding shrinkage function are illustrated in Figure 5.3. 
Note that this thresholding method depends on the noise variance which is found by 
(5.23). Recall that the soft operator is defined as 

 +soft(d, )= sign(d) (|d|- )τ τ⋅  (5.33) 

The soft shrinkage function (5.32) can be written as 

 
22ˆ( ) ,

s

s d soft d σ
σ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (5.34) 

 
Figure 5.3 - (a) Laplacian pdf (b) Corresponding shrinkage function 

5.3 Denoising based on Coefficient Correlation 
The presented à trous wavelet transform gives a multiresolution representation of 
images consisting of approximation images which display the image with increasingly 
coarser resolution as the scale increases, and of detail planes which show the objects 
whose size is adapted to the resolution of the filter at each scale. There is an inherent 
adaptiveness of the analysis to the object size since, with the support of the convolution 
filter increasing with the scale of analysis (see Table 5.1), the filter smoothes out the 
response of too narrow objects at a given scale. At the first level of analysis, the support 
of the filter is such that the detail image has significant coefficients at those locations 
where pixel-sized significant features are present. When going down in resolution, the 
filter support increases in size and significant coefficients in the detail images 
correspond more and more to significant features of increasing spatial dimension. 
However, it is very difficult to pick up the interesting features from the analysis of one 
detail image only. This is because relevant coefficients are embedded into non-specific 
background detail coefficients. 

Scale 1 2 3 4 5 
Support 5 9 17 33 65 

Table 5.1 - Length of wavelet filter support 

To overcome the limitation of data coming from a single image and to distinguish 
important wavelet coefficients from non-relevant ones, we take advantage of the 
multiresolution representation provided by the à trous wavelet transform. As 
aforementioned, spots are features in the image that are small compared to the global 
image, but indeed relatively large when analysed locally. We assume that spots are 
features of interest represented by a small number of coefficients which are large and 
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correlated across levels. Following results first demonstrated in the case of additive 
Gaussian white noise [56], it has been shown that in the case of images contaminated 
by additive correlated Gaussian noise, local maxima in wavelet planes tend to 
propagate across scales when they are due to significant discontinuities in the image, 
while they do not if caused by noise [41,42]. We therefore design a multiscale spatial 
filtering scheme that results in wavelet coefficients that have high values in the 
presence of a spot and characterise it unambiguously, whereas they have non-
significant values for the background or for large structures. To that goal, we compute a 
correlation image PJ(x,y) which is defined at each location (x,y) by the direct spatial 
multiscale product of the wavelet coefficient images at adjacent scales in the à trous 
representation: 

PJ(x, y) = 
1

( , )
J

i
i

W x y
=
∏ ,           (5.35) 

where J is the deepest level at which the correlation is computed. 

We subsequently use the fact that the product of significant coefficients across scales at 
the location (x,y) results in a significant value of PJ(x,y) only if the local maxima 
propagate down to the considered scale. Obviously, if the local maxima die at some 
intermediate scale, this one small coefficient in the product will be sufficient to 
decrease the value of PJ(x,y) significantly. The key point here is that the wavelet 
coefficients at large scales are significant only in the vicinity of an important feature 
while they are close to zero elsewhere. On the other hand, for a given feature, the 
support of its interval of relevance decreases at small scales. The spatial filtering 
method can therefore be interpreted as a process by which wavelet coefficient images at 
large scales are used to give a coarse estimation of possible spots positions. This 
estimation is then refined by supplementing data coming from finer scales only at those 
spatially filtered locations [65].  

To increase further the efficiency of the method, we have found that before computing 
the multiscale correlation image, it is desirable to select the most significant wavelet 
coefficients and to reduce the influence of non-significant noisy coefficients by 
applying a threshold-based denoising to the wavelet coefficients. Given an input image 
of the form  

 Y = f + n , (5.36) 

where Y is the observation, f the noise-free data and n an additive Gaussian noise, we 
want to compute, from the wavelet transformation of Y, W Y  = W f +W n , an estimate 

YŴ  where coefficients due to noise are replaced by zero. Assuming that noise is 
stationary and that the correlation between two noise realisations depends on their 
relative distance only, we have the following result [41,42] that, for a given resolution 
level i, the variance of the wavelet coefficients of a correlated noise Wi

n depends only 
on that resolution level i: 

 2 2( )n
i iE W σ=  (5.37) 

From this, we can define a thresholding strategy that makes use of the kσ hard 
thresholding technique to define a scale-dependent threshold ti [63,92]. The wavelet 
coefficients Y

iW are therefore transformed according to the following rule: 

 ( , )
0

Y Y
Y i i i

hard i i Y
i i

W W t
t W t

W t
⎧ ≥

= ⎨
<⎩

 (5.38) 
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with ti = kσi,  where σi is the standard deviation of the noisy wavelet coefficients at 
scale i and a usual choice is k =3 [63]. A robust estimation of σi is obtained from the 
MAD estimate [75], and is given by  

 0.67iσ σ=  (5.39) 

where σ is the median absolute deviation of the wavelet coefficients at scale i.  

5.4  Two-stage Multiresolution Technique 

All former techniques assume the presence of either additive or multiplicative noise. As 
foresaid, the omission of the measurement-specific additive noise term leads to 
exaggerated ratio estimates, false identification of significant differences, and 
understated uncertainty measures when the observations are small. The omission of the 
multiplicative noise term leads to similar problems when the observations are large. 

The proposed image denoising method accounts for both noise components via its two 
constituent stages: one that processes the additive component of the noise and another 
that processes the multiplicative component. The additive component is processed by 
the denoising method based on coefficient correlation, henceforth referred as 
correlation stage, which was described in Section 5.3 and the multiplicative component 
is attacked by the coring suppression method under the assumption of a Laplacian 
signal, henceforth referred as the coring stage, which was presented in Section 5.2. 

Subband decompositions of an image have significantly high-order statistics that are 
eluded by the simple thresholding methods. Nonetheless, a Bayesian denoising method, 
like the coring suppression, exploits these higher-order statistics rendering it a more 
reasonable choice for image processing. Moreover, the correlation between the wavelet 
coefficients of adjacent scales infers that there is a significant feature at the position 
that should be passed through the filter. Therefore, a method which exploits this 
dependence would be an essential denoising method. A combination of these two 
methods, as the proposed approach, is obvious that provides a powerful image analysis 
tool. 

 
Figure 5.4 – Block diagram of the proposed method 
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6 RESULTS 

6.1 Materials 

The microarray images, which are processed by the proposed method, are 16-bit 
grayscale images. They come from the high detection settings of a homotypic 
hybridization of a leukemic cell line (KARPAS-231, human B cell leukemia) on 
microarrays containing oligos corresponding to both human genes (Operon Human 
Oligo Library v3) and external control genes from Bacillus subtilis, E. coli and phage 
P1. 

4 μgr of total RNA were amplified, as described in [25] with the following 
modifications: first strand synthesis was perfomed using an anchored T7-oligo (dT) 
primer and Superscript III (Invitrogen) for 20min at 440C and 1h 45min at 500C. The 
amplified RNA (aRNA) in vitro transcription was done with Ampliscribe T7 
transcription kit (Epicentre) at 420C following the manufacturer's protocol, using a 
ratio of UTP/aminoallyl-UTP (Epicentre) of 1. The aRNA was cleaned up using 
RNeasy columns (Qiagen) and quantified using Nanodrop. Equal quantities of aRNA, 
supplemented with aRNA of the externalcontrol genes at 1:1, 1:3 and 3:1 ratios, were 
labelled with Alexa 555 and 647 Succinimidyl ester (Molecular Probes, Invitrogen) 
according to the manufacturer's protocol at 500C. 

The hybridization was performed in a Tecan HS4800 hybridization station. The slides 
were prehybridized for 1.5 hour at 420C with 5x SSC, 0.1% SDS, 1% BSA and then 
hybridized for 16h at 420C in a buffer with a final concentration of 5x SSC, 0.1 
%SDS, 50% formamide and 1.5ìgr/ml fragmented salmon sperm DNA. The arrays 
were subsequently washed with 2x SSC, 0.1% SDS at 420C, followed by a wash in 
0.1x SSC, 0.1% SDS at 230C and a third wash with 0.1x SSC at 230C. The slides were 
dried by nitrogen. 

Arrays were read with a ScanArray 5000 scanner (GSI Lumonics) at 5 μm resolution 
at three different photomultiplier tube voltage settings (high, medium and low). The 
fluorescence intensity for each fluor and each element on the array was captured using 
spotSegmentation package [51] written in R [73] and ImaGene of Biodiscovery [106]. 

6.2 Evaluation Metrics 
In order to evaluate the processed images and compare the results of the methods in a 
very objective manner we have used some quantitative performance metrics together 
with the qualitative visual evaluation. 

6.2.1 Coefficient of Variation (CV) 

The coefficient of variation (CV), or relative standard deviation, provides a 
quantitative measure of the homogeneity of both the background and the microarray 
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spot areas. The lower this metric is, the higher the homogeneity in the spot or 
background, respectively. It is defined as the standard deviation (std) to mean value: 

 spot
spot

spot

std
CV

mean
=  (6.1) 

 background
background

background

std
CV

mean
=  (6.2) 

The main appeal of the CV is that the stds of microarray images generally increase or 
decrease proportionally as the mean increases or decreases, so that division by the 
mean removes it as a factor in the variability. The CV is therefore a standardization of 
the std that allows comparison of the variability inside the spots or local background 
regardless of the magnitude of the spots or local background respectively. As 
microarray images contain spots with different intensities and the background has not 
a constant intensity value, the standard deviation of the image cannot be a metric of 
homogeneity due to its intensity dependant nature. Therefore, the CV is a metric 
which demonstrates the spots and background homogeneity. 

6.2.2 Confidence Interval (CI) 

A confidence interval is an interval in which a measurement or trial falls 
corresponding to a given probability.  

Definition:    Given a random sample X1,X2,...,Xn from a normal distribution N(μ,σ2), 
consider the closeness of X, the unbiased estimator of μ, to the unknown μ. To do this, 
the error distribution of X, namely that X is N(μ,σ2/n), is used in order to construct 
what is called a confidence interval for the unknown parameter μ, when the variance 
σ2 is known.  

 ( )/ 2( )aCI Z n
σμ= ±  (6.3) 

where Zα/2 is the confidence level. The confidence level represents how willing we are 
to accidentally report a mistake. The Greek letter α actually represents something 
called the alpha level. Normally, we use values of α = 0.05 or α = 0.01, which mean 
we are willing to be wrong five out of every hundred times, or one out of every 
hundred times, respectively. 

The standard error of the mean, nσ , is a measurement of how much error results 
from the size of our sample. The bigger our sample, the less likely we are to 
accidentally end up with an unrepresentative sample, and therefore the standard error 
of the mean will be smaller. Conversely, if we have a small sample, we expect the 
chances of us having a “bad” sample to be higher, so the standard error will be bigger. 

The confidence limits, or margin of error, are simply the product of the standard error 
of the mean and the Z score for a given confidence level. More formally: 

 ( )/ 2( )e Z nα
σ=  (6.4) 
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e represents the confidence limit for a given α, σ and n. As α decreases, the interval 
gets bigger. 

In our case, the CIs are used as a measure of the spots homogeneity. An interval [0, t] 
is plotted versus the amount of spots that their CV lie in this interval. Therefore, the 
more rapid the increase of this amount while t remains small, the more homogeneous 
the spots.  

6.2.3 Mahalanobis Distance 

In statistics, Mahalanobis distance is a distance measure based on correlations 
between variables by which different patterns can be identified and analysed. It is a 
useful way of determining similarity of an unknown sample set to a known one. It 
differs from Euclidean distance in that it takes into account the correlations of the data 
set and is scale-invariant, i.e. not dependent on the scale of measurements. 

Formally, the Mahalanobis distance from a group of values with mean 
1 2 3( , , ,..., )T

pμ μ μ μ μ= and covariance matrix Σ  for a multivariate vector 

1 2 3( , , ,..., )T
px x x x x= is defined as: 

 1( ) ( ) ( ).T
MD x x xμ μ−= − Σ −  (6.5) 

Mahalanobis distance can also be defined as dissimilarity measure between two 
random vectors x

G
 and y

JG
of the same distribution with the covariance matrix Σ : 

 1( , ) ( ) ( ).Td x y x y x y−= − Σ −
G G G G G G  (6.6) 

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the 
Euclidean distance. If the covariance matrix is diagonal, then the resulting distance 
measure is called the normalized Euclidean distance: 

 
2

2
1

( )( , ) ,
p

i i

i i

x yd x y
σ=

−
= ∑G G  (6.7) 

where σi is the standard deviation of the xi over the sample set. 

6.3 Results Presentation 

In this subsection, the below qualitative and quantitative performance measures are 
going to be presented: 

 visualization of the resulting image, 
 visual comparison of the resulting images to the images resulting from other 

processing techniques, 
 boxplots of the spots and background CVs, and the spots CI, 
 plot of an approximation of the individual values of the mahalanobis distance 

between the background and spots, 
 visualization of several spots that have been enhanced at a great extend by our 

method, 
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 visualization of the segmentation result for the selected spots, as it arises from 
the ImaGene package, 

 amount of spots identified by SpotSegmentation. 

For starters, an image dyed with Cy3 and scanned at the higher settings of the scanner 
is presented (‘image1G’). Figure 6.1 shows the original and processed images for the 
two-stage method. The red box areas in Figure 6.1B show that the application of the 
correlation stage and then the coring stage significantly enhances low-intensity spots 
therefore discriminating them from the local noisy background. We also note that, in 
some cases (as highlighted by the yellow box area in Figure 6.1B) the resulting spots 
seem to be dilated. Application of the coring stage and then the correlation stage does 
not produce such an effect, as highlighted in Figure 6.1C. Comparison of Figure 6.1B 
and Figure 6.1C tends to indicate that the correlation stage applied before the coring 
stage has a better denoising effect for low-intensity microarray spots. 

 
Figure 6.1 - Results of the proposed two-stage approach for image1G: correlation stage for 
additive noise removal and coring stage for multiplicative noise removal.  
A: original image, B: image processed with the correlation stage and then with the coring stage, 
C: image processed with the coring stage and then with the correlation stage. Red box areas show 
low-intensity spots that are more enhanced by the application of the correlation stage and then 
the coring stage. Yellow areas show spots processed by the correlation stage and then the coring 
stage that have been dilated, while no such an effect is observed when applying first the coring 
stage and then the correlation one. 

In Figure 6.2 and Figure 6.3, the proposed method is compared to other image 
processing techniques, which were described in Section 5. As foresaid, each of those 
methods account only for one noise component, either additive or multiplicative. 
Figure 6.2 demonstrates the results that arise when the methods attack only the 
additive component of the noise. In this case, it is obvious that when going up to 
analysis levels at the correlation method some low-intensity spots vanish (green areas 
in Figure 6.2O) while others are dilated (yellow areas in Figure 6.2O). We can clearly 
see that some low-intensity spots are enhanced after having been processed by this 
technique (red areas in Figure 6.2N) and all spots are much more homogeneous than 
the initial ones. Nonetheless, the application of the proposed two-stage approach 
(Figure 6.2P and Q) yields better results because it accounts for both noise 
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components. However, the conclusions for the correlation method confirm its 
selection for the additive noise component's removal.  

 
Figure 6.2 - Results when considering the additive component of noise for image1G. 
 A:original image, B,C,D: images processed with the coring method assuming gaussian signal at 
1,2,3 levels of analysis, respectively, E,F,G: images processed with hard thresholding at 1,2,3 
levels of analysis, respectively, H,I,J: images processed with soft thresholding at 1,2,3 levels of 
analysis, respectively, K,L,M: images processed with the coring method assuming laplacian 
signal at 1,2,3 levels of analysis, respectively, N,O: images processed with the correlation 
technique at levels 1-2, 2-3 of analysis, respectively. P: image processed with the correlation stage 
and then with the coring stage, Q: image processed with the coring stage and then with the 
correlation stage. Red areas show low-intensity spots enhanced by the correlation method. Yellow 
areas show spots that have been dilated when processed by the correlation method. Green areas 
correspond to low-intensity spots that vanish when processed by the correlation technique in 
higher levels or by the coring stage and then with the correlation stage. 
 

 
Figure 6.3 - Results when considering the multiplicative component of noise for image1G.  
A:original image, B,C,D: images processed with gaussian model at 1,2,3 levels of analysis, 
respectively, E,F,G: images processed with hard thresholding at 1,2,3 levels of analysis, 
respectively, H,I,J: images processed with soft thresholding at 1,2,3 levels of analysis, 
respectively, K,L,M: images processed with the coring method assuming laplacian signal at 1,2,3 
levels of analysis, respectively, N,O: images processed with the correlation technique at levels 1-2, 
2-3 of analysis, respectively. P: image processed with the correlation stage and then with the 
coring stage, Q: image processed with the coring stage and then with the correlation stage. Green 
areas correspond to some low-intensity spots that vanish. Red areas show that coring at the first 
level of analysis, as well as correlation and then coring stage, results into more enhanced spots. 

Moreover, Figure 6.3 shows the results when accounting only for the multiplicative 
component of the noise. From this figure, it is obvious that the correlation method is 
not proper for this case due to the fact that some low-intensity spots vanish (green box 
areas in Figure 6.3N, and Figure 6.3O). We can clearly see (red areas in Figure 6.3K) 
that coring method based on Laplacian modeling at the first level, henceforth referred 
as coring method for simplicity, of analysis renders low-intensity spots more 
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enhanced. It is obvious, though, that the two-stage method we presented in this 
dissertation renders the low-intensity spots even more homogeneous (red areas in 
Figure 6.3P). On the other hand, the coring method yields the best results of all the 
methods that attack only one noise component, and this argues that it is the best 
method for the multiplicative noise component’s removal. From now on, for space 
saving, our two-stage method will be compared only to the coring stage and the 
correlation stage, independently. 

 (a) (b) 
Figure 6.4 - Effect of the two-stage approach on the homogeneity of the microarray spot and 
background areas for image1G.  
(a) CV that correspond to all spots 
(b) CV that correspond to low-intensity spots 
The upper set of boxplots represents the signal log2CV. The lower set of boxplots represents the 
background log2CV. In each boxplot set, the first plot corresponds to the original image, the 
second corresponds to the image processed by the correlation stage, the third corresponds to the 
image processed by the coring stage, the fourth corresponds to the image processed by the two-
stage correlation followed by coring method and the fifth corresponds to the image processed by 
the two-stage coring followed by correlation method. 

An interesting issue for consideration is the order of applying the two processing 
stages. Figure 6.4 shows the coefficient of variance (CV), that demonstrates the effect 
of the two stages in the homogeneity of both the background and the microarray spot 
areas. More specifically, the figures provide boxplots of (i) the signal CV and (ii) the 
background CV and a plot which presents the percentage of spots whose CV falls into 
a confidence interval (CI). This CI plot indicates that the proposed method tends to 
assign a CV close to zero to the major percentage of spots. Figure 6.4b is the same 
boxplot as Figure 6.4a but it accounts only for the low-intensity spots. It illustrates 
that when we apply first the coring and then the correlation stage we get more low-
intensity spots with CV close to zero which implies more homogeneous spot areas 
corresponding to low-intensity spots. 
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Figure 6.5 - Improvement of the Mahalanobis distance of spots and background between the 
original and the processed images as a function of the spot-to-background intensity ratio for 
image1G. 

Figure 6.5 illustrates another quantitative performance metric, namely, the 
Mahalanobis distance improvement of spot and background areas between the 
processed and original images as a function of the spot-to-background intensity ratio. 
This Figure contains an approximation of the individual values. While Figure 6.4b 
illustrates that the application of the correlation stage followed by the coring stage 
tends to make the low-intensity spots more homogeneous than they were, Figure 6.5 
shows that these spots become more distinctive from the local background. On the 
other hand, when combining the two stages vice versa we get a better discrimination 
for the high-intensity spots but not as good for the low-intensity ones (cf. Figure 6.5). 

For this image, the three spots shown in Figure 6.6 have been enhanced at a great 
extent and the result of the ImaGene segmentation appears only for them. Regarding 
these spots (red, yellow and green box areas in Figure 6.6a), it is not possible for 
ImaGene to detect them in the original image (Figure 6.6b - A). Therefore, it defines a 
circular area to be the segmentation area for these spots. On the other hand, the 
proposed method results in better segmentation due to the fact that the spots have 
been enhanced before the segmentation step. Our two-stage method results in better 
results even than the application of each step on its own, as it was expected. For the 
first spot the segmentation of the correlation method’s result does not discriminates 
that there are artifacts inside the spot (purple box area in Figure 6.6b – 1st spot – D). 
The segmentation of the coring method’s result assumes a smaller spot area for all 
spots (purple box areas in Figure 6.6b – E). 
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(b) 

Figure 6.6 – (a) Spot Selection. (b) Segmentation results from ImaGene for image1G.  
A: original image, B: image processed with the correlation stage and then with the coring stage, 
C: image processed with the coring stage and then with the correlation stage, D: image processed 
with the correlation method, E: image processed with the coring method. 

A B C D E

A B C D E

A B C D E
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We continue our results presentation with the results of the processing of the same 
image dyed with Cy5 and scanned at the higher settings of the scanner (‘image1R’). 
Figure 6.7, as Figure 6.1, shows the original image and those processed by the 
proposed method. The red box areas in Figure 6.7B show that the application of the 
correlation stage and then the coring stage significantly enhances low-intensity spots 
in this image as well, therefore discriminating them from the local noisy background. 
However, the application of the coring stage and then the correlation stage renders 
some spots, enhanced by the application of the stages in reverse order, vanish (as 
highlighted by the green box area in Figure 6.7C). From Figure 6.7B and Figure 6.7C 
along with Figure 6.7B and Figure 6.7D, we ensure the indication that the correlation 
stage applied before the coring stage has a better denoising effect for low-intensity 
microarray spots. 

 
Figure 6.7 - Results of the proposed two-stage approach for image1R: correlation stage for 
additive noise removal and coring stage for multiplicative noise removal. 
A: original image, B: image processed with the correlation stage and then with the coring stage, 
C: image processed with the coring stage and then with the correlation stage. Red box areas show 
low-intensity spots that are more enhanced by the application of the correlation stage and then 
the coring stage. Green areas show spots processed by the coring stage and then the correlation 
stage that have started vanishing. 

In Figure 6.8 and Figure 6.9, the image processed by the proposed method is 
compared to images processed by the other described techniques. Figure 6.8 
demonstrates the results that arise when the methods attack only the additive 
component of the noise. Also from this image, the correlation method appears to be 
the best choice for the additive noise component removal. Again, some low-intensity 
spots are enhanced when processed by this technique (red areas in Figure 6.8N) and 
all spots are much more homogeneous than the initial ones. However, when going up 
to analysis levels at the correlation method some low-intensity spots vanish (green 
areas in Figure 6.8O) while others are dilated (yellow areas in Figure 6.8O).  
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Figure 6.8 - Results when considering the additive component of noise for image1R.  
A:original image, 
B,C,D: images processed with the coring method assuming gaussian signal at 1,2,3 levels of 
analysis, respectively, 
E,F,G: images processed with hard thresholding at 1,2,3 levels of analysis, respectively, 
H,I,J: images processed with soft thresholding at 1,2,3 levels of analysis, respectively, 
K,L,M: images processed with the coring method assuming laplacian signal at 1,2,3 levels of 
analysis, respectively, 
N,O: images processed with the correlation technique at levels 1-2, 2-3 of analysis, respectively.  
P: image processed with the correlation stage and then with the coring stage, 
Q: image processed with the coring stage and then with the correlation stage. 
Red areas show low-intensity spots enhanced by the correlation method. Yellow areas show spots 
that have been dilated when processed by the correlation method. Green areas correspond to 
low-intensity spots that vanish when processed by the correlation technique in higher levels or by 
the coring stage and then with the correlation stage. 

 
Figure 6.9 - Results when considering the multiplicative component of noise for image1R.  
A:original image, 
B,C,D: images processed with gaussian model at 1,2,3 levels of analysis, respectively, 
E,F,G: images processed with hard thresholding at 1,2,3 levels of analysis, respectively, 
H,I,J: images processed with soft thresholding at 1,2,3 levels of analysis, respectively, 
K,L,M: images processed with the coring method assuming laplacian signal at 1,2,3 levels of 
analysis, respectively, 
N,O: images processed with the correlation technique at levels 1-2, 2-3 of analysis, respectively.  
P: image processed with the correlation stage and then with the coring stage, 
Q: image processed with the coring stage and then with the correlation stage. 
Green areas correspond to some low-intensity spots that vanish. Red areas show that coring at 
the first level of analysis, as well as correlation and then coring stage, results into more enhanced 
spots. 

The results from the techniques when accounting only for the multiplicative 
component of the noise are shown in Figure 6.9. From this figure, the correlation 
method, again, appears not to be proper for this case because some low-intensity spots 
start vanishing (green box areas in Figure 6.9N, and Figure 6.9O). The coring method 
at the first level of analysis renders, again, low-intensity spots more enhanced (red 
areas in Figure 6.9K) but the low-intensity spots become even more enhanced and 
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homogeneous when processed by the two-stage proposed method (red areas in Figure 
6.9P). However, the choice of the coring method for attacking the multiplicative noise 
component is once again confirmed to be the best one for this noise component’s 
removal.  

From Figure 6.10 we can see that our method yields – once again – more 
homogeneous background and microarray spot areas than in the original image. The 
same stands for the coring processing as well. From the zoomed version of the CI plot 
in Figure 6.10b, one can tell that the proposed method slightly outperforms the 
correlation method because there is a rapid and quick increase of the spot percentage 
while t, where CI = [0 t], remains close to zero.  
 

(a) (b) 
Figure 6.10 - Effect of the two-stage approach on the homogeneity of the microarray spot and 
background areas for image1R.  
(a) CV that correspond to all spots 
(b) CV that correspond to low-intensity spots 
The upper set of boxplots represents the signal log2CV. The lower set of boxplots represents the 
background log2CV. In each boxplot set, the first plot corresponds to the original image, the 
second corresponds to the image processed by the correlation stage, the third corresponds to the 
image processed by the coring stage, the fourth corresponds to the image processed by the two-
stage correlation followed by coring method and the fifth corresponds to the image processed by 
the two-stage coring followed by correlation method. 

From Figure 6.11 we conclude that there is a significant improvement of the 
Mahalanobis distance of spot and background areas between the processed and 
original images for the low intensity spots. Moreover, all processing techniques 
perform a 100% increase in Mahalanobis distance for the high-intensity spots, 
whereas in the former image only the application of the coring stage and then the 
correlation resulted in such an improvement (see Figure 6.5).  
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Figure 6.11 - Improvement of the Mahalanobis distance of spots and background between the 
original and the processed images as a function of the spot-to-background intensity ratio for 
image1R. 

We, again, select some spots (red, yellow, green box areas in Figure 6.12a) that have 
been enhanced by our method and they are shown in Figure 6.12 along with their 
ImaGene segmentation result. ImaGene is still unable to detect these spots if they are 
not first processed (Figure 6.12b - A), consequently, assigning a circular area to be the 
segmentation area for these spots. However, processing these spots with our method 
allows ImaGene to perform better segmentation because the spots are more 
distinguishable from their local background. The coring method still results in bad 
segmentation especially for the second (Figure 6.12b – 2nd spot – E) and third spot 
(Figure 6.12b – 3rd spot – E) where ImaGene cannot identify a spot, but also for the 
first spot as it assumes smaller spot area (purple box areas in Figure 6.12b – 1st spot – 
E). Correlation method achieves better results than the coring method, however, not as 
good as the proposed approach. From the purple box area in Figure 6.12b – 1st spot – 
D it is obvious that ImaGene considers a smaller spot area and it reckons an artifact at 
the third spot (purple box area in Figure 6.12b – 3rd spot – D) although it should 
consider it as spot area. 
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Figure 6.12 – (a) Spot Selection. (b) Segmentation results from ImaGene for image1R.  
A: original image, B: image processed with the correlation stage and then with the coring stage, 
C: image processed with the coring stage and then with the correlation stage, D: image processed 
with the correlation method, E: image processed with the coring method. 

A B C D E

A B C D E

A B C D E
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Table 6.1 presents the amount of spots that SpotSegmentation is unable to detect. The 
results come from the composition of both red and green channel of the image that we 
have presented, so far. From this table, it appears that the coring stage finds most 
spots than the proposed approach. But when looking at the images provided by the 
software package (data not shown), we can discern that SpotSegmentation identifies 
“spots” in areas where no spot exists. The percentage of 8.3% consists of really 
detected spots along with a number of false positives. From the images of 
SpotSegmentation and from Table 6.1, it is obvious that the proposed method 
increases the spot detectability of the original image by approximately 40%. This 
result demonstrates the significance of the proposed two-stage approach. 
 

 Original Coring Correlation Coring -
Correlation 

Correlation - 
Coring 

Spots NOT 
detected 

42.41% 8.3% 21.2% 18.8% 20.8% 

Table 6.1 – Results from SpotSegmentation for image1R and image1G. 

Finally, we present an image that is dyed with Cy5 and is scanned at lower scanning 
settings (‘image2R’). The result from the two-stage processing is demonstrated in 
Figure 6.13. It is obvious that scanning an image at lower settings results in a much 
more denoised image that has more low-intensity spots (green box areas in Figure 
6.13A). The red box areas in Figure 6.13B, C shows spots that are enhanced after 
having been processed by our method. Processing results, once again, in more 
homogeneous spots (cyan box areas in Figure 6.13B, C) even if this colormap does 
not help us distinguish many spots (yellow areas in Figure 6.13B). 

.  
Figure 6.13 - Results of the proposed two-stage approach for  image2R: correlation stage for 
additive noise removal and coring stage for multiplicative noise removal.  
A: original image, B: image processed with the correlation stage and then with the coring stage, 
C: image processed with the coring stage and then with the correlation stage. Red box areas show 
low-intensity spots that are more enhanced by the proposed method. Cyan areas show spots 
which have become more homogeneous after being processed by the two-stage method. Green 
areas show spots that have a very low-intensity due to the low scanning settings. Yellow areas 
correspond to spots that are not obvious with this colormap. 

For the third time in a row, the results in Figure 6.10 demonstrate the increase in 
homogeneity of the background and microarray spot areas after having the original 
image processed. This homogeneity is more significant for the low intensity spots, as 
illustrated in Figure 6.14b, and even more if the image is processed by the proposed 
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method as there is a rapid and quick increase of the spot percentage while t, where CI 
= [0 t], remains close to zero (cf. zoomed version of CI plot of Figure 6.14b).  

  
(a) (b) 

Figure 6.14 - Effect of the two-stage approach on the homogeneity of the microarray spot and 
background areas for  image2R.  
(a) CV that correspond to all spots 
(b) CV that correspond to low-intensity spots 
The upper set of boxplots represents the signal log2CV. The lower set of boxplots represents the 
background log2CV. In each boxplot set, the first plot corresponds to the original image, the 
second corresponds to the image processed by the correlation stage, the third corresponds to the 
image processed by the coring stage, the fourth corresponds to the image processed by the two-
stage correlation followed by coring method and the fifth corresponds to the image processed by 
the two-stage coring followed by correlation method. 

 
Figure 6.15 - Improvement of the Mahalanobis distance of spots and background between the 
original and the processed images as a function of the spot-to-background intensity ratio for 
image2R. 



76                               6   RESULTS 

Master Thesis 

As in Figure 6.11, in Figure 6.15 we notice a significant improvement of the 
Mahalanobis distance of spot and background areas between the processed and 
original images for the low intensity spots. Again, all processing techniques perform a 
100% increase in Mahalanobis distance for the high-intensity spots.  
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Figure 6.16 – (a) Spot Selection. (b) Segmentation results from ImaGene for  image2R.  
A: original image, B: image processed with the correlation stage and then with the coring stage, 
C: image processed with the coring stage and then with the correlation stage. 

A B C
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In this image, the selection of individual spots from the resulting image in Figure 6.13 
is very difficult because the colormap does not help for the discrimination of the 
spots. However, when the resulting images are processed with ImaGene we observe 
that the segmentation is better than that of the original image, even though the spots 
were not well discriminated. In Figure 6.16a the selected spots are presented as they 
appear in the images (red, yellow, green box areas) and the segmentation result form 
the ImaGene tool is presented in Figure 6.16b. It is evident that the spots are better 
segmented when having been processed by the proposed method. 

Table 6.2 presents the amount of spots that SpotSegmentation is unable to detect. The 
results come from the composition of both red and green channel of the image 
scanned at lower settings. SpotSegmentation package is unable to detect more than 
half the spots at the unprocessed image while this percentage falls to 33 – 34 % for the 
processing images. It was expected that these percentages would be larger than those 
in Table 6.1 due to the large amount of low-intensity spots that exist in this image. It 
is inevitable that many spots are not going to be identified even if processed by the 
two-stage method. 
 

 Original Coring -
Correlation 

Correlation - 
Coring 

Spots NOT 
detected 

55.63% 33.31% 34.1% 

Table 6.2 – Results from SpotSegmentation for image2R and image2G. 
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7 CONCLUSIONS 

Microarray technology finds wide use, among others, in human disease, aging, drug 
and hormone action and mental illness. Exploiting the alterations in gene sequences, 
they pave the way for a new era of genetic screening, testing and diagnostics. It is, 
therefore, vital to identify every possible change in the gene sequences. This is almost 
never easy due to the noise inherent in the microarrays. Noise often obscures the spots 
that contain the information needed for identifying an alteration. Therefore, a 
denoising step, which enhances the image, plays a pivotal role in order not to omit any 
important information. 

Our results, shown in Section 6, suggest that in high throughput whole-genome 
approaches, applying a two-stage approach enhances the dynamic range of existing 
microarray imaging technology, which is very important in order to identify the most 
significant genes with increased accuracy and robustness. This has been verified both 
by ImaGene and SpotSegmentation tools. As far as SpotSegmentation is concerned, it 
is obvious, from the relevant tables, that there is a major increase in the amount of 
identified spots after the image processing. In addition, the identification of more 
spots results in better segmentation by ImaGene. 

Microarray images consist mostly of low-intensity spots that are not well 
distinguishable from the background. These low-intensity spots are affected by 
inherent additive and multiplicative noise components and are those which need 
enhancement. For these spots, our method achieves great homogeneity and 
discrimination from the local background. On the other hand, for high-intensity spots 
we confront the problem of spot dilation, especially in images scanned at higher 
settings. This artifact does not occur in the images at lower settings and this is due to 
the fact that the high-intensity spots at these images have smaller intensity than those 
in the higher settings images which are saturated. However, the spots with high 
intensity are well distinguishable from the background, consist a small percentage in 
the microarray images and there is no need to enhance them. 

As we have seen, the proposed method is tested on the double-color DNA microarray 
technology. However, it is performed on the images separately and does not account 
for the correlation between the two channels. Consequently, we argue that it is 
applicable to the single-color (Affymetrix) microarrays, as well. 

The basic concept of our method is that it accounts for both the additive and 
multiplicative noise component. Though, there are some microarray experimenters 
who, in order to overcome the effect of the noise without a denoising step, produce 
microarrays at the lowest scanning settings. These images suffer more from 
multiplicative noise and not that much from additive noise. In this case our method 
would, mistakenly, assume the existence of an additive noise component and try to 
remove it, consequently assuming an incorrect model for the signal and multiplicative 
noise component. The coring method applied on the image on its own would be the 
best choice for attacking this component. We realize that there is need of a metric 
which would tell if the image suffers from the multiplicative or the additive or both 
noise components. This metric for evaluating the presence of the noise components 
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would allow the application of the proper denoising technique for rendering the image 
more enhanced. 

The proposed method is believed to be a novel technique for microarray image 
enhancement which achieves robust and accurate results. This method could 
constitute a part of a microarray data processing protocol as a pre-processing step 
prior to gridding. For example, such a protocol would apply our method on the image 
and the result would be processed by ImaGene in order to extract the gene 
information. If the whole process is to be automated, then even a normal user – who 
knows how to use the ImaGene tool – would be able to use it. This automated 
protocol would disencumber researchers of getting involved with the uphill task of 
image enhancement. 

Microarray technology is one of the most important and promising research areas 
today. It finds wide use in many applications that will change the way we view health 
and disease. However, this technology has to confront some serious problems before 
it is possible for all its potentials to be in use. We hope that this approach would be a 
useful tool for the researchers, in order to eliminate the effect of noise in the gene 
expression measurements. 
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