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Results Clustering in Web Searching

Kopidaki Styliani

Master’s Thesis

Computer Science Department, University of Crete

Abstract

This thesis elaborates on the problem of providing efficient and effective methods for re-

sults clustering in Web searching. In brief, results clustering is useful for providing users

with overviews of the search results and thus allowing them to restrict their focus to the

desired parts of the returned answer. In addition, results clustering alleviates the prob-

lem of ambiguity of natural language words. However, the task of deriving (single-word or

multiple-word) names for the clusters (usually referred as cluster labeling) is a difficult task,

because they have to be syntactically correct and predictive (should allow users to predict

the contents of each cluster). Furthermore, results clustering is an online task therefore

efficiency is an important requirement.

This thesis surveys the methods that have been proposed and used for results clustering

and focuses on the Suffix Tree Clustering (STC) approach. STC is a clustering technique

where search results (mainly snippets) can be clustered fast (in linear time), incrementally,

and each cluster is labeled with a phrase. This thesis proposes two novel results cluster-

ing methods: (a) a variation of the STC, called STC+, with a scoring formula that favors

phrases that occur in document titles and differs in the way base clusters are merged, and

(b) a novel non merging algorithm, called NM-STC that results in hierarchically organized

clusters. The comparative user evaluation showed that both STC+ and NM-STC are sig-

nificantly more preferred than STC, and that NM-STC is about two times faster than

STC and STC+. These methods where applied over Mitos Web search engine and over

Google. Moreover, NM-STC was integrated with the Dynamic Faceted Taxonomies inter-

action scheme of Mitos. The dynamic coupling of results clustering with dynamic faceted

taxonomies results to an effective, flexible and efficient exploration experience. Finally, the

thesis reports experimental and empirical results from applying these methods over Mitos

and over Google.
Supervisor: Yannis Tzitzikas

Assistant Professor
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OmadopoÐhsh Apotelesm�twn stic Mhqanèc Anaz thshc tou IstoÔ

Kopid�kh Stulian 

Metaptuqiak  ErgasÐa

Tm ma Epist mhc Upologist¸n, Panepist mio Kr thc

PerÐlhyh

H sugkekrimènh ergasÐa asqoleÐtai diexodik� me to prìblhma eÔreshc apotelesmatik¸n kai

apodotik¸n mejìdwn gia thn omadopoÐhsh apotelesm�twn stic mhqanèc anaz thshc tou IstoÔ.

En suntomÐa, h omadopoÐhsh apotelesm�twn parèqei stouc qr stec mia genik  episkìphsh twn

apotelesm�twn anaz thshc, epitrèpontac touc na esti�soun thn prosoq  touc se ekeÐna ta

tm mata thc ap�nthshc pou antapokrÐnontai stic plhroforiakèc touc an�gkec. Epiplèon, h

omadopoÐhsh apotelesm�twn metri�zei to prìblhma thc amfishmÐac twn lèxewn thc fusik c

gl¸ssac. EntoÔtoic, h sÔntaxh (monolektik¸n   perifrastik¸n) onom�twn parousÐashc gia

tic paragìmenec om�dec eÐnai èna dÔskolo prìblhma afoÔ ta onìmata prèpei afenìc na eÐnai

suntaktik� orj� kai afetèrou na epitrèpoun sto qr sth na problèyei ta perieqìmena twn

om�dwn. Sun�ma, h omadopoÐhsh apotelesm�twn apoteleÐ tm ma thc diadikasÐac ap�nthshc

eperwt sewn epomènwc h apodotikìthta eÐnai mia shmantik  apaÐthsh.

H ergasÐa aut  k�nei mia episkìphsh twn mejìdwn pou èqoun protajeÐ kai èqoun qrhsi-

mopoihjeÐ gia thn omadopoÐhsh apotelesm�twn kai esti�zei ston algìrijmo Suffix Tree Clus-

tering (STC). O STC eÐnai mia teqnik  sthn opoÐa ta apotelèsmata anaz thshc (kurÐwc tm -

mata twn keimènwn) omadopoioÔntai gr gora (se grammikì qrìno), auxhtik�, kai h k�je om�da

èqei mia fr�sh san ìnoma. H ergasÐa aut  proteÐnei dÔo nèec mèjodouc: (a) mia parallag 

tou STC, pou lègetai STC+, h opoÐa qrhsimopoieÐ mia sun�rthsh bajmolìghshc pou eunoeÐ

tic fr�seic pou emfanÐzontai stouc tÐtlouc twn eggr�fwn kai diafèrei ston trìpo me ton

opoÐo sugqwneÔontai oi upoy fiec om�dec, kai (b) èna nèo algìrijmo, pou lègetai NM-STC,

o opoÐoc katal gei se mia ierarqik  dom  apì om�dec. H sugkritik  axiolìghsh me qr stec

èdeixe ìti oi qr stec protimoÔn perissìtero touc STC+ kai NM-STC apì ton STC, kai ìti

o NM-STC eÐnai dÔo forèc pio gr goroc apì touc STC kai STC+. Oi mèjodoi autoÐ efar-

mìsthkan p�nw sth mhqan  anaz thshc MÐtoc kai to Google. Epiplèon, ta apotelèsmata

tou NM-STC enswmat¸jhkan sto montèlo allhlepÐdrashc twn Dunamik¸n Poludi�statwn

Taxinomi¸n pou uposthrÐzei h mhqan  MÐtoc, wc mia epiplèon di�stash pou sumplhr¸nei tic
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upìloipec diast�seic (pou eÐnai anex�rthtec perieqomènou). H zeÔxh aut  èqei san apotèles-

ma mia apotelesmatik , euèlikth kai apodotik  plohghtik  empeirÐa. Tèloc, perigr�fontai kai

analÔontai ta peiramatik� kai empeirik� apotelèsmata apì thn efarmog  aut¸n twn mejìdwn

p�nw sth mhqan  MÐtoc kai sto Google.

Epìpthc Kajhght c: Gi�nnhc TzÐtzikac

EpÐkouroc Kajhght c
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EuqaristÐec

Ja  jela na euqarist sw p�ra polÔ ton epìpth kajhght  mou k. Gi�nnh TzÐtzika gia

ìlh th bo jeia tou gia thn per�twsh aut c thc ergasÐac ton teleutaÐo en�mish qrìno, kaj¸c

kai gia thn kajod ghsh tou wc sumboÔlou mou ton pr¸to èna qrìno twn metaptuqiak¸n mou

spoud¸n.

EpÐshc, ofeÐlw èna meg�lo euqarist¸ ston Panagi¸th Papad�ko gia tic polÔtimec gn¸seic

tou p�nw sth mhqan  MÐtoc kai gia ìlh th bo jeia kai thn upost rixh tou.

Akìma, ja  jela na euqarist sw touc goneÐc mou, Man¸lh kai MarÐa, thn aderf  mou,

NÐtsa, gia thn ag�ph touc kai thn upost rixh touc, tic fÐlec kai touc fÐlouc mou pou me

antèqoun akìma kai ìsouc  tan ed¸ kai ìsouc  tan makri�.

Tèloc, ja  jela na euqarist sw touc metaptuqiakoÔc foithtèc Gi�nnh Market�kh, MÔro

Papad�kh, NÐko Armenatzìglou, SofÐa Kleisarq�kh, MarÐa Kampour�kh, MarÐa Yar�kh,

Tsialiam�nh Pètro, kai touc didaktorikoÔc foithtèc Panagi¸th Papad�ko, Gi�nnh Jeoq�rh,

Ant¸nh Mpik�kh kai Jodwr  P�tko gia th summetoq  touc sthn axiolìghsh twn algorÐjmwn.

H ergasÐa aut  eÐnai afierwmènh stouc propapoÔdec mou NÐko kai Qatz na (AnastasÐa).
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Chapter 1

Introduction

1.1 Introduction to Clustering

Clustering is a process of partitioning a set of objects (or data elements) into subsets,

called clusters, such that an object belonging to a cluster is more similar to objects belong-

ing to the same cluster than to objects belonging to other clusters. Partitioning is based on

a (dis)similarity measure that is always a pair-wise measure. Clustering is a form of unsu-

pervised learning compared to classification (or categorization) that is based on predefined

categories.

Clustering can be separated into various categories. Based on the relation between

clusters, there can be either flat or hierarchical clustering. If Obj denotes the set of objects to

be clustered, flat clustering generates a flat set of clusters C1, . . . , Ck (where Ci ⊆ Obj), that

are not related to each other, while hierarchical clustering generates a hierarchy of clusters

that are correlated to each other. Furthermore, according to the relationship between objects

and clusters clustering can be divided into:

• Exhaustive: each object is assigned to at least a cluster (i.e. ∪k
i=1Ci = Obj), otherwise

it is called non-exhaustive.

• Overlapping: an object can belong to more than one cluster (∃i, j s.t. Ci ∩ Cj 6= ∅),
otherwise it is called non-overlapping or disjoint clustering.
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A clustering C1, . . . , Ck of Obj is called partition clustering, if it is exhaustive and non-

overlapping, i.e. if

∪k
i=1Ci = Obj and Ci ∩ Cj = ∅ ∀i 6= j

1.1.1 Flat (Partitioning) clustering

Flat (Partitioning) clustering is linear in the number of objects and requires the number

of clusters to be predetermined. The most commonly used flat clustering algorithm is K-

means that generates non-overlapping clusters.

• K-means

At first, initial K cluster centers (centroids) are selected randomly. Afterwards, each

object is assigned to its most similar centroid. Next, centroid vectors are calculated

again. Finally, these two steps are repeated until there are no object movements from

one cluster to another or a halting criterion is reached (e.g. max number of iterations).

Quality of created clusters is significantly influenced by the selection of the initial

clusters. As mentioned in [24] a robust method that works well for a large variety of

objects distributions is to select i (e.g. i = 10) random vectors for each cluster and use

their centroid as the seed for this cluster. Also, there are effective heuristics for seed

selection which include (i) excluding outliers1 from the seed set, (ii) trying out multiple

starting points and choosing the clustering with lowest cost, and (iii) obtaining seeds

from another method such as hierarchical clustering.

Regarding time complexity, K-means is linear in all relevant factors: iterations, num-

ber of clusters, number of vectors and dimensionality of the space.

• Bisecting K-means

Bisecting K-means is a variant of K-means. At first, all objects are assigned to one

cluster. Afterwards, three steps are repeated until the desired number of clusters is

reached. These steps are, the selection of the cluster to split, the separation of this

cluster into two sub-clusters using basic K-means algorithm and the repetition of the

1Outliers are the objects that are far from any other objects and therefore do not fit well into any cluster.
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bisecting step for a number of iterations in order to choose the separation that creates

the clusters with the highest overall similarity.

Experimental results have proved that Bisecting K-means technique is better than the

standard K-means approach and as good or better than the hierarchical approaches

[32].

1.1.2 Hierarchical clustering

Hierarchical clustering is quadratic in the number of objects and does not require the

number of clusters to be predetermined. The hierarchical methods can be further divided

into agglomerative (bottom-up) or divisive (top-down) methods. The hierarchical agglom-

erative clustering methods are most commonly used.

• Hierarchical agglomerative (bottom-up) clustering (HAC)

At first, each object constitutes a different cluster. Afterwards, the similarity be-

tween each pair of clusters is computed. Next, the pair of clusters with the highest

(inter-cluster) similarity is detected and these clusters are merged. This process is

repeated recursively until there is only one cluster left or a halting condition has been

met. Based on the way of selection of clusters to be merged, there are four different

approaches, single-link, complete-link, group-average and centroid similarity.

– In single-link, inter-cluster similarity of the cluster’s pair is the similarity of the

most similar objects. Thus, two clusters are similar if some pair of objects are

similar.

– In complete-link, inter-cluster similarity of the cluster’s pair is the similarity of

the most dissimilar objects. Thus, two clusters are similar if every pair of objects

is similar.

– In group-average agglomerative clustering (GAAC), inter-cluster similarity of the

cluster’s pair is defined as the average of all similarities between objects.

– In centroid clustering, inter-cluster similarity of the cluster’s pair is the similarity

of cluster’s centroids (equivalent with group-average).
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• Hierarchical divisive (top-down) clustering

At first, all objects are assigned to a cluster. Afterwards, the cluster is divided using

a flat clustering algorithm, which is linear in the number of objects. This process is

repeated recursively for each cluster with cardinality greater than a certain threshold

or until each object belongs to its own cluster.

Top-down clustering has the advantage of being more efficient when it does not gen-

erate a complete hierarchy all the way down to individual object leaves. For a fixed

number of top levels, using an efficient flat algorithm like K-means, top-down algo-

rithms are linear in the number of documents and clusters. So they run much faster

than HAC algorithms, which are at least quadratic.

1.2 Clustering in Information Retrieval

Document clustering is a way of grouping documents with similar content. Documents’

similarity can be estimated by adopting a similarity measure (e.g. Cosine similarity) or a

distance metric (e.g. Euclidean distance). Note that the measure that is used for evaluating

queries (i.e. for identifying and ranking the documents that are relevant to user query) could

also be used for the purposes of clustering. There are several applications of clustering in

Information Retrieval. Below we describe in brief some of them.

Clustering can be used to speed up the query evaluation. The computation of

similarity between a query and each document of the collection could be a slow process.

A faster query evaluation method that involved clustering is the following. Documents of

the collection are clustered and a cluster representative is selected for each cluster. Now,

each query is compared only with the cluster representatives and the documents that their

representatives are similar to the query are retrieved. The set of cluster representatives

is definitely a smaller set than the entire collection, thus query evaluation becomes faster.

Correctness of this method is based on the fact that each cluster contains documents that

are related.

Another aspect of clustering in information retrieval is search results clustering.

Search results are referred to the documents retrieved in response to a query. Results cluster-

ing groups together similar documents. Instead of presenting a list of the relevant documents,
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a more usable and more effective interface, that includes the groups of documents-clusters,

is presented. Users choose a cluster and see only the documents that belong to this clus-

ter. This application is especially useful when the query has more than one senses as the

information presented can help the user to detect them.

Moreover, clustering can be applied on the entire collection in order to increase the

precision and/or recall of the search results. The idea is that in the initial set of doc-

uments that are similar to the query, some documents that belong to the same cluster are

added, even if they have low similarity.

Another application of clustering is to provide an overview of the contents of a

collection. For example, Google News2 provides an overview of the recent news. Clustering

is repeated frequently so as to incorporate the breaking news into the information presented

to the user.

Even Latent Semantic Indexing (LSI) [14, 22] is a kind of clustering. Both LSI and

clustering are techniques that reduce dimensionality. LSI is an information retrieval model

that uses methods of linear algebra in order to reduce the size of the term-document matrix.

LSI copes with the problem of synonymy. Synonymy is used to describe the fact that we

can make reference to an object or concept with many ways. In LSI the reduced dimensions

characterize the documents by context, so documents that do not share keywords with the

query but are relative, can be retrieved. LSI can not be used in dynamic systems like

Internet because the insertion of new documents is a hard and expensive task.

1.2.1 Information Retrieval Systems

In information retrieval models, documents are considered as sets or bags (depending

on the retrieval model) of terms. These terms are the result of a preprocessing phase. This

phase usually comprises the following steps. Each document is lexically analyzed, and the

words with low discrimination power (like pronouns, articles), which are called stop-words,

are removed. For the remainder words their stem is computed (e.g. by eliminating suffixes).

Finally, the words that will be used for creating the index are chosen. Some systems consider

that only the nouns are necessary, as they have their own meaning while adjectives, adverbs,

and verbs are complementary. Roughly, the logical structure of the index of a collection

of n documents D={d1, d2, ..., dn} and a set of t terms K={k1, k2, ..., kt} has the form of a

2http://news.google.com/
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n× t matrix.



k1 k2 k3 ... kt

d1 w1,1 w2,1 w3,1 ... wt,1

d2 w1,2 w2,2 w3,2 ... wt,2

d3 w1,3 w2,3 w3,3 ... wt,3

... ... ... ... ... ...

dn w1,n w2,n w3,n ... wt,n




Each document dj is represented by a vector dj = {w1,j , w2,j , ..., wt,j} , where wi,j is the

weight of term ki in document dj . wi,j=0 when the term ki does not appear in document dj ,

otherwise it is a positive number and its value is defined according to the adopted retrieval

model. For instance, according to the Boolean retrieval model, wi,j ∈ {0, 1}, and when

the term ki appears in the document wi,j=1, otherwise wi,j=0. According to VSM (Vector

Space Model), wi,j ∈ [0, 1], and its value depends on the number of occurrences of ki in the

document dj (this is expressed by freqi,j), and on the number of documents of the collection

that contain term ki (this is expressed by dfi). Specifically:

wi,j = tfi,j ∗ idfi

where tfi,j = freqi,j

maxt{freqt,j} is the number of occurrences of term ki in the document dj ,

normalized by the max number of occurrences of a term in the document dj . idfi = log( N
dfi

),

is a measure of the discreet ability of a term. N is the total number of documents and dfi

is the number of documents that term ki appears.

TF×IDF is a good weight measure because it favors the terms that appear in a few

documents a lot of times, and penalizes the terms that appear a lot of times in many

documents.

Each query is represented by a vector q=(w1,q, w2,q, ..., wt,q), where wi,q = tfi,q ∗ idfi. A

document is relevant if its similarity with the query is positive or over a threshold. The

similarity between each document and the query is defined as the cosine similarity.

sim(dj , q) = cos(~dj , ~q) =
~dj • ~q

|~dj | × |~q|
=

∑t
i=1 wi,j × wi,q√∑t

i=1 w2
i,j ×

√∑t
i=1 w2

i,q

The rank of relevant documents is defined by their similarity with the query.

Recall that a clustering algorithm aims at separating a collection of objects into various

clusters. The simpler form of this problem is to separate a collection of objects into two
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clusters. The information retrieval problem, which deals with the searching of documents

that are relevant with a query, could be conceived as a clustering problem aiming at deriving

two clusters: one comprising all documents that are relevant with the query, and another

one containing all documents that are non-relevant with the query.

1.3 Distance/Similarity Functions

Similarity-measures (dually, distance-measures) are very important in information re-

trieval and in clustering.

Let X be a set of elements. A function

d : X ×X → R

(where R is the set of real numbers) is called a metric if for all x, y, z in X, the following

conditions are satisfied:

d(x, y) > 0 (non-negativity)

d(x, y) = 0 iff x = y (identity)

d(x, y) = d(y, x) (symmetry)

d(x, y) < d(x, z) + d(z, y) (triangle inequality)

The pair (X, d) is called a metric space. Note that vector spaces are a special case of metric

spaces.

We could distinguish two major classes of distance measures:

1. Euclidean

A Euclidean distance is based on the locations of points in a Euclidean space.

2. Non-Euclidean

A Non-Euclidean distance is based on properties of points, but not their ”location” in

a space.

1.3.1 Euclidean distance measures (Lp-Norms)

Assume two vectors x = (x1, . . . , xk) and y = (y1, . . . , yk).
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• L1 or Block or Manhattan distance: The L1 or Block distance is calculated by

the sum of the differences in each dimension.

L1(x, y) = L1((x1, ..., xk), (y1, ..., yk)) =
k∑

i=1

|xi − yi|

• L2 or Euclidean distance: The L2 distance is calculated by the square root of the

sum of the squares of the differences between x and y in each dimension. This is the

most common notion of ”distance”.

L2(x, y) = L2((x1, ..., xk), (y1, ..., yk)) =

√√√√
k∑

i=1

|xi − yi|2

• L∞ distance: L∞ is the maximum of the differences between x and y in any dimen-

sion. The maximum is the limit as n goes to ∞ of what you get by taking the nth

power of the differences, summing and taking the nth root.

L∞(x, y) = L∞((x1, ..., xk), (y1, ..., yk)) = lim
n→∞

n

√√√√
k∑

i=1

|xi − yi|n

1.3.2 Non-Euclidean distance measures (Similarity Measures)

Functions of this class origin in measuring similarity between sets based on the intersec-

tion of the two sets.

Assume two sets of elements X,Y and two vectors ti = (ti1, . . . , tik), tj = (tj1, . . . , tjk),

where weights tih, tjh are not binary.

• Dice’s coefficient: Relates the overlap to the average size of the two sets.

DiceSim(X, Y ) =
2|X ⋂

Y |
|X|+ |Y | (1.1)

or

DiceSim(ti, tj) =
2

∑k
h=1 tihtjh∑k

h=1 tih2 +
∑k

h=1 tjh2

• Jaccard’s coefficient: Relates the overlap to the size of the union.

JaccardSim(X, Y ) =
|X ⋂

Y |
|X ⋃

Y | (1.2)

or

JaccardSim(ti, tj) =
∑k

h=1 tihtjh∑k
h=1 tih2 +

∑k
h=1 tjh2 −∑k

h=1 tihtjh
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• Cosine coefficient: Relates the overlap to the geometric average of the two sets.

CosSim(X,Y ) =
|X ⋂

Y |
|X|1/2 × |Y |1/2

(1.3)

or

CosSim(ti, tj) =
~ti • ~tj

|~ti| × |~tj |
=

∑k
h=1 tihtjh√∑k

h=1 tih2
∑k

h=1 tjh2

• Overlap: Determines to which degree the two sets overlap.

Sim(X,Y ) =
|X ⋂

Y |
min(|X|, |Y |) (1.4)

or

Sim(ti, tj) =
∑k

h=1 tihtjh

min(
∑k

h=1 tih2,
∑k

h=1 tjh2)

Equations (1.1), (1.2), (1.3), (1.4) are used when the elements of the compared sets are

not weighted. Rest of the equations are used when the elements’ weights are not binary.

For example, in case that similarity between documents must be estimated, ti, tj are the

document vectors and k is the number of terms.

1.4 Results Clustering

1.4.1 Motivation

In our days, search engines are the most powerful tools for searching and retrieving infor-

mation from the (constantly-growing) Web. Web search engines (WSEs) typically return a

ranked list of documents that are relevant to the submitted query and users have to explore

the answer linearly (from the first page to the second, and so on). For each document, its

title, URL and a small fragment of the text that contains the searched keywords are usually

presented. This fragment of the document, which depends on the query, is called snippet.

Ranked list presentation and low precision of the results, require from the user to try a lot

in order to find the information he needs. It is observed that most users are impatient and

look at the first results only. Consequently, when either the documents with the intended

(by the user) meaning of the query words are not in the first pages, or there are a few dotted
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in various ranks (and probably different result pages), then the user has to try hard to find

and collect the information he really wants. The problem becomes harder if the user can

not guess additional words for restricting his query, or the additional words he chooses are

not the right ones for restricting the result set.

In addition it is difficult for the user to identify the discrete notions of ambiguous queries

(e.g. jaguar, apple) and to guess additional discriminative keywords to make the query more

specific.

A solution to these problems is results clustering which provides a quick overview of the

search results. It aims at grouping the results into topics, called clusters, with predictive

names (labels), aiding the user to locate quickly one or more documents that otherwise he

wouldn’t practically find especially if these documents are low ranked (and thus not in first

result pages).

Currently only a few engines provide result clustering services.

1.4.2 Approaches and Problems

Original versus Snippet-based approaches

Clustering can be applied either to original documents or to snippets. Clustering meta-

search engines use the results of one or more search engines (e.g. Google3, Yahoo!4, Live

Search (formerly MSN Search)5), in order to increase coverage/relevance. Since different

search engines return different search results as it is proved by several research. A recent

research study6 estimated that the percent of total first page results shared by the top

four search engines is 0.6%. Web search engines reply to a query by returning a ranked

list of snippets. Each web snippet is a small summary of the web page contents that

contain the search keywords. Clustering the snippets rather than the whole documents

makes clustering algorithms faster. Also, the algorithm’s speed can be improved even more

by processing snippets incrementally; starting from the first snippet that is received rather

than processing the snippets altogether.

3www.google.com
4www.yahoo.com
5www.live.com
6http://www.infospaceinc.com/onlineprod/Overlap-DifferentEnginesDifferentResults.pdf
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Cluster Labeling

Cluster labeling is the task of deriving readable and meaningful (single-word or multiple-

word) names for clusters, in order to help the user to recognize the clusters/topics he is

interested in. Such labels must be predictive (should allow users to guess the contents of

each cluster), descriptive, concise and syntactically correct. So, the user will not look at

the typical list of documents that can be very long, but will look only the documents in the

topics he is interested in. In general the user can browse the result in a non-linear manner.

Efficiency

Search engines should use efficient and scalable clustering algorithms. Scalability is very

important because the number of documents can vary. Usually only the top-L documents

are clustered in order clustering to be fast and the resulting labels not to be too general.

Some engines, like Clusty and Carrot2, give to the user the option to choose the number of

results to be clustered. Clusty by default clusters 200 results but user can change it to 100

or 500 results.

1.4.3 General Requirements

The key requirements of a results clustering algorithm are:

• High intra-cluster similarity

The produced clusters must consist of relevant documents.

• Concise and Accurate Presentation of each Cluster

The users should detect quickly what they need.

• Snippet-based

It should be possible to provide high quality clusters based on document snippet rather

than the whole documents.

• Efficient and Progressive Algorithms

Algorithms must be fast enough, clustering up to one thousand snippets in a few

seconds, and incremental, processing each snippet once it is received from the Web.

Some of these are based on [38].

Other desired properties:
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• Cluster size uniformity

Distribution of documents among folders of the same level must be balanced.

• Language-independent

• Not too much overlapping

Clusters should not overlap too much, on average a search result appears in only 1.2

to 1.5 clusters7 in order the main distinct themes to be shown.

1.5 Contribution of this thesis

• We provide a detailed survey of the results clustering methods that have been applied

or described in the literature.

• We propose two novel results clustering algorithms, called STC+ and NM-STC. STC+

is a variation of the STC, uses a scoring formula that favors phrases that occur in doc-

ument titles and differs in the way base clusters are merged. NM-STC (Non Merging

- STC) is a novel algorithm that adopts a different scoring formula, it does not merge

clusters and results in hierarchically organized labels.

• We introduce a new approach for enhancing exploratory web searching with the dy-

namic coupling of dynamic faceted taxonomies with results clustering.

• We describe an incremental approach of NM-STC that is beneficial for the coupling

of dynamic faceted taxonomies with results clustering.

• The results of this thesis have already been applied over Mitos Web search engine,

and over Google.

• Finally, the results of this thesis will be presented on the 13th European Conference

on Digital Libraries [26] and on the 10th International Conference on Web Information

Systems Engineering [21].

7http://searchdoneright.com/2007/03/how-to-evaluate-a-clustering-search-engine/
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1.6 Organization of the thesis

Chapter 2 provides a survey of the algorithms used in document clustering and various

search engines that offer on-line results clustering.

Chapter 3 describes two novel results clustering algorithms and their evaluation.

Chapter 4 describes the application of our approaches over Mitos search engine, as an

independent component of results clustering and as a combination with the component of

faceted taxonomies.

Chapter 5 summarizes and identifies topics that are worth of further research.
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Chapter 2

Related Work

This chapter examines the state of the art of the algorithms used for web document

clustering and provides an overview of the search engines that support results clustering.

It is organized as follows: Section 2.1 describes in brief the results clustering process.

Section 2.2 describes some meta-search engines that support results clustering. These en-

gines forward user queries to several other search engines and/or databases, cluster the

results obtained by the latter and finally display a topic hierarchy. Section 2.3 analyzes

various results clustering algorithms that are based on the vectors of the documents while

Section 2.4 analyzes clustering algorithms that are based on the snippets of documents that

are returned from the search engines and Section 2.5 describes approaches that are variants

of the Suffix Tree Clustering (STC) clustering algorithm. Finally, Section 2.6 presents a

comparison of all these clustering approaches.

2.1 The Results Clustering Process

In general, the process of results clustering comprises of the following steps:

(A) Fetch the representatives of the top-L documents of the query answer Ans(q).

(B) Construct a vector for each one of them.

(C) Run a clustering algorithm using a specific similarity measure.
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(D) Construct and return a tree to present the clusters to the end users where each cluster

has been given an appropriate name (or label).

The representative of a document d, at Step (A), could be:

• The snippet of d as described in Section 1.4.

We may denote it snip(d, q). Note that we include q because the snippet of a document

depends on the submitted query. In case of meta engines, the snippets are provided

by the underlying engines. In case of stand alone engines these snippets are computed

during query answering.

• The title and URL of d.

• The vector representation of d.

This is possible for stand alone engines.

• A part of the vector representation of d, e.g. a vector comprising of the F (where

F ≤ |K|, where K is the vocabulary of the collection) biggest coordinates of ~d.

This is possible for stand alone engines.

2.2 Web Meta-Search Engines

2.2.1 Commercial Engines

By definition, a clustering engine analyzes the top (say 200-500) search results from a

query and displays the main themes, typically as folders that may consist of subfolders.

• Vivisimo/Clusty [6, 2]. Vivisimo is probably the most famous commercial clustering

search engine. It calls other search engines like Yahoo! and MSN, extracts the relevant

information (titles, URLs, and short descriptions) from the answers retrieved and

groups them based on the summarized information. The output is a hierarchical

folder structure, allowing users to avoid link overload and to click only on the specific

category of information that they need. Clusty is an extension of Vivisimo. Figures

2.1(a) and (b) show the interface of Clusty and the clusters derived when submitting

the query q= java and q= result clustering algorithms respectively. Clusty
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(a) (b)

Figure 2.1: Clusty search engine user interface

offers a new feature, called remix clustering that works by clustering again the same

search results but ignoring the topics that the user just saw. Hence, it is an interaction

model (history-aware) that it is based on/utilizes clustering.

• Quintura [4]. Quintura is a visual search engine. It extracts keywords from search

results and builds a word cloud (visual map). The name of each cluster is placed in a

2D area. The position of the names in the 2D area is based on their distance, while font

size is used for indicating the size of the cluster. By clicking words in the cloud, the

user query is refined. The user is also able to remove search results i.e. restrict his/her

focus by selecting a cluster name and clicking on the Exclude icon. Quintura analyzes

contextual relationships among keywords, helping to define the context or meaning of

the keywords. At present, it builds the map based on information contained in links

and summaries of those links returned by the underlying search engines1. Figures 2.2

(a) and (b) show the interface of Quintura and the clusters derived when submitting

the query q= java and q= result clustering algorithms respectively.

1It is planed to use a Web index of a search engine to allow even faster searches for more relevant results.
Also, it is planed to have its own Web index that will be based on contextual relationships among words.
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(a) (b)

Figure 2.2: Quintura search engine user interface

2.2.2 Research Prototypes

• Grouper [39]. Grouper is an interface for the results of the HuskySearch meta-search

engine. Users can specify the number of documents to be retrieved (10-200) from

each of the participating search engines. The system queries 10 search engines, so it

retrieves 70-1000 documents. Clustering is applied on snippets that are returned by the

search engines. Grouper uses the Suffix Tree Clustering (STC) algorithm (described

in more detail in Section 2.4) to cluster together documents that have common large

subphrases. Grouper, in its initial form, is not publicly available but there is Carrot

which is an open source implementation of it. Figure 2.3 shows a prototype user

interface of Grouper and the clusters derived when submitting the query q= israel,

while Figures 2.5 (a) and (b) show the interface of Carrot and the clusters derived when

submitting the query q= java and q= result clustering algorithms respectively.

• Scatter/Gather [11, 18]: Scatter/Gather is a document browsing method that is

based on document clustering. At first, Sactter/Gather was applied to large document

collections and later it was used for clustering the result set retrieved by any given
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Figure 2.3: Grouper prototype user interface

search query. In both cases Scatter/Gather’s interface remained the same.

Scatter/Gather’s interface is interactive. The user can find the information he needs by

performing iterative steps. The initial document set is divided into clusters (scatter).

Each cluster is presented to the user followed by a number of words that describe its

contents and a number of sample documents. The user can select the clusters of his

interest. Documents of the selected clusters become the new document set (gather)

that is clustered again and is presented to the user. In each iteration, clusters get

smaller until individual documents are presented.

Scatter/Gather uses partitional clustering algorithms in order to generate a set of k

disjoint documents groups. Partitional clustering constitutes of three steps: finding

k centers, assigning each document in the collection to a center and refining of the

partition that constructed. Fractionation and Buckshot were used for the first step.

Fractionation, which is used for his accuracy, creates off-line an initial partitioning

of the entire set, whereas Buckshot, which is faster, clusters on-the-fly the selected

document groups.
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(a) (b)

Figure 2.4: Scatter/Gather results for the top 250 documents that contain the word star.

Fractionation clusters n documents into k groups in O(kn) time. It splits document

collection into n/m buckets (m > k) and clusters each bucket, applying GAC algorithm

to each one. These clusters are treated as if they were individuals and the entire process

is repeated until only k clusters remain.

Buckshot algorithm combines the determinism and higher reliability of HAC with the

efficiency of K-means. First, a small sample of documents of size
√

kn, is randomly

selected. Group-average HAC is applied on this sample and the results are used as

initial seeds for K-means. Overall algorithm complexity is O(kn) and avoids problems

of bad seed selection by employing an HAC algorithm to compute seeds of high quality.

Figures 2.4 (a) and (b) are examples of the Scatter/Gather interface for the top 250

documents that contain the word star. Figure 2.4 (a) shows the initial results. Terms

of Cluster 1 indicate that this cluster contains documents that involve stars as sym-

bols, as in military rank and patriotic songs, while terms of Cluster 2 indicate that it

discusses about movies and tv stars. Figure 2.4 (b) shows the results after re-clustering

the 68 documents that appear in Cluster 2.
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2.2.3 Open-source Systems

• Carrot2 [36, 30, 1]. Carrot2 engine acquires search results from various sources

(YahooAPI, GoogleAPI, MSN Search API, eTools Meta Search, Alexa Web Search,

PubMed, OpenSearch, Lucene index, SOLR). It supports five different clustering algo-

rithms (STC, FussyAnts, Lingo, HAOG-STC, Rough k-means). One of them, Lingo,

is the default clustering algorithm used in the Carrot2 live demos. The output is a flat

folder structure and the overlapping folders are revealed when the user puts the mouse

over a document title. Specifically, all the folders of which the selected document is a

member, are marked with a different color, except the selected/current folder.

Carrot investigated the behavior of STC algorithm for the Polish language. Polish

language in comparison with the English is characterized by rich inflection(words have

different suffixes depending on their role in a sentence) and the fact that the order of

words in a sentence is less strict. Also, they examined the impact on the results from

STC merge threshold parameter and a new one, the minimum base cluster score.

Base cluster score is calculated with a variation of the original STC formula.

s(m) = |m| × f(|mp|)×
∑

(tfidf(wi))

where |m| is the number of terms in phrase m, f(|mp|) is a function penalizing short-

phrases and tfidf(wi) is a standard Salton’s term frequency-inverse document fre-

quency term ranking measure.

The experiments with the Polish showed that the results have not a significant influence

by the merge threshold when the input has been pre-processed. On the contrary,

minimum base cluster score threshold seems to influence the number of the derived

clusters.

First in Carrot[36] it is said that the claim of the original paper that the algorithm

is not influenced by the preprocessing phase(stemming, stop-words removal) does not

stand. In Carrot2[30] it is said that they were expecting a bigger difference in the

quality of the results for the Polish. But the combination of stemming and stop

words removal did not have the best performance for English and Polish languages.

Nevertheless, it was always better compared to results without preprocessing.
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(a) (b)

Figure 2.5: Carrot clustering engine

• SNAKET (SNippet Aggregation for Knowledge ExtracTion) [15, 5]. SNAKET

engine draws about 200 snippets from 16 search engines about Web, Blog, News and

Books domain. This engine offers both hierarchical clustering and folder labeling

with variable-length sentences drawn on-the-fly from snippets. SNAKET uses gapped

sentences as labels, namely sequences of terms occurring not-contiguously into the

snippets. Experiments set limit of maximum number of gaps to four. Also, it uses

two knowledge bases (the dmoz2 hierarchy and ”anchor texts”) to improve hierarchy.

SNAKET’s interface offers the new feature of personalization that occurs at the client

side. Users can select a set of labels and ask SNAKET to filter out from the ranked

list, returned by the queried search engines, the snippets that do not belong to the

folders labeled by the selected labels. This approach does not require an explicit login,

a pre-compilation of a user profile, or tracking the user’s past searches.

SNAKET’s algorithm is composed by the following steps:

2http://www.dmoz.org/
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– The 200 snippets are processed. They are enriched by querying the anchor-text

KB, they are filtered against a stop-list, stemmed and segmented into phrases.

– All pairs of words within a fixed proximity window are extracted and are as-

signed a score by a function that is based on a TF×IDF measure over dmoz.com

categories. Low scored pairs are rejected. The remaining pairs are incrementally

merged to form longer gapped sentences. A gapped sentence g is merged with

a word pair (wh, wk) if they appear in the same snippet and within a proximity

window. The score of the longer sentences is calculated again and the process is

repeated until no merge is possible or phrases consist of eight words.

– These phrases are the primary labels Li for the leaves of the folder hierarchy.

Each folder Ci contains the snippets that contain Li. Also, secondary labels Si

are generated for each folder Ci. Secondary labels are gapped sentences that

appear on folders over a minimum 80%. The primary label and the secondary

labels of a folder constitute the signature of the folder Ci. Based on these sig-

natures, a parent folder is selected for each group of folders that share a gapped

sentence. The new parent folders are ranked and low ranked folders are rejected.

Afterwards, if two parent folders have the same children folders or the same label

then the low ranked folder is discarded. The process is repeated for the remaining

parent folders in order to achieve a three level hierarchy.

– The tree hierarchy that has three levels is presented to the user.

Figure 2.12 shows the interface of Snaket and the clusters derived when submitting the

query q= java.

2.3 Index-based approaches

Traditional clustering algorithms either flat (like K-means and its variants) or hierar-

chical (agglomerative or divisive) do not require to create snippets. They are based on

the vectors of the documents and on a similarity measure. These approaches were further

described in Section 1.1.1 and 1.1.2.
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Figure 2.6: Snaket clustering engine user interface

2.3.1 Lexical Affinities

A variant of the HAC (Hierarchical Agglomerative Clustering) algorithm for ephemeral

clustering is described in [23] which uses ”lexical affinities” (pairs of words that appear

within a proximity window and are not necessarily contiguous) as indexing units instead of

single words.

This approach achieved an O(n2) complexity for a complete-link HAC using bucket

sorting which requires only O(m) steps, rather than O(mlogm) steps, to sort m elements,

where m is the n(n-1)/2 pairwise similarities between n documents and a linear number of

additional steps (where each of them requires only linear time).

In terms of the complete-link method, similarity value of a cluster c is defined as the

minimum of the pairwise similarities of documents of the cluster c. Also, similarity value

of a pair (c1, c2) of clusters is the minimum of the pairwise similarities of documents of the

union of c1 and c2.

For the implementation of the algorithm three basic data structures were used:

1) A ”current similarity matrix” which keeps the similarity values for each pair of clusters

that can be merged into one (unmarked clusters).
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2) Ten buckets, one for each value from 0 to 0.9. Bucket j is a doubly-linked list of distinct

unmarked pairs of clusters whose similarity value is in [j, j+0.1).

3) A ”current pointer matrix” where for each pair of distinct unmarked clusters there is a

pointer to its position in the doubly-linked list of the appropriate bucket.

The steps of the algorithm are the following:

• Initialization of the data structures. The current similarity matrix is an n × n matrix

where each document consists a cluster. The other structures are initialized accord-

ingly.

• The nonempty bucket with the biggest index j is found, along with the pair (c1, c2)

at the ”top” of the list for this bucket. A new unmarked cluster c1c2 is created which

contains the members of the union of c1 and c2.

• Update of the data structures. In the current similarity matrix the new entry (c1c2, c1c2)

is inserted and (c, c1c2) similarities are calculated. Also, the columns and the rows

that correspond to c1 and c2 are removed. During the computation of similarity val-

ues of (c1c2, c), the appropriate buckets are added and the current pointer matrix is

updated after the insertion of the new entry that corresponds to c1c2. Like in the

current similarity matrix, the columns and the rows that correspond to c1 and c2 are

removed from the current pointer matrix.

• Repeat the process until there is only one unmarked cluster left.

2.3.2 Frequent Itemset Hierarchical Clustering (FIHC)

FIHC [16] is a document clustering technique that exploits the notion of frequent itemsets

used in data mining. A frequent itemset is a set of words that occur together in some

minimum fraction of documents in a cluster. FIHC increases scalability because it reduces

dimensions by storing only the frequencies of frequent items that occur in some minimum

fraction of documents in document vectors. Also, it has a mechanism that makes clusters

disjoint.

The FIHC algorithm can be summarized in three phases:
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• Construct initial clusters: A cluster is constructed for each global frequent itemset.

These clusters are overlapping because a document can contain many global frequent

itemsets. In order to make clusters disjoint, each document is assigned only to ”the

best initial cluster”, which is the initial cluster with the highest score. The score

function is based on the frequencies of global frequent items of the documents in each

cluster.

• Build a cluster (topic) tree: In the cluster tree, each cluster (except the root) has

exactly one parent. The topic of a parent cluster is more general than the topic of

a child cluster and they are ”similar” to a certain degree. Each cluster uses a global

frequent k-itemset as its cluster label. A tree is build bottom-up by choosing a parent

at level k-1 for each cluster k (start from the cluster with the largest number of items

in its cluster label).

• Prune the cluster tree: Sibling clusters that are similar based on Inter-Cluster Simi-

larity are merged into one cluster. Also, each child cluster that is similar to its parent

is replaced by its parent. Documents of child cluster are added on the parent’s cluster.

2.3.3 SCuBA - Subspace Clustering

SCuBA [7] is part of an article recommendation system for researchers. It is a Collabo-

rative filtering (CF) system that has the advantage of using information about users’ habits

in order to recommend potentially interesting items. This system exploits information from

researchers’ previous searches in order to recommend research papers that users with similar

preferences had chosen.

Subspace clustering is a branch of clustering algorithm that is able to find low dimen-

sional clusters in very high-dimensional datasets. Research/article data space is repre-

sented by a binary m × n matrix, where rows represent m researchers R={r1, r2, ..., rm} and

columns represents n articles A={a1, a2, ..., an}. The algorithm is trying to find subspace

clusters of researchers defined in subspaces of articles.
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2.4 Snippet-based approaches

2.4.1 Suffix Tree Clustering (STC)

STC [39, 38] is a post-retrieval document browsing technique (that is used in Grouper).

It treats a document as an ordered sequence of words. STC is an incremental and linear time

clustering algorithm that is based on identifying the phrases that are common to groups

of documents, building a suffix tree structure. This method naturally allows overlapping

clusters. Moreover, it is applied to short snippets returned by Web Search engines.

STC is described in the following steps:

• Document ”cleaning”: Stemming is applied to snippets, sentence boundaries are

marked and non-word tokens (e.g. numbers, HTML tags, most punctuation) are

stripped out. The original document strings are kept, as well as pointers from the

beginning of each word in the transformed string to its position in the original string.

• Identifying base clusters: An inverted index is constructed with the structure of a

suffix tree. Suffix tree contains all the suffixes of all strings. Snippets are treated as

strings of words, not characters. Based on this structure, base clusters are identified.

Base cluster is defined as a set of documents that share a common phrase (ordered

sequence of one or more words). Each base cluster is assigned a score that is based

on the number of documents it contains and the number of words in phrase that

characterizes this cluster.

• Combining base clusters: Base clusters with a high overlap in their document sets

are merged. Overlap is identified with a binary similarity measure. Given two base

clusters Bm and Bn, similarity of Bm and Bn is 1 iff:

|Bm
⋂

Bn|
|Bm| > 0.5 and

|Bm
⋂

Bn|
|Bn| > 0.5

Otherwise, similarity is 0.

• Final clusters are scored and sorted based on the scores of their base clusters and

their overlap. Only the top few clusters are reported. Each cluster is described by

the number of documents it contains, the shared phrases of its base clusters and some

sample document titles.
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As mentioned above, each base cluster is assigned a score. This score is utilized by [9] in

order to present a high-quality label for each cluster instead of the Grouper’s presentation

that includes all the labels of the base clusters. As a result, the highest ranked label, from

the base clusters’ labels, is selected as the final cluster label.

Figure 2.7 shows an example of the suffix tree of the strings ”cat ate cheese”, ”mouse

ate cheese too” and ”cat ate mouse too”, numbered from 1 to 3. The nodes of the tree are

drawn as circles. Each node has one or more boxes attached to it and each box includes two

numbers. The first is the number of string that the suffix is originated from and the second

is the index of this suffix inside the string.

Figure 2.7: The suffix tree of the strings ”cat ate cheese”, ”mouse ate cheese too” and ”cat
ate mouse too”.

Figure 2.8 shows the base clusters, nodes that contain two or more documents, that are

derived from the suffix tree of Figure 2.7.

Figure 2.8: Base clusters derived from the suffix tree of Figure 2.7.

Figure 2.9 shows the base cluster graph of Figure 2.8 base clusters. Two nodes are
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connected iff the two base clusters have a similarity of 1. A cluster is defined as being

a connected component in the base cluster graph. Each cluster contains the union of the

documents of all its base clusters. In Figure 2.9, there is one connected component, therefore

one cluster.

Figure 2.9: The base cluster graph of the example given in Figures 2.7 and 2.8.

2.4.2 TermRank algorithm

TermRank [17] is a variation of the PageRank algorithm that counts term frequency not

only by classic metrics of TF and TF×IDF but also it considers term-to-term associations.

It is based on a relational graph representation of the content of web document collec-

tions. From each Web page the blocks in which the search keyword appears are retrieved.

TermRank is trying to separate terms into three categories:

• in discriminative terms that belong to a specific context and are strongly related with

a distinct sense of the keyword search term

• in ambiguous terms that have many senses, and

• common terms that appear in many distinct contexts of a keyword search term.

It ranks discriminative terms higher than ambiguous terms, and ambiguous terms higher

than common terms.

Document collection is transformed into a weighted undirected graph where nodes are

the terms and edge weights is the co-occurence of two terms in the collection. TermRank is
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calculated by the following formula:

TR(i) =
∑

j∈N(i)

TR(j) · wij∑
k∈N(j) wjk

(2.1)

where N(x) represents the set of neighbors of the node x and wij is the number of times

edge (i,j) appears in the entire data. Term ranks are estimated after a number of iterations

of equation (2.1). Number of iterations is not predetermined but TermRank runs until the

difference between two iterations is less than a small threshold d.

Iteration 0: TR(0)(i) = TF (i)

Iteration t+1:

TR(t+1)(i) =
∑

j∈N(i)

TR(t)(j) · wij∑
k∈N(j) wjk

Figure 2.10 shows a fragment of a relational graph of apple data. Sizes of nodes and

thickness of edges are proportional to their term frequencies and association strengths re-

spectively. For example, discriminative terms such as ”mac” and ”recipe” have neighbors

with strong associations.

Figure 2.10: A fragment of a relational graph of apple data.

Figure 2.11 shows the ranks of terms based on TermRank and TF×IDF. Initial ranks

of the terms are TF values (iteration 0). TermRank converges in 20 iterations and the first

five terms are the discriminative terms, the next one is the ambiguous term and finally the

common term. This order of terms is better than TF×IDF ranking (computer, mac, contact,
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ipod, game, macintosh, video) that gives ”computer” the highest rank and put ”contact”

on the third place.

Figure 2.11: Ranks of terms based on TermRank and TF×IDF.

TermRank can be applied on a set of Web pages that correspond to a specific query.

The top-T terms ranked by TermRank can be used as feature vectors in K-means or another

clustering algorithm.

Furthermore, there are snippet-based approaches that use external resources (lexical or

training data). Some of them are described below.

2.4.3 Deep Classifier

Deep Classifier [37] trims the large hierarchy, returned by an online Web directory, into

a narrow one and combines it with the results of a search engine using a classifier based on

Bayesian Classifier.

Roughly the process can be described in five steps:

• The query is submitted to an online Web directory to get the categories hierarchy and

to a search engine to get the search results.

• The categories hierarchy is pruned. The leaf nodes in the pruned hierarchy are the

target category candidates.

• A training data selection strategy is applied to the pruned hierarchy.

There are three different strategies for training data selection:

– Flat Strategy
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Target category candidates are placed directly to the root of the hierarchy and

classification is performed by a flat classifier. As a result, hierarchical structure

of the web directory is not considered.

– Hierarchical Strategy

Each level of the hierarchy is classified (estimation of probabilities). The esti-

mated probability of each non-candidate category is propagated to their candidate

offspring.

– Ancestor-Assistant Strategy

It is a combination of the above strategies. Training data of the candidate cate-

gory are combined with those of its ancestors and siblings.

• Based on the training data, classification model learning is performed.

Two classification models were used, naive Bayesian and discriminative naive Bayesian

classifier. Each document is regarded as a sequence of random variables that corre-

sponds to the sequence of the words. The classifiers estimate the probability that a

document (sequence of words) belongs to a category. Discriminative naive Bayesian

classifier also takes account the appearance of a word in only one category (discrimi-

native word).

• Classification of the search results and presentation of the hierarchy.

2.4.4 Salient phrases extraction

The purpose of this technique [41] is to produce clusters with highly readable names.

It extracts and ranks salient phrases as candidate cluster names. Salient phrases are

ranked by a score, defined by a regression model, on five different properties, learned from

human labeled training data.

Concisely, algorithm’s steps are the following:

• Search result fetching: the web page of search results returned by a certain Web search

engine is analyzed by an HTML parser and snippets are extracted.

• Document parsing and phrase property calculation: Porter’s stemming algorithm is

applied to each word. Salient phrases, all possible n-grams (n ≤ 3), are produced from
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the snippets and the phrases with frequency no greater than 3 times, are considered

as noise and are filtered out. For each phrase, five different properties are calculated.

These properties are Frequency/Inverse Document Frequency, Phrase Length, Intra-

Cluster Similarity, Cluster Entropy and Phrase Independence.

• Salient phrase ranking: Salient phrases are ranked by a regression model that combines

the five properties. Moreover, the document list, which corresponds to salient phrases,

constitutes the candidate clusters.

• Post-processing: The phrases that contain only stop-word or words of the query are

discarded. Clusters are generated by merging the candidate clusters that their common

documents exceed a certain threshold.

Figure 2.12 shows an example of the salient phrases extraction algorithm when submitting

the query q= jaguar.

Figure 2.12: An example of Salient phrases extraction algorithm

2.4.5 Automatic construction from text information bases

Automatic construction’s goal is to identify useful facets and to create hierarchies from

them. It is achieved with the selection of a set of facets and assigning each item of a collection

to a subset of these facets. A collection can contain either textual or text-annotated items.
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Automatic construction does not use predefined facets and manually constructed hierarchies

of them as it happens in some commercial systems (e.g. Amazon, eBay).

Unsupervised Facet Extraction for Collections of Text Documents

This is an unsupervised technique used for the extraction of facets from free-text items

[12]. Free-text items are neither associated with descriptive keywords nor organized across

facets, so external resources are used to identify facet terms.

Automatic facet discovery has three steps:

1. identifying important terms,

2. deriving context using external resources, and

3. comparative term frequency analysis.

In the first step the words that characterize the content of each document (important

terms) are located. For this purpose Named Entities (LPNE3), Yahoo Terms and Wikipedia

Terms are used. Wikipedia Terms is a tool that creates a relational base with the titles of

all Wikipedia pages. A term that matches a title of this base is characterized as important.

Also, redirected pages are used to capture variations of the same term and anchor text in

order to find different descriptions of the same concept.

In the second step important terms are used so as to query one or more external resources

and enrich important terms with the retrieved terms. External resources used are Google,

WordNet Hypernyms, Wikipedia Graph and Wikipedia Synonymous. Wikipedia Graph uses

the links that appear in the page of each Wikipedia entry in order to measure the level of

association between two connected Wikipedia entries. The top-k terms with the highest

scores that are connected with a specific term t are returned. Moreover, Wikipedia Syn-

onymous identify variations of the same term. It uses the titles of entries that redirect to a

particular Wikipedia entry and the anchor texts that link to a particular term.

At the end of step 2, two collections exist. The original collection and a contextualized

one that was constructed from both the terms of the original collection (step 1) and the

terms derived from the second step.

3http://www.alias-i.com/lingpipe/
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In the final step, the difference in term frequencies, between the original collection and

the expanded collection are exploited so as to identify the candidate facet terms which are

expected to be infrequent in the original collection but frequent in the expanded one.

Facet extraction efficiency is influenced more by Yahoo!Term Extractor during the term

extraction step and by Google external resource in the second step. This happens because

web-based resources are slower than Wikipedia and WordNet that are faster since they are

stored locally.

2.5 STC-based approaches

2.5.1 STC based on True Common Phrase Label Discovery

This approach [19] uses a suffix tree with N -gram. It is trying to alleviate the problems

generated from the use of N -gram like the big number of generated base clusters and the

extraction of partial common phases when the length of N -gram is smaller than the length

of true common phrases.

The algorithm consists of four steps.

• Pre-processing

A stemming algorithm is applied to snippets and non-word tokens are eliminated.

• Base cluster Identification

A suffix tree is built with N -grams and then the internal nodes that do not contain

snippets and have one child are compacted into one node. The internal nodes which

contain at least one snippet at leaf nodes are selected as base clusters. Base clusters

that their phrases contain only query words are eliminated.

• Combining base clusters with a partial join operation

In order to reduce the number of generated base clusters and to find a true common
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phrase a join operation between two clusters is performed based on Eq. (2.2)

A⊕B =





a0

⊕

a1 = b0

a2 = b1

...

an = bn−1

⊕
bn





if(A(d) ⊆ B(d) or B(d) ⊆ A(d)) (2.2)

where A and B are base clusters, A(d) is snippets of cluster A, B(d) is snippets of cluster

B, {a0, a1, ..., an} is a set of terms that appear in cluster’s A label and {b0, b1, ..., bn}
is set of terms that appear in cluster’s B label.

• Ranking Cluster

Clusters are reordered according to their base clusters scores. Base cluster’s score is

calculated according to Eq. (2.3):

S(m) = |d| ∗ f |mp| ∗ f(query) ∗
∑

tfidf(pi, d) (2.3)

f |mp| =





0, if |p| = 1

|p|, if 2 ≤ |p| ≤ 8

a, if |p| > 8





f(query) =





100, if query word appear in phrase

1, if query word not appear in phrase





where |d| is the number of snippets in cluster m and |mp| is the number of words in

phrase p.

2.5.2 STC with X-gram

STC with X-gram [34] is a variant of STC with N-gram. STC with N-gram has the

advantage that fewer words are inserted to the suffix tree as suffixes are no longer than

N words. Therefore, suffix tree has lower memory requirements than original STC and its

building time is reduced. In STC with X-gram, X is an adaptive variable which denotes the
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maximum length of a suffix that can be inserted into the tree. True common phrases can

be inserted into the tree as a whole and noise words sequences are limited.

The algorithm can be divided into three steps.

• Non-informative text and stop-words are removed. Also, stemming is applied.

• A suffix tree with X-gram is created using the words sequences S[1...m]. The first word

S[1] is inserted into the tree and after iteratively each word from 2 to m is checked

and if it doesn’t match with a node of the tree a new node is inserted, otherwise the

longest match is inserted into the tree. For example, snippets of Table 2.1 construct

the suffix tree of Figure 2.13.

D1 suffix,tree,clustering,x1,x2
D2 y1,suffix,tree,clustering,y2
D3 z1,z2,suffix,tree,clustering

Table 2.1: Snippets set

Figure 2.13: Suffix tree with X-gram

As a result of this process a phrase of length L will be inserted into the tree if this

phrase appears L times at most. Since 90% of the true common phrases is no longer

than 6, the max depth of X-gram was set to 6. Also, for the true phrases that are not

fully inserted into the tree the partial phrases join operation is applied. Moreover, it

is not possible to discover all snippets that a phrase appears, although this phrase is
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wholly in the tree, so some branches are complemented using suffix links of Ukkonen’s

algorithm. Figure 2.15 shows the suffix tree of Figure’s 2.14 after branch A was

complemented.

Figure 2.14: Suffix tree with X-gram

Figure 2.15: Suffix tree with X-gram after complement

• Candidate clusters are merged by checking only the k highest scored candidate clusters.

Finally, they are scored and sorted.

2.5.3 Extended STC (ESTC)

Extended STC [10] is a variant of the STC algorithm, which proposes a new score

formula to deal with overlapping documents in clusters since neither the score function in

[40] nor the simplified score function used in [38] works properly when the whole documents
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are clustered. Also, ESTC introduces a cluster selection algorithm to filter the clusters

maximizing topic coverage and reducing overlap.

Original STC after the merging step of base clusters that consist a connected component,

scores each merged cluster calculating the sum of scores of its underlying base clusters. But

this score method favors clusters with a big number of base clusters as it over counts the

overlapping documents in base clusters. ESTC uses a new scoring method where each

document of a base cluster with score s and |D| documents is assigned score s
|D| . For a

merged cluster, the score of an overlapping document is the average of its scores from the

base clusters of the merged cluster that it belongs. Finally, the score of a merged cluster is

the sum of its document scores.

Cluster Selection Algorithm

The heuristic function H = D − β(C − D) is used in order to select the cluster that

adds more to H. In the above function C is the sum of the sizes of the clusters, and D is

the number of distinct documents (coverage). C −D represents the number of overlapping

documents in the solution and β is a constant used to balance the trade off between overlap

and coverage.

The algorithm approximately maximizes the heuristic by starting with an empty set of

clusters and extending that solution incrementally (adding one cluster in each step). In each

step, a k-step look-ahead is used to select the cluster to be added to the current solution.

A k-step look-ahead considers all possible 1, 2, ..., k+1 cluster extensions to the current

solution, and the best cluster of the best extension is chosen to be added to the current

solution.

Furthermore, pruning is applied for any branch (possible extension) that can not possibly

influence the final solution.

2.5.4 Findex

Findex [20] introduces a statistical algorithm which extracts candidate phrases by moving

a window with a length of 1..|P | words across the sentences (P) and fKWIC (frequent

keyword-in-context) which extracts the candidate phrases like the statistical algorithm but

with the requirement that they must contain at least one of the query words. For this

reason, the candidate phrases for fKWIC are more fewer than the statistical algorithm.
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The algorithms are applied on the snippets returned from the search engines. Initially,

snippets are separated into sentences, stop-words and other irrelevant strings (words com-

posed mostly of non-alphabetical characters) are removed. In fKWIC stop-words are re-

moved in a latter step, during the phrases extraction. After this preprocessing phase, follows

the candidate phrases extraction and finally the filtering of the category candidates.

In the filtering of the category candidates for the statical algorithm the extracted phrases

that are composed of the same words or are subphrases are removed. For fKWIC, a candidate

phrase is removed if the size of its association set gets too low compared to a similar phrase.

2.5.5 Link-based Clustering

Link-based clustering [35] is based on common links shared by pages in correspondence

to document clustering algorithms that are based on common words/phrases among docu-

ments.

The idea is to cluster together pages that share common links as it is possible these

pages to be tightly related. Common links for two web pages p and q mean common

out-links (point form p and q) as well as common in-links (point to p and q). Moreover, co-

citation measures the number of citations (out-links) in common between two documents

and coupling measures the number of document (in-links) that cites both of two documents

under consideration.

Each web page P in R (set of specified number of search results) is represented as two

vectors: POut (N-dimension) and PIn (M-dimension). M and N denote the total number

of distinct in-links and out-links extracted for all pages in R respectively. The ith item of

vector POut indicates whether P has the correspondent out-link as the ith one in N out-

links. If yes, the ith item is 1, else 0. Identically, the jth item of PIn indicates whether P

has the correspondent in-link as the jth one in M in-links. If yes, jth item is 1, else 0.

Common links (in-link and out-link) shared by two pages P and Q are estimated using

the cosine similarity measure:

Cosine(P, Q) =
P •Q

||P ||||Q|| =
((POut •QOut) + (PIn •QIn))

||P ||||Q||

The steps of the algorithm are the following:
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• Filter irrelevant pages: Only pages whose sum of in-links and out-links are at least 2

join the clustering procedure.

• Define similarity threshold: Similarity threshold is pre-defined to control the process

of assigning one page to a cluster (usually 0.1).

• Assign each page to clusters: Each page is assigned to existing clusters when the simi-

larity between the page and the correspondent cluster is above the similarity threshold.

If none of the current existing clusters meet the demand, the page under consideration

becomes a new cluster itself. Centroid vector is used when calculating the similarity

and it is incrementally recalculated when new members are introduced to the cluster.

While one page could belong to more than one cluster, it is limited to top 10 clusters

based on similarity values. All pages that join clustering procedure are processed se-

quentially and the whole process is iteratively executed until it converges (centroids

of all clusters are no longer changed).

• Generating final clusters by merging base clusters: When the whole iteration process

converges, base clusters are formed. Final clusters are generated by recursively merging

two base clusters if they share majority members using a specific merging threshold

(usually 0.75).

2.5.6 Semantic, Hierarchical, Online Clustering (SHOC)

SHOC [42] is an extension of STC for oriental languages like Chinese.

SHOC is described in the following steps:

• Data collection and cleaning: The search results from several search engines are col-

lected. The retrieved snippets are splitted into sentences according to punctuations

and HTML tags. The non-word tokens are stripped and redundant spaces are com-

pressed. The English words are stemmed using a stemming algorithm.

• Feature extraction: In STC common phrases are identified using a suffix tree structure

but this is not efficient for key phrase discovery since oriental languages have much

larger alphabet than English. Also, oriental languages like Chinese do not have explicit

word separators (such as blanks in English) so partial phrases can be recognized if using

41



suffix trees. For these reasons, suffix array is used instead. The suffix array s of a

document T , is an array of all N suffixes of T , sorted alphabetically.

• Identifying and organizing clusters: Taking the identified (from the previous steps)

key phrases as terms, the search results can be described as a m × n term-document

matrix A , whose row vectors represent the terms and column vectors represent the

documents. The element A(i, j) = 1 if the i-th term Ti occurs in the j-th document

Dj , or A(i, j) = 0. SHOC applies orthogonal clustering to the term-document matrix

of Web search results using the SVD (Singular Value Decomposition) of the matrix

A. Finally, SHOC organizes the clusters into a tree hierarchy by checking each pair

of clusters if they can be merged into one cluster or to be treated as a parent-child

relationship.

2.6 Synopsis and Comparison

Table 2.2 presents a number of basic features of clustering which are used for providing

an overview of the functionality offered by each of the previously described clustering search

engines and algorithms.

Generally, the table is filled with a text that explains how these functionalities are

applied to the clustering engines/algorithms, or with an equation number, or with one of

the symbols X, x, -:

Xmeans that the corresponding engine/algorithm supports the specific functionality,

x is the opposite of X, and

- means that we do not have enough information so as to know.

Presentation of clusters feature is the way which the results of clustering are presented.

It can be a Tree, a List or a 2D-Map. Tree is referred to a tree structure that consists of

the clusters’ names/labels. 2D-Map is referred to the positioning of clusters’ names in a

two-dimensional space. When clusters’ names are not provided then a List of the clusters

is presented. This list consists of a set of phrases that characterize each cluster and some

sample documents or all of them.

Cluster structure feature corresponds to the structure of folder hierarchy and can be

either flat (F) or hierarchical (H).
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Size of cluster names corresponds to the number of words that consist a folder label.

Extra info for each cluster is any additional information that is given apart from the

names and the documents of the clusters.

Use of external sources is the case that an algorithm exploits data from external sources

such as knowledge bases or classified directories (e.g. dmoz, Wikipedia).

Cluster naming feature are the different ways the cluster labels are estimated. Descrip-

tion Comes First (DCF) [31] is an approach in which cluster construction and potential

cluster label discovery are split into concurrent phases and merged in the end.

Ordering of clusters is determined by their score (Score(Ci)) that is calculated differently

for each approach. For each cluster Ci ⊆ ans(q) ⊆ Obj, the scoring function takes one of

the following forms:

Score(Ci) = |Ci| (i.e. the cardinality of the set Ci) (2.4)

= sim(q, ~Ci) ( ~Ci is the centroid of the vectors in Ci) (2.5)

=
∑

dj∈Ci

sim(q, dj) (2.6)

=
∑

Score(Cij) =
∑

|Cij | · f(|Lij |) (2.7)

=
∑

Lij∈Li

regression model of(TFIDF, LEN, ICS,CE, IND)(Lij) (2.8)

=
∑

dj∈Ci

Score(dj) =
∑

dj∈Ci

avg(
Score(Cij)
|Cij | ) (2.9)

where Li is the label of Ci and Cij denotes the base cluster j of final cluster Ci. Moreover,

in Eq. (2.7) |Lij | is the number of words in phrase Lij that do not appear in a stoplist, or in

too few (3 or less) or too many (more than 40%) documents of the collection. The function

f penalizes single word phrases, is linear for phrases that are two to six words long, and

becomes constant for longer phrases, i.e. it has the following form:

f(|L|) =





−x if |L| = 1

a|L| if 2 ≤ |L| ≤ 6

c if |L| > 6

Ordering of docs within clusters can follow the original order of documents (with respect

to their similarity with the user query) or documents can be re-ranked by the score of the

43



associated cluster label. Original order of documents is the order in the ranked list that is

returned by the queried search engines. For each document dj ∈ Ci, score function takes

the following formulas:

Score(dj) = sim(q, dj) (2.10)

= sim(Li, dj) (2.11)

where Li is the label of cluster Ci.

Used in real/online system is checked for a clustering algorithm when there is a publicly

available system that uses an implementation of it and is checked for an engine when it is

on-line.

Overlapping clusters feature is checked when generated clusters are possible to contain

common documents.

Open Source feature is referred to software that its source code is free and freely available

to anyone interested in using or working with it.
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2.6.1 Discussion

Below we describe the main advantages and shortcomings of each approach.

STC algorithm creates coherent clusters by allowing documents to be in the same cluster

even if they do not share a common phrase but rather share phrases with other documents

of the cluster. Also, it reduces fragmentation of the produced clusters. STC is fast, in-

cremental and creates overlapping clusters. It is robust in noisy situations (large number

of loosely related documents, snippets without correlation to the query). Finally, original

STC algorithm is applied on snippets but Carrot’s STC implementation uses titles besides

snippets, both with the same priority.

In contrast to STC, Findex does not merge clusters based on the documents they contain,

but based on the similarity of the extracted phrases. However, no comparative results

regarding cluster label quality have been reported in the literature.

Suffix tree structure (used by STC) can be constructed with N -grams instead of the

suffixes. This structure maintains fewer words since suffixes are no longer than N words.

Therefore, suffix tree with N -gram has lower memory requirements and its building time is

reduced (however less common phrases are discovered and this may hurt the quality of the

final clusters). However, STC with N -gram can identify only partial common phrases when

N is smaller than the length of true common phrases so cluster labels can be unreadable.

In [19] a join operation was proposed to overcome this shortcoming. A variant of STC with

N -gram is STC with X-gram [34] where X is an adaptive variable. It has lower memory

requirements and is faster than both STC with N -gram and the original STC since it

maintains fewer words. It is claimed that it generates more readable labels than STC with

N -gram as it inserts in the suffix tree more true common phrases and joins partial phrases

to construct true common phrases. The performance improvements reported are small and

from our experiments the most time consuming task is the generation of the snippets (not the

construction of the suffix tree). No user study results have been reported in the literature.

Another extension of STC, Extended STC (ESTC) [10] is appropriate for application

over the full texts (not snippets). To reduce the (roughly two orders of magnitude) increased

number of clusters, a different scoring function and cluster selection algorithm is adopted.

The cluster selection algorithm is based on a greedy search algorithm aiming at reducing the
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overlap and at increasing the coverage of the final clusters. We do not share the objective of

reducing overlap as in practice documents concern more than one topic. The comparison of

ESTC with the original STC was done using a very small cluster set (consisting of only two

queries) and no user study has been performed. Moreover, the major part of the evaluation

was done assuming the entire textual contents of the pages (not snippets), or on snippets

without title information. Summarizing, clustering over full text is not appropriate for a

(Meta) WSE since full text may not be available or too expensive to process.

TermRank algorithm use only the blocks in which the search keyword appear in each Web

page. This leads to a reduction of association strengths of words like ’search’, ’back’, ’copy-

right’ because they rarely co-occur in the same block with the important terms(discriminative,

ambiguous).

The Salient Phrases Extraction algorithm has the disadvantage that it needs a training

phase, in order to choose the regression model that will be used, which is hard to adapt

on the whole heterogeneous web. Another disadvantage is that the performance depends

heavily on the search results returned by the queried Web search engines. For some queries

(like ’apple’, ’jokes’) the vocabularies are relatively limited and the salient phrases can be

extracted precisely. But for other queries (like ’Clinton’, ’yellow pages’) the search engine

results contain various vocabularies and the performance for them is relatively low. Also, it

is observed that the clusters of the top 10 salient phrases contain about half of the search

results. A possibly solution would be to design a more sophisticate cluster merge algorithm.

Despite the above disadvantages, this algorithm is linear, fast, has O(n) complexity, produces

good cluster names and can be further examined in order to improve its drawbacks.

The algorithm used by SNAKET engine has the advantage that labels consist of non-

contiguous words within a certain proximity window, in contrast with STC that is limited by

the suffixes generation as they consists of contiguous words. Furthermore, SNAKET creates

a weight balanced hierarchy, which means that the number of documents in the same level

clusters is uniformly distributed.

Carrot2 search engine has two disadvantages. First, the usability of topics presented

is often reduced because the number of folders generated is big. Second, it fails to cluster

together similar labels such as ”knowledge, knowledge discovery”, ”mining and knowledge”.

FIHC is more efficient and scalable because it reduces dimensionality by keeping only
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the frequent items in document vectors. Also, it provides high clustering accuracy compared

to common algorithms and is robust even when applied to large and complicated document

sets. FIHC like the other Index-based approaches can be applied on a stand alone engine

since they require accessing the entire vectors of the documents and they are computationally

expensive.

Algorithms/Engines Pros Cons

Grouper/STC

incremental does not provide cluster labels
creates coherent clusters large memory requirements
allows clusters to overlap too many candidate clusters
treat document as an ordered sequence
of words

construct a long path of suffix tree

STC with N-Gram
lower memory requirements than STC labels a cluster with a partial phrase

probably unreadable
needs less time to build the tree too many candidate clusters

STC with X-Gram
lower memory requirements
discovers true common phrases
maintains fewer words than STC with
N-gram

SNAKET
labels are not limited by the order of
words

personalization

uniform distribution of documents in
clusters

interface’s functionalities occur at
client side

allows clusters to overlap

Salient Phrases Extraction
provides highly readable labels needs learning from training data
allows clusters to overlap performance depends on the web search

results
half of the results are distributed on the
top-10 clusters

FIHC
scalability
meaningful cluster labels

Table 2.3: Pros and cons summary of algorithms and search engines

Flat Cluster-
ing

Complexity Hierarchical
Clustering

Complexity

Grouper/
STC

O(n) SNAKET O(nlogn+mlogmp)

Carrot O(n) HAC O(n2)
Salient
Phrases
Extraction

O(n) FIHC O(n + g2 +
∑

f∈F global support(f))

K-means O(nkT)

Table 2.4: Complexity comparison of clustering algorithms

Table 2.4 reports the time complexity of various clustering algorithms and Table 2.5

explains the parameters of Table 2.4.
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Parameter Explanation

n number of processed snippets
k number of desired clusters
T number of iterations
m number of extracted sentences/words
p number of labels extracted by SNAKET
g number of remaining clusters at level 1
F the set of global frequent itemsets

global support(f) number of documents that contain the f itemset

Table 2.5: Explanation for each parameter of Table 2.4
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Chapter 3

Our Approach

This chapter describes our methods for results clustering and their evaluation. It is

organized as follows. Section 3.1 formulates the problem and introduces notations. Section

3.2 describes the original STC and our extensions which we call STC+ and NM-STC. Section

3.3 reports comparative experimental results concerning the effectiveness and the efficiency

of STC, STC+ and NM-STC. Finally, Section 3.4 summarizes the results.

3.1 Problem Statement and Notations

We consider important the requirements of relevance, browsable summaries, overlap,

snippet-tolerance, speed and incrementality as described in [38]. Regarding the problem of

cluster labeling we have observed that:

(a) long labels are not very good

E.g. not convenient for the left frame of a WSE, or for accessing the WSE through a

mobile phone.

(b) very short labels (e.g. single words) are not necessarily good

E.g. longer labels could be acceptable, or even desired, in a system that shows the

cluster labels in a horizontal frame.

(c) an hierarchical organization of labels can alleviate the problem of long labels
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(d) the words/phrases appearing in titles are usually better (for cluster labeling) than those

appearing only in snippets

Observations (a) and (b) motivate the need for configuration parameters. Observations (c)

and (d) motivate the algorithms STC+ and NM-STC that we will introduce.

3.1.1 Configuration Parameters

We have realized that several configuration parameters are needed for facing the needs

of a modern WSE. We decided to adopt the following:

K : number of top elements of the answer to cluster

LLmax : max cluster Label Length

LLmin : min cluster Label Length

NCmax : max Number of Clusters

Obviously it should be NCmax < K. However the size of the current answer should also

be taken into account. Specifically if ans(q) is the answer of the submitted query, then we

shall use A to denote the first K elements of ans(q). However,

(a) if |A| < K then we assume that K = |A|,
(b) if |A| < NCmax then we assume that NCmax = |A|/2.

The latter can be justified by an example. Assume that NCmax = 20 and |A| = 10. Instead

of giving the user 10 clusters, we believe that giving less (say 5) is better in the sense that

clustering should give a synoptical overview of the results.

3.1.2 Notations

We use Obj to denote the set of all documents, hereafter objects, indexed by a WSE,

and A to denote the top-K elements of the current answer as defined earlier (i.e. A ⊆ Obj

and |A| = K).

We use W to denote the set of words of the entire collection, and W (A) to denote the

set of the words that appear in a set of documents A (this means that W is a shortcut for

W (Obj)).
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Let A = {a1, . . . , aK}. For each element ai of A we shall use ai.t to denote the title of

ai, and ai.s to denote the snippet of ai. Note that the elements of W (A) are based on both

titles and snippets of the elements of A.

If a is a document, then we shall use P (a) to denote all phrases of a that are sentence

suffixes, i.e. start from a word beginning and stop at the end of a sentence of a. For example,

P (”this is a test”) = {”this is a test”, ”is a test”, ”a test”, ”test”},
while P (”this is. A test”) = {”this is”, ”is”, ”A test”, ”test”}.

We shall use P (A) to denote all phrases of the elements of A, i.e. P (A) =
⋃

a∈A(P (a.t)∪
P (a.s)).

If p is a phrase we shall use Ext(p) to denote the objects (of A) to which p appears, i.e.

Ext(p) = {a ∈ A | p ∈ a}. Also, we shall use w(p) to denote the set of words that phrase p

contains.

3.2 STC and Extensions

Our goal is to improve the Suffix Tree Clustering (STC) algorithm proposed by [38].

Specifically we attempt

(a) to improve the quality of cluster labels by exploiting more the titles (document titles

can give more concise labels),

(b) to define a more parametric algorithm for facing the requirements of modern WSEs, and

(c) to derive hierarchically organized labels.

Specifically below we describe,

(a) the original STC (Section 3.2.1),

(b) a variation that we have implemented, called STC+ (Section 3.2.2), and

(c) a new algorithm that we have devised called NM-STC (Section 3.2.3).

3.2.1 The Original STC

This method is based on Suffix Tree Clustering (STC) algorithm, which was described

in Section 2.4. The algorithm consists of the following steps:

1. Fetch snippets and titles of the top-K documents

53



2. Preprocess snippets and titles (mark sentence boundaries, remove stop-words)

3. Construct a suffix tree based on the preprocessed data

4. Find candidate clusters (base clusters)

5. Create final clusters by merging candidate clusters

Let’s now describe the algorithm in more detail. The algorithm starts with the suffix

tree construction. For each sentence of the input data all suffixes are generated and are

inserted into the suffix tree. Each node of the tree that contains two or more documents is

a base cluster. Each base cluster that corresponds to a phrase p is assigned a score which is

calculated with the following formula:

score(p) = |{a ∈ A | p ∈ a.t or p ∈ a.s}| ∗ f(effLen(p))

where effLen(p) is the effective length of label p defined as:

effLen(p) = |w(p)| − |common(p)| where

common(p) = {wi ∈ p | df(wi, A) ≤ 3 or
df(wi, A)
|A| > 0.4}

where df(wi, A) = |{d ∈ A | wi ∈ d}|.
The score of a base cluster is influenced by two factors. The number of documents that it

contains and the function f that depends on the effective length of the base cluster’s phrase.

A phrase that corresponds to a bigger document size base cluster can represent better the

cluster as it describes the contents of a big portion of the cluster.

The function f (that takes as input the effective length), penalizes single words, is linear

for phrases with effective length from two to six words, and is constant for bigger phrases,

specifically:

f(effLen(p)) =





0.5 if effLen(p) ≤ 1

effLen(p) if 2 ≤ effLen(p) ≤ 6

7.0 if effLen(p) > 6

Afterwards, the overlap is calculated for all pairs of base clusters. Overlap is defined

with a binary similarity measure. The similarity between two base clusters Ci and Cj is
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defined as:

sim(Ci, Cj) =





1 if |Ci
⋂

Cj |
|Ci| > 0.5 and |Ci

⋂
Cj |

|Cj | > 0.5

0 otherwise

The next step is the merging of base clusters. In brief, each final cluster contains all

base clusters that can be merged (two base clusters can be merged if their similarity equals

1). As a result the document set of a final cluster is the union of its base clusters’ document

sets and its cluster label is the label of the base cluster with the highest score. Due to

cluster merging there can be documents that do not contain the label p. Let C(p) be

the document set of a cluster label p. The exact scoring formula for a final cluster is

score(p) = |C(p)| ∗ f(effLen(p)). Finally, clusters are sorted according to their score and

are presented to the user.

3.2.2 STC+: A Variation of STC

Here we describe a variation of STC which differs in the way that clusters are scored and

in the way base clusters are merged. Specifically, we adopt the following scoring formula:

score(p) = (|{a ∈ A | p ∈ a.t}|+ |{a ∈ A | p ∈ a.t or p ∈ a.s}|) ∗ f(effLen(p)) (3.1)

This formula favors phrases that occur in titles. In addition, we have modified the

function f . Our variation penalizes single words and phrases that their effective length is

bigger that 4 words, and is linear for phrases with effective length two to four words. In

this way we favor small (but not single word) phrases.

Specifically our function f is defined as:

f(effLen(p)) =





0.5 if effLen(p) ≤ 1 or effLen(p) > 4

effLen(p) if 2 ≤ effLen(p) ≤ 4

Regarding the computation of the similarity measure (that determines cluster merging)

we consider as threshold the value 0.4 instead of 0.5. According to [9] it was observed

that a 10% reduction from 50% to 40% can significantly affect the number of the generated

clusters. From our experience, this value creates fewer and bigger clusters and solves some

problematic cases of the original STC. For example, a base cluster with 2 documents that
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is compared with a base cluster with 4 documents cannot be merged even if they have 2

common documents, because 2/4 = 0.5. Therefore we used the following:

sim(Ci, Cj) =





1 if |Ci
⋂

Cj |
|Ci| > 0.4 and |Ci

⋂
Cj |

|Cj | > 0.4

0 otherwise

A lower than 0.4 threshold would decrease the label precision as it will be explained in

Section 3.3.2.3.

Note that the title set of a final cluster is the union of its base clusters’ title sets. Let

T (p) be the set of titles of a cluster label p. The exact scoring formula for a final cluster is

score(p) = (|T (p)|+ |C(p)|) ∗ f(effLen(p)).

The example below shows how the utilization of titles from STC+ has as result the

selection of better cluster labels compared both to STC that treats snippets and titles with

the same priority and to STC approach that uses only the snippets:

Title 1: Crete hotel: Atlantis

Snippet 1: Atlantis Hotel, Phone: +30-28970-27400 Fax: +30

Title 2: Hotel accommodation

Snippet 2: Knossos Royal Village, Crete, Phone: 2810897675 Fax: 2810897676

Title 3: Crete hotel: Agapi Beach

Snippet 3: Agapi Beach hotel, Phone: 2832089800 Fax: 2832089801

Title 4: Crete hotel

Snippet 4: Astoria Capsis Hotel(Eleytherias Square), phone: 2810345678

fax: 2810345679

Title 5: Accommodation Heraklion, Crete

Snippet 5: Hotels in small villages, Heraklion, Phone: 2810899075 Fax:

2810899076

After sentence boundaries separation and their preprocessing from lexical analyzer they

become:

Title 1: crete hotel atlantis

Snippet 1: atlantis hotel phone fax

Title 2: hotel accommodation
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Snippet 2: knossos royal village crete phone fax

Title 3: crete hotel agapi beach

Snippet 3: agapi beach hotel phone fax

Title 4: crete hotel

Snippet 4: astoria capsis hotel eleytherias square phone fax

Title 5: accommodation heraklion crete

Snippet 5: hotels small villages heraklion phone fax

Table 3.1 shows the base clusters identified from STC using only the snippets 1, 2, 3, 4 and

5.

Index Base Cluster Documents Score

1 fax 1, 2, 3, 4, 5 2.5
2 phone fax 1, 2, 3, 4, 5 10.0
3 hotel 1, 3, 4 1.5
4 hotel phone fax 1, 3 6.0

Table 3.1: Base clusters identified from STC using only snippets

After the end of clustering for Table’s 3.1 base clusters only one final cluster is created

with label phone fax and document set 1, 2, 3, 4, 5.

Table 3.2 shows the base clusters identified from STC using the titles 1, 2, 3, 4, 5 and

the snippets 1, 2, 3, 4, 5 with the same priority.

Index Base Cluster Documents Score

1 fax 1, 2, 3, 4, 5 2.5
2 crete 1, 2, 3, 4, 5 2.5
3 crete hotel 1, 3, 4 6.0
4 accommodation 2, 5 1.0
5 phone fax 1, 2, 3, 4, 5 10.0
6 hotel 1, 2, 3, 4 2.0
7 hotel phone fax 1, 3 6.0

Table 3.2: Base clusters identified from STC using titles and snippets

After the end of clustering for Table’s 3.2 base clusters two final clusters are created,

phone fax with document set 1, 2, 3, 4, 5 and accommodation with document set 2, 5.

Table 3.3 shows the base clusters identified from STC+ using the titles 1, 2, 3, 4, 5 and

the snippets 1, 2, 3, 4, 5.
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Index Base Cluster Documents Titles Score

1 fax 1, 2, 3, 4, 5 - 2.5
2 crete 1, 2, 3, 4, 5 1, 3, 4, 5 4.5
3 crete hotel 1, 3, 4 1, 3, 4 12.0
4 accommodation 2, 5 2, 5 2.0
5 phone fax 1, 2, 3, 4, 5 - 10.0
6 hotel 1, 2, 3, 4 1, 2, 3, 4 4.0
7 hotel phone fax 1, 3 - 6.0

Table 3.3: Base clusters identified from STC+

After the end of clustering for Table’s 3.3 base clusters two final clusters are created,

crete hotel with document set 1, 2, 3, 4, 5 and accommodation with document set 2, 5.

As we can observe, both phone fax and crete hotel label consists of two words. Although,

phone fax appears in five documents and crete hotel label appears only in three documents,

crete hotel base cluster has bigger score because its label is contained in tree titles. Based

on the scoring formula (3.1) we have

score(”crete hotel”) = (3+3)*2 = 12.0

score(”phone fax”) = (5+0)*2 = 10.0

so crete hotel is the label of the final cluster since crete hotel base cluster has the highest

score.

3.2.3 A New Clustering Algorithm (NM-STC)

Here we introduce an algorithm called NM-STC (Non Merging - Suffix Tree Clustering).

As in STC, we begin by constructing the suffix tree of the titles and snippets. Then we

score each node p of that tree. Let p be a phrase (corresponding to a node of the suffix

tree). Below we define four scoring functions:

scoret(p) = |{a ∈ A | p ∈ a.t}|

scores(p) = |{a ∈ A | p ∈ a.s}|

scorets(p) = scoret(p) ∗ |A|+ scores(p)

scoretsi(p) = scoret(p) ∗ |A| ∗N + scores(p) ∗N + PIDF (p)
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PIDF stands for Phrase IDF and N is the total number of indexed documents (N = |Obj|).
If p is a single word (w), then PIDF (p) is the IDF of w (i.e. IDF (w) = N

|{d∈Obj | w∈d}|).

If p is a phrase consisting of the words {w1, . . . , wm}, then PIDF is the average IDF of its

words, i.e.

PIDF (p) =
1
m

m∑

i=1

IDF (wi)

or alternatively PIDF (p) = maxw∈p(IDF (w)). In our experiments we used the average

IDF. The IDF can be computed based on the entire collection if we are in the context of a

single WSE. In our case, the index of Mitos stores only the stems of the words so IDF (w)

is estimated over the stemmed words. If we are in the context of a MWSE (Meta WSE),

then IDF could be based on external sources, or on the current answer1.

NM-STC uses the scoretsi(·) scoring formula. This scoring function actually quantifies

a qualitative preference of the form title ¤ snippet ¤ PIDF , where ¤ denotes the priority

operator [8]. Notice that PIDF has the lowest priority. It is used just for breaking some ties.

From our experiments, the number of broken ties is low, so it does not affect significantly

the results.

NM-STC at first scores all labels of the suffix tree using the function scoretsi(·). Subse-

quently we select and return the top-NCmax scored phrases. Let B be the set of top-NCmax

scored phrases. Note that it is possible for B to contain phrases that point to the same

objects, meaning that the extensions of the labels in B could have big overlaps. In such

cases we will have low ”coverage” of the resulting clustering (i.e. the set ∪p∈BExt(p) could

be much smaller than A).

Recall that STC merges base clusters having a substantial overlap in order to tackle this

problem. However that approach leads to labels whose extension may contain documents

that do not contain the cluster label (in this way users get unexpected results). Instead

NM-STC follows a different approach that is described in the sequel, after first introducing

an auxiliary notation. If n(p) and n(p′) denote the nodes in the suffix tree that correspond

to phrases p and p′ respectively, we shall say that p is narrower than p′, and we will write

p < p′, iff n(p) is a descendent of n(p′), which means that p′ is a prefix of p. For instance,

in our running example of Figure 3.1 we have n(”ab”) < n(”a”).

1IDF (w) = |A|
|{d∈A | w∈d}|
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Returning to the issue at hand, our approach is the following: We fetch the top-NCmax

labels and we compute the maximal elements of this set according to <. In this way we get

the more broad labels (among those that are highly scored). If their number is less than

NCmax then we fetch more labels until reaching to a set of labels whose maximal set has

cardinality NCmax. So the algorithm returns the smaller set of top-scored phrases B that

satisfies the equation |maximal<(B)| = NCmax if this is possible (even if B is the set of all

nodes of the suffix tree, it may be |maximal<(B)| < NCmax).

The extra labels fetched (i.e. those in B \maximal<(B)) are exploited by the GUI for

providing an hierarchical organization of the labels (where the user can expand the desired

nodes to see their immediate children and so on). Consider the example in Figure 3.1.(A1),

and assume that NCmax = 2. The set of top-3 scored labels whose maximal elements are

two are marked (as shown in Figure 3.1.(A2)). At the GUI level, the user can expand a and

see the label b.

a b c

b c

c

3 2,3 1,2,3 2,3,5

a b c

b c

c

3 2,3 1,2,3 2,3,5

a b c

b c

c

3 2,3 1,2,3 2,3

a b c

b c

c

3 2,3 1,2,3 2,3

(A1) (A2) (B1) (B2)

Top 
Scored

Maximal 
Top 

Scored

Top 
Scored

Maximal 
Top 

Scored

a b c: web information systems
b c:    information systems
c:       systems

a b c: results clustering  algorithms
b c:    clustering algorithms
c:       algorithms

Figure 3.1: Two examples of NM-STC

The algorithm is sketched bellow. It takes as input a tree (the suffix tree) and returns

another tree (the cluster label tree). Of course it also takes as input the configuration

parameters, as well as the current query q.

If a cluster label p contains only the query words (i.e. w(p) = w(q)), then we exclude

it from consideration, as such labels would be useless for the users. This is done by zeroing

the scores of such labels (step (2)). At step (3) we zero the scores of the labels that do not

satisfy the LLmin and LLmax constraints. The function getTopScored(sf , NCmax) returns

the NCmax most highly scored nodes. At step (8) we remove from the list of maximal labels

those that are subphrases of other labels and contain the same documents. Specifically,
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Alg. NM − STC
Input: sf :SuffixTree, NCmax, LLmin, LLmax, q
Output: cluster label tree
(1) ScoreLabelsOf(sf)
(2) ZeroScoreLabelsEqualTo(sf ,q)
(3) ZeroScoreLabelsLabelSize(sf ,LLmin, LLmax)
(4) topLabs = getTopScored(sf , NCmax)
(5) Done=False
(6) while Done=False
(7) maxTopLabs = maximal<(topLabs)
(8) maxTopLabls = ElimSubPhrasesSameExt(maxTopLabs)
(9) missing = NCmax - |maxTopLabs|
(10) if (missing>0)
(11) topLabs = topLabs ∪ getNextTopScored(sf ,missing)
(12) else Done=True
(13)end while
(14)return topLabs, <|topLabs

if w(p) ⊆ w(p′) and Ext(p) = Ext(p′) then we exclude p. This is shown in the example

illustrated in Figure 3.1.(B1 and B2): the node b is discarded because it has the same

extension with the node b that is child of a.

The function getNextTopScored(sf , M) returns the next M labels in the ranked list of

labels (that are not already consumed).

3.2.4 Notes

STC keep references to the original source of the phrases but we are not doing that. It

is not explained which of the original phrases is selected for presentation since a (stemmed)

suffix of the tree corresponds to as many phrases as the number of the documents this suffix

appears.

Moreover, in our implementation base clusters are those clusters that contain more than

2 documents but in Carrot there are additional criteria. Base clusters must also have score

higher than a minimum base cluster score threshold and in the merging step only the top-N

base clusters participate. In our implementation all base clusters participate in the merging

process in order to achieve better coverage.
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Another aspect is the documents that do not participate in any base cluster. None of

the surveys explains how such cases are treated. From Carrot’s interface we observe that

these documents are inserted in an additional cluster with the label ”Other topics”.

3.3 Comparative Evaluation

Two are the main aspects of evaluation: efficiency and quality.

3.3.1 Efficiency

To evaluate efficiency we will measure the time needed for clustering the top-K doc-

uments (for various values of K) of each submitted query. Ideally the time of clustering

should increase linearly with respect to K.

3.3.1.1 Time Performance

For the evaluation queries we counted the average time to cluster the top-{100, 200, 300}
snippets. In NM-STC the IDF of the terms are in main memory from the beginning. Also

recall that PIDF could be omitted from the scoring formula as it does not seem to influence

the results (except in cases of very small result sets). In that case, the scoring formula used

is scorets(p). The measured times (in seconds) are shown next (using a Pentium IV 4 GHz,

2 GB RAM, Linux Debian).

Alg Top-100 Top-200 Top-300

STC 0.208 0.698 1.450

STC+ 0.228 0.761 1.602

NM-STC 0.128 0.269 0.426

Notice that NM-STC is (two to three times) faster than STC and STC+. This is because

NM-STC does not have to intersect and merge base clusters.

3.3.2 Effectiveness - Quality

3.3.2.1 UI Examples

The following screen shots presents three parallel frames which correspond to the original

STC, STC+ and NM-STC algorithms. Each of the first three frames presents the generated
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cluster label tree from the corresponding approach and the fourth frame shows the list

of documents of the selected cluster label. All approaches use the same method for the

snippets extraction. Also, for all approaches K was set to 100 and for NM-STC we used

the parameters LLmin=1, LLmax=4 and NCmax=15.

Figures 3.2 and 3.3 show the clusters derived when submitting the query q= hr�kleio

and q= uml respectively.

Figure 3.2: Results clustering for the query q=hr�kleio

3.3.2.2 Evaluation by Users

We conducted an empirical evaluation over Mitos in order to investigate whether the

users of Mitos were satisfied by the results clustering feature. Specifically we followed the

following process: we defined 16 queries of different sizes consisting of small (single words),

medium (2 to 3 words), and big (4 or more words) queries. Figure 3.4 shows the results

sizes of these queries (see Appendix A) that range from 14 to 5029 hits.

The queries were given to 11 persons (from 22 to 30 years old, familiar with computers
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Figure 3.3: Results clustering for the query q=uml
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and Web searching). Every participant had to submit each of these queries to a special

evaluation system that we developed which visualizes the results of the three clustering

algorithms in parallel (we used the parameters K = 100, LLmin = 1, LLmax = 4, NCmax =

15). Figure 3.5 shows the evaluation system for the query q=crete.

Figure 3.5: Evaluation system user interface

After inspecting the results, each participant had to rank the three methods according

to (a) label readability, (b) cluster ordering, (c) number of clusters and (d) overall quality.

So 16 * 11 * 4 = 704 user assessments in total. The users expressed their preference by

providing numbers from {1, 2, 3}: 1 to the best, and 3 to the worst. Ties were allowed, e.g.

STC:1, STC+:1, NM-STC:2 means that the first two are equally good, and NM-STC is the

worst. In case all three were indifferent (they liked/disliked them equally), they were giving

the value 0. Figure 3.6 illustrates the questionnaire.

We aggregated the rankings using Plurality Ranking (i.e. by considering only the win-

ners, i.e. 1’s) and Borda [13] ranking. Table 3.4 reports the average results (”PR” for

Plurality and ”BR” for Borda Ranking). In a PR column, the higher a value is the better
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STC STC+ NM-STC STC STC+ NM-STC STC STC+ NM-STC STC STC+ NM-STC
Crete 3 2 1 3 2 1 3 2 1 3 2 1Ηράκλειο 3 1 2 2 1 1 2 1 1 3 1 2
UML 2 1 1 3 1 2 3 2 1 3 2 1
SWKM 3 1 2 2 1 1 0 0 0 3 1 2Βικελαία 1 3 2 1 3 2 1 3 2 1 3 2Ανάκτηση Πληροφοριών 3 2 1 2 1 1 3 2 1 3 2 1∆ιαχείριση Οντολογιών 3 2 1 3 2 1 3 2 1 3 2 1Οπτικοποίηση Γράφων 3 2 1 2 1 1 2 1 1 2 1 1Τηλεοπτικό Πρόγραµµα 2 2 1 2 2 1 2 2 1 2 2 1Ο Μίτος της Αριάδνης 3 2 1 3 2 1 3 2 1 3 2 1∆ιακοπές στη Νότια Κρήτη 3 2 1 3 2 1 3 2 1 3 2 1Βιβλιοθήκη Ρεθύµνου 3 2 1 2 1 1 3 2 1 3 2 1Φαρµακεία Ηρακλείου 3 2 1 3 2 1 2 1 1 3 2 1
How to install mitos 3 2 1 3 1 2 3 2 1 3 2 1
How to add jar files in Eclipse 1 1 2 1 2 3 3 2 1 1 2 3ιπτάµενοι δίσκοι στη Νότια Κρήτη 3 2 1 3 2 1 3 2 1 3 2 1

Πλήθος Ετικετών               
(Number of clusters)

Καλύτερη Προσέγγιση (Συνολικά) 
(Best method (overall))Evaluation Queries

Αναγνωσιµότητα Ετικετών 
(Label Readability)

Σειρα ετικετών                            
(Cluster Ordering)

Figure 3.6: Questionnaire

(i.e. the more first positions it got), while in BR column the less a value is the better.

Specifically, to compute the PR value we summed all ones (i.e. first positions) and then we

divided by 11*16 (i.e. |users| × |queries|).

Criterion STC STC+ NM-STC
PR BR PR BR PR BR

(a) Label Readability 2.41 33.5 6.25 23.16 9.41 20.83
(b) Cluster Ordering 4.75 28.33 7.33 21.75 6.41 24.9
(c) Number of clusters 2.33 33.5 5.83 23.33 10.41 19.91
(d) Best method (overall) 3.41 31.08 7.08 21.75 6.91 23.5

Table 3.4: Comparative Evaluation by Users

Criterion STC STC+ NM-STC
PR BR PR BR PR BR

(a) Label Readability 3 3 2 2 1 1
(b) Cluster Ordering 3 3 1 1 2 2
(c) Number of Clusters 3 3 2 2 1 1
(d) Best method (overall) 3 3 1 1 2 2

Table 3.5: Relative Ranking by Users

Table 3.5 shows only the relative ranking of the algorithms: 1 for the best, 2 for the

second, and 3 for the third in preference algorithm. Notice that the relative ordering is

the same for both PR and BR. The results show STC+ and NM-STC are clearly the most

preferred algorithms according to each of the three criteria, and according to the overall

assessment. In particular, NM-STC yields the more readable labels, STC+ yields the best
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cluster label ordering and NM-STC yields the best number of clusters. Regarding criterion

(d) (overall quality), STC+ obtained the best result (PR: 7.08), NM-STC a slightly lower

(PR: 6.91), while STC a much lower value (PR: 3.41).

In addition, we asked the participants to answer a small questionnaire. Table 3.6 shows

the questions and the answers received. The results show that the majority prefers

(a) hierarchically organized labels,

(b) labels comprising one to three words, and

(c) 10-15 clusters.

Question Results
Do you prefer Flat or Hierarchi-
cal cluster labels?

Flat (24%),
Hierarchical (58%),
Both are fine (18%)

Preferred cluster label length 1− 3(75%)
3− 6(25%)

Preferred number of clusters < 10 (25%)
10− 15 (62.5%)
15− 20 (12.5%)

Table 3.6: Questionnaire

3.3.2.3 Clustering Evaluation Metrics

We decided to conduct an additional comparative evaluation between original STC,

STC+, and NM-STC. Recall that B is the set of the labels returned by a clustering algo-

rithm. For a p ∈ B we shall use C(p) to denote the set of objects that are assigned to cluster

label p by the clustering algorithm. We used the metrics defined in Table 3.7.

Name Definition

coverage coverage = |∪p∈BC(p)|
|A|

average label length LLavg = avgp∈B|w(p)|
overlap AvO = 2

|B|(|B|−1)

∑|B|
i=1

∑|B|
j=i+1JO(pi, pj)

where JO(pi, pj) = |C(pi)∩C(pj)|
|C(pi)∪C(pj)|

label precision AvLP = 1
|B|

∑
p∈B LabelPrec(p)

where LabelPrec(p) = |{o∈C(p) | w(p)⊆w(o)}|
|C(p)|

Table 3.7: Evaluation Metrics
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Coverage measures the degree that clusters’ extensions cover the answer A (the closer

to 1, the better the clusters ”cover” the answer A). Its value is low if the clusters cover a

small portion of A and this implies that the clusters do not summarize the entire contents

of A. The label precision of a label p is the percentage of objects in the extension of p that

contain all words of p. It is clear that the label precision of NM-STC is (by construction)

always 1, but this is not true for the other STC-based algorithms (due to the base cluster

merging).

Table 3.8 reports the results of the evaluation. We report the average values for the

queries used in the empirical evaluation. The overlap for NM-STC is computed over the

maximal elements of B (i.e. those in maximal<(B)). The results show that STC and STC+

have exactly the same coverage while NM-STC has slightly lower2. STC+ and NM-STC

give smaller names than STC. STC+ and NM-STC have higher overlap (which is not bad).

The label precision of STC+ is smaller than that of STC due to the threshold 0.4 vs 0.5 in

base cluster merging. For threshold=0.3 the average precision of STC+ drops to 0.60 while

for threshold=0.2 it further drops to 0.47. These results motivate the reason for not further

decreasing this threshold.

Criterion STC STC+ NM-STC
coverage 0.994 0.994 0.869
average label length 3.185 2.906 2.249
overlap 0.038 0.048 0.099
label precision 0.893 0.756 1.0

Table 3.8: Comparative Results

3.4 Synopsis

In this work we focused on suffix tree clustering algorithms because they are fast, they

do not rely on external resources or training data, and thus they have broad applicability

(e.g. different natural languages). We presented a variation of the STC, called STC+, with

a scoring formula that favors phrases that occur in document titles, and a novel suffix tree

based algorithm called NM-STC that results in hierarchically organized clusters.
2In general all coverage values are acceptably high, e.g. higher than those in [20], and recall, that we

could achieve 100% coverage by adding an artificial ”rest” cluster label.
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The advantages of NM-STC are that:

(a) the user never gets unexpected results, as opposed to the existing STC-based algorithms

which adopt overlap-based cluster merging,

(b) it is more configurable w.r.t. desired cluster label sizes (STC favors specific lengths),

(c) it derives hierarchically organized labels, and

(d) it favors occurrences in titles (as STC+) and takes into account IDFs, if available.

The user evaluation showed that both STC+ and NM-STC are significantly more pre-

ferred than STC (STC+ is slightly more preferred than NM-STC). Figure 3.7 shows the

aggregated rank (w.r.t. Borda) of each algorithm for each query of the evaluation collection

(the ideal average BR value is 1 the worst is 3). We observe that STC was better than STC+

or NM-STC, only in one query (no=15). In addition NM-STC is about two times faster

than STC and STC+. In future we plan to work towards further improving the quality of

cluster labels and the interaction with the user.
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Figure 3.7: Evaluation per query
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Chapter 4

Implementation and Applications

This chapter is organized as follows: Section 4.1 describes the Mitos Web Search Engine

and Section 4.2 describes the application of the results clustering methods (presented in

Chapter 3) over Mitos. Section 4.3 contains a detailed software description of the STC al-

gorithm. Section 4.4 analyzes the preprocessing of the input data for the clustering methods.

Section 4.5 presents FleXplorer and the coupling of dynamic taxonomies with results clus-

tering. Section 4.6 describes the administrator parameters of Mitos for the snippet-based

clustering approaches. Finally, Section 4.7 describes the application of the results clustering

methods over Google.

4.1 Application over a Web Search Engine

The results clustering methods have already been applied on Mitos [28, 3] search engine.

The first version of Mitos was developed as a student project in the IR course (CS463) by

undergraduate and graduate students of the Computer Science Department of the University

of Crete in three semesters (spring: 2006, 2007 and 2008). Mitos is not a meta-search engine.

It has its own index (currently implemented using a DBMS) [27]. This allows exploiting its

index in order to find additional information for the documents, apart from those that can

be extracted from the snippets returned by Mitos. However, the index of Mitos stores only

the stems of words, so the readability of indexed words is reduced. For this purpose, for

each stemmed word it is also preserved the unstemmed word with the highest frequency in

the collection set.

71



Mitos except from the three basic components of a search engine, namely Crawler, In-

dexer and Query Evaluator, it also consists of the Lexical Analyzer, Stemmer, Link Analysis-

based Ranker, Result Clustering, Automatic Taxonomy, User Interface and Administration

components, as shown in Figure 4.1.

Figure 4.1: The Component Model of Mitos

The Crawler fetches Web pages starting from a specific list of URLs and recursively

visits all the hyperlinks in each page. The downloaded pages are stored in a local repository

and every page is assigned a unique ID number (md5). Also, a Document Index is created

that keeps several properties for each page (like md5, path, title, last changed/fetched, etc)

and a file that stores the hyperlinks and their anchor texts.

The Indexer uses the Document Index in order to analyze all downloaded documents

and build the index. For each document it calls the Lexical Analyzer that returns the set
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of words that contains, their frequency and their positions inside the document.

The Lexical Analyzer identifies tokens, removes stop-words and applies stemming algo-

rithms. Mitos except from stemming for the English language, it also supports a Greek

language stemmer.

The Query Evaluator is responsible for the retrieval process when a query is submitted.

It supports several retrieval models, specifically the Vector Space, the Boolean, the Extended

Boolean and the Fuzzy Model. If a query term does not exist in the index, then the system

applies the Edit Distance algorithm in order to suggest terms that exist and their distance

from the submitted term is less than a constant. In addition, the system suggests a list of

terms which could be used to expand (refine) the submitted query.

4.1.1 Software Design Diagrams

The components of Mitos and their articulation are illustrated in the UML Component

Diagram of Figure 4.2. The clustering algorithms are realized by the Clustering Snippet-

based component.

cmp Component View

Lexical Analyzer

Indexer

User Interface

Query Evaluator

Ranker

Stemmer

Crawler

Data Base 
(Postgres)

Index fi le

Automatic 
Taxonomy

Clustering

Query 
Expansion

Snippet-
based

Index-
based

Admin

«trace»

«use»

«use»

Figure 4.2: Component diagram of Mitos search engine.

The Clustering component is separated into the Index-based 1 and the Snippet-based
1Index-based approaches were implemented by Manolis Tavlas in the concept of an undergraduate study.
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Clustering component. Both communicate with the User Interface, the Indexer and the

Admin components. The Snippet-based component also communicates with the Lexical

Analyzer. The User Interface gives the top-K documents from the list of the rank files

returned by the Query Evaluator and receives the final cluster label tree. The Index-based

component communicates with the Indexer in order to get the vector representations of

documents. The Snippet-based component gets the documents’ titles and words’ document

frequencies. The Admin component sends to Clustering the configuration parameters for

clustering. Finally, the Snippet-based component communicates with the Lexical Analyzer

for preprocessing the snippets and the titles.

4.2 Snippet-based Clustering Component

The component supports the original STC, the STC+ and the NM-STC algorithms as

presented in Section 3.2.

4.2.1 Sequence Diagrams

The (UML) Sequence Diagram of Figure 4.3 shows the interactions between the compo-

nents of Mitos during results clustering.

Figures 4.4, 4.5 and 4.6 show the sequence diagrams that represent the way that clusters

are generated by the original STC and STC+ algorithm. Note that the similarity threshold

(simThreshold) for Figure 4.6 (a) is used as a parameter and is set to 0.5 for the original

STC and to 0.4 for STC+.

Figures 4.7, 4.8 and 4.9 shows the sequence diagrams for NM-STC algorithm. The first

two steps of NM-STC (”construct suffix tree” and ”prune suffix tree”) are the same as

presented above in Figures 4.4 (b) and 4.5 (a) for the original STC and STC+.
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sd Clustering

User Interface IndexerAdmin Clustering Lexical Analyzer

loop 

[for each title, best text]

par 

[BLOCK_STOPWORDS=true]

[STEMMING=true]

get MaxNumberOfDocs parameter

getClusterTree

getTopRankedFilesIds :docIds

getDocumentTitleMD5(docIds)

retrieve best texts

eliminate stopwords

apply stemming

generate final clusters

create printable tree structure

Figure 4.3: Sequence diagram of the results clustering process.

sd STC clustering

STC

ref
construct suffix tree

ref
prune suffix tree

ref
identify base clusters

ref
merge base clusters:merged clusters

ref
create final clusters(merged clusters):final clusters

(a)

sd construct suffix tree

STC SuffixTreeInput

loop 

[for each Snippet]

loop 

[for each suffix]

getSnippets

find suffixes

insertSuffix(docId, suffix)

(b)

Figure 4.4: Sequence diagrams for the generation of clusters by the original STC and STC+.
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sd prune suffix tree

STC

loop 

[while Suffix Tree has Nodes]

opt 

[connected Nodes have one child ]

[connected Nodes have the same documents]

concatenate Nodes to one

recursion

(a)

sd identify base clusters

STC

loop 

[while Suffix Tree has Nodes]

opt 

[Node documents >= 2]

add Node to base clusters

recursion

(b)

Figure 4.5: Sequence diagrams for the generation of clusters by the original STC and STC+.

sd merge base clusters

STC

loop 

[for each pair of base clusters]

opt 

[overlap of 2 base clusters > simThreshold]

add clusters to merged clusters

(a)

sd create final clusters

STC Cluster

loop 

[for each merged cluster]

par create a connected component with all clusters merged with it

find intersection of docs

choose label with highest score

construct a cluster(intersection of docs, label with highest score)

(b)

Figure 4.6: Sequence diagrams for the generation of clusters by the original STC and STC+.
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sd NM-STC clustering

NM-STC

ref
construct suffix tree

ref
prune suffix tree

ref
find Top Scored Labels:maxTopLabs

ref
create final clusters(maxTopLabs):final clusters

Figure 4.7: Sequence diagrams for the generation of clusters by NM-STC.

sd find Top Scored Labels

NM-STC

loop 

[while done=FALSE and consumed < |BaseClusters|]

opt 

[missing > 0]

[missing <= 0]

scoreLabelsOf(sf)

ZeroScoreLabelsEqualTo(sf, q)

ZeroScoreLabelsLabelSize(sf, LLmin, LLmax)

sortBaseClustersByScore

getTopScored(0, NCmax) :topLabs

maximal(topLabs) :maxTopLabs

ElimSubPhrasesSameExt(maxTopLabs) :maxTopLabs

missing = NCmax - |maxTopLabs|

getNextTopScored(consumed,
missing) :topLabs

done = TRUE

Figure 4.8: Sequence diagrams for the generation of clusters by NM-STC.
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sd create final clusters

NM-STC Cluster

loop 

[for each maxTopLab cluster]

construct a cluster :cl

createHierarchy(cl)

Figure 4.9: Sequence diagrams for the generation of clusters by NM-STC.

4.3 Implementation of STC

The algorithm clustering(Snippets S[]) takes as input a set of snippets and returns

the final clusters.

Alg. clustering(SnippetsS[])
(1) constructSuffixTree(Snippets S[])
(2) pruneSuffixTree(Snippets S[])
(3) identifyBaseClusters(SuffixTree ST, ””, 0, ∅, 0)
(4) MC := mergeBaseClusters(BC)
(5) Clusters := createFinalCLusters(MC,BC)
(6) return Clusters

The algorithm constructSuffixTree(Snippets S[]) takes as input a set of snippets

where each snippet is a triple of (document id, title, best text). It generates the suffixes of

all strings and inserts each one in a suffix tree. Each node of the constructed tree corresponds

to a single word. In the following algorithm |Title| denotes the number of sentences of the

string Title and |BestText| denotes the number of sentences of the string BestText. The

function insertSuffix takes as third parameter a boolean value which is set True if the

inserted word appears in the title of the specific document id given as first argument. This

means that for each suffix we keep separately the document ids that appear in their titles.

This is especially useful for STC+ since this information is subsequently used by the function

identifyBaseClusters for computing the score of a base cluster.
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Alg. constructSuffixTree(Snippets S[])
(1) for i = 0 to |S| do
(2) DocId := S[i].DocId
(3) Title := S[i].Title
(4) for j = 0 to |Title| do
(5) suffixes := generateSuffixes(Title[j])
(6) for z = 0 to |suffixes| do
(7) insertSuffix(DocId, suffixes[z], True)
(8) BestText := S[i].BestText
(9) for j = 0 to |BestText| do
(10) suffixes := generateSuffixes(BestText[j])
(11) for z = 0 to |suffixes| do
(12) insertSuffix(DocId, suffixes[z], False)

The algorithm generateSuffixes(String str) takes as input a string and generates all

suffixes of that string that start after a white space or a punctuation symbol. For example,

generateSuffixes(”The mitos search engine”) will return the following suffixes:

The mitos search engine

mitos search engine

search engine

engine

Alg. generateSuffixes(String str)
(1) Suffixes := ∅
(2) words := |words(str)|
(3) for i = 0 to |words| do
(4) suffix := ∅
(5) for j = i to |words| do
(6) append words[j] to suffix
(7) append white space to suffix
(8) trim suffix
(9) add suffix to Suffixes
(10) return Suffixes

Let now see an example of the suffix tree. Suppose that we have the following snippets

from three documents:
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Snippet 1: mitos web search engine

Snippet 2: indexer of mitos mitos adopts the tf - idf weighting scheme

Snippet 3: mitos : design and evaluation of a dbms - based web search

engine

After the separation of snippets into sentences and their processing from the lexical analyzer

(stop-words removal) we get the following strings:

Snippet 1: mitos web search engine

Snippet 2: indexer mitos mitos adopts idf weighting scheme

Snippet 3: mitos design evaluation dbms based web search engine

Figure 4.10 shows the suffix tree constructed after calling function constructSuffixTree(Snippets

S[]) for the above Snippets.

mitos[1,2,3]

web[1]

engine[1]

web[1,3]

search[1,3]

search[1,3]

search[1]
engine[1,3]

engine[1,3]

engine[1,3]

adopts[2]

mitos[2]

mitos[2]

indexer[2]

weighting[2]

shceme[2]

mitos[2]

weighting[2]

adopts[2]

scheme[2]

adopts[2]

weighting[2]

scheme[2]

weighting[2]

scheme[2]

adopts[2]

weighting[2]

scheme[2]

scheme[2]

design[3]

evaluation[3]

dbms[3]

based[3]

web[3]

search[3]

engine[3]

design[3]

evaluation[3]

dbms[3]

based[3]

web[3]

search[3]

engine[3]

dbms[3]

based[3]

web[3]

search[3]

engine[3]

based[3]

web[3]

search[3]

engine[3]

dbms[3]

based[3]

web[3]

search[3]

engine[3]

evaluation[3]

idf[2]

idf[2]

idf[2]

idf[2]

weighting[2]

scheme[2]

idf[2]

Figure 4.10: The suffix tree of the Snippets 1, 2 and 3.

The algorithm pruneSuffixTree(SuffixTree ST) takes as input a suffix tree and com-

pacts it. Specifically if there is a node a that has only one children b and both nodes are

associated with the same documents, then these nodes are ”concatenated”, i.e. only one

node remains having as name the concatenation of the names at a and b. For example, as
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shown in Figure 4.11, if node a contains documents 1 and 2, node b also contains documents

1 and 2, node a is the parent of node b and node b has two children, namely a node c which

contains document 1 and a node d which contains document 2, then node a and node b are

concatenated to a node labelled ab which contains documents 1,2 and is the parent of nodes

c and d. Figure 4.12 shows the pruned suffix tree constructed after calling the function

pruneSuffixTree(SuffixTree ST) for the tree of Figure 4.10.

a[1,2]

c[1]

b[1,2]

d[2]

a b[1,2]

c[1] d[2]

prune

Figure 4.11: Suffix tree pruning example for two nodes a,b.

mitos[1,2,3]

web
search

engine[1]

web 
search 

engine[1,3]

search 
engine[1,3]

engine[1,3]

indexer mitos
mitos adopts
idf weighting
scheme[2]

mitos
adopts idf
weighting
scheme[2]

adopts idf
weighting 
scheme[2]

weighting
scheme[2]

adopts idf
weighting
scheme[2]

scheme[2]

design
evaluation

dbms based 
web search
engine[3]

design
evaluation

dbms based
web search
engine[3]

dbms based
web search 

enigne[3]

based 
web search 

engine[3]

evaluation
dbms based
web search
engine[3]

Idf
weighting
scheme[2]

Figure 4.12: The pruned suffix tree of Figure 4.10

The implementation of STC+ relies on the implementation of STC with some minor

changes regarding the new scoring formula, the new implementation of the function f and

the new similarity threshold. In addition, during pruning, and whenever a node contains

only one child node and both nodes contain the same documents but their phrases appear

in different document titles, they are concatenated into one node that has as titles ids the

titles ids of the broader node.

Let us now introduce the notion of effective length of a phrase. The algorithm effec-

tiveLength(String phrase, Snippets S[], Vocabulary Frequencies VF[], SuffixTree

ST) takes as input a string which is the phrase of a SuffixTreeNode, a set of snippets, a
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Alg. pruneSuffixTree(SuffixTree ST)
(1) Docs := ∅
(2) while(ST has Next) do
(3) W := next key of ST
(4) TN := tree node of ST [W ]
(5) if TN is not pruned
(6) docIds := document list of TN
(+)(STC+) titleIds := document title list of TN //for STC+
(7) subTree := children of TN
(8) newName := W
(9) count := 0
(10) while(|subTree| = 1)
(11) W2 := next key of ST
(12) TN2 := tree node of subTree[W2]
(13) docIds2 := document list of TN2
(14) if |docIds| = |docIds2| then
(15) intersection := docIds

⋂
docIds2

(16) if |intersection| = |docIds| then
(17) append W2 to newName
(18) append space character to newName
(19) subTree := children of TN2
(20) count := count + 1
(21) else break;
(22) else break;
(23) if count > 0 then
(24) newNode := newSuffixTreeNode()
(25) set subTree to newNode children
(26) set docIds to newNode documents
(+)(STC+) set titleIds to newNode document titles //for STC+
(27) remove ST [W ]
(28) add (newName, newNode) to ST
(29) reset iterator of ST
(30) if subTree 6= ∅ then
(31) pruneSuffixTree(subTree)
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set of vocabulary frequencies where each frequency is a pair of (string, integer) and a suffix

tree. It calculates the effective length of the given phrase, which is defined as the number of

words in the phrase that do not appear in too few (3 or less) or too many (more than 40%

of the collection) documents. At first the effective length of a phrase is the number of words

it contains. Stop-words are removed during generation of snippets and are not considered

in the calculation of the effective length. Subsequently and for each of the words whose

frequency is more than three documents or it appears in more than 40% of the result set,

the effective length is reduced by one. Some examples follow:

• effectiveLength(”web search engine”) = 3

• effectiveLength(”mitos”) = 1

• If the phrase is mitos, the number of the result set is 100 documents and the query is

also mitos, thus mitos appears in 100 documents, then effectiveLength(”mitos”) = 0

• If the phrase is genetic information, the number of the result set is 100 documents

and genetic appears in 2 documents, then effectiveLength(”genetic information”)=

1

Alg. effectiveLength(String phrase, Snippets S[], Vocabulary Frequencies VF[], SuffixTree ST)
(1) Words := phrase splited with space character
(2) EffLen := |Words|
(3) P := 0.4 ∗ |S|
(4) for i = 0 to |Words| do
(5) if Words[i] ∈ V F then num := V F [Words[i]]
(6) else
(7) num := findDocsThatContain(Words[i], ST, ∅)
(8) add (Words[i], num) to V F
(9) if num =< 3 or num > P then EffLen := EffLen− 1
(10) return EffLen

In order to calculate the effective length of a phrase we must find the number of doc-

uments that each word of the phrase appears. To avoid traversing the tree every time we

see a word, we use a structure (Vocabulary Frequencies) to store the words we have already

met and the corresponding number of documents in which they are presented.
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The algorithm identifyBaseClusters(SuffixTree ST, String subphrase, int ef-

fLen, int index, Base Clusters BC[]) takes as input a suffix tree and identifies the base

clusters. A base cluster is a node that has at least 2 documents. For each base cluster, a

score is calculated based on its label effective length. Before explaining how this is done,

let’s see the result of this step. Table 4.1 shows the base clusters identified after calling the

function identifyBaseClusters(SuffixTree ST, ””, 0, 0, ∅) over Figure’s 4.12 pruned suffix

tree.

Index Base Cluster Documents Score

1 mitos 1, 2, 3 1.5
2 web search engine 1, 3 6
3 search engine 1, 3 4
4 engine 1, 3 1

Table 4.1: Base clusters identified from Figure’s 4.12 suffix tree.

Figure 4.13 shows the base clusters graphically. That figure also shows the final result

which in our case is a single cluster whose label is that of the cluster with the highest score.

mitos[1,2,3]
web 

search 
engine[1,3]

search 
engine[1,3]

engine[1,3]

web 
search 

engine[1,2,3]

1 2 3 4

Score=1.5 Score=6 Score=4
Score=1

Score=9

Base clusters

Final clusters

Figure 4.13: Base clusters and final cluster

The algorithm identifyBaseClusters is a recursive function. At the initial call it takes

as input only the root of the suffix tree and then iteratively it takes the children of each node

from all levels of the tree. Also, it takes as input a subphrase that is the labels’ concatenation
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from the root of the suffix tree to the first node of the subtree given as parameter. The

effective length of the subphrase is the third argument effLen. The last argument is a list of

the base clusters that have been identified and the argument index is related with this list.

Alg. identifyBaseClusters(SuffixTree ST, String subphrase, int effLen, int index, Base Clusters BC[])
(1) if ST = ∅ then return 0
(2) while(ST hasNext) do
(3) STNode := pair of (label, suffixTreeNode)
(4) W := STNode.label
(5) TN := STNode.suffixTreeNode
(6) docNum := |TN.docIds|
(+)(STC+) titleNum := |TN.titleIds| //for STC+
(8) Phrase := ∅
(9) if subphrase 6= empty string then
(10) Phrase.append(subphrase)
(11) Phrase.append(””)
(12) Phrase.append(W )
(13) if docNum >= 2 then
(14) effLen := effLen + effectiveLength(W )
(15)(STC) score := (docNum) ∗ funct f(effLen) //for STC
(15)(STC+) score := (docNum + titleNum) ∗ funct f(effLen) //for STC+
(16) set score to TN
(17) set W to TN
(18) set Phrase to TN
(19) add STNode to BC[index]
(20) Ch := children of TN
(21) if Ch 6= ∅ then
(22) index := identifyBaseClusters(Ch, W, effLen, index, BC)
(23) return index

The algorithm funct f(int effectiveLength) takes as input the effective length of a

phrase and map this length to a number. For the original STC, it penalizes single words,

is linear for phrases with effective length from two to six words, and is constant for bigger

phrases.

The algorithm funct f(int effectiveLength) for STC+ takes a different form. It pe-

nalizes single words and the phrases that their effective length is bigger that 4 words by

returning a positive value that is less than one. Also, it is linear for phrases with effective

length two to four words (returns the effective length of the phrase).

The algorithm findDocsThatContain(String word, SuffixTree ST, List Docs)
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Alg. funct f(int effectiveLength) //for STC
(1) score := 0.0
(2) if effectiveLength ≤ 1 then score := 0.5
(3) else if effectiveLength ≥ 2 or effectiveLength ≤ 6 then score := effectiveLength
(4) else if effectiveLength > 6 then score := 7.0
(6) return score

Alg. funct f(int effectiveLength) //for STC+
(1) score := 0.0
(2) if effectiveLength ≤ 1 or effectiveLength > 4 then score := 0.5
(3) else if effectiveLength ≥ 2 or effectiveLength ≤ 4 then score := effectiveLength
(4) return score

takes as input a string, a suffix tree and a list of document ids. It traverses the suffix tree

in order to find the number of documents in which the string appears. Documents which

have been found already out of this suffix tree are considered so as to avoid duplicates.

The algorithm mergeBaseClusters(Base Clusters BC[]) takes as input a list of base

clusters and calculates similarity measure for each base cluster with its next base clusters

in the list and find which of them can be merged. Returns merged clusters which is a map

from each base cluster index to the base clusters’ indexes that are going to be merged with

it. Similarity threshold is defined to 0.5 for STC and to 0.4 for STC+.

Table 4.2 shows all the possible merges which where generated by calling the function

mergeBaseClusters(Base Clusters BC[]) with input Table’s 4.1 base clusters.

Index Merged Base Clusters

1 2, 3, 4
2 1, 3, 4
3 1, 2, 4
4 1, 2, 3

Table 4.2: Merged Clusters

The algorithm baseClustersOverlap(Document List listA, Document List listB,

float simThreshold) takes as input two sets of documents ids and calculates the overlap of

two sets to each one and returns True if these percentages are over the similarity threshold

given as the third argument.
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Alg. findDocsThatContain(String word, SuffixTree ST, List Docs)
(1) if ST = ∅ then return 0
(2) docCount := 0
(3) while(ST hasNext) do
(4) phrase := next key of ST
(5) TN := tree node of ST [phrase]
(6) tmpCount := 0
(7) if phrase contains word then
(8) sizeBefore := |Docs|
(9) Docs :=unionOfLists(Docs, Docs of TN)
(10) sizeAfter := |Docs|
(11) tmpCount := sizeAfter − sizeBefore
(12) else
(13) Ch := children of TN
(14) if Ch 6= ∅ then
(15) tmpCount := findDocsThatContain(word, Ch, Docs)
(16) docCount := docCount + tmpCount
(17) return docCount

Alg. mergeBaseClusters(Base Clusters BC[])
(1) MC := ∅
(2) for i = 0 to |BC| do
(3) indexes := ∅
(4) add (i, indexes) to MC
(5) for i = 0 to |BC| do
(6) DocList1 := documents of BC[i]
(7) for j = i + 1 to |BC| do
(8) DocList2 := documents of BC[j]
(9) if baseClustersOverlap(DocList1, DocList2, simThreshold) = True then
(10) add j to indexes of MC[i]
(11) add i to indexes of MC[j]
(12) return MC

Alg. baseClustersOverlap(Document List listA, Document List listB, float simThreshold)
(1) intersection := |listA ⋂

listB|
(2) overlap1 := |intersection|/|listA|
(3) overlap2 := |intersection|/|listB|
(4) if overlap1 > simThreshold and overlap2 > simThreshold then return True
(5) else return False
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The algorithm createFinalClusters(Merged Clusters MC[], Base Clusters BC[])

takes as input a set of indexes that are related with the base clusters that can be merged

and a set of base clusters. It creates a cluster for each group of base clusters that can be

merged. Note that two base clusters that can not be merged directly it is possible to be

merged in the same cluster if a third one base cluster can be merged with them. Each final

cluster has as name the label of the highest score base cluster that it is constituted and as

document set it has the union of its base clusters’ document sets. Finally, the score of a

final cluster is calculated based on its label and its new document set.

Alg. createF inalClusters(Merged Clusters MC[], Base Clusters BC[])
(1) Clusters := ∅
(2) V I := ∅ (visited Indexes)
(3) tpmNode := empty SuffixTreeNode
(4) for index = 0 to |MC| do
(5) if V I contains index
(6) continue;
(7) add index to V I
(8) startNode := SuffixTreeNode of BC[index]
(9) set stratNode.Phrase to tmpNode;
(10) set stratNode.Score to tmpNode;
(11) set stratNode.T itleIds to tmpNode;
(12) set stratNode.DocIds to tmpNode;
(13) maxScoreDocNum := |tmpNode.docIds|
(14) recursiveMergeIndexes(MC, index, tmpNode, maxScoreDocNum, V I)
(15) maxScorePhrase := tmpNode.Phrase
(16) len := effectiveLength(maxScorePhrase)
(STC) newScore := |tmpNode.docIds| ∗ funct f(len)//for STC
(STC+) newScore := (|tmpNode.titleIds|+ |tmpNode.docIds|) ∗ funct f(len)//for STC+
(18) add (maxScorePhrase, newScore, tmpNode.docIds) to Clusters
(19) return Clusters

The algorithm recursiveMergeIndexes(Merged Clusters MC[], int index, Suf-

fixTreeNode tmpNode, int maxScoreDocNum, Base Clusters BC[]) takes as input

the base clusters that can be merged into one cluster, an index to this structure, the cur-

rent suffix tree node that is examined, the document set’s size of the current highest score

base cluster, the associated indexes with the base clusters structure that have already been

visited and a set of base clusters. This method recursively merges the list of base clusters
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that can be merged with the base cluster that is associated with the argument index.

Alg. recursiveMergeIndexes(MC[], int index, SuffixTreeNode tmpNode, int maxScoreDocNum, VI[], BC[])
(1) mergedIndex := MC[index]
(2) for i = 0 to |mergedIndex| do
(3) if V I contains mergedIndex[i]
(4) continue;
(5) add mergedIndex[i] to V I
(6) Node := SuffixTreeNode of BC[mergedIndex[i]]
(7) score := score of Node
(8) maxScore := score of tmpNode
(9) if score >= maxScore
(10) if score = maxScore
(11) if maxScoreDocNum < Node.docIds
(12) maxScoreDocNum := Node.docIds
(13) set stratNode.Phrase to tmpNode;
(14) else
(15) maxScoreDocNum := Node.docIds
(16) set stratNode.Phrase to tmpNode;
(17) set stratNode.Score to tmpNode;
(18) unionOfLists(tmpNode.docIds, Node.docIds)
(STC+) unionOfLists(tmpNode.titleIds, Node.titleIds)//for STC+
(19) recursiveMergeIndexes(MC, mergedIndex[i], tmpNode, maxScoreDocNum, V I)

After calling createFinalClusters(Merged Clusters MC[], Base Clusters BC[]) with input

base clusters of Table 4.1 and merged base clusters of Table 4.2 only one cluster is created

with label web search engine and document set 1, 2 and 3.

4.4 Preprocessing

The preprocessing times listed for STC+ in Table 4.3 are the times needed for retrieving

titles from the data base, extracting the snippets from the plain text of each document

and manipulating the titles and snippets from the lexical analyzer. Specifically, notice that

preprocessing is the most expensive task (more than one magnitude, more expensive than

the rest tasks). The second and the third column of the table (block stop words, stemming)

are the options/configuration parameters for the Lexical Analyzer which implies how the

titles and the extracted snippets will be manipulated.
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Snippets generation is the most time-consuming task as plain texts are stored in txt files

in the hard disk. Our original implementation (BT1) was trying to find the two sentences

with the bigger number of appearances of the search keywords within them. The second

implementation (BT2) stops when a second sentence, that contains the search keywords

more times than the first, is found. The impact is a small reduction in execution time as

Table 4.4 shows.

Top-
K

block
stop
words

stem-
ming

sentence
separation

Preprocessing construct
suffix
tree

prune
tree

identify
base
clusters

merge
base
clusters

create
final
clusters

Total
best
text

lexical titles Total

100 X x X 73% 26% 1% 0.654 0.025 0.039 0.016 0.044 0.0060 0.788
100 X X X 75% 24% 1% 0.654 0.025 0.029 0.015 0.049 0.0070 0.784
200 X x X 87% 12% 1% 1.619 0.043 0.148 0.119 0.255 0.033 2.223
200 X X X 86% 13% 1% 1.612 0.043 0.114 0.107 0.268 0.031 2.181
300 X x X 90% 9% 1% 2.621 0.053 0.366 0.257 0.658 0.076 4.035
300 X X X 90% 9% 1% 2.647 0.051 0.214 0.298 0.661 0.073 3.95

Table 4.3: Execution times (in seconds) for query q= kernel with BT1 and similarity
threshold 0.4.

Top-
K

block
stop
words

stem-
ming

sentence
separation

Preprocessing construct
suffix
tree

prune
tree

identify
base
clusters

merge
base
clusters

create
final
clusters

Total
best
text

lexical titles Total

100 X x X 66% 33% 1% 0.519 0.025 0.041 0.016 0.044 0.0070 0.656
100 X X X 66% 33% 1% 0.526 0.024 0.032 0.015 0.048 0.0060 0.655
200 X x X 87% 13% 1% 1.472 0.039 0.113 0.068 0.099 0.025 1.822
200 X X X 85% 14% 1% 1.451 0.077 0.063 0.059 0.102 0.02 1.78
300 X x X 92% 7% 1% 2.858 0.141 0.112 0.154 0.225 0.045 3.542
300 X X X 90% 9% 1% 2.843 0.047 0.141 0.124 0.235 0.038 3.435

Table 4.4: Execution times (in seconds) for query q= kernel with BT2 and similarity
threshold 0.4.

Table 4.5 is a comparison of clustering results for seven queries using two different

approaches for snippet generation, BT1 and BT2. It shows the number of clusters produced

using BT1 and BT2 and the number of common cluster labels between them.

The execution times for the best text extraction include the time needed for stemming

each word of the cached copy of a document. Without stemming but following a matching

approach that identifies substrings, best text extraction becomes four times faster.
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BT1 BT2

Query clusters clusters common labels
kernel 18 15 12
information retrieval 20 18 10
php examples 16 19 15
forthnet 20 22 19
yannis tzitzikas 33 14 11
crete 18 14 11
java tutorial 7 9 5

Table 4.5: Differences in number of clusters between the best text approaches and number
of common labels.

4.4.1 Problems in Detecting the Right Sentence Boundaries

During the preprocessing of the snippets there are some cases that make the identification

of sentence boundaries difficult and are listed below.

• File names (e.g. proc.c, proc.h)

• Abbreviations (e.g. FORTHnet S.A)

• Numbers (e.g. 1.5)

• Times (e.g. 12:27:52)

• Paths (e.g. /src/kernel/proc.c)

• E-mail (e.g. stella.kop@gmail.com)

• URL (e.g. www.w3.org)

• Human names (e.g. Y . Marketakis , N . Armenatzoglou and Y . Tzitzikas)

Sentence boundaries selection was implemented by using Java API functions 2.

This method does not work properly for all these cases. For example, the string ", Y.

Marketakis , N. Armenatzoglou and Y. Tzitzikas Mitos : Design and Evaluation"

is separated into:

, Y.

Marketakis , N.

2http://java.sun.com/docs/books/tutorial/i18n/text/sentence.html
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Armenatzoglou and Y.

Tzitzikas Mitos : Design and Evaluation

Moreover, after the processing of the lexical analyzer the output is the following sen-

tences:

marketakis

armenatzoglou

tzitzikas mitos design evaluation

It works right for paths like /src/kernel/proc.c but not for path ../adonomics.ps as

it is separated into .. and /adonomics.ps. Also, it works right for file names, abbreviations,

numbers, times, e-mail and urls.

The following examples are cases that there is no change:

Information Systems Laboratory: People, Yannis Tzitzikas

FORTH - ICS: Announcements

Java 2 Platform SE v1.4.0: Uses of Interface javax.xml.transform.sax.TransformerHandler

Java Object Serialization Specification: - Example of Serializable Fields

Creating a GUI with JFC/Swing: Indexes of Examples

Course Content in English (U.Crete, CS-225)

User-Level Atomic Operations

Except from human names and abbreviations the other cases does not offer valuable

information. This is an issue for further research. One could apply techniques like those

proposed for Named Entity Recognition(NER) in [29, 25].

4.5 Combining Results Clustering with Metadata Exploratory

through Dynamic Taxonomies

FleXplorer [33] is a main memory API (Application Programmatic Interface) that al-

lows managing (creating, deleting, modifying) terms, taxonomies, facets and object descrip-

tions. It supports both finite and infinite terminologies (e.g. numerically-valued attributes).

In addition it supports explicitly and intentionally defined taxonomies. Examples of the
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former include classification schemes and thesauri, while examples of the latter include hi-

erarchically organized intervals (based on the inclusion relation). Regarding, interaction,

the framework provides methods for setting (resp. computing) the focus (resp. zoom-in

points). In addition, the framework allows materializing on demand the relationships of a

taxonomy, even if the domain is infinite and intentionally defined (e.g. between numbers,

intervals, etc).

FleXplorer is used by Mitos providing the Faceted Taxonomies interactive scheme, for

offering general purpose browsing and exploration services. Currently, only some general

and content-independent facets are supported. Specifically, the facets/taxonomies, that are

created and presented to the users, are:

• web domain, a hierarchy is defined (e.g. csd.uoc.gr < uoc.gr < gr),

• format type (e.g. pdf, html, doc, etc), no hierarchy is created in this case,

• language of a document based on the encoding of a web page (e.g. Greek, English,

Latin-1) and

• (modification) date hierarchy

The Clustering component is called by FleXplorer and the derived clusters are consid-

ered as an additional facet. Tree-based presentation of the clustering results is suitable for

integrating this functionality to FleXplorer.

Figure 4.14 shows the Faceted Taxonomies results for the query=computer science

department.

To the best of our knowledge, there are no other WSEs that offer the same kind of

information/interaction. A somehow related interaction paradigm that involves clustering

is Scatter/Gather [11, 18]. This paradigm allows the users to select clusters, subsequently

the documents of the selected clusters are clustered again, the new clusters are presented,

and so on. This process can be repeated until individual documents are reached. However,

for very big answer sets, the initial clusters apart from being very expensive to compute

on-line, will also be quite ambiguous and thus not very helpful for the user. Our approach

alleviates this problem, since the user can restrict his focus through the available metadata,

to a size that allows deriving more specific and informative cluster labels.
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Figure 4.14: Faceted Taxonomies interface on Mitos
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Figure 4.15: Time to load results to FleXplorer

4.5.1 On-Demand Integration

Dynamic taxonomies can load and handle thousands of objects very fast as it is proved

from Figure’s 4.15 example that shows the loading time of the top-K answer for various

values of K: from 104 to 106. As the loading time depends on the format employed (and

the associated parsing costs), the figure reports the loading times for four different formats,

namely: (a) JDBC ResultSet, (b) XML, (c) a (proprietary) TXT-based format, and (d) a

main memory format, called ResultDocument that is provided by the FleXplorer API and

is used in Mitos.

However, the application of results clustering on thousands of snippets would have the

following shortcomings:

• Inefficiency. Real-time results clustering is feasible with hundreds (not thousands) of

snippets.

• Low cluster label quality. The resulting labels would probably have low quality, since

they would be too general.

To this end we have developed a dynamic (on-demand) integration approach. The idea

is to apply the result clustering algorithm only on the top-C (for C usually 100) snippets

of the current focus. This approach not only can be performed fast, but it is expected to

return more specific (informative/predictive) cluster labels.

Let q be the user query and let Ans(q) be the answer of this query. We shall use Af to

denote top-K (usually K < 10000) objects of Ans(q) and Ac to denote top-C (usually C
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equals 100) objects of Ans(q). Clearly, Ac ⊆ Af ⊆ Ans(q). In particular, the steps of the

process are the following:

(1) The snippets of the elements of Ac are generated.

(2) The results clustering is applied on the elements of Ac. A cluster label tree clt is

generated.

(3) The set of Af (with their metadata), as well as clt, are loaded to FleXplorer, a

module for creating and managing the faceted dynamic taxonomy. As the facet that

corresponds to automatic clustering includes only the elements of Ac, we create an

additional artificial cluster label, named ”REST” where we place all objects in Af \Ac

(i.e. it will contain K − C objects).

(4) FleXplorer computes and delivers to the GUI the (immediate) zoom points.

The user can start browsing by selecting the desired zoom point(s). When the user selects

a zoom point or submits a new query, the steps (1)-(4) are performed again.

4.5.2 Application over Mitos

In our implementation, we have chosen not to apply the re-clustering process (i.e. steps

(1) and (2) of the on-demand algorithm), when the user interacts with the clustering facet.

This behavior is more intuitive, since it preserves the clustering hierarchy while the user

interacts with the clustering facet and does not frustrate the user with unexpected results.

Furthermore, if the user is not satisfied by the available cluster labels for the top-C objects

of the answer, he can enforce the execution of the clustering algorithm for the next top-C

objects. This feature is available by pressing the REST zoom-in point, which as already

mentioned, keeps pointers to K−C objects. These objects are not included in the extensions

of the original cluster labels. Figure 4.16 shows an indicative screendump of the Web-based

GUI. Notice the REST zoom-in point in the By clustering facet.

4.5.3 Incremental Evaluation Algorithm

Here we present an incremental approach for exploiting past computations and results.

Let Af be the objects of the current focus. If the user selects a zoom point he moves to a
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Figure 4.16: Faceted Taxonomies based on Clustering interface on Mitos
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different focus. Let A′f denote the top-K elements of the new focus, and A′c the top-C of

the new focus. The steps of the algorithm follow.

(1) We set Ac,new = A′c \Ac and Ac,old = Ac \A′c, i.e. Ac,new is the set of the new objects

that have to be clustered, and Ac,old is the set of objects that should no longer affect

clustering.

(2) The snippets of the objects in Ac,new are generated (those of Ac,old are available from

the previous step). Recall that snippet generation is expensive.

(3) NM-STC is applied incrementally to Ac,new.

(4) The new cluster label tree clt′ is loaded to FleXplorer.

(5) FleXplorer computes and delivers to the GUI the (immediate) zoom points for the

focus with contents A′f .

Let’s now focus on Step (3), i.e. on the incremental application of NM-STC. Incremen-

tal means that the previous suffix tree sf is preserved. Specifically, we extend sf with the

suffixes of the elements in the titles/snippets of the elements in Ac,new, exploiting the in-

cremental nature of STC. Let sf ′ denote the extended suffix tree. To derive the top scored

labels, we have to score again all nodes of the suffix tree. However we should not take into

account objects that belong to Ac,old. Specifically, scoring should be based on the extension

of the labels that contain elements of A′c only.

The preserved suffix tree can be either the initial suffix tree or the pruned suffix tree.

Each node of the initial tree corresponds to a single word, while the pruned tree is more

compact in the sense that if a node contains only one child node and both nodes contain

the same objects, they are collapsed to one single node that has as label the concatenation

of the labels of the constituent nodes. Scoring is done over the pruned suffix tree. However

to add and delete objects to/from a pruned suffix tree sometimes requires ”splitting” nodes

(due to the additions) and pruning extra nodes (due to the deletions). On the other hand,

if the unpruned suffix tree is preserved, then additions and deletions are performed right

away and pruning takes place at the end. Independently of the kind of the preserved suffix

tree, below we discuss two possible approaches for updating the suffix tree:
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• Scan-approach

We scan the nodes of the suffix tree sf ′ and delete from their extensions all elements

that belong to Ac,old.

• Object-to-ClusterLabel Index-approach

An alternative approach is to have an additional data structure that for each object

o in Ac it keeps pointers to the nodes of the suffix tree to whose extension o belongs.

In that case we don’t have to scan the entire suffix tree since we can directly go to

the nodes whose extension has to be reduced. The extra memory space for this policy

is roughly equal to the size of the suffix tree. However the suffix tree construction

process will be slower as we have to maintain the additional data structure too.

We have to note that sf can be considered as a cache of snippets and recall that snippet

generation is more expensive than clustering. The gained speedup is beneficial both for a

stand-alone WSE as well for a Meta WSE, since fetching and parsing of snippets are reused.

The suffix tree sf has to be constructed from scratch whenever the user submits a new query

and is incrementally updated while the user browses the information space by selecting zoom

points. If the suffix tree size exceeds a threshold, we delete it and we reconstruct it based

on the snippets of the top-C elements of the new focus.

4.5.3.1 Using the initial suffix tree

For this method the initial (unpruned) suffix tree is stored in the main memory. The

clustering algorithm inserts into this unpruned suffix tree the suffixes that corresponds to

documents of Ac,new. In the non-incremental algorithm the next step would be the pruning

of the tree but now we must first delete the old documents from the nodes of the tree in

order pruning to be consistent. Reduction of old documents is done using Scan-approach as

described above. After the elimination of the old documents a copy of this unpruned suffix

tree is stored. The other steps remain the same.

Figure 4.17 (A1) shows the constructed suffix tree after the insertion of the following

documents (Ac):

Title 1: a b
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Snippet 1: c a b

Title 2: a e

Snippet 2: c a e

We suppose that Ac′ consists of the following documents:

Title 1: a b

Snippet 1: c a b

Title 3: a b

Snippet 3: c g

Figure 4.17 (A2) shows the constructed suffix tree after the insertion of Ac,new={3} into the

suffix tree of Figure 4.17 (A1). Figure 4.17 (A3) shows the generated suffix tree after the

elimination of Ac,old={2} (note that after this stage a copy of this suffix tree is stored in the

main memory) and finally Figure 4.17 (A4) shows the pruned suffix tree.
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Figure 4.17: Example of using the initial suffix tree

4.5.3.2 Using the pruned suffix tree

For this method the pruned suffix tree is stored in the main memory as it is in a compact

form so it has less memory requirements. The clustering algorithm inserts into this pruned

suffix tree the suffixes that corresponds to documents of Ac,new. This means that some nodes
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are going to be divided. During this process of inserting the new suffixes a data structure

is maintained that maps each document to the nodes it belongs. Now the old document

ids are reduced using the additional data structure. Next the tree is pruned, a copy of this

pruned suffix tree is stored and then the algorithm continues as the non-incremental.

Figure 4.18 (A1) shows the preserved pruned suffix tree and the additional data structure

(Object Map) for documents(titles/snippets) 1 and 2 while Figure 4.18 (A2) shows the

constructed suffix tree after the insertion of Ac,new={3} into the suffix tree of Figure 4.18

(A1) and the updated Object Map. Figure 4.19 (A3) shows the elimination of Ac,old={2}
based on the Object Map (red color denotes the deletion of the specific element) and Figure

4.19 (A4) shows the generated suffix tree and the Object Map after the deletion of the entries

that corresponds to the Ac,old documents. Finally, Figure 4.20 (A5) shows the pruned suffix

tree and the Object Map, both of them will be stored in the main memory.
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Figure 4.18: Example of using the pruned suffix tree

4.5.4 Experimental Results

4.5.4.1 Clustering Performance

It is worth noticing that the most time consuming subtask is not the clustering itself but

the extraction of the “best text” (snippet) from the cached copies of textual contents of the
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Figure 4.19: Elimination of Ac,old
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Figure 4.20: Example of using the pruned suffix tree
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pages 3. To measure the performance of the clustering algorithm and the snippet generation,

we selected 16 queries and we counted the average times to generate and cluster the top-

{100, 200, 300, 400, 500} snippets. All measurements were performed using a Pentium IV

4 GHz, 2 GB RAM, Linux Debian.

Measured Task 100 200 300 400 500

Time to generate snippets 0.793 1.375 1.849 2.268 2.852
Time to apply STC 0.138 0.375 0.833 1.494 2.303
Time to apply NM-STC 0.117 0.189 0.311 0.449 0.648

Table 4.6: Top-C Snippet Generation and Clustering Times (in seconds)

Table 4.6 shows snippet generation times and the clustering algorithms performance.

Both times are in seconds. Notice that snippet generation is a very slow operation and is

the bottleneck in order to provide fast on-demand clustering, for a big top-C number (C

bigger than 100). We should mention though, that our testbed includes a rather big number

of large sized files (i.e. pdf, doc, ppt), which hurt snippet generation times. Furthermore,

notice that NM-STC is at least two times faster than STC. This is because NM-STC does

not have to intersect and merge base clusters.

4.5.4.2 Overall Performance

In this experiment we measured the cost of coupling the cluster generation times (i.e.

snippet generation and clustering algorithm execution) with the dynamic taxonomies times

(i.e. the times to compute the zoom points and the times to load the new clustering labels to

the corresponding facet). Moreover we compare the non-incremental with one incremental

algorithm, which preserves the initial suffix tree and the elimination of old objects is done

using the Scan-approach. The scenario we used includes: (a) the execution of the query

crete which returns 4067 results, (b) the expansion of the .gr zoom point of the By domain

facet and the selection of the uoc.gr (1277) zoom-in point from the hierarchy revealed from

the expansion, and (c) the selection of the text/html (807) zoom-in point of the By filetype

facet. Let ca, cb and cc be snippets of the top − C elements in the steps (a), (b) and (c)

respectively. Figure 4.21 shows the facet terms after steps (a), (b) and (c), as they are

3The snippets in our experiments contain up to two sentences where the query terms appear most times
and each one consists of 11 words maximum.

103



(a) (b) (c)

text/html is pressed
Expand gr and

uoc.gr is pressed

Figure 4.21: Steps (a)-(c) of running scenario

displayed in the left bar of the WSE GUI. We set K = 10000 (i.e. the whole answer set is

loaded) and repeated the above steps for the following values of C:100, 200 ... 500. We do

not measure the cost of the query evaluation time. In all experiments FleXplorer computes

count information.

Table 4.7 shows the intersection of Ac and A′c for steps (a), (b) and (c) and the execution

times that correspond to the integration of FleXplorer and results clustering when the

non-incremental NM-STC and an incremental approach of NM-STC is used, for the top−C

elements. It is evident that for top-100 and top-200 values, the results are presented to

the user almost instantly (around 1 second), making the proposed on demand clustering

method suitable as an online task. Moreover we can see that there is a linear correlation

between time cost and the top-C value. Finally calculating and loading clusters for the

top-500 documents, costs around 3 seconds making even big top-C configurations a feasible

configuration.

Comparing the incremental and the non-incremental algorithm, we observe a significant

speedup whenever the overlap is more than 50%, for our scenario. At step (a) the suffix tree

construction is the same for both algorithms as the suffix tree sf has to be constructed from
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Step (a) Step (b) Step (c)

top-100 |ca| = 100 |ca ∩ cb| = 43, overlap=43% |cb ∩ cc| = 85, overlap=85%
Non-Incr. 0.914 0.443 0.204
Incr. 0.931 0.431 0.101

top-200 |ca| = 200 |ca ∩ cb| = 71, overlap=35.5% |cb ∩ cc| = 113, overlap=56.5%
Non-Incr. 1.266 1.245 0.789
Incr. 1.245 0.965 0.68

top-300 |ca| = 300 |ca ∩ cb| = 74, overlap=24.6% |cb ∩ cc| = 201, overlap=67.7%
Non-Incr. 1.676 2.534 1.383
Incr. 1.65 2.527 0.761

top-400 |ca| = 400 |ca ∩ cb| = 85, overlap=21.5% |cb ∩ cc| = 252, overlap=63%
Non-Incr. 2.246 3.067 1.944
Incr. 2.118 3.335 0.942

top-500 |ca| = 500 |ca ∩ cb| = 97, overlap=19.4% |cb ∩ cc| = 324, overlap=64.8%
Non-Incr. 2.483 3.495 2.001
Incr. 2.493 3.652 0.751

Table 4.7: Top-C Comparison of Incremental/Non-Incremental Algorithms (in seconds)

scratch. For step (b) there are small variations due to the small overlap, so the time saved

from the snippets generation/parsing is compensated by the time needed for eliminating old

objects. Specifically, the incremental algorithm is faster for the top-200 case and slower for

the top-{400, 500} cases which have the lowest overlap. For the other cases performance is

almost the same. Notice that although the top-100 case has the biggest overlap of all, there

are no differences in the execution time of the two algorithms. This is probably due to the

fact that the overlapping documents have fast snippet generation times, while the rest are

big sized. At step (c) the benefit from the incremental approach is clear, since it is almost

twice as fast as the non incremental one. Specifically, the best speedup is in the case of

top-500, where overlap reaches 65% and the execution time of the non-incremental is 2.001,

while for the incremental is just 0.751.

4.6 Admin Parameters

Administrator’s parameters for clustering are stored in the database and can be changed

only by authenticated users 4. Note that the clustering algorithm that is currently used on

Mitos is also specified by a parameter which is called Name hierarchy.

The following parameters are used by Snippet-based approaches:

• K : number of top elements of the answer to cluster
4http://groogle.csd.uoc.gr:8080/mitos/admin/
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• LLmax : minimum number of words that a cluster label can contain

• LLmin : maximum number of words that a cluster label can contain

• NCmax : maximum number of the generated clusters

4.7 Application over Google

Our approaches were also applied over the search results of Google. A Google parser was

implemented that is based on an HTML parser. Google pages are requested with 100 results

per page which is the maximum number. The information we gather for each result is its

title, snippet, address links and file length. Titles and snippets are the input data for the

clustering process, while the address links and file length are used only at the presentation

layer. At the GUI layer the user can select the number of results which can vary from 100

to 500 and the clustering algorithm he wants.

Google groups together its News, Books, Videos, Blogs, Images, Shopping results. Usu-

ally only titles are provided for these results. We exploit all these results except the Images

results. Also, in order to exploit the grouping of these hits we observe that their titles

consist of the title of the group concatenated with the title of the hit. For example, if we

have the following Book results:

Books by Nikos Kazantzakis

Zorba the Greek

At the Palaces of Knossos: A Novel

The Last Temptation of Christ

the titles that will be used are:

Books Zorba the Greek

Books At the Palaces of Knossos: A Novel

Books The Last Temptation of Christ

The name of the group (e.g. Books) is usually followed by the query words (e.g. Nikos

Kazantzakis), so we do not use them as they will be excluded at step (2) of the algorithm.

For example, News results for Obama will be reduced to News.

Note that each of these special groups are counted as one result for Google, but our

106



Google parser identifies each constituent title as a separate result which means that the

number of the requested results can be 100 and the clustered documents more than 100.

Figures 4.22 and 4.23 show the user interface of Clustering over Google5 and the clusters

derived when submitting the query q= Eleftherios Venizelos and q= Nikos Kazantzakis

respectively.

Figure 4.22: Clustering over Google user interface

Figure 4.23: Clustering over Google user interface

5http://groogle.csd.uoc.gr:8080/google/google.jsp

107



108



Chapter 5

Conclusion

5.1 Synopsis

Web Search Engines typically return a ranked list of documents that are relevant to the

query submitted by the user. The absence of concise overviews and the inability of the user

to determine his information need accurately, make it difficult for the user to satisfy his

information needs. Results clustering is a solution which provides a quick overview of the

search results.

Results clustering can be applied either to the original documents (like in [11, 18, 23]),

or to their (query-dependent) snippets (as in [38, 30, 15, 41, 17, 34]).

Clustering should provide each generated cluster with a cluster label that characterize

the contents of its objects in order to allow users to detect what they need quickly. This

task of deriving readable and meaningful (single-word or multiple-word) names for clusters

is called cluster labeling and is very difficult as labels must be predictive, descriptive, concise

and syntactically correct. Some clustering algorithms [15, 12, 37] use internal or external

sources of knowledge so as to identify significant words/phrases that represent the contents

of the retrieved documents or to enrich the extracted words/phrases in order to optimize

the clustering and improve the quality of cluster labels.

In this thesis we relied on Suffix Tree Clustering (STC) which is a clustering technique

where search results (mainly snippets) are clustered fast (in linear time), incrementally, and

each cluster is labeled with a common phrase. Other advantages of STC is that it uses
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phrases (rather than words) and that it allows clusters to overlap. Based on this algorithm

we introduced (a) a variation of the STC, called STC+, with a scoring formula that favors

phrases that occur in document titles and differs in the way base clusters are merged, and

(b) a novel algorithm, called NM-STC, that adopts a different scoring formula, does not

merge clusters and results in hierarchically organized labels.

The comparative evaluation of the three algorithms showed that NM-STC is (two to

three times) faster than STC and STC+. Moreover, the empirical evaluation conducted

with the participation of 11 people showed that both STC+ and NM-STC are significantly

more preferred than STC, and that STC+ is slightly more preferred than NM-STC. The

majority of the users prefer (a) hierarchically organized labels, (b) labels comprising one to

three words, and (c) 10-15 clusters.

A complementary approach for the presentation of web search results is to exploit the

various metadata that are available to WSE (like domain, dates, language, document type,

etc) in the context of the interaction paradigm of faceted and dynamic taxonomies. We

have proposed an on-demand integration of content-based results clustering with dynamic

taxonomies. To this end we have exploited the incremental nature of STC and presented an

incremental approach for exploiting past computations and results. The evaluation of the

incremental algorithms showed that the benefit from the snippet caching is considerable as

the result set is restricted since snippet generation is more expensive than clustering.

5.2 Directions for further work and research

The current work can be extended in order to further improve the quality of cluster

labels. One direction is to investigate the applicability of Named Entities Recognition(NER)

techniques.

Regarding efficiency, a possible optimization for STC+ and NM-STC could be to prune

two nodes only when their labels appear in the same document titles and not in the same

documents which means that a label appears either in the document title or in the document

snippet.

Another issue for further research is how to improve the performance of the incremental

algorithms presented and finally the investigation of what top-C value most users prefer.
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Appendix A

Here are presented the queries used for the user evaluation.

1. UML

2. Ανάκτηση Πληροφοριών

3. Crete

4. Ηράκλειο

5. Διαχείριση Οντολογιών

6. Οπτικοποίηση Γράφων

7. Ο Μίτος της Αριάδνης

8. Βιβλιοθήκη Ρεθύμνου

9. How to add jar files in Eclipse

10. How to install mitos

11. Διακοπές στη Νότια Κρήτη

12. SWKM

13. Φαρμακεία Ηρακλείου

14. ιπτάμενοι δίσκοι στη Νότια Κρήτη

15. Βικελαία

16. Τηλεοπτικό Πρόγραμμα
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