University of Crete

Computer Science Department

Results Clustering in Web Searching

Kopidaki Styliani
Master’s Thesis

Heraklion, June 2009

ITANEIIIYTHMIO KPHTHY
YXOAH OETIKOQN KAI TEXNOAOI'TKQN EIIINTHMON
TMHMA EINIETHMHY. YTIOAOTIETOQN

Opadonoinon Anoterecudtwy otig Mnyavég Avalitnong tou Iotod

Epyacio nou uvnofrfdnxe and tny
Ytuhavy Epp. Koniddxn
¢ UEPIXY) EXTANOWOY TWV ATUTACERY YL TNV ATOXTHOT)

METAIITTXTAKOT AITAQMATOY. EIAIKETYXHY

Yuyypagéog:

Yruhovh Komddur, Tudua Entotiung Trokoyiotdyv

Ewnyntin Enttpony:

Twdvvne Titlxag, Enixovpog xadnynthc, Endntng

Anuiteng IieZovadnng, Kadnyntig, Méhog

Conydens Avioviou, Kadnynthc, Méhog

Aext:

ITédvog Teayovide, Kadnyntic
Ipbedpog Emtponrc Metantuytaxdv Lmoudoy

Hpdoeheto, Tovviog 2009

Results Clustering in Web Searching
Kopidaki Styliani
Master’s Thesis
Computer Science Department, University of Crete

Abstract

This thesis elaborates on the problem of providing efficient and effective methods for re-
sults clustering in Web searching. In brief, results clustering is useful for providing users
with overviews of the search results and thus allowing them to restrict their focus to the
desired parts of the returned answer. In addition, results clustering alleviates the prob-
lem of ambiguity of natural language words. However, the task of deriving (single-word or
multiple-word) names for the clusters (usually referred as cluster labeling) is a difficult task,
because they have to be syntactically correct and predictive (should allow users to predict
the contents of each cluster). Furthermore, results clustering is an online task therefore
efficiency is an important requirement.

This thesis surveys the methods that have been proposed and used for results clustering
and focuses on the Suffix Tree Clustering (STC) approach. STC is a clustering technique
where search results (mainly snippets) can be clustered fast (in linear time), incrementally,
and each cluster is labeled with a phrase. This thesis proposes two novel results cluster-
ing methods: (a) a variation of the STC, called STC+, with a scoring formula that favors
phrases that occur in document titles and differs in the way base clusters are merged, and
(b) a novel non merging algorithm, called NM-STC that results in hierarchically organized
clusters. The comparative user evaluation showed that both STC+ and NM-STC are sig-
nificantly more preferred than STC, and that NM-STC is about two times faster than
STC and STC+. These methods where applied over Mitos Web search engine and over
Google. Moreover, NM-STC was integrated with the Dynamic Faceted Taxonomies inter-
action scheme of Mitos. The dynamic coupling of results clustering with dynamic faceted
taxonomies results to an effective, flexible and efficient exploration experience. Finally, the
thesis reports experimental and empirical results from applying these methods over Mitos

and over Google.
Supervisor: Yannis Tzitzikas

Assistant Professor

Opadonoinon Anoterecudtwy otig Mnyavég Avalitnong tou Iotod
Komddnn Ytuhavy
Merarntuytoxr Egyaoia

Turua Emiotiung Troloyotoy, HavemotAuo Kertng
ITepiindn

H ouyxexpévn epyacio acyoheitor delodxd ue 10 mpoPAnua EUEECTE UTOTEAECUATIXWY Xl
anodoTIX®Y YeVEBLY Yiol TNV OUAdOTOMGN AnoTEAESUATWY aTig unyavés avalntnong tou Iotol.
Ev cuvtopia, 1 opadonoinon anoteheoudtony Topéyel GTOUS YPNOTES YId YEVIXT ETIOXOTNOT TWY
AmOTEAECUATWY avalTNOTS, EMTPEROVTUS TOUE VO ECTIAGOLY TNV TPOocoY Y Toug ot exciva Ta
TUAROTA TN AMAVTNOYNG TOU AVTATOXPVOVTOL OTIC TANPoPoplaxés Toug aviyxes. Emmiéov, 1
opadonoinoy anoteeoudtwy petptdler To TEOPANUA TN augonuiog TV AEEE®Y TC PUOIXNC
Yhwoooc. Evtottoi, 1 o0vtadn (LOVOREXTIXGOV | TEPLPPUOTIXWY) OVOUATWY Tapousiaone Yid
TIC ToPAYOPEVES Opddes elvar €var 50oxoho TEOBANUO Aol To ovOpaTa TEENEL APEVOS VL Efvan
ouVTaXTIXd 0p¥d xou ageTEéQOU Vo ETITEETOUY GTO YeNoTy Vo TpoPBhédel To MEQLEYOUEVA TGV
OUAOWY. JuVaua, 1) ouadoToinNoT ANOTEAECUAT®Y anotehel TuhUa TN dtadxaoctiag andvinong
ENEQWTNAOEWY ETOUEVKC 1) ATODOTIXOTTTA Efval Wiot ONUAVTLIXY anaitnor).

H epyooio auth xdver wa emioxdnnon tov uedddwy nou €youvv npotadel xow €youv yenot-
pomotnlel yioo TV opadonoinon anoteheoudtoy xot €oTidlel otov ahydprdpo Suffiz Tree Clus-
tering (STC). O STC eivar wa teyvixry otny onolo ta anotehéopota avalitnone (xuplng tuh-
HoTol TRV XEWEVQDY) opadonotobval Yphyopa (o€ Ypauwxd ypdvo), auinuxd, xau 1 xdde opdda
éyet wa gpdon oav ovopa. H epyoaoio avtr npoteiver 800 véeg uédodouc: (a) war mapodhoyh
tou STC, nou Aéyetar STC+, 7 onola ypnotpwonotel pla ocuvdptnor Baduohéynong nou euvoet
TIC Qpdoelg Tou eggavilovial 0Toug TITAOUC TWV EYYRAPWY o SLIPEREL OTOV TPOTO UE TOV
onofo ouyywvebovtar ot unoPripies opddec, xou (B) éva véo akybprduo, nouv Aéyetow NM-STC,
o onolog xatahfyet oe wor tepapytxy) dour) and ouddec. H ouvyxprtind) allohdynon e ypehoteg
€deie OtL oL ypnoteg mpotoly teplocotepo toug STCH xou NM-STC and tov STC, xo 611
o NM-STC eivon 800 qopéc mo yeryopog and toug STC xow STCH. Ov pédodor autol epap-
pwooTxay Tave ot unyavy avalftnone Mitog xat to Google. Emniéov, ta anoteAéopata
tou NM-STC evoopatainxay oto goviého alinienidpaons twv Avvauxov Iohudidotatemy

Tawvopuny Tou urootneilel 1 unyovh Mitog, wg wot emTAé0V SLIGTUCY) TOU CUUTATIOWYVEL TIG

unéhotnes draotdoelc (nou eivon aveZdptntes nepeyouévon). H Lelln auth éyer oav anotéheo-
4 4 4 4 7 4 I

PO Wiol AMOTEAEOUATINY, EVENXTY Xai amodoTiX ThonyNTWer epmetpla. Téhog, mepypdpovTtal xa

OVOADOVTAL TOL TELQUUATIXG XUl EUTELPIXA ATMOTEAECPATA ATO TNV EQUQUOYT| AVTWV TV PEVOdWY

mave ot unyavi Mitog xa oto Google.

Enéntnge Kadnynthg: INdvne Tltlixag
Enixoupog Kadnyntic

Euyapiotieg

Oa Hleha va guyopioThon tdpa ToAS Tov endnty xadnynth wou x. I'dvvry TCtlixa yua
OAm N Borplela Tou yia TNV nEpdTwoT authc TNE epyaciog Tov Teheutalo EVAUIOT Ypdvo, XK
xat ytor TNV xadodRynomn Tou »w¢ GUUBOUAOU HOU TOV TEMTO €Va YPOVO TV UETATTUYIXMY LOU
OTOLBWV.

Erniong, ogeilw éva peydho euyapiotd atov Havoyiotn Hanaddxo yio Tic ToAITIIES YVOOELS
TOL TavVe ot wnyavh Mitog xou yior 6k T Bordela xou TV uTooTARIEY Tou.

Axépa, Yo Hleha va evyaptotiow Toug Yoveic pou, Mavoln xou Mogia, Ty adeppy, pou,
Nitoa, yia Ty aydnn toug xou TV UTooTAEN Toug, TIC QIAEC Xt Toug QIAOUC UOU Tou PE
aVTEYOUVY axOPOL Xal GO0US HTAY E0G Xal GGOUS NTAY LoXELdL.

Téhog, Yo fdela vo euyopiotion Toug petantuytaxols ortntés [idvvny Mapxetdnrn, Mipo
IMoaraddxm, Nixo Apuevatloyiou, Logia Khetoapydxn, Mapla Kaurnovpdxrn, Mopta Wopdxn,
Towhapdvn TIEtpo, xaw toug dwbaxtopixols gortntéc Havayintn Harnaddxo, I'dvvn Ocoyden,

Avtoyvn M xow ©odwet, Ildtxo yio T ouypetoyr Toug otny a€lohdynor 1wy aiyoplduwy.

H epyoaoio aut eivar agiepopévn otoug nporanotdec pou Nixo xou Xotlhva (Avactacia).

‘Avipwnog nou natveleton
YioL TNV TOAAY TOU YVOOT
oe Eépet 0 Vedg

TL €)EL VO TOU DWOEL.

Contents

Table of Contents iv
List of Figures viii
1 Introduction 1
1.1 Introduction to Clustering 1
1.1.1 Flat (Partitioning) clustering 2

1.1.2 Hierarchical clustering 3

1.2 Clustering in Information Retrieval 4
1.2.1 Information Retrieval Systems, 5

1.3 Distance/Similarity Functions L. 7
1.3.1 Euclidean distance measures (L,-Norms) 7

1.3.2 Non-Euclidean distance measures (Similarity Measures) 8

1.4 Results Clustering e 9
1.4.1 DMotivation 9

1.4.2 Approaches and Problems 0L 10

1.4.3 General Requirements L. 11

1.5 Contribution of this thesis oo 12
1.6 Organization of the thesis 13

2 Related Work 15
2.1 The Results Clustering Process 15
2.2 Web Meta-Search Engines L o oo 16
2.2.1 Commercial Engines o oo 16

2.3

2.4

2.5

2.6

3 Our
3.1

3.2

2.2.2 Research Prototypes 18

2.2.3 Open-source Systems Lo 21
Index-based approaches 23
2.3.1 Lexical Affinities 24
2.3.2 Frequent Itemset Hierarchical Clustering (FIHC) 25
2.3.3 SCuBA - Subspace Clustering 26
Snippet-based approaches 27
2.4.1 Suffix Tree Clustering (STC) 27
2.4.2 TermRank algorithm 29
2.4.3 Deep Classifier 31
2.4.4 Salient phrases extraction 32
2.4.5 Automatic construction from text information bases 33
STC-based approaches 35
2.5.1 STC based on True Common Phrase Label Discovery 35
2.5.2 STC with X-gram 36
2.5.3 Extended STC (ESTC) 38
254 Findex 39
2.5.5 Link-based Clustering, 40
2.5.6 Semantic, Hierarchical, Online Clustering (SHOC) 41
Synopsis and Comparison 42
2.6.1 Discussion Lo 46
Approach 51
Problem Statement and Notations 51
3.1.1 Configuration Parameters, 52
3.1.2 Notations 52
STC and Extensions L 53
3.2.1 The Original STC 53
3.2.2 STC+: A Variation of STC 55
3.2.3 A New Clustering Algorithm (NM-STC) 58
3.24 Notes e 61

ii

3.3 Comparative Evaluation 62

3.3.1 Efficiency 62
3.3.1.1 Time Performance 62

3.3.2 Effectiveness - Quality o 62
3.3.21 UlExamples 62

3.3.2.2 Evaluation by Users 63

3.3.2.3 Clustering Evaluation Metrics 67

3.4 Synopsis 68
Implementation and Applications 71
4.1 Application over a Web Search Engine 71
4.1.1 Software Design Diagrams 73

4.2 Snippet-based Clustering Component 74
4.2.1 Sequence Diagrams L Lo oo 74

4.3 TImplementation of STC o 78
4.4 Preprocessing e e e e 89
4.4.1 Problems in Detecting the Right Sentence Boundaries 91

4.5 Combining Results Clustering with Metadata Exploratory through Dynamic

Taxonomies Lo e 92
4.5.1 On-Demand Integration 95
4.5.2 Application over Mitos 96
4.5.3 Incremental Evaluation Algorithm 96
4.5.3.1 Using the initial suffix tree00 99

4.5.3.2 Using the pruned suffix tree 100

4.5.4 Experimental Results 101
4.5.4.1 Clustering Performance 101

4.5.4.2 Overall Performance, 103

4.6 Admin Parameters L 105
4.7 Application over Google 106
Conclusion 109
5.1 Synopsiso e 109

iii

5.2 Directions for further work and research

v

List of Tables

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

4.2

4.3

4.4

4.5

4.6

Snippets set L
Features comparison of clustering search engines and algorithms
Pros and cons summary of algorithms and search engines
Complexity comparison of clustering algorithms

Explanation for each parameter of Table 2.4

Base clusters identified from STC using only snippets
Base clusters identified from STC using titles and snippets.
Base clusters identified from STC+
Comparative Evaluation by Users
Relative Ranking by Users
Questionnaire L e e
Evaluation Metrics Lo

Comparative Results

Base clusters identified from Figure’s 4.12 suffix tree.
Merged Clusters o o
Execution times (in seconds) for query ¢= kernel with BT1 and similarity
threshold 0.4.
Execution times (in seconds) for query g= kernel with BT2 and similarity
threshold 0.4. o L
Differences in number of clusters between the best text approaches and num-
ber of common labels. L

Top-C Snippet Generation and Clustering Times (in seconds)

90

90

4.7 Top-C Comparison of Incremental/Non-Incremental Algorithms (in seconds) 105

vi

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Clusty search engine user interface
Quintura search engine user interface
Grouper prototype user interface
Scatter/Gather results for the top 250 documents that contain the word star.
Carrot clustering engine L oL
Snaket clustering engine user interface
The suffix tree of the strings ”cat ate cheese”, "mouse ate cheese too” and

“cat ate mouse too”. Lo L oL Lo
Base clusters derived from the suffix tree of Figure 2.7.
The base cluster graph of the example given in Figures 2.7 and 2.8.
A fragment of a relational graph of appledata.
Ranks of terms based on TermRank and TFxIDF.
An example of Salient phrases extraction algorithm
Suffix tree with X-gram L
Suffix tree with X-gram L

Suffix tree with X-gram after complement

Two examples of NM-STC
Results clustering for the query g=mpéxAeto
Results clustering for the query ¢g=uml
Result Sizes L
Evaluation system user interface
Questionnaire e e

Evaluation per query

vii

20

28
29

4.1
4.2
4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

The Component Model of Mitos 72
Component diagram of Mitos search engine. 73
Sequence diagram of the results clustering process. 75

Sequence diagrams for the generation of clusters by the original STC and

STCH. . . o e 76
Sequence diagrams for the generation of clusters by NM-STC. 77
Sequence diagrams for the generation of clusters by NM-STC. 77
Sequence diagrams for the generation of clusters by NM-STC. 78
The suffix tree of the Snippets 1,2 and 3. 80
Suffix tree pruning example for two nodes a,b.. 81
The pruned suffix tree of Figure 4.10 81
Base clusters and final cluster o L. 84
Faceted Taxonomies interface on Mitos 94
Time to load results to FleXplorer 95
Faceted Taxonomies based on Clustering interface on Mitos 97
Example of using the initial suffix tree 100
Example of using the pruned suffix tree, 101
Elimination of Acoig - - - - - o o o oo 102
Example of using the pruned suffix tree 102
Steps (a)-(c) of running scenario 104
Clustering over Google user interface 107
Clustering over Google user interface 107

viii

Chapter 1

Introduction

1.1 Introduction to Clustering

Clustering is a process of partitioning a set of objects (or data elements) into subsets,
called clusters, such that an object belonging to a cluster is more similar to objects belong-
ing to the same cluster than to objects belonging to other clusters. Partitioning is based on
a (dis)similarity measure that is always a pair-wise measure. Clustering is a form of unsu-
pervised learning compared to classification (or categorization) that is based on predefined

categories.

Clustering can be separated into various categories. Based on the relation between
clusters, there can be either flat or hierarchical clustering. If Obj denotes the set of objects to
be clustered, flat clustering generates a flat set of clusters C1, ..., Ck (where C; C Obj), that
are not related to each other, while hierarchical clustering generates a hierarchy of clusters
that are correlated to each other. Furthermore, according to the relationship between objects

and clusters clustering can be divided into:

e Erxhaustive: each object is assigned to at least a cluster (i.e. Uf’le’i = Obj), otherwise

it is called non-exhaustive.

e Querlapping: an object can belong to more than one cluster (3,5 s.t. C; N C; # 0),

otherwise it is called non-overlapping or disjoint clustering.

A clustering Ci,...,Cy of Obj is called partition clustering, if it is exhaustive and non-

overlapping, i.e. if

Uk (C;=0bjand C;NC; =0 Vi+j

1.1.1 Flat (Partitioning) clustering

Flat (Partitioning) clustering is linear in the number of objects and requires the number
of clusters to be predetermined. The most commonly used flat clustering algorithm is K-

means that generates non-overlapping clusters.

o K-means

At first, initial K cluster centers (centroids) are selected randomly. Afterwards, each
object is assigned to its most similar centroid. Next, centroid vectors are calculated
again. Finally, these two steps are repeated until there are no object movements from

one cluster to another or a halting criterion is reached (e.g. max number of iterations).

Quality of created clusters is significantly influenced by the selection of the initial
clusters. As mentioned in [24] a robust method that works well for a large variety of
objects distributions is to select i (e.g. i = 10) random vectors for each cluster and use
their centroid as the seed for this cluster. Also, there are effective heuristics for seed
selection which include (i) excluding outliers! from the seed set, (ii) trying out multiple
starting points and choosing the clustering with lowest cost, and (iii) obtaining seeds

from another method such as hierarchical clustering.

Regarding time complexity, K-means is linear in all relevant factors: iterations, num-

ber of clusters, number of vectors and dimensionality of the space.

e Bisecting K-means

Bisecting K-means is a variant of K-means. At first, all objects are assigned to one
cluster. Afterwards, three steps are repeated until the desired number of clusters is
reached. These steps are, the selection of the cluster to split, the separation of this

cluster into two sub-clusters using basic K-means algorithm and the repetition of the

!Qutliers are the objects that are far from any other objects and therefore do not fit well into any cluster.

bisecting step for a number of iterations in order to choose the separation that creates

the clusters with the highest overall similarity.

Experimental results have proved that Bisecting K-means technique is better than the
standard K-means approach and as good or better than the hierarchical approaches

[32].

1.1.2 Hierarchical clustering

Hierarchical clustering is quadratic in the number of objects and does not require the
number of clusters to be predetermined. The hierarchical methods can be further divided
into agglomerative (bottom-up) or divisive (top-down) methods. The hierarchical agglom-

erative clustering methods are most commonly used.

e Hierarchical agglomerative (bottom-up) clustering (HAC)

At first, each object constitutes a different cluster. Afterwards, the similarity be-
tween each pair of clusters is computed. Next, the pair of clusters with the highest
(inter-cluster) similarity is detected and these clusters are merged. This process is
repeated recursively until there is only one cluster left or a halting condition has been
met. Based on the way of selection of clusters to be merged, there are four different

approaches, single-link, complete-link, group-average and centroid similarity.

— In single-link, inter-cluster similarity of the cluster’s pair is the similarity of the
most similar objects. Thus, two clusters are similar if some pair of objects are

similar.

— In complete-link, inter-cluster similarity of the cluster’s pair is the similarity of
the most dissimilar objects. Thus, two clusters are similar if every pair of objects

is similar.

— In group-average agglomerative clustering (GAAC), inter-cluster similarity of the

cluster’s pair is defined as the average of all similarities between objects.

— In centroid clustering, inter-cluster similarity of the cluster’s pair is the similarity

of cluster’s centroids (equivalent with group-average).

e Hierarchical divisive (top-down) clustering

At first, all objects are assigned to a cluster. Afterwards, the cluster is divided using
a flat clustering algorithm, which is linear in the number of objects. This process is
repeated recursively for each cluster with cardinality greater than a certain threshold

or until each object belongs to its own cluster.

Top-down clustering has the advantage of being more efficient when it does not gen-
erate a complete hierarchy all the way down to individual object leaves. For a fixed
number of top levels, using an efficient flat algorithm like K-means, top-down algo-
rithms are linear in the number of documents and clusters. So they run much faster

than HAC algorithms, which are at least quadratic.

1.2 Clustering in Information Retrieval

Document clustering is a way of grouping documents with similar content. Documents’
similarity can be estimated by adopting a similarity measure (e.g. Cosine similarity) or a
distance metric (e.g. Euclidean distance). Note that the measure that is used for evaluating
queries (i.e. for identifying and ranking the documents that are relevant to user query) could
also be used for the purposes of clustering. There are several applications of clustering in
Information Retrieval. Below we describe in brief some of them.

Clustering can be used to speed up the query evaluation. The computation of
similarity between a query and each document of the collection could be a slow process.
A faster query evaluation method that involved clustering is the following. Documents of
the collection are clustered and a cluster representative is selected for each cluster. Now,
each query is compared only with the cluster representatives and the documents that their
representatives are similar to the query are retrieved. The set of cluster representatives
is definitely a smaller set than the entire collection, thus query evaluation becomes faster.
Correctness of this method is based on the fact that each cluster contains documents that
are related.

Another aspect of clustering in information retrieval is search results clustering.
Search results are referred to the documents retrieved in response to a query. Results cluster-

ing groups together similar documents. Instead of presenting a list of the relevant documents,

a more usable and more effective interface, that includes the groups of documents-clusters,
is presented. Users choose a cluster and see only the documents that belong to this clus-
ter. This application is especially useful when the query has more than one senses as the
information presented can help the user to detect them.

Moreover, clustering can be applied on the entire collection in order to increase the
precision and/or recall of the search results. The idea is that in the initial set of doc-
uments that are similar to the query, some documents that belong to the same cluster are
added, even if they have low similarity.

Another application of clustering is to provide an overview of the contents of a
collection. For example, Google News? provides an overview of the recent news. Clustering
is repeated frequently so as to incorporate the breaking news into the information presented
to the user.

Even Latent Semantic Indexing (LSI) [14, 22] is a kind of clustering. Both LSI and
clustering are techniques that reduce dimensionality. LSI is an information retrieval model
that uses methods of linear algebra in order to reduce the size of the term-document matrix.
LSI copes with the problem of synonymy. Synonymy is used to describe the fact that we
can make reference to an object or concept with many ways. In LSI the reduced dimensions
characterize the documents by context, so documents that do not share keywords with the
query but are relative, can be retrieved. LSI can not be used in dynamic systems like

Internet because the insertion of new documents is a hard and expensive task.

1.2.1 Information Retrieval Systems

In information retrieval models, documents are considered as sets or bags (depending
on the retrieval model) of terms. These terms are the result of a preprocessing phase. This
phase usually comprises the following steps. Each document is lexically analyzed, and the
words with low discrimination power (like pronouns, articles), which are called stop-words,
are removed. For the remainder words their stem is computed (e.g. by eliminating suffixes).
Finally, the words that will be used for creating the index are chosen. Some systems consider
that only the nouns are necessary, as they have their own meaning while adjectives, adverbs,
and verbs are complementary. Roughly, the logical structure of the index of a collection

of n documents D={d;,ds, ...,d,} and a set of ¢t terms K={k, ko, ..., k;} has the form of a

http://news.google.com/

n X t matrix.

ky ko ks k¢
dy w11 W21 w31 ... W
dy | w12 Wo2 W32 ... W2
ds | w13 W23 W33 ... W3
dn Wi,pn W2n W3n ... Win

Each document d; is represented by a vector d;j = {w1 j, w2 j, ..., w ;} , where w; ; is the
weight of term k; in document d;. w; ;=0 when the term k; does not appear in document d;,
otherwise it is a positive number and its value is defined according to the adopted retrieval
model. For instance, according to the Boolean retrieval model, w;; € {0,1}, and when
the term k; appears in the document w; j=1, otherwise w; j=0. According to VSM (Vector
Space Model), w; ; € [0, 1], and its value depends on the number of occurrences of k; in the
document d; (this is expressed by freg; ;), and on the number of documents of the collection

that contain term k; (this is expressed by df;). Specifically:

’LUi’j = tfi,j * deZ

fregqi ;

where tf; j = mazi{freqr,;)

is the number of occurrences of term k; in the document dj,
normalized by the max number of occurrences of a term in the document d;. idf; = log(%),
is a measure of the discreet ability of a term. N is the total number of documents and df;
is the number of documents that term k; appears.

TFxIDF is a good weight measure because it favors the terms that appear in a few

documents a lot of times, and penalizes the terms that appear a lot of times in many

documents.
Each query is represented by a vector q=(w1,q, Wa q, ..., Wtq), Where w; ¢ = tf; o * idf;. A
document is relevant if its similarity with the query is positive or over a threshold. The

similarity between each document and the query is defined as the cosine similarity.

. d: ed t o ws
sim(d;,q) = cos(d;,) = 7 |j ;q = 2 iz1 Wi Wig
J

o t t
| 4] \/Zi:l wfg X \/Zi:l w?,q

The rank of relevant documents is defined by their similarity with the query.

Recall that a clustering algorithm aims at separating a collection of objects into various

clusters. The simpler form of this problem is to separate a collection of objects into two

clusters. The information retrieval problem, which deals with the searching of documents
that are relevant with a query, could be conceived as a clustering problem aiming at deriving
two clusters: one comprising all documents that are relevant with the query, and another

one containing all documents that are non-relevant with the query.

1.3 Distance/Similarity Functions

Similarity-measures (dually, distance-measures) are very important in information re-
trieval and in clustering.

Let X be a set of elements. A function
d: X xX —R

(where R is the set of real numbers) is called a metric if for all x,y, z in X, the following

conditions are satisfied:

dz,y) > 0 (non-negativity)
dlz,y) = 0iffx=y (identity)

d(z,y) = d(y,) (symmetry)

d(z,y) < d(z,z)+d(z,y) (triangle inequality)

The pair (X, d) is called a metric space. Note that vector spaces are a special case of metric
spaces.

We could distinguish two major classes of distance measures:
1. Euclidean

A Euclidean distance is based on the locations of points in a Euclidean space.

2. Non-FEuclidean

A Non-Euclidean distance is based on properties of points, but not their ”location” in

a space.

1.3.1 Euclidean distance measures (L,-Norms)

Assume two vectors z = (x1,...,2x) and y = (y1,...,Yk)-

e [; or Block or Manhattan distance: The L; or Block distance is calculated by

the sum of the differences in each dimension.
k
Li(z,y) = Li((@1, s k), (W15 k) = D |73 — wil
i=1

e L5 or Euclidean distance: The Lo distance is calculated by the square root of the
sum of the squares of the differences between x and y in each dimension. This is the

most common notion of ”distance”.

Lo(z,y) = Lo((21, s Tk), (Y15 s) =

o L distance: L., is the maximum of the differences between x and y in any dimen-
sion. The maximum is the limit as n goes to co of what you get by taking the n'*
power of the differences, summing and taking the n** root.

Loo(xvy) = Loo((xlv---,xk)v (yla 7yk)) = lim

n—oo

1.3.2 Non-Euclidean distance measures (Similarity Measures)

Functions of this class origin in measuring similarity between sets based on the intersec-
tion of the two sets.
Assume two sets of elements X,Y and two vectors t; = (ti1,..., %), t; = (tj1,---, LK),

where weights 2;5,, 1, are not binary.

e Dice’s coefficient: Relates the overlap to the average size of the two sets.

_2XNY]

DiceSim(X,Y) = X[V

(1.1)

or
k
2% h=1 tintjn
k k
> oh=1 tin® + > oh—1 tth
e Jaccard’s coefficient: Relates the overlap to the size of the union.

XNy
XUY|

DiceSim(t;, t;) =

JaccardSim(X,Y) (1.2)

or
k
Y h—1 tintjn

JaccardSim(t;, t;) = — 2 k 2 k
2 h=t tin® + Doy Gin® = D py tintjn

e Cosine coefficient: Relates the overlap to the geometric average of the two sets.

. _ XNy
COSSZm(X, Y) = m (13)
or
tiot; >y tintn

CosSim(t;, t;)

Gl S S e

e Overlap: Determines to which degree the two sets overlap.

; I XNY]
Y) = (X1 V) 14
ey min(| X|, [Y]) (1.4)
or
k . .
Sim(ti,tj) — Zh:l tintin

. k k
min(3p g tin®, Doy tin®)
Equations (1.1), (1.2), (1.3), (1.4) are used when the elements of the compared sets are
not weighted. Rest of the equations are used when the elements’ weights are not binary.

For example, in case that similarity between documents must be estimated, ¢;,t; are the

document vectors and k is the number of terms.

1.4 Results Clustering

1.4.1 Motivation

In our days, search engines are the most powerful tools for searching and retrieving infor-
mation from the (constantly-growing) Web. Web search engines (WSEs) typically return a
ranked list of documents that are relevant to the submitted query and users have to explore
the answer linearly (from the first page to the second, and so on). For each document, its
title, URL and a small fragment of the text that contains the searched keywords are usually
presented. This fragment of the document, which depends on the query, is called snippet.
Ranked list presentation and low precision of the results, require from the user to try a lot
in order to find the information he needs. It is observed that most users are impatient and
look at the first results only. Consequently, when either the documents with the intended

(by the user) meaning of the query words are not in the first pages, or there are a few dotted

in various ranks (and probably different result pages), then the user has to try hard to find
and collect the information he really wants. The problem becomes harder if the user can
not guess additional words for restricting his query, or the additional words he chooses are
not the right ones for restricting the result set.

In addition it is difficult for the user to identify the discrete notions of ambiguous queries
(e.g. jaguar, apple) and to guess additional discriminative keywords to make the query more
specific.

A solution to these problems is results clustering which provides a quick overview of the
search results. It aims at grouping the results into topics, called clusters, with predictive
names (labels), aiding the user to locate quickly one or more documents that otherwise he
wouldn’t practically find especially if these documents are low ranked (and thus not in first
result pages).

Currently only a few engines provide result clustering services.

1.4.2 Approaches and Problems

Original versus Snippet-based approaches

Clustering can be applied either to original documents or to snippets. Clustering meta-
search engines use the results of one or more search engines (e.g. Google?, Yahoo!*, Live
Search (formerly MSN Search)®), in order to increase coverage/relevance. Since different
search engines return different search results as it is proved by several research. A recent
research study® estimated that the percent of total first page results shared by the top
four search engines is 0.6%. Web search engines reply to a query by returning a ranked
list of snippets. Each web snippet is a small summary of the web page contents that
contain the search keywords. Clustering the snippets rather than the whole documents
makes clustering algorithms faster. Also, the algorithm’s speed can be improved even more
by processing snippets incrementally; starting from the first snippet that is received rather

than processing the snippets altogether.

3www.google.com

4www.yahoo.com

*www.live.com

Shttp://www.infospaceinc.com/onlineprod/Overlap-Different EnginesDifferentResults.pdf

10

Cluster Labeling

Cluster labeling is the task of deriving readable and meaningful (single-word or multiple-
word) names for clusters, in order to help the user to recognize the clusters/topics he is
interested in. Such labels must be predictive (should allow users to guess the contents of
each cluster), descriptive, concise and syntactically correct. So, the user will not look at
the typical list of documents that can be very long, but will look only the documents in the
topics he is interested in. In general the user can browse the result in a non-linear manner.
Efficiency

Search engines should use efficient and scalable clustering algorithms. Scalability is very
important because the number of documents can vary. Usually only the top-L documents
are clustered in order clustering to be fast and the resulting labels not to be too general.
Some engines, like Clusty and Carrot?, give to the user the option to choose the number of
results to be clustered. Clusty by default clusters 200 results but user can change it to 100

or 500 results.
1.4.3 General Requirements

The key requirements of a results clustering algorithm are:

e High intra-cluster similarity

The produced clusters must consist of relevant documents.

e Concise and Accurate Presentation of each Cluster

The users should detect quickly what they need.

e Snippet-based
It should be possible to provide high quality clusters based on document snippet rather

than the whole documents.

e Efficient and Progressive Algorithms
Algorithms must be fast enough, clustering up to one thousand snippets in a few

seconds, and incremental, processing each snippet once it is received from the Web.

Some of these are based on [38].

Other desired properties:

11

1.5

Cluster size uniformity

Distribution of documents among folders of the same level must be balanced.
Language-independent

Not too much overlapping
Clusters should not overlap too much, on average a search result appears in only 1.2

to 1.5 clusters’ in order the main distinct themes to be shown.

Contribution of this thesis

We provide a detailed survey of the results clustering methods that have been applied

or described in the literature.

We propose two novel results clustering algorithms, called STC+ and NM-STC. STC+
is a variation of the STC, uses a scoring formula that favors phrases that occur in doc-
ument titles and differs in the way base clusters are merged. NM-STC (Non Merging
- STC) is a novel algorithm that adopts a different scoring formula, it does not merge

clusters and results in hierarchically organized labels.

We introduce a new approach for enhancing exploratory web searching with the dy-

namic coupling of dynamic faceted taxonomies with results clustering.

We describe an incremental approach of NM-STC that is beneficial for the coupling

of dynamic faceted taxonomies with results clustering.

The results of this thesis have already been applied over Mitos Web search engine,

and over Google.

Finally, the results of this thesis will be presented on the 13** European Conference
on Digital Libraries [26] and on the 10" International Conference on Web Information

Systems Engineering [21].

"http://searchdoneright.com /2007 /03 /how-to-evaluate-a-clustering-search-engine/

12

1.6 Organization of the thesis

Chapter 2 provides a survey of the algorithms used in document clustering and various
search engines that offer on-line results clustering.

Chapter 3 describes two novel results clustering algorithms and their evaluation.

Chapter 4 describes the application of our approaches over Mitos search engine, as an
independent component of results clustering and as a combination with the component of
faceted taxonomies.

Chapter 5 summarizes and identifies topics that are worth of further research.

13

14

Chapter 2

Related Work

This chapter examines the state of the art of the algorithms used for web document
clustering and provides an overview of the search engines that support results clustering.

It is organized as follows: Section 2.1 describes in brief the results clustering process.
Section 2.2 describes some meta-search engines that support results clustering. These en-
gines forward user queries to several other search engines and/or databases, cluster the
results obtained by the latter and finally display a topic hierarchy. Section 2.3 analyzes
various results clustering algorithms that are based on the vectors of the documents while
Section 2.4 analyzes clustering algorithms that are based on the snippets of documents that
are returned from the search engines and Section 2.5 describes approaches that are variants
of the Suffix Tree Clustering (STC) clustering algorithm. Finally, Section 2.6 presents a

comparison of all these clustering approaches.

2.1 The Results Clustering Process

In general, the process of results clustering comprises of the following steps:
(A) Fetch the representatives of the top-L documents of the query answer Ans(q).
(B) Construct a vector for each one of them.

(C) Run a clustering algorithm using a specific similarity measure.

15

(D) Construct and return a tree to present the clusters to the end users where each cluster

has been given an appropriate name (or label).
The representative of a document d, at Step (A), could be:

e The snippet of d as described in Section 1.4.
We may denote it snip(d, q). Note that we include g because the snippet of a document
depends on the submitted query. In case of meta engines, the snippets are provided
by the underlying engines. In case of stand alone engines these snippets are computed

during query answering.
e The title and URL of d.

e The vector representation of d.

This is possible for stand alone engines.

e A part of the vector representation of d, e.g. a vector comprising of the F' (where

F < |K|, where K is the vocabulary of the collection) biggest coordinates of d.

This is possible for stand alone engines.

2.2 Web Meta-Search Engines

2.2.1 Commercial Engines

By definition, a clustering engine analyzes the top (say 200-500) search results from a

query and displays the main themes, typically as folders that may consist of subfolders.

e Vivisimo/Clusty [6, 2]. Vivisimo is probably the most famous commercial clustering
search engine. It calls other search engines like Yahoo! and MSN, extracts the relevant
information (titles, URLs, and short descriptions) from the answers retrieved and
groups them based on the summarized information. The output is a hierarchical
folder structure, allowing users to avoid link overload and to click only on the specific
category of information that they need. Clusty is an extension of Vivisimo. Figures
2.1(a) and (b) show the interface of Clusty and the clusters derived when submitting

the query g= java and ¢= result clustering algorithms respectively. Clusty

16

CZD) =

Cluster Java Technology contains 14
clusters

All Resultsz14)

@ Java.netiz7)

@ Download (z1)

© Tutorials 22

@ Java Technology 4
& Software s
@ Java Developer(z)
@ Games, Reviewed |z
@ Other Topicsi4)

& Tools (1=

© Java Developer s)

Q FAQ 15

© Sun Microsystems 11

@ LGPL (11

© Games, Activity)

remix

1.

[

w

=

m

java.com: Java + You B &
Get the latest Java Software and e
W, Java. corm - [cache] - Live, Ope

. Developer Resources for Ja

Whether you're creating software fo
developer tools ...
Java.sun.com - [cache] - Live, Open

. java.net - The Source for Je

This is where Java[Th] technology
on projects, share
wer. java. net - [cache] - Live, Ask

Java Technology B A &

Java Technology ... Java Everyw
sun.commfjava - [cache] - Live, Ask

. About Java Technology &

About Java Technology ... Java t
business users.
ey SUN.comdfiavafabout - [eache] -

05 [0B5 more =

result clustering algarithms

clusters

All Results (125)

& Hierarchical z4)

@ Search Results 20

© Scalable 12)

@ Genetic (10

@ Image 3

@ Classification =)

@ Tools

@ Similarity, Measure (3)
@ Data Mining, Analysisi=)

@ Cluster Analysis s

mare | all clusters

Top 1935 results of at least 134,100 re

Spectra Studio Software - Au

1. Cluster Analysis B A &

The goal of the clustering algor
clustering are ...
wnwy, statsoft. com/textbook/stel

. Cluster analysis - YWikipe

Data clustering algorithms car
The algorithm ...
en.wikipedia.orgfwiki/Cluster_an

- [KI+06c] Validating the Ry

of MicraCAD 2006 International £
{Ferenc Kovacs and Renata lvan

avalan ot kema hod fnohlicatins

(a) (b)

Figure 2.1: Clusty search engine user interface

offers a new feature, called remix clustering that works by clustering again the same
search results but ignoring the topics that the user just saw. Hence, it is an interaction

model (history-aware) that it is based on/utilizes clustering.

e Quintura [4]. Quintura is a visual search engine. It extracts keywords from search
results and builds a word cloud (visual map). The name of each cluster is placed in a
2D area. The position of the names in the 2D area is based on their distance, while font
size is used for indicating the size of the cluster. By clicking words in the cloud, the
user query is refined. The user is also able to remove search results i.e. restrict his/her
focus by selecting a cluster name and clicking on the Ezclude icon. Quintura analyzes
contextual relationships among keywords, helping to define the context or meaning of
the keywords. At present, it builds the map based on information contained in links
and summaries of those links returned by the underlying search engines'. Figures 2.2
(a) and (b) show the interface of Quintura and the clusters derived when submitting

the query ¢= java and ¢= result clustering algorithms respectively.

Tt is planed to use a Web index of a search engine to allow even faster searches for more relevant results.
Also, it is planed to have its own Web index that will be based on contextual relationships among words.

17

C\\UIFICU['Q m]ﬁvﬁ C\\UInCUfQ mresultc\uslermgalgnr\thms\

n

Images Video Amazon Images Video Bmazor

4 » CrlEmbed = @ Share [Save fr 4 » FlEmbed 3 Share [save
1. Java .com 1. Abebooks:
Official Java si test Find UHility
source action. Feature Clu
http: ey java bt i :

Aareports :
P B download 3 Java .Sun.cor methods 2. Clustering
software Official site for ... Results |
platform software downl the increme
Ianguage http:#java. sun image bt i«
: , 3. Java (program linger 3. Carrot2 - Oy
:é?jaVa @tutorials " Java languag . weh Below is 2 ¢
.) . inJune 1991 .. adaptive algorithm 1
programming http: e wikipe hierarchical search results Pt fprojec
. 4. Java Software . . 4. Expecteddi
development ==technology Daniad ot th engine clustering algorithm Scientific dt
i . . . use cluster
& ceveloper applet . http.ffwwtw.Java Bclusterlng result nurmber el
I ava .ne
applications Source for Jav @ search 5. Cluster ans
free http: ey java gws ar ‘;"
. . e hierarchi
content solaris - 6 Java program g algorithms http:en il
P James Gosling . . :

as Java 10in analysis agglomerative 6. Clustering
hitp:#fen wikipe Res't'“ G
. most comer
7 JAava Q‘Rt.e'” produce hitp:/¥genor
w houtique communities T remiaen isrc 7. Citatione: E

(a) (b)

Figure 2.2: Quintura search engine user interface

2.2.2 Research Prototypes

e Grouper [39]. Grouper is an interface for the results of the HuskySearch meta-search

engine. Users can specify the number of documents to be retrieved (10-200) from
each of the participating search engines. The system queries 10 search engines, so it
retrieves 70-1000 documents. Clustering is applied on snippets that are returned by the
search engines. Grouper uses the Suffiz Tree Clustering (STC) algorithm (described
in more detail in Section 2.4) to cluster together documents that have common large
subphrases. Grouper, in its initial form, is not publicly available but there is Carrot
which is an open source implementation of it. Figure 2.3 shows a prototype user
interface of Grouper and the clusters derived when submitting the query g= israel,
while Figures 2.5 (a) and (b) show the interface of Carrot and the clusters derived when

submitting the query ¢g= java and g= result clustering algorithms respectively.

Scatter/Gather [11, 18]: Scatter/Gather is a document browsing method that is
based on document clustering. At first, Sactter/Gather was applied to large document

collections and later it was used for clustering the result set retrieved by any given

18

Query: israel
Documents: 272, Clusters: 15, Average Cluster Size: 15.1 documents

Cluster Size . Shared Phrases and Sample Document Titles
Society and Culture {56%), Faiths and Practices {56%), Judaism (69%),
1 Spiritnality (369); Religion (36%) , organizations {(43%)
Wiew Results 14 @ Isvael - The . ish Wehsite!
Refine Cuery Based Ahavat Israel - The Amazing Jewich Wehsite!
On This Cluater @ Israel and Judaism
— @ Judaica Collection
2 Ministry of Foreign Affairs (33%]), Ministry (87%)
Wiew Besults 1% @ Publications and Data of the BANK OF ISRAEL
Befine Query Based @ Consulate General of Israel to the Mid-Atlantic Region
Om This Cluster @ The Friends of Israel Gospel Ministry
3 Israel Tourism (36%), Comprehensive Israel (36%:), Tourism (64%)
Wiew Results 11 @ Interactive Israel towism guide - Jerusalem
Refine Guery Based @ Ambassade d'Israel
Cn This Cluster @ Travel to Israel Opportunites
Middle East (57%), History (579); WAR (42%]) , Region (42%) , Complete
%) , Listi) 5 count] e
4 42%) , Listing (42% Ty (42%
Wiew Results 7 . . .
Befine Cuery Based @ [svael at Fifty: Ow Introduction to The Six Day War
O This Cluster @ Machal - Yohmteers in the Israel’s War of
I @ HISTORY: The State of Israel
5 Econonny (68%), Companies (55%]), Travel (55%)
Wiew Besults 22 @ Israel Hotel Association
Refine Cuery Based @ [srael Association of Electronics Industries
Om This Cluster @ Focus Capital Growp — Israel

Figure 2.3: Grouper prototype user interface

search query. In both cases Scatter/Gather’s interface remained the same.

Scatter/Gather’s interface is interactive. The user can find the information he needs by
performing iterative steps. The initial document set is divided into clusters (scatter).
Each cluster is presented to the user followed by a number of words that describe its
contents and a number of sample documents. The user can select the clusters of his
interest. Documents of the selected clusters become the new document set (gather)
that is clustered again and is presented to the user. In each iteration, clusters get

smaller until individual documents are presented.

Scatter/Gather uses partitional clustering algorithms in order to generate a set of k
disjoint documents groups. Partitional clustering constitutes of three steps: finding
k centers, assigning each document in the collection to a center and refining of the
partition that constructed. Fractionation and Buckshot were used for the first step.
Fractionation, which is used for his accuracy, creates off-line an initial partitioning
of the entire set, whereas Buckshot, which is faster, clusters on-the-fly the selected

document groups.

19

_I Cluster1 Size:8 key army war francis spangle banner air song scott word poem british ‘ I Cluster 1 Size:14 player league hit game national set bat average season history baseb31
O Star—Spangled Banner, The (O Musial, Stan X
> Key, Francis Scott J O Bench, Johnny
& Fort McHenry O Carew, Rod
3 Arnold, Henry Harley 7l O Robertson, Oscar
O MElianle helane (O Beliveau, Jean
I Cluster 2 Size: 68 film play career win television role record award york popular stage p‘ O Casper, Billy
() Chinese checkers
O Burstyn, Ellen g O Best, George
8 SBW‘;WYNCI]_? Barbara O Beamon, Bob 7
to

O Zle]l]'(:i A:doll;lnh . I Cluster 2 Size: 47 role stage broadway comedy performance actress production musicall
A Tl T K
I Cluster 3 Size: 97 bright magnitude cluster constellation line type contain period spectr* 8 SBtu;;thé]f I}S?rbara J
O star X | O Betle, Milton
O Galaxy, The O Bankhead, Tallulah
O extragalactic systems 8 \D;\IFHII'P;Y};\EMIIS

i alsh, Raoul
9 Ttﬁrftelﬂl‘eirmatter /|0 Martin, Mary
I Cluster 4 Size: 67 astronomer observatory astronomy position measure celestial Leleﬁmi 8 égkg;; é_ﬁdph .

_ M sby, Bi

8 Z:ggnmoeﬂ,};) e eliptes '~ | 11 Cluster 3 Size:7 music country jazz folk pop paul cowboy leader williams hampton boyl
© Agena O Williams, Hank A
) astronomical catalogs and atlases 7 | O Crosby, Bing
LS § PRSI JON | R 1 £ | Epawiy 2
I Cluster 5 Size: 10 family specie flower animal arm plant shape leaf brittle ube foot hor‘ 8 g:f: fI:] l;letl;, g;e:rly
O blazing star X |O Shore, Dinah
O brittle star J O genver, JO}E.? .
& bishop’s—cap (O Hampton, Lionel
(0 feather star i 4

(a)

(b)

Figure 2.4: Scatter/Gather results for the top 250 documents that contain the word star.

Fractionation clusters n documents into & groups in O(kn) time. It splits document
collection into n/m buckets (m > k) and clusters each bucket, applying GAC algorithm
to each one. These clusters are treated as if they were individuals and the entire process

is repeated until only k& clusters remain.

Buckshot algorithm combines the determinism and higher reliability of HAC with the
efficiency of K-means. First, a small sample of documents of size vkn, is randomly
selected. Group-average HAC is applied on this sample and the results are used as
initial seeds for K-means. Overall algorithm complexity is O(kn) and avoids problems

of bad seed selection by employing an HAC algorithm to compute seeds of high quality.

Figures 2.4 (a) and (b) are examples of the Scatter/Gather interface for the top 250
documents that contain the word star. Figure 2.4 (a) shows the initial results. Terms
of Cluster 1 indicate that this cluster contains documents that involve stars as sym-
bols, as in military rank and patriotic songs, while terms of Cluster 2 indicate that it
discusses about movies and tv stars. Figure 2.4 (b) shows the results after re-clustering

the 68 documents that appear in Cluster 2.

20

2.2.3 Open-source Systems

e Carrot® [36, 30, 1]. Carrot® engine acquires search results from various sources
(YahooAPI, GoogleAPI, MSN Search API, eTools Meta Search, Alexa Web Search,
PubMed, OpenSearch, Lucene index, SOLR). It supports five different clustering algo-
rithms (STC, FussyAnts, Lingo, HAOG-STC, Rough k-means). One of them, Lingo,
is the default clustering algorithm used in the Carrot? live demos. The output is a flat
folder structure and the overlapping folders are revealed when the user puts the mouse
over a document title. Specifically, all the folders of which the selected document is a

member, are marked with a different color, except the selected/current folder.

Carrot investigated the behavior of STC algorithm for the Polish language. Polish
language in comparison with the English is characterized by rich inflection(words have
different suffixes depending on their role in a sentence) and the fact that the order of
words in a sentence is less strict. Also, they examined the impact on the results from

STC merge threshold parameter and a new one, the minimum base cluster score.

Base cluster score is calculated with a variation of the original STC formula.

s(m) = m| x f(lmpl) x Y (tfidf (w:)

where |m| is the number of terms in phrase m, f(|m,|) is a function penalizing short-
phrases and tfidf(w;) is a standard Salton’s term frequency-inverse document fre-

quency term ranking measure.

The experiments with the Polish showed that the results have not a significant influence
by the merge threshold when the input has been pre-processed. On the contrary,
minimum base cluster score threshold seems to influence the number of the derived

clusters.

First in Carrot[36] it is said that the claim of the original paper that the algorithm
is not influenced by the preprocessing phase(stemming, stop-words removal) does not
stand. In Carrot?[30] it is said that they were expecting a bigger difference in the
quality of the results for the Polish. But the combination of stemming and stop
words removal did not have the best performance for English and Polish languages.

Nevertheless, it was always better compared to results without preprocessing.

21

W web

Y News : W Wiki ‘6] ODP

i Jobs

G .

Topics \'-‘_Snurces sites |
(3 Allresults (100
(L1 Class Hierarchy Java Platform SE (7}
©
([Java Programming Language
Wikipedia (5
[0 Java Technology (7|
(3 Javascript 4]
[0 Java Tutorials (4]
(1 Java Applets [t
[Java Review Service Home [3
[Microsoft Java Virtual Machine {3)
[Version (3
() Links (3]
(3 Java.net (3
(1 World Wind i2)
[Guide 3
(1 Index of Java (2
£ FESI (2)
[Training {2}
(5 Web 2)
Bl [(Other topics) (41

e SNAKET (SNippet Aggregation for Knowledge ExtracTion) [15, 5].

Developer Resources for Java 1
wihether you're creating softwa
samples, developer tools, dow
http:# fjava.sun.com/

Download Java software from
Java software manual downloa
Includes links for &pple Mac 03
http:/ fweaw.java. comsens dow

Download Free Java Software

This page is your source to dov
the Java Runtime Environment

http:# fwevaw. java. com/f getjava

Java SE Downloads *.

This page contains Downloads
afrned at providing an optimize
http:# fjava.sun.com/javase/d

Sun Developer Metwork (SDH] D
Java suthentication And Autha
http:# fdevelopers.sun.com/ dor

@ Web .Y News

W

wiki : [B] oDP : 7§

Iresult clustering algorithms

¢

b 7
Topics ‘-.‘Sources Sites |

[]A UL results [100)
[0 Lingo Search Result Clustering
Algorithms (7

[Evaluation of Clustering Algorithms (¢
[Data Clustering (7

[Genetic Algorithms in Clustering
Problem (4

[Hierarchical Clustering (5
[Open Source (4

(3 Visualization (4)

[Clustering Web (5

(3 Supervised Clustering (3
[0 Tree (3

@ more... | all clusters

(b)

Figure 2.5: Carrot clustering engine

Cluster anabysis - Wikipe:
Data clustering algorithn
each run, since ...

http: s fen.wikipedia.orgs

Carrot? - Open Source Se.
Algorithm, suthor, Speec

http://project.carrot2.or

Lingo: Search Results Cly
Search results clustering
In this paper we present L

http://citeseer, ist.psu.ed
Lingo: Search Results Cly

Lingo: Search Results Clu
http:/ Swvew-idss . cs. put.p

SNAKET

engine draws about 200 snippets from 16 search engines about Web, Blog, News and

Books domain.

This engine offers both hierarchical clustering and folder labeling

with variable-length sentences drawn on-the-fly from snippets. SNAKET uses gapped

sentences as labels, namely sequences of terms occurring not-contiguously into the

snippets. Experiments set limit of maximum number of gaps to four. Also, it uses

two knowledge bases (the dmoz? hierarchy and ”anchor texts”) to improve hierarchy.

SNAKET’s interface offers the new feature of personalization that occurs at the client

side. Users can select a set of labels and ask SNAKET to filter out from the ranked

list, returned by the queried search engines, the snippets that do not belong to the

folders labeled by the selected labels. This approach does not require an explicit login,

a pre-compilation of a user profile, or tracking the user’s past searches.

SNAKET’s algorithm is composed by the following steps:

*http://www.dmoz.org/

22

— The 200 snippets are processed. They are enriched by querying the anchor-text

KB, they are filtered against a stop-list, stemmed and segmented into phrases.

— All pairs of words within a fixed proximity window are extracted and are as-
signed a score by a function that is based on a TF xXIDF measure over dmoz.com
categories. Low scored pairs are rejected. The remaining pairs are incrementally
merged to form longer gapped sentences. A gapped sentence g is merged with
a word pair (wp,wy) if they appear in the same snippet and within a proximity
window. The score of the longer sentences is calculated again and the process is

repeated until no merge is possible or phrases consist of eight words.

— These phrases are the primary labels L; for the leaves of the folder hierarchy.
Each folder C; contains the snippets that contain L;. Also, secondary labels S;
are generated for each folder C;. Secondary labels are gapped sentences that
appear on folders over a minimum 80%. The primary label and the secondary
labels of a folder constitute the signature of the folder C;. Based on these sig-
natures, a parent folder is selected for each group of folders that share a gapped
sentence. The new parent folders are ranked and low ranked folders are rejected.
Afterwards, if two parent folders have the same children folders or the same label
then the low ranked folder is discarded. The process is repeated for the remaining

parent folders in order to achieve a three level hierarchy.

— The tree hierarchy that has three levels is presented to the user.

Figure 2.12 shows the interface of Snaket and the clusters derived when submitting the

query g= java.

2.3 Index-based approaches

Traditional clustering algorithms either flat (like K-means and its variants) or hierar-
chical (agglomerative or divisive) do not require to create snippets. They are based on
the vectors of the documents and on a similarity measure. These approaches were further

described in Section 1.1.1 and 1.1.2.

23

Clusters Search

Personalized Unpersenalized Uncheck &ll Java TECI’LﬂOlOES{
Expand All Collapsa All Java technology is a portfolio of peodacts that are based on the power of natworks
systems and devices. . James Gosling, Inventor of Jaa Technology .. community

© U =lava it 2 lefter tothe Jara comumunity ..
@ O Technology’ [altawriate:] | goople:] | men:l |lookemert:2 | pahoo:2]
O % Frogramming .
. - The Java Tutonal
[< Tutorials B mer————— . .
. .. un Microsystems. Developers Home Products Technologies Java Technology .
@ [4 Fres Tulogial.
L1 <+ Training googled]
@ [-+ Developers .
—_— R « Java.com: The marketplace for Java technology
: Java Books ... Ttick out your Java tecktiology- powrered phote | Buy How" . miwlT Roed Trip ©
[< Features Java Hew'' .
® O 4 Coffee altawist s f | googled | mené | altheweh]

“we [] <+ Site For Java

O + carmes Dewnload Java Software

Windows Automated Downdoads We encountered an issue while rying to automa

@ [< Java Index [google:d| altavista:2h | msn:15 | looksmart:5| alltheweh 16]

[+ Java Environment

1 -+ lava Farums JavaThi) Boutique - Programimmg Tutorials, Eewews and Downloads
O+ virtual Machine The JavaBoutiue is a collection of java appletls, games, scripts, and tutorials. Lear

also find news abowt java and jini. .. Programming langnages have evolved from m:
what's wrong end why t's niecessary. The Java Iemorr Model Explamed . ..
Parzonalizad Unperzonslizad Uncheck all [altawists? | moogle:d | man:d | looksmart:f | wahood]

Fxnand &ll Callan=s &l

mare...

Figure 2.6: Snaket clustering engine user interface

2.3.1 Lexical Affinities

A variant of the HAC (Hierarchical Agglomerative Clustering) algorithm for ephemeral
clustering is described in [23] which uses ”lexical affinities” (pairs of words that appear
within a proximity window and are not necessarily contiguous) as indexing units instead of

single words.

This approach achieved an O(n?) complexity for a complete-link HAC using bucket
sorting which requires only O(m) steps, rather than O(mlogm) steps, to sort m elements,
where m is the n(n-1)/2 pairwise similarities between n documents and a linear number of

additional steps (where each of them requires only linear time).

In terms of the complete-link method, similarity value of a cluster ¢ is defined as the
minimum of the pairwise similarities of documents of the cluster c¢. Also, similarity value
of a pair (c1,) of clusters is the minimum of the pairwise similarities of documents of the

union of ¢; and cs.

For the implementation of the algorithm three basic data structures were used:
1) A ”current similarity matrix” which keeps the similarity values for each pair of clusters

that can be merged into one (unmarked clusters).

24

2) Ten buckets, one for each value from 0 to 0.9. Bucket ¥ is a doubly-linked list of distinct
unmarked pairs of clusters whose similarity value is in ¢, 940.1).

3) A ”current pointer matrix” where for each pair of distinct unmarked clusters there is a
pointer to its position in the doubly-linked list of the appropriate bucket.

The steps of the algorithm are the following;:

e Initialization of the data structures. The current similarity matrix is an n x n matrix

where each document consists a cluster. The other structures are initialized accord-

ingly.

e The nonempty bucket with the biggest index ¥ is found, along with the pair (c1,c2)
at the "top” of the list for this bucket. A new unmarked cluster cjco is created which

contains the members of the union of ¢; and c¢s.

e Update of the data structures. In the current similarity matrix the new entry (cico, cic2)
is inserted and (c, cjco) similarities are calculated. Also, the columns and the rows
that correspond to ¢; and co are removed. During the computation of similarity val-
ues of (cica,c), the appropriate buckets are added and the current pointer matrix is
updated after the insertion of the new entry that corresponds to cice. Like in the
current similarity matrix, the columns and the rows that correspond to ¢; and co are

removed from the current pointer matrix.

e Repeat the process until there is only one unmarked cluster left.

2.3.2 Frequent Itemset Hierarchical Clustering (FIHC)

FIHC [16] is a document clustering technique that exploits the notion of frequent itemsets
used in data mining. A frequent itemset is a set of words that occur together in some
minimum fraction of documents in a cluster. FIHC increases scalability because it reduces
dimensions by storing only the frequencies of frequent items that occur in some minimum
fraction of documents in document vectors. Also, it has a mechanism that makes clusters
disjoint.

The FIHC algorithm can be summarized in three phases:

25

o Construct initial clusters: A cluster is constructed for each global frequent itemset.
These clusters are overlapping because a document can contain many global frequent
itemsets. In order to make clusters disjoint, each document is assigned only to "the
best initial cluster”, which is the initial cluster with the highest score. The score
function is based on the frequencies of global frequent items of the documents in each

cluster.

e Build a cluster (topic) tree: In the cluster tree, each cluster (except the root) has
exactly one parent. The topic of a parent cluster is more general than the topic of
a child cluster and they are ”similar” to a certain degree. Each cluster uses a global
frequent k-itemset as its cluster label. A tree is build bottom-up by choosing a parent
at level k-1 for each cluster k (start from the cluster with the largest number of items

in its cluster label).

e Prune the cluster tree: Sibling clusters that are similar based on Inter-Cluster Simi-
larity are merged into one cluster. Also, each child cluster that is similar to its parent

is replaced by its parent. Documents of child cluster are added on the parent’s cluster.

2.3.3 SCuBA - Subspace Clustering

SCuBA [7] is part of an article recommendation system for researchers. It is a Collabo-
rative filtering (CF) system that has the advantage of using information about users’ habits
in order to recommend potentially interesting items. This system exploits information from
researchers’ previous searches in order to recommend research papers that users with similar

preferences had chosen.

Subspace clustering is a branch of clustering algorithm that is able to find low dimen-
sional clusters in very high-dimensional datasets. Research/article data space is repre-
sented by a binary m x n matrix, where rows represent m researchers R={r1, rs, ..., 7, } and
columns represents n articles A={aj,ag, ...,a,}. The algorithm is trying to find subspace

clusters of researchers defined in subspaces of articles.

26

2.4 Snippet-based approaches

2.4.1 Suffix Tree Clustering (STC)

STC [39, 38] is a post-retrieval document browsing technique (that is used in Grouper).

It treats a document as an ordered sequence of words. STC is an incremental and linear time

clustering algorithm that is based on identifying the phrases that are common to groups
of documents, building a suffix tree structure. This method naturally allows overlapping
clusters. Moreover, it is applied to short snippets returned by Web Search engines.

STC is described in the following steps:

e Document ”cleaning”: Stemming is applied to snippets, sentence boundaries are
marked and non-word tokens (e.g. numbers, HTML tags, most punctuation) are
stripped out. The original document strings are kept, as well as pointers from the

beginning of each word in the transformed string to its position in the original string.

e Identifying base clusters: An inverted index is constructed with the structure of a
suffix tree. Suffix tree contains all the suffixes of all strings. Snippets are treated as
strings of words, not characters. Based on this structure, base clusters are identified.
Base cluster is defined as a set of documents that share a common phrase (ordered
sequence of one or more words). Each base cluster is assigned a score that is based
on the number of documents it contains and the number of words in phrase that

characterizes this cluster.

o Combining base clusters: Base clusters with a high overlap in their document sets
are merged. Overlap is identified with a binary similarity measure. Given two base

clusters B,, and B,,, similarity of B,, and B,, is 1 iff:

B (1Bn B (1 Bn
1B Bnl _ 5 ang 1Bm O Bnl

> 0.5
| Bl | Bn|

Otherwise, similarity is 0.

e Final clusters are scored and sorted based on the scores of their base clusters and
their overlap. Only the top few clusters are reported. Each cluster is described by
the number of documents it contains, the shared phrases of its base clusters and some

sample document titles.

27

As mentioned above, each base cluster is assigned a score. This score is utilized by [9] in
order to present a high-quality label for each cluster instead of the Grouper’s presentation
that includes all the labels of the base clusters. As a result, the highest ranked label, from
the base clusters’ labels, is selected as the final cluster label.

Figure 2.7 shows an example of the suffix tree of the strings ”cat ate cheese”, "mouse
ate cheese too” and ”cat ate mouse too”, numbered from 1 to 3. The nodes of the tree are
drawn as circles. Each node has one or more boxes attached to it and each box includes two
numbers. The first is the number of string that the suffix is originated from and the second

is the index of this suffix inside the string.

Figure 2.7: The suffix tree of the strings ”cat ate cheese”, "mouse ate cheese too” and ”cat
ate mouse too”.

Figure 2.8 shows the base clusters, nodes that contain two or more documents, that are

derived from the suffix tree of Figure 2.7.

Node Phrase Documents
a cat ate 1.3
ate 1,2,3
cheese 1
mouse 2,
2
1

too
ate cheese

[R =T e R =

Figure 2.8: Base clusters derived from the suffix tree of Figure 2.7.

Figure 2.9 shows the base cluster graph of Figure 2.8 base clusters. Two nodes are

28

connected iff the two base clusters have a similarity of 1. A cluster is defined as being
a connected component in the base cluster graph. Each cluster contains the union of the
documents of all its base clusters. In Figure 2.9, there is one connected component, therefore

one cluster.

Phrase: cat ate
Documents: 1.3

2 Phrase: cheese
Documents: 1.2

C

Phrase: mouse
Documents: 2.3

d

Phrase: ate
Documents:- 1,23

Phrase: too Phrase: ate cheese
Documents: 2.3 Documents: 1.2

Figure 2.9: The base cluster graph of the example given in Figures 2.7 and 2.8.

2.4.2 TermRank algorithm

TermRank [17] is a variation of the PageRank algorithm that counts term frequency not
only by classic metrics of TF and TFXIDF but also it considers term-to-term associations.
It is based on a relational graph representation of the content of web document collec-
tions. From each Web page the blocks in which the search keyword appears are retrieved.

TermRank is trying to separate terms into three categories:

e in discriminative terms that belong to a specific context and are strongly related with

a distinct sense of the keyword search term
e in ambiguous terms that have many senses, and
e common terms that appear in many distinct contexts of a keyword search term.

It ranks discriminative terms higher than ambiguous terms, and ambiguous terms higher

than common terms.
Document collection is transformed into a weighted undirected graph where nodes are

the terms and edge weights is the co-occurence of two terms in the collection. TermRank is

29

calculated by the following formula:
TR(i) = TRG) - wy (2.1)
JEN() ZkeN(j) Wik

where N (x) represents the set of neighbors of the node x and wj; is the number of times
edge (i,j) appears in the entire data. Term ranks are estimated after a number of iterations
of equation (2.1). Number of iterations is not predetermined but TermRank runs until the
difference between two iterations is less than a small threshold d.

Iteration 0: TR (i) = TF(:)

Iteration t+1:
TRW(j) - wi

TR(tH)(Z.) N > () Wik
keN(j) Wi

JEN(3)

Figure 2.10 shows a fragment of a relational graph of apple data. Sizes of nodes and
thickness of edges are proportional to their term frequencies and association strengths re-
spectively. For example, discriminative terms such as "mac” and ”recipe” have neighbors

with strong associations.

() Diseriminative
(7) Ambiguous
;j"-, Common

Figure 2.10: A fragment of a relational graph of apple data.

Figure 2.11 shows the ranks of terms based on TermRank and TFXIDF. Initial ranks
of the terms are TF values (iteration 0). TermRank converges in 20 iterations and the first
five terms are the discriminative terms, the next one is the ambiguous term and finally the

common term. This order of terms is better than TFxIDF ranking (computer, mac, contact,

30

ipod, game, macintosh, video) that gives ”computer” the highest rank and put ”contact”

on the third place.

[TermRank [TF/IDF
| iteration: 0 | iteration: 20 |
mac 0.1389 0.2600 0.4606
macintosh 0.0663 0.2262 0.2569
game 0.0764 0.1452 0.3666
ipod 0.0928 0.1270 0.3751
video 0.0568 0.1128 0.2549
[computer] 0.2147 [0.1059 [0.4679 |
| contact | 0.3537 | 0.0226 | 0.3864 |

Figure 2.11: Ranks of terms based on TermRank and TFxIDF.

TermRank can be applied on a set of Web pages that correspond to a specific query.
The top-T terms ranked by TermRank can be used as feature vectors in K-means or another

clustering algorithm.

Furthermore, there are snippet-based approaches that use external resources (lexical or

training data). Some of them are described below.

2.4.3 Deep Classifier

Deep Classifier [37] trims the large hierarchy, returned by an online Web directory, into
a narrow one and combines it with the results of a search engine using a classifier based on
Bayesian Classifier.

Roughly the process can be described in five steps:

e The query is submitted to an online Web directory to get the categories hierarchy and

to a search engine to get the search results.

e The categories hierarchy is pruned. The leaf nodes in the pruned hierarchy are the

target category candidates.

e A training data selection strategy is applied to the pruned hierarchy.

There are three different strategies for training data selection:

— Flat Strategy

31

Target category candidates are placed directly to the root of the hierarchy and
classification is performed by a flat classifier. As a result, hierarchical structure

of the web directory is not considered.

— Hierarchical Strategy
Each level of the hierarchy is classified (estimation of probabilities). The esti-
mated probability of each non-candidate category is propagated to their candidate
offspring.

— Ancestor-Assistant Strategy
It is a combination of the above strategies. Training data of the candidate cate-

gory are combined with those of its ancestors and siblings.

e Based on the training data, classification model learning is performed.

Two classification models were used, naive Bayesian and discriminative naive Bayesian
classifier. Each document is regarded as a sequence of random variables that corre-
sponds to the sequence of the words. The classifiers estimate the probability that a
document (sequence of words) belongs to a category. Discriminative naive Bayesian
classifier also takes account the appearance of a word in only one category (discrimi-

native word).

e Classification of the search results and presentation of the hierarchy.

2.4.4 Salient phrases extraction

The purpose of this technique [41] is to produce clusters with highly readable names.
It extracts and ranks salient phrases as candidate cluster names. Salient phrases are
ranked by a score, defined by a regression model, on five different properties, learned from

human labeled training data.

Concisely, algorithm’s steps are the following;:

o Search result fetching: the web page of search results returned by a certain Web search

engine is analyzed by an HTML parser and snippets are extracted.

o Document parsing and phrase property calculation: Porter’s stemming algorithm is

applied to each word. Salient phrases, all possible n-grams (n < 3), are produced from

32

the snippets and the phrases with frequency no greater than 3 times, are considered

as noise and are filtered out. For each phrase, five different properties are calculated.

These properties are Frequency /Inverse Document Frequency, Phrase Length, Intra-

Cluster Similarity, Cluster Entropy and Phrase Independence.

e Salient phrase ranking: Salient phrases are ranked by a regression model that combines

the five properties. Moreover, the document list, which corresponds to salient phrases,

constitutes the candidate clusters.

e Post-processing: The phrases that contain only stop-word or words of the query are

discarded. Clusters are generated by merging the candidate clusters that their common

documents exceed a certain threshold.

Figure 2.12 shows an example of the salient phrases extraction algorithm when submitting

the query ¢= jaguar.

B Edl Vew fewch peo

=0 =

Jaguar

» Jaguar Cars (38)

= Panthera onca (18)
* Mac OS (29)

« Big Cats (15)

s Clubs (20)

» Others (10)

1. Jaguar — Woodland Park Zoo Animal Facts

Features classification and range of the jaguar. Learn about their life
cycle, diet, reproduction and habitat, view picture.
hitp://www.zoo.org/educate/fact_sheets/jaguar/jaguar.htm

2. Wild Ones, The - Jaguar

Powerful feline is the only roaring cat in the Americas. Learn about its
behavior, diet, and habitat.
http://'www.thewildones.org/Animals/jaguar.himl

. Think! — The Wild Habi r
Along with a phaoto of this striking animal, this profile discusses physical
characteristics, hunting, feeding, and reproductive behaviar.
http:/library.thinkquest.org/11234/jaguar_any.html

4. Big Cats On-line

Learn about the better and lesser known wild cats. With facts and figures,
a glossary, information about conservation, and a family tree.
http://dialspace.dial.pipex.com/agarman

Figure 2.12: An

example of Salient phrases extraction algorithm

2.4.5 Automatic construction from text information bases

Automatic construction’s goal is to identify useful facets and to create hierarchies from

them. It is achieved with the selection of a set of facets and assigning each item of a collection

to a subset of these facets. A collection can contain either textual or text-annotated items.

33

Automatic construction does not use predefined facets and manually constructed hierarchies
of them as it happens in some commercial systems (e.g. Amazon, eBay).
Unsupervised Facet Extraction for Collections of Text Documents

This is an unsupervised technique used for the extraction of facets from free-text items
[12]. Free-text items are neither associated with descriptive keywords nor organized across
facets, so external resources are used to identify facet terms.

Automatic facet discovery has three steps:

1. identifying important terms,

2. deriving context using external resources, and
3. comparative term frequency analysis.

In the first step the words that characterize the content of each document (important
terms) are located. For this purpose Named Entities (LPNE®), Yahoo Terms and Wikipedia
Terms are used. Wikipedia Terms is a tool that creates a relational base with the titles of
all Wikipedia pages. A term that matches a title of this base is characterized as important.
Also, redirected pages are used to capture variations of the same term and anchor text in
order to find different descriptions of the same concept.

In the second step important terms are used so as to query one or more external resources
and enrich important terms with the retrieved terms. External resources used are Google,
WordNet Hypernyms, Wikipedia Graph and Wikipedia Synonymous. Wikipedia Graph uses
the links that appear in the page of each Wikipedia entry in order to measure the level of
association between two connected Wikipedia entries. The top-k terms with the highest
scores that are connected with a specific term ¢ are returned. Moreover, Wikipedia Syn-
onymous identify variations of the same term. It uses the titles of entries that redirect to a
particular Wikipedia entry and the anchor texts that link to a particular term.

At the end of step 2, two collections exist. The original collection and a contextualized
one that was constructed from both the terms of the original collection (step 1) and the

terms derived from the second step.

3hittp:/ /www.alias-i.com/lingpipe/

34

In the final step, the difference in term frequencies, between the original collection and
the expanded collection are exploited so as to identify the candidate facet terms which are

expected to be infrequent in the original collection but frequent in the expanded one.

Facet extraction efficiency is influenced more by Yahoo!Term Extractor during the term
extraction step and by Google external resource in the second step. This happens because
web-based resources are slower than Wikipedia and WordNet that are faster since they are

stored locally.

2.5 STC-based approaches

2.5.1 STC based on True Common Phrase Label Discovery

This approach [19] uses a suffix tree with N-gram. It is trying to alleviate the problems
generated from the use of N-gram like the big number of generated base clusters and the
extraction of partial common phases when the length of N-gram is smaller than the length

of true common phrases.

The algorithm consists of four steps.

e Pre-processing

A stemming algorithm is applied to snippets and non-word tokens are eliminated.

e Base cluster Identification

A suffix tree is built with N-grams and then the internal nodes that do not contain
snippets and have one child are compacted into one node. The internal nodes which
contain at least one snippet at leaf nodes are selected as base clusters. Base clusters

that their phrases contain only query words are eliminated.

e Combining base clusters with a partial join operation

In order to reduce the number of generated base clusters and to find a true common

35

phrase a join operation between two clusters is performed based on Eq. (2.2)

CLQ@
aq :bo
a9 :b1

A®B=) if(A(d) - B(d) or B(d) - A(d)) (2.2)

ap = bnfl

@ b’!L

where A and B are base clusters, A4 is snippets of cluster A, By is snippets of cluster
B, {ag,a1,...,an} is a set of terms that appear in cluster’s A label and {bg, b1, ..., b, }

is set of terms that appear in cluster’s B label.

e Ranking Cluster

Clusters are reordered according to their base clusters scores. Base cluster’s score is

calculated according to Eq. (2.3):

S(m) = |d| flmy| f(query) Y _ tfidf (p:,d) (2.3)
0, if [pl =1
flmpl = lpl, if 2<Ip| <8
a, if |p|>8
100, if query word appear in phrase
flquery) =

1, if query word not appear in phrase

where |d| is the number of snippets in cluster m and |m,,| is the number of words in

phrase p.

2.5.2 STC with X-gram

STC with X-gram [34] is a variant of STC with N-gram. STC with N-gram has the
advantage that fewer words are inserted to the suffix tree as suffixes are no longer than
N words. Therefore, suffix tree has lower memory requirements than original STC and its

building time is reduced. In STC with X-gram, X is an adaptive variable which denotes the

36

maximum length of a suffix that can be inserted into the tree. True common phrases can
be inserted into the tree as a whole and noise words sequences are limited.

The algorithm can be divided into three steps.
e Non-informative text and stop-words are removed. Also, stemming is applied.

e A suffix tree with X-gram is created using the words sequences S[1...m]. The first word
S[1] is inserted into the tree and after iteratively each word from 2 to m is checked
and if it doesn’t match with a node of the tree a new node is inserted, otherwise the
longest match is inserted into the tree. For example, snippets of Table 2.1 construct

the suffix tree of Figure 2.13.

D1 | suffix,tree,clustering,x1,x2
D2 | yl,suffix,tree,clustering,y2
D3 | zl,z2,suffix,tree,clustering

Table 2.1: Snippets set

suffix
1,1

I

tree clustering z1 z2
2,2 1,3)8.5) 3,1 3,2
| |
clustering ¥2 @ @
3,3 tree 2.4
1,2
ml
2,334

Figure 2.13: Suffix tree with X-gram

As a result of this process a phrase of length L will be inserted into the tree if this
phrase appears L times at most. Since 90% of the true common phrases is no longer
than 6, the max depth of X-gram was set to 6. Also, for the true phrases that are not
fully inserted into the tree the partial phrases join operation is applied. Moreover, it

is not possible to discover all snippets that a phrase appears, although this phrase is

37

wholly in the tree, so some branches are complemented using suffix links of Ukkonen’s
algorithm. Figure 2.15 shows the suffix tree of Figure’s 2.14 after branch A was

complemented.

suffix sat --»clustering
11 / 12 F (1,3)It3,5j
trllae _.4"" e lustering wanen y2 vl w2
22 2.3)64) 24 13 54
clustering| -
33 4.2 53
vl w2

4,1 5,2

Figure 2.14: Suffix tree with X-gram

branch A ather branches

suffiz

tree

clustering

(1.12.2)3.3)

y2 vl w2
24 41 5,2

Figure 2.15: Suffix tree with X-gram after complement

e Candidate clusters are merged by checking only the k highest scored candidate clusters.

Finally, they are scored and sorted.

2.5.3 Extended STC (ESTC)

Extended STC [10] is a variant of the STC algorithm, which proposes a new score
formula to deal with overlapping documents in clusters since neither the score function in

[40] nor the simplified score function used in [38] works properly when the whole documents

38

are clustered. Also, ESTC introduces a cluster selection algorithm to filter the clusters
maximizing topic coverage and reducing overlap.

Original STC after the merging step of base clusters that consist a connected component,
scores each merged cluster calculating the sum of scores of its underlying base clusters. But
this score method favors clusters with a big number of base clusters as it over counts the
overlapping documents in base clusters. ESTC uses a new scoring method where each
document of a base cluster with score s and |D| documents is assigned score ﬁ For a
merged cluster, the score of an overlapping document is the average of its scores from the
base clusters of the merged cluster that it belongs. Finally, the score of a merged cluster is
the sum of its document scores.

Cluster Selection Algorithm

The heuristic function H = D — §(C — D) is used in order to select the cluster that
adds more to H. In the above function C is the sum of the sizes of the clusters, and D is
the number of distinct documents (coverage). C'— D represents the number of overlapping
documents in the solution and (3 is a constant used to balance the trade off between overlap
and coverage.

The algorithm approximately maximizes the heuristic by starting with an empty set of
clusters and extending that solution incrementally (adding one cluster in each step). In each
step, a k-step look-ahead is used to select the cluster to be added to the current solution.
A k-step look-ahead considers all possible 1, 2, ..., k41 cluster extensions to the current
solution, and the best cluster of the best extension is chosen to be added to the current
solution.

Furthermore, pruning is applied for any branch (possible extension) that can not possibly

influence the final solution.

2.5.4 Findex

Findex [20] introduces a statistical algorithm which extracts candidate phrases by moving
a window with a length of 1..|P| words across the sentences (P) and fKWIC (frequent
keyword-in-context) which extracts the candidate phrases like the statistical algorithm but
with the requirement that they must contain at least one of the query words. For this

reason, the candidate phrases for fKWIC are more fewer than the statistical algorithm.

39

The algorithms are applied on the snippets returned from the search engines. Initially,
snippets are separated into sentences, stop-words and other irrelevant strings (words com-
posed mostly of non-alphabetical characters) are removed. In fKWIC stop-words are re-
moved in a latter step, during the phrases extraction. After this preprocessing phase, follows
the candidate phrases extraction and finally the filtering of the category candidates.

In the filtering of the category candidates for the statical algorithm the extracted phrases
that are composed of the same words or are subphrases are removed. For fKWIC, a candidate

phrase is removed if the size of its association set gets too low compared to a similar phrase.

2.5.5 Link-based Clustering

Link-based clustering [35] is based on common links shared by pages in correspondence
to document clustering algorithms that are based on common words/phrases among docu-
ments.

The idea is to cluster together pages that share common links as it is possible these
pages to be tightly related. Common links for two web pages p and ¢ mean common
out-links (point form p and ¢) as well as common in-links (point to p and ¢). Moreover, co-
citation measures the number of citations (out-links) in common between two documents
and coupling measures the number of document (in-links) that cites both of two documents
under consideration.

Each web page P in R (set of specified number of search results) is represented as two
vectors: Poyt (N-dimension) and Py, (M-dimension). M and N denote the total number
of distinct in-links and out-links extracted for all pages in R respectively. The ith item of
vector Pp,; indicates whether P has the correspondent out-link as the ith one in N out-
links. If yes, the ith item is 1, else 0. Identically, the jth item of Py, indicates whether P

has the correspondent in-link as the jth one in M in-links. If yes, jth item is 1, else 0.
Common links (in-link and out-link) shared by two pages P and @ are estimated using

the cosine similarity measure:

Cosine(P,Q) = PeQ _ ((Pou®Qou)+ (Prn®Qrn))

IPIIQIN IIeflell

The steps of the algorithm are the following:

40

e Filter irrelevant pages: Only pages whose sum of in-links and out-links are at least 2

join the clustering procedure.

e Define similarity threshold: Similarity threshold is pre-defined to control the process

of assigning one page to a cluster (usually 0.1).

o Assign each page to clusters: Each page is assigned to existing clusters when the simi-
larity between the page and the correspondent cluster is above the similarity threshold.
If none of the current existing clusters meet the demand, the page under consideration
becomes a new cluster itself. Centroid vector is used when calculating the similarity
and it is incrementally recalculated when new members are introduced to the cluster.
While one page could belong to more than one cluster, it is limited to top 10 clusters
based on similarity values. All pages that join clustering procedure are processed se-
quentially and the whole process is iteratively executed until it converges (centroids

of all clusters are no longer changed).

e Generating final clusters by merging base clusters: When the whole iteration process
converges, base clusters are formed. Final clusters are generated by recursively merging
two base clusters if they share majority members using a specific merging threshold

(usually 0.75).

2.5.6 Semantic, Hierarchical, Online Clustering (SHOC)

SHOC [42] is an extension of STC for oriental languages like Chinese.
SHOC is described in the following steps:

e Data collection and cleaning: The search results from several search engines are col-
lected. The retrieved snippets are splitted into sentences according to punctuations
and HTML tags. The non-word tokens are stripped and redundant spaces are com-

pressed. The English words are stemmed using a stemming algorithm.

e Feature extraction: In STC common phrases are identified using a suffix tree structure
but this is not efficient for key phrase discovery since oriental languages have much
larger alphabet than English. Also, oriental languages like Chinese do not have explicit

word separators (such as blanks in English) so partial phrases can be recognized if using

41

suffix trees. For these reasons, suffix array is used instead. The suffix array s of a

document 7', is an array of all IV suffixes of T, sorted alphabetically.

e [dentifying and organizing clusters: Taking the identified (from the previous steps)
key phrases as terms, the search results can be described as a m x n term-document
matrix A , whose row vectors represent the terms and column vectors represent the
documents. The element A(i, j) = 1 if the i-th term T; occurs in the j-th document
Dj, or A(i, j) = 0. SHOC applies orthogonal clustering to the term-document matrix
of Web search results using the SVD (Singular Value Decomposition) of the matrix
A. Finally, SHOC organizes the clusters into a tree hierarchy by checking each pair
of clusters if they can be merged into one cluster or to be treated as a parent-child

relationship.

2.6 Synopsis and Comparison

Table 2.2 presents a number of basic features of clustering which are used for providing
an overview of the functionality offered by each of the previously described clustering search
engines and algorithms.

Generally, the table is filled with a text that explains how these functionalities are
applied to the clustering engines/algorithms, or with an equation number, or with one of
the symbols v/, x, -:
v'means that the corresponding engine/algorithm supports the specific functionality,

x is the opposite of v/, and
- means that we do not have enough information so as to know.

Presentation of clusters feature is the way which the results of clustering are presented.
It can be a Tree, a List or a 2D-Map. Tree is referred to a tree structure that consists of
the clusters’ names/labels. 2D-Map is referred to the positioning of clusters’ names in a
two-dimensional space. When clusters’ names are not provided then a List of the clusters
is presented. This list consists of a set of phrases that characterize each cluster and some
sample documents or all of them.

Cluster structure feature corresponds to the structure of folder hierarchy and can be

either flat (F) or hierarchical (H).

42

Size of cluster names corresponds to the number of words that consist a folder label.

Ezxtra info for each cluster is any additional information that is given apart from the
names and the documents of the clusters.

Use of external sources is the case that an algorithm exploits data from external sources
such as knowledge bases or classified directories (e.g. dmoz, Wikipedia).

Cluster naming feature are the different ways the cluster labels are estimated. Descrip-
tion Comes First (DCF) [31] is an approach in which cluster construction and potential
cluster label discovery are split into concurrent phases and merged in the end.

Ordering of clusters is determined by their score (Score(C;)) that is calculated differently
for each approach. For each cluster C; C ans(q) C Obj, the scoring function takes one of

the following forms:

Score(C;) = |C;| (i.e. the cardinality of the set C;) (2.4)
= sim(q,C;) (Cj is the centroid of the vectors in C}) (2.5)
= Z sim(q,d;) (2.6)

d'EC»;

= Z Score(Cyj) Z |Cijl - f(|Lsj)) (2.7)
= Z regression model of (TFIDF, LEN,ICS,CE,IND)(L;;) (2.8)

LijeL;
= Z Score(d;) = Z avg(W) (2.9)
djECi djECi | Z‘]|

where L; is the label of C; and C;; denotes the base cluster j of final cluster C;. Moreover,
in Eq. (2.7) |L;j| is the number of words in phrase L;; that do not appear in a stoplist, or in
too few (3 or less) or too many (more than 40%) documents of the collection. The function
f penalizes single word phrases, is linear for phrases that are two to six words long, and

becomes constant for longer phrases, i.e. it has the following form:
—x if|L|=1
UL =S alL] if2<|L| <6

c if |L| > 6

Ordering of docs within clusters can follow the original order of documents (with respect

to their similarity with the user query) or documents can be re-ranked by the score of the

43

associated cluster label. Original order of documents is the order in the ranked list that is
returned by the queried search engines. For each document d; € Cj, score function takes

the following formulas:

Score(d;) = sim(q,d;) (2.10)

= sim(Li,dj) (2.11)

where L; is the label of cluster Cj.

Used in real/online system is checked for a clustering algorithm when there is a publicly
available system that uses an implementation of it and is checked for an engine when it is
on-line.

Overlapping clusters feature is checked when generated clusters are possible to contain
common documents.

Open Source feature is referred to software that its source code is free and freely available

to anyone interested in using or working with it.

44

SWY}LIOZ[R pue

SOUISUO [DILds SULIAISN[D JO uosIIedmwod soInyes g’ 9[qR],

20Inog
X X b'e X X X X N b'e X X » » b'e uad(
sI99sNO
, » , 2, 2, , - x x 2, , 2, » » || Suddertenp
waISAs
auruo/eax
X / / - X X / / X X VAl VAl / X || pos)
sI99sn[d
(1re) UIYIM SO0p
- | (ore) - - - - - - - | 1 (0re) - - | (or®) - || 30 SutepIig
(€2) (92) (82) (L2)
sI199SN[O squaux 21008 SI199SN[D
oseayd -noop sosearyd oseayd (1op10 3ur
(ve) oyl jo juea justes (re) | swv Jo -puaosap)
oZIs $9100S oY} (g2) -o1I Jo SPqe| 9ZIS | S9I00s oY) || sIoysSM[O JO
- I099sn[d - (6'2) - | Jo wmns | odouw)sip - |e8equeored | jo wns - - Iegsn[d | jo wns Surepi
Surureu
- 40d 40d 40d 40d 40d - 40d X 40d - AD0d J40d 40d ISND
(s1xo9
Surures| Ioyoue $92IN0S
pue ejep ‘zowp) [euI9)xo
» X p'e pre X X X X X Sururery - sg> X x || jo as()
soop soop
eore ordures ordures RELE 1)
oz1s daz+ + oz1s oz1s oz1s oz1s ozIs | ¢ + ozIs || yoeo 10§
- RELE 1 p) x - - - | ozs quoj x Io3sn[d Ioysn[d I99sn[d RELE 1 p) REUE 1 p) Ioysnpd || ojur eIixy
ST
quenboauy
1eqors jo sowreu 19}
o[qeLIRA | S[RLIRA |d[QRLIRA | O[RLIRA [91] o[qerrea | [[] poxig | wnu > a[qerIea o[qerLIeA o[qeLIRA [8¢1] | orqerrea o[qerIeA || -sno Jjo 9zIg
2INJONI)S
dq dq H q Aq dq H H H Aq H H Aq Aq oIsnH
s199sSnO JOo
- 2917, 9017, 2917, - - | dein-dz 2017, IST] 2917, 2917, 2917, 2917, IST] || uorjRIULSaIJ
uory
wreIs-x -0RI)Xo
peseq Ui weis-N Ioyyen soseayd AysnyD OLS
Sur] xopuld | DOHS OLSH DLS | Uim DIS | emyumd) OHIA /1933808 juar[es | /OWISIATA | THMVNS joaren | /mdnoin
SUI}LI03] Y -SouL3us] seInjesy

45

2.6.1 Discussion

Below we describe the main advantages and shortcomings of each approach.

STC algorithm creates coherent clusters by allowing documents to be in the same cluster
even if they do not share a common phrase but rather share phrases with other documents
of the cluster. Also, it reduces fragmentation of the produced clusters. STC is fast, in-
cremental and creates overlapping clusters. It is robust in noisy situations (large number
of loosely related documents, snippets without correlation to the query). Finally, original
STC algorithm is applied on snippets but Carrot’s STC implementation uses titles besides

snippets, both with the same priority.

In contrast to STC, Findex does not merge clusters based on the documents they contain,
but based on the similarity of the extracted phrases. However, no comparative results

regarding cluster label quality have been reported in the literature.

Suffix tree structure (used by STC) can be constructed with N-grams instead of the
suffixes. This structure maintains fewer words since suffixes are no longer than N words.
Therefore, suffix tree with N-gram has lower memory requirements and its building time is
reduced (however less common phrases are discovered and this may hurt the quality of the
final clusters). However, STC with N-gram can identify only partial common phrases when
N is smaller than the length of true common phrases so cluster labels can be unreadable.
In [19] a join operation was proposed to overcome this shortcoming. A variant of STC with
N-gram is STC with X-gram [34] where X is an adaptive variable. It has lower memory
requirements and is faster than both STC with N-gram and the original STC since it
maintains fewer words. It is claimed that it generates more readable labels than STC with
N-gram as it inserts in the suffix tree more true common phrases and joins partial phrases
to construct true common phrases. The performance improvements reported are small and
from our experiments the most time consuming task is the generation of the snippets (not the

construction of the suffix tree). No user study results have been reported in the literature.

Another extension of STC, Extended STC (ESTC) [10] is appropriate for application
over the full texts (not snippets). To reduce the (roughly two orders of magnitude) increased
number of clusters, a different scoring function and cluster selection algorithm is adopted.

The cluster selection algorithm is based on a greedy search algorithm aiming at reducing the

46

overlap and at increasing the coverage of the final clusters. We do not share the objective of
reducing overlap as in practice documents concern more than one topic. The comparison of
ESTC with the original STC was done using a very small cluster set (consisting of only two
queries) and no user study has been performed. Moreover, the major part of the evaluation
was done assuming the entire textual contents of the pages (not snippets), or on snippets
without title information. Summarizing, clustering over full text is not appropriate for a
(Meta) WSE since full text may not be available or too expensive to process.

TermRank algorithm use only the blocks in which the search keyword appear in each Web
page. This leads to a reduction of association strengths of words like ’search’, ’back’, ’copy-
right’ because they rarely co-occur in the same block with the important terms(discriminative,
ambiguous).

The Salient Phrases Extraction algorithm has the disadvantage that it needs a training
phase, in order to choose the regression model that will be used, which is hard to adapt
on the whole heterogeneous web. Another disadvantage is that the performance depends
heavily on the search results returned by the queried Web search engines. For some queries
(like "apple’, ’jokes’) the vocabularies are relatively limited and the salient phrases can be
extracted precisely. But for other queries (like 'Clinton’, 'yellow pages’) the search engine
results contain various vocabularies and the performance for them is relatively low. Also, it
is observed that the clusters of the top 10 salient phrases contain about half of the search
results. A possibly solution would be to design a more sophisticate cluster merge algorithm.
Despite the above disadvantages, this algorithm is linear, fast, has O(n) complexity, produces
good cluster names and can be further examined in order to improve its drawbacks.

The algorithm used by SNAKET engine has the advantage that labels consist of non-
contiguous words within a certain proximity window, in contrast with STC that is limited by
the suffixes generation as they consists of contiguous words. Furthermore, SNAKET creates
a weight balanced hierarchy, which means that the number of documents in the same level
clusters is uniformly distributed.

Carrot? search engine has two disadvantages. First, the usability of topics presented
is often reduced because the number of folders generated is big. Second, it fails to cluster
together similar labels such as ”knowledge, knowledge discovery”, "mining and knowledge”.

FIHC is more efficient and scalable because it reduces dimensionality by keeping only

47

the frequent items in document vectors. Also, it provides high clustering accuracy compared
to common algorithms and is robust even when applied to large and complicated document
sets. FIHC like the other Index-based approaches can be applied on a stand alone engine

since they require accessing the entire vectors of the documents and they are computationally

expensive.
[Algorithms/Engines [[Pros [Cons
incremental does not provide cluster labels
creates coherent clusters large memory requirements
Grouper/STC allows clusters to overlap too many candidate clusters
treat document as an ordered sequence | construct a long path of suffix tree
of words
lower memory requirements than STC | labels a cluster with a partial phrase
STC with N-Gram probably unreadable
needs less time to build the tree too many candidate clusters
STC with X-Gram lqwer memory requirements
discovers true common phrases
maintains fewer words than STC with
N-gram
SNAKET labels are not limited by the order of | personalization
words
uniform distribution of documents in | interface’s functionalities occur at
clusters client side
allows clusters to overlap
provides highly readable labels needs learning from training data
Salient Phrases Extraction|| allows clusters to overlap performance depends on the web search
results
half of the results are distributed on the
top-10 clusters
scalability
FIHC meaningful cluster labels
Table 2.3: Pros and cons summary of algorithms and search engines
Flat Cluster- | Complexity Hierarchical Complexity
ing Clustering
Grouper/ O(n) SNAKET O(nlogn+mlogmp)
STC
Carrot O(n) HAC O(n?)
Salient O(n) FIHC On+g%+ > rer global_support(f))
Phrases
Extraction
K-means O(nkT)

Table 2.4: Complexity comparison of clustering algorithms

Table 2.4 reports the time complexity of various clustering algorithms and Table 2.5

explains the parameters of Table 2.4.

48

Parameter Explanation

number of processed snippets

number of desired clusters

number of iterations

number of extracted sentences/words

number of labels extracted by SNAKET

number of remaining clusters at level 1

o o | B | 1| ==

the set of global frequent itemsets

global_support(f) | number of documents that contain the f itemset

Table 2.5: Explanation for each parameter of Table 2.4

49

50

Chapter 3

Our Approach

This chapter describes our methods for results clustering and their evaluation. It is
organized as follows. Section 3.1 formulates the problem and introduces notations. Section
3.2 describes the original STC and our extensions which we call STC+ and NM-STC. Section
3.3 reports comparative experimental results concerning the effectiveness and the efficiency

of STC, STC+ and NM-STC. Finally, Section 3.4 summarizes the results.

3.1 Problem Statement and Notations

We consider important the requirements of relevance, browsable summaries, overlap,
snippet-tolerance, speed and incrementality as described in [38]. Regarding the problem of

cluster labeling we have observed that:

(a) long labels are not very good
E.g. not convenient for the left frame of a WSE, or for accessing the WSE through a

mobile phone.

(b) wvery short labels (e.g. single words) are not necessarily good
E.g. longer labels could be acceptable, or even desired, in a system that shows the

cluster labels in a horizontal frame.

(c) an hierarchical organization of labels can alleviate the problem of long labels

o1

(d) the words/phrases appearing in titles are usually better (for cluster labeling) than those

appearing only in snippets

Observations (a) and (b) motivate the need for configuration parameters. Observations (c)

and (d) motivate the algorithms STC+ and NM-STC that we will introduce.

3.1.1 Configuration Parameters

We have realized that several configuration parameters are needed for facing the needs

of a modern WSE. We decided to adopt the following:

K : number of top elements of the answer to cluster
LL,,.: : max cluster Label Length
LL,, : min cluster Label Length

NCiae : max Number of Clusters

Obviously it should be NCi,q < K. However the size of the current answer should also
be taken into account. Specifically if ans(q) is the answer of the submitted query, then we
shall use A to denote the first K elements of ans(q). However,

(a) if |A| < K then we assume that K = |A|,

(b) if |A| < NCipae then we assume that NCi,ap = |A|/2.

The latter can be justified by an example. Assume that NC),q, = 20 and |A| = 10. Instead
of giving the user 10 clusters, we believe that giving less (say 5) is better in the sense that

clustering should give a synoptical overview of the results.

3.1.2 Notations

We use Obj to denote the set of all documents, hereafter objects, indexed by a WSE,
and A to denote the top-K elements of the current answer as defined earlier (i.e. A C Obj
and |A| = K).

We use W to denote the set of words of the entire collection, and W (A) to denote the
set of the words that appear in a set of documents A (this means that W is a shortcut for

W (Obj)).

52

Let A = {a1,...,ax}. For each element a; of A we shall use a;.t to denote the title of
a;, and a;.s to denote the snippet of a;. Note that the elements of W (A) are based on both
titles and snippets of the elements of A.

If a is a document, then we shall use P(a) to denote all phrases of a that are sentence
suffizes, i.e. start from a word beginning and stop at the end of a sentence of a. For example,
P("this is a test”) = {"this is a test”, "is a test”, "a test”, "test” },
while P("this is. A test”) = {"this is”, ”is”, " A test”, "test” }.

We shall use P(A) to denote all phrases of the elements of A, i.e. P(A) = J,c4(P(a.t)U
P(a.s)).

If p is a phrase we shall use Ezt(p) to denote the objects (of A) to which p appears, i.e.
Ext(p) ={a € A | p € a}. Also, we shall use w(p) to denote the set of words that phrase p

contains.

3.2 STC and Extensions

Our goal is to improve the Suffix Tree Clustering (STC) algorithm proposed by [38].
Specifically we attempt
(a) to improve the quality of cluster labels by exploiting more the titles (document titles
can give more concise labels),
(b) to define a more parametric algorithm for facing the requirements of modern WSEs, and

(c) to derive hierarchically organized labels.

Specifically below we describe,
(a) the original STC (Section 3.2.1),
(b) a variation that we have implemented, called STC+ (Section 3.2.2), and
(c) a new algorithm that we have devised called NM-STC (Section 3.2.3).

3.2.1 The Original STC

This method is based on Suffix Tree Clustering (STC) algorithm, which was described

in Section 2.4. The algorithm consists of the following steps:

1. Fetch snippets and titles of the top-K documents

53

2. Preprocess snippets and titles (mark sentence boundaries, remove stop-words)
3. Construct a suffix tree based on the preprocessed data

4. Find candidate clusters (base clusters)

5. Create final clusters by merging candidate clusters

Let’s now describe the algorithm in more detail. The algorithm starts with the suffix
tree construction. For each sentence of the input data all suffixes are generated and are
inserted into the suffix tree. Each node of the tree that contains two or more documents is
a base cluster. Each base cluster that corresponds to a phrase p is assigned a score which is

calculated with the following formula:

score(p) =|{a € A|p€ator pecas} *fleffLen(p))

where ef f Len(p) is the effective length of label p defined as:

effLen(p) = |w(p)| — |common(p)| where

df (w;, A)

common(p) = {w; € p|df(w;,A) <3or A

> 0.4}

where df (w;, A) = {d € A | w; € d}|.

The score of a base cluster is influenced by two factors. The number of documents that it
contains and the function f that depends on the effective length of the base cluster’s phrase.
A phrase that corresponds to a bigger document size base cluster can represent better the
cluster as it describes the contents of a big portion of the cluster.

The function f (that takes as input the effective length), penalizes single words, is linear
for phrases with effective length from two to six words, and is constant for bigger phrases,

specifically:

0.5 ifef fLen(p) <1
fleffLen(p)) = effLen(p) if2<effLen(p) <6

7.0 if ef fLen(p) > 6

Afterwards, the overlap is calculated for all pairs of base clusters. Overlap is defined

with a binary similarity measure. The similarity between two base clusters C; and Cj is

54

defined as:

1 if% > 0.5 and % > 0.5
sim(C;, Cy) = ‘ !

0 otherwise

The next step is the merging of base clusters. In brief, each final cluster contains all
base clusters that can be merged (two base clusters can be merged if their similarity equals
1). As aresult the document set of a final cluster is the union of its base clusters’ document
sets and its cluster label is the label of the base cluster with the highest score. Due to
cluster merging there can be documents that do not contain the label p. Let C(p) be
the document set of a cluster label p. The exact scoring formula for a final cluster is
score(p) = |C(p)| * f(ef fLen(p)). Finally, clusters are sorted according to their score and

are presented to the user.

3.2.2 STC+: A Variation of STC

Here we describe a variation of STC which differs in the way that clusters are scored and

in the way base clusters are merged. Specifically, we adopt the following scoring formula:
score(p) = ({a€ A|peat}+|{ac A|pecator peas})*fleffLen(p)) (3.1)

This formula favors phrases that occur in titles. In addition, we have modified the
function f. Our variation penalizes single words and phrases that their effective length is
bigger that 4 words, and is linear for phrases with effective length two to four words. In

this way we favor small (but not single word) phrases.

Specifically our function f is defined as:

: if .
FleffLen(p)) = 0-5 ef fLen(p) < 1 or ef fLen(p) > 4
effLen(p) if2<effLen(p) <4

Regarding the computation of the similarity measure (that determines cluster merging)
we consider as threshold the value 0.4 instead of 0.5. According to [9] it was observed
that a 10% reduction from 50% to 40% can significantly affect the number of the generated
clusters. From our experience, this value creates fewer and bigger clusters and solves some

problematic cases of the original STC. For example, a base cluster with 2 documents that

55

is compared with a base cluster with 4 documents cannot be merged even if they have 2

common documents, because 2/4 = 0.5. Therefore we used the following:

IC:i N G4

> 0.4 and [en

1 1f'0”|0‘ > 0.4

sim(C;, C;) = I
0 otherwise
A lower than 0.4 threshold would decrease the label precision as it will be explained in
Section 3.3.2.3.

Note that the title set of a final cluster is the union of its base clusters’ title sets. Let
T'(p) be the set of titles of a cluster label p. The exact scoring formula for a final cluster is
score(p) = (IT(p)| + [C(p)]) * f(ef f Len(p)).

The example below shows how the utilization of titles from STC+ has as result the
selection of better cluster labels compared both to STC that treats snippets and titles with

the same priority and to STC approach that uses only the snippets:

Title 1: Crete hotel: Atlantis

Snippet 1: Atlantis Hotel, Phone: +30-28970-27400 Fax: +30

Title 2: Hotel accommodation

Snippet 2: Knossos Royal Village, Crete, Phone: 2810897675 Fax: 2810897676
Title 3: Crete hotel: Agapi Beach

Snippet 3: Agapi Beach hotel, Phone: 2832089800 Fax: 2832089801

Title 4: Crete hotel

Snippet 4: Astoria Capsis Hotel(Eleytherias Square), phone: 2810345678
fax: 2810345679

Title 5: Accommodation Heraklion, Crete

Snippet 5: Hotels in small villages, Heraklion, Phone: 2810899075 Fax:
2810899076

After sentence boundaries separation and their preprocessing from lexical analyzer they

become:

Title 1: crete hotel atlantis
Snippet 1: atlantis hotel phone fax

Title 2: hotel accommodation

56

Snippet 2: knossos royal village crete phone fax

Title 3: crete hotel agapi beach

Snippet 3: agapi beach hotel phone fax

Title 4: crete hotel

Snippet 4: astoria capsis hotel eleytherias square phone fax
Title 5: accommodation heraklion crete

Snippet 5: hotels small villages heraklion phone fax

Table 3.1 shows the base clusters identified from STC using only the snippets 1, 2, 3, 4 and
5.

[Index [Base Cluster [Documents [Score]
1 fax 1,2,3,4,5 2.5
2 phone fax 1,2,3,4,5 10.0
3 hotel 1, 3,4 1.5
4 hotel phone fax | 1, 3 6.0

Table 3.1: Base clusters identified from STC using only snippets

After the end of clustering for Table’s 3.1 base clusters only one final cluster is created
with label phone faxr and document set 1, 2, 3, 4, 5.
Table 3.2 shows the base clusters identified from STC using the titles 1, 2, 3, 4, 5 and

the snippets 1, 2, 3, 4, 5 with the same priority.

[Index [Base Cluster [Documents [Score]
1 fax 1,2,3,4,5 2.5
2 crete 1,2,3,4,5 2.5
3 crete hotel 1,3, 4 6.0
4 accommodation | 2,5 1.0
5 phone fax 1,2,3,4,5 10.0
6 hotel 1,2,3,4 2.0
7 hotel phone fax | 1, 3 6.0

Table 3.2: Base clusters identified from STC using titles and snippets

After the end of clustering for Table’s 3.2 base clusters two final clusters are created,
phone fax with document set 1, 2, 3, 4, 5 and accommodation with document set 2, 5.

Table 3.3 shows the base clusters identified from STC+ using the titles 1, 2, 3, 4, 5 and
the snippets 1, 2, 3, 4, 5.

o7

[Index [Base Cluster [Documents [Titles [Score]

1 fax 1,2,3,4,5 - 2.5
2 crete 1,2,3,4,5 | 1,3,4,5 4.5
3 crete hotel 1,3, 4 1,3, 4 12.0
4 accommodation | 2,5 2,5 2.0
5 phone fax 1,2,3,4,5 - 10.0
6 hotel 1,2,3,4 1,2,3,4 4.0
7 hotel phone fax | 1,3 - 6.0

Table 3.3: Base clusters identified from STC-+

After the end of clustering for Table’s 3.3 base clusters two final clusters are created,
crete hotel with document set 1, 2, 3, 4, 5 and accommodation with document set 2, 5.

As we can observe, both phone fax and crete hotel label consists of two words. Although,
phone fax appears in five documents and crete hotel label appears only in three documents,
crete hotel base cluster has bigger score because its label is contained in tree titles. Based

on the scoring formula (3.1) we have

score(”crete hotel”) = (34+3)*2 = 12.0
score(”phone fax”) = (5+0)*2 = 10.0

so crete hotel is the label of the final cluster since crete hotel base cluster has the highest

score.

3.2.3 A New Clustering Algorithm (NM-STC)

Here we introduce an algorithm called NM-STC (Non Merging - Suffix Tree Clustering).
As in STC, we begin by constructing the suffix tree of the titles and snippets. Then we
score each node p of that tree. Let p be a phrase (corresponding to a node of the suffix

tree). Below we define four scoring functions:

scorey = Ha€eA|peat}

b

scores = Ha€e A|pe€as}

b

scoreis(p) = scorey(p) x |A| + scores(p)

~~ G~ o~

)
)
)
)

scoresi(p) = scorei(p) x |Al * N + scores(p) * N + PIDF(p)

58

PIDF stands for Phrase IDF and N is the total number of indexed documents (N = |Obj|).
If p is a single word (w), then PIDF(p) is the IDF of w (i.e. IDF(w) = m)
If p is a phrase consisting of the words {wi, ..., wy,}, then PIDF is the average IDF of its

words, i.e.

1 m
PIDF(p) = — > IDF(w;)
=1

or alternatively PIDF(p) = maxyep(IDF(w)). In our experiments we used the average
IDF. The IDF can be computed based on the entire collection if we are in the context of a
single WSE. In our case, the index of Mitos stores only the stems of the words so IDF(w)
is estimated over the stemmed words. If we are in the context of a MWSE (Meta WSE),
then IDF could be based on external sources, or on the current answer!.

NM-STC uses the score;s;(-) scoring formula. This scoring function actually quantifies
a qualitative preference of the form title > snippet > PIDF, where > denotes the priority
operator [8]. Notice that PIDF has the lowest priority. It is used just for breaking some ties.
From our experiments, the number of broken ties is low, so it does not affect significantly
the results.

NM-STC at first scores all labels of the suffix tree using the function scoress;(-). Subse-
quently we select and return the top-IN Ci,q, scored phrases. Let B be the set of top-NCiaz
scored phrases. Note that it is possible for B to contain phrases that point to the same
objects, meaning that the extensions of the labels in B could have big overlaps. In such
cases we will have low ”coverage” of the resulting clustering (i.e. the set UpepExt(p) could
be much smaller than A).

Recall that STC merges base clusters having a substantial overlap in order to tackle this
problem. However that approach leads to labels whose extension may contain documents
that do not contain the cluster label (in this way users get unexpected results). Instead
NM-STC follows a different approach that is described in the sequel, after first introducing
an auxiliary notation. If n(p) and n(p’) denote the nodes in the suffix tree that correspond
to phrases p and p’ respectively, we shall say that p is narrower than p’, and we will write
p < p/, iff n(p) is a descendent of n(p’), which means that p’ is a prefix of p. For instance,

in our running example of Figure 3.1 we have n("ab”) < n("a”).

1 A
IDF(w) = HdGA‘ [‘wed}\

59

Returning to the issue at hand, our approach is the following: We fetch the top-NCiaz
labels and we compute the maximal elements of this set according to <. In this way we get
the more broad labels (among those that are highly scored). If their number is less than
NCiaz then we fetch more labels until reaching to a set of labels whose maximal set has
cardinality NC,qz- So the algorithm returns the smaller set of top-scored phrases B that
satisfies the equation |mazimal-(B)| = NCj,q, if this is possible (even if B is the set of all
nodes of the suffix tree, it may be |mazimal<(B)| < NCpaz)-

The extra labels fetched (i.e. those in B\ mazimal-(B)) are exploited by the GUI for
providing an hierarchical organization of the labels (where the user can expand the desired
nodes to see their immediate children and so on). Consider the example in Figure 3.1.(A1),
and assume that NC,,q.. = 2. The set of top-3 scored labels whose maximal elements are
two are marked (as shown in Figure 3.1.(A2)). At the GUI level, the user can expand a and
see the label b.

ab c: web information systems ab c: results clustering algorithms
bc: information systems bc: clustering algorithms
c: systems c: algorithms

Maximal
Top
Scored

Maximal
Top

— | — |
. R R
A1 A2 (BY) 82)

Figure 3.1: Two examples of NM-STC

The algorithm is sketched bellow. It takes as input a tree (the suffix tree) and returns
another tree (the cluster label tree). Of course it also takes as input the configuration
parameters, as well as the current query gq.

If a cluster label p contains only the query words (i.e. w(p) = w(q)), then we exclude
it from consideration, as such labels would be useless for the users. This is done by zeroing
the scores of such labels (step (2)). At step (3) we zero the scores of the labels that do not
satisfy the LL.ui, and LLy,,, constraints. The function getTopScored(sf, NCpqz) returns
the NCjpar most highly scored nodes. At step (8) we remove from the list of maximal labels

those that are subphrases of other labels and contain the same documents. Specifically,

60

Alg. NM — STC
Input: sf:SuffixTree, NCinaz, LLmin, LLmaz, q
Output: cluster label tree
(1) ScoreLabelsOf(sf)
ZeroScoreLabelsEqualTo(s f,q)
ZeroScoreLabelsLabelSize(s f,L Lyin, LLmaz)
topLabs = getTopScored(sf, NCpaz)
Done=False
while Done=False
maxTopLabs = maximal. (topLabs)
maxTopLabls = ElimSubPhrasesSameExt(maxTopLabs)
missing = NCj,qq - |maxTopLabs|
if (missing>0)
topLabs = topLabs U getNextTopScored (s f,missing)
else Done=True
end while
return topLabs, <|;opLabs

R

— O\—/vv\]\/\-’vvv

—_ = e
[\
NBANG AN

S Ot

e R R N N N N e T R R
co

4

if w(p) C w(p’) and Ext(p) = Ext(p’) then we exclude p. This is shown in the example
illustrated in Figure 3.1.(B1 and B2): the node b is discarded because it has the same
extension with the node b that is child of a.

The function getNextTopScored(sf, M) returns the next M labels in the ranked list of

labels (that are not already consumed).

3.2.4 Notes

STC keep references to the original source of the phrases but we are not doing that. It
is not explained which of the original phrases is selected for presentation since a (stemmed)
suffix of the tree corresponds to as many phrases as the number of the documents this suffix
appears.

Moreover, in our implementation base clusters are those clusters that contain more than
2 documents but in Carrot there are additional criteria. Base clusters must also have score
higher than a minimum base cluster score threshold and in the merging step only the top-IN
base clusters participate. In our implementation all base clusters participate in the merging

process in order to achieve better coverage.

61

Another aspect is the documents that do not participate in any base cluster. None of
the surveys explains how such cases are treated. From Carrot’s interface we observe that

these documents are inserted in an additional cluster with the label ”Other topics”.

3.3 Comparative Evaluation

Two are the main aspects of evaluation: efficiency and quality.

3.3.1 Efficiency

To evaluate efficiency we will measure the time needed for clustering the top-K doc-
uments (for various values of K) of each submitted query. Ideally the time of clustering

should increase linearly with respect to K.

3.3.1.1 Time Performance

For the evaluation queries we counted the average time to cluster the top-{100, 200, 300}
snippets. In NM-STC the IDF of the terms are in main memory from the beginning. Also
recall that PIDF could be omitted from the scoring formula as it does not seem to influence
the results (except in cases of very small result sets). In that case, the scoring formula used
is scoreis(p). The measured times (in seconds) are shown next (using a Pentium IV 4 GHz,

2 GB RAM, Linux Debian).

Alg Top-100 | Top-200 | Top-300
STC 0.208 0.698 1.450
STC+ 0.228 0.761 1.602
NM-STC 0.128 0.269 0.426

Notice that NM-STC is (two to three times) faster than STC and STC+. This is because

NM-STC does not have to intersect and merge base clusters.

3.3.2 Effectiveness - Quality
3.3.2.1 UI Examples

The following screen shots presents three parallel frames which correspond to the original

STC, STC+ and NM-STC algorithms. Each of the first three frames presents the generated

62

cluster label tree from the corresponding approach and the fourth frame shows the list
of documents of the selected cluster label. All approaches use the same method for the
snippets extraction. Also, for all approaches K was set to 100 and for NM-STC we used
the parameters LL,,;n=1, LLyq:=4 and NCpq:=15.

Figures 3.2 and 3.3 show the clusters derived when submitting the query g= npéxieio

and g= uml respectively.

— o I seuen
@*ﬁ mi 1-05 _ Advanced Search

= Results per page | 10 [Results in RDF/XM

Clustered results Top 100 results of at least 732 clustered for query "

You can expand your query with: [l nicorevia epyaomipe [ime C dwerion Cliprme
STC original sTer Non Merging - STC (NM-STE) o

= Yal npfichain(100} E- @ npl_i»:kau(ltlﬂ) By FID!_fI»()\ﬂD(lIJD) @
» (i epyaomipin PioiaTpikhc nanpaiopich; Texvohayia(44) » i zpyaomipio Biampikii nAnpomopikT; Texohoyialds) w Chmezz) Hpﬁ;
¥ (L aneroviemion ougTipaTes pacs yewikod voaoiousiou npakheiou BewlEhan navaveo(12) ¥ i enoming unehowoTin19) & (J epyaomipiof4n) At
» i epyaomioin PioiaThkig nAnpoEOpIG Tekvohoyio ohokhnpmugves Alosi; uyeiog(9) ¥ Bikmiou ovanmiEe néhn npakkeiou(T) B £ nhnpopopikac(25) “lapu
¥ pyaoTipe nhnpopopIady GUOTIHATIY NRCoWNIKG{14) ¥ J Bamduka Boundy box npakhen kpim ekhadate) & BioiaTpieri mhrpoipopicrigi24) Hpdr
b 10 Bnerdoon v heuviag ke aviag BapBapag vopod npachloy geneyBpiu(7) b npiiha pfrm ehhdg mh Fax(7) b Duyciag(z4) =
» Drptenan(sn) b MApOpOpIGKG Y UITATISY NADAIES Yiavwnal4) » ODemkowavia(tt) :f‘g;;
» () Bouriv npirhan kpim exhagt24) ¥ ek pagia popi(4) & ougmpamen(13) i
» (L BoiaTpikc mhnpopopiki; Texvohoyio ShoKANPEVDE MASKTROVIKSS (paksha; Uyeing(s) ¥ () £pyaoTripio nAMPopOPIGKEY SUSTIATLY MPOCUINKS YIGPYOCiZ) ») ctoma npwaPaByIa; gpavTias uysiacte) | - 14K
b (1 BidiaTpirc Mhnpagopikg Texvohayia nhnpopopiake ohamua npwToBaBuIas gpovTiaa; wyeiage) ¥ 1 npahan kprim BielBLvon courier idpupal7) » Cdemompng(s) spaml
} 1 epyaomipio BioiaTpikig nAnpopopikig TExvohoyia ics appaintments(s) ¥ . opyav xprion dopupopiciny CUTTRATEY NEdkken Eunvas(3) b Dpapiaf4) ITE
» 1L box npakhan kpfm ehhabal1s) » Cd Lavising onavakngla) p Ao smaTng unohayioTovie) 138¢
b Boohes Boumd(11) > Baoihng kovTopidvwngl3) P Cunohoyonins) Hpdr
b (L mupan eaming unohoyiomi(7H b (J martin reczka(3) b Derichis) L
b (J eyraraoTace; yavicd NepipEpaaks Yomakopsio nparhdiou Pevitihain navavai npdihan Kpf g ShhaBa(3) ¥ franco chiarugica) b kovroyiavng(3) r‘lﬂu”g
¥ O epcamaminag yevics vomopeia BeviEhen navévan npdhan &1 oial3) b itk oo opse(3) » Domepivoul3) s
¥ Boaihaes Poumiw box npéheo kpim ehhaBol4) » Uueols) -
¥ Unpakhao kprim ehabe(3n) v) pBoBrkn(3) Arlice
¥ npichan kpim EedBuven codrier idpuual7) b ovakowiong(2) 21
» ik kpfm ehaag mh Fax(7) each
¥ (JBewlthan naviven npachao(s) me
b (I box npiicham kpim chiata m(s) 1age
» L ninpogopkric im box npakhen KpAT(E) Hpdr
¥ (L o emoming unohoyioTi opyr oehida enkonvuvio Tiuelz) Lzt
¥ () epyaomipio MANPOPORIGKGY CUTTHHATY NPODWMIKS Yidvwna(Z) ‘lapy
¥ D Biiamaec mnpogopii ms box npihe pim(E) hee
¥ Bamh Boumi npakhe kpfm ihas TH3) Eﬂ o
P L npakhaion(16) inetla
¥ mnposopieric me bo pdkhen kprT ENhAGOE) 12211
b phn papia popRl) Cach
b Tt eniaTing UnehoyioTay enkovevial2)
b epyaotipo ninpopopiaidy ouoTHATIY Npoowd YidpyagtZ)
» 1 opyay xprfion Bopupopiciy cuaTuATIY Apdickan Sunvae(3)
b 1D enhada mih mail statiski(z)
¥ npiehen kpimetiz)

Figure 3.2: Results clustering for the query ¢g=rmpdéxAeLo

3.3.2.2 Evaluation by Users

We conducted an empirical evaluation over Mitos in order to investigate whether the
users of Mitos were satisfied by the results clustering feature. Specifically we followed the
following process: we defined 16 queries of different sizes consisting of small (single words),
medium (2 to 3 words), and big (4 or more words) queries. Figure 3.4 shows the results
sizes of these queries (see Appendix A) that range from 14 to 5029 hits.

The queries were given to 11 persons (from 22 to 30 years old, familiar with computers

63

@ mitos

jurmi |

Results per page | 10 [

Advanced Search

Results in RDFXML

Clustered results

Top 100 results of at least 231 clustered for que

You can expand your query wil

STC ariginal
= 4 umi{100)

-

LA R R R R EREEEE RS RIS R

(Jirformation systems analysis design csd ucFerete(27)

(0 erfikdTepa xprion TUNoMINKE VTG ¥hOEA; HOvTERGNSINTE NAMPOpORITKGY oUTTHATLY UmI(16)

i formal language used expressions uml models(12)

@ Auml uml resource page omgt19)

unified modeling language(15)

(implementation diagrams url companent diagrams(11]
Cumies)

(A uml version edition dennis(13)

() e eniTng LnehoyioTiy anoubde(T)

. sources urnls project tional lbrary medicine{4)

A means umls second requires(s)

(Curls project(11)

(information infrastructure integrated healthcare services networks(4)
i) activity disgrams(3)

Dclass diagrams(7)

L) diagrams(25)

D using uml proceed mode! rieeded database(4)
(visibilty private(s)

(dintearated architscture pravision health telematic serviceshased digital brary technologies(3)

(J accomplished means umls second requirest3)

(D struckural modeling(e)

Aimplementation diagrams url companent disgrams uml deployment(2)
() ttempts balance emphasis data process uses umi(s)

([history averview(s)

) TR MaTHNG UnehoyioThy anoubds NpONTUXIERS NpéYPaMHalZ)
bshavioral modeling(s)

i Jinterfaces abstract classes uml interfare dlasst3)

(nnyé uml uml resourcs page oma spyahelal3)

Dumls{17)

wodsling{17)

. content context uml xml related standards come(4)

(W functional modeling(4)

Dl activity diagrams(4)

(U expressions uml models ocl(2)

Dedition [ink [reevohoyvia Clwestey Cliools

) dlassmethod design(25)

O umiazy
J functional modsling 10)

class diagrams(7)

b D case taols(S)

b diagrams(zs)

b (Jmodeling(17)

¥ expressions uml models ocl{+)
¥ Jumls(i7y

¥ Baypauyara umis)

¥ U poviehanoinon(s)

b ohiscks)

b constructs(4)

J language used expressions uml models(18)

o

»

»

»

¥ T oG unchoyioTiy aroudéc(7)

»

»

b (dinterfaces abstract classes uml interface dass(7)
»

b () emamipns unehoyiaTi amoubéc NpANTURIGKS NpdypaLHalz)

Han Merging - STC (HM-5TC)
= Gl uml{100)

® (D design(z6)

¥ Dmodeling{17)

» (Jinfarmation(12)

& L analysis design{15)

¥ Uphysical(s)

© (Dsystems(10)

» (iinks(7)

¥ (Jucferete(7)

¥ diagramstzs)

¥ Darchitecture(s)

¥] Ao emaTipng unchoyioTw anoudde(s)

> npévpopais)

¥ Uintegrateds)

¥ Docisy

¥ Dhistory(s)

Figure 3.3: Results clustering for the query g=uml

6000

5000

4000

3000

Number of results

2000

1000

A A

AW
ARV

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of query

umber of results

Figure 3.4: Result Sizes

64

Links - 00581618
Sources for UML U
OMG UML Tools A
links English Bihli
Brief Guide

hittp: Shwveewy csd o
1156677674000 - 5k

Links - 0.0581616;
Sources for UML L
OMG UML Tools A
links English Bihli
Brief Guide

hitp:fhewewr csd e
1142201043000 - 5k

Links - o.0sa1616:5

Sources for UML L
OMG UML Tools &
links English Bihli
Brief Guide

hitp:ffvvwewr Gsd LG
1181434068000 - Sk

Links - 0.0581569¢
MIrwEg i Tr UML
OMG Epyahein oL
ArgolUML free and
ity fhvswewr S5l Lo
1158677660000 - 5

Links - 0.0s815e9¢
My i T UML L
OMG Epyaieio ol
ArgoUL free and
hitp: f#erwew osd uoe
1191434054000 - 54

Links - 0.0581569¢
Mg i 1r UML |

and Web searching). Every participant had to submit each of these queries to a special

evaluation system that we developed which visualizes the results of the three clustering

algorithms in parallel (we used the parameters K = 100, LL,ip = 1, LLige = 4, NChax =

15). Figure 3.5 shows the evaluation system for the query g=crete.

|crete

@ mitos

Advanced Search
Results per page | 10

Results in RDF/XML

Clustered results

Top 100 results of at least 4580 clustered for query "¢

fou can expand your query with: Oeortact Tinfo Hics Drarth Diab
STC original
= erete(100)

» (J volpepo ics Farth heraklion crete greece august automatic interface adaptation(99)

-

[w] organization spring science crete course conkenk{26)

Jowned copyrighted theuniversity crete(20)

(. contact infof14)

[w] university crete ics forth socrates erasmus main{S)

(I health telematics nebwork(E)

(Jinformation syskems{10)

(J advanced imaging services health kelematics network(s)

() andthe uriiv crete notified(S)

[w] university(30)

o university library university crete ics Forth socrates erasmus main(z)
[w] summary center{a)

[w] wvisualizing working sets(4)

[w] department university crete heraklion crete greece summary center(3)
(Jintegrated health telematics network crete(3)

o university crete library hellenic academic libraries network national library(2)
(.J box heraklion crete(13)

(J vassilika woutan heraklion crete greece(3)

(D science dept university crete(2)

() science university crete(2)

o department(&)

o department science(Z)

iiraryis)

Dics hci{3)

Oheep(z)

() accessi3)

o markatos(Z)

(D hellas Farthiz)

[w] institubeiz)

Dhased(z)

LA A AR AR EEE R EREEEEEEEEEEESEEEIESES

STC+
= erete(100)
y e TERvIkdS avopopEc(99)
d copyright notice csdi35)
(J health telematics nebwork{27)
(J course content english{26)
J Farth sacrates erasmus main(13}
Jinformation syskems{ 10}
d wvisualizing working sets(S)

o university crete lbrary hellenic academic libraries network national ibrary(2)
(J andthe univ crete natified(S)
(] summary center(s)

J chronaki carf3)

(J science dept university cretelZ)
Jliarary(s)

ics hei(z)

J accessia)

(J hasediz)

rF T T T Ty v vy vy vyvyvrvrvwy

Figure 3.5: Evaluation system user interface

Hon Marging - 5TC (NM-STC)
= erete(1000

»

vz vww

e Tewvikds avopopeciZa)
O esdizny

[w] copyright notice csd{19)
(J course conkent english{14)
[w] contack{11)

Dics(35)

[W] stience(25)

rFvr vy vraovwy

[w] networki)

() health belematics network(g)
forthizs)

o department(&)

[w] informationi)

[w] wvisualizing working sets(4)
iioraryis)

¥ J regional health telematics network(3)

After inspecting the results, each participant had to rank the three methods according

to (a) label readability, (b) cluster ordering, (c) number of clusters and (d) overall quality.

So 16 * 11 * 4 = 704 user assessments in total. The users expressed their preference by

providing numbers from {1, 2, 3}: 1 to the best, and 3 to the worst. Ties were allowed, e.g.

STC:1, STC+:1, NM-STC:2 means that the first two are equally good, and NM-STC is the

worst. In case all three were indifferent (they liked/disliked them equally), they were giving

the value 0. Figure 3.6 illustrates the questionnaire.

We aggregated the rankings using Plurality Ranking (i.e. by considering only the win-

ners, i.e.

1’s) and Borda [13] ranking. Table 3.4 reports the average results ("PR” for

Plurality and ”BR” for Borda Ranking). In a PR column, the higher a value is the better

65

C5-534
Switch
Architec
Csh -
- 0.023830
CS534 P
Switch Ar
cspu
Departr
Cormpute
Srience L
Crete Gre
534 Pack
Architectt
hittp: oy
Ihy534 -
95054632
Cached [

FORTH
Cantact
0.0205002
Vouton P
1385 GR
Hetaklior
Greece P
Vassilika
O Bax13
71110 He
Crete Gre
hittp: oy
leHealthicc
irfa kil -
11411205
18KB Cac
a5 spam]

FORTH

. X Avayvwolportnta ETikeTwv ZEIPA ETIKETWV MARBog ETiKETWV KaAurepn Mpooéyyion (ZuvoAikd)
Evaluation Queries (Label Readability) (Cluster Ordering) (Number of clusters) (Best method (overall))
STC STC+ NM-STC |STC STC+ NM-STC |STC STC+ NM-STC ISTC STC+ NM-STC

Crete

HpdikAgio

UML

SWKM

BikeAaia

AvAkTnon MAnpogopIwv
Alaxeipion OvroAoyiwv
OrrTikotroinon Mpdewyv
TnAeotrtiké Mpdypapua

O Mitog Tng Apiadvng
Aiakotrég otn NéTia Kpritn
BiBAI0Brikn PeBupvou
PDappakeia HpakAgiou

How to install mitos

How to add jar files in Eclipse
irTdpevol diokol otn Némia Kprjth

w|k|w|w|w|w|w|v]|w|w|w|k|w]|v]w|w
= INEEREREREEEREREN N RN
wlklwlw|vwlw|nv|vwn|elv] o] |e

N IS IS IS S BN TR B IS 2 £=) [N R)
= R R R R R R RN = R R

wlk|w|w|w|wlw|nvofwlw|e|olw|w|w
N NSNS N1 DS £ S NS NS R S N T S
= R R R R R ERERENN N

N IR SN NS S S IS IS S S S R R B S
nvive kv e e |wle ke
= NEREREREEERERENERNEE
wlwlw|v|wlwlw|v|v]w|w|klo|w]nv|w

Figure 3.6: Questionnaire

(i.e. the more first positions it got), while in BR column the less a value is the better.
Specifically, to compute the PR value we summed all ones (i.e. first positions) and then we

divided by 11*16 (i.e. |users| x |queries]|).

Criterion STC STC+ NM-STC
PR | BR | PR | BR || PR [BR
(a) Label Readability 241 | 335 | 6.25 | 23.16 || 9.41 | 20.83
(b) Cluster Ordering 4.75 | 2833 || 7.33 | 21.75 || 6.41 | 24.9
(¢) Number of clusters 2.33 | 33.5 | 5.83 | 23.33 || 1041 | 19.91
[(d) Best method (overall) [3.41 [31.08 [| 7.08 [21.75 [| 6.91 | 23.5 |

Table 3.4: Comparative Evaluation by Users

Criterion STC STC+ NM-STC
PR [BR || PR | BR | PR | BR
(a) Label Readability 3 3 2 2 1 1
(b) Cluster Ordering 3 3 1 1 2 2
(¢) Number of Clusters 3 3 2 2 1 1
[(d) Best method (overall) [3 | 3 [1 [1 [2 [2 |

Table 3.5: Relative Ranking by Users

Table 3.5 shows only the relative ranking of the algorithms: 1 for the best, 2 for the
second, and 3 for the third in preference algorithm. Notice that the relative ordering is
the same for both PR and BR. The results show STC+ and NM-STC are clearly the most
preferred algorithms according to each of the three criteria, and according to the overall

assessment. In particular, NM-STC yields the more readable labels, STC+ yields the best

66

cluster label ordering and NM-STC yields the best number of clusters. Regarding criterion
(d) (overall quality), STC+ obtained the best result (PR: 7.08), NM-STC a slightly lower
(PR: 6.91), while STC a much lower value (PR: 3.41).

In addition, we asked the participants to answer a small questionnaire. Table 3.6 shows
the questions and the answers received. The results show that the majority prefers
(a) hierarchically organized labels,
(b) labels comprising one to three words, and

(c) 10-15 clusters.

’ Question H Results ‘
Do you prefer Flat or Hierarchi- || Flat (24%),
cal cluster labels? Hierarchical (58%),
Both are fine (18%)
Preferred cluster label length 1—3(75%)
3 —6(25%)
Preferred number of clusters < 10 (25%)
10 — 15 (62.5%)
15 — 20 (12.5%)

Table 3.6: Questionnaire

3.3.2.3 Clustering Evaluation Metrics

We decided to conduct an additional comparative evaluation between original STC,
STC+, and NM-STC. Recall that B is the set of the labels returned by a clustering algo-
rithm. For a p € B we shall use C(p) to denote the set of objects that are assigned to cluster

label p by the clustering algorithm. We used the metrics defined in Table 3.7.

’ Name ‘ Definition ‘
coverage coverage = 7|U”Eﬁllc(p)l
average label length | LLgyg = avgpep|w(p)|
overlap AvO = W Zli‘l Z'fi'l-HJO(pi,pj)
where JO(pi, bj) = oot
label precision AvLP = ﬁ >_pep LabelPrec(p)
where Label Prec(p) = |{o€C(p)‘\C1(1;();|i)gw(o)}|

Table 3.7: Evaluation Metrics

67

Coverage measures the degree that clusters’ extensions cover the answer A (the closer
to 1, the better the clusters ”cover” the answer A). Its value is low if the clusters cover a
small portion of A and this implies that the clusters do not summarize the entire contents
of A. The label precision of a label p is the percentage of objects in the extension of p that
contain all words of p. It is clear that the label precision of NM-STC is (by construction)
always 1, but this is not true for the other STC-based algorithms (due to the base cluster
merging).

Table 3.8 reports the results of the evaluation. We report the average values for the
queries used in the empirical evaluation. The overlap for NM-STC is computed over the
maximal elements of B (i.e. those in maximal-(B)). The results show that STC and STC+
have exactly the same coverage while NM-STC has slightly lower?. STC+ and NM-STC
give smaller names than STC. STC+ and NM-STC have higher overlap (which is not bad).
The label precision of STC+ is smaller than that of STC due to the threshold 0.4 vs 0.5 in
base cluster merging. For threshold=0.3 the average precision of STC+ drops to 0.60 while
for threshold=0.2 it further drops to 0.47. These results motivate the reason for not further

decreasing this threshold.

’ Criterion H STC ‘ STC+ ‘ NM-STC ‘
coverage 0.994 | 0.994 | 0.869
average label length || 3.185 | 2.906 | 2.249
overlap 0.038 | 0.048 | 0.099
label precision 0.893 | 0.756 1.0

Table 3.8: Comparative Results

3.4 Synopsis

In this work we focused on suffix tree clustering algorithms because they are fast, they
do not rely on external resources or training data, and thus they have broad applicability
(e.g. different natural languages). We presented a variation of the STC, called STC+, with
a scoring formula that favors phrases that occur in document titles, and a novel suffix tree

based algorithm called NM-STC that results in hierarchically organized clusters.

2In general all coverage values are acceptably high, e.g. higher than those in [20], and recall, that we
could achieve 100% coverage by adding an artificial ”rest” cluster label.

68

The advantages of NM-STC are that:

(a) the user never gets unexpected results, as opposed to the existing STC-based algorithms
which adopt overlap-based cluster merging,

(b) it is more configurable w.r.t. desired cluster label sizes (STC favors specific lengths),
(c) it derives hierarchically organized labels, and

(d) it favors occurrences in titles (as STC+) and takes into account IDF's, if available.

The user evaluation showed that both STC+ and NM-STC are significantly more pre-
ferred than STC (STC+ is slightly more preferred than NM-STC). Figure 3.7 shows the
aggregated rank (w.r.t. Borda) of each algorithm for each query of the evaluation collection
(the ideal average BR value is 1 the worst is 3). We observe that STC was better than STC+
or NM-STC, only in one query (no=15). In addition NM-STC is about two times faster
than STC and STC+. In future we plan to work towards further improving the quality of

cluster labels and the interaction with the user.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of query

Figure 3.7: Evaluation per query

69

70

Chapter 4

Implementation and Applications

This chapter is organized as follows: Section 4.1 describes the Mitos Web Search Engine
and Section 4.2 describes the application of the results clustering methods (presented in
Chapter 3) over Mitos. Section 4.3 contains a detailed software description of the STC al-
gorithm. Section 4.4 analyzes the preprocessing of the input data for the clustering methods.
Section 4.5 presents FleXplorer and the coupling of dynamic taxonomies with results clus-
tering. Section 4.6 describes the administrator parameters of Mitos for the snippet-based
clustering approaches. Finally, Section 4.7 describes the application of the results clustering

methods over Google.

4.1 Application over a Web Search Engine

The results clustering methods have already been applied on Mitos [28, 3] search engine.
The first version of Mitos was developed as a student project in the IR course (CS463) by
undergraduate and graduate students of the Computer Science Department of the University
of Crete in three semesters (spring: 2006, 2007 and 2008). Mitos is not a meta-search engine.
It has its own index (currently implemented using a DBMS) [27]. This allows exploiting its
index in order to find additional information for the documents, apart from those that can
be extracted from the snippets returned by Mitos. However, the index of Mitos stores only
the stems of words, so the readability of indexed words is reduced. For this purpose, for
each stemmed word it is also preserved the unstemmed word with the highest frequency in

the collection set.

71

Mitos except from the three basic components of a search engine, namely Crawler, In-
dexer and Query Evaluator, it also consists of the Lexical Analyzer, Stemmer, Link Analysis-
based Ranker, Result Clustering, Automatic Taxonomy, User Interface and Administration

components, as shown in Figure 4.1.

e
Wit M] : — — f~ — AT e
‘”"_ Retrieval T -){nch_oFsJ Document Index

Y Process

Query Edit
Expansion Distance

01 finkl Tk Texil 10, URL, palh, Hle,
charsel, ype,
lasl_changed,
|851_felched

D2 link2 link 2 1ex12
D2 linkd Jinkd lexid

= p— = =

e T e R e AN A T T T e e A B S R S T R R i
) I
| I
| gq—» User Interface .-{ Clustering | |
: = . : Woild Wide Web
] T R T L
=] D]
] N e
1 Automatic 23 E’_/ Results I
| | Taxonomy 1 |
: bl T : = \
: ':u\‘SiamrneD : = :
1 WDS I
) I
| - | Crawler
| = 1

Stemmed ™,

i oFs || BFs

: (T l
| = |
I |
i |
| Cuery Evaluator | 2NN
1 ! -)
I I
I I
| I
1 |
| I
) I
1 I
I

-+
I
i
I
|
I
1
|
|
|
|
|
I
|
]
I
I
I
|
|
|
I
|
|
I

i |

|
|
|
|
|
\

Rankar

* documant{iimeE e, i ype ank,) ! Indexer

+ ward{id mema ') : Cached
H wmn_dm_lamﬂ.m , Extracted

coBaction (idnamn) Texis

]

]

]

]

i

I

]

I

]

]

l . .
' { sometion documenica pose i (L
: B == .
]

]

]

]

I

]

]

]

]

wirw gilegom Y

. - il parear H +

Tarm Jpwrven il comi | himi:
hwrwew sile.com'2 himil:
I

el

S gt £ Lexical Analyzer —
o e ; Repository
: "_F/'e‘ : ~ Farsar:

Postions [+—— | stop-] e

Indexing L= i |words| kﬂlin-mrnrsrr

Process

Figure 4.1: The Component Model of Mitos

The Crawler fetches Web pages starting from a specific list of URLs and recursively
visits all the hyperlinks in each page. The downloaded pages are stored in a local repository
and every page is assigned a unique ID number (md5). Also, a Document Index is created
that keeps several properties for each page (like md5, path, title, last changed/fetched, etc)
and a file that stores the hyperlinks and their anchor texts.

The Indexer uses the Document Index in order to analyze all downloaded documents

and build the index. For each document it calls the Lexical Analyzer that returns the set

72

of words that contains, their frequency and their positions inside the document.

The Lexical Analyzer identifies tokens, removes stop-words and applies stemming algo-
rithms. Mitos except from stemming for the English language, it also supports a Greek
language stemmer.

The Query Evaluator is responsible for the retrieval process when a query is submitted.
It supports several retrieval models, specifically the Vector Space, the Boolean, the Extended
Boolean and the Fuzzy Model. If a query term does not exist in the index, then the system
applies the Edit Distance algorithm in order to suggest terms that exist and their distance
from the submitted term is less than a constant. In addition, the system suggests a list of

terms which could be used to expand (refine) the submitted query.

4.1.1 Software Design Diagrams

The components of Mitos and their articulation are illustrated in the UML Component
Diagram of Figure 4.2. The clustering algorithms are realized by the Clustering Snippet-

based component.

cmp Component View /

Clustering 2 g]
g

Admin

Snippet- Index-
based based

5
s \Q e V@
N a7

Stemmer Query Evaluator _C}_ @ g] Aummamg]

Expansion Taxonomy
X\ /\
\ ¢ «trace»

Data Base @ Index Me
e o) Indexer focooecooool3S
(Postgres)) P

Figure 4.2: Component diagram of Mitos search engine.

Lexical Analyzer O
4 NS

Ranker Crawler

«use» ',

The Clustering component is separated into the Index-based ! and the Snippet-based

Index-based approaches were implemented by Manolis Tavlas in the concept of an undergraduate study.

73

Clustering component. Both communicate with the User Interface, the Indexer and the
Admin components. The Snippet-based component also communicates with the Lexical
Analyzer. The User Interface gives the top-K documents from the list of the rank files
returned by the Query Evaluator and receives the final cluster label tree. The Index-based
component communicates with the Indexer in order to get the vector representations of
documents. The Snippet-based component gets the documents’ titles and words’ document
frequencies. The Admin component sends to Clustering the configuration parameters for
clustering. Finally, the Snippet-based component communicates with the Lexical Analyzer

for preprocessing the snippets and the titles.

4.2 Snippet-based Clustering Component

The component supports the original STC, the STC+ and the NM-STC algorithms as

presented in Section 3.2.

4.2.1 Sequence Diagrams

The (UML) Sequence Diagram of Figure 4.3 shows the interactions between the compo-
nents of Mitos during results clustering.

Figures 4.4, 4.5 and 4.6 show the sequence diagrams that represent the way that clusters
are generated by the original STC and STC+ algorithm. Note that the similarity threshold
(simThreshold) for Figure 4.6 (a) is used as a parameter and is set to 0.5 for the original
STC and to 0.4 for STC+.

Figures 4.7, 4.8 and 4.9 shows the sequence diagrams for NM-STC algorithm. The first
two steps of NM-STC (”construct suffix tree” and ”prune suffix tree”) are the same as

presented above in Figures 4.4 (b) and 4.5 (a) for the original STC and STC+.

74

sd Clustering /

O O

User Interface
User Interface

Admin
1
get MaxNumberOfDocs parameter

b

getClusterTree

O

Clustering

Q)

Lexical Analyzer

getTopRankedFilesids :doclds

'

getDocumentTitl

eMDS (doclds)

retrieve best texts

!

loop /

[for each tifid, best text]
par
[BLOCK_$TOPWORDS=true]
eliminate stopwords
[sT
apply stemming
]

generate final clusters

create printable tree structure

Figure 4.3: Sequence diagram of the results clustering process.

sd STC clustering /

sd construct suffix tree /

construct suffix tree

prune suffix tree

identify base clusters

merge base clusters:merged clusters

[/
[/
[/
[/
[/

create final clusters(merged clusters)-final clusters

STC Input SuffixTree
T T T
1 1 1
1 1 1
1 1 1
\ getSnippets \ \
gr |
1 1
1 1
loop | |
—— : :
for each Snippet \ \
[PPEYl | fing suffixes | |
i i
L i i
1 1
1 1
: :
loop E E
[for each suffix] insertSuffix(docld, suffix) - !

(a)

75

(b)

Figure 4.4: Sequence diagrams for the generation of clusters by the original STC and STC+.

sd prune suffix tree J sd identify base clusters /

sTe sTC

loop /

[while Suffix Tree has Nodes]

loop /

[while Suffix Tree has Nodes]

opt

[connected Nodes have one child]
,,,,,,,,,,,,,,,, e opt
[connected Nodes have the; same documents]
[Node documents >= 2]

concatenate Nodes to one add Node to base clusters

|]
-

recursion

recursion

(a) (b)

Figure 4.5: Sequence diagrams for the generation of clusters by the original STC and STC+.

sd merge base clusters / sd create final clusters /

sTC STC Cluster

loop /

[for each merged cluster] |

loop /

[for each pair of base cluster:

par create a connected component with all clusters merged with it

i find intersection of docs

PR U JRR IR

opt

| add clustersto merged cluster:
choose label with highest score

T
i

i

i

i

i

i

|

- |

[overlap of 2 base clustefs > smThreshold] '
H 1

i

i

i

i

i

construct a cluster(intersection of docs, label with highest score)
1

(a) (b)

Figure 4.6: Sequence diagrams for the generation of clusters by the original STC and STC+.

76

sd NM-STC clustering /

NM-STC

ref
construct suffix tree

T
!

ref

prune suffix tree

1
1

ref

find Top Scored Labels:maxTopLabs

T
1
:

ref

create final clusters(maxTopLabs):final clusters

Figure 4.7: Sequence diagrams for the generation of clusters by NM-STC.

sd find Top Scored Labels /

NM-STC

scoreLabelsOf(sf)

ZeroScoreLabelsEqualTo(sf, q)

ZeroScorelLabelsLabelSize(sf, LLmin, LLmax)

sortBaseClustersByScore

getTopScored(0, NCmax) :topLabs

loop /

[while done=FALSE and conpumed < |BaseClusters|]

maximal(topLabs) :maxTopLabs

ElimSubPhrasesSameExt(maxTopLabs) :maxTopLabs|

missing = NCmax - |[maxTopLabs|

opt getNextTopScored(consumed,
[missing > 0] missing) :topLabs

L
[missing <= 0] done = TRUE

Figure 4.8: Sequence diagrams for the generation of clusters by NM-STC.

7

sd create final clusters /

NM-STC Cluster

loop / i

[for each maxTopLab! cluster]
i

|
1
1 construct a cluster :cl

1

I

I

l

I

l

I

l

I

i

I

>

H

createHierarchy(cl) !

I

l

I

|

f !
I

H l

Figure 4.9: Sequence diagrams for the generation of clusters by NM-STC.

4.3 Implementation of STC

The algorithm clustering(Snippets S[]) takes as input a set of snippets and returns

the final clusters.

Alg. clustering(SnippetsS||)

(1) constructSuffixTree(Snippets S[])

(2) pruneSuffixTree(Snippets S[])

(3) identifyBaseClusters(SuffixTree ST, 77, 0, 0, 0)
(4) MC := mergeBaseClusters(BC)

(5) Clusters := createFinalCLusters(M C,BC')

(6) return Clusters

The algorithm constructSuffixTree(Snippets S[]) takes as input a set of snippets
where each snippet is a triple of (document id, title, best text). It generates the suffixes of
all strings and inserts each one in a suffix tree. Each node of the constructed tree corresponds
to a single word. In the following algorithm |7T'itle| denotes the number of sentences of the
string Title and |BestText| denotes the number of sentences of the string BestText. The
function insertSuf fix takes as third parameter a boolean value which is set True if the
inserted word appears in the title of the specific document id given as first argument. This
means that for each suffix we keep separately the document ids that appear in their titles.
This is especially useful for STC+ since this information is subsequently used by the function

identi fyBaseClusters for computing the score of a base cluster.

78

Alg. constructSuf fixTree(Snippets S[])

(1) fori=0to |S]|do

(2) Docld := S[i].Docld

(3) Title := S[i].Title

(4) for j =0 to |T'itle| do

(5) suf fizes := generateSuffixes(T'itle[j])

(6) for z =0 to |suf fizes| do

(7) insertSuffix(Docld, suf fizes|z], True)
(8) BestText := S[i].BestText

9) for j =0 to |BestText| do

(10) suf fizes := generateSuffixes(BestText[j])
(11) for z =0 to |suf fizes| do

(

1
1
12) insertSuffix(Docld, suf fires|z], False)

The algorithm generateSuffixes(String str) takes as input a string and generates all
suffixes of that string that start after a white space or a punctuation symbol. For example,

generateSuffixes("The mitos search engine”) will return the following suffixes:

The mitos search engine
mitos search engine
search engine

engine

Alg. generateSuf fizes(String str)

(1) Suffizes =10

(2) words := |words(str)]

(3) for i =0 to |words| do

(4) suf fix =10

(5) for j =i to |words| do

(6) append words[j] to suf fix
(7) append white space to suf fix
(8) trim suf fix

(9) add suf fiz to Suf fizes

(10) return Suf fixes

Let now see an example of the suffix tree. Suppose that we have the following snippets

from three documents:

79

Snippet 1: mitos web search engine
Snippet 2: indexer of mitos mitos adopts the tf - idf weighting scheme
Snippet 3: mitos : design and evaluation of a dbms - based web search

engine

After the separation of snippets into sentences and their processing from the lexical analyzer

(stop-words removal) we get the following strings:

Snippet 1: mitos web search engine
Snippet 2: indexer mitos mitos adopts idf weighting scheme

Snippet 3: mitos design evaluation dbms based web search engine

Figure 4.10 shows the suffix tree constructed after calling function constructSuffix Tree(Snippets

S[]) for the above Snippets.
-,

N

levaluation[3 based[3]

weighting[z
adopts(2) @@ based[3]

g
<7
ol
niol

adopts[2]

\

)
il

(1)
%0

0

adopts[2]

00
4"
%0
0l
Bl

evaluation[

based[3]

weighting[2]

K¢
)
0
00
@0

weighting[2]

Figure 4.10: The suffix tree of the Snippets 1, 2 and 3.

The algorithm pruneSuffixTree(SuffixTree ST) takes as input a suffix tree and com-
pacts it. Specifically if there is a node a that has only one children b and both nodes are
associated with the same documents, then these nodes are ”concatenated”, i.e. only one

node remains having as name the concatenation of the names at ¢ and b. For example, as

80

shown in Figure 4.11, if node a contains documents 1 and 2, node b also contains documents
1 and 2, node « is the parent of node b and node b has two children, namely a node ¢ which
contains document 1 and a node d which contains document 2, then node a and node b are
concatenated to a node labelled ab which contains documents 1,2 and is the parent of nodes
¢ and d. Figure 4.12 shows the pruned suffix tree constructed after calling the function

pruneSuffixTree(SuffixTree ST) for the tree of Figure 4.10.

()
‘i @ @D
@

(92D

Figure 4.11: Suffix tree pruning example for two nodes a,b.

design
evaluation evaluation \gbms based pased

dbms based (dbms based \eb search | web search
web search | web search | enigne[3) engine[3]
engine[3] engine[3]

mitos ' adopts idf

adopts idf | weighting
weighting /\scheme[2

design
evaluation
dbms based
web search

adopts idf
weighting

mitos adopts
idf weighting

Figure 4.12: The pruned suffix tree of Figure 4.10

The implementation of STC+ relies on the implementation of STC with some minor
changes regarding the new scoring formula, the new implementation of the function f and
the new similarity threshold. In addition, during pruning, and whenever a node contains
only one child node and both nodes contain the same documents but their phrases appear
in different document titles, they are concatenated into one node that has as titles ids the
titles ids of the broader node.

Let us now introduce the notion of effective length of a phrase. The algorithm effec-
tiveLength(String phrase, Snippets S[], Vocabulary Frequencies VF|[|, SuffixTree
ST) takes as input a string which is the phrase of a SuffixTreeNode, a set of snippets, a

81

Alg. pruneSuf fizTree(SuffixTree ST)
) Docs =10
while(ST has Next) do
W := next key of ST

2)

3)

4) TN := tree node of ST[W]

5) it TN is not pruned

6) doclds := document list of TN

+)(STC+) titlelds := document title list of TN //for STC+

(1

(

(

(

(

(

(

(7) subTree := children of TN

(8) newName := W

(9) count := 0

(10) while(|subTree| = 1)

(11) W2 := next key of ST

(12) T N2 := tree node of subTree[W?2]
(13) doclds2 := document list of TN2

(14) if |doclds| = |docIds2| then

(15) intersection := doclds () docIds2
(16) if |intersection| = |docIds| then
(17) append W2 to newName
(18) append space character to newName
(19) subT'ree := children of TIN2
(20) count := count + 1

(21) else break;

(22) else break;

(23) if count > 0 then

(24) newNode := newSuf fixTreeNode()
(25) set subT'ree to newNode children

(26) set doclds to newNode documents
(+)(STC+) set titlelds to newNode document titles //for STC+
(27) remove ST [W]

(28) add (newName,newNode) to ST
(29) reset iterator of ST

(30) if subTree # () then

(31) pruneSuffixTree(subT'ree)

82

set of vocabulary frequencies where each frequency is a pair of (string, integer) and a suffix
tree. It calculates the effective length of the given phrase, which is defined as the number of
words in the phrase that do not appear in too few (3 or less) or too many (more than 40%
of the collection) documents. At first the effective length of a phrase is the number of words
it contains. Stop-words are removed during generation of snippets and are not considered
in the calculation of the effective length. Subsequently and for each of the words whose
frequency is more than three documents or it appears in more than 40% of the result set,

the effective length is reduced by one. Some examples follow:
o effectiveLength(”"web search engine”) = 3
o cffectiveLength("mitos”) = 1

e [f the phrase is mitos, the number of the result set is 100 documents and the query is

also mitos, thus mitos appears in 100 documents, then effectiveLength("mitos”) =0

e If the phrase is genetic information, the number of the result set is 100 documents
and genetic appears in 2 documents, then effectiveLength(”genetic information”)=

1

Alg. ef fectiveLength(String phrase, Snippets S[], Vocabulary Frequencies VF([], SuffixTree ST)
1) Words := phrase splited with space character
EffLen :=|Words|
P:=0.4x%]|S|
for i = 0 to [Words| do
if Words[i] € VF then num := VF[Words]il]
else
num := findDocsThatContain(Wordsli], ST, ()
add (Words[i],num) to VF
if num =< 3 or num > P then EffLen := EffLen —1
) return Ef fLen

\V)

3

N

ot
O — T

6

J

8
9

(
(
(
(
(
(
(
(
(
(1

In order to calculate the effective length of a phrase we must find the number of doc-
uments that each word of the phrase appears. To avoid traversing the tree every time we
see a word, we use a structure (Vocabulary Frequencies) to store the words we have already

met and the corresponding number of documents in which they are presented.

83

The algorithm identifyBaseClusters(SuffixTree ST, String subphrase, int ef-

fLen, int index, Base Clusters BCJ]) takes as input a suffix tree and identifies the base

clusters. A base cluster is a node that has at least 2 documents. For each base cluster, a

score is calculated based on its label effective length. Before explaining how this is done,

let’s see the result of this step. Table 4.1 shows the base clusters identified after calling the

function identifyBaseClusters(SuffixTree ST, 7”7, 0, 0,) over Figure’s 4.12 pruned suffix

tree.

[Index [Base Cluster

Documents [Score]

1 mitos 1,2,3 1.5
2 web search engine | 1, 3 6
3 search engine 1,3 4
4 engine 1,3 1

Table 4.1: Base clusters identified from Figure’s 4.12 suffix tree.

Figure 4.13 shows the base clusters graphically. That figure also shows the final result

which in our case is a single cluster whose label is that of the cluster with the highest score.

web
search
engine[1,3]

Score=1.5 Score=6

Score=4

Base clusters

Final clusters

Figure 4.13: Base clusters and final cluster

The algorithm identifyBaseClusters is a recursive function. At the initial call it takes

as input only the root of the suffix tree and then iteratively it takes the children of each node

from all levels of the tree. Also, it takes as input a subphrase that is the labels’ concatenation

84

from the root of the suffix tree to the first node of the subtree given as parameter. The
effective length of the subphrase is the third argument effLen. The last argument is a list of

the base clusters that have been identified and the argument index is related with this list.

Alg. identifyBaseClusters(SuffixTree ST, String subphrase, int effLen, int index, Base Clusters BC[])
1) if ST = 0 then return 0
2) while(ST hasNext) do

3) ST Node := pair of (label, suffixTreeNode)
4) W := ST Node.label
5) TN := STNode.suf fixTreeNode
6) docNum := |T'N.docIds|
+)(STC+) titleNum := |T'N.titleIds| //for STC+
8) Phrase :== ()
9) if subphrase # empty string then
0 Phrase.append(subphrase)
1 Phrase.append(””)
2 Phrase.append(W')
3 if docNum >= 2 then
4 effLen :=ef fLen + ef fectiveLength(W)

)
)
)
)
)
5)(STC) score := (docNum) x funct_f(ef fLen) //for STC
5)(STC+) score := (docNum + titleNum) * funct_f(ef f Len) //for STC+
6) set score to TN
) set W to TN
) set Phrase to TN
) add ST Node to BCindex]
) Ch := children of TN
) if Ch # 0 then
) index := identifyBaseClusters(Ch, W,ef f Len,index, BC')
)

return index

The algorithm funct_f(int effectiveLength) takes as input the effective length of a
phrase and map this length to a number. For the original STC, it penalizes single words,
is linear for phrases with effective length from two to six words, and is constant for bigger
phrases.

The algorithm funct_f(int effectiveLength) for STC+ takes a different form. It pe-
nalizes single words and the phrases that their effective length is bigger that 4 words by
returning a positive value that is less than one. Also, it is linear for phrases with effective
length two to four words (returns the effective length of the phrase).

The algorithm findDocsThatContain(String word, SuffixTree ST, List Docs)

85

Alg. funct_f(int effectiveLength) //for STC

(1) score:=0.0

(2) if ef fectiveLength < 1 then score := 0.5

(3) elseif ef fectiveLength > 2 or ef fectiveLength < 6 then score := ef fectiveLength
(4) elseif ef fectiveLength > 6 then score := 7.0

(6) return score

Alg. funct_f(int effectiveLength) //for STC+

(1) score:=0.0

(2) if ef fectiveLength <1 or ef fectiveLength > 4 then score := 0.5

(3) else if ef fectiveLength > 2 or ef fectiveLength < 4 then score := ef fectiveLength
(4) return score

takes as input a string, a suffix tree and a list of document ids. It traverses the suffix tree
in order to find the number of documents in which the string appears. Documents which
have been found already out of this suffix tree are considered so as to avoid duplicates.

The algorithm mergeBaseClusters(Base Clusters BC|]) takes as input a list of base
clusters and calculates similarity measure for each base cluster with its next base clusters
in the list and find which of them can be merged. Returns merged clusters which is a map
from each base cluster index to the base clusters’ indexes that are going to be merged with
it. Similarity threshold is defined to 0.5 for STC and to 0.4 for STC+.

Table 4.2 shows all the possible merges which where generated by calling the function

mergeBaseClusters(Base Clusters BC[]) with input Table’s 4.1 base clusters.

[Index [Merged Base Clusters]
1 2,

FIFSENES

)

N DO Lol W

2 1
3 1
4 1

)

Table 4.2: Merged Clusters

The algorithm baseClustersOverlap(Document List list A, Document List listB,
float simThreshold) takes as input two sets of documents ids and calculates the overlap of
two sets to each one and returns True if these percentages are over the similarity threshold

given as the third argument.

86

Alg. findDocsThatContain(String word, SuffixTree ST, List Docs)
1) if ST =) then return 0
docCount := 0
while(ST hasNext) do
phrase := next key of ST
TN := tree node of ST [phrase]
tmpCount :=0
if phrase contains word then
sizeBefore := |Docs|
Docs :=unionOfLists(Docs, Docs of T'N)

) sizeAfter := |Docs|

) tmpCount := sizeAfter — sizeBefore

) else

) Ch := children of TN

) if Ch # () then

) tmpCount := findDocsThatContain(word, Ch, Docs)
) docCount := docCount + tmpCount

) return docCount

Alg. mergeBaseClusters(Base Clusters BCJ])
MC:=10
for i =0 to |BC| do
indexes := ()
add (i,indexes) to MC
for i =0 to |BC| do
DocListl := documents of BCi]
for j =i+ 1 to |BC| do
DocList2 := documents of BC/[j]
if baseClustersOverlap(DocList1, DocList2, simThreshold) = True then
) add j to indexes of MC|i]
) add i to indexes of MC|j]
return MC

N

= O — — N

e e e R R R R e Rt T e
= = = O 00 O Uk W

[\)
~—

Alg. baseClustersOverlap(Document List listA, Document List listB, float simThreshold)

1) intersection := |listA(listB|
2) overlapl := |intersection|/|listA|
overlap2 := |intersection|/|list B|

N

if overlapl > simT hreshold and overlap2 > simThreshold then return True
else return False

NN N N
w
T — N

ot

87

The algorithm createFinalClusters(Merged Clusters M C|[], Base Clusters BC|])
takes as input a set of indexes that are related with the base clusters that can be merged
and a set of base clusters. It creates a cluster for each group of base clusters that can be
merged. Note that two base clusters that can not be merged directly it is possible to be
merged in the same cluster if a third one base cluster can be merged with them. Each final
cluster has as name the label of the highest score base cluster that it is constituted and as
document set it has the union of its base clusters’ document sets. Finally, the score of a

final cluster is calculated based on its label and its new document set.

&=
0

. createFinalClusters(Merged Clusters MC[], Base Clusters BC]))
Clusters :=)
VI := 0 (visited Indexes)
tpmNode := empty SuffixTreeNode
for index = 0 to |[MC| do
if VI contains index
continue;
add index to VI
startNode := SuffixTreeNode of BC[index]
set stratNode.Phrase to tmpN ode;

0 g O T W N~

Ne)
— O DN N

10) set stratNode.Score to tmpN ode;

11) set stratNode.Titlelds to tmpN ode;

12) set stratNode.Doclds to tmpN ode;

13) maxScoreDocNum := [tmpN ode.doclds|

14) recursiveMergelndexes(M C, index, tmpN ode, maxScore DocNum, V1)

15) maxScorePhrase := tmpNode.Phrase

16) len := ef fectiveLength(maxScorePhrase)

STC) newScore := |[tmpNode.doclds| * funct_f(len)//for STC

STC+) newScore := ([tmpNode.titleIds| + [tmpNode.doclds|) * funct_f(len)//for STC+
18) add (maxScorePhrase, newScore,tmpNode.doclds) to Clusters

e R e e i T R e N e N e N T L L T o e T

19) return Clusters

The algorithm recursiveMergeIndexes(Merged Clusters MC|], int index, Suf-
fixTreeNode tmpNode, int maxScoreDocNum, Base Clusters BC|[]) takes as input
the base clusters that can be merged into one cluster, an index to this structure, the cur-
rent suffix tree node that is examined, the document set’s size of the current highest score
base cluster, the associated indexes with the base clusters structure that have already been

visited and a set of base clusters. This method recursively merges the list of base clusters

88

that can be merged with the base cluster that is associated with the argument index.

Alg. recursiveMergeIndexes(MCJ], int index, SuffixTreeNode tmpNode, int maxScoreDocNum, VI[], BC]])
1) mergedIndex := MClindex]

) for i =0 to |mergedIndex| do

) if VI contains mergedIndex|i]

) continue;

) add mergedIndex[i] to VI

) Node := SuffixTreeNode of BC[mergedIndex]i]]
7) score := score of Node

) maxScore := score of tmpNode

) if score >= maxScore

0

1

10) it score = maxScore

11) if mazScoreDocNum < Node.doclds

12) maxScoreDocNum := Node.doclds
13) set stratNode.Phrase to tmpN ode;
14) else

15) maxScoreDocNum := Node.doclds

16) set stratNode.Phrase to tmpN ode;

17) set, stratNode.Score to tmpN ode;

18) unionOfLists(tmpNode.doclds, Node.doclds)

STC+) unionOfLists(tmpNode.titleIds, Node.titleIds)//for STC+
19) recursiveMergelndexes(M C, mergedIndezx|i], tmpN ode, maxScore DocNum, V1)

After calling createFinalClusters(Merged Clusters MCJ|, Base Clusters BC[]) with input
base clusters of Table 4.1 and merged base clusters of Table 4.2 only one cluster is created

with label web search engine and document set 1, 2 and 3.

4.4 Preprocessing

The preprocessing times listed for STC+ in Table 4.3 are the times needed for retrieving
titles from the data base, extracting the snippets from the plain text of each document
and manipulating the titles and snippets from the lexical analyzer. Specifically, notice that
preprocessing is the most expensive task (more than one magnitude, more expensive than
the rest tasks). The second and the third column of the table (block stop words, stemming)
are the options/configuration parameters for the Lexical Analyzer which implies how the

titles and the extracted snippets will be manipulated.

89

Snippets generation is the most time-consuming task as plain texts are stored in txt files
in the hard disk. Our original implementation (BT1) was trying to find the two sentences
with the bigger number of appearances of the search keywords within them. The second
implementation (BT2) stops when a second sentence, that contains the search keywords
more times than the first, is found. The impact is a small reduction in execution time as

Table 4.4 shows.

Top- | block | stem- | sentence Preprocessing construct| prune | identify) merge | create Total
K stop ming | separation|| best | lexical | titles| Total suffix tree base base final
words text tree clustery clusters clusters
100 v X v 73% | 26% 1% 0.654 0.025 0.039 0.016 0.044 | 0.0060 | 0.788
100 v v v 5% | 24% 1% 0.654 0.025 0.029 0.015 0.049 0.0070 | 0.784
200 v X v 87% | 12% 1% 1.619 0.043 0.148 0.119 0.255 0.033 2.223
200 v v v 86% | 13% 1% 1.612 0.043 0.114 0.107 0.268 0.031 2.181
300 v X v 90% | 9% 1% 2.621 0.053 0.366 0.257 0.658 0.076 4.035
300 v v v 90% | 9% 1% 2.647 | 0.051 0.214 0.298 0.661 0.073 3.95
Table 4.3: Execution times (in seconds) for query g= kernel with BT1 and similarity
threshold 0.4.
Top- | block | stem- | sentence Preprocessing construct| prune | identify) merge | create Total
K stop ming | separation|| best | lexical | titles| Total suffix tree base base final
words text tree clustery clusters clusters

100 v X v 66% | 33% 1% 0.519 0.025 0.041 0.016 0.044 | 0.0070 | 0.656
100 v v v 66% | 33% 1% 0.526 0.024 0.032 0.015 0.048 0.0060 | 0.655
200 v X v 87% | 13% 1% 1.472 0.039 0.113 0.068 0.099 0.025 1.822
200 v v v 85% | 14% 1% 1.451 0.077 0.063 0.059 0.102 0.02 1.78
300 v X v 92% | ™% 1% 2.858 0.141 0.112 0.154 0.225 0.045 3.542
300 v v v 90% | 9% 1% 2.843 0.047 0.141 0.124 0.235 0.038 3.435

Table 4.4: Execution times (in seconds) for query g= kernel with BT2 and similarity
threshold 0.4.

Table 4.5 is a comparison of clustering results for seven queries using two different
approaches for snippet generation, BT1 and BT2. It shows the number of clusters produced

using BT1 and BT2 and the number of common cluster labels between them.

The execution times for the best text extraction include the time needed for stemming
each word of the cached copy of a document. Without stemming but following a matching

approach that identifies substrings, best text extraction becomes four times faster.

90

[

BT

1 [BT2

[

l

Query clusters | clusters | common labels
kernel 18 15 12
information retrieval 20 18 10
php examples 16 19 15
forthnet 20 22 19
yannis tzitzikas 33 14 11
crete 18 14 11
java tutorial 7 9 5

Table 4.5: Differences in number of clusters between the best text approaches and number

of common labels.

4.4.1 Problems in Detecting the Right Sentence Boundaries

During the preprocessing of the snippets there are some cases that make the identification

of sentence boundaries difficult and are listed below.

e File names (e.g. proc.c, proc.h)

e Abbreviations (e.g. FORTHnet S.A)

e Numbers (e.g. 1.5)
e Times (e.g. 12:27:52)

e Paths (e.g. /src/kernel/proc.c)

e E-mail (e.g. stella.kop@gmail.com)

e URL (e.g. www.w3.0rg)

e Human names (e.g. Y . Marketakis , N . Armenatzoglou and Y . Tzitzikas)

Sentence boundaries selection was implemented by using Java API functions .

2

This method does not work properly for all these cases. For example, the string ", Y.

Marketakis , N. Armenatzoglou and Y. Tzitzikas Mitos :

is separated into:

, Y.

Marketakis , N.

http://java.sun.com/docs/books/tutorial /i18n /text /sentence.html

91

Design and Evaluation"

Armenatzoglou and Y.

Tzitzikas Mitos : Design and Evaluation

Moreover, after the processing of the lexical analyzer the output is the following sen-

tences:

marketakis
armenatzoglou

tzitzikas mitos design evaluation

It works right for paths like /src/kernel/proc.c but not for path ../adonomics.ps as
it is separated into .. and /adonomics.ps. Also, it works right for file names, abbreviations,
numbers, times, e-mail and urls.

The following examples are cases that there is no change:

Information Systems Laboratory: People, Yannis Tzitzikas

FORTH - ICS: Announcements

Java 2 Platform SE v1.4.0: Uses of Interface javax.xml.transform.sax.TransformerHandler
Java Object Serialization Specification: - Example of Serializable Fields

Creating a GUI with JFC/Swing: Indexes of Examples

Course Content in English (U.Crete, CS-225)

User-Level Atomic Operations

Except from human names and abbreviations the other cases does not offer valuable
information. This is an issue for further research. One could apply techniques like those

proposed for Named Entity Recognition(NER) in [29, 25].

4.5 Combining Results Clustering with Metadata Exploratory

through Dynamic Taxonomies

FleXplorer [33] is a main memory API (Application Programmatic Interface) that al-
lows managing (creating, deleting, modifying) terms, taxonomies, facets and object descrip-
tions. It supports both finite and infinite terminologies (e.g. numerically-valued attributes).

In addition it supports explicitly and intentionally defined taxonomies. Examples of the

92

former include classification schemes and thesauri, while examples of the latter include hi-
erarchically organized intervals (based on the inclusion relation). Regarding, interaction,
the framework provides methods for setting (resp. computing) the focus (resp. zoom-in
points). In addition, the framework allows materializing on demand the relationships of a
taxonomy, even if the domain is infinite and intentionally defined (e.g. between numbers,
intervals, etc).

FleXplorer is used by Mitos providing the Faceted Taxonomies interactive scheme, for
offering general purpose browsing and exploration services. Currently, only some general
and content-independent facets are supported. Specifically, the facets/taxonomies, that are

created and presented to the users, are:
e web domain, a hierarchy is defined (e.g. csd.uoc.gr < uoc.gr < gr),
e format type (e.g. pdf, html, doc, etc), no hierarchy is created in this case,

e language of a document based on the encoding of a web page (e.g. Greek, English,

Latin-1) and
e (modification) date hierarchy

The Clustering component is called by FleXplorer and the derived clusters are consid-
ered as an additional facet. Tree-based presentation of the clustering results is suitable for
integrating this functionality to FleXplorer.

Figure 4.14 shows the Faceted Taxonomies results for the query=computer science
department.

To the best of our knowledge, there are no other WSEs that offer the same kind of
information/interaction. A somehow related interaction paradigm that involves clustering
is Scatter/Gather [11, 18]. This paradigm allows the users to select clusters, subsequently
the documents of the selected clusters are clustered again, the new clusters are presented,
and so on. This process can be repeated until individual documents are reached. However,
for very big answer sets, the initial clusters apart from being very expensive to compute
on-line, will also be quite ambiguous and thus not very helpful for the user. Our approach
alleviates this problem, since the user can restrict his focus through the available metadata,

to a size that allows deriving more specific and informative cluster labels.

93

By language

¥ Unknown (2528)
b Gresk (598

¥ Latin-1 (Eurape, Latin America,
Caribbean, Canads, &frics) (669)
» Ay (UTF-8) (23)

¥ Latin-2 (Central and Easterny
Europe) (4)

By filetype

¥ tent/html (2288)
+ application/pdf (1360)

¥ applicationvnd.ms-powerpaint (67
» applicationmsword (25)

¥ applicationfvnd.ms-sxcel (1)

By date

512006 (1452)
¥ Linknown (345)
2007 (338)
2008 (510
1 2005 (147)
2003 (138)
1 2002 (82)
2004 (62)
1 2001 (34)
2000 (17)
1998 (7)
1593 (8]
1957 (3

By domain

B gr (4341)

G ter Science D :: Infarmation - 0. 3774386

“Web Mail About the department Home History of the Department Department . Computer Science Department
Infiormation Main Page People Studies &nnouncements Services Hyperlinks

http /A, c5d_uo o, grfindes jspPD=infofsub=2lang=en -0 - 16KB Cached haikas span]

Computer Science D :: People :: Students :: Page submition - 0.12z34501
Computer Science Department Peopls Studerts Page submition Main Page Peopls Studiss ... Arnouncements
Services Hyperlinks Web Mail Members of the department Administration Academic

httpsidnmosd. une. griindex jspPHD=p eoplegsub=3&exp=3a&lang=en - 0 - 19KB Cached akas span]

Computer Science D :: Peaple - Administration - 012210160

Computer Science Department Peopls Administration Main Page People Studiss Announcements Services
Hyperiinks Weh Mail Members of the department Administration &cademic Staff Personnel

hitpe/iwnse csd.uoe. grfindex jspPD=p eopledpid=dpisub=5diang=en - 0 - 16KE Cached mamas span]

Computer Science D Studies - Undergraduate program - 0.11304049

Computer Science Department Studies Uncerarsduste program Main Page People Studies Announcemerts ... orcer of
success Improvement of grades Courses recognition of other Departments

http:/Awwn e d. ua c. grfin dew jsp AID=chud] esdieid= 0 5-100&sub=24lang=en - 0 - 23K Cachad pamas span)

Ci ter Science D . Studies .. Undergraduate program - 0.113g4049

Computer Science Department Stuies Undergraduste program Main Page People Studies Snnouncements ... order of
success Improvement of grades Courses recagnition of other Departments

hitp:/fnm csd_uoe. grfindex jspHID=studieskeid=HY. 100Zsub=24l ang=en - 0 - 23KB Cached parkas s

Ci ter Science D i Studies . Undergraduate program - 0.11143431

Computer Science Department Studies Uindergraduste program Main Page People Studies &nnouncements ... order of
success Improvement of grades Courses recognition of other Departments

http /A csd. w0 0. grfin des jspPD=studiesioid=HY-469&sub=2&lang=en - 0 - 23KB Cached parkas span]

Computer Science D = Studies Undergraduate program - 0.11142009

Computer Science Department Stucies Undergraduste program Main Page Peopls Studies Announcemerts .. orter of
success Improvement of grades Courses recognition of other Departments

httpsfivwnsm, osd. uno. grfindex jspPHD=studiesfoid=HY 3518sub=2&ang=en - 01 - Z3KB Cached Jnaras span]

Ci Science D o2 Studies - Undergraduate program - 0.111412005

Computer Science Department Studies Undergraduate program Main Pags People Studies Announcements .. orter of
success Improvement of grades Courses recagnition of other Departments

http:/iwnmm c2d uoe. grfind e jspPID=stu dissfeid=HY-457 Gsub=2&lang=an - 0 - 23KB Cached [rarkas spam]

Computer Science D Studies ©: Undergraduate program - o.11141214

Computer Science Department Studies Unceraraduste program Main Page People Studies Announcements .. orcer of
success Improvement of gradss Courses recognition of other Departments.

http:/Aowwn c5d. o c. arfin des jsp PHD=stud] esdeid= HY-467 &aub=24l ang=en - 0 - 23KE Cached paras span)

Ce ter Science D o Studies - Undergraduate program - 0.11141193

Computer Science Department Studies Undergraduste program Main Page Peaple Studies Announcements ... order of
success Improvement of grades Courses recagnition of other Departments

hitp:ifuncsd uoe. grindex jspID=studiesteid=HY-352sub=2d ang=en - 0 - 23KB Cached paras span

1 2 3 4 & [} k& & £l 10

Figure 4.14: Faceted Taxonomies interface on Mitos

94

45 T
ResultDocument —+—
40 - ResultSet ----x-- |
XML File -
TXT File = ¥
35 - ¥
2 30t ;
9 L
2 ¥
() = :
£ 25 :
= *
o 20
£
=i
g 15t # 2
] E Oy
g X
10 - P e
5L

0 = -
1000 10000 100000 1e+006
Results in log scale

Figure 4.15: Time to load results to FleXplorer
4.5.1 On-Demand Integration

Dynamic taxonomies can load and handle thousands of objects very fast as it is proved
from Figure’s 4.15 example that shows the loading time of the top-K answer for various
values of K: from 10* to 10%. As the loading time depends on the format employed (and
the associated parsing costs), the figure reports the loading times for four different formats,
namely: (a) JDBC ResultSet, (b) XML, (c) a (proprietary) TXT-based format, and (d) a
main memory format, called ResultDocument that is provided by the FleXplorer API and
is used in Mitos.

However, the application of results clustering on thousands of snippets would have the

following shortcomings:

e Inefficiency. Real-time results clustering is feasible with hundreds (not thousands) of

snippets.

o Low cluster label quality. The resulting labels would probably have low quality, since

they would be too general.

To this end we have developed a dynamic (on-demand) integration approach. The idea
is to apply the result clustering algorithm only on the top-C (for C usually 100) snippets
of the current focus. This approach not only can be performed fast, but it is expected to
return more specific (informative/predictive) cluster labels.

Let g be the user query and let Ans(q) be the answer of this query. We shall use Ay to
denote top-K (usually K < 10000) objects of Ans(g) and A, to denote top-C' (usually C

95

equals 100) objects of Ans(q). Clearly, A. C Ay C Ans(q). In particular, the steps of the

process are the following:
(1) The snippets of the elements of A, are generated.

(2) The results clustering is applied on the elements of A.. A cluster label tree clt is

generated.

(3) The set of Ay (with their metadata), as well as clt, are loaded to FleXplorer, a
module for creating and managing the faceted dynamic taxonomy. As the facet that
corresponds to automatic clustering includes only the elements of A., we create an
additional artificial cluster label, named "REST” where we place all objects in Af\ A,
(i.e. it will contain K — C objects).

(4) FleXplorer computes and delivers to the GUI the (immediate) zoom points.

The user can start browsing by selecting the desired zoom point(s). When the user selects

a zoom point or submits a new query, the steps (1)-(4) are performed again.

4.5.2 Application over Mitos

In our implementation, we have chosen not to apply the re-clustering process (i.e. steps
(1) and (2) of the on-demand algorithm), when the user interacts with the clustering facet.
This behavior is more intuitive, since it preserves the clustering hierarchy while the user
interacts with the clustering facet and does not frustrate the user with unexpected results.
Furthermore, if the user is not satisfied by the available cluster labels for the top-C' objects
of the answer, he can enforce the execution of the clustering algorithm for the next top-C
objects. This feature is available by pressing the REST zoom-in point, which as already
mentioned, keeps pointers to K —C objects. These objects are not included in the extensions
of the original cluster labels. Figure 4.16 shows an indicative screendump of the Web-based

GUI. Notice the REST zoom-in point in the By clustering facet.

4.5.3 Incremental Evaluation Algorithm

Here we present an incremental approach for exploiting past computations and results.

Let Ay be the objects of the current focus. If the user selects a zoom point he moves to a

96

By dustering

i science [100)

I main page (93]

¥ announcements (361

B program (35)

B courses [77)

» order success (75)

¥ grades courses recognition
depsriments (741

¥ cCatalog activities master science (1)
¥ administrtion (3)

i general (2)

¥ Facillties photos Faciliies
Isboratories (1)

REST (4241)

By domain
Hgr (4341)

By date
#2006 1452)
¥ Unknown (345)
#2007 (938)
2008 (510)
#2005 [147)
2003 (135)
2002 (82)
2004 (62)
2001 (34
2000 (17)
£ 1938 (7)

B 1599 (5]
51397 (3)

By filetype
¥ text/himl (226%)

¥ application/pdf (1360

¥ application fund ms-powerpaint (57)
¥ application/msward (25)

¥ application fund ms-excel (1)

-

By language

P Unknown (2528)

¥ Greek (93]

¥ Latin-1 (Eurape, Latin America,
Caribbean, Canads, Africa) (659
¥ Ay (UTF-8) (23)

¥ Latin-2 (Central and Esstern
Europe) (4)

Computer Science Department :: Information - 03774388

‘b Mail About the department Home History of the Department Department ... Computer Science Department
Information Main Page People Studies Announcements Services Hyperlinks

http: s o5 uoc gréin des jspPHB=infofsub=&lang=en - 0 - 16KB Cached paika spn]

Computer Science Department . People :: Students :: Page submition - 0.12334801
Computer Science Department People Stutients Page subimition Main Page People Stuties .. Announcements
Services Hyperlinks WWeh Mail Members of the department Sdministration Academic

httpdhmannn. osd o grfin des jspPHD=pen pledsub=3&ep=2aglang=en - 0- 19KB Cached pakas span]

Computer Science Department : People = Administration - 012210168

Computer Science Department People Administration Main Page People Studies Announcements Services
Hyperiinks ¥eh Mail Members of the department Sdministration Academic Staff Personnel

hitpfumancs.cd o griin dese jsp PHID=peo pladpid=dpacub=5&lang=en - 0 - 18K Cached pankas span]

Computer Science Department - Studies - Undergraduate program - 011384048

Computer Science Department Studies Undergraduste program Main Page People Studies Announcements ... orcer of
success Improvement of grades Courses recognition of ather Departments

http: i, c5d uac. griin dex jep PHID=Atudiesheid=C5-100&sub=24dang=en - 0 - 23KE Cached pana span)

Computer Science Department Studies : Undergraduate program - 0.11394048

Computer Science Department Studies Undergraduate program Main Page People Studies Announcements .. arder of
success Improvement of grades Courses recagnition af ather Departments

http: i o5 unc griin des jsp PHb=studiesioid=HY-100&sub=22ang=en - 0 - Z3KE Cached parkas span)

Computer Science Department : Studies :: Undergraduate prograrm - 0.11143431

Computer Science Department Studies Lndergraduate program Main Page People Studies Announcements ... order of
success mprovement of grades Courses recognition of other Departments

http: s csd o gréin des jsp 4= H'r-5 -0-23KB Cached uatka span

Computer Science Department :: Studies :: Undergraduate program - 0.11142008

Computer Science Department Stuties Undergradusts program Main Page People Studiss Announcements .. order of
success Improvement of grades Courges recagnition of cther Departments

hitpdhman,osd 10 . grvin des jsp? d=HY-351 -0-23KE Cached waikas span]

Computer Science Department - Studies = Undergraduate program - 0.111412805

Computer Science Department Studies Undergradusts program Main Page People Studiss Announcements arder of
success Improvement of grades Courges recognition of ather Departments

http: s ced uac. griin dex jep PHD=studiesAeid=HY-457 &sub=28dang=en - 0 - 23K Cached puatkas span]

Computer Science Department - Studies :: Undergraduate program - 011141214

Computer Science Department Studies Undergracuste program Main Page People Studies Announcements .. orcer of
success Improvement of grades Courses recognition of ather Departments

http: . c5d uoc. griin dex jep PHID=studiesicid=HY-45T Ssub=24dang=en - 0 - 23KE Cached panka span]

Computer Science Department Studies :: Undergraduate program - 0.111411a3

Computer Science Department Studies Undergracduate program Main Page People Studies Announcements ... arder of
success Improvement of grades Courses recognition of ather Departments.

hittp:Fmanns cd uoc griin des jsp PHD=studiesieid=H-3528sub=23lang=en - 0 - 23KB Cached para: span)

1 2 3 4 s B 7 8 9

Figure 4.16: Faceted Taxonomies based on Clustering interface on Mitos

97

different focus. Let A} denote the top-K elements of the new focus, and A/, the top-C' of

the new focus. The steps of the algorithm follow.

(1) We set Acnew = AL\ Ac and Ac giq = Ac \ A, i.e. Acnew is the set of the new objects
that have to be clustered, and A .4 is the set of objects that should no longer affect

clustering.

(2) The snippets of the objects in A pew are generated (those of A, ,q are available from

the previous step). Recall that snippet generation is expensive.
(3) NM-STC is applied incrementally to A pew-
(4) The new cluster label tree clt’ is loaded to FleXplorer.

(5) FleXplorer computes and delivers to the GUI the (immediate) zoom points for the

focus with contents A’f.

Let’s now focus on Step (3), i.e. on the incremental application of NM-STC. Incremen-
tal means that the previous suffix tree sf is preserved. Specifically, we extend sf with the
suffixes of the elements in the titles/snippets of the elements in A ey, exploiting the in-
cremental nature of STC. Let sf’ denote the extended suffix tree. To derive the top scored
labels, we have to score again all nodes of the suffix tree. However we should not take into
account objects that belong to A, 4. Specifically, scoring should be based on the extension
of the labels that contain elements of A/, only.

The preserved suffix tree can be either the initial suffix tree or the pruned suffix tree.
Each node of the initial tree corresponds to a single word, while the pruned tree is more
compact in the sense that if a node contains only one child node and both nodes contain
the same objects, they are collapsed to one single node that has as label the concatenation
of the labels of the constituent nodes. Scoring is done over the pruned suffix tree. However
to add and delete objects to/from a pruned suffix tree sometimes requires ”splitting” nodes
(due to the additions) and pruning extra nodes (due to the deletions). On the other hand,
if the unpruned suffix tree is preserved, then additions and deletions are performed right
away and pruning takes place at the end. Independently of the kind of the preserved suffix

tree, below we discuss two possible approaches for updating the suffix tree:

98

e Scan-approach

We scan the nodes of the suffix tree sf’ and delete from their extensions all elements

that belong to A, gq-

o Object-to-ClusterLabel Index-approach

An alternative approach is to have an additional data structure that for each object
o in A, it keeps pointers to the nodes of the suffix tree to whose extension o belongs.
In that case we don’t have to scan the entire suffix tree since we can directly go to
the nodes whose extension has to be reduced. The extra memory space for this policy
is roughly equal to the size of the suffix tree. However the suffix tree construction

process will be slower as we have to maintain the additional data structure too.

We have to note that sf can be considered as a cache of snippets and recall that snippet
generation is more expensive than clustering. The gained speedup is beneficial both for a
stand-alone WSE as well for a Meta WSE, since fetching and parsing of snippets are reused.
The suffix tree sf has to be constructed from scratch whenever the user submits a new query
and is incrementally updated while the user browses the information space by selecting zoom
points. If the suffix tree size exceeds a threshold, we delete it and we reconstruct it based

on the snippets of the top-C elements of the new focus.

4.5.3.1 Using the initial suffix tree

For this method the initial (unpruned) suffix tree is stored in the main memory. The
clustering algorithm inserts into this unpruned suffix tree the suffixes that corresponds to
documents of A ew- In the non-incremental algorithm the next step would be the pruning
of the tree but now we must first delete the old documents from the nodes of the tree in
order pruning to be consistent. Reduction of old documents is done using Scan-approach as
described above. After the elimination of the old documents a copy of this unpruned suffix
tree is stored. The other steps remain the same.

Figure 4.17 (A1) shows the constructed suffix tree after the insertion of the following

documents (A.):
Title 1: a b

99

Snippet 1: ¢ a b
Title 2: a e

Snippet 2: ¢ a e
We suppose that A, consists of the following documents:

Title 1: a b
Snippet 1: ¢ a b
Title 3: a b

Snippet 3: ¢ g

Figure 4.17 (A2) shows the constructed suffix tree after the insertion of A. e, ={3} into the
suffix tree of Figure 4.17 (Al). Figure 4.17 (A3) shows the generated suffix tree after the
elimination of A, ,4={2} (note that after this stage a copy of this suffix tree is stored in the

main memory) and finally Figure 4.17 (A4) shows the pruned suffix tree.

. AC,"G_W
insertion

v

! \ .'i / .'i
[BN || /)] RN
N R [A NN

(A1) (A2)

X A_c,o\d_
elimination

9] \ . \la] |
/ / | NN . 1 i i\\\ 1
2| \\.\ IR

(A3) (A4)

Figure 4.17: Example of using the initial suffix tree

4.5.3.2 Using the pruned suffix tree

For this method the pruned suffix tree is stored in the main memory as it is in a compact
form so it has less memory requirements. The clustering algorithm inserts into this pruned

suffix tree the suffixes that corresponds to documents of A, ¢, This means that some nodes

100

are going to be divided. During this process of inserting the new suffixes a data structure
is maintained that maps each document to the nodes it belongs. Now the old document
ids are reduced using the additional data structure. Next the tree is pruned, a copy of this
pruned suffix tree is stored and then the algorithm continues as the non-incremental.
Figure 4.18 (A1) shows the preserved pruned suffix tree and the additional data structure
(Object Map) for documents(titles/snippets) 1 and 2 while Figure 4.18 (A2) shows the
constructed suffix tree after the insertion of A¢ ey ={3} into the suffix tree of Figure 4.18
(A1) and the updated Object Map. Figure 4.19 (A3) shows the elimination of A. o q={2}
based on the Object Map (red color denotes the deletion of the specific element) and Figure
4.19 (A4) shows the generated suffix tree and the Object Map after the deletion of the entries
that corresponds to the A, ;4 documents. Finally, Figure 4.20 (A5) shows the pruned suffix

tree and the Object Map, both of them will be stored in the main memory.

Object Map

—[a][b][cal[ab][cab]
—[a][ca][e J[ae][cae]

Ac‘new

’] Object Map
insertion

—[al[b][c][ab][cab]
—[a][c]lcalle |[ae][cae]
—[al[b]lc]lq][ab][cq]

/

|

/

Figure 4.18: Example of using the pruned suffix tree

4.5.4 Experimental Results
4.5.4.1 Clustering Performance

It is worth noticing that the most time consuming subtask is not the clustering itself but

the extraction of the “best text” (snippet) from the cached copies of textual contents of the

101

Object Map
[1] —[a][b][c][ab]lcab]
[2] ~[al[c][ca]le][ae][cae]
(3] »[al[b][c]lg]fab]lcg]

Object Map
[1] =[a][b][c][ab][cab]
(3] =[allb][c]lg][ab][cq]

Figure 4.19: Elimination of A, g

Object Map
—[abl[b][c |[ab][cab]
—[abl[b][c][g][abl[cg]

(A5)

Figure 4.20: Example of using the pruned suffix tree

102

pages 3. To measure the performance of the clustering algorithm and the snippet generation,
we selected 16 queries and we counted the average times to generate and cluster the top-
{100, 200, 300, 400, 500} snippets. All measurements were performed using a Pentium IV
4 GHz, 2 GB RAM, Linux Debian.

[Measured Task [100] 200 [300 [400 [500
Time to generate snippets 0.793 | 1.375 | 1.849 | 2.268 | 2.852
Time to apply STC 0.138 | 0.375 | 0.833 | 1.494 | 2.303
Time to apply NM-STC 0.117 | 0.189 | 0.311 | 0.449 | 0.648

Table 4.6: Top-C' Snippet Generation and Clustering Times (in seconds)

Table 4.6 shows snippet generation times and the clustering algorithms performance.
Both times are in seconds. Notice that snippet generation is a very slow operation and is
the bottleneck in order to provide fast on-demand clustering, for a big top-C' number (C
bigger than 100). We should mention though, that our testbed includes a rather big number
of large sized files (i.e. pdf, doc, ppt), which hurt snippet generation times. Furthermore,
notice that NM-STC is at least two times faster than STC. This is because NM-STC does

not have to intersect and merge base clusters.

4.5.4.2 Overall Performance

In this experiment we measured the cost of coupling the cluster generation times (i.e.
snippet generation and clustering algorithm execution) with the dynamic taxonomies times
(i.e. the times to compute the zoom points and the times to load the new clustering labels to
the corresponding facet). Moreover we compare the non-incremental with one incremental
algorithm, which preserves the initial suffix tree and the elimination of old objects is done
using the Scan-approach. The scenario we used includes: (a) the execution of the query
crete which returns 4067 results, (b) the expansion of the .gr zoom point of the By domain
facet and the selection of the woc.gr (1277) zoom-in point from the hierarchy revealed from
the expansion, and (c) the selection of the text/html (807) zoom-in point of the By filetype
facet. Let cq,cp and c. be snippets of the top — C elements in the steps (a), (b) and (c)

respectively. Figure 4.21 shows the facet terms after steps (a), (b) and (c), as they are

3The snippets in our experiments contain up to two sentences where the query terms appear most times
and each one consists of 11 words maximum.

103

- -
By clustering By clustering By clustering
> architecture (5) ¥ announcements (1) » codng (1)
contact (10) > architecture (2} b cantact (3)
content {10) > contact (2) home (10)
» copyright rotice csd (13) b faciites (1) ¥ hamepage yannis tritzkas (2)
b course content englsh (7) h ¥ hyperinks (1)
b csd (1) ¥ lita kiiara (5) b kos home page (1)
b department (&) main (78) b lito kriara (5)
forth (33 » page (10) main (77}
» health telematics network (6) problemn (11) b page (11)
b ics (39) ¥ program (61) problem (11)
b information (11) repart (10} > program (68)
> retwork (8) » schedue (1) scierce (90)
b physical (5) science (81) » sitemap (1)
b science (22) b S e b taiitas (2)
b 1T Tepnicic avapopec (22) :qxuﬁﬁgrﬁ)enlmwo:wucw pénoy B e ()
REST (3981) REST (1177) REST (707)
-
- -
By domain .
T H0E7) By domain By domain
B g (1277) E g (807)
B uoc.gr (1277) = uoc.gr (B07)
> » csduoc.gr (1277) » csduoc.or (207)
date Expand gr and =
= 2008 (472) uoc.gr is pressed » Ltexthtmiis pressed -
® 2007 (694) By dat
= 2006 (1340) o By date
2005 (184) 2008 (97)
2004 (108) 2007 (75)
2003 (82) 2006 (66)
2002 (23} 2005 (53)
2001 (28) 2004 (53)
2000 (13) 2003 (59)
e i
185 (1) 0l
» Unknown (1042) 1307 (1 1997 (1)
¥ Urkrown (342) ¥ Unkriown (338)
-
By filetype i -
¥ application/msword (16) By filetype
¥ application/pcf (1476) >y aunl\g'twnn/mf (465) s mﬂyﬁ o 1
» N e e wront (5] b texthhtml (507)
application v, ms-powerpcirt (28) b textfhtml (807)
> text/html (2546)
-
o i By language
By language By language v Any (UTF-8) (1)
> Any (UTF-B) (18) > Any (UTF-8) (11) > Greek (639)
b Gresk (1208) b Gresk (540) ¥ Latin-1 (Europe, Latin America,
b Latin-1 (Europe, Latin America, » Latin-1 (Ecrope, Latin Americs, Caribhean, Canada, Africa) (34)
Carlbbean, Canada, Africa) (344) Caribbean, Canada, Africa) (34) » Latin-2 (Central and Eastern
b Latin-2 (Central and Eastern P Latin2 (Central and Eastern Eurcpe) (4)
Eurape) (4) Europe) (4) ¥ Unknown (118)
» Unknown (1892) » Unknown (363)

(a) (b) (c)

Figure 4.21: Steps (a)-(c) of running scenario
displayed in the left bar of the WSE GUIL We set K = 10000 (i.e. the whole answer set is
loaded) and repeated the above steps for the following values of C:100, 200 ... 500. We do
not measure the cost of the query evaluation time. In all experiments FleXplorer computes
count information.

Table 4.7 shows the intersection of A, and A’ for steps (a), (b) and (c) and the execution
times that correspond to the integration of FleXplorer and results clustering when the
non-incremental NM-STC and an incremental approach of NM-STC is used, for the top — C
elements. It is evident that for top-100 and top-200 values, the results are presented to
the user almost instantly (around 1 second), making the proposed on demand clustering
method suitable as an online task. Moreover we can see that there is a linear correlation
between time cost and the top-C value. Finally calculating and loading clusters for the
top-500 documents, costs around 3 seconds making even big top-C' configurations a feasible
configuration.

Comparing the incremental and the non-incremental algorithm, we observe a significant
speedup whenever the overlap is more than 50%, for our scenario. At step (a) the suffix tree

construction is the same for both algorithms as the suffix tree sf has to be constructed from

104

[[Step (a) | Step (b) [Step (c)

top-100 |ca| = 100 |ca N ep| = 43, overlap=43% ley N ce| = 85, overlap=85%
Non-Incr. 0.914 0.443 0.204

Incr. 0.931 0.431 0.101

top-200 [cal =200 | |ca Ney| =71, overlap=35.5% | |cp Nee| = 113, overlap=56.5%
Non-Incr. 1.266 1.245 0.789

Incr. 1.245 0.965 0.68

top-300 [cal =300 | |ca Ney| = 74, overlap=24.6% | |cp Ncc| = 201, overlap=67.7%
Non-Incr. 1.676 2.534 1.383

Incr. 1.65 2.527 0.761

top-400 [cal =400 | |cq Ncy| = 85, overlap=21.5% ley Nee| = 252, overlap=63%
Non-Incr. 2.246 3.067 1.944

Incr. 2.118 3.335 0.942

top-500 |cal =500 | |ca Ney| =97, overlap=19.4% | |cp Nec| = 324, overlap=64.8%
Non-Incr. 2.483 3.495 2.001

Incr. 2.493 3.652 0.751

Table 4.7: Top-C' Comparison of Incremental /Non-Incremental Algorithms (in seconds)

scratch. For step (b) there are small variations due to the small overlap, so the time saved
from the snippets generation/parsing is compensated by the time needed for eliminating old
objects. Specifically, the incremental algorithm is faster for the top-200 case and slower for
the top-{400, 500} cases which have the lowest overlap. For the other cases performance is
almost the same. Notice that although the top-100 case has the biggest overlap of all, there
are no differences in the execution time of the two algorithms. This is probably due to the
fact that the overlapping documents have fast snippet generation times, while the rest are
big sized. At step (c) the benefit from the incremental approach is clear, since it is almost
twice as fast as the non incremental one. Specifically, the best speedup is in the case of

top-500, where overlap reaches 65% and the execution time of the non-incremental is 2.001,

while for the incremental is just 0.751.

4.6 Admin Parameters

Administrator’s parameters for clustering are stored in the database and can be changed

only by authenticated users 4. Note that the clustering algorithm that is currently used on

Mitos is also specified by a parameter which is called Name hierarchy.

The following parameters are used by Snippet-based approaches:

e K : number of top elements of the answer to cluster

“http://groogle.csd.uoc.gr:8080/mitos/admin/

105

o LL, . : minimum number of words that a cluster label can contain
o LL,,: maximum number of words that a cluster label can contain

o NCpqr @ maximum number of the generated clusters

4.7 Application over Google

Our approaches were also applied over the search results of Google. A Google parser was
implemented that is based on an HTML parser. Google pages are requested with 100 results
per page which is the maximum number. The information we gather for each result is its
title, snippet, address links and file length. Titles and snippets are the input data for the
clustering process, while the address links and file length are used only at the presentation
layer. At the GUI layer the user can select the number of results which can vary from 100
to 500 and the clustering algorithm he wants.

Google groups together its News, Books, Videos, Blogs, Images, Shopping results. Usu-
ally only titles are provided for these results. We exploit all these results except the Images
results. Also, in order to exploit the grouping of these hits we observe that their titles
consist of the title of the group concatenated with the title of the hit. For example, if we
have the following Book results:

Books by Nikos Kazantzakis

Zorba the Greek

At the Palaces of Knossos: A Novel

The Last Temptation of Christ
the titles that will be used are:

Books Zorba the Greek
Books At the Palaces of Knossos: A Novel
Books The Last Temptation of Christ

The name of the group (e.g. Books) is usually followed by the query words (e.g. Nikos
Kazantzakis), so we do not use them as they will be excluded at step (2) of the algorithm.
For example, News results for Obama will be reduced to News.

Note that each of these special groups are counted as one result for Google, but our

106

Google parser identifies each constituent title as a separate result which means that the

number of the requested results can be 100 and the clustered documents more than 100.
Figures 4.22 and 4.23 show the user interface of Clustering over Google® and the clusters

derived when submitting the query g= Eleftherios Venizelos and g= Nikos Kazantzakis

respectively.

Clustering over Google

|E|EﬂhEriUS “enizelos

Number of Results: | 100
Clustering Algorithm: | MpA-5TC

Clustered results

Top 101 result:

NM-STC
[= (i Eleftherios Yenizelos{ 101}

AigBvic Aspohigvac ABrviy - EAeuBpioc Bewidghas -0
Mopoudicor 100 0£podpopio Kl Thnpopopics yo Ty TpAofaom TI¢ TTATEG Kal TI¢ TEPExaPavE] UTTnpD

B airpart(17)
» (Jathens(?) “oe
» (Jath(s) Eeal Time Flight Information -1

» (Jinternational airpork{18)

[Jinternational{3a)
y airport(36)

ARRIVALS asc desc, AIRLIMNE asc desc, FLIGHT, WA, EXPECTED ARRIMAL ast desc, SCHEDULED AR
Aegean Arlines, A3 343
- OKB

: t‘j::;;';;'””al srport{13) Eleftherios Venizelos - Wikipedia, the free encyclopedia -2

y O remcs(27) fap of Greater Greece after the Treaty of Sévres, when the Megali ldea seemed close to fulfillment, feat
.g - DKB

b inFormationd 15)

4 L.;‘guidE(ﬁ) Athens International Airport - VWikipedia, the free encyclopedia -3

3 LJ_mLISELIm(Q) The airport serves more than 16 million travellers annually and was named after the Greek politician Ele

¥ (Jtrisls statesmanship(4) hecome ...

b (Jspata(7) OB

: :‘j?ﬂ;m Eleftherious Venizelos - 4

b L.]city(ﬁ) Eleftherios Venizelos was born in Chania, Crete in 1864, ... When this failed Eleftherios Venizelos was

1936 .

Figure 4.22: Clustering over Google user interface

Clustering over Google

|Mikos Kazantzakis

Number of Results: | 100

Clustering Algorithm: | M-5TC

Clustered results Top 104 res|
Hhd-STC . .) i .
") Nikos Kazantzakis - \Wikipedia, the free encyclopedia-o
(= a Mikos Kazantzakis(104) N — - N
5 (D greekiaz) Pandelis Prevelakis, Nikos Kazantzakis and His COdyssey. A Study ofthe Poet and the Poem, translatec
: - prefaction by ..
}I ([backs{4) e
k- . heraklioni15)
¥ Jinternational sirport(S) Heraklion International Airport, "Nikes Kazantzakis" - Wikipedia ...-1
zarba gresk{16) The airportis named after Heraklion native Nikos Kazantzakis, a Greek writer and philosopher. ltis the
b Lbooks(4) Athens ...
» (Jbookszo) - OKB
: ja"pm(ﬂ) Nikos Kazantzakis -2
tes(10
-qu_n =s(10) Nikos Kazantzakis was born in Megalokastro, Ottoman Ernpire, now Iraklion, Crete, as the son of Mich:
4 L{wnter(n) animal feed
¥ Uinternational airportis) _OHB
¥ museumie)
» (Jaresce(1m) Eooks by Nikes Kazantzakis Zorba the Greek - -3
» Jencycopediai4) _OKE
¥ (I tempation christ(a))))
by Oreviewsis) Books by Nikos Kazantzakis At the Palaces of Knossos: A Movel - -4
¥ Jinfarmatian(7) - OKB
> Clerstanig) Dlrmlom bus Rliban I amambmalin The |t Trmmmbntion ~f Clhvick -

Figure 4.23: Clustering over Google user interface

Shttp://groogle.csd.uoc.gr:8080/google/google.jsp

107

108

Chapter 5

Conclusion

5.1 Synopsis

Web Search Engines typically return a ranked list of documents that are relevant to the
query submitted by the user. The absence of concise overviews and the inability of the user
to determine his information need accurately, make it difficult for the user to satisfy his
information needs. Results clustering is a solution which provides a quick overview of the

search results.

Results clustering can be applied either to the original documents (like in [11, 18, 23]),
or to their (query-dependent) snippets (as in [38, 30, 15, 41, 17, 34]).

Clustering should provide each generated cluster with a cluster label that characterize
the contents of its objects in order to allow users to detect what they need quickly. This
task of deriving readable and meaningful (single-word or multiple-word) names for clusters
is called cluster labeling and is very difficult as labels must be predictive, descriptive, concise
and syntactically correct. Some clustering algorithms [15, 12, 37] use internal or external
sources of knowledge so as to identify significant words/phrases that represent the contents
of the retrieved documents or to enrich the extracted words/phrases in order to optimize

the clustering and improve the quality of cluster labels.

In this thesis we relied on Suffiz Tree Clustering (STC) which is a clustering technique
where search results (mainly snippets) are clustered fast (in linear time), incrementally, and

each cluster is labeled with a common phrase. Other advantages of STC is that it uses

109

phrases (rather than words) and that it allows clusters to overlap. Based on this algorithm
we introduced (a) a variation of the STC, called STC+, with a scoring formula that favors
phrases that occur in document titles and differs in the way base clusters are merged, and
(b) a novel algorithm, called NM-STC, that adopts a different scoring formula, does not
merge clusters and results in hierarchically organized labels.

The comparative evaluation of the three algorithms showed that NM-STC is (two to
three times) faster than STC and STC+. Moreover, the empirical evaluation conducted
with the participation of 11 people showed that both STC+ and NM-STC are significantly
more preferred than STC, and that STC+ is slightly more preferred than NM-STC. The
majority of the users prefer (a) hierarchically organized labels, (b) labels comprising one to
three words, and (c) 10-15 clusters.

A complementary approach for the presentation of web search results is to exploit the
various metadata that are available to WSE (like domain, dates, language, document type,
etc) in the context of the interaction paradigm of faceted and dynamic taxonomies. We
have proposed an on-demand integration of content-based results clustering with dynamic
taxonomies. To this end we have exploited the incremental nature of STC and presented an
incremental approach for exploiting past computations and results. The evaluation of the
incremental algorithms showed that the benefit from the snippet caching is considerable as

the result set is restricted since snippet generation is more expensive than clustering.

5.2 Directions for further work and research

The current work can be extended in order to further improve the quality of cluster
labels. One direction is to investigate the applicability of Named Entities Recognition(NER)
techniques.

Regarding efficiency, a possible optimization for STC+ and NM-STC could be to prune
two nodes only when their labels appear in the same document titles and not in the same
documents which means that a label appears either in the document title or in the document
snippet.

Another issue for further research is how to improve the performance of the incremental

algorithms presented and finally the investigation of what top-C value most users prefer.

110

Bibliography

1]
2]
3]
(4]
[5]
(6]

[7]

Carrot? search engine. http://www.carrot2.org.

Clusty search engine. http://clusty.com.

Mitos search engine. http://groogle.csd.uoc.gr:8080/mitos/.
Quintura search engine. http://www.quintura.com.

Snaket search engine. http://snaket.di.unipi.it/.

Vivisimo search engine. http://vivisimo.com.

N. Agarwal, E. Haque, H. Liu, and L. Parsons. A subspace clustering framework for research
group collaboration. International Journal of Information Technology and Web Engineering,

1(1):35-58, 2006.

H. Andreka, M. Ryan, and P.-Y. Schobbens. Operators and Laws for Combining Preference
Relations. Journal of Logic and Computation, 12(1):13-53, 2002.

H. O. Borch. On-Line Clustering of Web Search Results. Master thesis, Norwegian University
of Science and Technology, July 2006.

D. Crabtree, X. Gao, and P. Andreae. Improving Web Clustering by Cluster Selection. In
Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI '05),
pages 172-178, Compiegne, France, September 2005.

D.R. Cutting, D. Karger, J.O. Pedersen, and J.W. Tukey. Scatter/Gather: a cluster-based ap-
proach to browsing large document collections. In Proceedings of the 15th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’92),
pages 318-329, Copenhagen, Denmark, June 1992.

W. Dakka and P.G. Ipeirotis. Automatic Extraction of Useful Facet Hierarchies from Text
Databases. In Proceedings of the 24th International Conference on Data Engineering (ICDE
"08), pages 466-475, Canctin, México, April 2008.

111

[13]

[16]

[17]

[18]

[22]

[23]

[24]

J. C. de Borda. Memoire sur les Elections au Scrutin, 1781. Histoire de I’Academie Royale des

Sciences, Paris.

S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman. Indexing by latent

semantic analysis. Journal of the American society for information science, 41(6):391-407, 1990.

P. Ferragina and A. Gulli. A personalized search engine based on web-snippet hierarchical
clustering. In Proceedings of the 14th international conference on World Wide Web (WWW
'05) - Special interest tracks and posters, volume 5, pages 801-810, May 2005.

B.C.M. Fung, K. Wang, and M. Ester. Hierarchical Document Clustering Using Frequent
Itemsets. In Proceedings of the SIAM International Conference on Data Mining, volume 30,

San Francisco, CA, USA, May 2003.

F. Gelgi, H. Davulcu, and S. Vadrevu. Term ranking for clustering web search results. In 10th

International Workshop on the Web and Databases (WebDB ’07), Beijing, China, June 2007.

M.A. Hearst and J.O. Pedersen. Reexamining the cluster hypothesis: scatter/gather on retrieval
results. In Proceedings of the 19th annual international ACM SIGIR conference on Research and
Development in Information Retrieval (SIGIR ’96), pages 76-84, Zurich, Switzerland (Special
Issue of the SIGIR Forum), August 1996.

J. Janruang and W. Kreesuradej. A New Web Search Result Clustering based on True Common
Phrase Label Discovery. In Proceedings of the International Conference on Computational
Inteligence for Modelling Control and Automation and International Conference on Intelligent
Agents Web Technologies and International Commerce (CIMCA/TAWTIC ’06), Washington,
DC, USA, November 2006.

M. Kiki. Findex: properties of two web search result categorizing algorithms. In Proc. IADIS
Intl. Conference on World Wide Web/Internet, Lisbon, Portugal, October 2005.

S. Kopidaki, P. Papadakos, and Y. Tzitzikas. STC+ and NM-STC: Two Novel Online Results
Clustering Methods for Web Searching. In Proceedings of the 10th International Conference on
Web Information Systems Engineering (WISE ’09), October 2009.

T.K. Landauer, P.W. Foltz, and D. Laham. An introduction to latent semantic analysis. Dis-

course processes, 25:259-284, 1998.

Y.S. Maarek, R. Fagin, I.Z. Ben-Shaul, and D. Pelleg. Ephemeral document clustering for web
applications. IBM Research Report RJ 10186, April 2000.

C.D. Manning, P. Raghavan, and H. Schtze. Introduction to information retrieval. Cambridge

University Press New York, NY, USA, 2008.

112

[25]

[26]

[28]

[29]

[32]

[33]

[34]

I. Michailidis, K. Diamantaras, S. Vasileiadis, and Y. Frére. Greek named entity recognition
using Support Vector Machines, Maximum Entropy and Onetime. In Proceedings of the 5th
International Conference on Language Resources and Evaluation, pages 45-72, Genova, Italy,

2006.

P. Papadakos, S. Kopidaki, N. Armenatzoglou, and Y. Tzitzikas. Exploratory Web Search-
ing with Dynamic Taxonomies and Results Clustering. In Proceedings of the 13th European

Conference on Digital Libraries (ECDL ’09), Corfu, Greece, Sept.-Oct. 2009.

P. Papadakos, Y. Theoharis, Y. Marketakis, N. Armenatzoglou, and Y. Tzitzikas. Mitos: De-
sign and Evaluation of a DBMS-based Web Search Engine. In Procs of the 12th Pan-Hellenic
Conference on Informatics (PCI "08), Greece, August 2008.

P. Papadakos, G. Vasiliadis, Y. Theoharis, N. Armenatzoglou, S. Kopidaki, Y. Marketakis,
M. Daskalakis, K. Karamaroudis, G. Linardakis, G. Makrydakis, V. Papathanasiou, L. Sardis,
P. Tsialiamanis, G. Troullinou, K. Vandikas, D. Velegrakis, and Y. Tzitzikas. The Anatomy of
Mitos Web Search Engine. CoRR, Information Retrieval, abs/0803.2220, 2008. Available at
http://arxiv.org/abs/0803.2220.

Y. Ramirez-Cruz and A. Pons-Porrata. Spanish Nested Named Entity Recognition Using a
Syntax-Dependent Tree Traversal-Based Strategy. In Proceedings of the 7th Mezican Interna-
tional Conference on Artificial Intelligence: Advances in Artificial Intelligence, pages 144—154,
Atizapan de Zaragoza, Mexico, October 2008. Springer-Verlag Berlin, Heidelberg.

J. Stefanowski and D. Weiss. Carrot2 and language properties in web search results clustering.
In Proceedings of the International Atlantic Web Intelligence Conference, Madrid, Spain, May
2003.

J. Stefanowski and D. Weiss. Comprehensible and Accurate Cluster Labels in Text Cluster-
ing. In 8th International Conference on Computer-Assisted Information Retrieval (Recherche

d’Information et ses Applications) - RIAO 2007, Pittsburgh, PA, USA, May-June 2007.

M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques.

KDD Workshop on Text Mining, 34:35, 2000.

Y. Tzitzikas, N. Armenatzoglou, and P. Papadakos. FleXplorer: A Framework for Provid-
ing Faceted and Dynamic Taxonomy-Based Information Exploration. In Database and Expert

Systems Application (FIND '08 at DEXA ’08), pages 392-396, Torino, Italy, 2008.

J. Wang, Y. Mo, B. Huang, J. Wen, and L. He. Web Search Results Clustering Based on a
Novel Suffix Tree Structure. In Procs of 5th International Conference on Autonomic and Trusted

Computing (ATC ’08), volume 5060, pages 540-554, Oslo, Norway, June 2008.

113

[35]

[40]

[41]

[42]

Y. Wang and M. Kitsuregawa. Use link-based clustering to improve Web search results. In
Proceedings of the Second International Conference on Web Information System FEngineering

(WISE ’01), Kyoto, Japan, December 2001.

D. Weiss and J. Stefanowski. Web search results clustering in Polish: Experimental evaluation of
Carrot. In Intelligent Information Processing and Web Mining: Proceedings of the International

1IS: IIPWM °083, Zakopane, Poland, June 2003.

D. Xing, G.R. Xue, Q. Yang, and Y. Yu. Deep classifier: automatically categorizing search
results into large-scale hierarchies. In Proceedings of the international conference on Web Search

and Web Data Mining (WSDM '08), pages 139-148, Palo Alto, California, USA, February 2008.

O. Zamir and O. Etzioni. Web document clustering: a feasibility demonstration. In Proceed-
ings of the 19th annual international ACM SIGIR conference on Research and Development in
Information Retrieval (SIGIR "98), pages 46-54, Melbourne, Australia, August 1998.

O. Zamir and O. Etzioni. Grouper: A dynamic clustering interface to web search results.

Computer Networks, 31(11-16):1361-1374, 1999.

O.E. Zamir. Clustering Web Documents: A Phrase-Based Method for Grouping Search Engine
Results. PhD thesis, University of Washington, 1999.

H.J. Zeng, Q.C. He, Z. Chen, W.Y. Ma, and J. Ma. Learning to cluster web search results.
In Proceedings of the 27th annual international conference on Research and Development in

Information Retrieval (SIGIR ’04), pages 210217, Sheffield, UK, July 2004.

D. Zhang and Y. Dong. Semantic, Hierarchical, Online Clustering of Web Search Results. In 6th
Asia-Pacific Web Conference on Advanced Web Technologies and Applications (APWeb 04),
pages 69-78, Hangzhou, China, April 2004.

114

Index

Bisecting K-means, 2 SHOC, 41
Buckshot, 18 similarity functions, 7
Subspace clustering, 26

component diagram, 73)
Suffix Tree Clustering (STC), 18, 27

data mining, 25
TermRank, 29

distance functions, 7

dmoz, 22

FleXplorer, 92

Fractionation, 18

Frequent Itemset Hierarchical Clustering (FIHC),
25

human labeled training data, 32
incremental, 27
K-means, 2

Latent Semantic Indexing, 5

linear time, 27

metric spaces, 7

mitos, 71
NM-STC, 58
PageRank, 29

salient phrases, 32
scatter/gather, 18
SCuba, 26

sequence diagram, 74

115

116

Appendix A

Here are presented the queries used for the user evaluation.
1. UML
2. Avéxnon IDanpogopuisy
3. Crete
4. Hpdxhewo
5. Auwoyeipion Ovtoloyuody
6. Ontuxonolnon I'pdpwyv
7. O Mitoc e Aptddvrng
8. BiBhwodnxn Pediuvou
9. How to add jar files in Eclipse
10. How to install mitos
11. Awxonée oty Nota Kerjn
12. SWKM
13. Papuoxcio Hpoxhelou
14. wwtdyevol dloxol otn Nota Kern
15. Buehaio

16. Trieontixd Ilpdypouuo

117

